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ABSTRACT 

 

Microwave and millimetre-wave technology has enabled many commercial 

applications to play a key role in the development of wireless communication. 

When dissipative attenuation is a critical factor, metal-pipe waveguides are 

essential in the development of microwave and millimetre-wave systems. 

However, their cost and weight may represent a limitation for their application. 

In the first part of this work two 3D printing technologies and electroless 

plating were employed to fabricate metal pipe rectangular waveguides in X and 

W-band. The performance for the fabricated waveguides was comparable to the 

one of commercially available equivalents, showing good impedance matching 

and low attenuation losses. Using these technologies, a high-performance 

inductive iris filter in W-band and a dielectric flap phase shifter in X-band were 

fabricated. Eventually the design and fabrication of a phased antenna array is 

reported. 

For microwave and millimetre-wave applications, system-on-substrate 

technology can be considered a very valuable alternative, where bulky coax and 

waveguide interconnects are replaced by low-loss transmission lines embedded 

into a multilayer substrate, which can include a wide range of components and 

subsystems. In the second part of this work the integration of RF MEMS with 

LTCC fabrication process is investigated. Three approaches to the manufacture of 

suspended structures were considered, based on laser micromachining, laser 

bending of aluminium foil and hybrid thick/thin film technology. Although the 
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fabrication process posed many challenges, resulting in very poor yield, two of the 

solution investigated showed potential for the fabrication of low-cost RF MEMS 

fully integrated in LTCC technology.  

With the experience gained with laser machining, the rapid prototyping of high 

aspect ratio beams for silicon MEMS was also investigated. In the third part of 

this work, a statistical study based on the Taguchi design of experiment and 

analysis of variance was undertaken. The results show a performance comparable 

with standard cleanroom processing, but at a fraction of the processing costs and 

greater design flexibility, due to the lack of need for masks.  
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NOMENCLATURE 

𝑔  Gap height of the cantilever 

𝑔0 Maximum gap height (no bias) 

A Actuation electrodes overlapping area 

a Broadwall size of a rectangular waveguide 

AF(θ) Array factor 

d Distance between elements of the array antenna 

dmax Maximum distance between array antenna elements to achieve θmax 

E Young's modulus 

F Load applied on a cantilever beam 

f Frequency 

Fe  Electrostatic force 

Fr  Beam's restoring force 

I Second moment of area 

k Spring constant (with exception of the wavenumber) 

kc Spring constant for a concentrated load 

kd Spring constant for a uniformly distributed load 

kt Spring constant for a triangularly distributed load 

l Cantilever beam length 

L Distance between anchors of a buckled beam 

L0  Beam length before buckling 

p Bottom foxed actuation electrode length 

P Axial load applied on a beam 
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Pcr f-f Critical minimum load to generate buckling in a fixed-fixed beam 

PO Pulse overlap 

R Perpendicular reaction force at the fixed end of a buckled beam 

ss Laser spot size 

t Cantilever beam thickness 

tan(𝛿) Loss tangent 

V Voltage applied between the actuation electrodes 

w Cantilever beam width 

weff  Effective beam width to compensate for fringing fields effect 

δ Beam deflection 

δc Deflection for a concentrated load 

δd Deflection for a uniformly distributed load 

δt  Deflection for a triangularly distributed load 

θ Array antenna look angle 

θmax Array antenna maximum desired look angle 

λ Free space wavelength 

λg Guide wavelength 

ν(x) Deflection along a buckled beam 

ξ0 Maximum load for a triangularly distributed load 

ψ Progressive relative phase shift 

𝜀0 Permittivity of vacuum 

𝜀eff  Relative dielectric constant in a dielectric slab loaded waveguide 

𝜀r Relative dielectric constant 
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CHAPTER 1:  INTRODUCTION 

1.1 General overview 

Microwave and millimetre-wave technology has enabled many commercial 

applications to play a key role in the development of wireless communication. 

Today this technology is ubiquitous in everyday life and many standards have 

been defined on the use of this frequency range. For example, IEEE 802.11 (Wi-

Fi) and IEEE 802.15 (Bluetooth) standards, along with all the high speed 

communication standards recently developed that are generally categorised under 

the name of 4G. 

Although technologies such as Wi-Fi and Bluetooth, with their relative 

standards, were originally developed more than two decades ago, only recently 

they have become an essential part for a vast majority of personal, household and 

industrial devices, from mobiles to smart home appliances. Generally this delay 

from development to widespread availability is caused by the initial cost of these 

technologies and in many cases the limitations are imposed by manufacturing 

costs the active devices. However, with the development of new processes in the 

semiconductor industry and with higher performance substrates these limitations 

are often overcome in a relatively short time. Conversely, the same is not true for 

passive components, such as waveguides and waveguide integrated filters, which 

still rely on mechanical machining and welding. In fact, the manufacturing 

process for these components has not changed significantly in many decades and, 

because of this, associated the price has dropped only marginally. 
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When dissipative attenuation is a critical factor, metal-pipe waveguides are 

essential in the development of microwave and millimetre-wave systems. 

However, because of the aforementioned reasons, their cost can increase 

exponentially with operating frequency and their size/weight may represent a 

limitation for their application. Moreover, complex geometry components (e.g. 

bends, twists and splitters) pose challenges in their manufacture.  

In the first part of this work, an alternative manufacturing process based on 3D 

printing will be demonstrated for the manufacture of lightweight, low-cost, 

microwave and millimetre-wave metal-pipe rectangular waveguides (MPRWGs). 

 

1.2 Rapid prototyping and 3D printing – technology overview 

The term “rapid prototyping” (RP) is used to identify a group of processes used to 

quickly fabricate models of parts using three-dimensional (3D) computer aided 

design (CAD) data. RP, referred often as solid freeform (SFF) manufacturing or 

more commonly as additive manufacturing (AM), was born as a way to visualise 

and inspect the design of an object before production. Other applications include 

the study of aerodynamics, as it allowed one to build a scale model to be tested in 

a smaller wind tunnel. While particularly expensive at its early stages, this 

technology has now become more affordable and widely available for hobbyists. 

This increasing popularity, together with its ability to transform a CAD drawing 

into a solid object, led the general public to introduce the new and more widely 

recognised term ‘3D printing’. This name is now also widely accepted and, hence, 

the equipment used for AM is now commonly referred to as a 3D printer. 
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As both definitions of additive manufacturing and 3D printing suggest, this 

family of technologies is based on the deposition of material, layer by layer, to 

achieve three-dimensional objects. This represents the main difference from 

computer numerically controlled (CNC) milling, which is a subtractive process. 

CNC used to be the method of choice for the production of 3D objects, often 

requiring post-machining assembly. Because of the very low waste of material 

and the ability to easily create geometrically complex shapes, 3D printing is 

becoming of ever increasing interest, not only for rapid prototyping but also for 

manufacturing. This fabrication process has proved to be economically 

advantageous in several cases: when high value materials are required and the low 

amount of waste becomes a key factor towards the final cost of the item. For 

example, 3D printing was used in the fabrication of aeroplane engines, where a 

great amount of high value metals, such as titanium, are generally wasted during 

standard CNC machining. For such applications, 3D printing is also used to 

fabricate moulds for casting. This increase in process efficiency combines also 

with the flexibility of the process. Indeed, whether as directly printed or casted in 

a 3D printed mould, one single 3D printer is able to produce an unlimited variety 

of designs with high complexity geometries, without the need for assembly. This 

effectively reduces not only material waste but also fabrication time. 3D printing 

is also finding applications for the production of small batches – from one to a 

few thousand pieces – of plastic items as an alternative to injection moulding, as 

no initial cost is required for the mould and unforeseen problems can be solved 

without adding costs. 
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1.2.1 3D printing technologies 

Depending on the application, a great variety of 3D printers are available on the 

open market, based on a variety of technologies, but all sharing the same principle 

of building sequentially layer by layer. To achieve this, software, usually referred 

to as a “slicer”, is used to convert the 3D CAD model into a sequence of layers – 

slices – that will be deposited one at a time. The most widely accepted input file 

format for “slicer” software is Standard Tessellation Language (STL), which is 

now considered as a universal standard for 3D printing. The produced output file, 

which then is read by the printer, is most often proprietary to the equipment, but 

in general is based on the G-CODE format. The G-CODE file format, also known 

as RS-274, was originally developed for CNC machining and printed circuit board 

prototyping and is used in additive material technology to describe the tool path.   

It is not easy to categorise each 3D printing technology, as each mutation has 

its own name, but for simplicity it is possible to group them into three general 

families: selective deposition of extruded material, which includes fused 

deposition modelling (FDM) [1]; UV curing of resin, which includes inkjet 

printing and stereolithography apparatus (SLA) technology [2]; and powder 

binding, which includes selective laser sintering (SLS) [3]. 

 

Fused deposition modelling (FDM) 

FDM 3D printing, also known as fused filament fabrication (FFF), has become a 

very popular technology for rapid prototyping of models where high definition is 

not required. This technology is based on the melting of thermoplastics, which is 
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then extruded through a nozzle and selectively deposited, as illustrated in Figure 

1.1. 

 

Figure 1.1:  Example of FDM technology’s working principle. The plastic filament is pushed through a 

heated nozzle and the melted material is deposited [4]. 

 

This technology is characterised by a low manufacturing cost, both for 

equipment and materials. With FDM printers it is possible to use several kinds of 

thermoplastics, but the most commonly used are acrylonitrile butadiene styrene 

(ABS) and polylactic acid (PLA). With FDM 3D printing the minimum feature 

size is limited by the nozzle aperture diameter, generally 400 µm wide. The lateral 

surfaces of the printed item will also show visible ridges, more or less evident 

depending on the chosen layer height. Aside from its resolution, one of the major 

drawbacks of this technology is the difficulty in realising unsupported suspended 

structures. To create suspended structures, a support structure needs to be printed. 

This support structure, which is usually created in the same material as the 

building one, has to be mechanically removed, resulting in scarring of the surface. 

To overcome this, professional FDM 3D printers often offer two nozzles, one for 

the building material and one for soluble support material. 
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Stereolithography apparatus (SLA) 

Stereolithographic 3D printing was the first commercial process for AM. In its 

original configuration a UV laser is scanned on the surface of a photosensitive 

resin contained in a vat, as illustrated in Figure 1.2. As the thin superficial layer of 

resin is cured, the platform is lowered, exposing a fresh layer of liquid resin.  

 

Figure 1.2:  Example of SLA technology. The vat is filled with resin and a scanned UV laser beam cures the 

superficial layer [5]. 

 

The small spot size of the laser and the low viscosity of the resin allow for 

much smoother surfaces and smaller feature size. On the other hand, the running 

costs of this technology are roughly two to three orders of magnitude higher than 

FDM printing. The higher costs are mainly driven by the expensive, short shelf-

life resins; increasing exponentially with the working area dimensions of the 

equipment, as it requires more expensive optics and more accurate mechanics. For 

this reason SLA technology has been mainly employed in high value markets like 

jewellery and dentistry, for the fabrication models to use for ‘lost wax investment 

casting’. Depending on the composition of the photosensitive resin, it can exhibit 

different properties, from high temperature resistance to flexibility, and it is 
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possible to also load such resins with ceramic, silica or other powders, to change 

its properties. 

A less expensive alternative to the use of UV lasers was developed using 

digital light processing (DLP
®
) projectors. While the curing process is similar, the 

whole layer is illuminated at once, making the process inherently faster. However 

in this case the resolution is proportional to the projected one, eventually causing 

restrictions on the maximum working area and, therefore, lower throughput. 

 

Selective laser sintering (SLS) 

SLS technology is based on the laser sintering of powders. With an underlying 

concept very similar to SLA printing, in a tank full of powder, the most superficial 

layer is laser sintered according to the layer pattern, as illustrated in Figure 1.3. 

Then the tank bottom platform is lowered and another layer of powder is 

deposited and compacted with a roller; the process then repeats. The procedure is 

common for a wide variety of powders, from plastics (e.g. nylon) to metals (e.g. 

titanium). In this case the laser is generally a CO2 laser, which is in the mid-

infrared region (10 µm wavelength).  
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Figure 1.3: Example of SLS technology. After a layer of powder is spread onto the working area, a laser 

beam scans across the surface layer of powder to sinter it [6]. 

 

The resolution in this technology is not only defined by the laser spot size, but 

from the powder particle dimensions; surface finish quality is generally relatively 

low, with usually visible roughness. The advantage with this technology is given 

by the un-sintered powder that works as a support for suspended parts. This 

enables higher geometrical complexity and the fabrication of readily-assembled 

structures (i.e. joints, hinges and roller bearings) that would otherwise be 

impossible to realize. This technology is also preferred when large items are 

needed. 

 

1.2.2 3D printing in research 

3D printing is finding increasing interest in research, for an ever-expanding 

diversity of applications. Over the past two decades it has attracted the attention of 

researchers working on electromagnetic metamaterials (e.g. anisotropic 

metamaterial components [7] and dielectric cloaking [8]) and radio frequency 

(RF) components (e.g. antennas and filters [9]–[11]). This technology also 
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enabled a simplified manufacturing of Luneburg and graded index lenses [12], 

[13]. Moreover, at THz frequencies hollow core and plasmonic waveguides were 

proposed [14]–[16]. A more complete list of 3D printed components for RF 

applications from the open literature is reported in the following chapter. 

 

1.3 RF MEMS and LTCC  

For microwave and millimetre-wave applications, system-on-substrate (SoS) 

technology can be considered a very valuable alternative, where bulky coax and 

waveguide interconnects are replaced by low-loss transmission lines embedded 

into a multilayer substrate, which can include a wide range of components and 

subsystems.  

Advantages are substantially enhanced if RF microelectromechanical systems 

(RF MEMS) can be integrated with the substrate. Looking at manufacturing costs, 

it is a much more attractive proposition to integrate the fabrication of RF MEMS 

components in ceramic or organic laminate technology. Of particular relevance is 

low temperature co-fired ceramic (LTCC) technology. This was found to be very 

useful in the realization of compact RF multi-chip modules and for conventional 

RF MEMS packaging, as is allows the fabrication of robust and hermetic cavities, 

fundamental for the good performance of such devices. 

The aim in the second part if this work is the realisation of RF MEMS 

components embedded directly onto a ceramic substrate with only modest extra 

process complexity. The development of this technology would lead to a 

manufacturing process that is capable of low-cost large-scale SoS designs for 
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applications such as switches, variable capacitors and active antenna arrays. With 

surface micromachining, using a sacrificial layer, new MEMS devices and 3D 

structures can be fabricated for many applications in the microwave and 

millimetre-wave frequencies range. Furthermore, the embedding of bare chip 

active devices, RF MEMS and high-Q RF passive elements within a single 

temperature coefficient of expansion (TCE) matched and robust package will 

offer outstanding capabilities and low cost of manufacture for high frequency and 

harsh environment applications. 

 

1.3.1 RF MEMS – Technology overview  

RF MEMS is the technology that combines microelectromechanics and RF 

functionality. This technology is generally associated with semiconductor 

microfabrication processing that results in creating high performance tuneable RF 

filters and phase shifters; offering significant advantages over a great range of 

applications, from smart sensor networks to mobile handsets. Other significant 

applications are in the field of reconfigurable networks and subsystems, where the 

overall system size and weight reduction plays a fundamental role, making RF 

MEMS a very important enabling technology. The advantage of using RF MEMS 

instead of other options, like PIN (p-type–Intrinsic–n-type) diodes and switching 

field effect transistor (FET), is the lower insertion loss and higher isolation, signal 

power linearity and Q-factor. On the other hand, they have a shorter life-cycle, 

generally require higher control voltages and special packaging [17]. The latter, in 

particular, contributes significantly to the cost of each single device, as hermetic 

packaging in inert gas is usually required.  
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1.3.2 RF MEMS Examples 

RF MEMS for circuit applications can be categorised into switching and tuneable 

devices. The former are used to connect or disconnect signal lines or to re-route a 

signal, and can be divided into ohmic and capacitive switches. These find 

applications in reconfigurable networks and phase shifters. The second category, 

consists of capacitors or inductors whose value can be changed, and are generally 

used for realizing tuneable filters and resonators.  

In the open literature, many examples are demonstrated for both categories. 

Examples of ohmic contact and capacitive membrane RF MEMS switches are 

shown in Figure 1.4 and 1.5. With ohmic contact switches a physical connection 

is made between metals; with capacitive membrane switches a thin dielectric layer 

on one of the contacts creates a significant shunt capacitance that only allows the 

high frequency signal to propagate through, blocking any DC component.  



35 

 

 

Figure 1.4: Ohmic contact switches from (a) Analog Devices and (b) Rockwell Scientific  [17]. 

 

Figure 1.5: Capacitive membrane switches developed by (a) Lincoln Labs and (b) Raytheon [17]. 
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These switch types are defined as single-pole single-throw (SPST), as only one 

output signal electrode can be selected. Such switches have been successfully 

used in the development of delay-line phase shifters; for example as the one 

illustrated in Figure 1.6, developed by the University of Michigan and Rockwell 

Scientific [17]. However, it is possible to find more advanced switches that, 

within the same device, are able to route an input signal to multiple points and are 

defined as single-pole n-throw (SPnT). A good example is the single-pole eight 

throw (SP8T) ohmic contact switch developed at Imperial College London, based 

on the wobble motor principle shown in Figure 1.7. In this device the input signal 

travels up the axis of the motor and the electrostatically actuated rotor acts as the 

switching connector [18], [19]. 

 

Figure 1.6: Photograph of a4-bit true time delay network realised using 16 RF MEMS switches [20]. 
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Figure 1.7: (a) Cross-sectional illustration of the SP8T rotary switch, and (b) SEM micrograph of the fully 

assembled switch [18]. 

 

With the second category, many RF MEMS variable capacitors have been 

demonstrated in the open literature having capacitance ratios of 20 or higher [21], 

[22]. Several possible structures have been implemented to achieve variable 

capacitors, most commonly based on out-of-plane separation distance (or gap) 

with a parallel-plate capacitor or displacing the fingers of an interdigitated 

capacitor, thereby changing the in-plane separation distance [23], [24]. Examples 

of these variable capacitors are shown in Figure 1.8(a) and (b), respectively.  

(b) (a) 
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Figure 1.8: SEM micrograph (a) of a parallel-plate tuneable capacitor  [22], and (b) of an interdigitated 

tunable capacitor [24]. 

 

Similarly, for inductors, displacement of the coils would change the coupling 

between them and, therefore, the value of the overall inductance [25]–[27]. An 

example of a tuneable inductor is shown in Figure 1.9. 

(a) 

(b) 
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Figure 1.9: SEM micrograph of a variable inductor. The inner coil can move downwards via thermal 

actuation [26]. 

 

1.3.3 MEMS fabrication methods 

MEMS are commonly associated with semiconductors and, therefore, to silicon 

micromachining processes. Silicon micromachining and MEMS fabrication are 

undertaken within a cleanroom and are made through a sequence of processes, the 

most relevant among all of them are: lithography, deposition, oxidation and 

etching [28]. Lithography is the step for the definition of patterns and is based on 

the spin-coating, exposure and development of photosensitive polymers, usually 

called photoresist. Selective exposure is obtained by aligning a mask on the 

substrate and illuminating with UV light. The pattern obtained would act as a 

protection layer for the following processes, allowing selective addition or 

removal of material. Several materials can be deposited, according to needs, but 

most frequently a metal layer is needed for conductive tracks and pads. Metals can 

be deposited by evaporation or sputtering and the most common ones are 

aluminium and gold. Deposition by evaporation is obtained by heating or 
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bombarding with an electron beam a target of the required metal. Deposition by 

sputtering is achieved by bombarding the metal target with heavy ions (i.e. argon), 

which will liberate the atoms, which will uniformly deposit on the substrate. 

These methods are defined as physical vapour deposition (PVD). 

In contrast, chemical vapour deposition (CVD) methods involve a chemical 

reaction to form the desired layer. Among these, oxidation is one of the most 

important. This is used to grow a thin film of silicon oxide and is obtained by 

heating the substrate in oxygen rich atmospheric steam. 

Finally, etching is the process used to remove material. It can be achieved 

through the use of liquid etchants (wet etching) or plasma (dry etching). Etching is 

also classified as isotropic or anisotropic. Plasma anisotropic etching techniques 

like reactive ion etching (RIE) and deep reactive ion etching (DRIE) are the most 

common for silicon micromachining, enabling the fabrication of high aspect ratio 

trenches with very good wall verticality. The previous summary of 

microfabrication processing steps is by no means exhaustive, but highlights the 

complexity and, by extension, the costs associated in manpower, consumables and 

infrastructure. 

MEMS are usually based on suspended or free-moving structures. These can be 

achieved by using sacrificial materials that can be removed to release the 

suspended element (e.g. a cantilever), or by assembly of a previously formed 

component (e.g. gears on an axel). Materials that can be removed with high 

selectivity are generally used as sacrificial layers and include photoresist and 

SiO2, which can be removed by organic solvents or hydrofluoric acid (HF), 

respectively. For the assembly, parts are often electroformed or produced with a 
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LIGA (Lithographie, Galvanoformung, Abformung – Lithography, Electroplating, 

and Moulding) process and then released. Alternatively, these two possibilities 

can be combined to obtain a self-assembling device, where the movement for the 

assembly is obtained by the released built-in stress [29] or the surface tension 

[30], [31]. 

 

1.4 LTCC 

Ceramic microelectronic devices, where the entire substrate and any conductive, 

resistive and dielectric materials are fired in a furnace at the same time, are 

generally referred to as co-fired ceramic devices. Typical components integrated 

in co-fired ceramic devices include capacitors, inductors and resistors, printed 

using thick-film technology. Ceramic substrates and similar processing 

technology are used in multi-layer packaging for MEMS, microprocessors and RF 

applications. They are also employed for harsh environments or when there is a 

need for good heat dissipation. 

Co-fired ceramics belongs to the greater branch of laminate technology, which 

includes other technologies, such as liquid crystal polymer (LCP). Indeed, the 

production process involves a number of layers independently fabricated and 

assembled through lamination into a single component as the final step. This 

differs from semiconductor device fabrication, where layers are processed 

sequentially, each new layer is created on top of the previous one. 

Co-fired ceramic technology can be divided in two categories: LTCC and high 

temperature co-fired ceramic (HTCC). As the name suggests, the main difference 
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is in the firing temperature that is lower than 1000°C for LTCC and generally 

around 1600°C for HTCC. This difference is due to the composition of the 

substrate material. While HTCC is generally composed by pure alumina (Al2O3), 

LTCC is mostly a mixture of alumina and glass, whose composition changes 

substantially between manufacturers. The processing steps involved in both LTCC 

and HTCC are very similar; however, the higher firing temperature of the latter 

limits the choice of metals suitable for the printing of conductors. Indeed, suitable 

metals need to have a melting point higher than the firing temperature and only 

refractory metals like tungsten or molybdenum alloys can be used for such 

applications. Therefore, the advantage of LTCC over HTCC, apart from the less 

demanding firing process, is the possibility to use high conductivity metals, such 

as copper, silver or gold, for its conductive layer.   

The technique of deposition of conductive materials, as well as resistive or 

dielectric ones, for ceramic substrates is defined as thick-film technology. It is 

important to appreciate this point, before considering LTCC processing further. 

 

1.4.1 Thick-film Technology 

The deposition of thick layers (usually more than 15 µm) of materials on a 

substrate using screen or stencil printing is commonly defined as thick-film 

technology. This technology is defined “thick” in contrast to what is known as 

thin-film technology. These two categories of deposition can be characterised by 

the minimum layer thickness achievable and usually belong to very different 

manufacturing fields. Examples of thin-film depositions are chemical or CVD, 

PVD and spin coating. These are generally associated with semiconductor 
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processing, together with a lithography step for patterning. Thick-film technology 

is normally associated with printed circuit boards (PCB), flexible substrates and 

multilayer systems in general (e.g. LTCC, HTCC, LCP) and does not need any 

extra process for patterning. Recent improvements in thick-film technology have 

spread its application to areas that include solar cells for the fabrication of the 

conducting tracks, as it offers a fast method for patterning large areas. 

As previously described, two possible options for thick-film depositions are 

available: screen printing and stencil printing. Screen printing consists in a woven 

mesh screen with a patterned emulsion to reproduce the desired shapes on a 

substrate.  

 

Figure 1.10: Screen printing process [32] 

 

As illustrated in Figure 1.10, the patterned mesh is aligned and placed above 

the substrate, which is held in place by a vacuum chuck. With a squeegee, the ink 

or paste is pushed through the mesh openings and deposited on the substrate, 

transferring the pattern onto it. During this process, the characteristics of the 

printed pattern, such as thickness, uniformity and minimum feature size, depend 

on many factors. These include the paste rheology, the gauge, openings and 
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material of the mesh wire, and the openings and the thickness of the emulsion that 

defines the pattern on the screen. An example is shown in Figure 1.11. Other 

influencing factors include the squeegee material, angle, speed and pressure. 

Great expertise is required to achieve good quality repeatable results. 

 

Figure 1.11: Detail of mesh and emulsion for screen printing [33]. 

 

Different to screen printing, with stencil printing a solid stencil is used, 

generally made of stainless steel. An example is shown in Figure 1.12. This 

technique is particularly suitable for high viscosity pastes (e.g. solder paste), but 

causes some limitations on the geometries. While with screens it is possible to 

reproduce almost any shape or pattern, stencils cannot be used for hollow 

geometries (e.g. rings), otherwise the internal pattern cannot be supported. Stencil 

printing is defined as “on-contact” printing, in contrast with screen printing, 

which is defined as “off-contact”. Indeed, it can be noticed from Figure 1.10 that 

the screen is held at a distance above the substrate and pushed in contact by the 

squeegee; while for stencil printing, the stencil is directly placed in contact with 

the substrate and lifted only at the end of the swipe. 



45 

 

 

Figure 1.12: Stainless steel stencil for solder paste [33]. 

 

The speed and large printing areas achievable with these technologies 

represents a very important advantage. It allows the deposition of many kinds of 

materials, such as high-conductivity metals pastes, resistive inks and low-loss 

dielectrics, which are essential for RF applications. Others materials include 

sacrificial material pastes, fundamental for the realization of suspended structures, 

and piezoelectric material pastes [34]. More generally, any material that can be 

suspended in a paste, including organic compounds, can be printed with these 

technologies. 

 In the past few years, many important advances have been made, such as 

photoimageable low-loss dielectrics or conductor pastes (gold and silver) [35], or 

ultra-fine screen meshes able to achieve feature size as small as 20 µm [36]. These 

advances in technology enabled the manufacturing of structures usually associated 

with thin-film processing, with a substantially lower cost and higher throughput, 

due to the large area and speed of this printing process. 
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1.4.2 Standard LTCC manufacturing technology  

LTCC technology: Standard processing steps 

LTCC is made from a mixture of fine ceramic powders (mainly Al2O3), glass 

powder, and organic binders and plasticisers. This mixture is then tape cast into 

sheets, commonly referred to as “green body” or “green tape”. All the processing 

relative to this technology is usually done on this green tape and, when complete, 

all the layers are precisely stacked, laminated and fired, as illustrated in Figure 2.  

 

Figure 1.13: LTCC processing steps [37]. 

 

Pre-conditioning: Due to the presence of volatile solvents in the green body, 

during processing its dimensions will change due to natural shrinkage. To avoid 

shrinkage, before processing, each layer is set to rest in an oven, so that part of the 

solvents evaporate and the material is mechanically more stable, allowing tighter 

tolerances at final product. 
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Via machining: In any multilayer circuit, connections are needed between layers. 

There are mainly two ways of drilling holes in this technology: punching and laser 

drilling. Punching consists in forcing a cylindrical pin through the LTCC layer, 

creating a hole. This technique allows high precision for the via diameter and wall 

verticality, but is relatively slow and the pin wears out rapidly, due to the high 

concentration of hard ceramic particles in the substrate. In contrast, laser 

machining offers better performance in speed, flexibility and has a lower running 

costs. However, there is compromise on the quality of the via. 

Via filling and screen printing: After all the vias are ready they are filled with 

conductive paste and the required pattern is printed on the substrate. For both 

these steps, screen printing represents a viable solution, but different pastes are 

required for these two purposes. After printing, the paste is left drying in an oven. 

It is particularly important that the pastes used are well matched with the 

substrate, so that during the firing process their shrinkages are similar. This helps 

prevent warpage and distortion or even delamination. 

Stacking: To realise a multilayer circuit, all the layers, after having been printed 

and checked free of defects, need to be precisely stacked. This can be done 

manually, using a jig and fiducial holes or through automated equipment that 

optically recognise fiducial patterns and aligns the layers. A precise alignment 

between layers is fundamental to achieve good inter-layer interconnects. 

Lamination: The lamination process is particularly important and is a 

fundamental step for the achievement of good tolerances in the final product; as 

the shrinkage uniformity during the firing process depends on it. In this process 

both pressure and heat have to be applied and a hot uniaxial press or hot isostatic 
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press can be used. The application of pressure only in one direction with a 

uniaxial press would lead to spatially non-uniform shrinkage (i.e. only planar 

uniform). Nevertheless, this is a widely adopted solution, as it is faster, more cost 

effective and able to handle large substrates. With an isostatic press, the multi-

layer substrate is vacuum sealed in an antistatic plastic bag and positioned in a 

sealed, high pressure chamber filled with liquid (e.g. water or oil). The liquid is 

then heated to the required temperature and pressure applied. Due to the 

uniformity of the process, better overall tolerances are obtained using an isostatic 

press [38]. 

Firing: In the following step of the process, the laminated substrates need to be 

fired within a furnace, so that the layers will sinter into a single block. Even 

though the main component of LTCC is alumina, which sinters at 1500-1700ºC, 

the presence of glass and other minerals, such as lanthanides, enables a ceramic 

body to form at much lower temperatures (850-900°C). The firing profile is 

specific to the LTCC composition and suggested by the manufacturer. However, 

when introducing non-standard layers, like graphite-based sacrificial materials, 

the firing profile has to be adapted to take into account their burnout [39]. 

Port-process printing: In some cases, more processing is required to improve 

integration with other components (e.g. interconnects). For this purpose more 

printing might be needed on the top layer. Always achieved via screen printing, 

the pastes used in this case generally require a further firing process and are 

designed to have good solderability. If needed, post-firing pastes for the brazing 

of metal cases on the ceramic substrate are also available.  
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Laser trimming: Screen-printed components, such as resistors and capacitors, 

can have relatively high tolerances, up to 15% for commercial processes. If 

accessible, whether on the top layer or through a purposely designed cut-out, the 

values of these components can be adjusted to tolerances of 5% or lower. This is 

achieved through laser trimming of these components. During this process a laser 

removes part of the printed material, while the value of the component is probed, 

and stops when it reaches the desired value. In industrial manufacturing, where 

patterns of the printed parts are well known and defined, this process can be fully 

automatized. In some cases, when the full system behaviour needs to be carefully 

calibrated, the trimming process can be performed while an input signal is applied 

and the output measured. 

 

Other LTCC related processes 

Pressure assisted sintering: One of the main disadvantages of LTCC technology 

is shrinkage during the firing step. This shrinkage is generally of the order of 10% 

in the planar x-y direction and of 12% in the out-of-plane z direction (i.e. 

perpendicular to the layers). A priori design compensation is often not a suitable 

solution, as this shrinkage may have significant variations and non-uniformities, 

as it depends on the geometry of the printed pattern and the lamination technique 

used. To overcome these issues, several solutions have been proposed. One of 

them is the application of pressure to the laminated piece during the firing 

process. This technique is defined as pressure assisted sintering (PAS) and 

involves the use of very expensive specially built furnaces [40]. The application 

of pressure constrains the shrinkage only in the z direction, which would therefore 
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increase, with the result of leaving the features of the printed pattern unaffected. 

This procedure also improves the flatness of the final substrate. 

Pressure-less assisted sintering: A less expensive alternative to the PAS is 

pressure-less assisted sintering (PLAS). Similarly to the previous technique, it is 

based on constraining the shrinkage in the z direction, but via the lamination of 

additional layers that would not undergo shrinkage during the firing, at both ends 

of the stack [41]. These additional layers are referred as low temperature transfer 

tape (LTTT). The structure is then fired in a furnace, as in the standard process. 

The disadvantage of this process is that these additional layers need to be 

mechanically removed with techniques such as sand-blasting or waterjet [40]. 

Based on the same principle, Heraeus™ developed a series of zero-shrinkage 

tapes (Heralock HL800 and HL2000), formed by the sandwiching a non-shrinking 

layer between of two LTCC layers [42]. This kind of tape is substantially more 

expensive and needs specially formulated proprietary pastes to match its 

composition and reduced shrinkage. 

Sacrificial pastes: The use of sacrificial materials is fundamental for the 

realisation of suspended structure and cavities. Birol et al. [43]–[45] have shown 

two possible sacrificial pastes, based on mineral composites (i.e. MgO and 

CaB2O4) and on graphite. The formers offer a support during the whole firing 

process, but needs to be removed via chemical etching and their shrinkage during 

firing needs to be well matched with the substrate used. The latter outgases during 

the firing process at temperature lower than the sintering one, and is therefore 

suitable as a support for cavities. As highlighted earlier, the firing profile needs to 

be carefully calibrated to obtain good results, in particular for cavities. The 
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gasification of the graphite-based sacrificial layer needs to happen before full 

sintering of the ceramic substrate, which start at temperatures around 750°C; 

gasses produced need to be able to escape through the porous layers [39]. 

