1,349 research outputs found

    Maximum rectilinear convex subsets

    Get PDF
    Let P be a set of n points in the plane. We consider a variation of the classical Erd\H os-Szekeres problem, presenting efficient algorithms with O(n3) running time and O(n2) space complexity that compute (1) a subset S of P such that the boundary of the rectilinear convex hull of S has the maximum number of points from P, (2) a subset S of P such that the boundary of the rectilinear convex hull of S has the maximum number of points from P and its interior contains no element of P, (3) a subset S of P such that the rectilinear convex hull of S has maximum area and its interior contains no element of P, and (4) when each point of P is assigned a weight, positive or negative, a subset S of P that maximizes the total weight of the points in the rectilinear convex hull of S. We also revisit the problems of computing a maximum area orthoconvex polygon and computing a maximum area staircase polygon, amidst a point set in a rectangular domain. We obtain new and simpler algorithms to solve both problems with the same complexity as in the state of the art

    Maximum rectilinear convex subsets

    Get PDF
    Let P be a set of n points in the plane. We consider a variation of the classical Erdos-Szekeres problem, presenting efficient algorithms with (formula presented) running time and (formula presented) space complexity that compute: (1) A subset S of P such that the boundary of the rectilinear convex hull of S has the maximum number of points from P, (2) a subset S of P such that the boundary of the rectilinear convex hull of S has the maximum number of points from P and its interior contains no element of P, (3) a subset S of P such that the rectilinear convex hull of S has maximum area and its interior contains no element of P, and (4) when each point of P is assigned a weight, positive or negative, a subset S of P that maximizes the total weight of the points in the rectilinear convex hull of S

    The Orchard crossing number of an abstract graph

    Full text link
    We introduce the Orchard crossing number, which is defined in a similar way to the well-known rectilinear crossing number. We compute the Orchard crossing number for some simple families of graphs. We also prove some properties of this crossing number. Moreover, we define a variant of this crossing number which is tightly connected to the rectilinear crossing number, and compute it for some simple families of graphs.Comment: 17 pages, 10 figures. Totally revised, new material added. Submitte

    Mobile vs. point guards

    Get PDF
    We study the problem of guarding orthogonal art galleries with horizontal mobile guards (alternatively, vertical) and point guards, using "rectangular vision". We prove a sharp bound on the minimum number of point guards required to cover the gallery in terms of the minimum number of vertical mobile guards and the minimum number of horizontal mobile guards required to cover the gallery. Furthermore, we show that the latter two numbers can be calculated in linear time.Comment: This version covers a previously missing case in both Phase 2 &

    4-Holes in point sets

    Get PDF
    We consider a variant of a question of Erdos on the number of empty k-gons (k-holes) in a set of n points in the plane, where we allow the k-gons to be non-convex. We show bounds and structural results on maximizing and minimizing the number of general 4-holes, and maximizing the number of non-convex 4-holes. In particular, we show that for n >= 9, the maximum number of general 4-holes is ((pi)(4)); the minimum number of general 4-holes is at least 5/2 n(2) - circle minus(n); and the maximum number of non-convex 4-holes is at least 1/2 n(3) - circle minus(n(2) logn) and at most 1/2 n(3) - circle minus(n(2)). 2014 (c) Elsevier B.V. All rights reserved.Postprint (author’s final draft

    Total variation denoising in l1l^1 anisotropy

    Full text link
    We aim at constructing solutions to the minimizing problem for the variant of Rudin-Osher-Fatemi denoising model with rectilinear anisotropy and to the gradient flow of its underlying anisotropic total variation functional. We consider a naturally defined class of functions piecewise constant on rectangles (PCR). This class forms a strictly dense subset of the space of functions of bounded variation with an anisotropic norm. The main result shows that if the given noisy image is a PCR function, then solutions to both considered problems also have this property. For PCR data the problem of finding the solution is reduced to a finite algorithm. We discuss some implications of this result, for instance we use it to prove that continuity is preserved by both considered problems.Comment: 34 pages, 9 figure

    Ramified rectilinear polygons: coordinatization by dendrons

    Full text link
    Simple rectilinear polygons (i.e. rectilinear polygons without holes or cutpoints) can be regarded as finite rectangular cell complexes coordinatized by two finite dendrons. The intrinsic l1l_1-metric is thus inherited from the product of the two finite dendrons via an isometric embedding. The rectangular cell complexes that share this same embedding property are called ramified rectilinear polygons. The links of vertices in these cell complexes may be arbitrary bipartite graphs, in contrast to simple rectilinear polygons where the links of points are either 4-cycles or paths of length at most 3. Ramified rectilinear polygons are particular instances of rectangular complexes obtained from cube-free median graphs, or equivalently simply connected rectangular complexes with triangle-free links. The underlying graphs of finite ramified rectilinear polygons can be recognized among graphs in linear time by a Lexicographic Breadth-First-Search. Whereas the symmetry of a simple rectilinear polygon is very restricted (with automorphism group being a subgroup of the dihedral group D4D_4), ramified rectilinear polygons are universal: every finite group is the automorphism group of some ramified rectilinear polygon.Comment: 27 pages, 6 figure
    • 

    corecore