3,091 research outputs found

    Robust fault detection for networked systems with communication delay and data missing

    Get PDF
    n this paper, the robust fault detection problem is investigated for a class of discrete-time networked systems with unknown input and multiple state delays. A novel measurement model is utilized to represent both the random measurement delays and the stochastic data missing phenomenon, which typically result from the limited capacity of the communication networks. The network status is assumed to vary in a Markovian fashion and its transition probability matrix is uncertain but resides in a known convex set of a polytopic type. The main purpose of this paper is to design a robust fault detection filter such that, for all unknown inputs, possible parameter uncertainties and incomplete measurements, the error between the residual signal and the fault signal is made as small as possible. By casting the addressed robust fault detection problem into an auxiliary robust H∞ filtering problem of a certain Markovian jumping system, a sufficient condition for the existence of the desired robust fault detection filter is established in terms of linear matrix inequalities. A numerical example is provided to illustrate the effectiveness and applicability of the proposed technique

    Stochastic model predictive control for constrained networked control systems with random time delay

    Get PDF
    In this paper the continuous time stochastic constrained optimal control problem is formulated for the class of networked control systems assuming that time delays follow a discrete-time, finite Markov chain . Polytopic overapproximations of the system's trajectories are employed to produce a polyhedral inner approximation of the non-convex constraint set resulting from imposing the constraints in continuous time. The problem is cast in a Markov jump linear systems (MJLS) framework and a stochastic MPC controller is calculated explicitly, oine, coupling dynamic programming with parametric piecewise quadratic (PWQ) optimization. The calculated control law leads to stochastic stability of the closed loop system, in the mean square sense and respects the state and input constraints in continuous time

    Fuzzy-model-based robust fault detection with stochastic mixed time-delays and successive packet dropouts

    Get PDF
    This is the Post-Print version of the Article. The official published version can be accessed from the link below - Copyright @ 2012 IEEEThis paper is concerned with the network-based robust fault detection problem for a class of uncertain discrete-time Takagi–Sugeno fuzzy systems with stochastic mixed time delays and successive packet dropouts. The mixed time delays comprise both the multiple discrete time delays and the infinite distributed delays. A sequence of stochastic variables is introduced to govern the random occurrences of the discrete time delays, distributed time delays, and successive packet dropouts, where all the stochastic variables are mutually independent but obey the Bernoulli distribution. The main purpose of this paper is to design a fuzzy fault detection filter such that the overall fault detection dynamics is exponentially stable in the mean square and, at the same time, the error between the residual signal and the fault signal is made as small as possible. Sufficient conditions are first established via intensive stochastic analysis for the existence of the desired fuzzy fault detection filters, and then, the corresponding solvability conditions for the desired filter gains are established. In addition, the optimal performance index for the addressed robust fuzzy fault detection problem is obtained by solving an auxiliary convex optimization problem. An illustrative example is provided to show the usefulness and effectiveness of the proposed design method.This work was supported in part by the National Natural Science Foundation of China under Grant 61028008, 60825303, 61004067, National 973 Project under Grant 2009CB320600, the Key Laboratory of Integrated Automation for the Process Industry (Northeastern University), Ministry of Education, the Engineering and Physical Sciences Research Council (EPSRC) of the U.K. under Grant GR/S27658/01, the Royal Society of the U.K., the University of Hong Kong under Grant HKU/CRCG/200907176129 and the Alexander von Humboldt Foundation of Germany

    Observer-based networked control for continuous-time systems with random sensor delays

    Get PDF
    This is the post print version of the article. The official published version can be obtained from the link - Copyright 2009 Elsevier LtdThis paper is concerned with the networked control system design for continuous-time systems with random measurement, where the measurement channel is assumed to subject to random sensor delay. A design scheme for the observer-based output feedback controller is proposed to render the closed-loop networked system exponentially mean-square stable with H∞ performance requirement. The technique employed is based on appropriate delay systems approach combined with a matrix variable decoupling technique. The design method is fulfilled through solving linear matrix inequalities. A numerical example is used to verify the effectiveness and the merits of the present results.This paper was not presented at any IFAC meeting. This paper was recommended for publication in revised form by Associate Editor George Yin under the direction of Editor Ian R. Petersen. This work was supported in part by the Royal Society of the UK, the National Natural Science Foundation of China (60774047, 60674055) and the Taishan Scholar Programs Foundation of Shandong Province, China

    Recent advances on filtering and control for nonlinear stochastic complex systems with incomplete information: A survey

    Get PDF
    This Article is provided by the Brunel Open Access Publishing Fund - Copyright @ 2012 Hindawi PublishingSome recent advances on the filtering and control problems for nonlinear stochastic complex systems with incomplete information are surveyed. The incomplete information under consideration mainly includes missing measurements, randomly varying sensor delays, signal quantization, sensor saturations, and signal sampling. With such incomplete information, the developments on various filtering and control issues are reviewed in great detail. In particular, the addressed nonlinear stochastic complex systems are so comprehensive that they include conventional nonlinear stochastic systems, different kinds of complex networks, and a large class of sensor networks. The corresponding filtering and control technologies for such nonlinear stochastic complex systems are then discussed. Subsequently, some latest results on the filtering and control problems for the complex systems with incomplete information are given. Finally, conclusions are drawn and several possible future research directions are pointed out.This work was supported in part by the National Natural Science Foundation of China under Grant nos. 61134009, 61104125, 61028008, 61174136, 60974030, and 61074129, the Qing Lan Project of Jiangsu Province of China, the Project sponsored by SRF for ROCS of SEM of China, the Engineering and Physical Sciences Research Council EPSRC of the UK under Grant GR/S27658/01, the Royal Society of the UK, and the Alexander von Humboldt Foundation of Germany
    corecore