Graphite proves to be a suitable material for this purpose, as it oxidises at 

temperatures between 600°C and 720°C. The firing profile will, therefore, need an 

extended dwell time at 720°C to fully remove all the graphite. However, at this 

temperature, the LTCC is very fragile with the particles essentially held together 

by weak surface forces, and an excessively long firing time at 720°C may cause 

the cavity roof to sink, as shown in Figure 1.14.  

 

Figure 1.14: Graphite filled cavities after firing. With the sample on the left the firing profile did not have a 

prolonged dwell at 720°C; while with the sample on the right the dwell time was excessively long [39]. 

 

1.4.3 RF Applications of LTCC 

FR4 has been the material of choice for many RF circuit substrates, due to ease of 

processing, identical to PCB processing and its relatively very low cost. However, 

when low losses or frequencies higher than a few GHz are needed, FR4 is no 

longer suitable. Rogers™ and Taconic™ offer alternative substrate materials that 

can be used at higher frequencies, but, even though the manufacturing cost is 

similar to FR4, the costs increase dramatically. LTCC offers better properties, 

both electrically (higher dielectric constant and lower losses at frequencies >60 

(a) (b) 
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GHz) and mechanically (ease of lamination for multilayer and robustness). 

Although the equipment needed for its processing is more expensive, the cost of 

processing and of consumables is lower and, if a large scale production is 

considered, LTCC can be effectively considered a viable option for large-scale 

production of RF circuit boards.  

LTCC has been of great academic interest in the microwave and millimetre-

wave field in the past decades, due to its excellent properties and lower processing 

costs, when compared to semiconductor and HTCC technologies. Its ease of 

layering enabled the creation of complex circuits, leading to low-loss microwave 

modules. In industry, LTCC is still very popular for the production of compact RF 

integrated modules. This is mainly due to several factors: the TCE of LTCC is 

very similar to silicon or GaAs and this enables easy integration of active 

elements at chip level; LTCC is a well-known technology for interconnects and 

packaging. These factors improve integration, and the high level of robustness of 

the final module makes it suitable for harsh environments, from automotive and 

aerospace (e.g. electronics near engines) to the oil and gas industries [46]–[48]. 

 

1.4.4 Substrate integrated circuits 

Low-cost, high-yield microwave and millimetre-wave technologies are 

fundamental for the development of RF systems. One of the main challenges is 

the design of low-loss, high-Q structures in planar technology, as these 

components are usually associated with metal-pipe waveguides. The development 

of substrate integrated waveguides (SIW) aims to fill the performance gap 

between planar microwave circuits and metal-pipe waveguides [49]. The 
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combination of planar and non-planar structures with active components leads to 

the development of hybrid systems, whose level of integration and performance 

grows significantly if combined with multilayering. LTCC, again, seems to be a 

suitable material for SIW and several research groups demonstrated the feasibility 

of non-radiating dielectric waveguides integrated within the substrate. Most of 

these structures have been realised using vias to define the side walls of the 

waveguide (sometimes referred to as a picket fence waveguide) [50]; the 

possibility of developing air-filled cavities in LTCC clearly opens up new 

opportunities for developing higher performing structures. Examples of the SIW 

technology in LTCC have been reported, with results comparable to standard 

rectangular waveguides in Ka-band (26.5 – 40 GHz) [51], [52]. 

 

1.4.5 MEMS and LTCC 

In industry, LTCC is a well-known technology for RF module and packaging 

applications. In the area of MEMS and micromachining, work on LTCC is in its 

infancy. With laser prototyping of microwave and millimetre-wave circuits on 

LTCC, by Robertson et al. [50], [53], a number of research teams worldwide have 

started studying the fabrication of actual MEMS components in LTCC 

technology. For example, Newborn et al. have shown that an electrostatically-

actuated leaf spring vertical actuator could be realized in LTCC technology. Here, 

sacrificial layers are designed to burn off during firing [54]. Birol et al. 

demonstrated that microfluidic devices could be fabricated in LTCC by 

employing the sacrificial carbon layer method [43]–[45]. The Georgia Tech 

group, widely known for its System-on-Package work, has reported a wireless 
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pressure sensor in LTCC, employing a cavity and membrane technique [55]. 

Reported works have included using laser machining and the fabrication of LTCC 

cavities using hot embossing and silicon micro moulds [56]. Sedaghat-Pisheh et 

al. demonstrated the fabrication of a conical spiral antenna using a sacrificial layer 

technique and chemical etching [57]. 

 

1.5 Laser micro-machining 

The use of lasers for material removal was first introduced as an alternative to 

standard machining, for cutting particularly hard materials. This technique had the 

clear advantage of not being subject to tool wear and, therefore, proved to be a 

suitable and commercially valid alternative for cutting and drilling materials such 

as hardened steel, ceramics and diamond. Moreover, laser cutting offered further 

advantages when high precision is required. The focused laser beam offers very 

narrow and clean cuts and allows the production of particularly small components. 

Laser cutting is based on the ablation of the material hit by the laser beam. The 

high pulse energy concentrated in the focal spot causes the material to heat to the 

point of sublimation, thereby leaving a hole. The heat generated in the process is 

highly localised and generally does not affect surrounding areas, making it 

suitable for delicate materials or for the introduction of highly localised stress, for 

applications such as laser bending [58], [59]. 

Many kinds of laser are available, with wavelengths ranging from infrared (IR) 

to ultraviolet (UV) and recently also X-ray, working with different principles (i.e. 

solid state, gas, fibre, dye or semiconductor). Lasers can be divided into two 
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categories: pulsed and continuous wave. Pulsed lasers are able to deliver a very 

high amount of energy per pulse in a very short amount of time, ranging from few 

tens of nanoseconds to femtoseconds. With recent developments, laser technology 

has become widely available at relatively low cost and has found many more 

applications, from marking/engraving to micromachining or even propulsion [60], 

[61]. 

Laser micromachining, in particular, has found particular interest in the 

manufacturing of high precision devices. Laser ablation for micromachining is 

usually obtained through two procedures: scanning and projection. In scanner-

based laser machining systems, the laser beam is moved on the substrate using 

mirrors. After the scanning mirrors a lens system is used to focus the beam onto 

the working plane. A normal convex (focusing) lens receiving a beam of 

collimated light at an angle from a laser would have a concave focal surface. This 

condition would not allow uniform processing of the material in the scanner field 

of reach. Therefore, a telecentric f-theta lens is used to overcome the issue. This 

type of lens, which is actually composed by 3 or more lenses, takes its name from 

its property of having a variable focal length f linearly depending on the angle of 

incidence theta; allowing a flat focal plane. An example of the lenses used for 

scanning is illustrated in Figure 1.15. 

 

Figure 1.15: Possible alternatives for focusing a scanned beam. 
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In a projection laser system, the laser beam is expanded and homogenised (its 

fluence made constant over its cross section), shaped through an aperture, 

patterned through a mask and eventually the image is scaled down by a projection 

lens. The outcome is a machined pattern reproducing the image on the mask, but 

with features much smaller than the initial ones, depending on the projection lens 

magnification. 

While the first system described offers greater flexibility, due to the lack of 

masks, the second allows for smaller features and higher precision, at a cost of a 

reduced working area (usually one to few millimetres squared). Moreover, due to 

the larger area illuminated, the pulse energy needed in a projection system is 

much higher (approximately one order of magnitude), in order to obtain sufficient 

fluence and ablation. 

Lasers have recently found applications in the semiconductor industry for via 

drilling and wafer dicing, particularly with thin wafers. For similar applications, 

innovative high performance techniques like water jet-guided [62] and stealth 

cutting [63] offer low damage, low debris solutions for dicing. In the open 

literature few examples are available for the use of laser micromachining for 

purposes other than dicing, with one of the most interesting applications being the 

trimming and tuning of MEMS accelerometers proof mass [64]. 
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1.6 Conclusions from the literature review 

1.6.1 3D Printing 

3D printing technology has recently received great attention from many fields of 

research and manufacturing. Its ability to easily create geometrically complex 

shapes, its flexibility in production and the eventual cost savings make this 

technology a very important tool for the development of new products and 

services. Since its first development in the late 1980s, with the first 

stereolithographic apparatus, 3D printing has mainly been applied only for the 

development of artistic items and non-functional models. This led to a strong 

limitation in the materials available and it is only recently possible to find 

materials with different properties. Nevertheless, until now little-to-no functional 

material (i.e. conductive or mineral loaded) is commercially available. The 

opportunities offered by this technology are still to be discovered, but its potential 

appears evident. 

 

1.6.2 LTCC  

LTCC is a widely applied technology, in many fields, but its most relevant field of 

use is as a substrate for RF circuits. For this application it is a very competitive 

technology, compared to alternatives available on the market. The reasons for its 

success can be summarised in a few significant points. The very good properties 

at microwave frequencies, the ease of manufacturing of complex multilayer 

circuits and integration of active components on a chip scale contribute towards 

high levels of integrations. Moreover, the low cost for the consumables and the 

manufacturing process make this material suitable for large scale production. 
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Nevertheless, there has been little advancement since LTCC technology was 

first widely adopted for commercial manufacturing over the past two decades. For 

integrating waveguides and cavities in LTCC, it appears obvious that there is still 

great potential for this substrate material to support an enabling technology for 

higher performance integrated microwave circuits. This opportunity can reopen 

the interest in research in LTCC technology, but may not be enough to drive a 

significant step-change in commercial RF systems.  

The following step is the integration of active elements, aiming to complete a 

SoS. Although some devices and circuits (e.g. amplifiers) cannot be realised in 

any other technology apart from semiconductor (e.g. GaAs and SiGe), it is 

feasible to imagine that other components can be integrated into standard LTCC 

processing to achieve tuneable or reconfigurable systems. In particular, such 

functionalities can be achieved by RF MEMS, for which LTCC represents not 

only a suitable substrate for RF signals, but also one of the best packaging 

materials. 

 

1.7 Hypothesis and aims  

The general hypothesis of this thesis is that commercially viable devices should 

not be manufactured using expensive processes and that sensible alternatives can 

be found that would achieve similar functionalities with only a minor compromise 

in the performance. In modern society, where technology plays a dominant role in 

everyday life and the global economy, there is a drive for lowering costs. The 

development of new processes based on well-known low-cost technologies or on 
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other emerging ones can open-up new possibilities and opportunities. LTCC is a 

well-known low-cost and high-performance technology and the integration of 

other components without introducing further complexity to the manufacturing 

process represents an important tool in the development of novel integrated 

devices and system-on-packages. The rational underlying this part of the work is 

that RF MEMS can be integrated onto an LTCC substrate, with only modest extra 

process complexity. The main aim is to evaluate some of the possible structures 

that can be realised to achieve RF functionalities, such as switches and variable 

capacitors. The design of these integrated devices will be based on maintaining 

compatibility with standard LTCC processing, on the requirements for large-scale 

manufacturing and eventually on containing costs. 

3D printing is a developing technology showing great potential. The constantly 

growing number of materials available, together with the shape complexity easily 

achievable, indicates the great flexibility that this technology offers, whether for 

prototyping or small-volume bespoke manufacturing. The aim of this part of the 

work is to prove the feasibility of 3D printing as a manufacturing technology for 

bespoke lightweight waveguide passive components, reducing costs and 

production time. The work reported in this thesis aims to prove the feasibility of 

the above mentioned concepts and to show enabling technologies and processes 

for the development of high performance devices. 
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1.8 Outline of the thesis  

1.8.1 3D Printing  

Chapter 2 

In the second chapter of this thesis, an alternative production process based on 

two different 3D printing technologies (fused deposition modelling and 

stereolithography) will be proposed for the manufacture of metal-pipe 

waveguides. The 3D printing fabrication and RF characterisation of X-band and 

W-band metal-pipe rectangular waveguides will be covered. An inductive iris 

filter in W-band is also demonstrated.  

Chapter 3 

In the third chapter a fully 3D printed dielectric flap phase shifter presented and is 

applied in the design and fabrication of a 4-element phased antenna array is 

reported. All the components of the antenna, including all the feed lines and 

junctions, are 3D printed. 

 

1.8.2 LTCC  

Chapter 4 

In the fourth chapter laser micromachining of LTCC in its green state is studied 

for the manufacturing of suspended structures. LTCC bulk laser micromachining 

is used to define new structures and geometries that, via trimming, cutting and 

lamination, can generate suspended 3D structures. Equally relevant for this 

purpose is the study of sacrificial layers and a novel composition for a graphite-
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based sacrificial paste will be proposed. Eventually, the suspended structures and 

its fabrication process will be demonstrated. 

Chapter 5 

In chapter five a second approach to the fabrication of suspended cantilevers is 

proposed, based on a hybrid structure which combines standard LTCC processing 

and metal foil. Aluminium foils are readily available commercially in a variety of 

well-controlled thicknesses. This material offer the characteristics needed for the 

development of effective, easily actuatable cantilevers. Two possible structures 

were investigated, using laser bending and photoimageable polymer thin films. 

Their design, fabrication and performance will be demonstrated. 

This part of the work was conducted via an inter-university collaboration based 

on a joint project between Imperial College London, the University of Leeds and 

the University of Loughborough. 

Chapter 6 

In the sixth chapter an analytical study of cantilever structures, based on their 

mechanical and electrostatic actuation properties is also proposed. The limits of 

general textbook equations will be highlighted and a different, more accurate 

approach, will be proposed with an alternative set of equations valid for a wider 

range of cases.  
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1.8.3 Laser micromachining of silicon 

Chapter 7 

In the seventh and last chapter of this thesis the laser micromachining of silicon is 

studied, to obtain high aspect ratio beams. In particular, a statistical study will be 

undertaken to optimise the laser parameters and machining strategy to achieve 

high quality beams. Such beams are then used to develop folded suspensions and 

a laser micromachined micro-gripper will be demonstrated. 
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CHAPTER 2:  3D PRINTED METAL-PIPE  

                                      RECTANGULAR WAVEGUIDES  

The following chapter is based on the paper: 

“3-D printed metal-pipe rectangular waveguides,” by D'Auria, M., Otter, W.J., 

Hazell, J., Gillatt, B.T.W., Long-Collins, C., Ridler, N.M., and Lucyszyn, S., 

published on IEEE Transactions on Components, Packaging and Manufacturing 

Technology (CPMT), vol. 5, no. 9, pp.1339-1349, September 2015. 

 

The relatively very low loss characteristics of conventional metal-pipe rectangular 

waveguides (MPRWGs), compared to planar transmission lines (e.g., coplanar 

waveguide or microstrip), make this technology essential for applications where 

dissipative attenuation is a critical factor. The manufacturing cost for complex 3D 

structures represents a limitation for low cost applications; this is exacerbated 

when frequency increases into the millimetre-wave band, due to the more 

demanding requirements in mechanical precision for smaller feature sizes. For 

this reason, alternative enabling technologies have been explored for their 

manufacture. For example, for monolithic microwave integrated circuits, surface 

micromachined dielectric-filled MPRWGs were demonstrated [1] and [2] in W-

band (75 to 110 GHz) at 105 GHz. This concept was then adapted to low-cost 

thick-film processing on ceramic substrates and demonstrated from 60 to 90 GHz 

[67]. A more recent innovation that readily supports tunable components and 

reconfigurable architectures employs the use of 2D and 3D metamaterials (holey 

metal surface and wire media, respectively) with demonstrators at X-band (8 to 12 
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GHz) [68]. Advanced reconfigurable substrate integrated waveguide architectures 

for terahertz applications was proposed in [69], with the use of virtual sidewalls 

within high-resistivity silicon wafers, patterned by programmable laser light 

sources. Unfortunately, these alternative manufacturing technologies can result in 

much higher dissipative losses. 

Alternative techniques for the constructions of waveguides are based on 

lamination technology for the development of substrate integrated waveguides 

(SIW). An early example of laminated SIW in glass ceramic (LTCC) is proposed 

in [70].With this glass ceramic-filled rectangular waveguides the horizontal wall 

metallization is obtained via screen printing and the vertical ones by metal filled 

via holes (picket fence wall) and has a reported attenuation of 40 dB/m in W-

band. With thick-film technology, in [71] photoimageable paste is used to define 

the internal geometry of SIW in V and W-band, with reported attenuation of 100 

dB/m and 200 dB/m, respectively. More recently picket fence SIW on 

polyethylene terephthalate (PET) substrate was demonstrated in [72] with an 

attenuation of 700 dB/m at 5 GHz. With all these proposed solutions, however, 

the losses are very high and can be associated with the material filling the 

waveguide. Lower losses can be obtained when the SIW is air filled, such as the 

one proposed in [73]. Such waveguides, fabricated using Rogers RT/Duroid 6002 

substrate and picket fence vertical walls, shows an attenuation of 45 dB/m at 30 

GHz. 

Commercial MPRWGs are traditionally manufactured by reshaping (drawing) 

metal pipes through rectangular dies or from machining by either computerized 

numerically controlled (CNC) milling or electronic discharge machining (EDM) 
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with spark erosion. For convenience, these will be classified as machining 

technologies. A state-of-the-art CNC machined split-block WR-10 band (75-110 

GHz) thru line in aluminium was reported with an average attenuation of 4-dB/m 

across W-band [74]. Chemically polished copper EDM WR-10 waveguides have 

also been measured with the same level of attenuation [75]. 

In contrast, micromaching technologies can include bulk micromachining of 

silicon [76]–[80] and surface micromachining of dielectrics [65], [66]  or 

photoresist layers [81]–[90]. Silicon micromachined MPRWGs are of particular 

interest for (sub-)millimetre wave frequencies. For example, a gold-plated WR-10 

waveguide has a reported measured attenuation of 0.05 dB/λg at 100 GHz [76]. A 

similarly WR-1.5 band (500-750 GHz) waveguide was recently reported with 

attenuation of ~ 80 dB/m at 600 GHz [80].  

The pioneering work, reported in [81] demonstrated the use of X-ray 

photoresist lithography for the manufacturing of waveguides for terahertz 

applications. The following year, this concept was developed further by Collins et 

al. with standard photolithography using SU-8 photoresist as the sacrificial 

building material for the manufacture of air-filled waveguides and slotted H-plane 

sectoral horn antennas in W-band, G-band (140-220 GHz) and at 1.6 THz [14]–

[17]. This work was undertaken within the U.K.’s EPSRC-funded research 

program Terahertz Integrated Technology Initiative (TINTIN). It is also 

interesting to note that the TINTIN consortium first reported the concept of SU-8 

formed split-block waveguides, using their snap-together techniques, 

demonstrating a loss of ~ 0.5 dB/λg at W-band [15]. More recently, Smith et al. 

[86] demonstrated WR-3.4 band (220-330 GHz) split-block waveguides and 
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cylindrical cavities. The most recently reported work on SU-8 formed split-block 

waveguides, from the University of Birmingham (U.K.), also showed impressive 

results at 60 GHz [87], 280 GHz [88], [89] and 650 GHz [90]. 

Machining and micromachining technologies are relatively expensive 

manufacturing solutions. A low cost alternative for the manufacture of MPRWGs 

is to use micro moulding (which include injection moulding and hot embossing), 

followed by a traditional metal plating process. WR-10 gold electroplated plastic 

waveguides [91] and filters [92] have been reported. The former demonstrated a 

worst-case return loss of 14 dB across W-band and minimum attenuation of 0.116 

dB/λg (or 27.6 dB/m) at 92.5 GHz [91]. The associated 5
th

-order inductive iris 

filter demonstrated a worst-case pass-band return loss of 12 dB and attenuation of 

3.49 dB at 95.4 GHz [92]. 

Over the past two decades, 3D printing (also known as additive manufacturing) 

has found widespread applications in rapid prototyping and manufacturing of high 

geometrical complexity components. Academic interest in microwave and 

millimetre-wave research began at the University of Michigan Ann Arbor in 2002, 

with the development of metamaterials and electromagnetic bandgap (EBG) 

structures in ceramics, by either coextrusion or casting in stereolithographically 

made moulds. This research was led by Chappell and Katehi [93]–[95]. In 2004, 

they then went on to investigate microwave passive components (e.g., cylindrical 

and rectangular air-filled cavity resonators, and nonplanar helical and monopole 

antennas) and coupled-cavity resonator  filters  [11], [96], [97]. This pioneering 

work on stereolithography included Ku-band (12 to 18 GHz) horn antennas in 

2005 [10]. 
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In 2006 Sarabandi et al. used ceramic stereolithography to develop dielectric 

antennas [98]–[100] and photonic crystal waveguides [101], [102]. At the same 

time, within Europe, XLIM–UMR CNRS at the University of Limoges used 

ceramic (micro)stereolithography for the fabrication of microwave filters, 

antennas, and millimetre-wave EBG crystals [9], [103]–[106].  

Over the past 8 years, further examples of 3D printed microwave and 

millimetre-wave components have been reported: 1) metamaterials [7], [8], [107]; 

2) corrugated and dielectric-filled horn antennas [108], [109]; 3) patch antennas 

[110], [111]; 4) graded index and Luneburg lenses [12], [13]; 5) frequency 

selective surfaces [112]. At terahertz (THz) frequencies, EBG structures, 

plasmonic and hollow core wire waveguides, and dielectric reflectarray antennas 

[14]–[16], [113], [114]. 

Apart from the early examples, by Chappell’s group in 2004 and 2005, of 3D 

printed air-filled MPRWG components: e.g., cavity resonators [11], [96], [97], 

filters [97] and WR-62 band (12.4-18 GHz) pyramidal horn antennas [10], little 

has been reported in the open literature. Notable exceptions include a 35-39.5 

GHz dielectric-filled horn antenna array in [108] and the W-band air-filled 

MPRWG (and circular waveguide corrugated horn antenna) in [109]. 

In 2012, the Swiss Federal Institute of Technology in Lausanne (EPFL) and its 

spin-off company (Swissto12) reported the 3D printing of passive structures for 

millimetre-wave and terahertz applications in their short note [115]. More 

recently, since 2014, Swissto12 have been advertising 3D printed metal-coated 

plastic (MCP) waveguides and diagonal pyramidal horn antennas [116], [117]. 

These air-filled MPRWGs operate in the WR-3.4 band and, with copper 
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metallization, have a reported minimum attenuation of 12 dB/m at ca. 280 GHz. 

In addition, WR-5.1 band (140 to 220 GHz) MCP waveguides are also 

commercially available in both straight and with S-bend sections. In 2012, a 3D 

printed corrugated conical horn antenna in Ku-band was reported [118] and, more 

recently, a spherical resonator filter in X-band was demonstrated, with an average 

passband insertion loss of 0.107 dB [119]. 

With all the examples of 3D printing [7]–[16], [93]–[119], little detail is given 

on the metrology for determining performance. Moreover, to date, the lower cost 

3D printing technology that exploits plastic extrusion techniques has not been 

reported for microwave rectangular waveguide applications. In this chapter, the 

3D printing of X-band and W-band MPRWGs using plastic extrusion 

(thermoplastic deposition) and stereolithographic (UV resin curing) techniques, 

respectively, are compared and contrasted. In addition, a high performance W-

band inductive iris bandpass filter is reported. All measurements are traceable to 

national standards in metal-pipe rectangular waveguide, performed by the U.K.’s 

National Physical Laboratory. 

 

2.1 3D printing technologies and metallization 

3D printing is based on layer-by-layer material deposition to realize arbitrary 3D 

objects. Different 3D printer technologies are commercially available. They can 

be classified into three main categories: 1) selective deposition of extruded 

material, which includes fused deposition modeling (FDM) [1]; 2) UV curing of 

resin, which includes inkjet printing and stereolithography apparatus (SLA) 
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technology [2]; and 3) powder binding, which includes selective laser sintering 

(SLS) [3]. Within the scope of this chapter, the first two (specifically, FDM and 

SLA) will be considered further. 

 

2.1.1 Fused deposition modelling technology 

Injection moulding is by far the cheapest fabrication technology when high-

volume manufacturing is required. However, the cost of the mould can be very 

expensive (thousands of dollars) and there are practical limitations on geometry 

for 3D structures. As an alternative for rapid manufacturing, there is increasing 

interest in FDM 3D printing; comparative case studies have been reported [120]–

[124]. In general, since the cost per unit with 3D printing is relatively constant 

with volume, while the cost of injection moulding falls sharply, a break point in 

total manufacturing costs exists at low volumes. Moreover, 3D printing can be 

used to realize be-spoke components with highly complex geometries.  

FDM printing is based on extrusion and selective deposition of thermoplastics. 

With this technology, the smallest achievable feature size on the horizontal xy 

plane is limited by the extrusion nozzle aperture; for example, having a typical 

diameter of 400 µm. Along the vertical build z-axis, feature size is limited by the 

minimum repeatable mechanical displacement; typically between 50 and 100 µm. 

As a result, the typical voxel size is of the order of 400 x 400 x 50 m
3
. 

Solid objects are usually partially hollow, having a solid shell that defines the 

outer geometry and internal support scaffold for additional rigidity. The walls of 

the printed object will have visible scallops in the vertical direction; the extent of 
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which is dependent on the chosen layer height. Scallops are caused by the melted 

thermoplastic assuming a circular shape. An illustration of FDM technology is 

shown in Figure 2.1. 

 

Figure 2.1:  (a) Example of FDM technology’s working principle. The plastic filament is pushed through a 

heated nozzle and the melted material is deposited [4]. (b) Cross section of an FDM 3D printed model 

showing the external shell and the infill. 

 

2.1.2 Stereolithography apparatus technology 

With SLA 3D printing, a photosensitive resin is contained within a tank. The top 

of the tank is scanned with a UV laser, which selectively cures the top layer of 

resin. The 3D printed object sits on a platform within the tank. After one layer has 

been cured, the platform is lowered and a fresh layer of resin is poured in front of 

the squeegee and levelled off by the squeegee; the whole process is then repeated. 

A schematic of an SLA equipment is shown in Figure 2.2 Finally, the part is 

rinsed of excess resin and then fully cured in a UV oven. 

(a) (b) 
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Figure 2.2:  Example of SLA technology. The vat is filled with resin and a scanned UV laser beam cures the 

superficial layer [5]. 

 

When compared to FDM printing, the small spot size of the laser and the low 

viscosity of the resin allow for much smoother surfaces, resulting in a greatly 

reduced minimum feature sizes in all directions, resulting in a typical voxel size of 

50 x 50 x 50 m
3
. While greater resolution can be achieved, the capital equipment 

and running costs are significantly greater than those associated with FDM 

printing. 

 

2.1.3 Electroless plating 

Unlike FDM and SLA, with SLS it is possible to 3D print solid metal structures 

[3]; albeit having relatively poor conductivity and, therefore, high dissipative 

losses for microwave and millimetre-wave applications. In practice, this very 

expensive manufacturing technology is usually reserved for bespoke applications 

where metal casting or CNC machining is impractical. 

The two very different 3D printing technologies considered here can create 

arbitrary 3D structures, but in general only from lossy dielectric materials (plastic 
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with FDM and resin with SLA). As a result, in order to create MPRWG 

structures, the dielectric material is only used here as a structural support for the 

internal metal wall. This process is then followed by metal plating to realize the 

air-filled structure. 

A standard commercial electroless metal plating process was employed. Here, 

the dielectric structure is sequentially immersed in a series of chemical baths for 

surface preparation, surface activation (with a catalyst) and metal deposition 

[125]. With optimal conditions, this technique is able to uniformly coat the entire 

surface of the structure with a seed layer, which can then be electroplated with the 

desired metal having a thickness that greatly exceeds five skin depths. 

 

2.2 3D printed metal-pipe rectangular waveguides 

The MPRWGs were originally designed to be compatible with standard flanges 

and waveguides [UBR100 flanges with WR-90 band (8.2-12.4 GHz) waveguides 

for X-band and anti-cocking UG-387/U-M flanges with WR-10 waveguides for 

W-band]. The calculated midband insertion loss for ideal waveguides having pure 

copper internal walls are 0.108 dB/m at 10 GHz for WR-90 and 2.69 dB/m at 90 

GHz for WR-10 [126]. Obviously, assuming copper walls, the measured insertion 

loss for commercially available waveguides are expected to be higher than these 

theoretical lower bound values. 

For manufacturing the larger X-band waveguide structures, FDM technology 

was employed, as it represents a lower cost solution; the larger voxel size and 

mechanical positioning repeatability may be considered to be within acceptable 

manufacturing tolerances for many microwave applications. With the metal 
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plating process, for WR-90, the internal dimensions are sufficiently large to avoid 

regions of depleted solute within the chemical solutions inside the waveguide 

structure. As a result, the MPRWG components can be designed as a single-piece 

structure. An illustration of a WR-90-compatible thru line design is given in 

Figure 2.3(a).  

 

Figure 2.3: CAD designs for 3D printable MPRWG thru lines. (a) Single piece WR-90 compatible. (b) Split-

block WR-10 compatible. The printed layers are orthogonal to the Z axis. 

 

An entry-level desktop 3D printer was used (Makerbot Replicator 2X) with 

acrylonitrile butadiene styrene (ABS) as the building material. The 3D printer 

software cuts the CAD drawing of a solid structure into horizontal slices and 

translates each slice into a 2-D path for the nozzle head to follow. The operator 

must first define three parameters: 1) surface wall thickness (1 mm in our case) 

along the x, y and z axes; 2) infill percentage between surface walls for the 

hexagonal (honeycomb) scaffolding in the x-y plane, along the z-axis (10% in our 

case); and 3) layer resolution along the z-axis (100 m in our case). With our 

designs, the total thickness of the waveguide walls (i.e., distance between the 

surface walls) was 6 mm. After printing, electroless plating of a 3-µm-thick nickel 

seed layer was performed, followed by the electroplating of a 27-µm-thick layer 

(a

) 
(b) 

Z 

X 

Y 

6
0

 m
m

 

60 mm 



74 

 

of copper. The resulting manufactured thru line is shown in Figure 2.4. The 

weights for each individual post-plated flange and waveguide are 5.9 g and 250 

mg/mm, respectively. Comparable waveguide components commercially 

available within our laboratory have corresponding values of 7.5 g and 730 

mg/mm. Clearly, there is a considerable weight advantage in 3D printing X-band 

waveguides. 

 

Figure 2.4: 3D printed and copper plated WR-90 thru line between commercial measurement test heads. 

 

For manufacturing the smaller W-band waveguide structures, SLA technology 

was employed, as the smaller voxel size and higher mechanical accuracy of the 

galvo-scanner are required to meet the more demanding manufacturing tolerances 

of both flanges and waveguides. In contrast to WR-90, the internal dimensions of 

a single piece WR-10 structure are too small to give acceptable metal plating. As 

a result, a split-block design was adopted. To minimize radiation losses, the break 

was along the E-plane and located at the centre of the broad wall. In principle, 

SLA technology allows for good mechanical alignment of the two halves. An 

illustration of a WR-10-compatible thru line design is given in Figure 2.3(b). 

The solid SLA printed parts were fabricated using a 3D Systems Viper si2
®
 

with Accura Xtreme resin [127] as the building material. This professional-level 
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system offers a minimum focused laser beam spot diameter of 25 µm and a layer 

resolution of 25 µm. After printing, the same electroless plating and electroplating 

processes were performed as with the previous WR-90 waveguide components. 

The assembled manufactured thru line is shown in Figure 2.5. A small amount of 

warping of the two individual parts of the MPRWG was observed along its 

longitudinal direction. It is believed that warping is due to the built-in stresses that 

are created when the structure undergoes final curing in a UV oven after printing. 

However, with our self-aligning design for the two individual split-block parts, no 

noticeable warping in the final assembled components was observed. 

 

Figure 2.5: 3D printed and copper plated WR-10 thru line after assembly of the split block. (a) and (b) Side-

view end view showing the self-aligned flange. 

 

2.3 Internal surface roughness analysis 

With both X and W-band MPRWGs, the surface profile after plating of the inner 

waveguide walls was measured using a Veeco Wyco
®

 NT9100 optical surface 

profiler. A scan line in the z-direction represents the worst-case condition, due to 

scalloping associated with 3D printing; the measured results are shown in Figure 

2.6. With FDM printing, the lower layer resolution and poor nozzle positioning 

repeatability cause significant levels of surface roughness (observed relative peak 

values of ± 13 µm) and steps (observed relative values of ± 3 µm), respectively. In 

contrast, as expected, SLA printing performs much better (observed relative peak 

(a) (b) 
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values of surface roughness are ± 3 µm and without noticeable steps). The average 

surface roughness values, defined as the arithmetic average of the absolute values 

of the profile height deviations from the mean line [128], is calculated to be 4.02 

µm and 0.93 µm with FDM and SLA printing, respectively. The root mean square 

surface roughness values, defined as the square root of the arithmetic average of 

the squared values of the profile height deviations from the mean line [128], are 

4.99 µm and 1.16 µm with FDM and SLA printing, respectively. It can be seen 

that, when compared to FDM, SLA printing offers ~ 4:1 reduction in surface 

roughness. 

  

Figure 2.6: Measured postplating surface profile scan lines in the z-direction for both WR-90 and WR-10 

compatible waveguides. 

 

2.4 Traceable VNA measurements and methodology 

Traceable scattering (S-)parameter measurements were carried out at the U.K.’s 

NPL. A HP8510C vector network analyser (VNA) was configured for use with 

either WR-90 or WR-10 waveguide test heads, covering the complete X-band or 

W-band, respectively. Thru-Reflect-Line (TRL) calibration [129] was first 
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performed, using short circuit and 90° delay primary standards; the test head 

flanges define the 2-port measurement reference planes. An in-house calibration 

algorithm was employed, having a seven-term error-correction model [130]. The 

overall set-up (VNA, primary standards and calibration algorithm) is referred to as 

the NPL Primary Impedance Microwave Measurement System (PIMMS) [131], 

[132]. This is the U.K.’s primary national standard system for S-parameter 

measurements. 

