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Abstract

We consider a variant of a question of Erdős on the number of empty k-gons
(k-holes) in a set of n points in the plane, where we allow the k-gons to
be non-convex. We show bounds and structural results on maximizing and
minimizing the number of general 4-holes, and maximizing the number of
non-convex 4-holes. In particular, we show that for n ≥ 9, the maximum
number of general 4-holes is

(
n
4

)
; the minimum number of general 4-holes is

at least 5
2
n2 − Θ(n); and the maximum number of non-convex 4-holes is at

least 1
2
n3 −Θ(n2 log n) and at most 1

2
n3 −Θ(n2).
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1. Introduction

Let S be a set of n points in general position in the plane (i.e., no three
points of S are collinear). A k-gon is a simple polygon spanned by k points
of S. A k-hole is an empty k-gon; that is, a k-gon which does not contain
any points of S in its interior.

In 1978 Erdős [9] raised the following question for convex k-holes: “What
is the smallest integer h(k) such that any set of h(k) points in the plane
contains at least one convex k-hole?” As already observed by Esther Klein,
every set of 5 points determines a convex 4-hole, and 10 points always contain
a convex 5-hole, a fact proven by Harborth [15]. However, in 1983 Horton
showed that there exist arbitrarily large sets of points containing no convex
7-hole [16]. It again took almost a quarter of a century after Horton’s con-
struction to answer the existence question for 6-holes. In 2007–08 Nicolás [18]
and independently Gerken [13] proved that every sufficiently large point set
contains a convex 6-hole.

Erdős also proposed the following variation of the problem [10]. “What is
the least number hk(n) of convex k-holes determined by any set of n points
in the plane?” We know by Horton’s construction that hk(n) = 0 for k ≥ 7.
For k ≤ 6, upper and lower bounds on hk(n) exist; see [1] for a survey.

In this paper we generalize the latter problem by allowing a k-hole to
be non-convex. Thus, whenever we refer to a k-hole, it might be convex or
non-convex, and we will explicitly state it when we restrict investigations to
one of these two classes.

Note that a set of four points in non-convex position might span up to
three 4-holes; that is, the number of k-holes can be larger than

(
n
k

)
, the

maximum number of convex k-holes. Further, note that the number of k-
holes (of whatever type) only depends on the combinatorics of the point set,
and is thus determined by its order type; see [14, 6, 2].

We first investigate point sets of small cardinality (Section 2), and then
consider the following tasks: maximizing the number of 4-holes (Section 3),
maximizing the number of non-convex 4-holes (Section 4), and minimizing
the number of 4-holes (Section 5). In addition to lower and upper bounds on
their number, we also show which families of point sets achieve these bounds.
Table 1 gives an overview on the bounds on the minimum and maximum
numbers of general and non-convex holes. It also contains information about
the classes of point sets achieving these bounds.
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4-hole type minimum number maximum number

general

≥ 5
2n

2−Θ(n) [Thm. 6]

(all sets)

≤ O(n
5
2 log n) [3]

(“squared Horton sets” [20])

=
(
n
4

)
for n ≥ 9 [Thm. 2]

(convex sets)

non-convex
= 0

(convex sets)

≤ n3

2 −Θ(n2) [Lem. 3]

(all sets)

≥ n3

2 −Θ(n2 log n) [Thm. 4]

(“mostly convex” sets [17])

Table 1: Bounds on the minimum and maximum numbers of general and non-convex
4-holes, together with the classes of point sets achieving them.

A natural generalization of this work is to consider similar questions for
larger k-holes, i.e., k > 4, as well as k-gons (for 4-gons, these questions are
directly related to the rectilinear crossing number). During the preparation
of the full version of this paper, we have been able to obtain some results
in this direction. In [5], we show that also the number of non-convex 5-gons
can be expressed in terms of the rectilinear crossing number. Further, we
provide an improved lower bound for the minimum number of convex 5-holes
and show that the principles of Theorems 2 and 6 can be used to obtain
similar results for k=5. In a forthcoming paper, see [3] for an extended ab-
stract, we investigate the asymptotic behavior of the numbers of k-gons and
k-holes in large point sets. Most noteworthy, we provide an upper bound
of O(n

k+1
2 (log n)k−3) for the minimum number of general k-holes (for any

constant k≥ 4) and show that for large n, this number is still maximized by
n-point sets in convex position. We also consider the case where k is not con-
stant with respect to n. For example, we show that if k is a sufficiently large
linear fraction of n, then the convex set contains strictly less k-holes than
the double chain [12] of same cardinality. The PhD thesis [21] summarizes
most results obtained for k ≥ 4.

