1,648 research outputs found

    How a Diverse Research Ecosystem Has Generated New Rehabilitation Technologies: Review of NIDILRR’s Rehabilitation Engineering Research Centers

    Get PDF
    Over 50 million United States citizens (1 in 6 people in the US) have a developmental, acquired, or degenerative disability. The average US citizen can expect to live 20% of his or her life with a disability. Rehabilitation technologies play a major role in improving the quality of life for people with a disability, yet widespread and highly challenging needs remain. Within the US, a major effort aimed at the creation and evaluation of rehabilitation technology has been the Rehabilitation Engineering Research Centers (RERCs) sponsored by the National Institute on Disability, Independent Living, and Rehabilitation Research. As envisioned at their conception by a panel of the National Academy of Science in 1970, these centers were intended to take a “total approach to rehabilitation”, combining medicine, engineering, and related science, to improve the quality of life of individuals with a disability. Here, we review the scope, achievements, and ongoing projects of an unbiased sample of 19 currently active or recently terminated RERCs. Specifically, for each center, we briefly explain the needs it targets, summarize key historical advances, identify emerging innovations, and consider future directions. Our assessment from this review is that the RERC program indeed involves a multidisciplinary approach, with 36 professional fields involved, although 70% of research and development staff are in engineering fields, 23% in clinical fields, and only 7% in basic science fields; significantly, 11% of the professional staff have a disability related to their research. We observe that the RERC program has substantially diversified the scope of its work since the 1970’s, addressing more types of disabilities using more technologies, and, in particular, often now focusing on information technologies. RERC work also now often views users as integrated into an interdependent society through technologies that both people with and without disabilities co-use (such as the internet, wireless communication, and architecture). In addition, RERC research has evolved to view users as able at improving outcomes through learning, exercise, and plasticity (rather than being static), which can be optimally timed. We provide examples of rehabilitation technology innovation produced by the RERCs that illustrate this increasingly diversifying scope and evolving perspective. We conclude by discussing growth opportunities and possible future directions of the RERC program

    Advancement in Dietary Assessment and Self-Monitoring Using Technology

    Get PDF
    Although methods to assess or self-monitor intake may be considered similar, the intended function of each is quite distinct. For the assessment of dietary intake, methods aim to measure food and nutrient intake and/or to derive dietary patterns for determining diet-disease relationships, population surveillance or the effectiveness of interventions. In comparison, dietary self-monitoring primarily aims to create awareness of and reinforce individual eating behaviours, in addition to tracking foods consumed. Advancements in the capabilities of technologies, such as smartphones and wearable devices, have enhanced the collection, analysis and interpretation of dietary intake data in both contexts. This Special Issue invites submissions on the use of novel technology-based approaches for the assessment of food and/or nutrient intake and for self-monitoring eating behaviours. Submissions may document any part of the development and evaluation of the technology-based approaches. Examples may include: web adaption of existing dietary assessment or self-monitoring tools (e.g., food frequency questionnaires, screeners) image-based or image-assisted methods mobile/smartphone applications for capturing intake for assessment or self-monitoring wearable cameras to record dietary intake or eating behaviours body sensors to measure eating behaviours and/or dietary intake use of technology-based methods to complement aspects of traditional dietary assessment or self-monitoring, such as portion size estimation

    HABITAT: An IoT solution for independent elderly

    Get PDF
    In this work, a flexible and extensive digital platform for Smart Homes is presented, exploiting the most advanced technologies of the Internet of Things, such as Radio Frequency Identification, wearable electronics, Wireless Sensor Networks, and Artificial Intelligence. Thus, the main novelty of the paper is the system-level description of the platform flexibility allowing the interoperability of different smart devices. This research was developed within the framework of the operative project HABITAT (Home Assistance Based on the Internet of Things for the Autonomy of Everybody), aiming at developing smart devices to support elderly people both in their own houses and in retirement homes, and embedding them in everyday life objects, thus reducing the expenses for healthcare due to the lower need for personal assistance, and providing a better life quality to the elderly users.In this work, a flexible and extensive digital platform for Smart Homes is presented, exploiting the most advanced technologies of the Internet of Things, such as Radio Frequency Identification, wearable electronics, Wireless Sensor Networks, and Artificial Intelligence. Thus, the main novelty of the paper is the system-level description of the platform flexibility allowing the interoperability of different smart devices. This research was developed within the framework of the operative project HABITAT (Home Assistance Based on the Internet of Things for the Autonomy of Everybody), aiming at developing smart devices to support elderly people both in their own houses and in retirement homes, and embedding them in everyday life objects, thus reducing the expenses for healthcare due to the lower need for personal assistance, and providing a better life quality to the elderly users