For each individual 3D printed and commercial machined (copper alloy WR-90 

and aluminium WR-10, the latter taken from a Hewlett Packard VNA verification 

kit) reference thru line waveguide component, six measurements were taken; each 

measurement was preceded by a TRL calibration. The calibrated measurements 

were then processed by the PIMMS software to calculate the average results. This 

approach was chosen to reduce the influence of flange connection repeatability, 

cable flexing, system noise and changes in the ambient environment. As a result, 

the standard error of the mean is reduced, giving greater confidence in the 

measured results for these proof-of-principle demonstrators. 

 

2.5 Measured S-parameters results 

With WR-90, having standard internal cross-section dimensions of a = 22.86 mm 

and b = 10.16 mm, the lengths of reference thru lines were 60 mm and 127 mm 

for the FDM printed and commercial machined copper-alloy walled waveguides, 

respectively. Figure 2.7 show the measured return loss results across X-band. It 

can be seen that with a worst case return loss of 32 dB the FDM printed MPRWG 
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has excellent impedance matching. With the commercial machined waveguide, 

the 41 dB worst case return loss performance can be attributed to the reduced 

alignment errors associated with its flanges (having higher precision in the 

position and diameter of the alignment/fastening holes). The almost identical and 

textbook return loss performances at both ports, seen in Figure 2.7, indicates good 

manufacturing tolerances for the FDM printed waveguide flanges. 

 

 

Figure 2.7: Measured return losses for the 60-mm length FDM printed and 127-mm length commercial 

machined WR-90 waveguides. 

 

With uniform sections of MPRWG thru line, total power attenuation  

𝑇 = 𝑅 + 𝑙𝐷 [dB] for a given physical length l [m] is due to impedance 

mismatch reflection losses 𝑅 [dB] at the flange and dissipative (or ohmic) losses 

𝐷 [dB/m] associated with the internal metal walls, with [133] 

 𝑅 = −10 ∙ 𝑙𝑜𝑔10(1 − |𝑆11|
2) [dB] (2.1) 
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 (2.2) 

where λ𝑔 is the guided wavelength; S11 and S21 are the measured input voltage-

wave reflection coefficient and forward voltage-wave transmission coefficient, 

respectively. In general, (2a) is associated with feed lines and interconnects 

having arbitrary lengths; while (2b) is more appropriate for comparing distributed-

element components of specific electrical length (e.g., λ𝑔/4 transformers and 

λ𝑔/2 resonators). 

Since a designer can control 𝑅, given a stable manufacturing process, only 𝐷 

reflects the quality of a given manufacturing technology. Moreover, since 𝑅 is 

negligible with our components it will not be considered further. Note that, after 

visual inspection of the assembled components and detailed numerical 

electromagnetic simulations, radiation losses associated with gaps between 

flanges or between the two halves of the split-block components were considered 

insignificant. 

The measured dissipative attenuation results, using (2), are shown in Figure 

2.11. With the FDM printed waveguide, the worst-case dissipative attenuation 

across the whole of X-band is only 0.017 dB/λg (or 0.58 dB/m). At 10 GHz, the 

dissipative attenuation is 0.33 dB/m, which is significantly more than the 

calculated value of 0.108 dB/m for the ideal copper WR-90 waveguide [126]. By 

comparison, the commercial machined waveguide has worst-case dissipative 

attenuation of 0.020 dB/λg (or 0.33 dB/m); at 10 GHz, the value of 0.30 dB/m is 
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again still significantly higher than that calculated for the ideal copper waveguide. 

Nevertheless, the performance of the FDM printed waveguide is better below ca. 

10 GHz, when compared to our commercial machined waveguide; above ca. 10 

GHz, the higher dissipative attenuation is thought to be due to the increased levels 

of surface roughness with the internal copper walls of the 3D printed MPRWG. 

With WR-10, having standard internal cross-section dimensions of a = 2.54 

mm and b = 1.27 mm, the lengths of reference thru lines were 60 mm and 50 mm 

for the SLA printed and commercial machined aluminium-walled waveguides, 

respectively. Figure 2.8 shows the measured return loss results across W-band. It 

can be seen that, with a worst-case return loss of 16 dB, the SLA printed MPRWG 

still has good impedance matching. 

 

Figure 2.8: Measured return loss for the 60 mm length SLA printed WR-10 waveguide. 

 

The measured dissipative attenuation results are shown in Figure 2.9. With the 

SLA printed waveguide, the dissipative attenuation increases from 0.06 and 0.03 

dB/λg (or ~ 9 dB/m) at the band edges to a peak of 0.106 dB/λg (or 26.6 dB/m). 

The mid-band peak in attenuation (with corresponding degraded return loss), 
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performance observed with measurements was extensively investigated using 

CST Microwave Studio. It was found that there was unexpected weak coupling 

into the air-filled ring cavity formed between the SLA printed and commercial 

machined anti-cocking flanges. This ring cavity has an inner diameter of 9.2 mm 

and outer diameter of 17.2 mm with a 1 mm thickness, and it includes the four 

fastening bolts and two alignment pins, as illustrated in Figure 2.10(a). Numerical 

simulations show two main resonance peaks at 93 GHz and 97.2 GHz and the 

electrical field distribution is shown in Figure 2.10(b) and (c). These frequencies 

match with the peaks seen in Figure 2.9.  

 

 

Figure 2.9: Measured dissipative attenuation for the 60 mm length SLA printed with electroplated copper 

walls WR-10 waveguide. 
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Figure 2.10: (a) Air cavity between the anti-cocking flanges. The diameter of the larger through holes for the 

screws and the smaller alignment holes have a diameter of 2.15 mm of 1.55 mm, respectively. Electric field 

in the cavity at (b) 93 GHz and (c) 97.2 GHz. 

 

To suppress this unwanted resonance, the anti-cocking flange cavities with the 

FDM printed waveguide were filled with a conducting compound [the recipe for 

this compound consisted of 0.65 g of commercial polyvinyl-acetate (PVA) glue, 

0.2 g of graphite powder (with average particle size of 10 µm), 3 g Pd/Ag 

conductive paste (DuPont 6143 [134]) and 0.5 g of ready-mix joint filler]. This 

compound results in an easily workable, high viscosity paste, having a 

conductivity of 430 S/m after a setting time of 2 hours at 40°C.  

 

(a) (b) (c) 
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Figure 2.11: Measured dissipative attenuation for the 60-mm length FDM printed waveguide with copper 

walls and 127-mm length commercial machined WR-90 waveguides with copper alloy walls (a) per guided 

wavelength and (b) per meter. 

 

The improved flange is shown in Figure 2.12. In addition, flat flanges were 

created at both test heads by inserting two calibrated shims (2.00 mm and 3.08 

mm in length) from a Hewlett Packard VNA verification kit. The insertion loss of 

the two W-band shims were measured separately and found to be negligible. As a 

result, de-embedding was not considered necessary.  

 

(a) 

(b) 
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Figure 2.12: SLA printed waveguide flange with conducting compound filler. 

 

Figure 2.13 show the measured return loss results across W-band. It can be 

seen that with a worst case return loss of 19 dB the SLA printed MPRWG still has 

good impedance matching. With the commercial machined waveguide, the 34 dB 

worst case return loss performance can be attributed to the greatly reduced 

alignment errors associated with its flanges. The almost identical and textbook 

return loss performances at both ports indicate good manufacturing tolerances for 

the commercial machined waveguide flanges. With 3D printing, our W-band 

flanges did not perform as well as the X-band flanges, due to the increased 

precision requirements needed for the order of magnitude decrease in waveguide 

cross section and the choice of split-block solution.  
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Figure 2.13: Measured return loss for the 60-mm length SLA printed and the 50-mm length commercial 

machined waveguides. 

 

The measured dissipative attenuation results are shown in  

Figure 2.14. With the SLA printed waveguide, the dissipative attenuation 

increases from ~ 11 dB/m at the band edges to a mid-band peak of 17 dB/m (or 

0.07 dB/λg).  

An iteration in the design and manufacture of the W-band flanges can eliminate 

the need for the conducting compound filler and introduction of shims. Moreover, 

since complex geometries can be 3D printed in a single run, the number of flanges 

needed within a subsystem can be minimized.  

At 110 GHz, the dissipative attenuation of 11 dB/m is significantly greater than 

the calculated value of 2.69 dB/m at 90 GHz for the ideal copper WR-10 

waveguide [126]. Nevertheless, at 110 GHz, the dissipative attenuation of 0.036 

dB/λg (or 11 dB/m) is commensurate with the commercial machined aluminium 

waveguide performance of 0.032 dB/λg (or 10 dB/m) shown in 
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Figure 2.14 and much better than the micro moulded waveguide having 0.116 

dB/λg (or 27.6 dB/m) at 92.6 GHz [91].  

A comparison of measured dissipative attenuation results for MPRWGs 

realized using different manufacturing technologies is given in Table 2.1. It 

should be noted that this table does not represent an exhaustive survey of what can 

be found in the open literature, but acts as a useful guide. 

 

Figure 2.14: Measured dissipative attenuation for the 60-mm length SLA printed waveguide with copper 

walls and 50-mm length commercial machined waveguides with aluminium walls (a) per guided wavelength 

and (b) per meter. 

(a) 

(b) 
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Table 2.1: Comparison of published MPRWG measured attenuation performance. 

Waveguide 

Band 

Frequency 

(GHz) 
Manufacturing Technology 

Split 

block 

Waveguide 

Filler 

Attenuation 
References 

dB/m dB/λg 

WR-187 5 PCB processing no PET 700 5.41 [72] 

WR-90 10 Machined no air 0.30 0.0115 - 

WR-90 10 3D printed (FDM) no air 0.33 0.0130 This work 

WR-28 33 PCB processing yes air 44.1 5.21 [73] 

WR-12 60-80 Thick-film printing no 
HIBRIDAS  

HD 1000 
500 - [67] 

WR-12 60-80 Thick-film printing no 
HIBRIDAS  

HD 1000 
100 - [71] 

WR-19 50 PCB processing yes air 61.5 4.74 [72] 

WR-10 92.5 Micro moulding no air 27.6 0.116 [91] 

WR-10 100 Bulk micromachined silicon yes air - 0.05 [76] 

WR-10 105 Surface micromachined no polyimide 8,660 44 [65], [66] 

WR-10 75-110 CNC machined yes air 4 - [74] 

WR-10 75-110 Surface micromachined yes air - 0.5 [83] 

WR-10 75-110 Thick-film printing no 
HIBRIDAS 

HD 1000 
200 - [71] 

WR-10 75-110 Thick-film printing no LTCC 400 - [70] 

WR-10 110 Machined no air 10 0.032 - 

WR-10 110 3D printed (SLA) yes air 11 0.036 This work 

WR-3.4 280 3D printed no air 12 - [115], [116] 

WR-1.5 600 Bulk micromachined silicon yes air 80 - [80] 

 

Measurements uncertainty evaluation 

As six measurements were performed for each of the manufactured components, it 

was possible to estimate the uncertainty on the measurements. The PIMMS 

algorithm associates a rectangular probability distribution (uniform distribution) 

to the measurements results and calculates the uncertainty, expressed as a circle 
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centred on the measured complex value, as illustrated in Figure 2.15. In its output 

file the PIMMS algorithm returns the radius of such circle for each measured 

point of each of the four S-parameter.  

 

Figure 2.15: Illustration of the uncertainty expressed on the complex plane. 

 

The average uncertainty radius in linear units for the four S-parameters of the 

X and W-band waveguides are reported in Table 2.2. The similar results between 

the reference (machined) and 3D printed waveguides show comparable 

measurements repeatability for the devices realised in the two different 

manufacturing processes. This indicates that with 3D printed waveguides a similar 

consistency in performance can be potentially achieved respect to machined ones. 

Table 2.2: Radius of the uncertainty circle around the complex S-parameter for the reference and 3D printed 

waveguides in X and W-band. 

 WR-90 WR-10 

 Reference 3D Printed Reference 3D Printed 

S11 0.0021 0.0022 0.0056 0.0048 

S21 0.0062 0.0054 0.1611 0.1479 

S12 0.0061 0.0054 0.163 0.195.5 

S22 0.0021 0.0021 0.0055 0.0445 

Re 

Im 

Uncertainty circle 

 

S-parameter in the  

complex plane 
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2.6 W-band filter 

In addition to forming feed lines and interconnects, MPRWG technology is also 

used for implementing critical passive components and networks. For example, 

high quality (Q)-factor resonators are the basic building blocks for implementing 

high performance filters. Most of the microwave and millimetre-wave band-pass 

filters that are currently manufactured are of the Chebyshev family, which has a 

transfer function that produces the best out-of-band rejection for a given 

maximum permitted level of passband equiripple insertion loss [135]. Narrow-

band high-order conventional Chebyshev filters (e.g. sixth-order and higher) will 

have their return loss zeros distributed across an extremely small frequency range 

and, therefore, a very accurate manufacturing process needs to be employed [135]. 

For this reason, a sixth-order Chebyshev band-pass filter will demonstrate the 

advantage of 3D printing over the micro moulded and more expensive 

(micro)machined  technologies.  

Here, an inductive iris band-pass filter implementation was chosen for the split-

block solution, as illustrated in Figure 2.16, so as to minimize misalignment 

effects. The filter was designed to have an arbitrary chosen centre frequency of 

100 GHz and a 3-dB bandwidth of 10 GHz.  

 

Figure 2.16: Illustration of the sixth-order inductive iris bandpass filter. The associated design values are 

given in Table 2.2, while the values measured after manufacture are given in Table 2.3. 
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The filter was designed using Guided Wave Technology (GWT) software that 

employs the mode-matching method [136]; iterations were needed to achieve 

spatial symmetry. It should be noted that an ideal manufacturing process is 

assumed (e.g., spatial features are perfectly rectangular, no mechanical 

misalignment and with perfect electrical conductor walls).  

The minimum reliable thickness for an unplated iris wall was chosen; limited 

to approximately 140 µm, to maintain repeatability and tolerance control with 

SLA printing. In addition, the electroless and electroplating process was assumed 

to give a combined metal wall thickness of 30 µm, as found with the previously 

manufactured MPRWG thru sections. The inductive iris thickness was, therefore, 

chosen to be t = 200 µm. 

The final filter design dimensions were entered into the numerical 3D 

modelling software CST Microwave Studio
®
, for verification; the values are given 

in Table 2.2. Figure 2.17 shows the simulated frequency response for the ideal 

band-pass filter. The six return loss zeros of the sixth-order Chebyshev filter can 

be clearly seen, with an associated predicted worst-case in-band return loss of 18 

dB. 

Figure 2.18 shows orthogonal cross sections through the filter structure, with 

the CAD layout and a single manufactured split-block part. The manufactured part 

appears to have no noticeable visual defects, when compared to the CAD layout.  
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Table 2.3: Filter design dimensions (assuming ideal manufacturing). 

 
 

 

 

Figure 2.17: Simulated S-parameters for the designed sixth-order Chebyshev filter. 

 

 

Plated Cavity Length, L (µm) 
              Plated Iris Width, w (µm) 

Iris Left Side Right Side 

L1 1346 I1 583 583 

L2 1551 I2 765 765 

L3 1592 I3 809 809 

L4 1592 I4
 

817 817 

L5 1551 I5 809 809 

L6 1346 I6 765 765 

  I7 583 583 
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Figure 2.18: W-band sixth-order filter. (a) CAD layout showing a horizontal cross section through both parts 

of the assembled split block. (b) Photograph of a single manufactured split-block part showing the vertical 

cross section. 

 

The physical dimensions for the manufactured filter were measured using a 

scanning electron microscope and the results are given in Table 2.3. From this 

data, it was found that there was an average shrinkage of 1.4 % in the resin 

structure after final UV curing. This results in shorter cavity lengths, increasing 

the frequencies of the return loss zeros and, therefore, increasing the overall pass 

band of the filter. In addition, the overall thickness of the metal wall was found to 

be over-plated by 25 µm, on average, resulting in a total plated inductive iris 

thickness of 248 µm. With variable resin shrinkage and over-plating, there will be 

slight asymmetries between the iris pairs associated with both split block parts. 

This has the effect of slightly reducing the frequencies of the return loss zeros. 

However, the net effect of resin shrinkage, over-plating and asymmetry is to 

increase the centre frequency of the pass band. Both internal and external cavity 

resonator coupling coefficients are directly proportional to the pass-band 

bandwidth [137]. Therefore, shrinkage and over-plating also results in reduced 

cavity coupling and a decrease in pass-band bandwidth. 

Table 2.4: Manufactured filter dimensions. 

(a) (b) 
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The S-parameter magnitudes for the manufactured filter, measured using 

traceable national standards at NPL, are given in Figure 2.19. An excellent 

bandpass filter performance has been achieved, with a worst case pass band return 

loss of 11 dB and insertion loss of 0.95 dB at the centre frequency of 107.2 GHz. 

Clearly, the centre frequency has been shifted up by 7.2% and the bandwidth has 

shrunk from 10 GHz to 6.8 GHz with this first proof-of-principle demonstrator. 

With an optimized manufacturing process, design rules can be implemented to 

compensate for shrinkage and over-plating. 

The loaded quality factor for the filter QL is given by 

 
𝑄𝐿(𝑓0) =

𝑓0
∆𝑓

= 15.76 (2.3) 

where f0 is the centre frequency and Δf is the 3 dB bandwidth. The unloaded 

quality factor, Qu, is obtained from the well-known relationship 

    Plated Cavity Length, L (µm) Width and thickness (µm) 

 Left side Right side Iris Left side Right side  

    w t w t 

L1 1283 1278 I1 639 228 599 224 

L2 1487 1489 I2 759 256 820 252 

L3 1533 1513 I3 889 251 857 246 

L4 1525 1513 I4
 

892 248 860 264 

L5 1481 1459 I5 879 234 867 248 

L6 1244 1242 I6 776 296 826 323 

   I7 623 215 580 222 

Measured internal waveguide dimensions: a = 2.51 mm, b = 1.25 mm. 
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𝑄𝑢(𝑓0) =

𝑄𝐿(𝑓0)

1 − |𝑆21(𝑓0)|
= 152 (2.4) 

The results for our sixth-order filter at 107.2 GHz can be favourably compared 

with those for the fifth-order filter fabricated using micro moulding manufacturing 

technology: 𝑄𝐿(95.4 GHz) = 27.27 and  𝑄𝑢(95.4 GHz) = 82 [92]; with almost 

twice the measured unloaded quality factor in the final fabricated demonstrator. 

Because the original design dimensions in Table 2.2 have changed to the actual 

physical dimensions in Table 2.3, the measured S-parameters should be compared 

with re-simulations based on the values in Table 2.3. The results are shown in 

Figure 2.19, indicating a good fit. 

 

Figure 2.19: Measured and resimulated S-parameters for the sixth-order 3D printed W-band inductive iris 

band-pass filter. 

 

For future development, compensation equations can be implemented to 

correct for shrinkage and over-plating. A possible method considers the shrinkage 

as a proportional error and the plating as an offset error, as in 
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 𝑠𝑒𝑟𝑟𝑋𝑑 + 𝑜𝑒𝑟𝑟 = 𝑋𝑚 (2.5) 

where Xd is the designed parameter (i.e. cavity length), serr is the error introduced 

by the shrinkage, oerr is the error introduced by over-plating and Xm is the 

measured parameter after fabrication of a test piece with similar features.. As 

there are two unknowns, a minimum of two measurements are needed. Once serr 

and oerr are known, it is possible to make a prediction and compensate at a design 

level. 

 

2.7 Conclusions 

In this chapter the manufacturing of air-filled metal-pipe rectangular waveguides 

using 3D printing technologies is investigated. Two very different technologies 

were considered: low-cost lower-resolution fused deposition modeling for 

microwave applications; and higher cost, high resolution stereolithography for 

millimetre-wave applications. 

Measurements against traceable standards in metal-pipe rectangular 

waveguides were performed by the U.K.’s NPL to provide confidence in the 

measured results. It was found that the performances of the 3D printed MPRWGs 

were commensurate with those of commercial waveguides. 

A high performance W-band sixth-order inductive iris bandpass filter, having a 

centre frequency of 107.2 GHz and 6.8-GHz bandwidth, is also demonstrated. The 

measured insertion loss of the complete structure (filter, feed sections and flanges) 

was only 0.95 dB at centre frequency, giving an unloaded quality factor of 152–

clearly demonstrating the potential of 3D printed MPRWGs. This passive 
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component fabrication technology offers the advantage of lightweight rapid 

prototyping/manufacturing. Then compared to traditional (micro)machining, with 

this technology costs are reduced by half up to a tenth (depending on geometrical 

complexity) with a potentially comparable performance. The potential price for 

the bespoke components in both the 3D printing technologies presented vary 

between £30 and £100 each, with the price mostly driven by the cost of the 

electroless plating, which depends on the exposed surface.  
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CHAPTER 3:  3D PRINTED PHASED ARRAY ANTENNA  

The high geometrical complexity achievable with 3D printing enabled the 

simplified manufacturing of other passive microwave components at X-band; 

such as 90° bends, Tee-junctions, twists, horn antennas and bespoke metal-pipe 

rectangular waveguides.  

The possibility to manufacture such components suggested that more complex 

systems could be realised with the combination of 3D printed waveguide 

components. In this chapter, the design and fabrication of a phased array antenna 

will be discussed and how each component was designed and manufactured using 

FDM 3D printing technology. Particular focus is on the design of a completely 3D 

printed waveguide variable dielectric-flap phase shifter. 

 

3.1 Dielectric-flap phase shifter 

3.1.1 Phased array antennas 

Antenna directivity enhancement for long-range communications has been subject 

of extensive research in the past decades. Array antennas are multiple-antenna 

systems with radiating elements usually disposed in a periodical pattern along a 

line or on a surface. With antenna arrays the radiation pattern can be reinforced in 

a particular direction and suppressed in undesired directions, resulting in 

improved beam sharpness. In a phased antenna array each element is fed via a 

variable phase shifter. This allows for the direction of phased array radiation, also 

known as look angle, to be electronically steered without the need for any 

mechanical rotation.  
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Because of this, since the advent of this technology, phased array antennas 

have found a wide range of applications, in particular when the antenna cannot be 

mounted on a gimbal. Traditionally used in military applications (e.g., missile 

guiding and tracking) [138], [139], they now have gathered increasing interest for 

civilian radar-based sensors and communication systems in commercial 

applications [140]–[144]. However, despite the broad range of potential 

applications, phased array antennas are still uncommon in the commercial arena, 

due to their high cost and complexity. 

 

3.1.2 Theory 

Phased array antennas are systems that allow one to electronically steer the main 

beam lobe of an antenna array, without physically moving the antenna. The beam 

steering is achieved by feeding each element of the antenna array with a 

progressive phase shift. The maximum distance between each element dmax of the 

array depends on the operating wavelength λ and the maximum look angle 

required θmax, and can be calculated by  

 
𝑑𝑚𝑎𝑥 =

𝜆

1 + sin 𝜃𝑚𝑎𝑥
  [m] (3.1) 

Attempting to steer the beam further by increasing the progressive phase shift 

would generate unwanted grating lobes.  Phase shifters have the fundamental role 

in phased array antennas to introduce the progressive phase shift that enables the 

beam steering. The beam steering angle θ depends on the progressive phase shift 

ψ at each element and the distance between elements d as in 
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𝜃 = sin−1 (

𝜆

2𝜋𝑑
𝜓)  [deg] (3.2) 

Figure 3.1 shows the array factor for a four-element linear array evenly spaced 

with d = λ/2, obtained from 

 
𝐴𝐹(𝜃) =∑𝑒𝑗𝑖(𝜓−𝑘𝑑sin (𝜃))

3

𝑖=0

 (3.3) 

where the wavenumber k=2π/λ. 
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Look angle Array factor Relative phase shift 

θ = 0° 

 

ψ = 0° 

θ = 15° 

 

ψ = 45° 

θ = 30° 

 

ψ = 90° 

θ = 45° 

 

ψ = 128° 

θ = 60° 

 

ψ = 156° 

θ = 75° 

 

ψ = 174° 

θ = 90° 

 

ψ = 180° 

Figure 3.1: Array factor for a four-element phased antenna array. Changing the progressive phase delay ψ 

from 0 to 180° changes the corresponding look angle θ between 0 and 90°. 

 

3.1.3 Dielectric flap phase shifter design 

A variety of integrated waveguide phase shifters, often based on ferrite, can be 

found in the open literature [145]. However, in order to take full advantage of 

  -3 dB

  -6 dB

  -10 dB

0

30

60

90

120

150

180

210

240

-90

-60

-30

  -3 dB

  -6 dB

  -10 dB

0

30

60

90

120

150

180

210

240

-90

-60

-30

  -3 dB

  -6 dB

  -10 dB

0

30

60

90

120

150

180

210

240

-90

-60

-30

  -3 dB

  -6 dB

  -10 dB

0

30

60

90

120

150

180

210

240

-90

-60

-30

  -3 dB

  -6 dB

  -10 dB

0

30

60

90

120

150

180

210

240

-90

-60

-30

  -3 dB

  -6 dB

  -10 dB

0

30

60

90

120

150

180

210

240

-90

-60

-30

  -3 dB

  -6 dB

  -10 dB

0

30

60

90

120

150

180

210

240

-90

-60

-30



101 

 

FDM technology, a dielectric-based phase shifter was considered for the 

manufacturing of an X-band tuneable phase shifter. The insertion of dielectric into 

an air-filled waveguide at the point of maximum electric field increases the 

effective dielectric constant, thereby causing the guide wavelength λg to decrease, 

as in 

 
𝜆𝑔 =

𝜆

√𝜀𝑒𝑞 − (
𝜆
2𝑎)

2
  [m] 

(3.4) 

where λ is the wavelength in free space, εeq is the equivalent relative permittivity 

(i.e. dielectric constant) in the section of waveguide having the dielectric, and a is 

the internal broad wall dimension of the waveguide. Thus, the insertion of 

dielectric increases the transmission phase of the wave passing through a fixed 

length of waveguide section. Several possible configurations employing low loss 

dielectric slabs are possible [146]–[150]. These devices, however, require the 

substitution of the slab or electrically-controlled actuators inside the waveguide to 

move the slab and vary the transmission phase. Other possible alternatives include 

slabs of low loss dielectric moved inside the waveguide by thin rods or inserted 

through a non-radiating slot [151], [152], as illustrated in Figure 3.2. 

 

Figure 3.2: (a) Tapered slab of dielectric in a waveguide, moveable with thin rods; (b) curved dielectric flap 

inserted in a non-radiating slot on the waveguide [151]. 

(a) (b) 
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Due to its simpler design and ease of tuning, the configuration with a slot and 

dielectric flap was chosen. By placing the slot at the centre of the broad wall, the 

dielectric flap can be inserted where the E-field is at its maximum. The curved 

shape of the flap is resorted to reduce the reflections. The depth of insertion, on 

which also the length of the insert in the waveguide depends, changes the 

effective propagation constant of the waveguide. With this design, care needs to 

be taken in order to avoid the propagation of higher order modes in the waveguide 

and radiation from the slot. 

 

3.2 Phase shifter simulations and measurements 

Very little was found in the open literature on dielectric-flap phase shifters and, 

therefore, its design was mainly based on numerical simulations. The aim was to 

obtain the maximum possible phase shift in a single section of waveguide. The 

maximum length of the X-band waveguide section and its associated slot length 

were limited by the maximum building volume of the Makerbot 2X; these were 

designed to be 150 mm and 100 mm long, respectively. The two parameters left 

for the design are the shape and thickness of the flap. The profile of the flap was 

chosen to be an arc of circle, so that its curvature would be the same at any depth 

of insertion. A radius of curvature of 130 mm was chosen, so that the flap would 

reach the opposite side of the waveguide with its deepest point, when fully 

inserted. The thickness of the flap was chosen as the maximum possible value that 

would not allow the propagation of higher order modes and minimise the radiation 
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losses from the slot. Numerical simulations were used to optimise this parameter. 

ABS, the same building material for all the FDM 3D printed parts, was chosen as 

the dielectric material for the flap. ABS was modelled with a dielectric constant εr  

= 2.54 and loss tangent tan(𝛿) = 0.015 at 10 GHz [153]. From the numerical 

simulations, with CST Microwave Studio, the optimum parameter for the slot 

width which would keep radiation losses to a minimum was found to be 3 mm and 

a maximum phase delay of 173° was predicted when the flap is fully inserted (flap 

angle equal to zero) at 10 GHz. The CAD drawing for the designed WR-90 phase 

shifter and the flap are shown in Figure 3.3. Figure 3.4 illustrates the simulated 

field patterns in the waveguide when the flap is fully raised or inserted, showing 

how the wavelength decreases in the region with the dielectric flap. 

 

Figure 3.3: (a) Dielectric flap and (b) waveguide with slot and moveable dielectric flap. 

 

(a) (b) 
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Figure 3.4: Electric field pattern in the waveguide (a) with the flap removed and (b) with the flap fully 

inserted. 

 

The manufacturing process was identical to the 3D printed WR-90 waveguides 

in the previous chapter, with the dielectric flap left un-plated. The manufactured 

WR-90 waveguide phase shifter is shown in Figure 3.5. 

 

Figure 3.5: Manufactured waveguide phase shifter. 

 

The complete structure was simulated with CST Microwave Studio to find the 

expected phase shift for different flap angles and the simulated results compared 

with measurements. Figure 3.6 shows the simulated and measured phase shift at 

10 GHz. Figure 3.7 shows the measured insertion phase, relative phase shift and 

differential-phase group delay over X-band.  

(a) (b) 
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Figure 3.6: Measured and simulated phase shift against dielectric flap angle at 10 GHz. 

 

 

 

Figure 3.7: Measured (a) insertion phase, (b) relative phase shift, and (c) differential-phase group delay 

across X-band of the phase shifter for different flap angles.  

(c) 

(a) (b) 
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For the manufactured part, due to fabrication tolerances, it was not possible to 

fully insert the flap, causing a minimum angle of 3°. The phase shifter, in its linear 

region, shows a 10° relative phase shift per degree of flap angle, against the 

simulated predicted value of 16°, and has an expected maximum relative phase 

shift of 128° if the flap is fully inserted. 

The difference between measurements and simulated predictions can be 

attributed to parallax error in the measurement of the angle, variation in dielectric 

constant and also density of the 3D printed flap. Indeed, the 3D printing process, 

which deposits layers of melted plastic filament, will leave air micro-gaps during 

the deposition, thus reducing the effective density of the printed part. This would 

eventually cause a reduction in the effective dielectric constant and, therefore, a 

reduction in relative phase shift. As shown in Figure 3.8 for different flap angle, 

low levels of insertion loss were recorded (due to the dielectric and radiation), 

with a worst case value of -0.206 dB at the upper end of X-band. More 

importantly, the phase-to-amplitude (PM-AM) conversion is also very low, which 

is important for antenna phased arrays. 
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Figure 3.8: Insertion loss for different dielectric flap angle. 

 

3.3 Phased array antenna design 

After the design and manufacturing of the phase shifter, all the other components 

needed for the four element phased array antenna were designed. The whole 

system was to be completely 3D printed and the first step was to create the 

manifold feed to the four antenna elements, which most importantly includes the 

3-port power splitters. This will be achieved via conventional Tee junctions, two 

90° mitred bends and a further two bespoke Tee junctions. 

 

3.3.1 Tee junctions 

The input signal is first split into two with a Tee junction. This power splitter was 

designed as an H-plane junction with a septum to optimise return losses. To 

achieve a balanced power at the two output ports, a septum was introduced and 

positioned at the centre; numerical simulations were used to choose the length and 

width of the septum. Figure 3.9 shows a CAD drawing of the Tee junction with a 

cross-section, the unplated and plated 3D printed part. 
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Figure 3.9: (a) Tee junction CAD model with cross-section profile showing the septum, (b) unplated and(c) 

plated 3D printed part. 

 

The structure was simulated using CST Microwave Studio for different septum 

combinations of length and width. The length of the septum was varied between 3 

and 13 mm and the width between 3 and 9 mm. The results illustrated in Figure 

3.10 show that the length and width that gave the best performance were 10 mm 

and 3 mm, respectively. For this component, the measured S-parameters showed a 

particularly poor performance and the cause was identified in the lack of good 

internal plating. For this reason the measured results will not be reported. 

Septum 

(a) (b) 

(c) 
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Figure 3.10: Simulated S-parameters showing the (a) transmitted and the (b) reflected power for the 

simulated Tee junction for different septum combinations of length and width. As the structure is 

symmetrical, only one of the two output ports is shown. 

 

3.3.2 Mitred Bend 

Waveguide bends are now required to re-direct the signal. Mitred bends are 

generally preferred to curved bends when a more compact circuit is desired. The 

bend was numerically simulated for different internal mitre lengths d between 10 

and 30 mm; a value of 20 mm, corresponding to λg /2 for a frequency of 10 GHz, 

(a) 

(b) 
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was chosen. The CAD model and the fabricated part are shown in Figure 3.11. 

The simulation and measurement results are shown in Figure 3.12 and 3.13, 

respectively. 

 

Figure 3.11: (a) Mitred bend CAD model showing the mitre size d and (b) fabricated part. 