Note that while the proof for the variation of Theorem 2 in [3] is simpler
than the according proofs in [5] and in the work at hand, it provides weaker
results with respect to the obtained bounds on the cardinality of the point
sets. In particular, it leaves a gap for k=4, while Theorem 2 in this paper is
best possible in that sense.
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2. Small Sets

Even to determine the number of 4-holes in point sets of small cardinality
is surprisingly intriguing. For n ≤ 11, Table 2, which is partly taken from [1],
shows the minimum number of convex 4-holes, the maximum number of non-
convex 4-holes, the minimum and maximum number of (general) 4-holes, and,
for easy comparison, the number of (unordered) 4-tuples. The numbers are
calculated using a straight-forward program and the order type database [6,
2].

convex non-convex general
n

min max min max

(
n
4

)
4 0 3 1 3 1
5 1 8 5 9 5
6 3 18 15 22 15
7 6 36 35 43 35
8 10 64 66 77 70
9 15 100 102 126 126

10 23 150 147 210 210
11 32 216 203 330 330

Table 2: Number of 4-holes for n = 4, . . . , 11 points; see [1] for details.

Obviously, the maximum number of convex 4-holes is
(
n
4

)
, obtained by sets

in convex position. For minimizing the number of convex 4-holes, the cur-
rently best known bounds are n2

2
− 9

4
n− o(n) ≤ h4(n) ≤ 1.9397n2 + o(n2),

where the upper bound is by Bárány and Valtr [7], and the lower bound is
by Garćıa [11] and Aichholzer et al. [4]. A result of independent interest is by
Pinchasi et al. [19], who showed h4(n) ≥ h3(n) − n2

2
− O(n). Currently, the

best known bound on h3(n) is h3(n) ≥ n2− 32
7
n+ 22

7
[11, 4]. Thus, improving

the dominant factor in the lower bound for h3(n) would also imply a better
lower bound for h4(n).

For n = 4, . . . , 7 it can be seen from Table 2 that the minimum number
of 4-holes is

(
n
4

)
. In contrast,

(
n
4

)
is the maximum number of 4-holes for n =

9, 10, 11. This implies that convex sets are minimizing examples for n ≤ 7
and maximizing examples for n = 9, 10, 11. So the structure of extremal sets
seems to switch.

Figure 1 shows point sets maximizing the number of 4-holes for n =
4, . . . , 8. The results for n ≥ 9 suggest that sets in convex position might
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maximize the number of 4-holes for n ≥ 9. Indeed, this will be the first result
we prove for general 4-holes (Section 3).

n = 4 : 0/3/3 n = 5 : 1/8/9 n = 6 : 4/18/22

n = 7 : 7/36/43 n = 8 : 20/57/77

Figure 1: Point sets maximizing the number of 4-holes for n = 4, . . . , 8. Shown are the
number of convex, non-convex, and general 4-holes. With the exception of n = 7, each
point set represents the unique maximizing order type.

Figure 2 shows two extremal sets for n = 11 points. Each point set
represents the unique order type which reaches the extreme value. The left
set maximizes the number of non-convex 4-holes, namely 216, and consists
of a convex 5-hole inside a convex 6-gon. The total number of 4-holes in this
set is 267; i.e., it contains in addition 51 convex 4-holes. The set on the right
side minimizes the number of general 4-holes. It contains 51 convex and 152
non-convex 4-holes, thus in total the minimum of 203 4-holes.

3. Maximizing the Number of (General) 4-Holes

In this section we show that for large enough n, the number of 4-holes is
maximized by convex sets, as suggested by the enumerative results.

Lemma 1. Let ∆ be a non-empty triangle in S. There are at most three
non-convex 4-holes spanned by the three vertices of ∆ plus a point of S in
the interior of ∆.

Proof. Let p1, p2, and p3 be the vertices of ∆. Observe that any non-convex
4-hole has to use two edges of ∆. Thus there are three choices for the unused
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(a) (b)

Figure 2: Two unique extremal sets for n = 11 points: (a) maximizes the number of
non-convex 4-holes, and (b) minimizes the number of general 4-holes.

edge of ∆, and for each choice there is at most one way to complete the
two used edges of ∆ to a 4-hole. Assume to the contrary that two different
4-holes avoid the edge p2p3 and use points q1 and q2, respectively, in the
interior. Then q2 lies outside the two triangles formed by p1q1p2 and p1q1p3.
Thus q2 lies in the triangle formed by p2q1p3. But then q1 must lie in one of
the triangles spanned by p1q2p2 and p1q2p3, a contradiction.