    HABITAT: An IoT Solution for Independent Elderly

    Get PDF
    In this work, a flexible and extensive digital platform for Smart Homes is presented, exploiting the most advanced technologies of the Internet of Things, such as Radio Frequency Identification, wearable electronics, Wireless Sensor Networks, and Artificial Intelligence. Thus, the main novelty of the paper is the system-level description of the platform flexibility allowing the interoperability of different smart devices. This research was developed within the framework of the operative project HABITAT (Home Assistance Based on the Internet of Things for the Autonomy of Everybody), aiming at developing smart devices to support elderly people both in their own houses and in retirement homes, and embedding them in everyday life objects, thus reducing the expenses for healthcare due to the lower need for personal assistance, and providing a better life quality to the elderly users

    A study of environmental factors in low vision rehabilitation

    Get PDF
    Healthcare has the past decades shifted from a narrow medical perspective to a more holistic, biopsychosocial perspective. Disability understood as a contextual condition constituted by the relation of the individual to their social and physical context. The disability model of the International Classification of Functions (ICF) contextualizes activity, participation, body functions and structure by including environmental and personal factors. However, illustrated by the consideration of the environmental factors as a neutral dimension, the dynamic interrelation of the individual parts of the system is rather unchartered. In 2017–2019, a lighting assessment was developed and tested on 60 participants in low vision rehabilitation. An action research project accompanied the pilot study from 2018. Ethnographic participatory observations of the low vision consultants in 15 consultations, semi-structured interviews, and a document analysis of the project material of the pilot project has been analyzed using the theoretical framework of science and technology studies. Mapping the physical environment showed a range of factors from spatial organization to luminaires and light bulbs. Moreover, in relation to specific activities, relevant factors were identified and assessed, and in the intervention adjusted to relevant personal and social factors. Identifying overlapping personal, environmental, and professional spheres illustrates the complexity of practicing rehabilitation in people's everyday lives. Acknowledging and coordinating different versions of lighting enabled low vision consultants to work across these spheres relationally. ICF was embedded in the practice of low vision consultants as a frame of reference, however, implementing this framework occurred through an assemblage of tools from different fields. The focus on lighting as an active element in low vision rehabilitation demonstrated a way to work across the personal and environmental to reduce the gap that caused disability. In everyday life, the physical environment was pivotal in the person–environment relationship and in enabling or disabling the individual. However, the physical environment was also key to the rehabilitation process, facilitating the individual's learning and change processes and reconfiguring their understanding and use of the environment. Consequently, the physical environment was not a neutral background to the other factors but rather enabling the rehabilitation and recovery processes

    Transforming our World through Universal Design for Human Development

    Get PDF
    An environment, or any building product or service in it, should ideally be designed to meet the needs of all those who wish to use it. Universal Design is the design and composition of environments, products, and services so that they can be accessed, understood and used to the greatest extent possible by all people, regardless of their age, size, ability or disability. It creates products, services and environments that meet people’s needs. In short, Universal Design is good design. This book presents the proceedings of UD2022, the 6th International Conference on Universal Design, held from 7 - 9 September 2022 in Brescia, Italy.The conference is targeted at professionals and academics interested in the theme of universal design as related to the built environment and the wellbeing of users, but also covers mobility and urban environments, knowledge, and information transfer, bringing together research knowledge and best practice from all over the world. The book contains 72 papers from 13 countries, grouped into 8 sections and covering topics including the design of inclusive natural environments and urban spaces, communities, neighborhoods and cities; housing; healthcare; mobility and transport systems; and universally- designed learning environments, work places, cultural and recreational spaces. One section is devoted to universal design and cultural heritage, which had a particular focus at this edition of the conference. The book reflects the professional and disciplinary diversity represented in the UD movement, and will be of interest to all those whose work involves inclusive design