 

 

Figure 3.12:  Simulated S-parameters showing the transmitted power for the mitred bend for different mitre 

lengths between 10 and 30 mm. 

d 

(a) (b) 
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Figure 3.13: Measured S-parameters for the 3D printed 90° mitred bend in X-band. 

 

3.3.3 Combined Tee 

Now that the input power is split into two, another power divider was designed. 

To obtain a more compact system, a Tee junction combined with two mitred 

bends was the chosen solution. While the bend dimensions were kept constant, the 

dimensions of the septum needed to be optimised again, because of the shorter 

electrical length between the septum and the bend. The optimisation process was 

based on simulations, in a similar way to the Tee junction. The new optimal 

dimensions for the septum were 1.0 mm and 9.7 mm for the width and length, 

respectively. Figure 3.14 shows the CAD drawing in the designed component and 

the measurement setup.  
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Figure 3.14: (a) Combined Tee junction CAD model with cross-section profile showing the septum and (b) 

2-port measurement setup for the combined Tee junction with the third port terminated with a matched load. 

 

Numerical simulation predictions and measurement results are reported in 

Figure 3.15 and 3.16, respectively. 

 

Figure 3.15: S-parameters showing the simulated transmitted and reflected power between the three ports for 

the designed combined Tee junction. 

(a) (b) 

and 
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Figure 3.16: Measured S-parameters showing the (a) transmitted and the (b) reflected power for the Tee 

junction. 

 

3.3.4 Horn antenna array 

Assuming that the signal is separated into four equal paths, with identical path 

lengths, the 4-element antenna array can be designed. The antennas chosen are H-

plane horn antennas spaced λ/2 apart; at 10 GHz, corresponding to a physical 

separation of 15 mm. The dimensions of the antenna elements were based on a 

commercial equivalent (Microwave Instruments Limited, WI 6148) with internal 

(a) 

(b) 



114 

 

horn length and width dimensions of 75 mm. The CAD design and the 3D printed 

antenna array (before and after plating) are shown in Figure 3.17. 

 

Figure 3.17: (a) Designed, (b) unplated and (c) plated 3D printed horn antenna array. 

 

The single element was simulated to predict its radiation pattern and the result 

is shown in Figure 3.18. 

(a) (b) 

75 mm 

75 mm 

(c) 
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Figure 3.18: Radiation pattern for a single H-plane horn antenna element of the array. 

 

 

Figure 3.19: Radiation pattern for antenna array without any phase delay. 

 

The antenna array was also simulated and the 3D radiation pattern shown in 

Figure 3.19. The simulation results for different progressive phase delays showing 

the beam steering are illustrated in Figure 3.20. As the fabricated phase shifter can 

achieve a maximum phase shift of approximately 120°, the progressive phase shift 

between each of the four antenna array elements was varied between 0 and 40°. 

All the results shown are for an operating frequency of 10 GHz. The -3 dB main 

lobe angular width varies between 25° and 26° and a beam steering of 3° per 10° 
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phase shift is found in the simulation range. For the antenna array a simulated 

peak gain of 51 is predicted against the simulated peak value of 13 for the single 

element. 

  

ψ: 0° 

   θ: 0° 

ψ: 10° 

 θ: 3° 

  

ψ: 20° 

 θ: 6° 

ψ: 30° 

 θ: 9° 

 

ψ: 40° 

   θ: 12° 

Figure 3.20: Radiation pattern in dB scale of the phased array antenna for different phase shift. 
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3.3.5 Adapter block 

While all the other manufactured parts have standard UBR100 flanges, Figure 

3.17 shows that the antenna array has a non-standard connection to accommodate 

the four rectangular waveguide feeds. 3D printing allowed the manufacturing of 

bespoke curved sections of waveguide with custom flanges, which allowed 

connecting the antenna array to the four phase shifters. The CAD drawing and a 

cross section of the branching adapter waveguides are illustrated in Figure 3.21. 

This structure is composed of curved sections of waveguide built in pairs. The 

radius of curvature is equal to 80 mm, approximately 2λg at a frequency of 10 

GHz, with the path length of each section identical (to keep the phase shift 

consistent between each of the four feed lines).   

 

Figure 3.21: (a) cross section of the branching adaptor block to feed the antenna, and (b) CAD drawing 

 

The signal is fed into the four phase shifters via the 3D printed splitter block, 

using Tee junctions, two mitred bends and two combined Tee junctions. However, 

the splitter block and the adapter block have orthogonal waveguide orientations; 

requiring the need for four additional twist sections. The twists were also 3D 

(a) (b) 
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printed and have a total length of 10 cm, including flanges, and a constant rotation 

gradient of 1.125°/mm. In numerical simulations, the adapter block and the twist 

show ideal performance, with return loss below 30 dB for the twist and below 50 

dB for each line of the adaptor block, across X-band. While, because of the 

bespoke flanges it was not possible to measure the performance of the adapter 

block, the designed twist was measured and the results shown in Figure 3.22. The 

complete structure is shown in Figure 3.23. 

 

Figure 3.22:  Measured S-parameters for the 3D printed twist in X-band. 

 

 

Figure 3.23: Full 3D printed phased array antenna system (including feed splitters, phase shifters and antenna 

adaptor block). 
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3.3.6 Complete system 

Although results are reported for most of the components, because of defects in 

the plating, the overall yield of fully working devices was of relatively poor. 

Moreover, due to the bespoke flanges, the antenna array and the components of 

the adaptor block could not be fully characterised. However, by cascading 

together all the simulations for each of the components in CST Design Studio, the 

ideal behaviour of the whole system was simulated. As expected, for an identical 

flap angle at each phase shifter, the four signals received by the antenna array are 

in phase. The adapter block does not introduce any phase shift between the four 

paths. However, for different flap angles, the loss introduced is different (because 

of PM-AM conversion) and, therefore, there will be a slightly different amplitude 

weighting of the signals fed to the individual antenna elements. The simulation 

results for the transmitted and reflected power, when all the phase shifters are in 

the same configuration and when a progressive phase shift is introduced, are 

shown in Figure 3.24 and 3.25. In all cases, an average value of -6.3 dB is 

observed for the power transmitted to the antenna, indicating that the input power 

is evenly split between the four feed lines. The insertion phase when a progressive 

relative phase shift is introduced is illustrated in Figure 3.26, showing a linear 

response across X-band. 
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Figure 3.24: Simulated S-parameters for the complete phased array antenna feed line system when the flaps 

for all phase shifters are fully inserted or extracted. 

 

 

Figure 3.25: Simulated S-parameters for the complete phased array antenna feed line system when the 

maximum progressive phase shift is introduced. 
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Figure 3.26: Simulated (a) insertion phase, (b) relative phase shift and (c) differential-phase group delay 

against frequency for the complete phased array antenna feed line system when the maximum progressive 

phase shift is introduced. 

 

3.4 Conclusions 

In this chapter, the design and manufacturing of a fully 3D printed phased array 

antenna is reported. Simulations indicate that the designed system would be able 

to steer the beam ±12° by adjusting the dielectric flap angle of the phase shifters. 

A larger steering angle can be achieved by using multiple phase shifter stages 

connected in cascade. Nevertheless, the manufacturing process for these more 

geometrically complex components, with plating in particular, requires 

improvements in order to obtain a performance comparable to numerical 

simulations and better yield. Repair the unplated patches with conductive paint 

(c) 

(a) (b) 
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was attempted with no success. Figure 3.27 shows an example of a failed 90° 

bend with bad plating and scarring left by the support material. 

 

Figure 3.27: Failed plating and residual scarring after the support removal on the internal mitre for a WR-90 

90° bend. 
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CHAPTER 4:   LTCC SUSPENDED STRUCTURES 

The work reported in this chapter was produced under the IeMRC grant for “3D 

microwave and Millimetre-wave System-on-substrate using Sacrificial Layers for 

Printed MEMS Components”. This project was conceived, proposed and led by 

Professor Ian D. Robertson at the Institute of Microwaves and Photonics (IMP), 

University of Leeds.  

 

4.1 Low temperature co-fired ceramic 

Glass-ceramic composite materials, such as Low Temperature Co-fired Ceramics 

(LTCCs), have been extensively used as substrates for high frequency circuits. 

This is because of their low dielectric losses (for example, having a loss tangent of 

the order of 10
-3

 for commercially available LTCC sheets) and as packaging for 

their resistance to harsh environments (i.e. high temperature or corrosive 

atmosphere). Although examples of sacrificial material-supported cavities can be 

found in the open literature, the micromachining of suspended structures for the 

development of actuators has been widely neglected, because of challenges that 

this material poses when micromachining small structures. 

Green LTCC tape is produced by pouring and casting slurry onto a supporting 

polyester or polyimide tape. The slurry is composed of a suspension of alumina 

powder (Al3O2), glass powder (SiO2), organic solvents, binders, functional oxides 

(and other aggregates). The functional oxides will also influence the sintering 

temperature, dielectric constant, thermal coefficient of expansion (TCE) and 

mechanical properties of the fired LTCC. During the firing process, the organic 
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components will outgas, leaving the powder compact ready for the sintering 

process. After firing, the LTCC will mechanically behave as a sintered ceramic 

body (hard, brittle and rigid). 

For the patterning of green LTCC, two techniques are commonly used: 

punching and laser machining. The former can form high quality vias, however, it 

presents several limitations, such as tool wear, slow speed and no possibility of 

trimming (partial material removal to reduce the substrate thickness). Conversely, 

laser machining cuts and creates vias in the substrate with a taper angle, is fast, 

has no tool wear and is capable of trimming.  In particular, the trimming ability 

makes laser machining the method of choice for the machining of suspended 

structures in LTCC. Moreover, laser cutting can also be used for the singulation of 

fired LTCC modules. 

 

4.2 LTCC Laser trimming 

The aim in the first part of this research project was to realise suspended 

structures in LTCC by using sacrificial layers and laser micromachining. 

Suspended structures such as bridges (fixed-fixed beams) or cantilevers (fixed-

free beams) are essential for the fabrication of RF MEMS. Particularly, focus was 

on the manufacturing of thin suspended beams, in order to have a low actuation 

voltage. 

The LTCC sheets used were DuPont 9K7-X [154], with a nominal thickness of 

245 µm. Due to the relatively high Young’s modulus of the fired LTCC (145 

GPa), this thickness proved to be unsuitable for the realization of compact flexible 

structures. Thus, laser micromachining was employed to reduce the thickness of 
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the LTCC sheet and then to pattern the beam. The laser system used was a LPKF 

Protolaser 100, equipped with galvo-scanner and a 13 W pulsed solid-state Nd-

YAG (1064 nm) laser. Through hands-on collaboration, the manufacturing 

process was undertaken with the Institute of Microwaves and Photonics (IMP) at 

the University of Leeds. 

The first step to developing a repeatable laser trimming process, which would 

achieve a thin membrane of LTCC with low roughness, was the study of the 

ablation of LTCC. The nominal focused laser spot size of our system has a 

diameter of 25 µm. To have a uniform distribution of energy on the substrate, the 

relationship between scanning speed and pulse frequency was fixed to obtain a 

50% overlap for each pulse giving the following 

 𝑠𝑐𝑎𝑛𝑛𝑖𝑛𝑔 𝑠𝑝𝑒𝑒𝑑 [mm/s]

𝑝𝑢𝑙𝑠𝑒 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 [kHz]
= 12.5  [μm] (4.1) 

To realize the membrane, the laser beam was raster scanned on the substrate with a scan line interval 

of 12.5 µm. Experiments were performed on a green (unfired) single 254 µm thick layer of LTCC. 

Different combinations of power and speed/frequency were tested, as shown in  

Table 4.1, to investigate the effect of the parameters on the surface roughness 

of the machined area. The choice of power range used was based on previous 

experiments, aimed at evaluating the minimum value that would generate 

observable ablation and the maximum value that would not cause damage in the 

surrounding areas after a single scan. 

 

 

 

Table 4.1: Test conditions for laser trimming of LTCC. 
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Test 

Condition 

Power,   

% 

Pulse Frequency,  

kHz 

Scanning Speed, 

mm/s 

1 50 20 250 

2 50 40 500 

3 50 80 1000 

4 60 20 250 

5 60 40 500 

6 60 80 1000 

 

Figure 4.1 shows micrographs of the machined areas after a single scan under 

six test conditions. The machining process was repeated one, five and ten times on 

each individual area. The average measured roughness is reported in Table 4.2. 

For certain combinations, no result is reported as all the material was removed by 

laser machining. 

   
Test condition 1 Test condition 2 Test condition 3 

   

   
Test condition 4 Test condition 5 Test condition 6 

   

Figure 4.1: Micrographs of the machined area for the six different parameter combinations. The clearer area 

in the bottom left corner of each micrograph is non-processed LTCC. 
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Table 4.2: Average surface roughness of the trimmed area under the six different test conditions after one, 

five and ten machining cycles.  

Test Condition 
 Average Surface Roughness 

 1 cycle, nm 5 cycles, nm 10 cycles, nm 

1  361 290 284 

2  214 220 224 

3  202 178 166 

4  1346 N/A N/A 

5  1018 617 N/A 

6  202 247 209 

 N/A indicates that no material is left due to over-machining. 

Following the surface roughness experiments, further tests were conducted to 

measure the etching rate for each machining cycle. During these tests the scanning 

speed-pulse frequency ratio was kept constant, as in the previous experiments. 

The results showed that slower scanning speed and higher power leads to higher 

etching rates. However, this rate was not constant and reduced substantially after 

the first cycle, slightly increasing as the cycles increased. This can be explained 

by different conditions of thermal dissipation, as material in the trimmed window 

decreases. 

Table 4.3: Average etch rate per cycle of the laser trimming process under the six different test conditions.  

Test Condition 
Average etch rate/cycle, nm 

1 cycle, nm +4 cycles, nm +5 cycles, nm 

1 3105 550 800 

2 2875 250 400 

3 2054 500 758 

4 75386 N/A N/A 

5 7333 1280 N/A 

6 1875 444 500 

The etch rate is defined as the average amount of material removed per cycle after the 

first cycle, after four more cycle and after a further 5 cycles. 
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Based on the previous experimental results a multi-step process was developed, 

which combines the high etching rate of low-speed and high-power machining 

with the low roughness of high-speed and low-power machining. This optimised 

process is shown in Table 4.4. The results obtained using this recipe show that a 

thickness of 90 ±3 µm could be obtained with an average surface roughness below 

200 nm. 

Table 4.4: Optimised process for LTCC trimming from 254 µm to 90 µm. 

Cycles 

Power, 

% 

Pulse Frequency, 

kHz 

Scanning Speed, 

mm/s 

4 60 40 500 

1 60 60 750 

1 60 80 1000 

30 50 80 1000 

 

Observations on LTCC laser trimming 

From the results obtained after extensive laser trimming experiments, it is 

reasonable to assume that the LTCC underwent physical change during 

machining. The high amount of localised heat generated by the infrared laser 

would lead to the evaporation of the organic binders and the sintering of the 

ceramic powder. This causes an increase in the energy needed for ablation and, 

therefore, a reduction in the etching rate. Effects of the highly localised heat were 

noticeable when laser cutting structures out of a trimmed LTCC sheet. Figure 4.2 

illustrates that glass beads were formed along the cutting contour line for two 

cantilevers. These are caused by the concentrated heat at the edge of the cut, 

which melted the glass matrix of the LTCC. This demonstrates the effect of heat 
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during laser machining and the limits in the maximum power for LTCC laser 

processing. 

 

Figure 4.2: Formation of glass beads during laser cutting of two cantilevers in LTCC. The excessive heat 

form the high laser power destroyed the cantilevers. 

 

4.3 Suspended bridges 

After the development of an LTCC laser trimming process, the next step was the 

laser cutting of the beams. Following the formation of a 90 µm thick 12 x 2 mm 

membrane in the LTCC sheet, via laser trimming, the contours of the beam 

suspension were laser-cut. Nine 2 mm long fixed-fixed beams (i.e. bridges) were 

made with three different configurations (straight, double-beam and folded 

bridges) and three widths, as illustrated in Figure 4.3. The straight and the folded 

bridges both have a designed beam width of 50, 100 and 150 µm. The double-

beam bridges each have beam widths of 50, 100 and 150 µm, with a separation 

gap of 25 µm.  

Contour line Cantilever residue 
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Figure 4.3: CAD drawing of the LTCC bridges, realized by laser trimming and cutting of a 254 µm thick 

DuPont 9k7-X sheet. 

 

 

Figure 4.4: Laser machined unfired LTCC bridges with sacrificial graphite-based paste. (a) Straight bridges, 

(b) double-beam bridges and (c) folded beam bridges. 

In order to obtain a truly suspended bridge, the trimmed area was filled with a 

graphite-based sacrificial paste and the LTCC sheet was dried in an oven at 120°C 

for 10 minutes before the beam cutting. The beams were cut as described 

(a) (b) 

(c) 

2 mm 12 mm 
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previously and the machined sheet was laminated with another plain sheet in a 

uniaxial press at 300 psi. Figure 4.4 shows the beams’ layer after the application 

of the sacrificial paste and cutting (before lamination). The obtained block was 

then fired at 850°C, according to the manufacturer’s specifications [155]. 

From a different design and manufacturing run, Figure 4.5 shows two 4 mm 

long bridges and a 2 mm length cantilever after firing, demonstrating that 

suspended structures can be achieved. However, LTCC shrinkage during firing 

(measured to be 15.75% on average on the x-y plane) caused buckling in the 

suspended bridges. This was more evident for longer bridges. 

 

Figure 4.5: SEM micrograph of 4 mm long suspended bridge and 2 mm long cantilever in fired LTCC. 

 

Buckling analysis continued by fabricating straight beams on a single LTCC 

layer, applying the same laser trimming and cutting process as before. In this case, 

4 mm long, 90 µm thick beams having widths of 50, 100 and 150 µm were 

micromachined and the buckling deformation was measured after firing. The three 

fabricated beams, illustrated in Figure 4.6 and 4.7, have a measured width of 65, 

124 and 165 µm respectively, and show buckling on different planes. The 

buckling plane is consistent with the direction of minor second moment of area 

and is caused by differential shrinkage between the laser machined beams and the 
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thicker substrate. For the 165 and 124 µm wide beams, a maximum deflection of 

251 and 289 µm is observed, respectively. For the thinner beam in the horizontal 

plane in-plane buckling is observed, with a maximum deflection of ± 183 µm.  

 

Figure 4.6:  Top view of the three 4 mm long bridges showing in-plane buckling. The highlighted curves 

show the deformation caused by the differential shrinkage, which resulted in the buckled beams. 

  

 

 

Figure 4.7: Angled view of the three 4 mm long bridges showing out-of-plane buckling. 

 

4.3.1 Beam buckling theory 

Before explaining the buckling beam theory, some relevant properties should be 

introduced. The Young’s modulus E, also known as elastic modulus and 

expressed in Pascal (Pa), is a mechanical property of linear elastic solid materials 

Deformed 

edge 
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defined as the ratio between the tensile stress applied, as force per unit area in 

[N/m
2
], and the extensional strain, as proportional elongation ΔL/L0. The second 

moment of area I is a geometrical property of an area and describes how its points 

are distributed with regard to an arbitrary axis. It is calculated as ∫ 𝜌2𝑑𝐴
𝐴

, where 

A is the area and ρ the distance from the chosen axis and its unit is length to the 

power of four [m
4
]. This geometrical property is of central importance in beam 

theory. 

For a buckled fixed-fixed beam of length L0 and with distance L between the 

anchors after buckling, as illustrated in Figure 4.8(a) the displacement v of the 

beam can be obtained from the solution of the second-order differential equation 

[156] 

 𝐸𝐼𝑣′′(𝑥) + 𝑃𝑣(𝑥) = 𝐶𝑅 (4.2) 

where E is Young’s modulus, I is the second moment of area, P [N] is the load 

and CR is a coefficient due to the reaction moment at the fixed ends, and has a 

solution in the form of 

 𝑣(𝑥) = 𝐶1 sin 𝑞𝑥 + 𝐶2 cos 𝑞𝑥 + 𝐶𝑅  [m] (4.3) 

where q
2 

= P/EI, and C1 and C2 are constants of integration to be evaluated by the 

boundary and the end conditions of the beam. With the boundary conditions,  

v(0) = v(L) = 0 and v’(0) = v’(L) = 0, for a fixed-fixed beam the result is 

 
𝑣(𝑥) = 2𝐶𝑅 sin

2 (
𝑛𝜋𝑥

𝐿
)  [m] (4.4) 

The constant CR for the fixed-fixed beam can be analytically calculated by 

solving the line integral along the sinusoidal curve of the buckled beam and 
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equating it to the original length L0 of the un-bucked beam. Unfortunately, the 

shrinkage factor of the green tape during firing makes this calculation impractical. 

However, its value can be empirically found by measuring the maximum 

displacement.  

For a buckled fixed-pinned beam of length L0 and with distance L between the 

anchors after buckling, as in Figure 4.8(b), the displacement v of the beam can be 

obtained from the solution of the second-order differential equation [156] 

 𝐸𝐼𝑣′′(𝑥) + 𝑃𝑣(𝑥) = 𝑅(𝐿 − 𝑥) (4.5) 

where R is the perpendicular reaction at each end and has a solution in the form of 

 
𝑣(𝑥) = 𝐶1 sin 𝑞𝑥 + 𝐶2 cos 𝑞𝑥 +

𝑅

𝑃
(𝐿 − 𝑥) [m] (4.6) 

With the boundary conditions, v(0) = v(L) = 0 and v’(0) = 0 for a fixed-pinned 

beam the result is 

 𝑣(𝑥) = 𝐶1[sin(𝜅𝑥) − 𝜅𝐿𝑐𝑜𝑠(𝜅𝑥) + 𝜅(𝐿 − 𝑥)]  [m] (4.7) 

where 𝜅 = 4.4934/L, obtained from the numerical solution of tan(𝜅L) = 𝜅L for the 

boundary condition of v’(0) = 0.  
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Figure 4.8: Diagram of buckled beams: (a) first-order buckling for a fixed-fixed beam, (b) first-order 

buckling for a pinned-fixed beam. 

 

4.3.2 Buckled beams measurements 

The profiles of the two wider 4 mm long beams were measured with a WYKO 

Veeco
®
 N9100 optical profiler and the result compared to the curve analytically 

calculated with (4.4). The results are shown in Figure 4.9 and 4.10. 

 

Figure 4.9: Comparison between the measured and calculated profiles for the 164 µm wide buckled beam.  
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Figure 4.10: Comparison between the measured and calculated profiles for the 124 µm wide buckled beam. 

 

The buckling observed for the thinner beam can only occur for an anti-

symmetrical fixed-fixed configuration. In other words, such buckling is obtained 

if the clamping at both ends has a defect that would force the beam to buckle in 

opposite directions. The displacement obtained can be analytically evaluated by 

considering a beam of half the length in a pinned-fixed configuration. Using such 

an approach, the analytically obtained profile is compared to the measured beam 

deflection, extracted from the SEM micrograph, and the results shown in Figure 

4.11.  
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Figure 4.11: Comparison between the measured and calculated profiles for the 65 µm wide buckled beam. 

 

For the buckling of the beams, which occurs during the firing process, the 

critical minimum load (Pcr) to generate buckling in a fixed-fixed beam is given by 

 
𝑃𝑐𝑟 𝑓−𝑓 =

4𝜋2𝐸𝐼

𝐿2
  [N] (4.8) 

While the second moment of area can be easily calculated from the beam 

cross-section dimensions, the Young’s modulus in (4.8) is associated with the 

LTCC during the sintering process, when shrinkage occurs. Although not feasible 

to accurately evaluate, it is known that the Young’s modulus during sintering is 

substantially lower than that for the fired LTCC. The reason is that, when 

shrinkage occurs, the temperature has gone beyond the glass transition point of 

the material. 

Of particular interest is the preferential out-of plane buckling direction, which 

is in the direction of the laser. This supports the hypothesis that pre-sintering 

occurs on the trimmed side and shrinkage is limited on the other side of the beam. 

For clarity, Figure 4.12 illustrates the steps of trimming, shrinkage and buckling 
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of the fired beam. As the darker layer in Figure 4.12(b) is already sintered and 

cannot shrink further, the shrinkage and compression in the beam can only occur 

in the lower part, forcing the buckling in the direction of the laser beam. 

 

Figure 4.12: Illustration of the LTCC trimming and beam buckling. (a) Full thickness LTCC sheet; (b) 

trimmed window with layer of pre-sintered LTCC (darker); (c) shrinkage of the LTCC substrate and buckling 

of the beam. 

 

4.3.3 Stress-releasing designs 

With straight bridges only, out-of-plane buckling was observed. Other beams 

made using the same process demonstrated that stress-releasing structures, such as 

the folded beams in Figure 4.13, can prevent out-of-plane buckling, but can still 

be subject to deformation due to spatially non-uniform shrinkage. After the results 

obtained for the 4 mm (anchor to anchor) long suspended structures, further 

structures were realized with different shapes to demonstrate possible alternatives 

for preventing buckling and deformation, as illustrated in Figure 4.14 and Figure 

4.15.  
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Figure 4.13: Stress-released beams showing distortion due to uneven shrinkage, with no sign of out-of-plane 

buckling. 

 

 

Figure 4.14: SEM micrograph of 2 mm (anchor to anchor) length zig-zag bridge in fired LTCC. 

 

Figure 4.15: SEM micrograph of 4 mm (anchor to anchor) length folded beam bridges with central support in 

fired LTCC. 
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4.3.4 Suspended cantilevers intended for actuation 

Following the results obtained in the machining of suspended bridges, the next 

aim was the design and fabrication structures that are intended for actuation. To 

evaluate the feasibility of fired LTCC suspended beams in electrostatically-

actuated MEMS, simulations were performed to predict their actuation voltage as 

if they were homogeneous materials (this being a gross assumptions, as will be 

seen later). Cantilevers were chosen, due to their substantially lower spring 

constant when compared to bridges, requiring a factor of ~8 lower actuation 

voltage [157].As the measurement equipment available was not able to apply 

enough pressure to cause a measurable displacement, it was not possible to 

perform quantitative mechanical tests on the manufactured beams. Therefore, in 

the numerical simulations, the values of Young’s modulus and Poisson ratio 

available from the datasheet were used; 145 GPa and 0.25 for the fired LTCC, 

respectively. A more complete characterization of the material is needed. Because 

of the brittle nature of sintered ceramic and the large number of grain boundaries, 

failure by fatigue should also be investigated. 

With the LTCC manufacturing process available at Leeds, the smallest gap 

height was defined by the minimum thickness of 30 µm achievable by the screen 

printing system. The first suspended structure considered was a cantilever 2 mm 

long, 100 µm wide and 90 µm thick. From previous productions runs, such 

cantilever beam showed no evident deformation and, therefore, this was 

considered as the starting iteration point. For such thin beams, a square top 

actuation electrode of 0.25 mm
2
 (500 x 500 µm) of area at the free end of the 

cantilever was proposed. 
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The thickness of the metallization on the actuation pad area was neglected in 

the numerical simulations, as it would not influence the mechanical behaviour of 

the beam. The simulated actuation voltage for this structure was impractical at 

948 V. Such a high actuation voltage emphasised the need for a larger actuation 

area and better beam design. After several iterations, the structure with the lowest 

actuation voltage (within manufacturing limits) was designed as a dual folded 

beam cantilever with a square actuation top electrode area of 1 mm
2
, as illustrated 

in Figure 4.16. Such a structure has an overall length of 3 mm, a simulated spring 

constant of 288.54 N/m and a calculated actuation voltage of 372 V. 

 

Figure 4.16: Dual folded beam cantilever design. 

 

With all the calculations and simulations, the gap height was considered to be 

30 µm.  Unfortunately, the extensive fabrication experiments performed by the 

University of Leeds indicated that it was impossible to control the thickness of the 

sacrificial paste (which defines the gap) and of the metallisation. Because of this, 

and the very high actuation voltage, the approach of creating beams from bulk 

micromachining of LTCC was discarded as a feasible technology for the 

manufacturing of MEMS. 
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4.4 Graphite sacrificial paste 

In the fabrication process of suspended structures, sacrificial layers play a very 

important role in supporting the beam and defining its clearance height. In the 

development of a sacrificial material, several factors need to be taken into 

account: compatibility with the materials, deposition technique and removal 

process. In standard LTCC processing, thick film deposition (i.e. screen or stencil 

printing) represents a common technique for the deposition of materials (i.e. 

conductive, resistive or dielectric pastes). Indeed, these techniques have been 

employed for the deposition of sacrificial layers in the form of mineral- or 

graphite-based pastes [43]–[45]. Of particular interest for their ease of removal 

during the firing process are graphite-based pastes. The formulation developed 

and reported by Ryser et al. at EPFL [44] contains terpineol and acetone as 

solvent and dispersant, respectively. When tested on green LTCC, it proved to be 

very aggressive, dissolving its binder and destroying the substrate if not dried in 

an oven immediately after deposition. This effect was accentuated when the paste 

was applied on the trimmed regions. To overcome this, in parallel with the LTCC 

laser trimming work, a novel formulation was developed using water as solvent 

and fructose as binder. Water, used in the development process of photoimageable 

LTCC pastes, (e.g. DuPont Fodel
®
 [158] and Hibridas [159] pastes), does not 

attack the green LTCC binders. Fructose was used for its very high water 

solubility and for the way it decomposes at high temperatures. Fructose is a 

monosaccharide, the simplest form of carbohydrates, and has a chemical 

composition of C6H12O6. If fructose is heated in air, at a temperature greater than 

600°C, it will decompose into carbon dioxide and water, the reaction being 
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C6H12O6 + 6O2 = 6 CO2 + 6 H2O. In principle, this leaves no residue on the 

substrate after the firing process, which reaches a maximum temperature of 

850°C. The developed paste is prepared by mixing 2 grams of graphite powder 

(TIMCAL TIMREX KS10 [160]), with an average particle size of 6 µm and 1 

gram of fructose in 10 ml of de-ionised water. The mixture is stirred manually and 

sonicated at 40°C for 30 minutes in a sealed vial. After application via stencil 

printing, the paste is dried for 10 minutes on a hotplate at a temperature 80°C.  

Examples of screen printed graphite paste on LTCC, before and after firing, are 

shown in Figure 4.17. 

 

Figure 4.17: Example of sacrificial graphite paste stencil printed on LTCC (a) before fiding, and (b) after 

firing. 

 

If the printed paste is further heated at 120°C for 20 minutes, the fructose 

breaks down and polymerizes, forming longer chains, in the process commonly 

known as pyrolysis or caramelization in case of saccharides. This procedure 

(a) 

(b) 
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would increase the mechanical stability and adhesion of the graphite printed layer, 

making it also a suitable candidate as a resistive material for the printing of 

heaters. Experiments were performed by stencil printing tracks of graphite paste 

on alumina, as shown in Figure 4.18. The resistivity of the layer was measured 

and for a 50 µm thickness layer an average sheet resistance of 22 Ω/sq was 

obtained. In Figure 4.19 a fabricated demonstrator heater and its thermal image 

are shown. The resistance between the two terminals of the stencil printed heater 

was 134 Ω and tested up to a temperature of 300°C. Although no degradation was 

observed during measurements, more accurate tests, such as thermal cycling and 

solvents compatibility, should be performed to evaluate the suitability of the paste 

for applications in real devices. 

 

Figure 4.18: Graphite sacrificial paste stencil printed on alumina. 

 

Figure 4.19: (a) Photograph of the stencil printed heater with contact pads printed with silver paste, and (b) 

thermal image of the heater. The brown marks on the substrate were caused by the over-heating of the 

residues of the glue from the adhesive mask used during stencil printing during the curing process on the 

hotplate.  

(a) (b) 
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4.5 Conclusions 

In this chapter the laser machining and trimming of green LTCC is studied. 

Through a multi-step process, feature sizes as small as 65 µm are obtained in the 

horizontal plane and a repeatable minimum thickness of 90 µm is achieved by 

laser micro-machining, with surface roughness below 300 nm. After firing, the 

buckling deformation of the laser machined beams is studied. The results indicate 

a different shrinkage rate for the beams and the bulk LTCC and show signs of 

laser-induced pre-sintering. Eventually the formulation of a water-based graphite 

sacrificial paste is reported. Such paste also showed resistive properties suitable 

for heating applications.  
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CHAPTER 5:  RF MEMS ELECTROSTATIC ACTUATION 

As illustrated in the previous chapter, MEMS employ bridges and cantilevers to 

enable switches and varactors to be implemented. Different techniques have been 

used for the actuation of MEMS bridges and cantilevers, including electrostatic 

and magnetic attraction, thermal expansion, or piezoelectric actuation, to obtain 

beam displacement [161]–[163]. The most common technique is electrostatic 

actuation. The reason is that even though high voltages are required, there is 

almost no current; requiring virtually no control power to hold the structure in its 

“actuated” state. In this chapter, a new and more accurate model for cantilever 

electrostatic actuation is presented and compared with the textbook model, 

showing an improvement prediction in actuation voltage when compared to 

numerical modelling. 

 

5.1 Cantilever beam spring constant calculation 

Before explaining the actuation mechanism, it is important to introduce some 

basic concepts of beam theory for rectangular cross-section cantilever beams. In 

particular, the value of spring constant under different load conditions is a 

fundamental parameter to calculate, as both the beam reaction force and the 

actuation voltage are a function of spring constant. 

