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Abstract 

This thesis presents the development of integrated sensors for health monitoring 

in Microsystems, which is an emerging method for early diagnostics of status or 

“health” of electronic systems and devices under operation based on embedded 

tests. Thin film meander temperature sensors have been designed with a 

minimum footprint of 240 m × 250 m. A microsensor array has been used 

successfully for accurate temperature monitoring of laser assisted polymer 

bonding for MEMS packaging. Using a frame-shaped beam, the temperature at 

centre of bottom substrate was obtained to be ~50 ºC lower than that obtained 

using a top-hat beam. This is highly beneficial for packaging of temperature 

sensitive MEMS devices. Polymer based surface acoustic wave humidity sensors 

were designed and successfully fabricated on 128° cut lithium niobate substrates. 

Based on reflection signals, a sensitivity of 0.26 dB/RH% was achieved between 

8.6 %RH and 90.6 %RH. Fabricated piezoresistive pressure sensors have also 

been hybrid integrated and electrically contacted using a wire bonding method. 

Integrated sensors based on both LiNbO3 and ZnO/Si substrates are proposed. 

Integrated sensors were successfully fabricated on a LiNbO3 substrate with a 

footprint of 13 mm × 12 mm, having multi monitoring functions for simultaneous 

temperature, measurement of humidity and pressure in the health monitoring 

applications.    
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Chapter 1 Introduction 

1.1 Background and Motivation 

The market for Micro-Electro-Mechanical-Systems (MEMS) has grown steadily over 

the last decade, with both multi-chip module (MCM), system in package (SiP) and 

system on chip (SoC) technologies playing more important roles in the integration of 

MEMS devices and Microsystems. MCM is a specialized electronic package where 

multiple integrated circuits (ICs), semiconductor dies or other discrete components are 

packaged onto a unifying substrate and facilitating their use as a single component. As 

an extension of the MCM concept, SiP technology is a response to the demands for 

higher level integration and functionality including radio frequency (RF) and non-

electrical functions, which supports both the concept of chip stacking (3D integration) 

and uses substrates that include passives, electrical and non-electrical interconnects and, 

in the future, active devices. Applications of SiP based microsystems are in areas such 

as ambient intelligence, intelligent sensing and medical technologies where fault 

tolerance and self monitoring are key requirements (e.g. health care, aerospace, 

implants…) [1-4].  

Advanced sensors and monitoring technologies are important in prioritizing the repair 

and rehabilitation process, improving the cost-effectiveness of inspection and 

maintenance, and ultimately enhancing the lifetime and safety of the systems. 

Embedded environmental “health” monitoring has also been implemented in 

infrastructure systems, such as bridges, highways, buildings, pipelines, and many 

mechanical structures, such as aerospace vehicles or heavy mining equipment. The 

failure of such structures can cause large economic loss, and even the loss of lives. By 

using an array of sensors to continuously monitor such structures, the embedded health 

monitoring sensors can provide an early indication of problems such as damage to the 

structure from fatigue, corrosion or impact, and this information can be used to 

undertake corrective action before the damage develops to a stage where a catastrophic 

failure occurs [5-9].  

Most of the component technologies required for heterogeneous microsystems exist but 

the integration and associated manufacture of these systems places major challenges on 

the test and reliability validation processes. Embedded health monitoring in 
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Microsystems will initiate research into the possibility of realizing a methodology to 

support low-cost integration of functions able to self-test components and system 

interconnects during production testing. It will also allow monitoring of key parameters 

in mission mode and provide a level of fault tolerance / self-repair. This work will build 

on low cost self-test concepts for MEMS and study both fault modeling and structural 

reliability for Microsystems technologies.  

In this thesis, the embedded health monitoring sensors have been investigated, which 

could be used to monitor the key faults and degradation behaviour in environmental 

parameters correlated with system reliability variations in mission mode. Besides the 

application of health monitoring in Microsystems, there are also huge demands for 

integrated sensors for normal environmental monitoring, e.g. the temperature, humidity, 

and pressure monitoring at airports and motorways. Both sensing and testing functions 

have been studied together with the test control and access infrastructure for the abilities 

of self monitoring and self repairing. The research work includes the potential to realize: 

1. temperature, humidity and pressure/stress sensors for integration in a 

microsystem health monitoring architecture;  

2. integration technologies for health monitoring multi-sensor systems based on 

silicon and piezoelectric substrates;  

3. solutions for embedded sensing;  

4. implementation solutions including on-chip and on-substrate;  

5. investigation of further applications of the embedded health monitoring sensors. 

1.2 Thesis Outline 

The diagram of the thesis outline is shown in Fig. 1.1. Chapter 2 introduce the MEMS 

technology including the MCM and SiP technologies, and presents a research review of 

the typical sensors used for embedded health monitoring. The review covers different 

types of temperature sensors, humidity sensors and pressure/stress sensors.  
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Figure 1.1 Diagram of thesis outline. 

Chapter 3 describes the design, fabrication and testing of the metal based thin film 

temperature sensors, which have been designed in meander structures with track widths 

of 3, 5, 7 and 10 m. Based on the finite element method (FEM) simulation, a 

photomask has been designed and produced on the soda-line glass substrates. During 

the devices fabrication, a platinum layer, deposited by sputtering and patterned by ion-

beam etching, was fabricated as the temperature sensing film. Nickel was also selected 

for the fabrication of the thin film temperature sensors. Nickel was deposited by 

electron beam evaporation and patterned using a wet etching process. The footprint of 

the successfully fabricated thin film temperature sensor with 3m track width was only 

240 m × 250 m. The platinum based thin film temperature sensors displayed a linear 

response to temperature between 25
o
C and 375

o
C. 

Chapter 4 presents an experimental study of an embedded accurate processing 

temperature monitoring of laser assisted polymer bonding for MEMS packaging, using 

an embedded thin film microsensor array. The work was carried out using a fibre 

coupled diode laser system and the benzocyclobutene (BCB) polymer as the bonding 
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material. The BCB has been cured by laser heating and for creating the sealed cavities 

for housing the MEMS devices. To create the top-hat and frame shaped laser beam 

profiles, the beam forming optical elements were used. In the sensor array, the 

peripheral sensors were embedded underneath the polymer sealing rings which allow 

precise monitoring of the temperature profile of the polymer track during the laser 

assisted BCB curing. The sensor at the centre of the sensor array monitored the 

temperature that would be experienced by a MEMS device in manufacturing 

environments. The results show that accurate temperature monitoring can be obtained 

using the embedded sensor arrays. A lower temperature was obtained at the centre of 

the bottom (device) substrate than the bonding temperature of the polymer ring. This is 

a highly desirable effect for packaging of temperature sensitive devices. In addition, the 

effects of substrate material and heat dissipation on the resultant temperature profiles 

have been investigated. 

Chapter 5 studies the design and fabrication of the surface acoustic wave (SAW) based 

humidity sensors, based on the summaries of the BCB moisture absorption ability and 

the principals of piezoelectric effect and SAW sensing. After studies of the equivalent 

circuit, behaviour modelling and the power consumption analysis of the SAW sensors, 

inter-digital transducer (IDT) fingers, with width of 4, 8 and 16 m, were fabricated 

both on bulk materials such as LiNbO3 and thin film layers such as ZnO on top of 

silicon wafers. Both these materials are piezoelectric and it is this property which is 

exploited in the humidity sensor. The SAW, created by the IDTs on the piezoelectric 

substrates, is sensitive to the mass loading effect caused by the moisture absorption, 

which results in a resonance frequency shift and changes of the wave amplitude. 

CYCLOTENE 4000 resins (Photo-BCB) supplied by Dow Chemical have been selected 

as the moisture absorption layer coated to the SAW sensors on the piezoelectric 

substrates. The transmission and reflection signals of the fabricated sensors were 

measured using a HP8510 Network Analyzer. 

Chapter 6 firstly investigates the hybrid integration of the piezoresistive pressure 

sensors. The process flow of the multi-sensor integration based on both LiNbO3 and 

ZnO/Si substrates have been proposed, and the integrated sensors as a single chip on the 

LiNbO3 substrates have been successfully fabricated. The IDTs of SAW humidity 

sensors were fabricated using depositing aluminium and wet etching process, while the 

contact pads of the pressure sensors were produced at the same time. Either platinum 



 

5 

deposited using sputtering and patterned with ion-beam etching process or nickel 

deposited using electro-beam evaporation and patterned with wet etching process. 

Finally, the piezoresistive pressure sensors have been integrated using the hybrid 

integration and then connected to the electrical pads using wire bonding. 

Chapter 7 is the conclusion of this thesis and the discussion of the future work. Long 

term stability of SAW based humidity sensor and fabricated temperature monitoring 

micro-chip are shown and discussed as the future work. 
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Chapter 2 MEMS and System Health Monitoring Technologies 

2.1 Micro-Electro-Mechanical Systems (MEMS) Technology 

Micro-electro-mechanical systems (MEMS) are small integrated devices or systems that 

combine electrical and mechanical components. The foundation of MEMS technology 

is the capability of creating controllable, mechanical, moveable structures using IC 

processing technology [10]. MEMS technology is about high-level integration of 

dissimilar functions including motion, light, sound, electromagnetic radiation and 

analysis of data. Computation, analysis and central control of these input/output 

functions could result in a fully integrated system of incredible versatility [11]. The 

development of MEMS technology can be traced back to Richard P. Feynman, the 

Nobel Physics Prize winner, who gave a talk “There's Plenty of Room at the Bottom” 

on 29th Dec. 1959 at the annual meeting of the American Physical Society [12]. Both 

the scale and roadmap of MEMS are shown in Fig. 2.1 and Fig. 2.2 [13]. The 

development of MEMS and related technologies are shown as follows [13-15], 

• 1954:  The piezoresistive effect of silicon and germanium reported by 

C.S. Smith. Silicon-based pressure sensors have been widely 

produced since this discovery. 

• 1958: Silicon strain gauges commercially available. 

• 1959: R. Feynman famous talk: “There is plenty of room at the 

bottom”. 

• 1961: The first silicon strain gauges were integrated on a thin silicon 

substrate as diffused resistors by Kulite. 

• 1967: Invention of surface micromachining (Nathanson, Resonant 

Gate Transistor). 

• 1970: First silicon accelerometer demonstrated (Kulite). 

• 1970: Silicon-glass bonding technology. 

• 1977: First capacitive pressure sensor (Stanford). 

• 1977: IBM – HP : Micro-machined Ink Jet Nozzle. 

• 1978: Silicon Bulk Micromachining: K. Bean. 

• 1978: Structure obtained by Micromoulding (LIGA). 

• 1982: Famous review paper “Silicon as a Mechanical material” (K. 

Petersen). 
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• 1984: First polysilicon MEMS device (M. Howe). 

• 1985: Assembly of silicon wafers (Si/Si fusion bonding): Lasky, et al. 

• 1985: IC-compatible surface micromachining: Polysilicon comb 

structures. 

• 1988: Electrostatic micromotor (UC -Berkeley BSAC). 

• 1988: First MEMS conference (1st Transducers conference was held 

in 1987). 

• 1993: First surface micromachined accelerometer (ADXL50) sold, 

(Analog Devices). 

• 1998: Technologies standard. 

• 2000: MEMS becomes a growing market: A huge number of MEMS 

Start-up. 

 

 

 

 

Figure 2.1 The scale of MEMS technology [13].
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Figure 2.2 The roadmap of MEMS technology [13]. 

MEMS technology has developed rapidly due to following advantages: high reliability, 

small scale, multifunctional, light weight, low power consumption, less consumption of 

natural resources, high-volume and low-cost production, high integration and 

specialised manufacture. MEMS technology has been commonly regarded as a general 

strategy of success, not only for electronic components and systems but also for a huge 

variety of mechanical, optical, acoustic, thermal, fluidic, chemical, and biochemical 

functional units [16-18]. These “smart sensors” monitor and control the function of 

critical systems and components in order to ensure safe and efficient operation. They are 

also playing important roles in prioritising the repair and rehabilitation process and 

improving the cost-effectiveness of inspection and maintenance of systems, such as in 

civil infrastructure systems, turbine engines and bearings. The demands for autonomous 

health monitoring capability depend on the risk associated with system failure and the 

potential benefit of timely response to faulted or degraded operations [19-23]. Typical 

MEMS “smart sensors” contain acceleration sensors, pressure sensors, temperature 

sensors, flow sensors, chemical sensors, biosensors, ink jet printer heads, read write 

heads, optical network components, nano-tools, micro-relays, micro-pumps, and micro-

motors. The MEMS and integrated MEMS devices have already been widely used in 

the automotive industry, optical interconnection technology, aerospace, information 

technology, safety and security, process control, machine vision, automation, 
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environmental monitoring, biotechnology, pharmaceutical industry, water, gas supply, 

science, and consumer products. high level integration of MEMS devices makes it 

possible to integrate multi-sensors, functional actuators and control circles together into 

a single chip or a single package in a real Microsystem [16-23].   

MEMS technology is based on the techniques and theories of system-techniques, micro-

techniques and materials [24]. The details are shown in Fig. 2.3. Microfabrication is the 

core of MEMS technologies, which is also one of most active research areas of MEMS 

technology. The main fabrication processes of MEMS include surface micromachining 

developed on from microelectronics processing technology, bulk micromachining for 

silicon fabrication, wafer bonding technology and non-silicon micromachining [25]. 
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Figure 2.3 The technical and theoretical foundations of MEMS [24]. 
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2.1.1  Surface Micromachining 

Surface micromachining is characterised by the fabrication of micromechanical 

structures by deposition and etching of thin structural and sacrificial films. Originally 

employed for integrated circuits processes, films composed of materials such as 

polysilicon, silicon nitride and silicon dioxides can be sequentially deposited and 

selectively removed to build or “machine” three-dimensional structures [26]. Thus, 

simple microstructures like beams or membranes as well as complex structures like 

linkages or encapsulated resonators can be fabricated on top of a substrate. A processing 

sequence using polysilicon as micro-structural material and silicon dioxide as sacrificial 

layer is shown in Fig. 2.4. The main features of the surface micro-machining technology 

are the small microstructure dimensions and the opportunity to integrate 

micromechanics and microelectronics on the same chip. There are three key challenges 

in fabrication of microstructures using surface micromachining [27], 

 Control of stress and stress gradients in the structural layer to avoid bending or 

buckling of the released microstructure. 

 High selectivity of the sacrificial layer etchant to functional layers. 

 Avoidance of sticking of the released microstructure to the substrate  

 
Figure 2.4 Cross-sectional schematic demonstration of surface micromachining [27] 

(a) Sacrificial layer deposition; (b) definition of the anchor and bushing regions;  

(c) structural layer patterning; and (d) free-standing microstructure after release.  

2.1.2 Bulk Micromachining 

Silicon bulk micromachining, which is based on a silicon etching and glass-silicon 

anodic bonding, plays an important role in microfabrication. Three-dimensional 
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microfabrication is important to develop high performance microactuators and 

microscale energy sources. A comparison of bulk silicon etchants is shown in Table 2.1. 

The available etching methods fall into three categories in terms of the state of the 

etchants: wet, vapor, and plasma processes. Dry etching method is compatible to 

complementary metal–oxide–semiconductors (CMOS) processing and is being 

developed for its popularity. Wet etching with alkaline liquid solvents, such as 

potassium hydroxide (KOH) or tetramethylammonium hydroxide (TMAH), is a 

relatively simple and inexpensive fabrication technology, and is well suited for 

applications which do not require much complexity, and which are price sensitive [28-

30].  

Table 2.1 Comparison of bulk silicon etchants [28]. 
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2.1.3 Wafer Bonding 

Wafer bonding technology, developed for manufacture of MEMS devices, has rapidly 

become an important technology in semiconductor manufacturing today. Wafer bonding 

has already been widely used in microsystems such as accelerometers, micromirrors and 

gyroscopes that require a microcavity to protect the device from the environment and to 

improve the performance, e.g. the significant sensitivity improvement using hermetic 

packaging of the accelerometers and gyroscopes. Manufacture of infrared (IR) detectors 

and resonant devices also requires wafer bonding technology for vacuum-sealed 

packages. The classification of wafer bonding technology is shown in Fig. 2.5 [31, 32]. 

The choice of bonding methods largely depends on the initial substrate, tolerance to 

temperature and the final applications. Typically temperature, force and/or an 

intermediate layer are used to facilitate bonding. Silicon direct, anodic, eutectic and 

thermocompression bonding are commonly used in fabrication. Silicon direct bonding, 

also called fusion bonding, applies high temperature and pressure to join two silicon 

substrates. Companies are now also using plasma processing to activate wafer surface in 

order to reduce the annealing temperature. Anodic bonding joins a silicon wafer with a 

glass wafer using a high concentration of alkali metal oxides. With the bonding 

machines, at elevated temperature, a high-voltage electric field is applied, which 

dissociates the oxides and drives the metal ions into the glass. Eutectic bonds are used 

when a hermetic or vacuum seal is required. They use an intermediate bonding material 

that forms a eutectic alloy at a specific temperature, such as gold-silicon, gold-tin, or 

lead-silicon. Solder bonding can be classified as hard solder bonding, based on gold 

alloys (eutectic bonding), or soft solder bonding, based on lead or tin alloys. Lead based 

soft solders are plastic enough to accommodate thermal expansion but susceptible to 

metal fatigue after repeated temperature cycles. Adhesive bonding uses photoresists, 

spin-on glasses or polymers to deposit a planar material between two wafers. Such 

materials can be annealed at low temperature to provide a low-stress wafer stack. Either 

the temporal bond or permanent bond could be achieved with the variable bonding 

conditions. Glass frit bonding uses glass beads suspended in a carrier paste and 

deposited onto a substrate either in a blanket form or patterned using screen printing, 

before the application of heat and pressure to make a hermetic seal [33-36].  
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Figure 2.5 Classification of wafer bonding technology [32]. 

2.1.4 Non-silicon Micromachining 

Non-silicon micromachining includes: 

 LIGA technology, which is a German acronym for Lithographie, 

Galvanoformung, and Abformung (Lithography, Electroplating, and Molding) 

and describes a fabrication technology used to create high-aspect-

ratio microstructures; 

 laser microengineering, which is used for drilling, cutting, micromachining, 

annealing, cleaning, lithography, surface structuring, with different kinds of 

laser systems, such as Nd:YAG, CO2, and Excimer; 

 plasma etching technology, which has been used to pattern the metal, glass, and 

Lead Zirconate Titanate (PZT), mostly based on the physical bombardment 

effect; 

 ultraviolet (UV) thick photoresist technology, etc., which are based on X-ray 

and UV photolithograph technologies.  

All of these technologies have been used more in the fabrication of non-silicon 

semiconductor, micro-optical devices and bio-MEMS devices driven by the 

development of the RF-, optical- and bio-MEMS markets [37].   

After several decades of development, MEMS technology has created a huge number of 

possibilities in a number of areas of research and industry. The main advantages of 

MEMS technology are: diversified fabrication processes; miniaturised devices; 

reproducibility and high level integration of multi-functions, which make it a hot 

research subject and attract the attention of industry. With the progress in 

microfabrication technology, MEMS moves towards Nano-electro-mechanical systems 

http://en.wikipedia.org/wiki/Aspect_ratio
http://en.wikipedia.org/wiki/Aspect_ratio
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(NEMS) technology. MEMS technology still faces many challenges including lack of 

advanced simulation and modelling tools for design, non-standardized packaging of 

devices and systems, and lack of quality control for fabrication standards. Future 

applications of MEMS technology would be driven by processes enabling greater 

functionality through higher levels of multi-functional electronic-mechanical 

integration, which would meet the growing markets, e.g. the market of consumer 

electronics [38-40]. The forecast of the market related to MEMS technology by futurist 

David Smith of Technology Futures Inc. is shown in Fig. 2.6. 

 

Figure 2.6 Forecast of the market related to MEMS technology. 

(Source: Technology Futures Inc.) 