    Quality specifications in postgraduate medical e-learning: an integrative literature review leading to a postgraduate medical e-learning model

    Full text link
    BACKGROUND: E-learning is driving major shifts in medical education. Prioritizing learning theories and quality models improves the success of e-learning programs. Although many e-learning quality standards are available, few are focused on postgraduate medical education. METHODS: We conducted an integrative review of the current postgraduate medical e-learning literature to identify quality specifications. The literature was thematically organized into a working model. RESULTS: Unique quality specifications (n = 72) were consolidated and re-organized into a six-domain model that we called the Postgraduate Medical E-learning Model (Postgraduate ME Model). This model was partially based on the ISO-19796 standard, and drew on cognitive load multimedia principles. The domains of the model are preparation, software design and system specifications, communication, content, assessment, and maintenance. CONCLUSION: This review clarified the current state of postgraduate medical e-learning standards and specifications. It also synthesized these specifications into a single working model. To validate our findings, the next-steps include testing the Postgraduate ME Model in controlled e-learning settings

    Mobile Medical Education (MoMEd) - how mobile information resources contribute to learning for undergraduate clinical students - a mixed methods study

    Get PDF
    BACKGROUND: Mobile technology is increasingly being used by clinicians to access up-to-date information for patient care. These offer learning opportunities in the clinical setting for medical students but the underlying pedagogic theories are not clear. A conceptual framework is needed to understand these further. Our initial questions were how the medical students used the technology, how it enabled them to learn and what theoretical underpinning supported the learning. METHODS: 387 medical students were provided with a personal digital assistant (PDA) loaded with medical resources for the duration of their clinical studies. Outcomes were assessed by a mixed-methods triangulation approach using qualitative and quantitative analysis of surveys, focus groups and usage tracking data. RESULTS: Learning occurred in context with timely access to key facts and through consolidation of knowledge via repetition. The PDA was an important addition to the learning ecology rather than a replacement. Contextual factors impacted on use both positively and negatively. Barriers included concerns of interrupting the clinical interaction and of negative responses from teachers and patients. Students preferred a future involving smartphone platforms. CONCLUSIONS: This is the first study to describe the learning ecology and pedagogic basis behind the use of mobile learning technologies in a large cohort of undergraduate medical students in the clinical environment. We have developed a model for mobile learning in the clinical setting that shows how different theories contribute to its use taking into account positive and negative contextual factors.The lessons from this study are transferable internationally, to other health care professions and to the development of similar initiatives with newer technology such as smartphones or tablet computer

    Accessibility of Health Data Representations for Older Adults: Challenges and Opportunities for Design

    Get PDF
    Health data of consumer off-the-shelf wearable devices is often conveyed to users through visual data representations and analyses. However, this is not always accessible to people with disabilities or older people due to low vision, cognitive impairments or literacy issues. Due to trade-offs between aesthetics predominance or information overload, real-time user feedback may not be conveyed easily from sensor devices through visual cues like graphs and texts. These difficulties may hinder critical data understanding. Additional auditory and tactile feedback can also provide immediate and accessible cues from these wearable devices, but it is necessary to understand existing data representation limitations initially. To avoid higher cognitive and visual overload, auditory and haptic cues can be designed to complement, replace or reinforce visual cues. In this paper, we outline the challenges in existing data representation and the necessary evidence to enhance the accessibility of health information from personal sensing devices used to monitor health parameters such as blood pressure, sleep, activity, heart rate and more. By creating innovative and inclusive user feedback, users will likely want to engage and interact with new devices and their own data

    Advances in Human Factors in Wearable Technologies and Game Design

    Get PDF
    • 

    corecore