The spring constant of a cantilever beam can be derived from its deflection at 

the tip, through Hooke’s law  

 
𝐹 = 𝑘𝛿  [N] (5.1) 
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where F is the applied load, k is the spring constant and δ is the mechanical 

deflection.  

Consider a beam with length l, width w and thickness t loaded at the free end, 

as illustrated in Figure 5.1, the deflection at any point along this beam is described 

by [156] 

 
𝛿(𝑥) =

𝐹𝑥2

6𝐸𝐼
(3𝑙 − 𝑥)  [m] (5.2) 

where δ(x) is the deflection at x, E is the Young’s modulus of the beam’s material 

and I is the second moment of area, which is defined as 

 
 𝐼 =

𝑤𝑡3

12
  [m4] (5.3) 

 

Figure 5.1: Illustration of beam deflection with a concentrated load at the free end. 

 

For x = l, (5.2) gives  

 
𝛿𝑐 =

𝐹𝑙3

3𝐸𝐼
  [m] (5.4) 

where δc is the maximum deflection for a concentrated load applied at the free 

end. When the width of the beam w > 5t the equivalent Young’s modulus Eeq = 

E/(1- ν
2
) should be used, where ν is the Poisson ratio. 
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Figure 5.2: Illustration of beam deflection with a distributed load. 

 

For a beam with a distributed load, from xL to l, as shown in Figure 5.2, the 

displacement δd at the free end can be calculated by integrating (5.2) from xL to l 

 
𝛿𝑑 = ∫

𝜉𝑥2(3𝑙 − 𝑥)

6𝐸𝐼
𝑑𝑥

𝑙

𝑥𝐿

  [m] (5.5) 

where ξ represents the load per unit length, giving a total load F = ξ(l - xL).  

In this case, the displacement at the free end is given by 

 
𝛿𝑑 =

𝐹𝑙3

24𝐸𝐼

3 − 4(𝑥𝐿 𝑙⁄ )3 + (𝑥𝐿 𝑙⁄ )4

1 − (𝑥𝐿 𝑙⁄ )
  [m] (5.6) 

Substituting (5.4) and (5.6) into (3.1) gives the spring constant for the 

concentrated load kc and distributed load kd, respectively. 

 
𝑘𝑐 =

3𝐸𝐼

𝑙3
   [N m⁄ ] (5.7) 

 
𝑘𝑑 = 8𝑘𝑐

1 − (𝑥𝐿 𝑙⁄ )

3 − 4(𝑥𝐿 𝑙⁄ )3 + (𝑥𝐿 𝑙⁄ )4
   [N m⁄ ] (5.8) 
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Similarly, for a triangular load distributed along the whole length of the 

cantilever, shown in Figure 5.3, it can be shown that displacement at any point 

along the cantilever and the maximum displacement are given by 

 
𝛿(𝑥) =

𝐹𝑥2𝑙2

60𝐸𝐼
(20 − 10(𝑥 𝑙⁄ ) + (𝑥𝐿 𝑙⁄ )3)  [m] (5.9) 

 
𝛿𝑡 =

11F𝑙3

60EI
  [m] (5.10) 

where 𝐹 = 𝜉0𝑙 2⁄  and 𝜉0 is the maximum load at the free end of the cantilever. 

The spring constant can then be obtained by  

 
𝑘𝑡 =

60𝐸𝐼

11𝑙3
   [N m⁄ ] (5.11) 

 

 

Figure 5.3: Illustration of beam deflection with a triangular load. 

 

5.2 Cantilever beam electrostatic actuation 

To calculate the actuation voltage for electrostatically actuated beams, the model 

described in [28] is commonly used. In this subsection, this model is reproduced 
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and the principles of electrostatic actuation explained. An example of an 

electrostatically actuated cantilever is illustrated in Figure 5.4. 

 

Figure 5.4: (a) Top view, (b) side view and (c) isometric view of a cantilever with fixed actuation electrode. 

 

By applying a potential difference between the fixed actuation electrode and 

the conducting beam, the resulting electrostatic force Fe that attracts the beam 

towards the lower electrode on the substrate can be expressed as [17] 

 
𝐹𝑒 =

1

2
𝑉2
𝑑𝐶(𝑔)

𝑑𝑔
= −

1

2

𝜀0𝐴𝑉
2

𝑔2
  [N] (5.12) 

where 

 
𝐶(𝑔) =

𝜀0𝐴

𝑔
  [F] (5.13) 

is the capacitance between the two electrodes, ε0 is the permittivity of vacuum, A 

= wp is the overlapping area of the beam and the electrode (as illustrated in Figure 

5.4), g and V are the gap height and voltage applied between them, respectively. 

The ideal electromechanical model used here is of a parallel plate capacitor with 

(b) 

(a) 

(c) 
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fixed and moveable plates, as illustrated in Figure 5.5; fringing field are assumed 

to be negligible with 𝑔 ≪ (𝑤, 𝑝). 

 

Figure 5.5: Electromechanical model of an electrostatically actuated MEMS. 

 

As the beam moves towards the electrode, it is subject to an increasing 

electrostatic force, until a balance is obtained between the electrostatic attraction 

and the beam’s restoring force Fr [28], described by 

 
𝐹𝑟 = 𝑘(𝑔0 − 𝑔) ≡ 𝐹𝑒   (5.14) 

where g0 is the maximum gap height. 

Solving (5.14) for voltage one arrives at the following textbook expression [5] 

 

𝑉(𝑔) = √
2𝑘

𝜀0𝐴
𝑔2(𝑔0 − 𝑔)   [V] (5.15) 

Figure 5.6 plots gap height against applied voltage, giving two possible beam 

positions for every applied voltage, caused by the positive feedback of the 

attraction force Fe. After the gap height reaches 𝑔 = (2 3⁄ )𝑔0, the increase in Fe is 

higher than the increase in restoring force Fr, which results in the instability of the 

beam distance and collapse of the actuated state.  
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Figure 5.6:  Cantilever height versus applied voltage with w = 200 µm, p = 500 µm, g0 = 10 µm, t = 13 µm, l 

= 1000 µm and k = 9.74 N/m (for aluminium). Calculated pull-down voltage is 62.9 V. The dotted line 

represents the unstable region. 

 

The point of instability can be calculated by setting the derivative of (5.15) 

with respect to the gap 𝑔 to zero; the value of g at which the instability occurs is 

found to be exactly two-thirds of 𝑔0. For example, the plot in Figure 5.6 is for an 

aluminium cantilever (E = 69 GPa). Therefore, the corresponding “pull-down” or 

“pull-in” voltage is found to be given by the well-known expression 

 

𝑉𝑝 = 𝑉 (𝑔 =
2𝑔0
3
) = √

8𝑘𝑔0
3

27𝜀0𝐴
   [V] (5.16) 

With (1.13), the thickness and permittivity associated with a thin dielectric 

layer on top of the lower electrode have been neglected. However, if the dielectric 

layer needs to be considered, the value of capacitance 𝐶(𝑔) needs to include the 

capacitance due to the dielectric in series with the capacitance in air. For a layer of 

dielectric of thickness d, the associated capacitance is 𝐶𝑑 = 𝜀0𝜀𝑟 𝐴 𝑑⁄ , giving a 

total capacitance value of [164] 
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C(𝑔) =

𝜀0𝐴

𝑔 + 𝑑 (
1
𝜀r
− 1)

  [F] 
(5.17) 

However, for calculating the “hold-down” voltage required to hold the beam in 

its actuated position, the dielectric needs to be taken into account. There are other 

factors that should also be considered, such as stiction and the roughness of the 

electrodes. As a first approximation, a reasonable assumption is that the beam will 

follow in its fully actuated position if the applied voltage creates a force greater or 

equal to the beam restoring force [28]. The effect of the fringing field can be 

included by considering an effective beam width weff in the calculation of the area 

A [165]. 

 𝑤𝑒𝑓𝑓 = 𝑤 + 0.65(𝑔0 − 𝑔) (5.18) 

The cantilever structure considered here can be used to perform both switch 

and variable reactor (varactor) functionalities. Indeed, for any applied voltage 

lower than the actuation threshold (i.e. pull-down voltage), the resulting 

displacement of the beam causes a change in the capacitance between the 

electrodes.  

 

5.3 Other models for actuation voltage prediction 

Several alternative models have been developed for the derivation of a closed-

form equation, for a more accurate prediction of the actuation voltage of 

cantilevers. In [166] several other different models are employed in the 

calculation of the capacitance value of the parallel plate capacitor. Ideally, these 

should include fringing field capacitance, which can include the finite thickness 
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and external faces of the electrodes. However, due to the parallel plate geometry, 

an arbitrarily chosen correction factor is needed to match the numerical 

simulations results. In [167] a model involving the cantilever deflection in the 

calculation of the electrostatic force is reported. This model, which uses a non-

uniform distribution of force along overlapping area between the cantilever and 

the fixed electrode, provides good predictions of the pull-down voltage with an 

error within 3%. Nevertheless, it makes use of a single empirically determined 

deflection curve obtained from numerical simulations for all load conditions. In 

the following subsection a more rigorous approach is considered for the prediction 

of the pull-down voltage and two cantilever deflection profiles are illustrated for 

different fixed electrode length and cantilever length ratios. 

 

5.4 Improved model for the actuation voltage calculation 

The textbook model represents a good approximation when the length of the 

cantilever is 2 to 3 orders of magnitude larger than the maximum cantilever 

displacement. However, when the beam displacement exceeds this amount, the 

parallel-plate capacitor approximation becomes invalid and the actual profile of 

the beam has to be taken into account. Having said this, a capacitive membrane 

switch can be realized by exploiting the low capacitance when there is no 

actuation voltage and the high capacitance when snap-down occurs. Figure 5.7 

shows the structure and variables used for the following calculations.  
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Figure 5.7: Illustration of beam deflection under electrostatic actuation. 

 

In order to obtain a more accurate model, the capacitance between the fixed 

actuation electrodes has to be calculated according to the deflected shape of the 

cantilever. Therefore, its profile over the fixed actuation electrode needs to be 

found. Substituting the spring constant in (5.7) and Hooke’s law, with 𝛿 = 𝛿𝑐 =

(𝑔0 –  𝑔), into (5.2), the displacement 𝛿(𝑥) can be rewritten as 

 
𝛿(𝑥) =

𝑘𝑐𝛿(3𝑙 − 𝑥)𝑥
2

2𝑘𝑐𝑙
3

=
(𝑔0 − 𝑔)(3𝑙 − 𝑥)𝑥

2

2𝑙3
  [m] (5.19) 

The displacement along the beam is now independent of the spring constant 

and expressed only as a function of its length and maximum displacement. With 

the known profile of the cantilever, the distance 𝑔(𝑥) can be obtained as 𝑔(𝑥) =

𝑔0 − 𝛿(𝑥). The function found is then used to calculate the capacitance per unit 

length as 

 
𝑑𝐶 =

𝜀0𝑤 

𝑔(𝑥)
𝑑𝑥  [F] (5.20) 
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Assuming the dimensions of overlapping surface area of the two electrodes is 

much larger than the separation gap, the electrostatic force between them can be 

calculated by integrating the force per unit length 

 
𝐹𝑒 = ∫ (

𝜀0𝑤 

𝑔(𝑥)
𝑑𝑥)

2 𝑉2

2𝜀0𝑤 𝑑𝑥

𝑙

𝑥𝐿

= ∫
𝜀0𝑤𝑉

2

2(𝑔(𝑥))2 𝑑𝑥

𝑙

𝑥𝐿

𝑑𝑥  [N] (5.21) 

The relationship between the applied voltage and gap 𝑔 can be obtained by 

combining (5.20) and (5.21) and equating to the reactive force given by Hooke’s 

law. 

 
𝑉(𝑔) =

√2𝑘𝑑𝜀0𝑤(𝑔0 − 𝑔)

𝐶(𝑔)
   [V] (5.22) 

where 𝐶(𝑔) is the total capacitance given by the integration dC over the interval 

(xL, l) The spring constant k is replaced by the distributed load kd here, as given in 

(5.8). In this chapter this model will be regarded as the uniformly distributed load 

model. 

For the same cantilever beam, the results obtained with the textbook and 

uniformly distributed load models, are compared with those obtained through 

numerical simulations (using COMSOL Multiphysics
®
) and shown in Figure 5.8. 

It shows good agreement between the improved model and the simulation, with a 

predicted actuation of 76.6 V against the simulated 76.9 V.  
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Figure 5.8: Gap height against applied voltage for the standard and the improved model, compared with 

COMSOL Multiphysics simulation results. 

 

The model derived here gives accurate predictions of the pull-down voltage 

when the length of the fixed electrode 𝑝 < 0.6𝑙 due to the approximation of the 

deflection profile, considered as the one for a concentrated load at the tip. When 

the fixed electrode is longer than 0.6 times l, the model for a triangular 

distribution of load on the whole length of the cantilever gives a more accurate 

prediction respect to the previous model. In this case the cantilever profile 𝑔(𝑥) 

obtained from (5.9) and the spring constant kt in (5.11) will be used.  

To prove the validity of the improved uniformly and triangular distributed 

models, the predicted pull-down voltage when compared to textbook model 

predictions were compared with numerical simulations for different gap and 

cantilever length ratios. The results are given in Table 5.1 for an aluminium 

cantilever with width w = 200 µm, thickness t = 13 µm, gap 𝑔0 = 10 µm and 

electrode length p = 500 µm.  
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Table 5.1: Predicted pull-down voltage for different cantilever lengths using the textbook model, the new 

model and numerical simulations. 

Electrode-

cantilever 

length ratio 

Cantilever 

Length, 

µm 

Pull-down Voltage, V 

Textbook 

model 

Uniform 

model 

Triangular 

model 

Numerical 

simulation 

0.9 550 192.3 272.4 260.4 242 

0.77 650 138.7 187.6 180.6 175 

0.67 750 105.8 137.9 133.5 132.2 

0.5 1000 62.9 76.6 75.1 76.6 

0.4 1250 42.8 50.2 49.4 51.7 

0.33 1500 31.6 36 35.5 37.4 

0.25 2000 19.7 21.7 21.5 22.9 

 

 

Figure 5.9: Comparison between the predicted pull-down voltage against cantilever length – gap height ratio, 

using the textbook model, improved model and numerical simulations.  

 

In Figure 5.9, it can be seen that the improved models always provide a better 

prediction when compared to the textbook model. Across the range considered, 

the latter provides best-case error of 16%, while one of the triangular distributed 

model has a worst-case error of 7%, as shown in Figure 5.10. This error can be 

further reduced if the force is considered to have a trapezoidal distribution on the 
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portion of cantilever above the fixed electrode. However, while being more 

rigorous, this would only give marginally improved predictions. 

 

Figure 5.10: Percentage error from the numerical simulation for the textbook and improved models. 

 

This more accurate model provides a powerful tool for the design of cantilever 

MEMS. The good agreement between the simulation and this closed-form 

analytical solution demonstrates the validity of this methodology, which only 

requires a fraction of the computational cost respect to finite element simulation. 

The results obtained with the uniformly and triangular distributed load models 

are then compared to the ones reported in [167]. In this case a cantilever of 

dimensions l = 200 µm, w = 50 µm and t = 3 µm, with Young’s modulus of 57 

GPa and Poisson ratio of 0.33 is considered. The maximum gap height is fixed at 

2 µm and the length of the fixed electrode varies between 5% and 100% of the 

length of the cantilever. The comparison results for pull-down voltage and error 

against numerical simulations are shown in Figure 5.11 and 5.12, respectively, 

where it can be noticed that the model reported in [167] has a very good fit with 

the numerical simulation results. The figures also highlight the transition point at 
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an electrode length - cantilever length ratio of 0.6 for the uniform and triangular 

distributed load models. 

 

Figure 5.11: Comparison between the predicted pull-down voltage against electrode length - cantilever 

length ratio, using the textbook model, the two improved models, the model reported in [167] and numerical 

simulations. 

 

 

Figure 5.12: Percentage error from the numerical simulation for the textbook model, the two improved 

models, for the model reposted in [167]. 
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5.5 Conclusions 

In this chapter an originally formulated analytical solution in closed form for the 

calculation of the pull-in voltage for electrostatically actuated cantilevers is 

reported. The solution proposed, with its related model, is able to give more 

accurate predictions respect to a widely accepted textbook model with an error 

lower than 7% respect to numerical simulations for the cases analysed. The 

developed model and solution are then compared with another model later found 

in the open literature. This model gives even more accurate results, but it is based 

on a cantilever deflection profile obtained by numerical simulations. The model 

here developed, however, is more rigorous and based on beam theory analysis. 
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CHAPTER 6:  HYBRID LTCC-FOIL MEMS 

From lessons learnt fabricating structures that could potentially be actuated using 

micromachined LTCC, it was decided to change materials and assembly processes 

to implement real electrostatically actuated MEMS on LTCC. In this chapter two 

approaches for the manufacturing of cantilever MEMS will be considered. These 

techniques rely on the laser bending of aluminium and thin-film photoresist-based 

assembly, respectively. 

 

6.1 Laser bent Aluminium foil cantilever MEMS 

In standard MEMS technology, the separation gap between the actuation 

electrodes is defined via a sacrificial layer. However, as explained previously, this 

approach was not considered viable for integration in LTCC processing. 

Moreover, the high Young’s modulus of LTCC and the minimum thickness 

repeatably achievable via laser trimming would not allow the manufacturing of a 

practical switch. In order to solve these problems, aluminium (Al) foil was 

employed as the cantilever material. The use of laser bending with metals allows 

the beam to be deformed into the desired shape. 

 

6.1.1 Laser bending 

Laser bending technology, also known as laser forming, employs the introduction 

of thermal-induced stress into the material to cause a controlled deformation of 

the part; this was originally developed for rapid prototyping applications [168]. 
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This technique, similar to laser surface heat treatment, involves the scanning of a 

de-focused laser beam on the surface of the object to bend; usually metal foil. An 

illustration of the process is shown in Figure 6.1. 

 

Figure 6.1: Illustration of straight line laser bending process [169]. 

 

In the open literature, it is possible to find several studies of this process, such 

as experimental studies, analytical models, stress, thermal and accuracy analysis 

[169]–[174]. The use of this process has also been reported for high precision 

adjustments of silicon micro-cantilevers for sensing applications [175], [176]. 

While the laser bending is mostly used to create concave bends, as shown in 

Figure 6.1, it should be noted that, under specific conditions, it is also suitable for 

the introduction of convex bends (i.e. away from the laser). These conditions 

include pre-bending, pre-straining or laser-induced buckling of constrained 

samples [171], [177]. 

In a study by Ocaña et al. laser bending of thin metal foils was suggested as a 

suitable technique for the manufacturing of MEMS [178] and, more recently, 

Robben et al. developed an active frequency selective surface using stainless steel 

foil [179] that was laser machined, bent and could be electrostatically actuated. 
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6.1.2 Laser-bent cantilevers 

With laser bending, the conventional structure of a cantilever MEMS can be 

simplified. Figure 6.2(a) illustrates a conventional cantilever MEMS structure and 

Figure 6.2(b)-(c) show the laser-bent cantilever MEMS fabrication process. It can 

be seen that with this alternative manufacturing technique the gap distance is not 

defined via a sacrificial layer and also the spacer layer at the anchor point is no 

longer needed. 

  

Figure 6.2: (a) Conventional MEMS cantilever; (b) Alternative cantilever structure before laser treatment 

and (c) post-laser treatment. 

 

In this process the gap distance is defined by the aluminium cantilever bending 

angle. The actuation voltage is applied between the conducting cantilever and the 

bottom fixed electrode. Unlike the conventional structure, the gap is not constant 

along the length of the cantilever and increases progressively. For this reason the 

minimum gap distance near the edge of the fixed actuation electrode, where the 

electrostatic actuation force is greater, is particularly important. Any variation in 

the bending process would cause a change in the bending angle and, therefore, of 
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the gap distance; with increasing error along the length of the cantilever. To 

reduce the effect of manufacturing tolerances in the bending process, the fixed 

electrode needs to be as close as possible to the anchor, leaving only the distance 

needed for the laser bending.  

However, once the minimum gap distance is fixed, positioning the bottom 

actuation electrode closer to the cantilever anchor caused the cantilever to have a 

steeper bending angle and, therefore, a very large gap distance at its free end. The 

obvious consequence is an increase in the actuation voltage. For the same reason, 

having a larger overlapping area, by increasing the length on the cantilever, has 

only limited advantages. To overcome this issue the spring constant of the 

cantilever was reduced by removing material in the bending area. Figure 6.3 and 

6.4 show the top and side view for the designed laser bent cantilever MEMS, 

respectively, with all the dimensions.  
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Figure 6.3: Top view of the laser-bent aluminium foil cantilever. 

 

 

Figure 6.4: Side view of the laser-bent aluminium foil cantilever. 

 

The designed cantilever is 1 mm wide and 1.9 mm long and 13 µm thick, with 

a bending angle of 1.7° and a bending region 400 µm long, defining a minimum 

gap height of 15 µm. With this ideal configuration the fixed electrode is 1.5 mm 

long and at the free end the gap height is 60 µm. Numerical simulations for the 

designed cantilever show a predicted actuation voltage of 180 V with such a 
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structure. As the aluminium foil is electrically conducting, this cantilever can be 

used as a switch. In this case, the cantilever MEMS is directly positioned between 

the ground plane and the signal line on a coplanar waveguide (CPW), to act as an 

RF shunt switch, as illustrated in Figure 6.5. For such devices, self-actuation (due 

to high RF signal power levels) is expected to occur above 
(180 𝑉)2

50 Ω
= 648 𝑊 of 

power [180]; representing no practical limitation for LTCC. 

 

Figure 6.5: Laser-bent cantilever on CPW line in shunt switch configuration. 

 

In this configuration, the actuation voltage is applied between the ground plane 

and signal line metallization on the LTCC substrate. With this first design 

iteration, the system does not include the dielectric layer (usually found on the 

fixed electrode) and the cantilever is acting as an ohmic contact shunt switch. 

However, such thin dielectric layers can be easily added, without detrimental 

effects on the behaviour of the switch, which would then act as a capacitive shunt 

switch. 

Further applications include the use of this cantilever as a variable capacitor 

(varactor). Numerical simulations show a zero-bias capacitance of 456 fF, rising 
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to 565 fF, equivalent to a 24% increase or 11% frequency tuning ratio, for an 

applied voltage of 175 V. Larger capacitance values can be obtained by increasing 

the width of the cantilever, without influencing the actuation voltage and, 

therefore, the tuning voltage or the range percentage. 

 

6.1.3 Fabricated cantilever switches 

Based on this design, proof-of-concept samples were fabricated at the University 

of Leeds. The cantilevers, which were positioned between the ground plane and 

the signal line of a CPW, as previously illustrated in Figure 6.5, were fixed using 

ultrasound wedge bonding. The CPW line section was designed to have an 

impedance of 50 Ω with two tapered transitions at the ends to allow measurements 

with a 200 µm pitch ground-signal-ground probe. Twelve 10 mm long sections of 

CPW line, arranged in a 3×4 matrix, were created on a 50×50 mm, four layer 

thick (~1 mm) LTCC substrate. For the metallization, a 33×33 mm, 30 µm thick 

square area is screen printed with silver paste (DuPont LL612 [181]) and then the 

twelve line sections are patterned via laser machining, before firing. The 

dimensions of the individual CPW line sections are illustrated in Figure 6.6. Note 

that the wrap-around ground straps were accidentally removed during the 

manufacturing process. 
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Figure 6.6: CPW line section with dimensions. 

 

On the LTCC substrate, a design variation was also implemented to increase 

the electrodes overlapping area with little effect on the spring constant, by the 

introduction of flared cantilevers. With these modified cantilevers, the bent 

section (representing the major contribution to the spring constant of the 

cantilever) is only marginally wider. The advantage is an approximately 33% 

increase in the overlapping area, resulting in an overall predicted actuation voltage 

reduced by approximately the same percentage. In order to have a greater number 

of devices to test, and to compensate for the asymmetric nature of the cantilever 

structure with respect to the CPW, two cantilevers were applied per line section. 

Moreover, based on these two designs, shorter symmetric cantilever structures 

were also implemented. Two of the twelve CPW line sections were left empty, to 

be used as a reference. The designed and manufactured foil cantilevers on CPW 

are shown in Figure 6.7. From the microscope photographs in Figure 6.8 of the 

two cantilever designs, it is possible to see the darker laser induced stress region 

and the wedge bonding spots used to fix the foil to the ground plane. 
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Unfortunately manufacturing limitations at the University of Leeds prevented the 

machining of the three holes to increase the cantilever compliance.  

 

 

Figure 6.7: (a) Design layout and (b) fabricated twelve CPW line sections and cantilevers on LTCC. 

 

 

Figure 6.8: Microscope photograph of (a) a rectangular cantilever and (b) a flared cantilever. 
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After measurements under the microscope it was found that beyond the 

missing holes, the fabricated cantilevers did not reflect the designed ones. 

Irregularities in the anchor area caused an initial gap between the ground plane 

and cantilever, and the laser-induced stress caused larger bending angles than 

expected. Both these defects increase the gap between the cantilever and the 

bottom electrode, therefore, also increasing the actuation voltage. The measured 

cantilever heights at the anchor (point I), at the end of the laser-induced stress area 

(point II) and at the free end (point III), as illustrated in Figure 6.9, are reported in 

Table 6.1. The analysis focused on the full length cantilevers. 

 

Figure 6.9: Measurement points for the laser-bent cantilevers. 

 

Table 6.1: Cantilever height at the three measurement points. 

Cantilever ID Point I Point II Point III 

Ideal 0 15 60 

1-1 Top (R) 48 98 309 

1-1 Bottom (R) 14 47 193 

1-2 Top (F) 37 50 156 

1-2 Bottom (F) 31 68 254 

2-1 Top (F) 58 73 213 

2-1 Bottom (F) 43 60 192 

3-3 Top (R) 40 81 154 

3-3 Bottom (R) 39 65 229 

I II III 

0 400 1900 
L (µm) 
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The cantilevers are identified by row and column of the matrix. (R): Rectangular, (F): Flared. 

 

The full length cantilevers were then tested for deflection using a Veeco 

Dektak
®

 3ST contact surface profiler. The downward force was applied on the 

cantilever by the profiler stylus, which was swiped from Point II towards Point 

III, stopping at a length of 1600 µm, to prevent the profiler stylus from slipping 

out of the cantilever and hitting the substrate. The acquired data for one of the 

rectangular cantilevers, normalised to the original un-deformed cantilever profile, 

is given in Figure 6.10. From the ratio between the force applied and the 

displacement it was possible to calculate the spring constant of each cantilever 

and, therefore, the Young’s modulus of the aluminium foil.  

 

Figure 6.10: Displacement for the 3-3 Bottom rectangular cantilever for different applied loads. 

 

For calculating Young’s modulus, the rectangular cantilevers were considered, 

due to the simplicity of the calculation; in practice it is a property of the material 

and not related to the shape. As the displacement is measured for the point 

directly under the load, (5.4) is given for a concentrated load at the free end of a 
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rectangular beam. The average of the calculated Young’s moduli for the four 

rectangular cantilevers, reported in Table 6.2, is 24.35 GPa with a standard 

deviation of 1.6 GPa.  

 

Table 6.2: Young's moduli for the rectangular full length cantilevers. 

Cantilever ID 
Young’s Modulus (E)  

GPa 

1-1 Top 25.2 

1-1 Bottom 21.8 

3-3 Top 26.1 

3-3 Bottom 24.3 

 

To confirm the measured results, one of the fabricated cantilevers was 

reproduced in COMSOL Multiphysics
®
 and re-simulated. The good match for the 

displacement against applied force between the measured and simulated results 

can be seen in Figure 6.11. It should be noted that the average value of 24.3 GPa 

for the Young’s modulus deviates significantly from the 69 GPa for pure 

aluminium. This large difference could be associated with the material 

composition and manufacturing process of the domestic grade kitchen foil used. 

However, the lower value is beneficial towards lower actuation voltages. 
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Figure 6.11: Comparison between the measured and simulated (Young’s modulus of 24.3 GPa) displacement 

against applied load, for the top cantilever at location 3-3. 

 

After the mechanical measurements, the cantilevers were tested for 

electrostatic actuation. The voltage was applied between the signal line and the 

ground plane of the CPW using DC probe needles. The results are shown in Table 

6.3. One of the cantilevers (2-1 Top Flared) was tested up to 630 V, however 

breakdown occurred and no actuation was observed. Moreover, from the 

measured results, it can be seen that the actuation voltage substantially deviates 

from the expected value; mostly due to the poor repeatability of the fabrication 

process. Further problems found include the high tendency of sparking for the 

flared cantilevers, due to the higher charge accumulation at the sharp corners and, 

in general, stiction of the cantilever to the bottom fixed electrode; probably due to 

micro-welding. Fortunately, most of the cantilevers could be released from their 

‘actuated’ state and tested again. The cycle lifetime for these cantilever switches 

varied between 1 and 18 actuations. 

 

Table 6.3: Average actuation voltage for the full length rectangular and flared cantilevers. 

Cantilever 

touching the 

substrate 
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Cantilever ID 
Actuation 

Voltage, V 
Cycle Lifetime 

Ideal 180 - 

1-1 Top (R) 515 4 

1-1 Bottom (R) 430 1 

1-2 Top (F) 330 2 

1-2 Bottom (F) 324 18 

2-1 Top (F) No Actuation - 

2-1 Bottom (F) 415 2 

3-3 Top (R) 505 7 

3-3 Bottom (R) 405 8 

 

Because of the issues found in this approach, most importantly the lack of 

control of the bending process, the laser bent cantilever structure was abandoned 

in favour of a simpler topology with a more controllable fabrication process. 

 

6.2 Aluminium foil cantilevers on photoresist 

With the results obtained from the laser-bent cantilevers, two remaining 

challenges were a consistent definition of the gap height and the micro-welding of 

the cantilever after actuation. The solution to both problems was identified to be 

the use of spin-coated photoimageable polymer (i.e. SU-8 photoresist in our case) 

to define the gap height at the anchor point and to create a thin dielectric layer on 

the bottom actuation electrode. In contrast to thick film deposition techniques (i.e. 

screen and stencil printing), spin coating allows a highly controlled deposition of 

layers.  
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In the new design the foil cantilevers are still laser-cut, but no bending is 

introduced. In this case, a dual-folded cantilever is considered. The newly adapted 

design is illustrated in Figure 6.12, with dimensions reported in Table 6.1. With 

this design, a uniform gap height of 10 µm is defined by the thickness of the spin-

coated SU-8. Because of the reduced distance between the cantilever and the 

CPW signal line, the dimensions of the latter were also reduced, in order to 

decrease the OFF-state capacitance. The dimensions of the CPW signal line and 

spacing were limited by the minimum feature size that the laser can pattern on the 

screen-printed silver paste, which is 50 µm. In order to have a characteristic 

impedance of 50 Ω, with a CPW spacing of 50 µm, the line width was set to 190 

µm. With these dimensions, the OFF-state capacitance was calculated as 45.47 fF 

and the on-state as 1.68 pF, considering parallel plate model with a 1 µm thick 

dielectric passivation SU-8 layer with a dielectric constant of 4.2 [182]. 

 

Figure 6.12: (a) Top and (b) isometric view of the CAD model for the folded foil cantilever. 
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Table 6.4: Dimensions for the newly designed dual folded cantilever. 

Dimension Description µm 

P 
Bottom electrode 

length 
600 

C 
Bottom electrode 

width 
1800 

L 

Cantilever 

freestanding 

length 

700 

W Cantilever width 350 

LB Bridge length 1650 

WB Bridge width 250 

 

The main advantage of this structure, over the previous one, is that now the 

actuation voltage is applied between the ground plane and an isolated electrode, 

eliminating the need of the bias Tees to isolate the measurement equipment from 

the high actuation voltages. Also, the risk of self-actuation from very high RF 

signal power levels is avoided in practice. 

This structure was designed to have an actuation voltage of 90V. Here, (5.22) 

for a triangular force distribution was used to define its length. Numerical 

simulations using COMSOL Multiphysics
®
, shown in Figure 6.13, confirm this 

prediction, with an actuation voltage of 89 V. 
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Figure 6.13: Numerical simulation for the actuation voltage of the designed folded beam cantilever. 

 

6.2.1 Fabricated cantilevers 

A prototype design was submitted for fabrication. The University of Leeds 

subsequently delivered variations of this design. These devices were arranged in 

pairs, having a cantilever length of 700, 800, 900 and 1000 µm, as shown in 

Figure 6.14. The bottom actuation electrode length was adapted accordingly. 

 

Figure 6.14: (a) Photograph of the set of eight folded cantilevers fabricated and (b) micrograph of a 700 µm 

long cantilever. 

 

(b) (a) 

700 µm 
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The fabrication process flow, illustrated in Figure 6.15 (provided by the 

University of Leeds), consists of: (i) multiple spin-coating and soft baking of SU-

8 to form the dielectric and spacer layers, (ii) positioning of the laser machined 

foil cantilevers, (iii) hard baking and (iv) ultrasound wedge bonding for the 

cantilever electrical connection to the CPW ground plane. According to the 

process described, the agreed 10 µm separation gap was changed to 5 µm. 

 

 

Figure 6.15: Suspended cantilever fabrication process flow. 

 

Geometrical measurements were recorded at the five key point using the Veeco 

Wyko
®
 N9100 optical profiler, as shown in Figure 6.16, and the results reported 

in Table 6.5. 