2.2 MCM Concept and SiP Technology 

2.2.1 MCM Concept 

Multi-chip modules (MCMs) allow high-density integration of a number of unpackaged 

and/or packaged multiple integrated circuits (ICs), semiconductor dies or other modules 

in such a way as to facilitate their use as a "single IC". The MCM itself will often be 

referred to as a "chip" in designs, thus illustrating its integrated nature. Multi-chip 

module packaging is an important facet of modern electronic miniaturisation and micro-

electronic systems. An example of an MCM structure is show in Fig. 2.7 [41]. The 

relationships between architectural components and the corresponding technologies are 

shown in Table 2.2 [42, 43].  
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Figure 2.7 Example of MCM with four processors and cache modules [41]. 

Table 2.2 Relationships between components and technologies of MCM [42, 43]. 

LEVEL FUNCTIONS TECHNOLOGIES 

Chips  Digital  Si: CMOS, bipolar  

 Analog  

GaAs, Complementary GaAs 

(CGaAs)  

 Mixed Analog-Digital   

1st level interconnections Conductor connection  Peripheral: Wire bond,  

 from chips to common  

Tape Automated Bonding (TAB), 

flip TAB  

 circuit base  Area: flip chip,  

  solder bump, area TAB  

Common circuit bases  Signal interconnection  Hybrid circuits  

 Power and Ground  MCM-L, MCM-C, MCM-D  

 conductors  MCM-D/C  

MCM Seals  Hermeticity  Peripheral Conductors 

 Heat removal  

Dual In-line Package (DIP), Quad 

Flat Package (QFP)  

 Physical protection  Area array conductors:  

 conductors  Pin Grid Array (PGA)  

2nd level connections  Conductor connection  Plated through-hole vias  

 to PWB  surface mount  
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MCMs are classified according to the technology used to create the high density 

integration substrate: 

 MCM-L, laminated MCM. The substrate is a multi-layer laminated printed 

circuit board (PCB).  

 MCM-D, deposited MCM. The modules are deposited on the base substrate 

using thin film technology.  

 MCM-C, ceramic substrate MCMs, such as low temperature co-fired ceramic 

(LTCC).  

The benefits of this modular approach are cost, high speed, and the portability of a 

'plug-and-play' system that can be plugged straight into the motherboard. A key 

advantage is the elimination of non-value-added packaging and interconnection of bare 

die, which can add a factor of as much as 100  to the size of the actual functional areas 

of active and passive components. MCM is thus a commercial technology in achieving 

smaller and smaller electronic devices [44-46]. 

2.2.2 System in Package 

 “System in Package is characterised by any combination of more than one active 

electronic component of different functionality plus optionally passives and other 

devices like MEMS or optical components, assembled into a single standard package 

that provides multiple functions associated with a system or sub-system.” said by 

Robert C. Pfahl [47]. It is an extension of the multi-chip module (MCM) concept to 

respond to demands for higher levels of integration and functionality including RF and 

non-electrical functions. To achieve this, SiP supports both the concept of chip stacking 

(3D integration) and uses substrates that include passives, electrical and non-electrical 

interconnects and in the future active devices. To date, silicon is the leading technology 

but other materials such as ceramics, especially Low Temperature Co-Fired Ceramics 

(LTCC) are gaining interest, especially for harsh environments, RF and high-frequency 

applications, because of its characteristics of multi-layer process and ceramics 

reliability. SiP provides more integration flexibility, faster time to market, lower 

research and development cost, and lower product cost.  

Consistent challenge in SiP manufacturing lies in the assembly process itself.  Regarded 

as the next-level MCM assembly technology, it requires the ability to assemble and 
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interconnect several dies not only horizontally (where die are placed side by side), but 

also vertical (where several die are placed on top of each other). Mounting die on top of 

each other and interconnecting them is known as die stacking, a new technology that is 

harnessed extensively in state-of-the-art SiP manufacturing.  This extensive use of 

stacked die configurations is the reason why SiP is also known as 3-D packaging. The 

three key approaches to SiP building are die stacking, package stacking and module 

stacking, which are shown in Fig. 2.8 [1, 48-50]. 

 

Figure 2.8 The key approaches to SiP technology [50]. 

The SiP design allows manufacturers to bring together many packages assemblies and 

IC test technologies to create highly integrated products with optimised cost, size, and 

performance. Recently, much progress has been made using SiP technology to reduce 

cost, improve time-to-market, reduce form factor, and reduce power requirement. The 

overall SiP markets for 2003 and 2007 are shown in Fig. 2.9 [51, 52]. 

 

Figure 2.9 Overall SiP Market: 2003 vs 2007 [52]. 
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2.3 System Health Monitoring and Typical Sensors 

Advanced sensors and monitoring technologies are playing important roles in 

prioritising the repair and rehabilitation process and improving the cost-effectiveness of 

inspection and maintenance of electronic systems. Embedded Microsystems health 

monitoring has been used in civil infrastructure systems, such as bridges, highways, 

buildings, pipelines, and many mechanical structures, including aerospace vehicles or 

heavy mining equipment. The failure of these can cause large economic loss, and even 

the loss of lives. In using an array of sensors to continuously monitor such structures, 

embeddable microsystems health monitoring sensors can provide an early indication of 

problems such as damage to the structure from fatigue, corrosion or impact, and this 

information can be used to undertake corrective action before the damage develops to a 

stage where catastrophic failures occur [53-58].  

With the widely used Microsystems and the development of integration technologies 

such as MCM and SiP, the requirements of monitoring the key parameters and 

reliabilities of functional Microsystems are becoming more and more important. Also 

the self monitoring and self repairing of the sensors and functional Microsystems also 

increase their sensitivities and reliabilities, e.g. the temperature and humidity 

monitoring and feedback correction of piezoresistive devices e.g. the piezoresistive 

accelerometers. The embeddable health monitoring sensors could also be used for real-

time online monitoring and testing of assembly and packaging processes, such as stress 

monitoring in flip chip and wire bonding, and temperature monitoring for laser assisted 

packaging [59-64]. 

Intelligent process monitoring (IPM) methods are also important for process control for 

yield improvement and cycle time reduction in manufacturing processes [65, 66]. 

Several methods have been developed for monitoring and control of key processes in 

the semiconductor and electronic manufacturing industries. A mass spectrometric 

technique has been developed for monitoring of chemical vapour deposition (CVD) 

process for producing copper layers [67]. Accelerometers have been used as means to 

monitor chemical mechanical polishing (CMP) processes [68]. In electronic 

manufacturing, self-sensing piezoelectric transducers have been applied to the 

monitoring of wire bonding processes [69]. Temperature sensors have been used for 

monitoring of ultrasonic chemical and wire bonding processes [70, 71], while recently a 
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photovoltaic-reflectometer has been developed for process monitoring and control of 

silicon solar cell manufacture in the rapidly developing photovoltaic industry [72].  

Temperature and humidity are two of the most important parameters for the reliability 

of the sensors and Microsystems. With the environmental test chambers, the 

temperature, humidity, thermal shock, and rapid temp change stress test are commonly 

used for investigating the reliability of the sensors and Microsystems. The 

pressure/stress is also an important parameter for the system reliability, especially for 

the Microsystems applied to a harsh environment and under dynamic execution. 

2.3.1 Temperature Sensor 

Temperature is a physical property of a system that underlies the common notions of 

hot and cold, which is one of the principal parameters of thermodynamics, defined as 

simply the average energy of microscopic motions of a single particle in the system per 

degree of freedom. Temperature plays an important role in almost all fields of science 

including physics, chemistry and biology. Many physical properties of materials, 

including the phase (solid, liquid, gaseous or plasma), density, solubility, vapour 

pressure and electrical conductivity, and many principles of sensing effects depend on 

the temperature, so temperature monitoring is important in many processes and systems 

as excessive temperature change can result in detrimental effects and failure of 

operation [73].  

Temperature measurement using modern scientific thermometers and temperature scales 

goes back at least as far as the early 18th century, when Gabriel Fahrenheit adapted a 

thermometer (switching to mercury) and a scale both developed by Ole Christensen 

Rømer. Fahrenheit's scale is still in use, alongside the Celsius scale and the Kelvin scale 

[74]. Temperature sensors based on MEMS technology can be categorized as 

thermocouples, resistance temperature detectors (RTDs), infrared measurement devices, 

and fibre-optic measurement system [75, 76]. 

2.3.1.1 Thermocouples 

Thermocouples are among the easiest temperature sensors to use and obtain and are 

widely used in science and industry, because they are inexpensive, rugged, reliable, and 

could be used over a wide temperature range (-250
o
C~3000

o
C) [76, 77]. Thermocouple 
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temperature monitor is based on the Seebeck effect. A junction, formed from two 

dissimilar metals, causes a voltage to be developed when a temperature difference 

appears. A Simple structure of thermocouple is shown in Fig. 2.10, which consists of a 

sensing junction, at temperature aT , and a reference junction, at temperature bT . The 

voltage developed by the thermocouple is measured with a high resistance voltmeter.  

 

Figure 2.10 Simple structure of thermocouple [76, 77] 

The open circuit voltage is related to the temperature difference ( ba TT  ), and the 

difference in the Seebeck coefficients of the two materials ( ba PP  ):   

))(( baba TTPPV                                               (2.1) 

V will typically be of the order of millivolts, or tens of millivolts. Semiconductor 

materials often exhibit a better thermoelectric effect than metals. It is also possible to 

integrate many semiconductor thermocouples in series, to make a thermopile, which has 

a larger output voltage than a single thermocouple on its own [78-81].  

2.3.1.2 Resistance Temperature Detectors (RTDs) 

Resistance temperature detectors (RTDs) or thermistors, a contraction of "thermal" and 

"resistor" named by Bell Telephone Laboratories [82], are wire wound and thin film 

devices that measure temperature because of the physical principle of the positive 

temperature coefficient of resistance (TCR) of metals. The hotter they become, the 

higher the value of their electrical resistance. The advantages of RTDs include good 

long term stability, ease of recalibration, accurate readings over relatively narrow 

temperature spans and easy for fabrication and integration. But they have a smaller 

overall temperature range (-200
o
C~1000

o
C), higher initial cost and are less rugged in 

high vibration environments compared to the thermocouples [83]. Above -200
o
C, the 

resistivity varies almost linearly with the change of temperature. In this approximately 
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linear region, the variation of resistivity (R) with temperature (T) can be adequately 

described by a quadratic equation:  

 0 0( ) 1 ( )R T R T T                                             (2.2) 

where R0 is the resistivity of the material at a reference temperature ( 0T ), and   is 

constant specific to the metal being used [79]. The change of RTDs’ electrical resistivity 

due to a corresponding temperature change has no relationship whether the RTDs’ body 

temperature is changed as a result of conduction or radiation from environment or “self-

heating” caused by power dissipation from the device [84, 85]. The resistivity and 

temperature coefficient of common metals are shown in Table 2.3 [86-89]. 

Table 2.3 The resistivity and temperature coefficient of common metals [86-89]. 

Material 
Resistivity, 

ρ(10
-8

ohm·m at 20
o
C) 

Temperature Coefficient of 

Resistivity (TCR), α(10
-4

/
 o
C) 

Aluminium 2.65 42.9 

Cobalt 6.64 60.4 

Copper 1.67 39.0 

Gold 2.44 34.0 

Indium 9.00 47.0 

Iridium 5.3 39.2 

Iron 9.71 65.1 

Nickel 6.84 68.1 

Palladium 10.8 37.7 

Platinum 10.6 39.2 

Rhodium 4.70 45.7 

silver 1.59 38.0 

Tungsten 5.60 45.0 

Zinc 5.196 41.9 
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Platinum is often used in RTDs as its resistance variation is particularly linear with 

temperature. The characteristics of the platinum RTD are shown in Fig. 2.11 [90]. All 

RTDs used in precise temperature measurements are made of platinum because its TCR 

is nearly linear, which makes the temperature measurements with precision of ±0.1°C 

readily achievable. The American Society for Testing and Materials (ASTM) 

Specification E1137 "Standards Specification for Industrial Platinum Resistance 

Thermometers" gives many details and specifications over the range from -200°C to 

650°C, which defines two RTD grades, A and B with a resistance-temperature 

relationship that has the following tolerances: 

  Grade A tolerance = ±[0.13 +0.0017|t|]°C                                         (2.3) 

   Grade B tolerance = ±[0.25 +0.0042|t|]°C                                         (2.4) 

where |t| is the absolute value of the RTD's temperature in °C [83]. 

 
(a) 

 
(b) 
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(c) 

Figure 2.11 The characteristics of platinum RTD [90]  

(a) Typical Platinum Resistance Values;  

(b) Typical Platinum Sensitivity Values;  

                         (c) Typical Platinum Dimensionless Sensitivity Values. 

RTDs can also be made cheaply in copper, nickel and other materials, but there are wire 

oxidation problems in the case of copper, and restricted ranges because of the non-linear 

TCR of nickel. 

 

2.3.1.3 Infrared (IR) Measurement Devices 

Infrared measurement devices are kinds of non-contact thermometers, which measure 

temperature using blackbody radiation (generally infrared) emitted from objects. The 

basic design usually consists of a lens to focus the infrared energy on to a detector, 

which converts the energy to an electrical signal that can be displayed in units of 

temperature after being compensated for ambient temperature variation. The infrared 

thermometer is useful for measuring temperature under circumstances where 

thermocouples or other probe type sensors cannot be used or do not produce accurate 

data for a variety of reasons. Some typical circumstances are where the object to be 

measured is moving; where the object is surrounded by an electromagnetic field, as in 

induction heating; where the object is contained in a vacuum or other controlled 

atmosphere; or in applications where a fast response is required [91]. 
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Figure 2.12 Principle of the IR sensor system [92]. 

Infrared thermometers can be used to serve a wide variety of temperature monitoring 

functions. There are many varieties of infrared temperature sensing devices available 

today, including configurations designed for flexible and portable handheld use, as well 

as many designed for mounting in a fixed position to serve a dedicated purpose for long 

periods. A principle of the IR sensor system is shown in Fig. 2.12 [92], which is used, 

for instance, in contactless temperature measurements, IR gas analysis and for passive 

intrusion alarm sensors. Incoming IR radiation is converted into heat by an IR absorber. 

The resulting temperature difference between the absorber area and the membrane rim 

acting as heat sink is measured by thermocouples connected in series. With different 

materials, some test results of typical IR thermocouples are shown in Table 2.4 [92-94]. 

Table 2.4 Test results of IR thermocouples [92]. 

 

2.3.1.4 Fibre-optic Measurement System 

An optical fibre is a glass or plastic fibre designed to guide light along its length. 

Optical fibres are widely used in optical communication, which permits transmission 

over longer distances and at higher data rates than metal wires, because signals 

propagate along optical fibres with low loss and immunity to electromagnetic 
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interference. Optical fibres also have huge applications in sensors areas, and in a variety 

of other applications such as in bio-medical research [95]. 

There are several characteristics of optical fibres that allow them to be used for sensors. 

These include micro-bending, interferometric effects, refractive index change, 

polarization change, fibre length change, fibre diffraction grating effects, and the 

Sagnac effect. For temperature measurement, fibre-optic sensors can be classified as:  

1. Radiation fibre-optic temperature sensor, which is based on blackbody radiation 

absorption of the fibre core layer within the fibre itself as a temperature 

blackbody cavity [96].  

2. Raman based fibre-optic temperature sensor, which is based on the Raman 

nonlinear scattering effect caused by the interaction of fibre materials. The 

wavelength of Stokes scattering and anti-Stokes scattering are different from the 

two light transferring directions in the fibre, and the ratio of their intensities is a 

function of thermodynamic temperature. At 17m/3K (spatial/temperature) 

resolution, a total sensing range of 37 km was obtained using conventional 

single-mode transmission fibres and low-power laser diode [97].    

3. Fluorescence fibre-optic temperature sensor, which is based on the temperature 

dependence of the fluorescence intensity or decay rate of fluorescence intensity 

[98].  

4. MEMS based fibre-optic temperature sensors, which are fabricated with many 

microstructures such as side-polished fibres [99, 100], polarization-maintaining 

optical fibres [101], fibre bragg gratings structures [102-104], photonic crystal 

fibres [105], micro Fabry–Pérot resonator [106]. 

Fibre optic temperature measurement technologies are the new technologies. With 

decades of development, it is now reaching commercial application gradually and have 

shown advantages in applications in strong electromagnetic fields; high-voltage 

electrical facilities; the manufacture process of combustible products; and high 

temperature measurements. 

2.3.1.5 P-N junction temperature sensors 

A P-N junction device is usually made of a crystal of semiconductor, such as silicon. 

The P-N junction is created at the boundary within the crystal between two regions, 

while one region contains positive charge carriers (holes) as the p-type semiconductor, 
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and the other contains negative charge carriers (electrons) as the n-type semiconductor. 

A P-N junction can be used as a simple temperature sensor. According to the diode 

equation [107, 108] 

( 1)
qV

NkT
D sI I e 

                                             (2.5) 

where, 

ID ... diode current 

Is ... saturation current 

e .... Euler's constant (2.71828...) 

q .... charge of electron (1.6×10-19 As) 

V .... voltage across the diode 

N .... "non-ideality" coefficient (typically between 1 and 2) 

k .... Boltzmann's constant (1.38×10-23) 

T .... junction temperature in Kelvin 

the current through the junction depends on the voltage applied and its temperature. 

The diode law gives the I–V characteristic of an ideal P-N junction in either forward 

bias, reverse bias, or no bias), which is derived with the assumption that the only 

processes giving rise to the current in the junction are drift (due to electrical field), 

diffusion, and thermal recombination-generation. It also assumes that the 

recombination-generation current in the depletion region is insignificant. A P-N 

junction can be used as a temperature sensor, since the forward voltage affects by the 

temperature change. Assuming a constant current of 10 mA and "non-ideality" 

coefficient N=1 are applied to a silicon based P-N junction device, the calculation result 

shows that the voltage across a forward biased junction decreases by a temperature 

coefficient of about 2 mV/K at room temperature [107, 108]. 

The linearity response of the P-N junction device is quite limited. Better transducer 

linearity could be achieved using two different currents across the two junctions as a 

measure of temperature. Thus, the two P-N junctions are assumed to be identical and 

should be maintained at the same temperature. These conditions are difficult to achieve 

theoretically, although each device may get very close matching using integrated circuit 
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technology [109, 110]. To achieve a P-N junction temperature sensor operated at high 

temperatures (above 250°C) is possible, while a low leakage Silicon on Insulator (SOI) 

based P-N junction is required. It was also reported that performance of the devices 

would deteriorate beyond these high temperature levels, due to a rapid increase in the 

diode saturation current [111]. One of the best ways to enhance the sensitivity of p-n 

junction temperature sensors is to improve the carrier lifetime. By diffusing gold, 

platinum or cobalt atoms deeper to the junctions, carrier lifetime can be improved while 

reducing series resistance. The sensitivity is improved because of the dominance of the 

diffusion current in the leakage current, while reducing the generation current could be 

achieved by increasing carrier lifetime [112].  

2.3.2 Humidity Sensor 

Humidity is the amount of water vapor in a sample of air compared to the maximum 

amount of water vapor the air can hold at any specific temperature. Absolute humidity, 

relative humidity and specific humidity are different ways to express the water content 

in a parcel of air [113]. Relative humidity (RH) is most frequently used, which is 

defined as the ratio of the partial pressure of water vapor in a gaseous mixture of air and 

water vapor to the saturated vapor pressure of water at a given temperature. Relative 

humidity is expressed as a percentage and calculated in the following manner: 

%100
*
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)(
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2 
OH

OH

P

P
RH                                              (2.6) 

Where )( 2OHP  is the partial pressure of water vapor in the gas mixture; *

)( 2OHP  is the 

saturation vapor pressure of water at the temperature of the gas mixture; and RH  is the 

relative humidity of the gas mixture being considered [114].  

Humidity sensors can be classified as types of moisture absorption and non-moisture 

absorption. The veracity of the sensor should reach ±2% ~ ±5% RH, which would 

usually be measured at 20
 o

C ± 10
 o

C in the clean air. But there are oil, dust and other 

gases in the air, which will decrease the long term stability of the sensor. The 

temperature sensitivity usually is 0.2~0.8% RH/
o
C and the sensors usually have a 

different temperature sensitivity based on the different RH [115]. There are four kinds 

of moisture absorption sensors with the different sensing materials [115-117]: 
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1. Based on dielectric materials, such as lithium chloride. This kind of sensor has a 

small hysteresis effect and would not be affected by the speed of wind of the 

environment, but the sensitivity would reduce after repeated absorption and 

desorption in long term and high relative humidity will make the materials 

deliquescent.  