Screen printed and Fired LTCC substrate 

4 µm thick layer of SU-8 

Exposition and Development 
1 µm thick layer of SU-8 (unbaked) 

Al foil cantilever positioning and 

Hard baking 
LTCC 

Ag 
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Figure 6.16: (a) Isometric 3D view of a measured cantilever and (b) top view indicating the five 

measurement points. 

 

Table 6.5: Measurement results (in microns) from the optical surface profiler for the five key points. The 

cantilever is identified by their length and the position on the sample. 

Cantilever ID Point I Point II Point III Point IV Point V 

Ideal 10 10 10 10 10 

700-Lx 12 19 20 34 6 

700-Rx 7 8 7 8 6 

800-Lx 6 3 5 2 2 

800-Rx 8 27 6 24 6 

900-Lx 9 6 10 13 4 

900-Rx 3 10 3 6 6 

1000-Lx 4 15 20 14 4 

1000-Rx 5 4 19 25 6 

Average 6.75 11.5 11.25 15.75 5 

 

Consideration after the geometrical measurements 

After observing the devices under a microscope and optical profiler, several 

deviations from the original design could be identified. Even though the cantilever 

dimensions appear correct, the gap height, which was changed from 10 µm to 5 

I 

IV III II 

V 

(b) (a) 
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µm, is inconsistent across the devices and between the two sides within the same 

cantilever. The gap height tends to increase from the anchor points (Points I and 

V) to the free end (Points II and IV), where it mostly matters in defining the 

actuation voltage. The average gap height across the fabricated device is relatively 

close to the designed value. Moreover, the signal line width of the CPW was 

changed and the wrap-around ground tracks at the ends of the line were omitted.  

 

6.2.2 Actuation tests 

After recording all the geometrical parameters, the values at points II and VI were 

averaged for every device and the actuation voltage predicted using the model 

described in Chapter 5; the same as the one used in the design. The cantilevers 

were then tested for actuation. The voltage was applied between the CPW ground 

plane and the two actuation electrodes. Although, after visual inspection under a 

microscope, no electrical connection was observed between the ground plane or 

cantilever and the actuation electrodes, five of the fabricated devices resulted 

short-circuits. Moreover, dielectric charging effects had to be taken into account 

during measurements; the applied voltage polarity had to be frequently reversed. 

Eventually, despite a reported breakdown voltage of 433 ± 16 V/µm for SU-8 

[183], every actuation resulted in a short circuit – indicating that the passivation 

layer was either missing, defective or contaminated with conductive materials. 

Stiction was not observed for these devices and none of the cantilevers could be 

actuated more than three times before losing functionality. 

The values of the average gap height, predicted and measured actuation voltage 

are reported in Table 6.6. 
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Table 6.6: Predicted actuation voltage for the eight fabricated cantilevers. 

Cantilever 

ID 

Avg. gap 

height, µm 

Predicted 

actuation voltage, 

V 

Avg. 

measured 

actuation 

voltage, V 

Ideal 10 90 - 

700-Lx 26.5 389 Short 

700-Rx 8 65 Short 

800-Lx 2.5 9 Short 

800-Rx 25.5 280 310 

900-Lx 9.5 51 80 

900-Rx 8 39 Short 

1000-Lx 14.5 77 93 

1000-Rx 14.5 77 Short 

 

6.3 Conclusions 

In this chapter, two approaches for the manufacture of low-cost cantilever MEMS 

on LTCC are proposed and its limitations evaluated. Since some of the devices 

could actuate, this indicates the validity of the concept. The greatest obstacle to 

overcome is the establishment of a reliable and repeatable fabrication and 

assembly process. Such process would require automated equipment that can 

avoid the tolerances associated with hand assembly and would most likely be 

suitable for large-scale manufacturing. With these conditions, both solutions 

presented could represent a promising technology for the integration of low-cost 

MEMS on LTCC. 
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CHAPTER 7:  LASER MICROMACHINING  

                  FOR SILICON MEMS RAPID PROTOTYPING 

7.1 Overview 

MEMS fabrication using conventional techniques such as reactive ion etching 

(RIE) and wet etching requires expensive equipment setups and the process can 

take up to several weeks between completion of design and device fabrication. 

These challenges can be a major limitation for designers of such devices when it 

comes to fabricating functional prototypes. Laser machining has found 

widespread application for wafer dicing, particularly for thin substrates, and 

research has been focused on improving ablation rate, cutting speed and edge 

quality [184]–[186]. In recent years laser micromachining has further become the 

subject of ongoing study in MEMS rapid prototyping research. Existing literature 

on silicon laser micromachining has focused mainly on three aspects: (i) the 

influence of laser system factors (i.e. wavelength, power and pulse energy) [187]–

[190]; (ii) the influence of laser system-independent machining strategies (i.e. 

marking speed, pulse overlap, focusing) [187], [189], [191]–[193]; (iii) the effect 

of ambient conditions, such as pressure, assist gases or under-water machining 

[188], [194], [195]. Most studies have focused on improving ablation rate and 

machining time, only occasionally assessing the cutting quality, by evaluating 

metrics such as cut wall verticality and surface roughness. However, the 

fabrication high quality, high aspect ratio silicon structures using laser 

micromachining has hardly been addressed in the open literature. In particular, 

laser micromachining of beam structures, which are essential structural elements 



184 

 

in MEMS, has been largely neglected in the literature until now. In this chapter 

the fabrication of high quality, high aspect ratio silicon beam structures using a 

diode pumped solid state (DPSS) UV laser system is investigated.  

In this study the Taguchi design of experiment (DOE) method is used to 

evaluate the effect of selected influencing factors on the fabrication time, the 

beam sidewall surface roughness and the sidewall verticality. 

 

7.2 Materials and methods 

7.2.1 Experimental Setup 

The laser machining setup used in this study consisted of a Spectra-Physics Talon 

solid state UV laser with a wavelength of 355 nm and a pulse width of 30 ns 

[196], a SCANLAB hurrySCAN II
®

 galvo-scanner with a telecentric f-Theta 

scanning lens with 50×50 mm working area and 140 mm working distance, and an 

ASI MS-2000 XYZ motorized stage. The setup is illustrated in Figure 7.1. 

 

Figure 7.1: Photo of the laser micromachining setup indicating all its components. 

 

The laser machining system was completed with a microscope, an air blower, 

an extractor and a beam expander, with all the components being assembled in a 

Scanner UV DPSS Laser 

Machining 

chamber 
Stage 

Microscope 

Stage 

controller 
Beam expander 
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purposely designed enclosure. A frame grabber with graphical user interface was 

also developed, providing calibration and measurement capabilities. 

The laser and the scanner are controlled through the SCANLAB laserDESK
®
 

software. Laser power measurements were obtained by placing an Ophir Nova-

Display laser power meter with 10A-V1 detector head in the beam path after the 

scanner. An overview of the measured laser power over the relevant pulse 

repetition frequency range for representative values of laser diode current is 

provided in Figure 7.2. Note that the linear characteristic of the power versus 

pulse frequency indicates a constant pulse energy throughout the frequency range.  

 

Figure 7.2: Graph of the measured laser power against pulse frequency for different diode currents and pulse 

energies. 

 

7.2.2 Test methodology 

Taguchi design of experiment method 

The Taguchi DOE provides an efficient way of optimizing the performance of a 

product or process. This efficiency is accomplished through the use of orthogonal 

arrays, which allow the tester to conduct fewer experiments than in a full factorial 
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study (i.e. one in which all parameter combinations are tested). This is especially 

beneficial as the number of factors to be studied increases, or when tests are time 

consuming or expensive. The underlying optimization approach of the Taguchi 

method is twofold: the design is optimized to achieve a performance which is 

closer to the target and to reduce variability of the performance [197].  

 

Performance metrics and machining factors 

In this study the performance metrics to be optimized were the machining time 

and the average surface roughness Ra and verticality of the beam side walls. 

Machining time is a metric to quantify the rapid prototyping potential, while 

surface roughness and sidewall verticality influence the mechanical behaviour of 

the structure. A total number of five influencing factors were studied which 

comprise laser and cutting strategy parameters: (A) pulse frequency, (B) diode 

current, (C) pulse overlap, (D) number of patterns, and (E) gap size. The pulse 

overlap PO is a function of marking speed v, frequency f and laser spot size ss on 

the Si wafer. The relationship is given in (7.1). 

 𝑣 = 𝑓 ∙ 𝑠𝑠 ∙ (1 − 𝑃𝑂)  (7.1) 

The spot size, defined as the diameter of the laser-damaged region on the 

substrate, was measured to be an average of 32 μm on the Si for shallow 

machining lines and single-pulse exposures. This was considered constant for the 

following experiments, since no significant variation was noticed over the range 

of diode current investigated. The “number of patterns” parameter refers to the 

number of cut lines parallel to the contour cut line and “gap size” being the 
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distance between them. These parameters will be explained in details in section 

7.2.3, with Figure 7.3. 

In preliminary tests the upper and lower thresholds for each machining factor 

were determined. These threshold values were chosen for each factor so that a 

reproducible through-wafer cut could be obtained with any combination. The 

range found for each factor was then divided into four levels in order to obtain a 

meaningful representation of said range, while maintaining a feasible number of 

required test runs. An overview of the factor levels is given in Table 7.1. 

 

Table 7.1: Influencing factors and corresponding levels. 

Symbol Factor Name 

Factor Level 

Level 1 Level 2 Level 3 Level 4 

A Frequency (kHz) 5 10 15 20 

B Diode Current (A) 4.5 5 5.5 6 

C Pulse Overlap (%) 60 70 80 90 

D 
Number of 

Patterns 
3 4 5 6 

E Gap Size (µm) 15 20 25 30 

 

Orthogonal array 

To be able to select a suitable orthogonal array for this experiment with five 4-

level factors, the total degree of freedom (DOF) was calculated. The orthogonal 

array dimension, which represents the minimum number of tests and comparisons 

that has to be made to be able to determine the optimum level, has to be greater 

than the DOF of the process [198]. The DOF of a factor X can be calculated with  
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 𝐷𝑂𝐹𝑋 = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐿𝑒𝑣𝑒𝑙𝑠 − 1 (7.2) 

The total DOF of the experiment will not only depend on the number of levels 

and factors, but also on interactions between factors, if present. In the first part of 

this study factor interactions were neglected as no correlation effects that could 

influence the results could be identified a priori. Furthermore, following 

Taguchi’s recommendation to “dig wide, not down” [197] it was decided to rather 

study more individual factors than factor interactions. 

When interactions between the factors are assumed to be non-existent, the total 

DOF is found by adding the factor DOFs and, with five 4-level factors, this results 

in a total DOF = 15. The minimum orthogonal array dimension is found as (DOF 

+ 1). In our case the L`16 (modified L16) orthogonal array was selected for the 

experiment (Table 7.2). Noise factors, which are influencing factors hard or too 

expensive to control such as ambient conditions (e.g. atmospheric pressure and 

humidity), are not considered in this study. If controlled, their effect can be taken 

into account by considering an additional orthogonal array, defined as the “outer 

array”. 
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Table 7.2: L'16 orthogonal array. 

Orthogonal Array 

Test Condition 

Factors and Levels 

A B C D E 

1 1 1 1 1 1 

2 1 2 2 2 2 

3 1 3 3 3 3 

4 1 4 4 4 4 

5 2 1 2 3 4 

6 2 2 1 4 3 

7 2 3 4 1 2 

8 2 4 3 2 1 

9 3 1 3 4 2 

10 3 2 4 3 1 

11 3 3 1 2 4 

12 3 4 2 1 3 

13 4 1 4 2 3 

14 4 2 3 1 4 

15 4 3 2 4 1 

16 4 4 1 3 2 

  

7.2.3 Test procedure 

In order to study the effects of laser parameters on the performance metrics, fixed-

fixed beams were laser machined from bulk silicon. Two vertically aligned 

rectangles were cut as shown in Figure 7.3 to obtain the double-sided clamped 

beam structure. A beam design with a width of 100 μm and a length of 10 mm, 
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was chosen. The length of 10 mm was chosen because considered to be in excess 

what required for a device. The width was chosen to be comparable with the spot 

size, but large enough to ensure ease of handling and survival after machining. 

Thinner beams showed increased level damage, particularly in the middle, and 

breaking. 

 

Figure 7.3: Figure illustrating the original and the redundant patterns used for the laser machining of a 10 

mm long, 100 µm wide fixed-fixed beam out of a 525 µm thick silicon wafer. 

 

Based on the results obtained in previous work [199], between 2 and 5 

redundant patterns were added to the original pattern. Redundant patterns are 

scaled-down copies of the original pattern. These offset cuts allow for a wider 

trench. By adding these redundant patterns a through-wafer cut and full release of 

the rectangles can be ensured. The spacing between the patterns, in the following 

defined as “gap size”, is uniform around the perimeter. One repetition consisted of 

first machining all lines of the lower rectangle and then those of the upper one, 

starting from the innermost pattern and proceeding outwards. 

All experiments were conducted at atmospheric pressure and a temperature of 

20°C. The set of 16 tests was repeated three times, yielding a total of 48 beams 
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machined to be analysed. The experiments for each of the three test sets were 

performed in a different order to randomize the experiment.  

 

7.2.4 Test post-processing 

Cleaning 

After machining, residual debris was observed, in the form of a white powder, in 

the area surrounding the beam and on the cut sidewalls. After observations under 

an SEM microscope and X-ray spectroscopy, the debris was confirmed to be 

silicon dioxide (SiO2). Although loosely attached, due to the very delicate nature 

of the structures, cleaning techniques such as ultrasound could not be employed; 

therefore, a more selective, less aggressive technique had to be adopted. 

Prior to the analysis, the machined wafers were cleaned in a hydro-fluoric acid 

(HF) solution (20 ml of 50% HF, 400 ml H2O). The cleaning procedure consisted 

of a five minute immersion in the HF solution followed by rinsing the wafer with 

de-ionized water and drying with a nitrogen air gun. 

Analysis of silicon beams 

After manufacturing the machining time was recorded and, after cleaning, the 

sidewall verticality and surface roughness were measured.  

Machining time, measured as the time from the beginning of the machining 

process until both rectangles (Figure 7.3) have been fully cut through, was 

obtained from the SCANLAB laserDESK
®
 software as the time interval between 

the beginning of the machining process and the interrupt signal invoked by the 

observer. 
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Figure 7.4: Symmetrical trapezoidal cross section of the laser machined beam used for the calculation of the 

taper angle. 

 

For the analysis of the verticality of the beams it was assumed that the shape of 

the beam cross section was a symmetric trapezoid as shown in Figure 7.4. 

Microscope images of the beam at both clamped end, from the top (machining 

side) and bottom were taken and the beam width measured. Under the assumption 

of a uniform and symmetrical slope, the taper angle of the trapezoid was then 

calculated using the measured top and bottom widths of the beam. The average of 

the two measurements taken was considered for the further analysis. The surface 

roughness of the beam side wall was analysed using a surface profiler. 

Three 1.3 mm length scan lines along the beam were recorded (top, middle, 

bottom of the side wall) for each beam and, from the 2D plot obtained, the mean 

profile roughness was calculated. An example for the surface roughness 

measurement is shown in Figure 7.5. 
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Figure 7.5: Example for the surface roughness measurement process from the data collected by the optical 

profiler. 

 

Calculation of S/N ratio 

Following the Taguchi method, the experimental results were analysed based on 

their signal-to-noise (S/N) ratio. By using S/N ratios, the optimum factor level, 

which is the level that shows the least variation around the target as well as an 

average result closest to the target, can easily be determined [197]. Furthermore, 

S/N ratio analysis indicates the effect a factor has on the performance metric. 

Essentially, the S/N ratio represents the mean square deviation (MSD) of the 

observations converted to a logarithmic scale. When calculating the MSD it is 

possible to choose between three quality characteristics: Smaller-is-better, Larger-

is-better and Nominal-is-best. As the desired value for all performance metrics is 

preferred as small as possible, in this experiment the Smaller-is-better quality 

characteristic was used and the MSD was calculated by 

 

𝑀𝑆𝐷 =
1

𝑁
∑𝑦𝑖

2

𝑁

𝑖=1

  (7.3) 

where yi is the measured value and N the number of observations per parameter, 4 

in this case. The S/N ratio therefore is obtained by 

Scan Line 
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 𝑆 𝑁⁄ = −10 log10(𝑀𝑆𝐷)  (7.4) 

The experimental results as well as the corresponding S/N ratio for each test 

condition are shown in Table 7.3. Because the experimental layout is considered 

orthogonal, the effect of each factor on the quality metric could be extracted from 

the data. This was done by calculating the mean S/N ratio for each level of a 

factor. For example, the mean S/N ratio for ’Frequency’ at Level 1 was calculated 

by taking the mean of the calculated S/N ratios for test condition 1-4. Likewise, 

the S/N ratios for test conditions 5-8, 9-12 and 13-16 were considered for level 2, 

3 and 4 respectively. Using these results the effect graphs for each performance 

metric were obtained. 
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Table 7.3: Mean of test results and calculated S/N ratio for the L'16 orthogonal array. 

T
es

t 
C

o
n

d
it

io
n

 Results 

Mean 

Surface 

Roughness 

(µm) 

Mean 

Taper 

Angle 

(deg) 

Mean 

Machining 

Time  

(s) 

S/N Ratio 

for 

Surface 

Roughness

(dB) 

S/N Ratio 

for Taper 

Angle 

(dB) 

S/N Ratio 

for 

Machining  

Time  

(dB) 

1 0.44 2.92 1235 6.969 -9.311 -61.832 

2 0.44 3.46 946 7.115 -10.797 -59.517 

3 0.72 3.38 688 1.742 -10.688 -56.775 

4 2.01 2.96 495 -6.145 -9.493 -53.906 

5 0.66 5.53 670 3.395 -15.051 -56.996 

6 0.43 6.33 527 7.336 -16.036 -54.449 

7 0.37 2.52 352 8.684 -8.043 -50.947 

8 0.50 3.19 301 6.037 -10.082 -49.572 

9 0.38 4.81 474 8.162 -13.640 -53.522 

10 0.71 3.47 291 2.107 -10.822 -49.288 

11 0.88 4.90 226 0.032 -13.954 -47.089 

12 0.43 3.08 226 7.073 -9.795 -47.070 

13 0.61 4.70 291 4.090 -13.456 -49.268 

14 0.46 3.04 192 6.691 -9.827 -49.676 

15 0.63 4.41 204 4.032 -12.898 -46.179 

16 0.50 4.84 193 5.955 -13.713 -45.699 

 

7.2.5 Performance prediction and validation tests 

Based on the results obtained from the data analysis, the performance of the 

machining process at optimal factor levels can be estimated for each of the 

performance metrics. An estimate of the S/N ratio at optimal levels (η) can be 

calculated by 
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𝜂 = 𝜂̅ +∑(𝜂𝑖 − 𝜂̅)

𝑚

𝑖=1

  (7.5) 

where 𝜂̅ is the mean of the S/N ratio of all 16 test conditions, ηi the mean S/N 

ratio at optimal level for the i
th

 factor and m the number of influencing factors, 

which is 5 for this experiment. The obtained value for η is in decibel and it can be 

converted to the corresponding metric’s unit (i.e. seconds, degree or μm) by first 

substituting it into (7.4) to obtain the MSD, and then taking its square root.  

 

7.3 Results and discussion  

In this section the means S/N ratios for each parameter, relative to the machining 

time and the sidewall verticality and surface roughness, are shown in Figure 7.6, 

7.7 and7.8, respectively. The optimum level for a factor can be identified as being 

the one with the highest mean S/N ratio. Furthermore, the factor which displays 

the greatest range of mean S/N ratios is the one with the greatest effect on the 

performance of the process. Conversely, a factor with a small range has little 

effect on the performance. From these results, an optimised recipe and 

performance are predicted. Finally, in Table 7.4, the results of the optimised 

recipe are compared to the best and worst results from the Taguchi orthogonal 

array. 

 

7.3.1 Machining time 

The results for machining time, shown in Figure 7.6, indicate that the optimal 

condition for minimizing processing time is: Frequency = 20 kHz, Diode Current 
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= 6 A, Pulse Overlap = 90%, Number of patterns = 4, Gap Size = 30μm. 

Moreover, it was found that the factor Frequency (Factor A) has the largest effect 

on the machining time. These results also show that, within the investigated range 

of the factors, high pulse energy and high fluence are desired for a short 

machining process. The results for gap size suggest that a larger distance between 

the patterns decreases the machining time. It appears that as the gap size 

approaches the laser spot size (32 μm) the laser energy is used more and more 

efficiently in the ablation process, leading to a faster cut. In validation tests it was 

shown that using the optimal condition the average machining time is 102 s (see 

Table 7.4), while previously, the best result had been 192 s (Test condition 14). 

Comparing the result of the optimal condition with the worst result of the 

orthogonal array test conditions – 1235 s obtained with Test condition 1 – 

demonstrates the performance improvement that can be obtained. Moreover, it 

was shown that the experimental results for the optimal condition even 

outperform the estimated 125 s obtained from (7.5) (shown in the right hand 

column of Table 7.4). 
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Figure 7.6: Mean S/N ratio effect graph for machining time. The dashed line represents the total mean S/N 

ratio (Appendix I-C). 

 

7.3.2 Taper angle 

The predicted optimal condition for minimizing taper angle was found to be: 

Frequency = 5 kHz, Diode Current = 6 A, Pulse Overlap = 90%, Number of 

patterns = 3, Gap Size = 15 μm. The dominating effect for this performance 

characteristic is the number of redundant patterns (Factor D), as illustrated in 

Figure 7.7. The results for diode current, pulse overlap and gap size show a clear 

trend towards high fluence being beneficial for reducing the taper angle. 

Furthermore, the fact that low frequency is paired with high pulse overlap 

indicates that slow marking speed is desired in achieving a small taper angle. 

Referring to Table 7.4 and comparing the estimated performance from (7.5) 

(1.66°) to the experimentally obtained values when using the suggested optimal 
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condition (2.56°), it appears that the theoretical estimation over-estimates the 

achievable performance. Moreover, it was found that the best condition of the 

orthogonal array (Test condition 7) yields similar results to those of the optimal 

condition suggesting two optima. Both of these findings indicate a possible 

correlation between the factors, which was neglected in this study. 

 

Figure 7.7: Mean S/N ratio effect graph for taper angle. The dashed line represents the total mean S/N ratio 

(Appendix I-D). 

 

7.3.3 Surface roughness 

Surface roughness is expected to be minimized for the following condition: 

Frequency = 10 kHz, Diode Current = 5 A, Pulse Overlap = 80%, Number of 

patterns = 3, Gap Size = 20 μm. From Figure 7.8 it can be seen that the 

dominating factor for this performance metric is the gap size (Factor E). Similar to 

the findings for taper angle the average result of the experimental validation tests 
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did not show good agreement between the predicted optimal condition  of 0.44 

μm and the estimated performance from (7.5) of 0.19 μm. While the optimal 

condition yields a surface roughness which is able to compete with the best result 

obtained it was found that several test conditions of the orthogonal array from 

Table 7.2 (i.e. condition 1, 2, 6, 7, 9 and 12) yield similar results to or even 

outperform the optimal condition. Again, this behaviour is thought to be due to 

correlation between factors. Table 7.4 compares the achieved surface roughness 

using the optimal condition with the best (Test Condition 7) and worst (Test 

Condition 4) results of the orthogonal array test conditions. A prospective view 

for the beam surface roughness obtained with the optical surface profiler for these 

three beams is shown in Figure 7.9. 

 

Figure 7.8: Mean S/N ratio effect graph for surface roughness. The dashed line represents the total mean S/N 

ratio (Appendix I-E). 
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Figure 7.9: Veeco 2D scans showing the sidewall surface profiles of the laser machined beams for (a) test 

condition 4, (b) test condition 7, and (c) predicted optimal condition. The best result was obtained for test 

condition 7. In all the pictures the bottom side of the beam to the right. 

 

 

 

 

 

(a) (b) 

(c) 

Top 
Bottom 



202 

 

Table 7.4: Experimental results of the optimal condition and estimated performance compared to the best and 

worst result of the orthogonal array test conditions from Table 7.2. 

Performance 

Metric 

Test Condition 

Name 

Test Condition 

Code 

Result 

1 

Result 

2 

Result 

3 
Mean 

Estimated 

Performance 

Taper Angle 

(deg) 

Taguchi Optimal 

Condition 
A1/B4/C4/D1/E1 2.64 2.56 2.49 2.56 1.66 

Test Condition 7 

(Best) 
A2/B3/C4/D1/E2 2.41 2.63 2.53 2.52  

Test Condition 6 

(Worst) 
A2/B2/C1/D4/E3 6.59 6.21 6.21 6.33  

Surface 

Roughness 

(µm) 

Taguchi Optimal 

Condition 
A2/B2/C3/D1/E2 0.41 0.43 0.48 0.44 0.19 

Test Condition 7 

(Best) 
A2/B3/C4/D1/E2 0.32 0.39 0.39 0.37  

Test Condition 4 

(Worst) 
A1/B4/C4/D4/E4 1.60 2.09 2.33 2.01  

Machining 

Time (s) 

Taguchi Optimal 

Condition 
A4/B4/C4/D2/E4 102 102 102 102 125 

Test Condition 14 

(Best) 
A4/B2/C3/D1/E4 182 190 204 192  

Test Condition 6 

(Worst) 
A1/B1/C1/D1/E1 1206 1246 1252 1235  

 

7.4 Improved Taguchi DOE with interactions 

Although the results obtained with the previously shown analysis are relatively 

satisfactory, further investigation was needed to understand the possible effect of 

factor interactions on the performance metrics. In order to obtain such 

information, an analysis of variance (ANOVA) study was performed on the 

samples.  

The ANOVA is a statistical inference procedure for determining the degree of 

internal variability between two or more groups of data. This method is usually 

applied on experimental data to determine the impact that independent variables 
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have on the dependent variable (i.e. how relevant is a parameter on a process 

outcome). It also helps to understand if the collected data follows a trend (the data 

is meaningful), or not (the data is noisy or random). The noise in the collected 

data can be evaluated by the error term in the ANOVA results. For example, a 

high value for error term indicates noisy data. 

In our case the ANOVA highlighted that interactions were most likely between 

gap size, pulse overlap and frequency for the surface roughness. For the taper 

angle interactions were most likely between number of patterns, pulse overlap and 

frequency (Appendix I-F). As the results for the machining time already 

outperformed the predictions, further investigation on this performance metric 

was not performed.  

With this newly acquired knowledge, two new orthogonal arrays were 

developed to perform a Taguchi DOE which took into account the effect of 

interactions. The two arrays were designed to optimise the surface roughness and 

taper angle, respectively. In this case, due to the increased DOF, the L27 array 

(i.e. twenty-seven tests) was chosen. The set of 27 experiments was performed 

twice for each of the two performance metrics under analysis, giving a total of 

108 fabricated and measured beams. While the value range for each factor was not 

changed, with this new array only three levels were used. For the number of 

patterns, values three to five were chosen, as, during the previous tests, six lines 

yielded worse results. 

After the measurements, the mean S/N ratio was calculated for each array. The 

results for the surface roughness and taper angle are reported in Figure 7.10 and 

7.11, respectively. 
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Figure 7.10: Mean S/N ratio effect graph for surface roughness for the improved DOE. The dashed line 

represents the total mean S/N ratio (Appendix II-A). 

 

 

Figure 7.11: Mean S/N ratio effect graph for taper angle for the improved DOE. The dashed line represents 

the total mean S/N ratio (Appendix II-B). 

 

An ANOVA test was eventually performed on these new sets of results to 

understand the contribution of each factor and interactions on the machining 

process. The results for the surface roughness and taper angle are reported in 

Table 7.5. 
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Table 7.5: ANOVA results indicating the contribution, in percentage, for each of the factors and interactions 

towards a good surface roughness and taper angle. Negative percentages are a mathematical artefact and are 

related to factors with little to no contribution. 

Factor 
Contribution (%) 

Surface Roughness Taper Angle 

A – Pulse frequency 1.26 -1.29 

B – Diode current 8.94 -4.81 

C – Pulse overlap 13.33 31.64 

D – Number of patterns 11.25 14.57 

E – Gap size 28.27 6.50 

Interaction A  C 11.85 -2.99 

Interaction A  D N/A -2.89 

Interaction A  E 10.72 N/A 

Interaction C  E -2.20 N/A 

Interaction D  E N/A -6.55 

Error 16.58 65.82 

Total 100 100 

 

From the results it can be seen that the taper angle ANOVA has a very high 

error. This can be associated with the curved profile for the side wall cross 

section. Indeed, some of the but beams did not show a trapezoidal cross section, 

as shown in Figure 7.4, but have a flared cross section, with a curved wall profile. 

It is supposed that this introduced further uncertainty in the measurement and, 

therefore, the high error. 

Although the ANOVA results indicate relatively high error percentages, the 

factors with higher contributions are still clearly indicated and agree with the 
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values of the mean S/N ratio. From the obtained results, predictions for an 

optimised recipe could be obtained. For the surface roughness the predicted 

optimised recipe is:  Frequency = 12.5 kHz, Diode current = 5.25 A, Pulse overlap 

= 75%, Number of patterns = 3, Gap size = 22.5 µm. For the taper angle the 

predicted optimised recipe is: Frequency = 5 kHz, Diode current = 5.25 A, Pulse 

overlap = 90%, Number of patterns = 3, Gap size = 15 µm. 

Confirmation test beams were then laser machined to prove the validity of 

these new recipes. The predicted surface roughness and taper angle for the 

confirmation tests are 0.22 µm and 1.23°, respectively. For the surface roughness 

recipe a value of Ra = 0.27 µm was measured, while for the taper angle a value of 

2° was found. Although the values obtained are not better than some of the results 

obtained during the array measurements, they are comparable with the best results 

obtained and the predictions. During measurements values as low as 0.25 µm for 

the surface roughness and 1.5° for taper angle were obtained. As the obtained and 

predicted values are relatively close, the measurements uncertainty can be 

considered to have relevant impact on the predicted recipes. Moreover, factors 

that were not included in the Taguchi DOE could have influenced the results. In 

later tests it was noticed that a low air flow from the blower during machining has 

adverse effects on the wall verticality. This may be related to the debris 

accumulating in the laser machined trench and cause loss of repeatability in high 

precision laser machining.  

Finally, it should be remembered that the Taguchi DOE not only aims at 

finding an optimal recipe, but also at developing a reliable and repeatable process. 

Indeed, the obtained beams, although not optimal, were of very good quality. 
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7.5 Laser machined beams for devices 

For the development of micromechanical devices, the cross section was 

considered the most relevant factor for the mechanical properties a beam. 

Therefore, the recipe optimised for taper angle was employed in the development 

of thin beams. The beam design used in the tests had a depth of 525 µm (silicon 

wafer thickness) and a nominal design width of 100 µm, giving an average top 

width of 70 µm. This value is consistent with the design width of 100 µm less 32 

µm laser spot size. The beam width in the design was progressively reduced from 

100 µm to 40 µm, eventually leading to a beam with a top width of only 13 µm 

and a bottom width of 26 µm, equivalent to a taper angle of 1.4°. The improved 

taper angle might be associated with the design width reduction. As the beam 

width changes, the thermal mass of the ablated structure is reduced and the 

ablation process increases in efficiency, leading to a greatly improved taper angle. 

It should be noted that the reported dimensions and taper angle are comparable 

with the typical feature size and taper angle achievable with DRIE. A micrograph 

of the beam is shown in Figure 7.12. 

 

Figure 7.12: SEM micrograph of a 13-26 μm wide beam laser machined using the optimal condition for taper 

angle, resulting in an average aspect ratio of 26.9. 
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After the laser machining of such thin beams, damages could be observed in 

the central part of the beam. This damage is associated with vibrations caused by 

the laser etching process. Indeed, during laser machining the laser pulses make the 

beams vibrate and the resulting deflection puts the beam in the path of the laser. 

To overcome this issue the silicon substrate was glued to a glass carrier. A 

mixture of 2:1 water and commercial washable PVA glue was used, due to its 

ease of release in hot water.  

Based on this beam dimensions, a double folded suspension with micro-

grippers was designed and machined. The design and the manufactured device are 

shown in Figure 7.13. 

 

Figure 7.13: (a) CAD drawing and (b) laser machined double folded suspension micro grippers. 

 

While clamped-clamped beams are inherently stable structures, the release of 

the device from the surrounding silicon posed some challenges. To help the water 

penetrate through the cut lines, the gaps remaining after fabrication were widened 

(a) (b) 

15 mm 

27 mm 

40 µm 
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by further laser machining of the redundant patterns only. However, the surface 

tension of the water was still sufficient to make separation of the device from the 

surrounding silicon. Therefore, after release from the glass carrier, the water was 

removed and the device, still sitting on the carrier, immersed in isopropyl alcohol. 

The surface tension of the alcohol, being approximately three times smaller, 

considerably helped the release of the device without damage. Eventually the 

suspension frame was glued on a silicon carrier substrate using 50 µm thick 

double sided tape. 

 

7.6 Conclusions 

In this study the influence of some of the most relevant laser machining factors on 

machining time, surface roughness and verticality of thin silicon beams was 

analysed using the Taguchi design of experiment method and ANOVA. After 

preliminary results were obtained, the interactions between factors were taken into 

account and optimised factor combinations were predicted and tested in validation 

tests. The measured values were compared to the theoretically predicted results. 