2. Based on polymer materials, such as polyimide, fluoropolyol (FPOL), 

polyvinyl-alcohol (PVA), and benzocyclobutene (BCB). This kind of sensor has 

a small hysteresis and short response time, but cannot be used in the 

environment either with organic menstruum or at high temperature.  

3. Based on metal oxide films, such as Al2O3, Fe3O4, and tantalum oxides. This 

kind of sensor has the advantages of a short response time in the low relative 

humidity range, small hysteresis and low cost of fabrication.  

4. Based on metal oxide ceramics, such as MgCr2O4-TiO2 ceramic. This type of 

sensor has good long term stability and could be effective in the temperature 

range of 0～160
o
C, but oil and dust in the air can contaminate the sensor. 

The non-moisture absorption sensors include [115-117]: 

1. Sensors based on the thermistor effect which have good reliability and stability. 

However, these sensors would not be accurate if the air pressure changed, and 

the oil and dust of the air can contaminate the sensor in the long term. 

2. Sensors based on the absorption of infrared rays with 1370 nm and 1250 nm 

wavelengths which are absorbed by the water vapour. 

3. Other kinds of non-moisture absorption sensors, such as optical devices. 

Using polymer moisture absorbing layers, capacitance humidity sensors are currently a 

hot research topic because of the high sensitivity and easy integration. The operating 

characteristics of a typical sensor, SH1100 of Humirel (the humidity sensor business 

unit of Measurement Specialties) are shown in Table 2.5 [117]. 
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Table 2.5 Characteristics of the SH1100 (Humirel) humidity sensor [117]. 

Effective range （1%～99%）RH 

Capacitance at 55%RH 180pF 

Capacitance in 0～100%RH 163pF～202pF 

Temperature sensitivity 0.04pF/
o
C 

Response time 5s 

Hysteresis 1.5% 

 

Polyimide has been used for capacitive humidity sensors based on MEMS and micro-

fabrication technologies because of its high moisture absorption and easy fabrication 

and integration. A typical polyimide-based sensor is shown in Fig. 2.13, with the 

sensitivity 0.86 pF/%RH (120 nm polyimide) and 3.4pF/%RH (30 nm polyimide). 

Measurements show an offset drift of less than 1% RH at 50% RH and 37
o
C, and a 

hysteresis of ~ 2% RH over a range of 30-70% RH for a 120 nm thick polyimide film 

sensor [118]. 

 

Figure 2.13 A typical polyimide-based capacitive humidity sensor [118]. 

A heater has also been integrated with the polyimide-based humidity sensor to shorten 

the response time as a thermal reset. A high-sensitivity polyimide-based humidity 

sensor is shown in Fig. 2.14, integrated on a polysilicon heater with response time of 1.0 

second and a sensitivity of 30.0 fF/%RH. The polyimide sensor has been used to 

measure relative humidity levels of up to 80% RH. An accuracy of 3% RH has been 
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obtained using this method, with measurement errors of 0.5
o
C and 2% RH in 

temperature and relative humidity, respectively [119].  

 

 

 

 

 

Figure 2.14 A polyimide-based humidity sensor integrated on a polysilicon heater [119]. 

A new material, called divinyl siloxane benzocyclobutene (DVS-BCB or Photo-BCB), 

has been used to produce a humidity sensor because of the improvement of sensitivity 

and response time. A typical sensor with Photo-BCB as the sensitive material is shown 

in Fig. 2.15, in which the sensitivity was increased to 0.19 pF/%RH, and the response 

time was decreased to 0.275 second with the sensitive film in thickness of 3.5 µm. In 

particular, the performance of the device shows that the sensitivity is better under high 

humidity, which is even more relevant for medical applications. The performance of the 

sensor could be further enhanced by decreasing the thickness of the film. For a 1.5µm 

thick film instead of 3.5 µm, simulation with a dedicated model predicts a sensitivity of 

0.39 pF/%RH and a response time of 62 ms [120-122].  
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Figure 2.15 A humidity sensor with PhotoBCB material [120-122]. 

2.3.3 Pressure/Stress Sensor 

Pressure is the force per unit area applied on a surface in a direction perpendicular to 

that surface. Stress is also force/area which is applied in different ways without 

translation or rotation of the material sample. Stress includes tensile stress which is the 

stress state leading to expansion, compressive stress which is the stress applied to 

materials resulting in their compaction (decrease of volume), and shear stress which is a 

stress state where the stress is parallel or tangential to a surface or interface of the 

materials [123-125]. 

The development of measurement of pressure/stress based on micro-fabrication 

technologies began with the discovery of the metal strain gauge. The pressure/stress 

sensors could be classified as: 

1. strain gauge force sensors; 

2. pressure/stress sensors based on piezoresistive effects of materials such as 

polysilicon and doped silicon;  

3. pressure/stress sensors based on capacity tune detection;  

4. pressure/stress sensors based on piezoelectric materials;  

5. pressure/stress sensors based on surface acoustic wave (SAW) devices; 

6. pressure/stress sensors based on optical detection.  

The former three kinds of sensors are easier for integration with other sensors to build 

up a multi sensor system. 
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Figure 2.16 Visualization of the working concept behind the strain gauge on a beam 

under exaggerated bending [126]. 

2.3.3.1 Strain Gauge Force Sensors 

The strain gauge, invented by Edward E. Simmons and Arthur C. Ruge in 1938, is a 

device used to measure deformation (strain) of an object, which is still used in 

mechanical transducers. The most common type of strain gauge consists of an insulating 

flexible backing which supports a metallic foil pattern. The gauge, shown in Fig. 2.16, 

is attached to the object by a suitable adhesive. As the object is deformed, the foil is 

deformed, causing its electrical resistance to change. This resistance change is usually 

measured with a Wheatstone bridge circuit [126].  

Consider a metal filament with a circular cross section. The relative change in resistance 

caused by the force is  
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where 
2r

l
R








 is the resistance of the filament, l  is the length of the filament, r  is 

the radius of the cross section and   is the resistivity of the metal. If the filament is 

stretched by an external force F , the stress in the filament is 
2r

F
T





 and the strain 

(the relative elongation) in the filament is
E

T

l

l



 , where E  is the Young’s 

Modulus of the material.  

As well known in mechanics, the longitudinal stretch of a filament is always 

accompanied with it a lateral contraction, i.e.  
l

l

r

r 



 , where   is the Poisson ratio 

of the material. So  
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                                             (2.8) 

The relative change of resistivity, 



, is a function of stress/strain and is expressed as 

 ET  , where   is the piezoresistive coefficient of the material. Therefore, the 

relative change of resistance is, 

 GE
R

R



)21(                                         (2.9) 

where G, the relative change in resistance per unit strain, is referred to as the gauge 

factor, or G factor of the filament. As   is negligible for metal materials, the gauge 

factor is just a little larger than unity. Because the maximum strain of the gauge is in the 

order of 10
-3

, the relative change of the resistance is also in the order of 10
-3 

[127]. 

2.3.3.2 Pressure/Stress Sensors Based on Piezoresistive Effect 

Single crystal silicon has a face-centred cubic crystal structure, which has anisotropic 

electrical properties because of the anisotropic structure of the energy band. Ohm's law 

for anisotropic silicon materials can be expressed as 
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where E ,   and J  stand for the intensity of electric field, resistivity and current 

density respectively. The piezoresistive effect refers to the resistance changes when 

stress loaded, which could be displayed as following for single crystal silicon: 





























































































6

5

4

3

2

1

44

44

44

111212

121112

121211

6

5

4

3

2

1

00000

00000

00000

000

000

000

T

T

T

T

T

T













                        (2.11) 

where 


 
  is the rate of the resistivity change,   is the piezoresistive 

coefficient and T  is loaded stress. In the 32 symmetric parade, just three independent 

components are enough for identifying the piezoresistive coefficient which depends on 

the doping type, doping concentration and temperature. The piezoresistive coefficients 

of silicon at temperature of 300K are shown in Table 2.6 [128, 129]. 

 

Table 2.6 Piezoresistive coefficients of silicon at 300K [128, 129]. 

Si π11 (10
-11

/Pa) π12 (10
-11

/Pa) π44 (10
-11

/Pa) 

P type（7.8Ω.cm） 6.6 -1.1 138.1 

N type（11.7Ω.cm） -102.2 53.4 -13.6 

 

Heavily doped P
+
 silicon is usually used for piezoresistive pressure/stress sensors 

because of the larger piezoresistive coefficient. In addition, silicon sensors can be 

fabricated using both surface fabrication and common MEMS processes. Both the time 
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for diffusion and the energy for implantation can be easily controlled. However, the 

resistivity of the P
+
 silicon has a significant dependence on temperature, which may 

affect the sensitivity and the resolution of the sensors.  

Polycrystalline silicon (polysilicon) is another kind of piezoresistive material with 

considerable enhancement when a phosphorus diffusion source is used instead of boron 

dopants for realising piezoresistors. Polysilicon is used as a piezoresistive material also 

because of the advantage that the temperature coefficient of resistivity (TCR) can be 

made zero by suitably adjusting the doping concentration. However, the sensitivity of 

the polysilicon piezoresistor is always lower compared to the monocrystalline 

piezoresistor because of the lower gauge factor of polysilicon than that of the 

monocrystalline silicon [130]. The gauge factors of different materials are shown in 

Table 2.7 [131]. 

Table 2.7 Gauge factors of different materials [131]. 

Material Gauge Factor 

Metal Foil 1 to 5 

Thin film metal ~2 

Diffused Semiconductor 80-200 

Doped Polysilicon 15-27 

 

The membrane based pressure sensor, shown in Fig. 2.17, is usually fabricated with a 

Wheatstone bridge structure, shown in Fig. 2.18, for increasing the sensitivity of the 

sensors. The output voltage is related to the change of resistances caused by the 

pressure/stress with a positive coefficient for the tensile stress and a negative coefficient 

for the compressible stress [132, 133]. 
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Figure 2.17 Structure of membrane pressure sensor [132]. 

 

Figure 2.18 Wheatstone bridges for piezoresistive pressure sensor [133]. 

2.3.3.3 Pressure/Stress Sensors Based on Capacitive Detection  

In addition to many successful applications in conventional transducers in industry, 

capacitive sensing also has many attractive features for MEMS applications. Minimal 

additional processes are required using most machining technologies for capacitive 

sensors. Capacitors can operate as both sensors and actuators. Excellent sensitivity has 

been demonstrated, the transduction mechanism is intrinsically insensitive to 

temperature, and the sensitivity of the sensor remains constant with the scaled-down 

geometry of the structure. 

The theory governing capacitive sensing is the well-established electrostatics. However, 

special considerations have to be made for its applications: 

 As the capacitance of MEMS capacitors is usually small in value, the effects of 

stray capacitance and parasitic capacitance are relatively large. Therefore, 

special attention has to be paid to these effects in the design of the sensing 

structure and circuitry. 
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 As micro-mechanical capacitors operate both as sensors and actuators, the 

electrical excitation signal for capacitance sensing changes the capacitance being 

measured. The effect interferes with the measurement and reduces the signal that 

could lead to failure of the capacitance sensors. 

The structure of a typical pressure/stress sensor based on capacitance detection is shown 

in Fig. 2.19, which has a similar “sandwich” structure to the pressure/stress sensors that 

are based on piezoresistive effect [134].  

 

Figure 2.19 Simplified structure of composite-membrane capacitive pressure 

sensor[134]  

(a) Side view of the sensor structure and (b) cross section of the structure. 

The relative capacitance change of the flexible parallel-plate solid-state capacitor 

involves the area change of the electrodes and a change in the thickness and relative 

dielectric constant of the dielectrics. It can be shown that 
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where h , A  and   are the thickness, area and dielectric constant of the dielectric layer, 

respectively. The area change of the electrodes, A , is determined by the bending shape 

of the sandwich structure under uniform pressure load. 
A

A
 and 

h

h
 define the 

geometry variation of the structure, while 



 shows the composite physical effect of 

the elastic dielectric layers, which extends the conventional principles of the capacitive 

pressure sensor based on the sandwich structure. A fabricated device with sensitivity of 

0.2  pF/kPa was reported [134,135]. 

2.4 Summary 

The MEMS market has grown rapidly with the development of the advanced integration 

technologies, including MCM, SiP, and SoC. While most of the component 

technologies required for heterogeneous integration exist, the integration and associated 

manufacture of these systems places major challenges on test and reliability validation 

processes. Investigations into the embeddable Microsystems health monitoring solutions 

is required far prioritising the repair and rehabilitation process, improving the cost-

effectiveness of inspection and maintenance, and ultimately enhancing the lifetime and 

safety of the Microsystems. These Microsystems are used in monitoring the safety of 

the civil infrastructure systems, such as bridges, highways, buildings, pipelines, and 

many mechanical structures, including aerospace vehicles or heavy mining equipment.  

After a general review of MEMS technology based on the techniques and theories of 

micro-techniques, system-techniques and materials effects, the concepts of MCM and 

SiP technologies were summarised. These technologies are the most advanced 3-D 

packaging technologies with three key approaches including die stacking, package 

stacking and module stacking. One of the most important application of MCM and SiP 

is sensors for embedded system health monitoring. Three kinds of sensors, including 

temperature, humidity and pressure/stress sensors, have been reviewed, which could be 

used for the integrated microsystem health monitoring, environmental and intelligent 

process monitoring. Temperature sensors were studied in categorised on thermocouples, 

resistance temperature detectors (RTDs), infrared measurement devices, fibre-optic 



 

39 

measurement systems and p-n junction temperature sensors. Polymer based humidity 

sensors were selected as the focus of the relative humidity (RH) detectors. A summary 

of the pressure/stress sensors has been also carried out based on the different sensing 

effects, including strain gauge effect, piezoresistive effect, capacity detection, 

piezoelectric effect and optical detection.    
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Chapter 3 Design and Fabrication of Thin Film Temperature Sensors 

Temperature monitoring is important in many processes and systems as excessive 

temperature change can result in detrimental effects and catastrophic failure of 

processes and systems. Effective process monitoring methods have been demonstrated 

for ultrasonic chemical processes [70] and for wire bonding in electronic manufacturing 

[71]. Thin film sensors with small foot print are required for embedded system health 

monitoring application, with sensors or sensor arrays being embedded into packages of 

SiP based Microsystems. Thin film resistance sensors are ideal for this work, because 

they are low cost and are easy to fabricate using thin film deposition and wet or dry 

etching methods. Both platinum and nickel based thin film temperature sensors were 

studied. Platinum based sensor is mainly used for precise sensing, because it is 

relatively expensive and has better linearity of temperature coefficient of resistivity. 

Nickel is a relatively cost effective option but offers nonlinear response at higher 

temperature. Temperature sensors were studied in range between room temperature 

(20 °C) and 375 °C for the applications of both the integrated health monitoring in 

microsystems and the process monitoring in laser assisted bonding, where the 

temperature above 350 °C would be expected.    

3.1 Design and Theoretical Calculation  

The meander structure of a metal thin film resistance sensor is shown in Fig. 3.1. The 

sensor was designed for high sensitivity within a small effective area. The total 

resistance at temperature, T, is given by  

   0 0 0

( 0.5 )
( ) 1 ( ) 1 ( )

n L w
R T R T T T T

w h
  


        


              (3.1) 

 

Figure 3.1 Meander structure of thin film resistance temperature sensor. 
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where R0 is the resistance of the material at a reference temperature (T0),   is the 

resistivity of the metal being used, L and w are the dimensions of the meander structure, 

h is the thickness of the film, and   is the temperature coefficient of resistance (TCR), 

a constant specific to the metal’s physical properties [136, 137]. 

The physical properties of platinum and nickel are shown in Table 3.1. The resistance of 

the meander platinum thin film device at 293K for length of 10 mm , width of 5 m  and 

thickness of 100 nm  is  

4 6
8 3

0 6 9

10 10
10.6 10 2.12 10

5 10 100 10

l
R

w h





 


       

   
              (3.2) 

Then, the temperature dependent response of the resistor is 

 3

0 0( ) ( 293) 2.12 10 1 0.00392 ( 293)R T R R T T                    (3.3) 

Fig. 3.2 shows the change of resistance as a function of temperature. 

Table 3.1 The physical properties of platinum and nickel.  

(Source from Comsol 3.3) 

 Platinum Nickel 

Density 21.4510
3 3/kg m  8.9010

3 3/kg m  

Young’s modulus 1.6810
11

Pa  2.1910
11

Pa  

Poission’s ratio 0.38 0.31 

Resistivity 10.610
-8

m  6.8410
-8

m  

Heat capacity 133 /( )J kg K  445 /( )J kg K  

Thermal conductivity 71.6 /( )W m K  90.7 /( )W m K  

Thermal expansion coeff. 8.8010
-6

/ K  13.410
-6

/ K  

Temperature resistivity coeff. 39.210
-4

/ K  68.110
-4

/ K  
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Figure 3.2 Calculated response of resistance R(T) as a function of temperature T. 

The sensitivity of the temperature sensor under the constant current conditions should 

be  

 0 1 2 0 0 1 21 2
0 0

1 2 1 2 1 2

( ) ( ) ( )( ) ( ) I R T R T I R T TU T U T
I R

T T T T T T


 

     
     

  
      (3.4) 

where  

0 0.7I mA ,  

0 2120R   ,  

0.00392  (Platinum).  

Then the sensitivity is  

5.82 /mV K  . 

The output voltage is  

 0 0 0( ) ( ) 1 ( 293)U T I R T I R T                                  (3.5) 

( 300 ) 1.525U T K V  . 
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Fig. 3.3 shows the dependence of the output voltage on temperature. 

 

Figure 3.3 Output voltage versus temperature for a constant current of 0.7mA. 

Known as the self-heating effect, heat will be generated and raise the temperature of the 

resistor when a current flows through it, which would make the temperature of the 

resistor above that of its environment and may introduce an error if a correction is not 

made. The power of self-heating is  

 2 2

0 0 0( ) ( ) 1 ( 293)P T I R T I R T                                   (3.6)  

P( 300 ) 1.067T K mW  . 

The sensitivity under constant voltage conditions should be  

   
0 0

0 2 0 12 1

1 2 1 2

1 ( 293) 1 ( 293)( ) ( )
con

con concon con

U U
R

R T R R T RI T R I T R

T T T T

 


 
  

            
 

     (3.7) 

where conR  is a constant resistance for an output signal of voltage shown in Fig. 3.4. 

Both temperature and conR  play important parts in the output sensitivity of the 

temperature sensor. While 1 2300  ( 300.1 ,  299.9 )T K T K T K    and 0 2.1 U V , the 
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relationship between   and conR in Fig. 3.5 shows that we can get the best sensitivity 

when the following condition is satisfied 

 0(300K) ( 300K) 1 (300 293) 2178conR R T R          

 

Figure 3.4 Test circuit for constant voltage. 

 

Figure 3.5 Relation between sensitivity and readout resistance. 

 

 

 

R(T) Rcon 

Constant voltage 

Output voltage 
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When  

300T K ,  

0U 2.1V , 

2178conR   , 

 the sensitivity of the temperature sensor is  

2.00 /mV K  . 

The output voltage is shown in Fig. 3.6. 

 

Figure 3.6 Output voltages versus temperature with a 2.1 V constant voltage. 

The power of self-heating is  

 

2

0

0 con

U
( )

1 ( 293) R
P T

R T


   
                                   (3.8)  

P( 300 ) 1.012T K mW  . 

According to these theoretical calculations, a larger resistance of the metal thin film 

would offer higher sensitivity for temperature sensors. The output voltage would be 

linear for a constant current input but non-linear for a constant voltage input.  
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3.2 Simulation with Finite Element Method  

The finite element method (FEM) is a numerical method for finding approximate 

solutions of partial differential equations (PDE) and integrals. The method is based 

either on eliminating the differential equations completely (steady state problems), or 

rendering the PDE into an equivalent ordinary differential equation, which is then 

solved using the standard techniques such as finite differences [138]. 

Making these approximations enables us to solve complex problems with commonly 

available computational effect (on a PC). ANSYS is a general-purpose finite element 

analysis software, with self contained analysis tools incorporating pre-processing 

(geometry creation, meshing), solver and post processing modules in a unified graphical 

user interface. ANSYS can be used to solve a wide variety of mechanical problems 

including static/dynamic structural analysis, heat transfer and fluid problems, as well as 

acoustic and electro-magnetic problems. ANSYS Mechanical incorporates both 

structural and material non-linearities. ANSYS Multiphysics includes solvers for 

thermal, structural, Computational fluid dynamics (CFD), electromagnetics, acoustics 

and can couple these separate physics modules together for multi-disciplinary 

applications [139].  

Simulations based on ANSYS software have been performed to assist the design of the 

metal thin film temperature sensors. The results of simulations are shown in Fig. 3.7 

using a 5V of constant voltage. The dimensions of a single unit of platinum thin film are 

100 m5m 1m. The sensing temperature and the environment temperatures are 

assumed to be 350K and 293K respectively.  

 According to the simulation, the inside corners of the meander devices exhibit 

the maximum temperature. Here the resistance is lower compared with the 

outside corners. Rounded corners have the advantage of reducing the 

temperature gradient but are more difficult to fabricate at the microscale because 

of the photolithography process for small feature (<5 m). 

 According to Fig. 3.7 (a,b) and (c,e), the average temperatures of 4 units and 12 

units of the meander sensor structures are 383.6K and 351.03K, respectively, 

without air convection, which shows that the self-heating effect is more 

significant in a sensor with a lower resistance, because the lower resistance 

resulted in a higher self heating power with the 5V of constant voltage.  
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 According to Fig. 3.7 (c,e,g) and (d,f,h), the average temperatures of the 12-unit 

meander sensor with and without air convection condition are the same as 

351.03K, which shows that the effect of air convection can be ignored for a 

sensor with more meanders.  

 According to Fig. 3.7 (c,d) (e,f) and (g,h), the average temperatures at 1ms, 1s 

and 10s after operation are the same, 351.03 K, which shows that the metal thin 

film temperature sensor has a quick response time. 

 

 

 

(a)Time=0.001s, without air convection          (b) Time=1s, without air convection 

 

(c) Time=0.001s, without air convection         (d) Time=0.001s, with air convection 

 

  (e) Time=1s, without air convection                 (f) Time=1s, with air convection 
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(g) Time=10s, without air convection                 (h) Time=10s, with air convection 

Figure 3.7 FEM simulation of temperature sensor based on ANSYS.  

(Blue scale represents low temperature and red scale represents high temperature) 

According to the results of the FEM simulations, a metal thin film resistor with a 

resistance of the order of kΩ would be better for both requirements of higher sensitivity 

and smaller scale. The self-heating effect should be corrected with calibration curves or 

a differential compensation signal. Based on both guidance from analytical calculations 

and FEM simulations, the designed dimensions of the meander structures for metal thin 

film temperature sensor are shown in Table 3.2, which were selected in order to achieve 

a footprint as small as possible. The sensitivities were calculated based on the 0.7mA of 

constant current. 

Table 3.2 Dimensions design and theoretical sensitivities of temperature sensor 
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3.3 Photomask Design and Manufacturing 

A 5-inch photomask was designed using the design software L-Edit (Tanner Research, 

Inc.). L-Edit MEMS Design provides unsurpassed capabilities for the design of MEMS, 

including all-angle polygon support, complete layer visualization, all-angle design rule 

check (DRC), robust algorithm for curved objects, high resolution Encapsulated 

PostScript (EPS) output, and full AutoCAD Drawing eXchange Format (DXF) 

input/output compatibility. The mask design was manufactured using high quality 

chrome film based soda lime glass photomask by Delta Mask, Netherlands. The layout 

of the mask, exported from the L-Edit file, is shown in Fig. 3.8. There are 5 kinds of 

temperature sensor arrays included in this design, which are shown in Table 3.3. The 

photographs of the fabricated sensors from the chrome film based soda lime glass 

photomask, taken using an Olympus SZX10 advanced routine stereo zoom microscope, 

are shown in Fig. 3.9. 

 

Figure 3.8 Layout of the designed photomask from L-Edit file. 



 

50 

 

Figure 3.9 Photographs of sensor mask  

(a) Sensor with track width of 3 m (b) Sensor with track width of 10m. 

Table 3.3 Design information of the photomask. 

 

Layout of the photomask 

 Single sensor 01 (5×)  

Single sensor 02 

(5×) Multi-Sensor A Multi-Sensor B 

Single sensor 03 

(5×) 

Multi-Sensor E Multi-Sensor E 

Multi-Sensor C Multi-Sensor D Single sensor 

04A (8×) 

Single sensor 

04B (8×) 

 Multi-Sensor E (3×)  

 Single sensor 05 (5×)  

 
Alignment for KOH/ RIE Silicon 

(X-axis) 
 

 

Design information of the individual sensors 

Single-Sensor Length(m) Width(m) Step for dicing 

01 10060 3 8450m -X 

02 10285 5 3000m -Y 

03 10319 7 3000m -Y 

(b)  (a)  



 

51 

04A 15250 10 3000m -Y 

04B 25380 10 3000m -Y 

05 18600 20 8000m -X 

 

Design information of the multi-sensor arrays 

Multi-Sensor Detail of Sensors 
Dimension of 

contact 

A 
Sensor01 (10×) at border with 

Sensor04B (3×) central 

500m width 

except 

border central 

400m 

B 
Sensor02 (10×) at border 

with Sensor04B (3×) central 

500m width 

except 

border central 

400m 

C 
Sensor03 (10×) at border 

with Sensor04B (3×) central 

500m width 

except 

border central 

400m 

D 
Sensor04A (6×) at border 

with Sensor04B (3×) central 
500m width 

E 
Sensor05 (2×) at border 

with Sensor04B (3×) central 
700m width 

 

Design information of the contact pads 

Pads for Single-Sensor 2mm 2mm 

Pads for Multi-Sensor 2.5mm2.5mm 
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3.4 Fabrication and Testing of Nickel Based Temperature Sensors 

Nickel was used firstly as the thin film material for the temperature sensors because of 

its low cost and high TCR. The sensors with meander structures were fabricated using 

the process shown in Fig. 3.10. The nickel thin films were deposited by E-beam 

evaporation at 50 mA of electron gun current for 80 seconds. The wafers were cleaned 

with DI water and Decon90 liquid before deposition. After spin coating with a 6.5m 

of AZ9260 photoresist (6000 rpm for 60 seconds) and baking at 80
o
C for 4 minutes, UV 

photolithography was carried out using the chrome film based soda lime glass 

photomask on a mask aligner (Tamarack Model 152R), the exposure dose of which was 

370 J/cm
2
. The nickel etchant, shown in Table 3.4 for detail, was used for nickel 

etching.  

 

Figure 3.10 Fabrication process of Ni based temperature sensors. 

Table 3.4 Composition of nickel etchant. 

Acetic acid 9.375g 

Nitric acid 9.375g 

Sulfuric acid 3g 

DI-water 127.5g 
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The photographs of the fabricated sensors, taken using an Olympus SZX10 advanced 

routine stereo zoom microscope, are shown in Fig. 3.11. Sensors in different dimensions 

were tested with a multimeter while the sensors were placed on a controlled hotplate 

and the temperatures were recorded using a temperature probe. The test results are 

shown in Fig. 3.12.  

 

 

 

 

 

 

 

Figure 3.11 Photos of the fabricated Ni temperature sensors. 

 

Figure 3.12 Test results of nickel thin film temperature sensors. 

(c) Photo of Multi-Sensor B 

 

(d) Photo of Multi-Sensor E 

 

(b) Sensor with 10m track width (a) Sensor with 5 m track width  
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The behaviour of a sensor with 5m of track width is shown in Fig. 3.13, the sensitivity 

of which is about 32.25 mV/K of 0.1 mA with constant current. This is higher than that 

of the original design because large initial resistance was obtained while the nickel film 

was deposited thinner (<20nm) with the electron beam evaporation process. 

 

Figure 3.13 The resistance response of a sensor with 5m track width. 

3.5 Fabrication and Testing of Platinum Based Temperature Sensor Arrays 

Fig. 3.14 (a) shows a schematic layout of a thin film microsensor array, which was 

designed and fabricated for the embedded accurate temperature monitoring in laser 

assisted polymer bonding for MEMS packaging. The layout of the peripheral sensors 

was designed to be aligned within the polymer bonding track for monitoring the 

bonding temperature. The square polymer ring is illustrated by the track between the 

dotted lines. Inside the bonding ring, three sensors are used to monitor the temperature 

inside the cavity, providing useful information about the temperature distribution along 

with the peripheral sensors placed within the cavity. A lower temperature at the centre 

of the cavity is desirable for packaging of temperature sensitive devices. The internal 

dimensions of the polymer ring are 4.8 mm × 4.8 mm and the track width is 400 µm. 

The thin film resistance temperature sensor arrays are based on meander designs in 

order to minimize the sensor size required for this work. Sputtered platinum films on 

glass and silicon wafers were used to fabricate the sensor arrays. Table 3.5 shows the 

design parameters of the sensors. The track width is the same for all of the peripheral 

sensors in an array.  Track widths of 3 µm and 5 µm were used for the peripheral 

sensors and the width is the same for all of the peripheral sensors in an individual array. 
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For the sensors with track width of 3 µm, the resultant footprint is only 250 μm × 240 

μm. The width of the peripheral sensors is less than the width of 400 μm of the BCB 

rings to ensure that the sensors are completely embedded underneath the BCB polymer 

track. The track width of all of the inner sensors was designed to be 10 µm.  

 

 

 

 

 

 

 

Figure 3.14 (a) Schematic layout of a sensor array; (b) Picture of a platinum based 

microsensor array; (c) Picture of a central sensor with a track width of 10 µm; (d) 

Picture of a peripheral sensor with a track width of 3 µm. 

The thin film resistive temperature sensors were fabricated using sputtered platinum 

films on silicon wafers and Pyrex glass wafers, the process flow of which is shown in 

Fig. 3.15. The silicon wafers have a pre-deposited layer of silicon dioxide of 1 µm of 

thickness. The thickness of the platinum films was about 100 nm.  A layer of titanium 

of ~10 nm was used as the adhesion layer between the platinum film and the wafer 

surface. After the deposition of the platinum film on a wafer, the photoresist was spin 

coated and patterned by the photolithography process. With the photoresist as the mask, 

the platinum films were patterned using an ion beam etching method to produce the 

sensor arrays. The fabrication process of Pyrex glass wafers is the same as that of the 

silicon wafers. Fig. 3.14 (b) shows an optical picture of a fabricated platinum sensor 

array. The pictures of a central sensor and a peripheral sensor are shown in Fig. 3.14 (c) 

(a) (b) 

(c) (d) 
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and (d) respectively. It can be seen that microsensors with the track width as narrow as 

3 µm have been obtained successfully.  

 

Figure 3.15 Fabrication process of Pt based temperature sensors. 

Table 3.5 Design Parameters for the Temperature Sensors. 

Width 

 (µm) 

Length 

 (µm) 

Number 

of periods 

Area of a single 

 sensor (µm
2
) 

3 250 40 250×240 

5 300 34 300×340 

10 700 36 700×700 

 

The temperature dependence of the resistance of the sensors was determined using a 

hotplate and a digital multimeter. The initial measurements showed a drift of resistance 

by about 7% after the first cycle of measurement between 25°C and 300°C. For process 

monitoring, a stable resistance is required to obtain a reliable value of temperature for 

each incident laser power and temperature above 300°C commonly stabilized the 

contacts. Therefore, an annealing process was conducted on the sensors to determine if 

the drift effect of the resistance could be eliminated. It was found that after annealing 

for 5 hours at 350°C, the resistance of the sensors at each temperature is stable in the 
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subsequent temperature cycles of the measurement. Fig. 3.16 shows the linear 

behaviour of the thermal responses of the platinum sensors after annealing of sensors 

with track width of 3, 5 and 10 µm respectively. The corresponding temperature 

coefficients of resistance (TCR) were determined to be from 1.78×10
-3 

/°C to 2.26×10
-3 

/°C at 20°C.  

 

Figure 3.16 Thermal response of platinum sensors. 

3.6 Summary 

Theoretical studies have been conducted to investigate metal thin film based 

temperature sensors. Meander suspended sensors have been designed and modelled 

using a commercial FEM simulation software package, ANSYS.  The sensor structures, 

the effect of self heating and air convection, were extracted from the simulated 

solutions. The results show that the inside corners of the meander structures had the 

higher temperature, where the resistance is lower compared with the outside corners. 

The self-heating effect was less significant in a sensor with a larger resistance. Effect of 

air convection could be ignored for a sensor with large resistance.    

After the theoretical calculations and the FEM simulations, a 5-inch chrome film based 

soda lime glass photomask has been designed and manufactured for the sensor 

fabrication. Nickel based sensors were fabricated using electron beam evaporation and 

wet etching methods, and platinum based sensors were produced via sputtered 
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deposition and ion beam etching methods. The sensors with meander tracks with widths 

of 3 µm have been obtained successfully, resulting in a sensor footprint of 250 μm × 

240 μm. The behaviour of a nickel based sensor with 5 μm of track width shows a 

temperature sensitivity of 32.25mV/K with 0.1mA of constant current. After annealing 

at 350°C to stabilise the metal films and produce reliable and repeatable measurements, 

the corresponding temperature coefficients of resistance (TCR) of the platinum based 

sensors were determined to be between 1.78×10
-3 

/°C and 2.26×10
-3 

/°C at 20°C.    
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Chapter 4 Accurate Temperature Monitoring Using an Embedded 

Microsensor Array for Laser Bonding 

Temperature monitoring is important in many processes and systems as excessive 

temperature change can result in detrimental effects and catastrophic failure of 

processes and systems. Effective process monitoring methods have been demonstrated 

previously for multi-processes [70, 71]. Recently polymer based bonding methods have 

become attractive for MEMS packaging since polymer materials such as 

benzocyclobutene (BCB) have many desirable properties for  packaging applications 

including thermosetting, low temperature processing at 250°C ~ 350°C, low moisture 

uptake, excellent electrical dielectric properties, and good chemical and thermal 

stabilities [139-143]. Extensive studies of BCB bonding for MEMS packaging have 

been carried out using conventional heating methods based on heated chucks on a 

device or wafer bonder [144-149].  

At Heriot-Watt University, a fast laser bonding method using the BCB polymer for 

MEMS packaging applications has been demonstrated [150]. Reliable substrate bonding 

was achieved in seconds using this method. The laser based approach can 

reduce/eliminate the potential damage of devices using rapid, localized heating effects 

[150, 151]. However, due to the localized nature of the temperature change, it is 

difficult to monitor the precise temperature change within the substrate assembly during 

the bonding process. Secondly the thermal response of the substrate assembly under 

bonding depends on several factors such as laser power, beam profile, the structures of 

the package assembly as well as the design of the bonding setup. Thirdly, precise 

temperature monitoring is important for polymers such as BCB as the curing time is 

highly dependent on the curing temperature. For BCB, a curing time of several minutes 

is required at ~250°C while it is seconds at around 300°C. In the previous work, 

conventional methods based on infrared detection [150] and thermo-sensitive paints 

[152] were used for temperature monitoring. But these methods could not provide the 

precise information about the temperature change within the polymer bonding track and 

the temperature distribution within the packaging assembly.  

Based on fabricated platinum based temperature sensor arrays, we present the 

experimental studies of a temperature monitoring method using an embedded 
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microsensor array in the packaging assembly, for accurate temperature monitoring of 

the laser assisted polymer bonding process for MEMS packaging. A diode laser system 

with a fibre-coupled output was used in the temperature monitoring experiments. 

Custom designed beam shaping optical elements were used to transform the laser beam 

into top-hat and frame-shaped beam profiles for energy efficient laser bonding and 

investigation of the effect of beam profiles on the resultant temperature change and 

distribution. 

4.1 The Laser Bonding System 

A high power diode laser system with a fibre-coupled output at 970 nm was used as an 

energy efficient laser source in the study of the temperature monitoring method using an 

embedded microsensor array. Fig. 4.1 shows a schematic of the experimental setup. The 

substrate assembly to be bonded using a BCB polymer ring was placed on the bonding 

platform. A 0.9 mm thick ceramic plate was used to investigate the effect of thermal 

isolation between the bottom substrate and the stainless steel bonding platform.  

 
 

Figure 4.1 Schematic setup of the bench top laser bonding system. 

For energy efficient bonding and investigation of the effect of the beam profile on the 

amplitude and distribution of temperature, top-hat and frame-shaped beam profiles were 

used in these experiments. The beam profiles were generated using custom designed 

planar beam forming optical elements. The beam forming optical element was mounted 

in front of the beam delivery module that was coupled to the optical fibre cable from the 

laser system. The beam delivery module consists of collimation optics followed by a 

focusing lens with a focal length of 20 cm. Fig. 4.2 (a) and (b) show the schematic 
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illustration of the laser beam profiles used in the experiments. It should be noted that 

when the capping substrate is transparent the bottom substrate was used to absorb the 

laser radiation. Fig. 4.2 (c)-(f) show the images and typical intensity distributions of the 

two beam profiles. The dimensions of the top-hat beam for bonding were 6 mm × 6 

mm. The outer dimensions of the frame-shaped beam were also 6 mm × 6 mm, most of 

the optical power was concentrated in the area of the 1 mm wide ring. It should be noted 

that for the frame-shaped beam profile, the beam intensity inside the frame was about 

12%~17% of the peak intensity around the frame.  

 

Figure 4.2 (a) Schematic diagram of laser assisted polymer bonding using top-hat beam, 

(b) the corresponding schematic diagram using frame-shaped beam, (c) an optical image 

of the top-hat beam, (d) typical intensity distribution of the top-hat beam, (e) an optical 

image of the frame-shaped beam, and (f) typical intensity distribution of the frame-

shaped laser beam. 
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The frame-shaped beam allows delivery of the laser power to the area of interest for 

bonding and, in principle, it is possible to reduce the temperature rise at the centre of the 

cavity and therefore reduce the thermal load to the MEMS device to be packaged. 

Optical spectroscopic measurements showed the optical transmission of the 500 m 

thick silicon substrate at the laser wavelength of 970 nm is negligible. Therefore all of 

the laser beam entering the silicon substrate was absorbed and converted to a thermal 

effect. The scattering loss of the unpolished backside of the silicon was approximately 

20%. The laser power levels stated are values before correction for scattering loss.   

4.2 Fabrication of BCB Ring and Pre-alignment of Sensor Array 

The polymer sealing rings were fabricated using a photosensitive BCB polymer 

(CYCLOTENE 4026-46, Dow Chemical). BCB material can produce a strong and 

reliable bond between substrates and has been studied widely for MEMS packaging 

applications. A unique characteristic of the BCB polymer is that fast curing can be 

realized within a few seconds at temperature of ~300°C instead of minutes at ~250°C 

[142, 143]. This fast curing  behaviour is ideal for the laser assisted bonding process in 

which a rapid temperature rise can be achieved. The BCB sealing rings were produced 

on silicon and glass wafers using UV photolithography. Details of the fabrication 

process were described previously by our group in Heriot-Watt University [151]. After 

fabrication, the wafer was diced into square chips each containing a BCB ring. An 

optical picture of a square BCB ring on a glass capping substrate is shown in Fig. 4.3. 

The outer dimensions of the BCB ring were 5.2 mm × 5.2 mm and the track width was 

400 μm. The thickness of the BCB ring was measured on a ZYGO white light 

interferometer and was determined to be ~10 μm. 

 

Figure 4.3 Optical picture of a fabricated BCB ring on a glass cap.  
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In order to obtain good alignment between the BCB polymer ring and the sensor array 

for temperature monitoring, the packaging cap was attached to the sensor substrate on a 

flip chip bonder in a pre-bonding step prior to laser assisted bonding. The pre-bonding 

process was carried out at 100°C for 5 minutes. An optical picture of the pre-bonded 

glass-silicon assembly is shown in Fig. 4.4. The substrate assembly consists of a silicon 

cap attached to a glass substrate with a sensor array. It can be seen that all of the 

peripheral sensors were well placed under the BCB track. Electrical leads were then 

attached to the contact pads of the sensors for in-situ temperature monitoring during the 

laser assisted bonding experiments. 