As shown in this study, machining of the test structure can be accomplished in 

102 seconds using the optimized machining settings, indicating the influence of 

high pulse energy and fluence in rapid machining. Although high verticality 

through-wafer cutting can be associated with the same machining conditions, the 

time for a full cut increases sixfold. This indicates that a compromise between cut 

verticality and processing time is theoretically possible by increasing the pulse 

frequency and scanning speed accordingly, keeping the same pulse overlap.  
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With the developed process sidewall surface roughness and verticality of the 

silicon beam can be significantly improved to reach 0.27 μm and 2°, respectively. 

Although it could not be established that the obtained best values for surface 

roughness, verticality and aspect ratio represent the optimum, the obtained results 

are considered satisfactory. Indeed, the obtained recipes led to the fabrication of 

very high aspect ratio beams and a complete mechanical device, demonstrating 

the feasibility of this technology for MEMS prototyping. 
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CHAPTER 8:  CONCLUSIONS 

8.1 3D Printing of microwave and millimetre-wave passive components 

3D printed and electroless plated metal-pipe rectangular waveguides in FDM and 

SLA technology have been demonstrated in the first part of this thesis. With a 

performance comparable to commercially available components, the 3D printed 

alternative offer a low-cost lightweight alternative to standard technology. This 

advantage is further enhanced when considering the 3D printed high performance 

W-band sixth-order inductive iris bandpass filter presented in Chapter 2. To 

demonstrate the flexibility of this technology, in Chapter 3 an X-band dielectric 

flap phase shifter is reported. Four of such shifters were then used to develop a 

fully 3D printed phased antenna array. For this system, all the components were 

designed, simulated and 3D printed. These included power splitters, bends and 

bespoke waveguides and flanges. Such components and possibly more complex 

ones, which are usually associated to high costs, can be fabricated with no 

additional manufacturing costs. 

Although the performance of some components or parts thereof (i.e. X-band 

power splitter and W-band flanges) are in need of improvements, with these 

technologies a design iteration can be performed in a short time and the 

performance improved. 

 

Future work 

In the thesis, the main issue identified with the fabrication of 3D printed 

waveguides was related to the fabrication of high quality flanges. This problem 
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becomes more prominent as the waveguide cross-section dimensions reduce. 

Beyond the flange alignment, the building material compresses and deforms under 

the pressure of the fastening bolts. This introduces undesired reliability issues into 

waveguide connections. Further work should be undertaken to improve the flange 

design and improve the quality of connection. Alternative designs, possibly 

involving choke rings, would remove the need for high torque tightening of the 

fastening bolts. Moreover, bespoke flanges can be designed to improve 

connection between 3D printed waveguides and a hybrid metal-to-plastic adapter 

to connect a 3D printed system to a standard flanged. 

Further investigation will also be undertaken to fully characterise each 

component of the 3D printed phased antenna array and its radiation pattern. 

 

8.2 RF-MEMS on LTCC 

In the more speculative (high risk) second part of this thesis, the design and 

fabrication of RF MEMS for integration with LTCC technology is reported. Three 

approaches are considered, based on LTCC bulk micromachining, aluminium foil 

laser bending and hybrid thin/thick-film technology. In Chapter 4, a study of the 

shrinkage induced bucking of fixed-fixed LTCC beams is presented. A model for 

the prediction of actuation voltage in cantilever MEMS is reported in Chapter 5. 

This model is more accurate than the widely accepted textbook formulas and 

much less computation intensive than numerical simulations.  

In Chapter 6, two enabling technology are presented for the fabrication of 

cantilever MEMS using aluminium foil. With the first, laser bending is employed 
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to deform the cantilever beams and define the gap height. For the second, thin-

film technology is employed, via spin coating of photoresist, to define the gap 

height. With the former, the gap height increases progressively with the length of 

the cantilever, with the latter the gap height is constant and minimized. This 

sensibly reduces the actuation voltage and values as low as 80 V were achieved. 

Although no useful devices could be fabricated, both solutions showed 

potential for the integration into LTCC technology. With a more controllable and 

repeatable fabrication process, as available in industry, both technologies could 

potentially be employed for large-scale integration of low-cost RF MEMS in 

LTCC multilayer circuits. 

 

Future work 

Further investigation is required to improve the repeatability of the manufacturing 

process for both the aluminium foil technologies presented. This work can be 

carried out with further simulations and research of alternative materials (e.g. 

metal foils) and characterization of such materials. With a stable process, it will 

be possible to design and fabricate a demonstrator for the devices, such as true 

time delay phase shifters. 

 

8.3 Laser machining for MEMS rapid prototyping 

In the third part of this thesis the Taguchi design of experiment and ANOVA are 

used to improve the laser machining process for high aspect ratio structures in 

silicon. This study takes into account significant parameters interactions and 
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enables a through-wafer machining with minimum features and verticality 

comparable to DRIE machining. Thin beams, having an average aspect ratio of 

26.9, are then employed to build a double-folded suspension with micro-grippers. 

Although the surface roughness quality of the fabricated beams represents a 

limit in the maximum deflection before fracture, it should be noticed that the 

processing time for this large device is less than 1.5 hours. Moreover, the 

equipment costs associated with the laser machining used are approximately one 

order of magnitude lower than standard DRIE silicon processing. 

 

Future work 

The fabrication process developed achieved in fabricating high aspect ratio 

beams, but a complete characterisation of the manufactured beams needs to be 

carried out. After the characterisation of the beams, the fabricated device should 

also be fully measured. The first issue that can be addressed in future work is the 

reduction of the side-wall surface roughness for the fabricated beams, as this can 

represent a severe limitation for the functionality of the beams. Chemical 

polishing can be taken into consideration for this part. Further investigation can 

also be carried out to understand the level of defects introduced by laser 

machining, which could cause failure for fatigue. Thermal annealing will be 

considered for this step. Eventually, combining multi-step laser machining with 

improved adhesives could also be employed to improve the original beam quality.  

After a full optimisation and characterisation of the beams, more complex 

technology demonstrators, with included actuation, can be designed and 

fabricated. 



215 

 

8.4 List of publications 

The following conference and journal papers are the result of the work presented 

in this thesis: 

1. D’Auria M., Sunday A., Hazell J., Robertson I. D., Lucyszyn S., “Enabling 

technology for ultra-low-cost RF MEMS switches on LTCC,” in Proc. RF & 

Microwave Society (ARMMS) Conference, Milton Common, 2013. 

2. Rathnayake-Arachchige, D., Hutt, D.A.; Conway, P.P., D'Auria, M., 

Lucyszyn, S., Lee, R.M., Robertson, I.D., "Patterning of electroless copper 

deposition on low temperature co-fired ceramic," in Proc. IEEE 

15th Electronics Packaging Technology Conference (EPTC 2013), Singapore, 

2013, pp. 630-634. 

3. D'Auria M., Tolou N., “UV-Laser cutting for silicon MEMS prototyping: 

improving etching rate and quality,” in Proc. 14th euspen International 

Conference, Dubrovnik, Croatia, 2014, vol. 2, pp. 275. 

4. Pusch T. P., D’Auria M., Tolou N. Holmes A., “Laser micromachining of thin 

beams for silicon MEMS: optimization of cutting parameters using the 

Taguchi method”, in Proc. ASME 2015 International Design Engineering 

Technical Conferences & Computers and Information in Engineering 

Conference (IDETC/CIE 2015), Boston, USA, 2015 

5. D'Auria, M., Otter, W.J., Hazell, J., Gillatt, B.T.W., Long-Collins, C., Ridler, 

N.M., Lucyszyn, S., “3-D printed metal-pipe rectangular waveguides,” IEEE 

Transactions on Components, Packaging and Manufacturing Technology 

(CPMT), vol. 5, no. 9, pp.1339-1349, Sep. 2015 



216 

 

REFERENCES 

1] S. S. Crump, “Modeling apparatus for three-dimensional objects,” U.S. 

Patent 5 340 433, 08-Jun-1992. 

[2] C. W. Hull, “Apparatus for production of three-dimensional objects by 

stereolithography,” U.S. Patent 4 575 330, 08-Aug-1984. 

[3] C. R. Deckard, “Method and apparatus for producing parts by selective 

sintering,” U.S. Patent 4 863 538, 17-Oct-1986. 

[4] “FDM 3D Printing,” ValinTech Inc. [Online]. Available: 

http://www.valintech.com/index.php?m=5. [Accessed: 17-Sep-2015]. 

[5] “Stereolithography,” Wikipedia. [Online]. Available: 

https://en.wikipedia.org/wiki/Stereolithography. [Accessed: 17-Sep-2015]. 

[6] “Selective laser sintering,” Wikipedia. [Online]. Available: 

https://en.wikipedia.org/wiki/Selective_laser_sintering. [Accessed: 17-Feb-

2015]. 

[7] C. R. Garcia, J. Correa, D. Espalin, J. H. Barton, R. C. Rumpf, R. Wicker, 

and V. Gonzalez, “3D printing of anisotropic metamaterials,” Progress in 

Electromagnetics Research (PIER) Letters, vol. 34, pp. 75–82, Jul. 2012. 

[8] Y. Urzhumov, N. Landy, T. Driscoll, D. Basov, and D. R. Smith, “Thin 

low-loss dielectric coatings for free-space cloaking,” Optics Letters, vol. 

38, no. 10, pp. 1606–1608, May 2013. 

[9] N. Delhote, D. Baillargeat, S. Verdeyme, C. Delage, and C. Chaput, 

“Ceramic layer-by-layer stereolithography for the manufacturing of 3-D 



217 

 

millimeter-wave filters,” IEEE Transactions on Microwave Theory and 

Techniques, vol. 55, no. 3, pp. 548–554, Mar. 2007. 

[10] Y. Huang, X. Gong, S. Hajela, and W. J. Chappell, “Layer-by-layer 

stereolithography of three-dimensional antennas,” in IEEE Antennas and 

Propagation Society International Symposium, 2005, vol. 1A, pp. 276–279. 

[11] B. Liu, X. Gong, and W. J. Chappell, “Applications of layer-by-layer 

polymer stereolithography for three-dimensional high-frequency 

components,” IEEE Transactions on Microwave Theory and Techniques, 

vol. 52, no. 11, pp. 2567–2575, Nov. 2004. 

[12] J. W. Allen and B.-I. Wu, “Design and fabrication of an RF GRIN lens 

using 3D printing technology,” SPIE Terahertz, RF, Millimeter, and 

Submillimeter-Wave Technology and Applications VI, vol. 8624, pp. 1–7, 

Mar. 2013. 

[13] M. Liang, W. Ng, K. Chang, K. Gbele, M. E. Gehm, and H. Xin, “A 3-D 

Luneburg lens antenna abricated by polymer jetting rapid prototyping,” 

IEEE Transactions on Antennas and Propagation, vol. 62, no. 4, pp. 1799–

1807, Apr. 2014. 

[14] N. Yudasari, D. Vogt, J. Anthony, and R. Leonhardt, “Hollow core 

terahertz waveguide fabricated using a 3D printer,” in 39th International 

Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz), 

2014, vol. 2. 

[15] Z. Wu, W.-R. Ng, M. E. Gehm, and H. Xin, “Terahertz electromagnetic 

crystal waveguide fabricated by polymer jetting rapid prototyping.,” Optics 



218 

 

Express, vol. 19, no. 5, pp. 3962–72, Feb. 2011. 

[16] S. Pandey, B. Gupta, and A. Nahata, “Terahertz plasmonic waveguides 

created via 3D printing.,” Optics Express, vol. 21, no. 21, pp. 24422–

24430, Oct. 2013. 

[17] G. M. Rebeiz, “RF MEMS switches: status of the technology,” in 12th 

International Conference on Solid-State Sensors, Actuators and 

Microsystems, 2003, vol. 2, pp. 1726–1729. 

[18] S. Pranonsatit, G. Hong, A. S. Holmes, and S. Lucyszyn, “Rotary RF 

MEMS Switch Based on the Wobble Motor Principle,” in 19th IEEE 

International Conference on Micro Electro Mechanical Systems, 2006, no. 

January, pp. 886–889. 

[19] S. Lucyszyn and S. Pranonsatit, “RF MEMS for Antenna Applications,” in 

7th European Conference on Antennas and Propagation, 2013, pp. 1988–

1992. 

[20] M. Kim, J. B. Hacker, R. E. Mihailovich, and J. F. Denatale, “A DC-to-40 

GHz Four-Bit RF MEMS True-Time,” IEEE Microwave and Wireless 

Components Letters, vol. 11, no. 2, pp. 56–58, 2001. 

[21] C. L. Goldsmith, A. Malczewski, Z. J. Yao, S. Chen, J. Ehmke, D. H. 

Hinzel, R. S. Corporation, N. C. Expressway, and M. S. Dallas, “RF MEMs 

Variable Capacitors for Tunable Filters,” International Journal of RF and 

Microwave Computer-Aided Engineering, no. 4, pp. 362–374, 1999. 

[22] X. Li, Y. Xia, J. Liu, L. Yin, Y. Liu, D. Fang, and H. Zhang, “Tunable RF 

MEMS capacitor for wireless communication,” International Conference 



219 

 

on Optical Instruments and Technology, vol. 7510, pp. 1–9, 2009. 

[23] R. Mahameed, M. a El-Tanani, and G. M. Rebeiz, “A zipper RF MEMS 

tunable capacitor with interdigitated RF and actuation electrodes,” Journal 

of Micromechanics and Microengineering, vol. 20, 2010. 

[24] A. Oz and G. K. Fedder, “RF CMOS-MEMS capacitor having large tuning 

range,” in 12th International Conference on Solid-State Sensors, Actuators 

and Microsystems, 2003, pp. 412–415. 

[25] V. M. Lubecke, B. Barber, E. Chan, D. Lopez, M. E. Gross, and P. 

Gammel, “Self-assembling MEMS variable and fixed RF inductors,” IEEE 

Transactions on Microwave Theory and Techniques, vol. 49, no. 11, pp. 

2093–2098, 2001. 

[26] I. Zine-El-Abidine, M. Okoniewski, and J. G. McRory, “RF MEMS tunable 

inductor,” in 15th International Conference on Microwaves, Radar and 

Wireless Communications, 2004, vol. 3, pp. 612–614. 

[27] D. Fang, H. Zhang, and N. C. Tien, “A review of the tunable 

microinductors,” Micronanoelectronic Technology, no. March, 2010. 

[28] G. M. Rebeiz, RF MEMS: Theory Design and Technology. Hoboken, NJ: 

John Wiley & Sons, Inc., 2003. 

[29] S. Pranonsatit and S. Lucyszyn, “Self-assembled screen-printed microwave 

inductors,” Electronics Letters, vol. 41, no. 23, pp. 23–24, 2005. 

[30] R. R. A. Syms, “Surface tension powered self-assembly of 3-D micro-

optomechanical structures,” Journal of Microelectromechanical Systems, 



220 

 

vol. 8, no. 4, pp. 448–455, 1999. 

[31] G. W. Dahlmann, E. M. Yeatman, P. R. Young, I. D. Robertson, and S. 

Lucyszyn, “MEMS high Q microwave inductors using solder surface 

tension self-assembly,” IEEE MTT-S International Microwave Sympsoium 

Digest, vol. 1, pp. 329–332, 2001. 

[32] A. Hobby, “Screen printing for the industrial user,” DEK, 1997. . 

[33] “Screen Printing as a Manufacturing Process.” PDS International Limited. 

[34] S.-J. Kim, C.-Y. Kang, J.-W. Choi, D.-Y. Kim, M.-Y. Sung, H.-J. Kim, and 

S.-J. Yoon, “Properties of piezoelectric actuator on silicon membrane, 

prepared by screen printing method,” Materials Chemistry and Physics, 

vol. 90, no. 2–3, pp. 401–404, Apr. 2005. 

[35] B. Dziurdzia, “Photoimageable Thick-Films in Microwaves,” Advancing 

Microelectronics, vol. 29, no. 2, 2002. 

[36] D. Stopel, K.-H. Drue, S. Humbla, M. Mach, T. Mache,  a. Rebs, G. Reppe, 

G. Vogt, M. Hein, and J. Muller, “Fine-line structuring of microwave 

components on LTCC substrates,” 3rd Electronics System Integration 

Technology Conference ESTC, pp. 1–6, Sep. 2010. 

[37] J.-P. Bertinet, E. Leleux, J.-P. Cazenave, J.-P. Ganne, M. Pate, R. 

Lebourgeois, E. Mueller, and F. Bechtold, “Filtering capacitors embedded 

in LTCC substrates for RF and microwave applications,” Microwave 

Journal, vol. 50, no. 11, pp. 72–88, Nov. 2007. 

[38] R. Kulke, M. Rittweger, P. Uhlig, and C. Gunner, “LTCC - multilayer 



221 

 

ceramic for wireless and sensor applications,” Produktion von Leiterplatten 

und Systemen (PLUS), no. 12, pp. 2131 – 2136, Dec. 2001. 

[39] M. Hrovat, D. Belavic, J. Cilensek, S. Drnovsek, J. Holc, and M. Jerlah, 

“Investigation of sacrificial layers for 3D LTCC structures and some 

preliminary results,” in 32nd International Spring Seminar on Electronics 

Technology, 2009, pp. 1–6. 

[40] M. Hintz and A. Albrecht, “Advanced LTCC processes using pressure 

assisted sintering,” in SMTA Pan Pacific Symposium, 2004, pp. 1–6. 

[41] L. E. Khoong, Y. M. Tan, and Y. C. Lam, “Overview on fabrication of 

three-dimensional structures in multi-layer ceramic substrate,” Journal of 

the European Ceramic Society, vol. 30, no. 10, pp. 1973–1987, Aug. 2010. 

[42] F. Lautzenhiser and E. Amaya, “HeraLock TM 2000 Self-constrained 

LTCC Tape,” in International Conference on Advanced Packaging and 

Systems (ICAPS), 2002, pp. 143–149. 

[43] H. Birol, T. Maeder, and P. Ryser, “Preparation and application of 

minerals-based sacrificial pastes for fabrication of LTCC structures,” in 4th 

European Microelectronics and Packaging Symposium, 2006, vol. 3, pp. 

57–60. 

[44] H. Birol, T. Maeder, and P. Ryser, “Application of graphite-based 

sacrificial layers for fabrication of LTCC (low temperature co-fired 

ceramic) membranes and micro-channels,” Journal of Micromechanics and 

Microengineering, vol. 17, no. 1, pp. 50–60, Jan. 2007. 

[45] H. Birol, T. Maeder, C. Jacq, G. Corradini, R. Passerini, Y. Fournier, S. 



222 

 

Straessler, and P. Ryser, “Fabrication of LTCC micro-fluidic devices using 

sacrificial carbon layers,” Journal of Applied Ceramic Technology, no. 2, 

pp. 345–354, 2005. 

[46] I. Wolff, “From Antennas to Microwave Systems - LTCC as an Integration 

Technology for Space Applications -,” in 3rd European Conference on 

Antennas and Propagation, 2009, pp. 3–8. 

[47] B. Hunt, “Ultra High temperature operating electronics for high reliability 

harsh environment applications,” in IMAPS-UK CirciT, 2013. 

[48] P. Uhlig, C. Günner, S. Holzwarth, J. Kassner, R. Kulke, A. Lauer, and M. 

Rittweger, “LTCC short range radar sensor for automotive applications at 

24 GHz,” in 37th International Symposium on Microelectronics (IMAPS), 

2004, pp. 14–18. 

[49] K. Wu, “Integration and interconnect techniques of planar and non-planar 

structures for microwave and millimeter-wave circuits - current status and 

future trend,” in Asia-Pacific Microwave Conference (AMPC), 2001, pp. 

411–416. 

[50] M. F. Shafique and I. D. Robertson, “Laser machining of microvias and 

trenches for substrate integrated waveguides in LTCC technology,” in 

Proceedings of the 39th European Microwave Conference, 2009, pp. 272–

275. 

[51] L. Jin, R. M. A. Lee, and I. Robertson, “Analysis and design of a novel 

low-loss hollow substrate integrated waveguide,” IEEE Transactions on 

Microwave Theory and Techniques, vol. 62, no. 8, pp. 1616–1624, Aug. 



223 

 

2014. 

[52] R. M. A. Lee, L. Jin, I. Robertson, and A. Farzamnia, “Integrated 

waveguide slot antenna and cavity filter using hollow SIW in LTCC 

technology,” in 1st International Conference on Telematics and Future 

Generation Networks (TAFGEN), 2015, pp. 82–85. 

[53] M. F. Shafique, K. Saeed, D. P. Steenson, and I. D. Robertson, “Laser 

prototyping of microwave circuits in LTCC technology,” IEEE 

Transactions on Microwave and Techniques, vol. 57, no. 12, pp. 3254–

3261, 2009. 

[54] C. H. Newborn, J. M. English, and D. J. Coe, “LTCC Fabrication for a Leaf 

Spring Vertical Actuator,” International Journal of Applied Ceramic 

Technology, vol. 3, no. 1, pp. 61–67, Jan. 2006. 

[55] M. A. Fonseca, J. M. English, M. von Arx, and M. G. Allen, “Wireless 

micromachined ceramic pressure sensor for high-temperature applications,” 

Journal of Microelectromechanical Systems, vol. 11, no. 4, pp. 337–343, 

Aug. 2002. 

[56] K. Vaed, J. Florkey, S. a. Akbar, M. J. Madou, J. J. Lannutti, and S. S. 

Cahill, “An additive micromolding approach for the development of 

micromachined ceramic substrates for RF applications,” Journal of 

Microelectromechanical Systems, vol. 13, no. 3, pp. 514–525, Jun. 2004. 

[57] H. Sedaghat Pisheh, Y. Komijany, S. Mohajerzadeh, M. Shahabadi, and M. 

Araghchini, “Design, simulation, and fabrication of on-chip conical spiral 

antennas for millimeter-wave wireless communications,” 2005 Joint 30th 



224 

 

International Conference on Infrared and Millimeter Waves and 13th 

International Conference on Terahertz Electronics, vol. 2, pp. 553–554, 

2005. 

[58] J. L. Ocaña, M. Morales, J. A. Porro, O. Garcia, C. Molpeceres, and M. 

Holgado, “Short pulse laser shock microforming of thin metal MEMS 

components,” in Lasers and Electro-Optics 2009 and the European 

Quantum Electronics Conference, 2009. 

[59] S. Yoshioka, T. Miyazaki, T. Misu, R. Oba, and M. Saito, “Laser forming 

of thin foil by a newly developed sample holding method,” Journal of 

Laser Applications, vol. 15, no. 2, p. 96, May 2003. 

[60] M. M. Michaelis and A. Forbes, “Laser propulsion : a review,” South 

African Journal of Science, vol. 102, no. July, pp. 289–295, 2006. 

[61] G. Bergstue and R. L. Fork, “Beamed energy for ablative propulsion on 

near earth space,” in 62nd International Astronautical Congress, 2011. 

[62] B. Richerzhagen, R. Housh, F. Wagner, J. Manley, W. San, and J. Ave, 

“Water Jet Guided Laser Cutting: a Powerful Hybrid Technology for Fine 

Cutting and Grooving,” Synova. 

[63] M. Kumagai, N. Uchiyama, E. Ohmura, R. Sugiura, K. Atsumi, and K. 

Fukumitsu, “Advanced dicing technology for semiconductor Wafer - 

Stealth dicing,” IEEE Transactions on Semiconductor Manufacturing, vol. 

20, no. 3, pp. 259–265, Aug. 2007. 

[64] X. Zhao, B. Zhou, R. Zhang, and Z. Chen, “Research on Laser Trimming 

of Silicon MEMS Vibratory Gyroscopes,” Integrated Ferroelectrics, vol. 1, 



225 

 

no. 129, pp. 37–44, 2011. 

[65] S. Lucyszyn, H. Q. Wang, and I. D. Robertson, “0.1 THz rectangular 

waveguide on GaAs semi-insulating substrate,” IEE Electronics Letters, 

vol. 31, no. 9, pp. 721–722, Apr. 1995. 

[66] S. Lucyszyn, D. Budmir, H. Q. Wang, and I. D. Robertson, “Design of 

compact monolithic dielectric-filled metal-pipe rectangular waveguides for 

millimetre-wave applications,” IEE Proceedings – Microwaves, Antennas 

and Propagation, vol. 143, no. 5, pp. 451–453, Oct. 1996. 

[67] M. S. Aftanasar, P. R. Young, I. D. Robertson, J. Minalgiene, and S. 

Lucyszyn, “Photoimageable thick-film millimetre-wave metal-pipe 

rectangular waveguides,” IEE Electronics Letters, vol. 37, no. 18, pp. 

1122–1123, Aug. 2001. 

[68] S. Papantonis, N. M. Ridler, and S. Lucyszyn, “Rectangular waveguide 

enabling technology using holey surfaces and wire media metamaterials,” 

Sensors and Actuators A: Physical, vol. 209, pp. 1–8, Mar. 2014. 

[69] Y. Zhou and S. Lucyszyn, “Modelling of reconfigurable terahertz 

integrated architecture (RETINA) SIW structures,” Progress in 

Electromagnetics Research (PIER) Journal, vol. 105, pp. 71–92, Jun. 2010. 

[70] H. Uchimura, T. Takenoshita, and M. Fujii, “Development of the laminated 

waveguide,” IEEE MTT-S International Microwave Symposium, vol. 3, pp. 

1811–1814, Jun. 1998. 

[71] D. Stephens, P. R. Young, and I. D. Robertson, “Millimeter-wave substrate 

integrated waveguides and filters in photoimageable thick-film 



226 

 

technology,” IEEE Transactions on Microwave and Techniques, vol. 53, 

no. 12, pp. 3832–3837, Dec. 2005. 

[72] R. Moro, M. Bozzi, A. Collado, A. Georgiadis, and S. Via, “Plastic-based 

Substrate Integrated Waveguide ( SIW ) Components and Antennas,” in 

42nd European Microwave Conference, 2012, pp. 1007–1010. 

[73] F. Parment, S. Member, A. Ghiotto, and S. Member, “Air-Filled Substrate 

Integrated Waveguide for Low-Loss and High Power-Handling Millimeter-

Wave Substrate Integrated Circuits,” IEEE Transactions on Microwave 

Theory and Techniques, vol. 63, no. 4, pp. 1228–1238, Apr. 2015. 

[74] I. Stil, A. L. Fontana, B. Lefranc, A. Navarrini, P. Serres, and K. F. 

Schuster, “Loss of WR10 waveguide across 70-116 GHz,” in 22nd 

International Symposium on Space Terahertz Technology, 2012. 

[75] P. J. Chou and R. Siemann, “Measurements of losses in EDMed 

waveguides and in first W-band structure,” ARDB Tech. Note 99, Jun. 

1997. 

[76] W. R. McGrath, C. Walker, M. Yap, and Y.-C. Tai, “Silicon 

micromachined waveguides for millimeter-wave and submillimeter-wave 

frequencies,” IEEE MIicrowave and Guided Wave Letters, vol. 3, no. 3, pp. 

61–63, Mar. 1992. 

[77] S. Lucyszyn, “The future of on-chip terahertz metal-pipe rectangular 

waveguides implemented using micromachining and multilayer 

technologies,” in IEE Colloquium on Terahertz Technology and Its 

Applications, 1997, pp. 10/1–10/10. 



227 

 

[78] K. M. K. H. Leong, K. Hennig, C. Zhang, R. N. Elmadjian, Z. Zhou, B. S. 

Gorospe, P. P. Chang-Chien, V. Radisic, and W. R. Deal, “WR1.5 silicon 

micromachined waveguide components and active circuit integration 

methodology,” IEEE Transactions on Microwave Theory and Techniques, 

vol. 60, no. 4, pp. 998–1005, Apr. 2012. 

[79] E. Episkopou, P. Stergios, and S. Lucyszyn, “Optically-controlled plasma 

switch for integrated terahertz applications,” in IEEE International 

Conference on Plasma Science (ICOPS), 2012, p. 3P–43. 

[80] T. J. Reck, C. Jung-Kubiak, J. Gill, and G. Chattopadhyay, “Measurement 

of silicon micromachined waveguide components at 500-750 GHz,” IEEE 

Transactions on Terahertz Science and Technology, vol. 4, no. 1, pp. 33–

38, Jan. 2014. 

[81] S. W. Moon, C. M. Mann, B. J. Maddison, I. C. E. Turcu, R. Allot, S. E. 

Huq, and N. Lisi, “Terahertz waveguide components fabricated using a 3D 

x-ray microfabrication technique,” Electronics Letters, vol. 32, no. 19, pp. 

1794–195, Sep. 1996. 

[82] C. E. Collins, B. M. Towlson, L. S. Karatzas, G. M. Parkhurst, J. M. 

Chamberlain, J. W. Bowen, R. D. Pollard, R. E. Miles, D. P. Steenson, D. 

A. Brown, and N. J. Cronin, “Integrated micro-machined antenna for 200 

GHz operation,” IEEE MTT-S International Microwave Symposium, vol. 2, 

pp. 561–564, Jun. 1997. 

[83] C. E. Collins, R. E. Miles, J. W. Digby, G. M. Parkhurst, R. D. Pollard, J. 

M. Chamberlain, and D. P. Steenson, “Micro-machined ‘snap-together’ 



228 

 

rectangular waveguide for terahertz circuits,” in IEEE Sixth International 

Conference on Terahertz Electronics, 1998, pp. 176–178. 

[84] J. W. Digby, C. E. McIntosh, G. M. Parkhurst, B. M. Towlson, S. 

Hadjiloucas, J. W. Bowen, J. Martyn Chamberlain, R. D. Pollard, R. E. 

Miles, D. Paul Steenson, L. S. Karatzas, N. J. Cronin, and S. R. Davies, 

“Fabrication and characterization of micromachined rectangular waveguide 

components for use at millimeter-wave and terahertz frequencies,” IEEE 

Transactions on Microwave Theory and Techniques, vol. 48, no. 8, pp. 

1293–1302, Aug. 2000. 

[85] S. Hadjiloucas, B. M. Towlson, L. S. Karatzas, S. T. G. Wootton, N. J. 

Cronin, S. R. Davies, C. E. McIntosh, J. M. Chamberlain, R. E. Miles, and 

R. D. Pollard, “Micromachined waveguide antennas for 1.6 THz,” 

Electronics Letters, vol. 42, no. 15, pp. 842–843, Jul. 2006. 

[86] C. H. Smith, A. Sklavonuos, and N. Scott Barker, “SU-8 micromachining 

of millimeter and submillimeter waveguide circuits,” IEEE MTT-S 

International Microwave Symposium Digest, pp. 961–964, Jun. 2009. 

[87] N. A. Murad, M. J. Lancaster, P. Gardner, M. L. Ke, and Y. Wang, 

“Micromachined H-plane horn antenna manufactured using thick SU-8 

photoresist,” IET Electronics Letters, vol. 46, no. 11, p. 743, May 2010. 

[88] X. Shang, M. L. Ke, Y. Wang, and M. J. Lancaster, “Micromachined WR-3 

waveguide filter with embedded bends,” IET Electronics Letters, vol. 47, 

no. 9, pp. 545–547, Apr. 2011. 

[89] X. Shang, M. L. Ke, Y. Wang, and M. J. Lancaster, “WR-3 band 



229 

 

waveguides and filters fabricated using SU8 photoresist micromachining 

technology,” IEEE Transactions on Terahertz Science and Technology, 

vol. 2, no. 6, pp. 629–637, Nov. 2012. 

[90] X. Shang, Y. Tian, M. J. Lancaster, and S. Singh, “A SU8 micromachined 

WR-1.5 band waveguide filter,” IEEE Microwave and Wireless 

Components Letters, vol. 23, no. 6, pp. 300–302, May 2013. 

[91] F. Sammoura, Y.-C. Su, Y. Cai, C.-Y. Chi, B. Elamaran, L. Lin, and J.-C. 

Chiao, “Plastic 95-GHz rectangular waveguides by micro molding 

technologies,” Sensors and Actuators, A: Physical, vol. 127, no. 2, pp. 

270–275, Mar. 2006. 

[92] F. Sammoura, Y. Cai, C.-Y. Chi, T. Hirano, L. Lin, and J.-C. Chiao, “A 

micromachined W-band iris filter,” in 13th International Conference on 

Solid State Sensors and Actuators and Microsystems, 2005, vol. 1, pp. 

1067–1070. 

[93] C. Reilly, W. J. Chappell, J. Halloran, K. Sarabandi, J. Volakis, N. Kikuchi, 

and L. P. B. Katehi, “New fabrication technology for ceramic 

metamaterials,” in IEEE Antennas and Propagation Society International 

Symposium, 2002, vol. 2, pp. 376–379. 

[94] W. J. Chappell, C. Reilly, J. Halloran, and L. P. B. Katehi, “Ceramic 

synthetic substrates using solid freeform fabrication,” in IEEE Transactions 

on Microwave Theory and Techniques, 2003, vol. 51, no. 3, pp. 752–760. 

[95] X. Gong, B. Liu, L. P. B. Katehi, and W. J. Chappell, “Layer-by-layer 

stereolithography (SL) of complex medium,” in IEEE Antennas and 



230 

 

Propagation Society International Symposium, vol. 1, pp. 325–328. 

[96] B. Liu, X. Gong, and W. J. Chappell, “Layer-by-layer polymer 

stereolithography fabrication for three-dimensional RF components,” IEEE 

MTT-S International Microwave Symposium Digest, vol. 2, pp. 481–484, 

Jun. 2004. 