 

(a) 

 

(b) 
 

Figure 4.4 (a) Picture of a glass-silicon assembly after pre-bonding  

(b) The location of sensors monitored by the data acquisition device. 
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4.3 Embedded Temperature Monitoring of Laser Assisted Bonding 

In the temperature monitoring experiments, the top-hat laser beam or frame-shaped 

beam generated using the beam forming optical elements was aligned to the polymer 

bonding ring. In bonding of glass and silicon substrates the silicon substrate absorbs the 

laser radiation and produces the required temperature change to cure the BCB polymer. 

In silicon to silicon bonding the capping (top) substrate absorbs the laser radiation. The 

sensor array was on the surface of the bottom substrate in all of the experiments. The 

resistance change of each sensor as a result of the temperature change was monitored 

using a custom designed circuit. The resultant voltage signals from the sensor array 

were recorded and displayed on a computer using a data acquisition device (NI-DAQ-

6008, National Instruments).  

4.3.1 Bonding Glass Cap to Silicon Substrate 

Silicon is one of the most commonly used substrate materials for MEMS fabrication. 

The silicon substrates can absorb laser radiation to produce the required temperature rise 

for BCB curing when a glass cap is used. In this case the thin film sensor array was 

fabricated on the silicon chip and used for in-situ temperature monitoring. The laser 

heating was absorbed by the bottom substrates. To improve thermal efficiency, a 0.9 

mm thick ceramic plate was placed between the silicon substrate and stainless steel 

platform. Fig. 4.5 shows the temporal profiles of the laser induced temperature 

monitored by the sensor array. Fig. 4.5 (a) shows the traces of temperature for different 

laser powers for both of the top-hat and frame-shaped laser beams. A laser power of 50 

W was sufficient to raise the temperature to 300ºC within 50 seconds to cure the BCB 

ring, producing a strong bond between the substrates to form a microcavity. Fig. 4.5 (b) 

shows the comparison of the temperature between a peripheral sensor and the sensor at 

the centre of the array. There is no noticeable difference between the signals for the top-

hat beam indicating that the temperature experienced by MEMS device would be the 

same as the bonding temperature. However, as will be shown in the following, the 

frame-shaped beam profile can produce a lower temperature at the centre of the silicon 

substrate by ~50ºC than the bonding temperature when bonding a silicon cap to a glass 

substrate. This is a desirable effect for packaging of temperature sensitive devices.    
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(a) 

 

(b) 

Figure 4.5 (a) Temperature profiles of laser bonding between glass cap and silicon 

substrate monitored by a peripheral sensor (P), (b) comparison of temperature 

characteristics at a laser power of 50 W monitored by a centre sensor (K) and a 

peripheral sensor (P). 

4.3.2 Bonding Silicon Cap to Glass Substrate 

In this case the silicon cap absorbs the laser power to generate the required temperature 

for BCB curing. The microsensor array was fabricated on the glass substrate (Pyrex 

7740). The bonding arrangement was the same as in the above experiment. Fig. 4.6 

shows the measured results of the temperature profiles from the sensors in the array for 

the top-hat beam at optical power of 10 W and 20 W respectively. The measured 

temperature characteristics were the same for all of the sensors for the top-hat beam. 
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But a temperature difference of about 50°C between that of a peripheral sensor and the 

sensor at the centre of the array (P and K in Fig. 4.4 (b) respectively) was seen for the 

frame-shaped beam as shown in Fig. 4.7.  

 

 

  

(a) 

  

(b)       

Figure 4.6 Temperature profiles monitored by the sensors for the top-hat beam at the 

laser power of (a) 10 W and (b) 20 W. 
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Figure 4.7 Temperature profiles of bonding silicon cap to glass substrate at a laser 

power of 20 W using the frame-shaped beam. 

In this bonding configuration the thermal efficiency is much higher than having the 

silicon chip as the bottom substrate. An optical power of 20 W was sufficient to produce 

a temperature of ~300°C as compared to a required laser power of 50 W when bonding 

the glass cap to the silicon substrate, described previously. This is due to the thermal 

conductivity of the Pyrex glass being two orders of amplitude lower than that of silicon 

so the heat dissipation to the bonding platform is much faster in bonding the glass cap to 

the silicon substrate. The thermal conductivities of the substrate materials, the ceramic 

plate and the stainless steel platform are given in Table 4.1. The silicon substrates lose 

the heat more quickly than the glass substrates. 

Table 4.1 Thermal Conductivities of Materials. 

Materials Thermal conductivity (W/(m·K)) 

Silicon 130 

Glass (Pyrex 7740) 1.1 

Ceramic (Al2O3) 35 

Stainless steel 237 
 

4.3.3 Bonding Silicon Cap to Silicon Substrate 

Silicon to silicon bonding is desirable in many applications where optical transparency 

through the cap is not a requirement. Silicon to silicon bonding has no thermal 
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mismatch between the substrates and therefore eliminates the CTE (coefficient of 

temperature expansion) induced stress, thus improving the thermal-mechanical 

reliability of the package. In bonding the silicon cap to the silicon substrate, the laser 

radiation is absorbed by the top (capping) silicon substrate. This is the same as for 

bonding of the silicon cap to the glass substrate described previously.  

 

(a) 

 

(b) 

Figure 4.8 (a) Temperature profiles of silicon to silicon bonding monitored by a 

peripheral sensor (P), (b) comparison of temperature from a centre sensor (K) and a 

peripheral sensor (P) for a laser power of 50 W. 

Fig. 4.8 shows the results of temperature monitoring in the laser bonding process. It is 

interesting to see that there is little difference between the results for the top-hat and 

frame-shaped beam profiles for the same laser power. This is a result of the rapid 
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diffusion of the laser generated thermal energy within the silicon substrates due to the 

high thermal conductivity of silicon. The thermal efficiency for the same laser power is 

similar to that of bonding a glass cap to a silicon substrate. The result shows that it 

requires a laser power of ~ 50 W to produce a temperature rise of ~ 300°C. 

4.4 Study of Heat Dissipation Under Substrate Assembly 

The effect of thermal dissipation under the bottom substrate was investigated using the 

top-hat beam profile for bonding of a silicon cap and a glass substrate at 20 W of laser 

power. Three different thermal configurations were used between the bottom substrate 

and the bonding platform, including  

(1)  A 0.9 mm thick ceramic plate,  

(2)  A 0.5 mm thick silicon wafer and  

(3) Without an intermediate thermal barrier between the bottom substrate 

and the stainless steel platform.  

  

Figure 4.9 Temperature profiles for different thermal configurations at a laser power of 

20 W using the top-hat beam monitored by a peripheral sensor (P). 

The results are shown in Fig. 4.9. As expected, it can be seen that the maximum 

temperature decreases as the heat dissipation under the sensor substrate increases. This 

shows it is useful to add a thermal barrier between the substrate and the bonding 

platform in order to improve the efficiency of the laser heating effect. It has been found 

that the temperature responses can be described using a single exponential function that 

is discussed in the next section. Fig. 4.10 and 4.11 show the corresponding results for 

bonding of a glass cap to a silicon substrate and a silicon cap to a silicon substrate 
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bonding respectively. The laser power was 50 W in both cases. Without an intermediate 

thermal barrier between the silicon substrate and the bonding platform, a fast rise and 

fall of the temperature can be achieved. This thermal behaviour demonstrates the 

potential of the bonding method for high speed bonding applications.  

 

Figure 4.10 The effect of heat dissipation under silicon substrate measured by a 

peripheral sensor (P) with track width of 3 m on laser induced temperature rise when 

bonding to glass cap at 50 W of laser power. 

 

Figure 4.11 The effect of heat dissipation under silicon substrate measured by a 

peripheral sensor (P) with track width of 3 m on laser induced temperature rise when 

bonding to silicon cap at 50 W of laser power. 

It has been found that the experimental results of the temperature characteristics can be 

described accurately using the following single exponential function shown in Equation 
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(4.1), where t1 and t2 are the onset and termination time of the laser power, T0 is the 

ambient temperature, Ts is the steady state temperature for the given laser power, Ti is 

the temperature at the termination time of the laser power, and 1 and 2 are the rise time 

and fall time of the laser induced temperature respectively.  

 

 

             (4.1) 

 

 

By fitting the experimental results presented in Fig. 4.5 – 4.11 using Equation (4.1), the 

thermal constants 1 and 2 have been obtained for different substrate assemblies and 

heat dissipation configurations.  The results are summarized in Table 4.2. The thermal 

constants are largely independent of the beam profile, by comparison studying of tests 

4&5, 6&7, 8&9, 10&11. The results of test 3&6 and 7&11 show that the thermal 

constants are also less dependent on the cap and substrate materials (glass or silicon) 

when the bonding process is carried out without the intermediate thermal barrier. 

However, the thermal constants are larger for a silicon cap to a silicon substrate bonding 

with the ceramic plate between the substrate assembly and the bonding platform, which 

are shown in results of test 4&5.  
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Table 4.2 Thermal Constants for Different Bonding Configurations. 

Test No. 

Material 

Beam Profile 

Thermal Constant 

Cap          Substrate     Thermal barrier 1 (s)            2 (s) 

1 Silicon Glass Ceramic Top-hat 4.15 7.30 

2 Silicon Glass Silicon Top-hat 3.28 4.12 

3 Silicon Glass None Top-hat 2.44 2.76 

4 Silicon Silicon Ceramic Top-hat 9.05 7.59 

5 Silicon Silicon Ceramic Frame beam 9.03 8.53 

6 Silicon Silicon None Top-hat 2.13 1.73 

7 Silicon Silicon None Frame beam 1.93 1.54 

8 Glass Silicon Ceramic Top-hat 6.69 5.30 

9 Glass Silicon Ceramic Frame beam 6.48 5.97 

10 Glass Silicon None Top-hat 1.94 1.84 

11 Glass Silicon None Frame beam 1.93 1.82 

 

4.5 Summary 

Accurate temperature monitoring using an embedded microsensor array has been 

demonstrated successfully in laser assisted bonding for MEMS packaging applications. 

It has been shown that the amplitude and characteristic of the laser generated 

temperature change, not only depends on the laser power but also depends on the 

package assembly to be bonded and the configuration of thermal materials in the 

bonding setup. Therefore it is necessary to monitor the laser induced temperature for 

better process control in a manufacturing environment. The effect of beam profile on the 

resultant temperature change and distribution has been investigated using top-hat and 

frame-shaped beam profiles. It was found that it is possible to produce a lower 

temperature at the centre of the bottom substrate by ~50ºC using the frame-shaped laser 

beam profile. This effect is highly beneficial for packaging of temperature sensitive 

devices. With better thermal design for heat dissipation from the substrate, it is possible 

to achieve a larger temperature difference between the bonding temperature for 



 

73 

packaging and the temperature experienced by the device being packaged. It was found 

that the temperatures characteristics can be described using a single exponential 

function. The thermal constants are largely independent of the beam profiles but highly 

dependent on the thermal arrangement of the materials underneath the bottom substrate. 

An intermediate ceramic plate between the substrate and the stainless steel bonding 

platform can improve the thermal efficiency of the bonding laser power significantly.  
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Chapter 5 BCB Film Based SAW Humidity Sensor 

Surface acoustic wave (SAW) devices are attractive for use in humidity sensors because 

of their small size, low cost, high stability, short response time, high sensitivity, good 

reliability, good reproducibility and capability of compatibility with the integrated 

circuit process. Moreover, the fabrication of SAW humidity sensors is much simpler 

and easier than the capacitive or resistive humidity sensor, using only one step 

photolithography instead of producing the parallel plate capacitors or the expensive ion 

implantation/diffusion processes. A SAW based humidity sensor has been proposed to 

be integrated as one of the multi-sensors for embedded health monitoring in SiP based 

Microsystems. Instead of the conventional polymer based moisture absorbing layer, 

such as polyimide, fluoropolyol (FPOL), and polyvinyl-alcohol (PVA), the 

benzocyclobutene (BCB) polymer has been investigated as the sensing film for 

absorbing moisture [120-122]. Using changes in mass loading due to the uptake of 

moisture by the polymer, changes in relative humidity (RH) levels resulting in the shift 

of both centre frequency and amplitude of the SAW resonators have been measured. 

The SAW resonators have been fabricated with metal interdigital transducer (IDT) 

fingers based on piezoelectric substrates [120-122, 153-156]. 

5.1 BCB and Moisture Capture 

CYCLOTENE, a series of advanced electronics resins from the Dow Chemical 

Company (USA), are high-purity polymer solutions that have been developed for 

microelectronics applications, which include wafer-level chip-scale packaging, 

dielectric isolation for multilayer interconnects, strong and void-free bonds for MEMS 

and 3D integration, printed circuit board technology, integrated passives/radio 

frequency (RF) components, active matrix liquid crystal displays, passivation/stress 

buffer, etc.. The resins are derived from B-staged bisbenzocyclobutene-based (BCB) 

monomers and are formulated as high-solids, low-viscosity solutions. The chemical 

formula of BCB and chemical equation of polymerization reaction are shown in Fig. 5.1 

[142, 143]. 

The BCB based humidity sensing technology has already been studied and applied in 

monitoring the humidity level of human breath as well as in a pulmonary function 

diagnosis Microsystem [157-159]. For the convenience of using UV photolithography 
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processes as well as the resource availability, CYCLOTENE 4026-46 has been selected 

from the CYCLOTENE 4000 series advanced electronic resins. These resins come as I-

line (365 nm), G-line (436 nm), and broad band-sensitive photopolymers. The electrical 

and thermal properties of Photo-BCB (CYCLOTENE 4000 resin series) are shown in 

Table 5.1, while the mechanical properties of photo-BCB are shown in Table 5.2 [142, 

160]. The polymer resins have been used in the fabrication of a SAW based humidity 

sensor. 

 

Figure 5.1 BCB formula and chemical crosslink equation.  

Table 5.1 Electrical and thermal properties of Photo-BCB [142, 160]. 

Property  Value  

Dielectric constant (1kHz – 20GHz)  2.65  

Dissipation factor  0.0008  

Breakdown voltage  5.3 MV/cm  

Leakage current  4.7 × 10
-10

 A/cm
2
 at 1.0 MV/cm  

Volume resistivity  1 × 10
19

 Ω-cm  

Thermal conductivity  0.29 W/mK at 24°C  

Thermal stability  1.7% weight loss per hour at 350°C  

 

 

Monomer formula Diene synthesis 

Dimer 

Highly crosslinked structure 
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Table 5.2 Mechanical properties of Photo-BCB [142, 160]. 

Property  Value  

Coefficient of thermal expansion 42 ppm/°C at 25°C  

Glass transition temperature >350°C  

Tensile modulus  2.9 ± 0.2 GPa  

Tensile strength  87 ± 9 MPa  

Elongation at break  8 ± 2.5%  

Poisson ratio  0.34  

Stress on Si at 25°C  28 ± 2 MPa  

 

Table 5.3 Recommended storage temperatures and times [142, 160]. 

Storage need  Temperature  Shelf Life  

Long term  Freezer (-15°C)  1 year from date of manufacture  

Medium term  Refrigerator (4°C)  1-2 months  

Short term  Clean room (20°C)  5 days  

 

As photosensitive CYCLOTENE resin ages, the spun-on thickness will gradually 

increase as the resin becomes more viscous due to solvent evaporation. The lifetime is 

based on the criterion of less than 5% change in thickness. Resins should be allowed to 

equilibrate to room temperature before use. Recommended storage conditions and times 

are shown in Table 5.3. Several process options are available for CYCLOTENE 4000 

series, and two of the typical process flows are shown in Fig. 5.2. Process A uses a hot 

plate soft bake and includes a develop end point monitor, and process B uses a hot plate 

soft bake and a pre-develop bake to stabilize the develop end point, while an oven soft 

bake is also possible. A spin coating was used for coating the BCB polymer onto the 

substrates. By increasing the spinning speed, the desired pre-exposure thickness could 

be achieved, the details of which are shown in Table 5.4 [142, 160]. 
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Figure 5.2 Process Flows for CYCLOTENE 4000 Series Resins [142, 160]. 
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Table 5.4 Typical thickness of CYCLOTENE 4000 series polymers (4022-35, 4024-40 

and 4026-46) after spin coating [142, 160]. 

 

 
4022-35 

thickness (μm) 

4024-40 

thickness (μm) 

4026-46 

thickness (μm) 

Spin speed 

(rpm) 

After 

soft bake 

Final 

thickness 

(hard bake) 

After 

soft bake 

Final 

thickness 

(hard bake) 

After 

soft bake 

Final 

thickness 

(hard bake) 

1500 6.9 5.2 10.2 7.2 18.5 14.2 

2000 5.8 4.3 8.4 5.9 15.2 11.6 

2500 5.2 3.8 7.4 5.2 13.3 10.2 

3000 4.7 3.4 6.7 4.8 12.2 9.4 

3500 4.4 3.1 6.2 4.4 11.3 8.7 

4000 4.1 2.9 5.8 4.1 10.6 8.1 

5000 3.7 2.6 5.2 3.7 9.4 7.3 

  

Table 5.5 Equilibrium wt % water in Photo-BCB at various RH at 23°C [142, 160]. 

 

CYCLOTENE resin Film thickness (μm) 
Relative Humidity (%) 

30 54 84 

4024-40 5 0.061 0.075 0.14 

4026-46 10 0.058 0.077 0.14 

4026-46 20 0.050 0.082 0.14 

 

Compared to epoxy resins, polyamides and other microelectronic polymers, BCB is 

well accepted because of its excellent properties such as water absorption (0.12% at 

80% RH), planarization (e.g. > 90% for CYCLOTENE 3022), dielectric constant (2.5 at 

1-10 GHz), dielectric loss at high frequency (e.g. 0.002 at 1-10 GHz), rapid curing (e.g. 

one minute on a hot plate under nitrogen), and copper compatibility [162]. The moisture 

absorbing abilities, water weight percentage based on the total weight of the Photo-BCB 

polymer films, are shown in Table 5.5 [142, 160]. 
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According to the reported studies of BCB based capacitive humidity sensing, soft cured 

aqueous developable PhotoBCB offered an increase of 17.1% for the moisture solubility, 

and gave the highest sensitivity of the humidity sensors. Hard cured BCB gave an 

increase of 40.3% for moisture diffusivity, while giving the fastest sensing response of 

the humidity sensors. All the comparisons were made based on the reference of hard 

cured Cyclotene 4024 resin [156]. Both moisture solubility and diffusivity should be 

considered for the performance of the humidity sensors, which can be compared in 

terms of their sensitivity as well as their response time. Cyclotene 4024-40 has the 

advantages of linear moisture sorption isotherms and the large diffusion coefficient for 

water (4.5±0.5m
2
s

-1
 at 23°C). Both the physical and behavioural models of transient 

responses of the capacitive humidity sensors have also been presented, which were 

supported by finite element method (FEM) simulation as well as experimental 

validation [120, 121]. A full film oxidation process has also been used. Both the 

sensitivity and the response time have been improved significantly by complete bulk 

oxidation of the DVS-BCB / Photo-BCB sensitive film. The device with a film 

thickness of 3.5 m successfully showed a sensitivity of 0.19 pF/%RH and a response 

time of 0.275 second, while simulation results of the sensor with 1.5 m thick film 

showed an enhanced sensitivity of 0.39 pF/%RH and a response time of 0.062 second 

[120].   

5.2 Piezoelectric Effect and Lithium Niobate Substrates 

A surface acoustic wave (SAW), first explained by Lord Rayleigh in 1885, is a kind of 

acoustic wave traveling along the surface of a material exhibiting elasticity, whose 

amplitude typically decays exponentially with depth into the substrate. By using the 

piezoelectric materials, the transduction from electric energy to mechanical energy is 

easily accomplished, e.g. piezoelectric materials will be deformed when a voltage is 

applied [163]. 

5.2.1 Piezoelectric Effect 

The piezoelectric effect, first directly demonstrated by brothers Pierre Curie and Jacques 

Curie in 1880, is the ability of a material to produce electricity when it is subjected to 

mechanical stress. This effect also works in reverse, as materials can be deformed 

slightly when subjected to an applied voltage [164]. Based on the piezoelectric effect, 

crystal structures of piezoelectric materials bend in different ways, which result in 

different vibration modes with different vibration frequencies in the range of KHz to 
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GHz. Table 5.6 shows the vibration modes and the frequencies, which are widely used 

for sensing applications [165]. 

Table 5.6 Various vibration modes of different piezoelectric materials [165]. 

 

Piezoelectricity is the combined effect of the material’s electrical and mechanical 

behaviour: 

D E                                                             (5.1)                                                             

where D is the electric charge density displacement, ε is permittivity and E is electric 

field strength. 

Meanwhile, according to the Hooke's Law: 

S sT                                                              (5.2)                                                             

where S is strain, s is compliance and T is stress. 
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Equation (5.1) and (5.2) may be combined into the strain-charge equations: 

{ } [ ]{ } [ ]{ }E tS s T d E                                               (5.3)                                                             

                         { } [ ]{ } [ ]{ }TD d T E                                               (5.4)  

where [ ]d  is the matrix for the direct piezoelectric effect and [ ]td  is the matrix for the 

converse piezoelectric effect. The superscript E indicates a zero or constant electric field, 

the superscript T indicates a zero or constant stress field, and the superscript t stands 

for transposition of a matrix. 

The strain-charge equations for materials in tetragonal crystal structures or Hexagonal 

crystal structures may also be written as: 
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where Equation (5.5) represents the relationship for the converse piezoelectric effect 

and Equation (5.6) represents the case for the direct piezoelectric effect [164, 166].  
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5.2.2 Lithium Niobate Substrates 

Among the family of piezoelectic substrate materials, quartz (SiO2), lithium tantalate 

(LiTaO3), and lithium niobate (LiNbO3) are most commonly used for acoustic wave 

sensors and devices. Table 5.7 lists some relevant specifications for each material, 

including the most popular cuts and orientations. There are also other kinds of 

piezoelectric materials with commercial potential, including gallium arsenide (GaAs), 

silicon carbide (SiC), langasite (LGS), zinc oxide (ZnO), aluminum nitride (AlN), lead 

zirconium titanate (PZT), polyvinylidene fluoride (PVdF), etc. [167]. 

Table 5.7 Physical parameters of commonly used piezoelectric materials [167]. 

Material Orientation 

Velocity 

of SAW 

(m/s) 

Temperature 

coefficient 

(ppm/
o
C) 

Attenuation 

at 1 GHz 

(dB/S) 

Quartz Y, X 3159 -24 2.6 

Quartz ST, X 3158 0 3.1 

Lithium Tantalate Y, X 3230 35 1.14 

Lithium Tantalate 167 rotation 3394 64 - 

Lithium Niobate Y, Z 3488 94 1.07 

Lithium Niobate 128 rotation 3992 75 - 

 

At a higher wave velocity of 3992 m/s, SAW devices fabricated on Lithium Niobate 

substrates performed at the higher resonating frequencies than other common 

commercial piezoelectric materials. This results in a higher sensitivity of the SAW 

based sensors. As one of the most attractive materials, lithium niobate has desirable 

properties such as piezoelectric, electro-optic, photoelastic, non-linear optic, good 

mechanical and chemical stability, and wide transparency spectra range. The main 

properties of lithium niobate are shown in Table 5.8. LiNbO3 has been widely used as 

frequency doubling material, for Q-switches, waveguide substrates and surface acoustic 

wave (SAW) devices [168– 171].  
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Table 5.8 Main properties of lithium niobate [171]. 

Property Value Notes  

Optical index or refraction (o-axis) 2.21 At λ=1.55m 

Optical index or refraction (e-axis) 2.14 At λ=1.55m 

RF dielectric coefficient (o-axis) 42.5 ≈ constant from 100MHz to 140 GHz 

RF dielectric coefficient (e-axis) 26 ≈ constant from 100MHz to 140 GHz 

RF refractive index (o-axis) 6.5 ≈ constant from 100MHz to 140 GHz 

RF refractive index (e-axis) 5.1 ≈ constant from 100MHz to 140 GHz 

Electrical conductivity  1×10
-18

 /Ωcm At DC 

Thermal conductivity 5.6 W/m
o
C  

Thermal expansion (o-axis) 14×10
-6

 /
o
C  

Thermal expansion (e-axis) 4×10
-6

 /
o
C  

Thermal effect on index (o-axis) 1.8×10
-6

 /
o
C 

1 o

o

dn

n dT
  

Thermal effect on index (e-axis) 1.60×10
-6

 /
o
C 

1 e

e

dn

n dT
  

Melting point 1253 
o
C  

Density  4.635 g/cm
3
  

Band gap 4 eV  

Electro-optic coefficient  

r33=30.8 pm/V 

r13=30.8 pm/V 

r22=30.8 pm/V 

r51=30.8 pm/V 

22 13

22 13

33

51

51

22

0

0

0 0

0 0

0 0

0 0

ij

r r

r r

r
r

r

r

r

 
 
 
 

  
 
 
 
  

 

Nonlinear electro-optic coefficient 

d31=11.6 

d33=86 

d22=5.6 

 

Piezoelectric strain coefficient 

d15=69.20 pm/V 

d22=20.80 pm/V 

d31=-0.85 pm/V 

d33=6.00 pm/V 

15 22

22 22 15

31 31 33

0 0 0 0

0 0 0

0 0 0

ij

d d

d d d d

d d d
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Normally, lithium niobate can be specified into three grades based on its different 

applications, acoustic (SAW) grade, refractive grade, and optical grade. Acoustic grade 

is the most commonly produced grade for making SAW based devices, and is also the 

least demanding in terms of impurities and crystalline perfection because of its non-

optical applications. The crystals are grown over quite a long time, converting a large 

fraction of the melt into crystalline material [168, 170].  

Regular lithium niobate is strongly pyroelectric. The surface of regular lithium niobate 

substrates may accumulate electric charge when substrates are heated or cooled during 

the soft bake and hard bake steps during the UV photolithography process. This may 

cause spontaneous electrical discharge between dense metalized lines on the substrate, 

such as the IDTs of SAW devices, as well as electrical discharge between the substrate 

and the metal plate used for heating or cooling. This discharge effect makes the regular 

lithium niobate substrates difficult for wafer handling and processing, and may cause 

the substrate to be damaged. Meanwhile, the wide transparency spectra range of regular 

lithium niobate may also bring yield effects including multi-reflection and scattering in 

the UV photolithography process.  

Chemical reduction, at elevated temperatures in an environment of nitrogen and 

hydrogen, produces chemically reduced lithium niobate (black lithium niobate) material 

which has an increased electric conductivity, of the order of 10
4
,
 
and effectively 

eliminates pyroelectric sparking. At the same time, the optical absorption is increased 

significantly causing its appearance to become gray to dark black and almost non-

transparent, which has a positive impact on the photolithography process. A picture of 

the black lithium niobate wafers is shown in Fig. 5.3, the advantages of which include: 

 Good ability to neutralise electrical charges even if the applied electrical 

potential occurs instantaneously; 

 No difference in piezoelectric properties from regular lithium niobate wafers; 

 High uniformity of bulk resistivity in the surface and bulk of wafers.  

The typical properties of black lithium niobate wafers are shown in Table 5.9 [172-176]. 
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Table 5.9 Typical properties of lithium niobate wafers [172-176]. 

 Black lithium niobate Regular lithium niobate 

Bulk Resistivity (Ω · cm)  2.40E+11 3.80E+14 

Bulk Conductivity (Ω
-1

· cm
-1

)  4.17E-11 2.63E-15 

Surface Electric Potential
*
 

/100mmφ(kV) 
<0.05 3.05 

Electrical Charge 

neutralisation (sec)  
1.5 ∞  

Optical Transmission%
#
  <60 73 

Colour  Dark Grey Colourless 

 

Lithium Niobate 127.86 ° Y-cut 

 Black lithium niobate Regular lithium niobate 

Curie temperature Tc (°C) 1132±2 1132±2 

SAW velocity Unchanged 3980 

Coupling coefficient k
2
 Unchanged 5.5 

* Electrical charges due to temperature rising from room temperature to 95°C at 4-inch wafer 
# 0.35mm thickness wafer (with both sides mirror polished) measured by 365nm wavelength 

 

Figure 5.3 Picture of black lithium niobate wafers [176]. 
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5.3 Polymer Assisted SAW Humidity Sensing 

A single port SAW device could act as a resonator based on its reflection signal. The 

simplified equivalent circuit of such a device is shown in Fig. 5.4. Lm and Cm would 

resonate at the resonance frequency of the SAW device, while the series resistance Rm is 

related with the losses for the SAW device. Lm, Cm and Rm are dynamic parameters, 

which are determined by the properties of the fabricated SAW device. Co is the static 

capacitance between the end electrodes and is equal to Cp+Cg/2, while 

Cg=Cg1=Cg2=0.5pF normally. Two port SAW devices normally act as resonators based 

on their transmission signal, the simplified equivalent circuit of such a device is shown 

in Fig. 5.5. Here, the definition of Lm, Cm, Rm and Co are as already defined above for 

Fig. 5.4 [177].  

 

Figure 5.4 Equivalent circuit of single port SAW resonator [177]. 

 

Figure 5.5 Equivalent circuit of two port SAW resonator [177]. 

Polyimide, fluoropolyol (FPOL), polyvinyl-alcohol (PVA) and benzocyclobutene 

(BCB) [120-122], all absorb the moisture in the air, which causes an increase in the 

density, mass, permittivity, and electric conductivity of the polymer films. All these 

factors tend to decrease the velocity of the SAW [178]. The main mechanism is a 

change in mass loading, which changes the phase velocity in the SAW device, which 

results in a frequency shift. Equation (5.7) shows the relationship between the frequency 

shift (Δf) and the change in mass per unit area  (Δm), where Cs is a constant dependent 
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on the properties of the piezoelectric substrate of the SAW device and 0f  is the 

resonance frequency of the SAW device [179-181].  

2

0sf C f m                                                   (5.7) 

Meanwhile, the amplitude of the SAW resonant signal would change with the amount 

of energy dissipated into the medium contacting the device surface. The physical 

properties of coated polymers which act as the surface contacting medium would also 

be changed on absorbing moisture, resulting in amplitude changes. These changes are 

reflected in the insertion loss, which is defined as the ratio of the output signal 

amplitude to that of the input, in decibels. The total energy loss across the device 

includes transduction losses, propagation losses (occurring as the waves travel through 

the piezoelectric material of the device), and additional losses from dissipation of 

energy in the medium contacting the device surface [179].  

The behaviour modelling of the SAW device has already been studied using several 

methods, including the impulse response method, the conventional matrix approach and 

the modified matrix approach. As a baseline for modelling the SAW device, the impulse 

response method is valid only for transducers where at least one of the two IDTs has a 

constant aperture or finger overlap. This modelling approach includes both mechanical 

and electrical behaviour of SAW devices, including frequency response, the loss of the 

system, the admittance, and the parameters for circuit simulators. Constant equal 

spacing and finger width are normally assumed. The conventional matrix method is 

based on transmission line theory. The SAW device is modelled as two IDTs with two 

ports for mechanical waves travelling into and out of the IDT when current and voltage 

are on the IDTs. The matrix for SAW delay line is simply the multiplication of the 

matrices for the two IDTs and a matrix for the delay in between. The complete SAW 

device matrix normally is given by:  

1 2[ ( )] [ ( ) ( ) ( )]SAW f T f D f T f                                 (5.8) 

where f  is the frequency, 1( )T f and 2 ( )T f are the transmission matrices for each IDT 

which can be cascaded easily, and ( )D f  stands for the delay matrix [182-184]. 
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Based on both the impulse response method and the conventional matrix approach, the 

model has been extended by including second order elements. In this approach, The 

model divides an IDT into half wavelength sections, which are further divided into 

zones. Two of the zones are un-metalized areas (1/8 of a wavelength) around one zone 

that is comprised of a metal finger (1/4 of a wavelength). While each zone is modelled 

by a transmission line matrix, the SAW delay line matrix is simply the multiplication of 

the matrices for the two IDTs and the delay or space between the IDTs [182, 183]. 

The power consumption analysis of the SAW sensor system was reported in 2006, 

modelled using the software of ANSYS and PSPICE [185]. There are several design 

parameters of the SAW sensor, including the distance between two IDTs, thickness of 

piezoelectric substrate and finger space of IDT. All of these could significantly affect 

the power consumption of the full sensing system. The simulated results show that the 

total power consumption increases as the centre distance between each IDT increases. 

The reason for this is that more power will be lost during transporting from one IDT to 

another with increasing the centre distance. The study of the power consumption caused 

by different thickness of the piezoelectric substrates shows that there is no variation in 

the transverse direction along the surface and that the particles move both in the 

direction of wave propagation and perpendicular to the depth of substrate, while the 

surface waves propagate along the surface and decay into the bulk material within a 

distance of the order of a wavelength. These simulation results demonstrate that the 

maximum wave amplitude occurs at 1/4λ thickness due to the interference from the 

back surface of the substrate, which corresponds to the maximum power of SAW 

transportation. The value of the finger space will also affect the total system power 

consumption, which also determines the resonance frequency of the SAW sensor. The 

simulation results show that the power consumption decreases as the resonance 

frequency increases. This also means reducing the distance between two adjacent 

fingers within the single IDT, the limit of which depends on the resolution of the 

lithography fabrication process [185-188]. 

5.4 Design and Fabrication of SAW Based Sensors 

To achieve the transduction from electrical energy to mechanical energy, SAW based 

devices are normally designed and fabricated by patterning metal IDTs on piezoelectric 

substrates in arrays of single or pair of IDTs. SAW devices have been in commercial 

use for more than 60 years for applications in filters, oscillators, transformers, as well as 
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applications in sensing and microfluidics. A schematic picture of a typical SAW device 

design is shown in Fig. 5.6 [167]. 

 

Figure 5.6 Schematic picture of a typical SAW device design [167]. 

The width of the individual IDT was designed to be the same dimension as the gaps 

between the IDTs, both of which are a quarter of the wavelength of the SAW resonator. 

For example, the  wavelength of the SAW resonator was 16 m while the width of the 

individual IDT was designed as 4 m. This yields a resonance frequency of about 

249.50 MHz, when the SAW velocity is 3992 m/s based on the Equation (5.9), where 

f is the resonance frequency, v  is the wave velocity, and   is the wavelength. The 

number of IDTs in each transducer determines the power of the wave generated, while 

longer IDTs provide more uniformity on the wave travelling direction. A normalized 

metal thickness range for the IDTs was designed from 0.4% to 4% of the wavelength 

[189].  

v
f


                                                                (5.9) 

The reflection grating structures have also been considered for enhancing the amplitude 

of the resonance. The maximum reflectivity of a shorted grating (shown in Fig. 5.7a) is 

slightly higher than that of an open grating (shown in Fig. 5.7b) [189].  
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(a) 

 

(b) 

Figure 5.7 SAW transducer with (a) shorted grating reflector, (b) open grating reflector. 

A 5-inch photomask was designed using the design software L-Edit (Tanner Research, 

Inc.). the mask was produced by Delta Mask (Netherlands) with patterned Cr film on a 

soda lime glass substrate. The layout of the mask, exported from the L-Edit file, is 

shown in Fig. 5.8, which includes 4 single and 9 dual SAW resonators. The SAW 

resonators were designed with IDTs widths of 4, 8, and 16 µm, and lengths of 2.9, 3.9 

and 4.9 mm with distances between the SAW transducers of 1.5, 2, 3, 4, and 5 mm 

being used. The reflection grating structures were also included in the mask design. 

More detailed information of the photomask design is shown in Table 5.10 and 5.11.  
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Figure 5.8 Layout of the photomask for SAW devices fabrication. 

Table 5.10 Schematic layout of the SAW photomask design. 

 

 

 

 

 

 
D1 D4 D7 

 

S1 S3 

D2 D5 D8 

S2 S4 

D3 D6 D9 
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Table 5.11 Details of the SAW photomask design. 

 IDT width IDT length IDT No. Central Gap Reflector 

S1 4µm 2.9mm 60 2mm No 

S2 8µm 2.9mm 30 1.5mm Yes 

S3 8µm 2.9mm 30 1.5mm No 

S4 16µm 2.9mm 20 1.5mm No 

D1 4µm 4.9mm 60 4mm No 

 4µm  4.9mm 30 4mm No 

D2 4µm 4.9mm 60 4mm Yes 

 4µm 4.9mm 60 4mm Yes 

D3 4µm 4.9mm 60 5mm No 

 4µm 4.9mm 60 5mm No 

D4 8µm 4.9mm 30 4mm Yes 

 8µm 4.9mm 30 4mm Yes 

D5 8µm 4.9mm 30 5mm Yes 

 8µm 4.9mm 30 5mm Yes 

D6 8µm 4.9mm 30 5mm No 

 8µm 4.9mm 30 5mm No 

D7 8µm 3.9mm 30 3mm No 

 8µm 3.9mm 30 3mm No 

D8 16µm 4.9mm 20 4mm Yes 

 16µm 4.9mm 20 4mm Yes 

D9 16µm 4.9mm 20 3mm No 

 16µm  2.825 mm 20 3mm No 
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Fabrication of the SAW based sensors was carried out on both regular lithium niobate 

(white LiNbO3) and chemically reduced lithium niobate (black LiNbO3) substrates. 

Aluminum of thickness 300 nm was sputtered as the metal layer, which was patterned 

using an aluminum etchant at 45±2
o
C to form the IDT structures following UV 

photolithography and development of the mask pattern. The composition of aluminum 

etchant is shown in Table 5.12. The SAW based sensors were successfully fabricated 

(Fig. 5.9). Characterisation studies of the fabricated SAW sensors were carried out 

using Zygo interferometer (Zygo Corporation, USA), and the results of one of the 

fabricated SAW sensors with IDT width of 16 µm are shown in Fig. 5.10. 

 

(a) 

 

(b) 

Figure 5.9 Fabricated SAW sensors  

(a) with IDTs width of 4 µm on black LiNbO3 substrate;  

(b) with IDTs width of 8 µm and shorted grating reflector on regular LiNbO3 substrate. 
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Table 5.12 Composition of aluminum etchant. 

Solution  Ratio by volume 

H3PO4 16 

HNO3 1 

CH3COOH 1 

H2O 2 

 

 

          

Figure 5.10 Test results of SAW sensor obtained using a Zygo interferometer. 
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5.5 Testing of SAW Based Sensors 

The contact pads of the SAW sensors were designed with dimensions of 1 mm × 1 mm. 

A HP 8510 network analyzer, shown in Fig. 5.11, was used to measure the transmission 

and reflection signals of the fabricated SAW sensors. SMA connectors (Tyco 

Electronics Corporation, USA), shown in Fig. 5.12, have been used to connect the SAW 

sensors to the HP 8510 network analyzer for measurement. The description details of 

these connections are shown in Table 5.13 [190].   

  

Figure 5.11 HP 8510 network analyzer. 

 

Figure 5.12 SMA connector from Tyco Electronics Corporation [190]. 
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Table 5.13 Description of SMA connector from Tyco Electronics Corporation [190]. 