[97] X. Gong, A. Margomenos, B. Liu, W. J. Chappell, and L. P. B. Katehi, 

“High-Q evanescent-mode filters using silicon micromachining and 

polymer stereolithography (SL) processing,” IEEE MTT-S International 

Microwave Symposium Digest, vol. 2, pp. 433–436, Jun. 2004. 

[98] A. Buerkle, K. Brakora, and K. Sarabandi, “Fabrication of a DRA array 

using ceramic stereolithography,” IEEE Antennas and Wireless 

Propagation Letters, vol. 5, no. 1, pp. 479–482, Dec. 2006. 

[99] K. Brakora, J. Halloran, and K. Sarabandi, “Design of 3-D monolithic 

MMW antennas using ceramic stereolithography,” IEEE Transactions on 

Antennas and Propagation, vol. 55, no. 3, pp. 790–797, Mar. 2007. 

[100] K. Brakora, J. Halloran, and K. Sarabandi, “Subwavelength periodic 

lattices for the design of MMW components using ceramic 

stereolithography,” in IEEE Antennas and Propagation Society 

International Symposium, 2006, pp. 4511–4514. 

[101] K. Brakora and K. Sarabandi, “Integration of single-mode photonic crystal 

clad waveguides with monolithically constructed ceramic subsystems,” 

IEEE Antennas and Wireless Propagation Letters, vol. 8, pp. 433–436, 

Aug. 2008. 



231 

 

[102] K. Brakora and K. Sarabandi, “Integration of single-mode photonic crystal 

waveguides to monolithic MMW subsystems constructed using ceramic 

stereolithography,” in IEEE Antennas and Propagation Society 

International Symposium, 2007, pp. 2550–2553. 

[103] N. Delhote, D. Baillargeat, S. Verdeyme, C. Delage, and C. Chaput, 

“Narrow Ka bandpass filters made of high permittivity ceramic by layer-

by-layer polymer stereolithography,” in 36th European Microwave 

Conference (EuMC), 2006, pp. 510–513. 

[104] T. Chartier, C. Duterte, N. Delhote, D. Baillargeat, S. Verdeyme, C. 

Delage, and C. Chaput, “Fabrication of millimeter wave components via 

ceramic stereo- and microstereolithography processes,” Journal of the 

American Ceramic Society, vol. 91, no. 8, pp. 2469–2474, Jul. 2008. 

[105] N. T. Nguyen, N. Delhote, M. Ettorre, D. Baillargeat, L. Le Coq, and R. 

Sauleau, “Design and characterization of 60-GHz integrated lens antennas 

fabricated through ceramic stereolithography,” IEEE Transactions on 

Antennas and Propagation, vol. 58, no. 8, pp. 2757–2762, 2010. 

[106]  a. H. Khalil, N. Delhote, S. Pacchini, J. Claus, D. Baillargeat, S. 

Verdeyme, and H. Leblond, “3-D pyramidal and collective Ku band pass 

filters made in Alumina by ceramic stereolithography,” IEEE MTT-S 

International Microwave Symposium Digest, vol. 4, no. 1, pp. 4–7, 2011. 

[107] Y. Lee, X. Lu, Y. Hao, S. Yang, R. Ubic, J. R. G. Evans, and C. G. Parini, 

“Rapid prototyping of ceramic millimeterwave metamaterials: simulations 

and experiments,” Microwave and Optical Technology Letters, vol. 49, no. 



232 

 

9, pp. 895–896, Sep. 2007. 

[108] L. Schulwitz and A. Mortazawi, “A compact millimeter-wave horn antenna 

array fabricated through layer-by-layer stereolithography,” in IEEE 

Antennas and Propagation Society International Symposium, 2008, pp. 1–

4. 

[109] P. T. Timbie, J. Grade, D. Van Der Weide, B. Maffei, and G. Pisano, 

“Stereolithographed MM-wave corrugated horn antennas,” in 36th 

International Conference on Infrared, Millimeter, and Terahertz Waves, 

2011, pp. 11–13. 

[110] W. G. Whittow, C. C. Njoku, and J. C. Vardaxoglou, “Patch antennas with 

heterogeneous substrates and reduced material consumption enabled by 

additive manufacturing techniques,” in IEEE Antennas and Propagation 

Society International Symposium, 2012. 

[111] W. G. Whittow, S. S. Bukhari, L. A. Jones, and I. L. Morrow, 

“Applications and future prospects for microstrip antennas using 

heterogeneous and complex 3-D geometry substrates,” Progress in 

Electromagnetics Research (PIER), vol. 144, pp. 271–280, 2014. 

[112] B. Sanz-Izquierdo and E. A. Parker, “3-D Printing of elements in frequency 

selective arrays,” IEEE Transactions on Antennas and Propagation, vol. 

62, no. 12, pp. 6060–6066, Dec. 2014. 

[113] Z. Wu, J. Kinast, M. E. Gehm, and H. Xin, “Rapid and inexpensive 

fabrication of terahertz electromagnetic bandgap structures,” Optics 

Express, vol. 16, no. 21, pp. 16442–16451, Oct. 2008. 



233 

 

[114] P. Nayeri, M. Liang, R. A. Sabory-garc, M. Tuo, F. Yang, M. Gehm, H. 

Xin, and A. Z. Elsherbeni, “3D printed Dielectric Reflectarrays: Low-Cost 

High-Gain Antennas at Sub-Millimeter Waves,” IEEE Transactions on 

Antennas and Propagation, vol. 62, no. 4, pp. 2000–2008, Apr. 2014. 

[115] A. Macor, E. de Rijk, S. Alberti, T. Goodman, and J.-P. Ansermet, “Note: 

Three-dimensional stereolithography for millimeter wave and terahertz 

applications,” Review of Scientific Instruments, vol. 83, no. 4, p. 046103, 

Apr. 2012. 

[116] A. von Bieren, E. de Rijk, J.-P. Ansermet, and A. Macor, “Monolithic 

Metal-Coated Plastic Components for mm-Wave Applications,” in 39th 

International Conference on Infrared, Millimeter and Terahertz waves 

(IRMMW-THz), 2014, vol. 1. 

[117] “Swiss to 12 - Metal Coated Plastics.” [Online]. Available: 

http://www.swissto12.com/Products/Metal Coated Plastics/index.html. 

[Accessed: 08-May-2015]. 

[118] J. S. Chieh, B. Dick, S. Loui, and J. D. Rockway, “Development of a Ku -

band corrugated conical horn using 3-D print technology,” IEEE Antennas 

and Propagation Letters, vol. 13, pp. 201–204, Jan. 2014. 

[119] C. Guo, X. Shang, M. J. Lancaster, and J. Xu, “A 3-D printed lightweight 

X-band waveguide filter based on spherical resonators,” IEEE Microwave 

and Wireless Components Letters, vol. 25, no. 7, pp. 442–444, Jul. 2015. 

[120] N. Hopkinson and P. Dickens, “Analysis of rapid manufacturing — Using 

layer manufacturing process for production,” Proc. Inst. Mech. Eng., Part 



234 

 

C: J. Mechanical Engineering Science, vol. 217, no. 1, pp. 31–39, Apr. 

2003. 

[121] A. Weber, “Case study: Kelly Manufacturing Company - A turn for the 

better,” Stratasys, Aug-2013. [Online]. Available: 

http://www.stratasys.com/resources/case-studies/aerospace/kelly-

manufacturing. 

[122] G. Schmidt and U. Eidenschink, “Case study: BMW Refensburg - Rapid 

manufacturing with FDM in jig & fixture construction,” Stratasys, Jul-

2013. [Online]. Available: http://www.stratasys.com/resources/case-

studies/automotive/bmw. 

[123] A. Rutter and V. Sharma, “Type A Machines - Low volume, agile, additive 

manufacturing and capital costs,” Type A Machines, Nov-2014. [Online]. 

Available: http://www.typeamachines.com/pages/white-paper. 

[124] A. Kreemer and Z. H. Moe, “Rapid manufacturing using FDM systems,” in 

Handbook of Manufacturing Engineering and Technology, A. Nee, Ed. 

London, UK: Springer, 2014, pp. 1–11. 

[125] G. O. Mallory and J. B. Hajdu, Electroless Plating: Fundamentals and 

Applications. Orlando, FL: American Electroplaters and Surface Finishers 

Society, 1990. 

[126] “Waveguide loss.” [Online]. Available: 

http://www.microwaves101.com/encyclopedias/waveguide-loss. 

[Accessed: 15-May-2015]. 

[127] “Accura Xtreme Plastic datasheet.” [Online]. Available: 



235 

 

www.3dsystems.com/products/datafiles/datasheets/SLA/DS_Accura_Xtre

me_US.pdf. [Accessed: 19-Feb-2015]. 

[128] “Assessment of surface texture. Guidance and general information,” British 

Standard BS 1134. 2010. 

[129] G. F. Engen and C. a. Hoer, “Thru-Reflect-Line: an improved technique for 

calibrating the dual six-port automatic network analyzer,” IEEE 

Transactions on Microwave Theory and Techniques, vol. 27, no. 12, pp. 

987–993, Dec. 1979. 

[130] A. Rumiantsev and N. M. Ridler, “VNA calibration,” IEEE Microwave 

Magazine, vol. 9, no. 3, pp. 86–99, Jun. 2008. 

[131] N. M. Ridler, “News in RF impedance measurements,” in XXVIIth General 

Assembly of the International Union of Radio Science (URSI), 2002. 

[132] N. M. Ridler, “A review of existing naional measurement standards for RF 

and microwave impedance parameters in the UK,” IEE Colloquium Digest, 

no. 0008, pp. 6/1–6, Feb. 1999. 

[133] F. L. Warner, “Attenuation Measurement,” in Microwave Measurements, 

2nd ed., A. E. Bailey, Ed. London: IEE, 1989, pp. 132–134. 

[134] “DuPont 6143 - Pd/Ag Post-fire Conductor.” Technical datashet. 

[135] C. E. Chrisostomidis and S. Lucyszyn, “On the theory of chained-function 

filters,” IEEE Transactions on Microwave Theory and Techniques, vol. 53, 

no. 10, pp. 3142–3151, Oct. 2005. 

[136] GWT, “WG Filter Tool - Iris Filter.” [Online]. Available: 



236 

 

http://www.guidedwavetech.com/wgchoose.htm. 

[137] A. Poithier and T. Vaha-Heikkila, “Impedance tuners and tuneable filters,” 

in Advanced RF MEMS, S. Lucyszyn, Ed. Cambridge: Cambridge 

University Press, 2010, pp. 271–306. 

[138] E. Brookner, “Phased-array radars,” Scientific American, vol. 252, pp. 94–

102, 1985. 

[139] H. T. Friis and C. B. Feldman, “A multiple unit steerable antenna for short-

wave reception,” Proceedings of the Institute of Radio Engineers, vol. 25, 

pp. 841–917, 1937. 

[140] P. V. Brennan, “Low cost phased array antenna for land-mobile satcom 

applications,” IEE Proceedings – Microwaves, Antennas and Propagation, 

vol. 138, pp. 131–136, 1991. 

[141] C. Alakija and S. P. Stapleton, “A mobile base station phased array 

antenna,” in IEEE International Conference on Wireless Communications, 

1992, pp. 118–121. 

[142] R. Schneider and J. Wenger, “System aspects for future automotive radar,” 

in IEEE MTT-S International Microwave Symposium, 1999, vol. 1, p. 269. 

[143] I. Gresham, A. Jenkins, R. Egri, C. Eswarappa, F. Kolak, R. Wohlert, J. 

Bennett, and J. P. Lanteri, “Ultra wide band 24GHz automotive radar front-

end,” in IEEE MTT-S International Microwave Symposium, 2003, vol. 1, 

pp. 369–372. 

[144] J. Wenger, “Automotive radar - status and perspectives,” in IEEE 



237 

 

Compound Semiconductor Integrated Circuit Symposium, 2005, p. 4. 

[145] D. M. Pozar, “Ferrite phase shifters,” in Microwave Engineering, 4th ed., 

John Wiley & Sons, 1997, pp. 482–487. 

[146] G. F. Bland and A. G. Franco, “Phase shift characteristics of dielectric 

loaded waveguide,” in PGMTT National Symposium Digest, 1961, vol. 62, 

no. 1, pp. 112–118. 

[147] C. T. M. Chang, “Partially dielectric-slab-filled waveguide phase shifter,” 

IEEE Transactions on Microwave Theory and Techniques, vol. 22, no. 5, 

pp. 481–485, May 1974. 

[148] F. Arndt, J. Bornemann, and R. Vahldieck, “Design of Multisection 

Impedance-Matched Dielectric-Slab Filled Waveguide Phase Shifters,” 

IEEE Transactions on Microwave Theory and Techniques, vol. 32, no. 1, 

pp. 34–39, 1984. 

[149] F. Arndt, A. Frye, M. Wellnitz, and R. Wirsing, “Double dielectric-slab-

filled waveguide phase shifter,” IEEE Transactions on Microwave Theory 

and Techniques, vol. 33, no. 5, pp. 373–381, May 1985. 

[150] M. Jeong, V. Kazmirenko, Y. Poplavko, B. Kim, and S. Baik, “Electrically 

tunable phase shifters with air-dielectric sandwich structure,” Materials 

Research Society Symposium Proceedings, vol. 720, no. H3.12, 2002. 

[151] R. S. Rao, “Phase shifters,” in Microwave Engineering, New Delhi: PHI, 

2012, pp. 258–259. 

[152] S. K. Koul, “Dielectric-insert phase shifter,” in Microwave and Millimeter 



238 

 

Wave Phase Shifters - Vol. 1, S. K. Koul and B. Bhat, Eds. Boston: Artech 

House, 1991, pp. 72–73. 

[153] P. I. Deffenbaugh, R. C. Rumpf, and K. H. Church, “Broadband microwave 

frequency characterization of 3-D printed materials,” IEEE Transactions on 

Components, Packaging and Manufacturing Technology, vol. 3, no. 12, pp. 

2147–2155, Dec. 2013. 

[154] “DuPont Green Tape Material System Design and Layout Guidelines.” 

[155] “Green Tape 9K7 - low temperature co-fired ceramic system,” DuPont. 

Technical datasheet. 

[156] J. M. Gere and S. P. Timoshenko, Mechanics of material, 4th SI. 

Cheltenham: Stanley Thornes, 1999. 

[157] S. Lucyszyn, “Review of radio frequency microelectromechanical systems 

technology,” IEE Proceedings – Science, Measurement and Technology, 

vol. 151, no. 2, pp. 93–103, Mar. 2004. 

[158] “DuPont Fodel 5989 - Photoimageable Thick-Film Paste.” Technical 

datasheet. 

[159] S. Muckett and J. Minalgene, “‘Hibridas’ photoimageable thick film 

process and materials for microwave and sensor component applications,” 

in 2nd 1998 IEMT/IMC Symposium, 1998, pp. 154–160. 

[160] “TIMCAL TIMREX KS10 Primary Synthetic Graphite.” Technical 

datasheet. 

[161] Z. Feng, H. Zhang, K. C. Gupta, W. Zhang, V. M. Bright, and Y. C. Lee, 



239 

 

“MEMS-based series and shunt variable capacitors for microwave and 

millimeter-wave frequencies,” Sensors and Actuators, vol. 91, no. 3, pp. 

256–265, Jul. 2001. 

[162] I. Cho, T. Song, S. Baek, and E. Yoon, “A low-voltage and low-power RF 

MEMS series and shunt switches actuated by combination of 

electromagnetic and electrostatic forces,” IEEE Transactions on 

Microwave Theory and Techniques, vol. 53, no. 7, pp. 2450–2457, Jul. 

2005. 

[163] J. Y. Park, H. C. Lee, and J. U. Bu, “Low Voltage Operated Piezoelectric 

RF MEMS Switches for Advanced Handset Applications,” in 34th 

European Microwave Conference, 2004, pp. 1437–1440. 

[164] D. Elata and V. Leus, “Electromechanical modelling of electrostatic 

actuators,” in Advanced RF MEMS, S. Lucyszyn, Ed. Cambridge: 

Cambridge University Press, 2010, pp. 23–27. 

[165] S. Pamidighantam, R. Puers, K. Baert, and H. A. C. Tilmans, “Pull-in 

voltage analysis of electrostatically actuated beam structures with fixed-

fixed and fixed-free end conditions,” Journal of Micromechanics and 

Microengineering, vol. 12, no. 4, pp. 458–464, Jun. 2002. 

[166] K. A. Ramakrishnan and H. T. Srinivasan, “Closed form models for pull-in 

voltage of electrostatically actuated cantilever beams and comparative 

analysis of cantilevers and microgripper,” Journal of Electrical 

Engineering, vol. 63, no. 4, pp. 242–248, Jul. 2012. 

[167] C. Do, M. Lishchynska, K. Delaney, and M. Hill, “Generalized closed-form 



240 

 

models for pull-in analysis of micro cantilever beams subjected to partial 

electrostatic load,” Sensors and Actuators, A: Physical, vol. 185, pp. 109–

116, Jul. 2012. 

[168] T. Hennige, S. Holzer, F. Vollertsen, and M. Geiger, “On the working 

accuracy of laser bending,” Journal of Materials Processing Technology, 

vol. 71, no. 3, pp. 422–432, Apr. 1997. 

[169] F. Lambiase, “An analytical model for evaluation of bending angle in laser 

forming of metal sheets,” Journal of Materials Engineering and 

Performance, vol. 21, no. 10, pp. 2044–2052, Feb. 2012. 

[170] M.-L. Chen, J. Jeswiet, P. J. Bates, and G. Zak, “Experimental study on 

sheet metal bending with medium-power diode laser,” Proceedings of the 

Institution of Mechanical Engineers, Part B: Journal of Engineering 

Manufacture, vol. 222, no. 3, pp. 381–389, Nov. 2008. 

[171] H. Arnet and F. Vollertsen, “Extending laser bending for the generation of 

convex shapes,” Proceedings of the Institution of Mechanical Engineers, 

Part B: Journal of Engineering Manufacture, vol. 209, no. 6, pp. 433–442, 

Jul. 1995. 

[172] G. Chen, X. Xu, C. C. Poon, and  a. C. Tam, “Experimental and numerical 

studies on microscale bending of stainless steel with pulsed laser,” Journal 

of Applied Mechanics, vol. 66, no. 3, pp. 772–779, Sep. 1999. 

[173] W. Shichun and Z. Jinsong, “An experimental study of laser bending for 

sheet metals,” Journal of Materials Processing Technology, vol. 110, no. 2, 

pp. 160–163, May 2001. 



241 

 

[174] B. S. Yilbas and S. S. Akhtar, “Laser bending of metal sheet and thermal 

stress analysis,” Optics & Laser Technology, vol. 61, pp. 34–44, Sep. 2014. 

[175] E. Gärtner, J. Frühauf, U. Löschner, and H. Exner, “Laser bending of 

etched silicon microstructures,” Microsystem Technologies, vol. 7, no. 1, 

pp. 23–26, Apr. 2001. 

[176] X. R. Zhang and X. Xu, “Laser bending for high-precision curvature 

adjustment of microcantilevers,” Applied Physics Letters, vol. 86, no. 2, 

Sep. 2005. 

[177] W. Li and Y. L. Yao, “Buckling based laser forming process: concave or 

convex,” in ICALEO 2000: Laser Materials Processing Conference, 2000. 

[178] J. L. Ocaña, M. Morales, C. Molpeceres, O. García, J. a. Porro, and J. J. 

García-Ballesteros, “Short pulse laser microforming of thin metal sheets for 

MEMS manufacturing,” Applied Surface Science, vol. 254, no. 4, pp. 997–

1001, Sep. 2007. 

[179] D. Robben, S. F. Peik, T. Henning, M. Becker, and K. Froehner, “Laser 

machined microsystems for active frequency selective surfaces,” IEEE 

MTT-S International Microwave Symposium Digest, pp. 12–14, Jun. 2012. 

[180] I. De Wolf, “Reliability,” in Advanced RF MEMS, S. Lucyszyn, Ed. 

Cambridge: Cambridge University Press, 2010, pp. 109–139. 

[181] “DuPont LL612 - Co-fired silver conductor.” Technical datasheet. 

[182] J. R. Thorpe, D. P. Steenson, and R. E. Miles, “High frequency 

transmission line using micromachined polymer dielectric,” Electronics 



242 

 

Letters, vol. 34, no. 12, pp. 1237–1238, Jun. 1998. 

[183] J. Melai, C. Salm, S. Smits, J. Visschers, and J. Schmitz, “The electrical 

conduction and dielectric strength of SU-8,” Journal of Micromechanics 

and Microengineering, vol. 19, no. 6, pp. 065012.1–7, May 2009. 

[184] D. Karnakis, G. Rutterford, and M. R. H. Knowles, “High power DPSS 

laser micro-machining of stainless steel and silicon for device singulation,” 

Oxford Lasers Ltd., 2005. 

[185] J. M. Bovatsek and R. S. Patel, “Highest-speed dicing of thin silicon wafers 

with nanosecond-pulse 355nm q-switched laser source using line-focus 

fluence optimization technique.,” SPIE Proceedings: Laser-based Micro- 

and Nanopackaging and Assembly IV, vol. 7585, Feb. 2010. 

[186] L. Migliore, K. Lee, K. Jeong-moog, and C. Byung-kew, “Advances in 

laser singulation of silicon,” in ICALEO, 2006, pp. 237–242. 

[187] C. T. Pan, Y. M. Hwang, and C. W. Hsieh, “Fast fabrication of silicon 

based microstructures using 355 nm UV laser,” Materials Science and 

Technology, vol. 21, no. 11, pp. 1344–1348, 2005. 

[188] E. W. Kreutz, R. Weichenhain, and A. Horn, “Nd : YAG laser 

micromachining of SiC precision structures for MEMS,” SPIE 

Proceedings: MEMS Design, Fabrication, Characterization, adn 

Packaging, vol. 4007, pp. 109–118, Nov. 2001. 

[189] J. P. Desbiens and P. Masson, “ArF excimer laser micromachining of 

Pyrex, SiC and PZT for rapid prototyping of MEMS components,” Sensors 

and Actuators, A: Physical, vol. 136, no. 2, pp. 554–563, 2007. 



243 

 

[190] C. Molpeceres, S. Lauzurica, J. J. García-Ballesteros, M. Morales, and J. L. 

Ocaña, “Advanced 3D micromachining techniques using UV laser 

sources,” Microelectronic Engineering, vol. 84, no. 5, pp. 1337–1340, 

2007. 

[191] M. Kagerer, F. Irlinger, and T. C. Lueth, “Laser source independent basic 

parameters in micro-cutting,” in IEEE/ASME International Conference on 

Advanced Intelligent Mechatronics (AIM), 2011, pp. 391–396. 

[192] M. Kagerer, F. Irlinger, and T. C. Lueth, “Laser source independent basic 

parameters - Focus position, pulse overlap, track overlap - in laser micro 

milling using as rapid manufacturing process,” in IEEE/ASME 

International Conference on Advanced Intelligent Mechatronics (AIM), 

2012, pp. 135–140. 

[193] D. H. Kam, L. Shah, and J. Mazumder, “Femtosecond laser machining of 

multi-depth microchannel networks onto silicon,” Journal of 

Micromechanics and Microengineering, vol. 21, no. 4, p. 045027, 2011. 

[194] M. El-Bandrawy and M. C. Gupta, “Femtosecond laser micromachining of 

silicon for MEMS,” SPIE Proceedings: Photon Processing in 

Microelectronics and Photonics II, vol. 4977, pp. 219–225, 2003. 

[195] K. L. Choo, Y. Ogawa, G. Kanbargi, V. Otra, L. M. Raff, and R. 

Komanduri, “Micromachining of silicon by short-pulse laser ablation in air 

and under water,” Materials Science and Engineering: A, vol. 372, pp. 

145–162, 2004. 

[196] “Spectra-Physiscs Talon DPSS UV Laser.” Technical datasheet. 



244 

 

[197] R. K. Roy, A primer on the Taguchi method, 2nd ed. Dearborn, MI, USA: 

Society of Manufacturing Engineers, 2010. 

[198] R. K. Roy, Design of Experiments using the Taguchi method. New York, 

NY, USA: John Wiley & Sons, 2001. 

[199] M. D’Auria and N. Tolou, “UV-Laser Cutting for Silicon MEMS 

Prototyping : Improving Etching Rate and Quality,” in 14th euspen 

International Conference, 2014, vol. 2, pp. 275–279. 



245 

 



246 

 

APPENDIX I 

A: Influencing factors and corresponding levels for the first iteration of the Taguchi DOE 

Symbol Factor Name 
Factor Level 

Level 1 Level 2 Level 3 Level 4 

A Frequency (kHz) 5 10 15 20 

B Diode Current (A) 4.5 5 5.5 6 

C Pulse Overlap (%) 60 70 80 90 

D 
Number of 

Patterns 
3 4 5 6 

E Gap Size (µm) 15 20 25 30 

 

B: L`16 orthogonal array 

L`16 Orthogonal Array 

Test Condition 
Factors and Levels 

A B C D E 

1 1 1 1 1 1 

2 1 2 2 2 2 

3 1 3 3 3 3 

4 1 4 4 4 4 

5 2 1 2 3 4 

6 2 2 1 4 3 

7 2 3 4 1 2 

8 2 4 3 2 1 

9 3 1 3 4 2 

10 3 2 4 3 1 

11 3 3 1 2 4 

12 3 4 2 1 3 

13 4 1 4 2 3 

14 4 2 3 1 4 

15 4 3 2 4 1 

16 4 4 1 3 2 
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C: Machining time for each of the test runs and mean S/N ratio for the first Taguchi DOE 

iteration.  

Test 

Condition 

Time (s) 

Test 1 Test 2 Test 3 Average 

1 1206 1246 1252 1235 

2 975 918 944 946 

3 747 682 636 688 

4 524 475 487 495 

5 991 509 510 670 

6 556 519 507 527 

7 374 340 343 352 

8 301 299 303 301 

9 474 472 477 474 

10 291 290 293 291 

11 226 215 237 226 

12 230 225 222 226 

13 289 294 289 291 

14 182 190 204 192 

15 201 204 206 204 

16 200 189 189 193 

 

Factor 

Symbol 

Machining Time  -  Mean S/N Ratio (dB) 

Level 1 Level 2 Level 3 Level 4 Max. Delta  (|Max|-|Min|) 

A -58.008 -52.990 -49.242 -46.706 11.302 

B -55.404 -52.232 -50.248 -49.062 6.342 

C -52.267 -52.440 -51.386 -50.852 1.588 

D -51.381 -51.362 -52.189 -52.014 0.827 

E -51.718 -52.421 -51.891 -50.916 1.505 
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D: Average surface roughness for each of the test runs and mean S/N ratio for the first 

Taguchi DOE iteration.  

Test 

Condition 

Average Surface Roughness (µm) 

Test 1 Test 2 Test 3 Average 

1 0.54 0.41 0.39 0.44 

2 0.50 0.37 0.44 0.44 

3 0.45 0.42 1.28 0.72 

4 1.60 2.09 2.33 2.01 

5 0.61 0.85 0.54 0.66 

6 0.40 0.46 0.43 0.43 

7 0.32 0.39 0.39 0.37 

8 0.48 0.46 0.55 0.50 

9 0.28 0.46 0.40 0.38 

10 0.51 1.19 0.43 0.71 

11 0.46 1.53 0.66 0.88 

12 0.34 0.42 0.55 0.43 

13 0.79 0.58 0.46 0.61 

14 0.50 0.37 0.50 0.46 

15 0.60 0.70 0.59 0.63 

16 0.45 0.51 0.55 0.50 

 

Factor 

Symbol 

Surface Roughness  -  Mean S/N Ratio (dB) 

Level 1 Level 2 Level 3 Level 4 Max. Delta  (|Max|-|Min|) 

A 2.240 6.363 4.351 5.192 3.943 

B 5.661 5.812 3.623 3.230 2.582 

C 5.073 5.404 5.665 2.184 3.481 

D 7.354 4.318 3.300 3.354 4.054 

E 4.786 7.486 5.060 0.993 6.493 
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E: Taper angle for each of the test runs and mean S/N ratio for the first Taguchi DOE 

iteration.  

Test 

Condition 

Taper angle (deg) 

Test 1 Test 2 Test 3 Average 

1 2.89 2.90 2.97 2.92 

2 3.36 3.61 3.43 3.46 

3 4.08 3.06 2.99 3.38 

4 3.05 3.36 2.47 2.96 

5 3.82 6.38 6.38 5.53 

6 6.59 6.21 6.21 6.33 

7 2.41 2.63 2.53 2.52 

8 3.04 3.27 3.26 3.19 

9 4.58 4.89 4.95 4.81 

10 3.37 3.45 3.60 3.47 

11 6.11 3.81 4.76 4.90 

12 3.16 2.85 3.24 3.08 

13 4.52 4.65 4.94 4.70 

14 3.89 2.63 2.61 3.04 

15 4.33 4.33 4.58 4.41 

16 4.39 4.88 5.24 4.84 

 

Factor 

Symbol 

Taper Angle  -  Mean S/N Ratio (dB) 

Level 1 Level 2 Level 3 Level 4 Max. Delta  (|Max|-|Min|) 

A -10.067 -12.303 -12.053 -12.474 2.407 

B -12.865 -11.871 -11.391 -10.771 2.094 

C -13.253 -12.135 -11054 -10.453 2.800 

D -9.244 -12.072 -12.563 -13.017 3.773 

E -10.778 -11.548 -12.489 -12.081 1.711 
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F: ANOVA results for the first iteration of the Taguchi DOE. 

Factor 

Symbol 

Contribution (%) 

 Average Surface Roughness Taper Angle 

A 11.5 14.9 

B 8.6 8 

C 13 18.2 

D 10.9 30.1 

E 24 6 

Error 32 22.8 

Total 100 100 
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APPENDIX II 

A: Average surface roughness for each of the test runs and mean S/N ratio for the 

second Taguchi DOE iteration considering interactions.  

Test 

Condition 

Average Surface Roughness (µm) 

Test 1 Test 2 Average 

1 0.4467 0.4400 0.4433 

2 0.4333 0.3833 0.4083 

3 0.4467 0.4067 0.4267 

4 0.2767 0.3833 0.3300 

5 0.4800 0.4500 0.4650 

6 0.2333 0.2533 0.2433 

7 0.6267 0.7000 0.6633 

8 0.3000 0.3133 0.3067 

9 0.4433 0.5167 0.4800 

10 0.4200 0.4133 0.4167 

11 0.4000 0.4067 0.4033 

12 0.4167 0.4000 0.4083 

13 0.2500 0.2733 0.2617 

14 0.2667 0.2600 0.2633 

15 0.3300 0.4000 0.3650 

16 0.2300 0.2700 0.2500 

17 0.3967 0.5600 0.4783 

18 0.5833 0.7600 0.6717 

19 1.5967 1.6433 1.6200 

20 0.5867 0.53 0.5583 

21 0.3800 0.3800 0.3800 

22 0.8167 0.6667 0.7417 

23 0.3300 0.3133 0.3217 

24 0.5167 0.46 0.4883 

25 0.4833 0.5933 0.5383 

26 0.6400 0.7967 0.7183 

27 1.3833 0.9233 1.1533 
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Factor 

Symbol 

Average Surface Roughness  -  Mean S/N Ratio (dB) 

Level 1 Level 2 Level 3 Max. Delta  (|Max|-|Min|) 

A 6.120352 7.57253 6.565435 1.452178 

B 7.463679 7.757468 5.037169 2.720299 

C 6.083293 8.776052 5.398971 3.377081 

D 8.454539 6.65041 5.153367 3.301172 

E 7.868526 8.542755 3.847035 4.695721 
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B: Taper angle for each of the test runs and mean S/N ratio for the second Taguchi DOE 

iteration considering interactions.  

Test 

Condition 

Taper Angle (deg) 

Test 1 Test 2 Average 

1 2.2034 2.0972 2.1503 

2 2.7944 2.6855 2.7399 

3 3.5125 3.9444 3.7284 

4 2.1244 3.1399 2.6322 

5 3.8901 3.6239 3.7570 

6 2.0400 1.7456 1.8928 

7 1.4239 1.4266 1.4253 

8 2.0127 2.1217 2.0672 

9 2.2062 2.0672 2.1367 

10 4.1616 3.8901 4.0259 

11 2.9005 2.7944 2.8474 

12 3.3548 3.2215 3.2882 

13 2.4704 2.2034 2.3369 

14 3.4119 3.1671 3.2895 

15 4.184684 4.0802 4.1324 

16 1.9855 2.0945 2.0400 

17 1.5330 1.4512 1.4921 

18 2.5793 2.2552 2.4172 

19 4.3163 4.2376 4.2769 

20 4.6661 4.4790 4.5726 

21 3.9200 3.6239 3.7719 

22 3.9987 3.9173 3.9580 

23 2.8461 2.8733 2.8597 

24 2.5493 3.5424 3.0459 

25 2.2307 2.2552 2.2429 

26 2.9304 2.0127 2.4716 

27 3.7842 4.1073 3.9458 
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Factor 

Symbol 

Taper Angle  -  Mean S/N Ratio (dB) 

Level 1 Level 2 Level 3 Max. Delta  (|Max|-|Min|) 

A -8.39664 -8.86954 -9.69114 1.294495 

B -9.16683 -8.8342 -8.95629 0.332624 

C -10.6393 -9.61783 -6.70018 3.939133 

D -7.60865 -8.77272 -10.576 2.967304 

E -7.81955 -9.02484 -10.1129 2.293381 

 