Connector type SMA Coaxial 

Impedance 50R 

Contact material  Brass 

Contact plating  Gold 

Body style Straight socket 

Termination method Solder 

Mounting type PC board 

Material Stainless Steel 

Insulator Material PTFE 

Number of mating cycles 500 

Contact resistance 3mR 

Insulation Resistance 500MR 

Operating temperature - 65 to 165 °C 

Voltage rating AC 500V 

Max operating frequency 18 GHz 

 

Two different contacts between SAW pads and SMA connectors have been designed 

and used for characterisation of SAW sensors. For the first design, shown in Fig. 5.13, 

the SAW sensor has been attached on a wire board, and connected to copper wires 

soldered with silver loaded epoxy (RS Components Ltd, UK). The Ag/epoxy is used for 

repairing electrical connections and general conductive bonding applications. The 

ground connections were achieved through the metal layer at the back side of the wire 

board. The resistivity of the cured silver loaded epoxy compound is less than 0.005 

ohm·cm [191]. As shown in Fig. 5.14, a test stage has also been well designed and 

fabricated by the university mechanical workshop. The SAW sensor has been placed on 

the test stage with 3M test clips (3M United Kingdom plc, UK) for connecting between 

the contact pads and the SMA connectors [192]. The ground connections were achieved 

using soldered wire.  
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During measurements, there was no observed difference between the wire board and the 

test clip setups. The test clip connection was used for the characterisation of the SAW 

device before the BCB layer was coated and patterned. The Ag loaded epoxy based 

connection has been used for characterisation of SAW devices after the BCB layer was 

coated and patterned for humidity sensing. This is because the BCB polymer cannot be 

properly spin coated after the epoxy contact was made, which results in a non-flat 

surface. 

 

(a) 

 

(b) 

 

(c) 

Figure 5.13 Test setup with wire board and Ag/epoxy connection (a) schematic setup; 

(b) top view; and (c) bottom view. 
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(a) 

 

(b) 

Figure 5.14 Test setup with 3M test clips (a) before assembly and (b) after assembly 

with SMA connectors. 
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(a) 

 
(b) 

 
(c) 

Figure 5.15 Test results of SAW sensors with IDTs widths at (a) 4 µm, (b) 8 µm,  

and (c) 16 µm before the fabrication of BCB films. 
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Before spin coating of the BCB films, the test results of SAW sensors on regular 

LiNbO3 substrates with IDTs widths at 4, 8, and 16 µm are shown in Fig. 5.15, with S11 

& S22 corresponding to the reflection signals and S12 & S21 corresponding to the 

transmission signals. The resonance frequencies of the fabricated SAW devices were 

measured as 248.60, 124.82, and 62.38 MHz, respectively, while the theoretical values 

are 249.50, 124.75, and 62.19 MHz based on Equation (5.9) (with SAW velocity of 

3992 m/s for 128° cut LiNbO3 substrates). A comparison of SAW sensors fabricated on 

regular and chemically reduced LiNbO3 substrates are shown in Fig. 5.16. The 

resonance frequencies were the same for the sensors on both substrates.   

 

Figure 5.16 Comparison of SAW sensors based on different substrates. 

Quality factor (Q factor) is a dimensionless parameter which describes how under-

damped an oscillator or resonator is, or equivalently, characterizes a resonator's 

bandwidth relative to its centre frequency [193]. Fig. 5.17 shows the Q factor as defined 

by Equation (5.10), 

f
Q

f



                                                         (5.10)  
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where f  is the resonance frequency of the SAW sensor and f  is the -3dB bandwidth 

[194]. The enhancement of Q factor by the reflection grating structures has also been 

studied with fabricated SAW sensors with IDT widths of 8 m on regular LiNbO3 

substrates. The test results are shown in Fig. 5.18. The measured Q factor of the sensor 

with reflection grating structures was 740, which was about 27.4% higher than the 

sensor without reflection grating structures, which had a Q factor of 581. 

 

Figure 5.17 Definition of Q factor of SAW sensors [194]. 

 

(a) 

Q = f0 /( f2 − f1) 
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(b) 

Figure 5.18 Comparison of SAW sensors (a) without and (b) with reflection gratings.  

5.6 Temperature Dependence of Fabricated SAW Sensors 

The measured normalized temperature coefficient of the ultrasonic velocities of lithium 

niobate were reported to be in the range from -2.035 to -0.684 × 10
-4

 /°C, which means 

that the resonance frequency of the SAW sensor with IDT widths of 16 m, 62.19 MHz, 

may have shifted from 4.2 to 12.6 kHz with a temperature change of 1 °C [195]. It has 

also been reported that the SAW sensors based on chemically reduced lithium niobate 

substrates have worse temperature stability than the sensors fabricated on regular 

lithium niobate substrates, especially when the temperature is above 300 °C [196]. 

Fabricated on the regular lithium niobate substrate, a SAW sensor with an IDT width of 

16 m has been used for an experimental study of the temperature stability of the SAW 

devices. The testing stage used for temperature stability measurement is shown in Fig. 

5.19. A hot plate has been used to heat up the SAW sensor and the substrate 

temperature was measured by a commercial thermocouple with a sensitivity of 0.1 °C. 

As shown in Fig. 5.20, the measured temperature dependence of the resonance 

frequency is about 4.26 KHz/°C in the temperature range between 24.7 and 80.1 °C. 

Meanwhile, the monitoring of resonance amplitude shifts versus temperature changes 

has also been carried out by using the same SAW sensor. The results in Fig. 5.21 show 

that the thermal effect of resonance amplitude is negligible in temperature range 

between 24.7 and 80.1 °C. This indicates that the SAW devices for humidity sensing are 
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stable and reliable using the monitoring resonance amplitude changes in the temperature 

range between 24.7 and 80.1 °C      

 

Figure 5.19 Testing setup of temperature stability of SAW sensor. 

  

Figure 5.20 SAW resonance frequency versus temperature. 
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Figure 5.21 SAW resonance amplitude versus temperature. 

5.7 BCB Film Based SAW Sensors for Humidity Detection  

Following investigation on the IDT dimensions, substrates materials, reflection grating 

structures, and SAW temperature reliability, a BCB film (CYCLOTENE 4026-46) was 

coated on a SAW resonator sensor with IDT width of 8 m for qualitative humidity 

sensing testing. The SAW sensor was fabricated on a regular LiNbO3 substrate and 

designed without the reflection grating structures. The details of the spin coating 

process were: 500 rpm with acceleration of 100 r/s for 20 seconds, and then 3500 rpm 

with acceleration of 500 r/s for 100 seconds. A soft bake was carried out at 90 °C for 

120 seconds after the spin coating process. The film thickness was confirmed using the 

Zygo interferometer. A uniform BCB film with thickness of 8.4 m was obtained 

successfully. The schematic setup for the qualitative humidity sensing test is shown in 

Fig. 5.22.  

 

Figure 5.22 Schematic setup for the qualitative humidity sensing test. 
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(a) 

 

(b) 

 

(c) 

Figure 5.23 Responses of qualitative humidity sensing test with BCB film based SAW 

sensor at (a) Room RH level, (b) Middle RH level, and (c) High RH level. 
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The humidity levels were adjusted by controlling the temperature of the hot plate, 

resulting in changes of the saturated water vapour pressure at different temperatures. 

The results of the qualitative test, obtained using a HP8510 Network Analyzer, are 

shown in Fig. 5.23. As summarised in Fig. 5.24, an amplitude shift of reflection signals 

was recorded based on the humidity change. The transmission signals were totally lost, 

which was because the cover of BCB film at the aperture between the SAW transducers 

blocked the wave propagation while the reflex gain was enhanced significantly. 

 

Figure 5.24 Qualitative test results with respect to the RH change. 

A humidity controlled system was subsequently designed for the quantitative 

measurement of SAW based humidity sensors using BCB sensing films. The design and 

test set up are shown in Fig. 5.25. The quantitative BCB film based SAW humidity 

sensing tests were carried out at RH levels controlled by dry/wet nitrogen flow and 

monitored by a humidity probemeter (N18FR Maplin Electronics Ltd, UK). SAW 

resonator sensors with IDT widths of 8 m, fabricated on regular LiNbO3 substrate and 

designed with reflection grating structures, have been used for this quantitative 

humidity monitoring.  
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(a) 

 

(b) 

 

(c) 

Figure 5.25 Test setup for the quantitative humidity sensing detection (a) Schematic 

diagram of the test set up, (b) RH level below room environment controlled using a dry 

N2, and (c) RH level above room environment controlled using a wet N2. 

The BCB film was produced by spin coating at 500 rpm with acceleration at 100 r/s for 

20 seconds, and then 5000 rpm with acceleration of 500 r/s for 150 seconds. A soft bake 

was carried out at 80 °C for 120 seconds after the spin coating process. Using a Zygo 
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interferometer, the BCB film thickness was measured to be 7.0 m. At a humidity range 

of 0% to 100% RH, an accuracy of ±3.5% RH, and a resolution of 0.1% RH, the 

humidity probe meter (Maplin Electronics Ltd, UK) showed stable and controllable 

humidity levels were achievable below 10% RH using a dry N2 flow and above 90% 

RH using a wet N2 flow (Fig. 5.26). Using the test setup as shown in Fig. 5.25, the 

reflection responses at each stable RH point from 8.6% to 91.7% RH were recorded and 

are shown in Fig. 5.27. The amplitude shifts of the reflection responses are displayed in 

Fig. 5.28. Using the BCB film as the moisture absorbing layer, the test results followed 

a linear relation, and with 7.0 m thick BCB film as the moisture absorbing layer, the 

sensitivity of the fabricated SAW sensor was about 0.26 dB/RH% monitored using 

reflection signals. 

 

(a) 

 

(b) 

Figure 5.26 Humidity probe reading while humidity level was at  

(a) 8.7% and (b) 90.6%. 
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Figure 5.27 Reflection responses to the humidity changes 

monitored by 7.0 m BCB film based SAW sensor. 

 

Figure 5.28 Amplitude shifts of the reflection responses based on the humidity changes. 
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5.8 Summary 

The properties of the BCB films, for humidity sensing application, have been 

summarized. Both regular and chemically reduced lithium niobate piezoelectric 

substrates for SAW sensors have been studied. The performances of both types were 

observed to be the same for both the resonance frequency and amplitude. The SAW 

velocity of the 128° cut lithium niobate substrates is about 3992 m/s, which has been 

selected for the fabrication of the BCB film based SAW sensors for humidity detection. 

After a theoretical study of SAW resonators, a soda lime glass based photomask was 

designed and fabricated with IDT designs at widths of 4, 8, and 16 µm. The sensors 

were fabricated on both regular and chemically reduced lithium niobate substrates with 

sputtered aluminium as the metal IDT. The aluminium was patterned using a wet 

etching method. Two types of connections, silver loaded epoxy and test clips, showed 

no difference with respect to SAW resonance testing. 

Successfully fabricated sensors with different IDT widths have been used for: (1) 

investigation of the IDT dimension effects; (2) substrates effects; (3) enhancement of 

reflection grating structures; and (4) the temperature dependence. Resonance signals 

from the SAW sensors were monitored using a HP 8510 network analyzer. The 

measured resonance frequencies of the fabricated SAW sensors were 248.60, 124.82, 

and 61.20 MHz for designs of IDT widths of 4, 8, and 16 µm respectively. Resonance 

frequencies were the same for the sensors on both regular and chemically reduced 

LiNbO3 substrates. Slight difference of the amplitudes was observed. Devices on the 

chemically reduced LiNbO3 substrates offered lower amplitudes compared to those on 

the regular LiNbO3 substrates. Test results also showed that the Q factor of a SAW 

sensor with IDT width at 8 m was increased by 27.4%, from 581 to 740, by the 

application of shorted reflection grating structures. A shift of resonance frequency with 

temperature was measured as 4.26 KHz/°C using a fabricated SAW sensor with IDT 

width of 16 m. This value is almost at the minimum value of the thermal stability 

according to references [195, 196]. SAW sensors with different IDT widths have been 

used for the investigation, because of limited number of devices available. 

Qualitative humidity sensing tests were carried out with a BCB film of thickness of 8.4 

m. A significant amplitude change of the reflection signals was recorded based on the 

humidity change. Quantitative humidity sensing detection was subsequently performed 
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with a SAW sensor coated with the BCB film of thickness of 7.0 m. Humidity levels 

were achieved between 8.6% and 90.6% RH by adjusting the dry/wet nitrogen flow.  

The test results show a linear relationship between humidity and frequency. Based on 

the reflection signals, a sensitivity of 0.26 dB/RH% was demonstrated. 
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Chapter 6 Methods for Sensor Integration   

After the design, fabrication and testing of the metal thin film based temperature sensors 

and the BCB film based SAW humidity sensors, assembly of piezoresistive pressure 

sensors on LiNbO3 substrates was developed to look at sensor integration. Pressure 

sensors with different operating range (0 to 1.5 bar and 0 to 7 bar) have been selected 

for the sensor integration work. The final stage of integration combines the temperature, 

humidity, and pressure sensors on a single substrate for embedded health monitoring in 

Microsystem. Integrated multi-sensors were designed on both LiNbO3 and ZnO/Si 

substrates and were successfully fabricated on the LiNbO3 substrate. 

6.1 Piezoresistive Pressure Sensor  

Based on the piezoresistive effect discussed in Section 2.3.3.2, P+ type highly doped 

peizoresistors can be fabricated on a Si membrane as shown in Fig. 6.1. The advantages 

of this structure include fabrication with standard MEMS processes, easily controlled 

time and energy for ion implantation, and output with DC signal. With either vacuum or 

a constant pressure in the sealed cavity, changes in outside pressure result in 

piezoresistive changes, which are monitored using a Wheatstone bridge DC test circuit.  

 

Figure 6.1 Schematic cross section of piezoresistive pressure sensor  

based on Si – Si bonding. 

As shown in Fig. 6.2, the silicon based piezoresistive pressure sensors incorporate a 

boron implantation region used to create the sensing piezoresistors. High concentration 

boron diffusion doped P-wells are used to form the good Ohmic contacts to Al patterned 

contact pads. By simplifying the photolithography process, an optimised implantation 

process flow shown in Fig. 6.3, has been used for the fabrication of prototype 

piezoresistive pressure sensors. Both the boron implantation and the high concentration 
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boron diffusion have been achieved in one step using a SiO2 mask layer in thickness of 

200 nm [197]. 

 

Figure 6.2 Process flow of Si based pizoresistive pressure sensor  

based on Si – Glass bonding [197]. 
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Figure 6.3 Optimised process flow of boron implantation [197]. 

To create piezoresistive sensing structures using the optimised implantation process, 

AZ6112 photoresist was first spin coated onto the wafer after oxidation. During the UV 

photolithography process, the wafer was soft baked at 90
o
C for 120 seconds and hard 

baked at 120
o
C for 120 seconds. The energy for the boron ion implantation was 60 keV, 

which formed the sensing piezoresistive layer with doping concentration of 

7.5×10
14
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10
19

/cm
3
 was also formed at the interface underneath the 200 nm thick SiO2 mask layer. 

After ion implantation, an annealing process was carried out at temperature of 950
 o
C in 

a dry nitrogen environment for 40 minutes [197]. The pressure sensors were provided 

by Shanghai Institute of Microsystem and Information Technology (SIMIT), China. 

 

Figure 6.4 Top view of the fabricated prototype piezoresistive pressure sensor. 

 

Figure 6.5 Schematic layout of the contact pads. 

The top view picture of the fabricated prototype piezoresistive pressure sensor is shown 

in Fig. 6.4. The area of the full sensor was about 1 mm × 1 mm. 4 piezoresistors have 



 

116 

been fabricated to make up each device in the Wheatstone bridge. A schematic layout of 

the contact pads is shown in Fig. 6.5. The dimensions of the contact pads were about 0.3 

mm × 0.105 mm, and the thickness of the aluminium contact pads was between 300 and 

400 nm. Using a 5 V DC power supply to provide the input current, pressure changes 

result in a change in the sensor output voltage of the order of mV. As shown in Fig. 6.6, 

a standard wire bonding process was used to electrically connect the positive input (Pad 

1), positive output (Pad 2), negative input (Pads 3 and 4), and negative output (Pad 5).  

 

(a) 

 

(b) 

Figure 6.6 (a) Schematic layout and (b) photo of wire bonded pressure sensor. 

Al 

pads 

Al 
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6.2 Design of Integrated Multi-Sensors 

There is a growing interest in integrating health monitoring functions for advanced 

electronic systems in order to make a timely decision for system repair or replacement 

in safety critical applications. Microsystem health monitoring can improve the cost-

effectiveness of inspection and maintenance of the systems. With increasing 

miniaturization and heterogeneous integration of electronic systems enabled by the 

system-in-package (SiP) technology [47-49], it is becoming difficult to conduct 

electrical tests using the conventional methods because of limited access to the electrical 

contacts in stacked packages. Therefore it is necessary to use intelligent health 

monitoring approaches to determine the status of such systems. Health monitoring 

methods have already been developed for large systems and large structures, such as 

aircraft and aerospace vehicles [53-57]. For health monitoring in compact or 

miniaturized electronic systems, integrated sensors are essential. Fig. 6.7 shows a 

schematic illustration of an electronic system with integrated sensors for health 

monitoring. In this case an IC chip and a MEMS chip are integrated on a chip carrier. 

The health monitoring sensors are integrated with the MEMS chip. For 3-D systems, the 

microsystem health monitoring sensors or chips can be embedded in the system in 

package (SiP) structures.  

 

Figure 6.7 Schematic illustration of a microsystem with a health monitoring chip 

attached [198]. 

Integration methods have been used to develop microsystem health monitoring 

applications in advanced electronic systems. For health monitoring in electronic 

systems, it is necessary to monitor multiple parameters inside a package in order to 

assess the condition of a microsystem under operation. It is also necessary to monitor 

the environmental parameters within a microsystem package such as temperature, 

humidity and pressure. Two sensors single chip integration approaches have been 

developed. Fig. 6.8 (a) shows a schematic layout of integrated sensors on a LiNbO3 

substrate. In this case metal thin film based temperature sensors and SAW based 

humidity sensors are fabricated on the substrate. A micromachined piezoresistive 
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pressure sensor is also assembled onto the same chip in order to obtain three integrated 

sensors on the same substrate. The alternative approach has all of these 3 sensors on a 

silicon substrate as illustrated in Fig. 6.8 (b). The temperature sensors are fabricated 

either using a sputtered platinum thin film or using an electron beam evaporated nickel 

thin film on the substrates. The pressure sensor is produced using the bulk silicon 

micromachining techniques. The SAW based humidity sensor is fabricated on a 

piezoelectric thin film such as ZnO or AlN that can be deposited on the silicon substrate 

by sputtering. 

 

(a) 

 

 

(b) 

Figure 6.8 Designs of integrated multi-sensors for embedded health monitoring based 

on (a) piezoelectric substrate (such as LiNbO3) and (b) silicon substrate. 

6.3 Fabrication Process of Integrated Multi-Sensors  

6.3.1 Design for Integrated Sensors on LiNbO3 Substrate 

The fabrication process flow of LiNbO3 based integrated multi-sensors is shown in Fig. 

6.9. The platinum thin film temperature sensor is first fabricated by sputtering Pt film of 

thickness between tens and hundreds of nanometres, which is then patterned into 
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meander structures using UV photolithography and ion beam etching. The IDTs of the 

SAW humidity sensor and the contact pads of the pressure sensor can be achieved 

together in the same process by sputtering an aluminium layer, which is patterned by 

wet etching. The platinum patterns are able to survive in the aluminium etchant as they 

remain on the substrate even after the aluminium etch. The BCB moisture capture film 

of the humidity sensor is fabricated by spin coating and UV photolithography 

processing. The sensor simply consists of the patterned BCB polymer. The silicon based 

pre-fabricated piezoresistive pressure sensor would be assembled onto the substrate by 

hybrid integration with cured glue. Wire bonding process is then used to provide the 

interconnections between the bond pads on the sensor and bond lines on the substrate. 

 

Figure 6.9 Fabrication processes of integrated multi-sensors on LiNbO3 substrate. 
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6.3.2 Optimised Design for Integrated Sensors on LiNbO3 Substrate 

Because of the high cost of platinum, it was decided to investigate the use of nickel as 

the metal layer of the temperature sensor. Nickel thin film has been developed for 

replacing the platinum layer in the lift-off process, the details of which are shown in 

Fig. 6.10. Fabrication of the SAW sensors and the contact pads of the pressure sensors 

were carried out as the same process as the platinum based process. After the 

photolithography process for pre-patterning, nickel thin film is deposited by electron 

beam evaporation. Then, it is patterned by the lift-off process. Finally, the BCB 

moisture capture films and the pre-fabricated pressure sensors are integrated onto the 

LiNbO3 substrate using the same UV photolithography, hybrid integration, and wire 

bonding techniques. 

 

Figure 6.10 Optimised fabrication processes for fabrication of integrated multi-sensors 

on LiNbO3 substrates with nickel thin film based temperature sensors. 
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6.3.3 Design for Integrated Sensors on Silicon Substrate 

The temperature, humidity and pressure sensors have also been designed to be 

fabricated on a silicon substrate. In this process, piezoelectric film is deposited on the 

silicon substrate to act as the piezoelectric material in the fabrication of SAW based 

humidity sensors. The details of the fabrication processes are shown in Fig. 6.11. Both 

the sensors and the integration methods are suitable for applications in heath monitoring 

in microsystems.  

 

Figure 6.11 Process design of integrated multi-sensors on silicon substrate. 
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6.4 Fabrication of Integrated Multi-sensors 

Based on fabrication capabilities, the LiNbO3 based integration process with platinum 

thin film temperature sensors, shown in Fig. 6.9, has been carried out to fabricate the 

integrated multi-sensors. Two 5-inch photomasks were designed for fabrication on the 

integrated sensors on a LiNbO3 substrate (100mm diameter). The green patterns in Fig. 

6.12 represent the Pt film based temperature sensors, and the red patterns are the Al 

structures for both the IDT of the SAW humidity sensors and the contact pads of the 

piezoresistive pressure sensors. The widths of Pt meander structures of the temperature 

sensors were designed as 3, 5, and 10 m. The widths of the IDTs of the SAW humidity 

sensors were designed as 4, 8, and 16 m. A picture of the integrated multi-sensors is 

shown in Fig. 6.13. The structures for monitoring the pressure sensors and SAW 

humidity sensors response to temperature change were also included in these mask 

designs (shown in Fig. 6.14).  

 

Figure 6.12 Design of photomasks for the integrated multi-sensors. 
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Figure 6.13 Layout of the integrated multi-sensors. 

 

(a) 

 

(b) 

Figure 6.14 Layout of the designs for monitoring (a) the pressure sensor and (b) the 

SAW humidity sensor responses versus temperature change. 
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Using the fabrication process outlined in Fig. 6.9, a titanium intermediate layer was first 

sputtered using a Denton Vacuum Deposition System at power of 300 W for 120 

seconds resulting in a film having a thickness of 30 nm. Then, the platinum temperature 

sensing layer was sputtered with the same deposition system at power of 200 W for 300 

seconds resulting in a film in thickness of 100 nm. During both sputtering processes, the 

temperature of LiNbO3 substrate was kept constant at 25
o
C. The AZ6112 photoresist 

was spin coated and patterned using UV photolithography. Fig. 6.15 shows a picture of 

meander patterns in AZ6112 photoresist after the photolithography process. Using the 

photoresist mask pattern, the platinum film was etched using an ion-beam etching 

method with an IonFab 300 Plus (Oxford Instruments) at a power of 300 W for 70 

seconds. Fig. 6.16 shows a picture of meander platinum patterns after the ion-beam 

etching process and after removing the photoresist. 

  

Figure 6.15 Picture of AZ6112 photoresist patterns on platinum film before the ion-

beam etching process. 

  
Figure 6.16 Picture of platinum patterns after the ion-beam etching process. 

http://www.oxford-instruments.com/products/etching-deposition-growth/tools/tools/ionfab-300plus/Pages/ionfab-300plus.aspx
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After fabrication of the platinum thin film based temperature sensors, the SAW sensors 

and the Al contact pads of the pressure sensors were fabricated by deposition of 

aluminium using a Varian 3180 Sputtering System. This 300 nm thick aluminium layer 

was subsequently patterned using a wet etching method.  

Due to an error during the fabrication process, the SAW device of the integrated sensors 

was short-circuited and was unable to function. The platinum thin film based 

temperature sensors have already been successfully fabricated on LiNbO3 substrate and 

the process design has been now established. So, the fabrication process of LiNbO3 

based integrated sensors with nickel thin film temperature sensors (shown in Fig. 6.10) 

was thus selected to obtain integrated sensors by considering the fabrication cost.  

Instead of the combined platinum sputtering and wet etching processes, the lift-off 

process for patterning electron beam evaporated nickel thin films was developed. By 

using the negative photoresist, the same photomasks in Fig. 6.12 have been used for the 

design of fabrication process shown in Fig. 6.10. Negative photoresist, AZ5214, was 

spin coated on after the Al patterning for forming SAW devices and contact pads for 

piezoresistive pressure sensors. The process steps for fabrication of the Ni temperature 

sensors are shown in Fig. 6.17 ((a) to (c) for 5 m meander structures and (d) to (f) for 

10 m meander structures. Fig. 6.17 (a) and (d) show the pictures of negative 

photoresist patterned by UV photolithography before the Ni deposition. Fig. 6.17 (b) 

and (e) show the pictures after Ni thin film deposition by electron beam evaporation. 

Fig. 6.17 (c) and (f) show the pictures after the Ni lift off process. 

After fabrication of both aluminium and nickel layers, the BCB moisture sensing films 

were patterned, and the pre-fabricated piezoresistive pressure sensor was hybrid 

integrated onto the LiNbO3 substrate using a cured glue (PERMABOND 820 

Cyanoacrylate, Permabond Engineering Adhesives Ltd. UK). The electrical contacts 

were then completed using the standard wire bonding process. The integrated multi-

sensors, shown in Fig. 6.18, were successfully fabricated with a footprint of 13 mm × 12 

mm, based on the optimised fabrication processes shown in Fig. 6.10. 
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                      (a)                                           (b)                                         (c) 

   

                      (d)                                           (e)                                         (f) 

Figure 6.17 Picture of Ni meander structures with width of 5 m (a) patterned negative 

photoresist, (b) e-beam evaporated Ni film, (c) fabricated Ni temperature sensor after 

the lift off; and picture of Ni meander structures with width of 10 m (d) patterned 

negative photoresist, (e) e-beam evaporated Ni film, (f) fabricated Ni temperature 

sensor after the lift off. 

 

Figure 6.18 Fabricated integrated multi-sensors. 
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6.5 Characterisation of Fabricated Integrated Multi-sensors 

The integrated multi-sensors were successfully fabricated as shown in Fig. 6.18. 

Characterisation of the integrated microsystem health monitoring sensors was then 

carried out based on characterisation studies of the individual sensors. The 

characterisation of the fabricated SAW sensors was carried out using a ZYGO 

interferometer and a HP8510 Network Analyzer. Thickness and width of fabricated 

SAW IDTs were studied using a ZYGO interferometer. The results in Fig. 6.19 show 

that the fabrication process achieves good quality and uniformity. The thickness of the 

aluminium IDTs was about 378±2 nm, and the tolerance of the aluminium IDT finger 

width was within ±2.5% (≤0.4 m).  

 

(a) 

 

(b) 

 

(c) 
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(d) 

Figure 6.19 Designed IDT-8 m with fabricated Al layer of (a) thickness 380 nm, (b) 

width 8.1 m; and designed IDT-16 m with fabricated Al layer of (a) thickness 376 

nm, (d) width 15.6 m. 

Using a patterned BCB film, SAW based humidity sensors were characterised using 

HP8510 Network Analyzer with previously designed test clips connections, and the 

results at room humidity level are shown in Fig. 6.20. The resonance frequency of this 8 

m IDT width SAW device was recorded at 125.15 MHz and the amplitude was 

measured at -29.76 dB. More important for the sensing application, all the noise signals 

of the operating device were below -50 dB. The fabricated BCB film based SAW device 

on the chip of integrated multi-sensors is suitable for the humidity monitoring 

applications using the reflection signals.  

 

Figure 6.20 Reflection sensing signal of fabricated SAW humidity sensors (IDT widths 

of 8 m). 
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The nickel thin film temperature sensors, with meander structure of widths of 5 and 10 

m, have also been fabricated successfully for the integrated multi-sensors, using a lift 

off process (shown in Fig. 6.17 (c) and (f)). Characterisation of the nickel thin film 

sensors was carried out using a ZYGO interferometer. Test results on these sensors 

show that the nickel thin film of thickness 18.6 nm was successfully obtained (shown in 

Fig. 6.21 (a)), and tolerance of the fabricated meander track widths was less than ±1%. 

This nickel thin film temperature sensing thermoresistor was then characterised using a 

multimeter, and a resistance of about 13.77 k was recorded (shown in Fig. 6.22). The 

nickel thin film based temperature sensors on the chip of integrated multi-sensors are 

suitable for the temperature monitoring applications based on their physical 

characteristics as thermistors. 

 

(a) 

 

(b) 

Figure 6.21 Test results of ZYGO interferometer shows (a) the thickness of nickel film 

was about 18.6 nm and (b) the designed 10 m meander structures were fabricated with 

width of about 10.2 m. 
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Figure 6.22 Resistance of Ni thin film temperature sensor on the chip of integrated 

sensors being measured with the multimeter. 

 

Figure 6.23 Wire bonded piezoresistive pressure sensor integrated on the multi-sensor 

chip by hybrid integration. 
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The piezoresistive pressure sensors were successfully assembled using a commercial 

glue (PERMABOND 820 Cyanoacrylate, Permabond Engineering Adhesives Ltd. UK) 

and electrically connected using the standard wire bonding process. Fig. 6.23 shows that 

the gold wire contacts were successfully obtained and the piezoresistive pressure 

sensors are suitable for this hybrid integration process for achieving the integrated 

microsystem health monitoring sensor applications.  

6.6 Temperature Monitoring Chip 

Temperature monitoring chips have also been designed and fabricated successfully. The 

photomasks designs have been shown in Fig. 6.14 (a) and (b). These temperature 

monitoring chips could be used for self monitoring and automatic correction of 

piezoresistive pressure sensors, accelerometers, and all other kinds of temperature 

sensitive microsensors and microsystems. A picture of a fabricated temperature 

monitoring chip attached with a piezoresistive pressure sensor is shown in Fig. 6.24, 

which includes two temperature sensors located at the left and right edges of the 

pressure sensor. A picture of a SAW based temperature monitoring chip is shown in 

Fig. 6.25, which can be used for real time temperature monitoring and self correction 

for SAW based resonators, sensors, and filters. 

 

Figure 6.24 Pressure sensor attached on a fabricated temperature monitoring chip. 
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Figure 6.25 Fabricated temperature monitoring chip for SAW devices. 

6.7 Summary 

A highly boron doped silicon layer was selected for making peizoresistors into 

piezoresistive pressure sensors. The sensors consist of a vacuum or constant pressure 

sealed cavity, monitored using a Wheatstone bridge in a DC test circuit. An optimised 

process for boron implantation has been used for producing pre-fabricated piezoresistive 

pressure sensors supplied by a research partner. Using a SiO2 resistant layer of thickness 

200 nm to mask the wafer during the ion implant, both the boron implantation and the 

high concentration boron diffusion could be achieved in one process step.  

For applications in heath monitoring in miniature electronic systems, fabrication 

processes of integrated multi-sensors were designed based on both LiNbO3 and silicon 

substrates. By considering the fabrication cost, the nickel thin film based fabrication has 

been further developed and optimised using LiNbO3 substrates. Both the sensor 

structures and the fabrication processes were studied in detail. Fabrication of integrated 

multi-sensors based on LiNbO3 substrate has been investigated. Two 5-inch photomasks 

were designed for fabricating the integrated multi-sensors on 100 mm diameter LiNbO3 

substrates. Both IDTs of SAW devices and the contact pads of pressure sensors were 

fabricated using sputtered Al film, which was patterned using a wet etching method. 

The temperature sensor was produced using electron beam evaporated Ni thin film, 

which was patterned using a lift off process. A piezoresistive pressure sensor was 

hybrid integrated using cured glue and electrically connected using the standard wire 

bonding process. Successfully fabricated integrated multi-sensors, in a footprint of 13 

mm × 12 mm, were characterised using the ZYGO interferometer, HP8510 Network 

Analyzer, multimeter and microscope. In the integrated multi-sensors, the SAW 
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humidity sensor was obtained with IDT of thickness of 378±2 nm and different IDTs 

widths of 8 and 16 m with a tolerance of about ±2.5%. The resonance frequency of the 

8 m IDT width SAW device was recorded as 125.15 MHz and amplitude was 

measured at -29.76 dB, while all the noise signals were below -50 dB. The nickel thin 

film temperature sensor was successfully fabricated with meander structure widths of 5 

and 10 m. Fabricated nickel thin film was 18.6 nm thick and tolerance of track widths 

was less than ±1%, resulting a resistance of 13.77 kwith a meander line width of 10 

m. The integrated piezoresistive pressure sensor was observed using a microscope and 

was shown to have good electrical interconnects. 

A temperature monitoring chip has also been considered and fabricated, and these are 

suitable for self monitoring of temperature. Also the operating tolerance allows for the 

automatic correction of temperature sensitive microsensors and microsystems, such as 

piezoresistive pressure sensors and accelerometers. The work has successfully 

demonstrated the flexibility of integration of multi-sensors for microsystem health 

monitoring applications. 
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Chapter 7 Conclusions and Future Work 

7.1 Conclusions 

Simulation, fabrication, integration and characterisation of high sensitivity, miniature 

temperature and humidity sensors has been investigated in this PhD thesis. Platinum 

thin film temperature sensor arrays have been successfully used for embedded real time 

monitoring of a laser assisted polymer bonding process. The structure designs, process 

flows and fabrication of integrated multi-sensors for embedded health monitoring of 

microsystems have also been investigated in detail. Using an optimised fabrication 

process and hybrid method, integrated multi-sensors have been successfully fabricated 

on a LiNbO3 substrate with a footprint of 13 mm × 12 mm with multi monitoring 

functions for temperature, humidity and pressure.  

Based on the theoretical analysis and FEM simulations, the metal thin film temperature 

sensors have been designed in meander structures with track widths of 3, 5, 7 and 10 

m. The footprint of the thin film temperature sensor with a 3m track width was just 

240 m × 250 m. Deposited by sputtering and patterned by ion-beam etching process, 

the platinum based temperature sensors have been fabricated and allow a good linear 

response. Nickel based sensors have also been fabricated successfully using electron 

beam evaporation and wet etching methods. The nickel based sensor with 5 m of track 

width had a sensitivity of 32.25mV/K at a constant current of 0.1mA. An annealing 

process was subsequently used to stabilise the Ni thin film sensor. After the annealing 

process, the corresponding temperature coefficients of resistance (TCR) of the platinum 

based sensors were determined to be from 1.78×10
-3 

/°C to 2.26×10
-3 

/°C at 20°C.    

An experimental study of accurate temperature monitoring in a laser assisted BCB 

polymer bonding process for MEMS packaging was carried out using an embedded thin 

film microsensor array. Beam forming optical elements were used to generate top-hat 

and frame-shaped beam profiles. The results showed that the amplitude and 

characteristic of the laser generated temperature change not only depends on the laser 

power but also depends on the package assembly to be bonded and the configuration of 

materials in the bonding setup.  Three kinds of package assemblies were studied, 

including silicon cap to glass substrate, glass cap to silicon substrate and silicon cap to 

silicon substrate. Using a frame-shaped beam, the temperature at the centre of the 
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bottom substrate was obtained as ~50ºC lower compared to that obtained using a top-hat 

beam. The reduction of temperature at the centre device packaging area is highly 

beneficial for MEMS packaging of temperature sensitive devices. Using a single 

exponential function to describe the temperatures characteristics, results show that the 

thermal constants of package assemblies are largely independent of the beam profiles 

but highly dependent on the thermal arrangement of the materials underneath the bottom 

substrate.  

Utilizing the moisture capture capabilities of BCB films, SAW based humidity sensors 

have been designed and fabricated on 128° cut  lithium niobate piezoelectric substrates. 

The sensors use IDTs with widths of 4, 8 and 16 m. Measured using a HP8510 

Network Analyzer, the resonance frequencies of the fabricated SAW sensors were 

248.60, 124.82, and 61.20 MHz, respectively. These are in good agreement with the 

theoretical values of 249.50, 124.75, and 62.19 MHz (with SAW velocity of 3992 m/s 

for 128° cut LiNbO3 substrates). Two test configurations, using silver loaded epoxy and 

using test clips, were developed using two types of metal contact connections. There 

was a negligible difference between results of measurement using the two different 

connection configurations. Test results on SAW sensor show that the chemically 

reduced lithium niobate substrates had the same piezoelectric properties as regular 

lithium niobate substrates. The measured Q factor of a SAW sensor with IDT width of 8 

m was increased 27.4%, from 581 to 740 by the application of the reflection grating 

structures. The temperature change resulted in shift of the SAW resonance frequency by 

4.26 kHz/°C, around 34 ppm change in the resonance frequency of 124.82 MHz. Based 

on the reflection signals of the BCB based SAW humidity sensors, a sensitivity of 0.26 

dB/RH% was achieved under controlled humidity level between 8.6% and 90.6% RH. 

After the design, fabrication and testing of the metal thin film based temperature sensors 

and the BCB films based SAW humidity sensors, the structure designs and the 

fabrication processes were performed on both LiNbO3 and ZnO/Si substrates for 

applications in heath monitoring of miniature electronic systems. Prototype 

piezoresistive pressure sensors operating at different ranges of 0 to 1.5 bar and 0 to 7 

bar were selected for the hybrid integration on a single chip with the temperature and 

humidity sensors. Two 5-inch photomasks were designed for fabricating the integrated 

multi-sensors on the LiNbO3 substrates. The widths of metal thin film meander 

structures of the temperature sensors were designed as 3, 5, and 10 m. The widths of 
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the IDTs of the SAW humidity sensors were designed as 4, 8, and 16 m. The 

aluminium structures for both the IDT of the SAW humidity sensors and the contact 

pads of the piezoresistive pressure sensors were fabricated with just one process step. 

This saves one photomask as well as the cost of UV photolithography process time. 

Using an optimised fabrication process, the integrated multi-sensors were successfully 

fabricated on a LiNbO3 substrate with a footprint of 13 mm × 12 mm with multi 

monitoring functions for temperature, humidity and pressure sensing applications.    

7.2 Future work 

In the work described in this thesis, high sensitivity miniature temperature, humidity 

and pressure sensors have been successfully integrated on a single substrate. The 

sensors have the potential to be used for not only the health monitoring of Microsystems 

but also for intelligent process controls and embedded conditional monitoring 

applications. In hybrid integration and SiP technologies, integrated multi-sensors can 

meet the challenges of test and reliability validation. This provides low-cost integration 

of functions for self-testing of system interconnects. Key parameters can be monitored 

in mission mode and a level of fault tolerance/self-repair can be achieved. 

After successful fabrication and characterisation, the integrated multi-sensors could be 

used for other applications such as intelligent process control and embedded conditional 

monitoring. By further studying of the long term stability, packaging technology would 

be properly considered for sensor protection, especially for the BCB based SAW 

humidity sensors, which will lead to the enhancements of both sensitivity and the 

reliability of the operating sensors. A reduction of SAW reflection amplitude and 

sensor’s sensitivity was observed after 41 days of the initial test (shown in Fig. 7.1).  

This may be because the BCB sensing film was contaminated since the unpackaged 

sensor was operated outside the cleanroom environment. Meanwhile, the linear 

relationship between the relative humidity level and the amplitude of the SAW 

reflection signals could be interesting to be studied and discussed in theoretical details.  

 

 



 

137 

 

Figure 7.1 Stability test of BCB film based SAW humidity sensor. 

Other thin film materials with moisture absorbing abilities instead of BCB, such as 

polyimide, fluoropolyol (FPOL), and polyvinyl-alcohol (PVA), could also be used for 

the LiNbO3 based integrated microsystem health monitoring sensors. Meanwhile, BCB 

resins with different thicknesses available from Dow Chemical Company (USA) could 

also be used for SAW humidity sensing in order to determine the optimised film 

thickness and meet different humidity sensing requirements. This could also be 

achieved by using either a multi spin coating process to achieve thicker BCB films or 

spin coating with the diluted BCB resins to achieve thinner BCB sensing films.  

Additional sensors with different sensing functions could also be considered for further 

development of the integrated multi-sensors. Further study of the combination of 

fabrication and integration processes based on a variety of substrates such as silicon, 

glass, piezoelectric substrates including LiNbO3 and PZT, Low Temperature Co-Fired 

Ceramics (LTCC), and polymer based flexible substrates could be performed.  
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