Theorem 2. For n ≥ 9, the number of 4-holes is maximized by a set of n
points in convex position.

Proof. In the following we assign every non-convex 4-tuple of points to the
three vertices of its convex hull and call this the representing triangle of
the potential non-convex 4-holes. By Lemma 1, any non-empty triangle
represents at most three 4-holes, and any convex 4-tuple gives at most one
4-hole.

Let T = T (S) be the number of non-empty triangles in a point set S. As
any non-empty triangle induces at least one 4-tuple in non-convex position,
we get (

n

4

)
− T + 3T =

(
n

4

)
+ 2T (1)

as a first upper bound on the number of 4-holes in S.
Note that a triangle ∆ with k ≥ 1 interior points is counted k+2 times

in (1), namely k times in the
(
n
4

)
4-tuples and twice in the term 2T , as ∆

is non-empty. Thus for k > 1 we have over-counted the number of non-
convex 4-holes assigned to ∆; cf. Lemma 1. Moreover, many of the convex
4-gons might not be empty and thus not 4-holes. Therefore we now analyze
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how many 4-holes can be deduced from (1) as overcounted. We will do this
by assigning (possibly multiple) markers for over-counted 4-holes to convex
4-tuples and non-empty triangles.

As above, let ∆ be a triangle with k ≥ 1 interior points, and consider
all 4-tuples consisting of the three vertices of ∆ plus an extra point p. We
distinguish two cases.

Case 1. Let p be one of the n−k−3 points outside ∆. If the resulting
4-tuple is convex, we mark this 4-tuple, as it is not empty and thus not a
4-hole. If the 4-tuple is non-convex, we mark the triangle which represents
the potential non-convex 4-hole, as at least one of the three possible 4-holes
of this 4-tuple is non-empty.

Case 2. Consider the k points inside ∆. As argued above, ∆ was counted
k+2 times. But by Lemma 1, there are at most three 4-holes using one interior
point of ∆ and thus represented by ∆. Therefore we assign k−1 markers
to ∆.

Adding up both cases, we have distributed n−k−3+(k−1) = n−4 markers
while considering ∆. Repeating this for all non-empty triangles, we obtain a
total of (n−4) · T markers.

A non-empty convex 4-tuple might have received up to 4 markers in this
way, one from each of its sub-triangles. That is, we have at most 4 times
as many markers as convex 4-tuples which we can reduce from the upper
bound (1).

A non-empty triangle ∆ with k ≥ 1 interior points might have received
4 · (k−1) markers: For its interior points, ∆ received k−1 markers from the
second case, and for each non-empty triangle formed by two vertices of ∆
and one point inside ∆, it received one marker from the first case. Observe
that at least three of the considered inner triangles are empty, namely the
ones spanned by an edge e of ∆ and the interior point closest to e. Thus, the
first case gives at most 3 · (k − 1) additional markers, resulting in a total of
at most 4 · (k−1) markers for ∆. As ∆ was counted k+2 times but represents
at most three 4-holes (Lemma 1), we have at most 4 · (k−1) markers for at
least (k+2)−3 = k−1 over-counted objects. Thus, in both cases we get
at most four times as many markers as over-counted 4-holes which we may
deduct from (1). We therefore can reduce the number of potential 4-holes by
one quarter of the distributed markers, namely by n−4

4
· T . This leads to the

improved upper bound(
n

4

)
+ 2T − n− 4

4
· T =

(
n

4

)
− n− 12

4
· T
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for the number of 4-holes. For n ≥ 12 this is at most
(
n
4

)
, the number of

4-holes for a set of points in convex position. Together with the results from
Table 2 for n = 9, . . . , 11, this proves the theorem.

Remark. From the proof of the previous theorem it follows that for n≥13
any non-convex set of n points has strictly less general 4-holes than the
convex set of the same cardinality. Moreover, Theorem 2 is tight in the sense
that for n<9, the statement is not true.

4. Maximizing the Number of Non-Convex 4-Holes

In the previous section we have shown that for n ≥ 9, the number of
general 4-holes is maximized for sets in convex position. This obviously also
holds for the number of convex 4-holes.

We now consider maximizing the number of non-convex 4-holes. From
Lemma 1 we obtain the following.

Lemma 3. The number of non-convex 4-holes of any set of n points is at
most n(n−1)(n−2)

2
= n3

2
−Θ(n2).

Proof. By Lemma 1, any non-empty triangle generates at most three non-
convex 4-holes, and there are at most

(
n
3

)
such triangles in a set of n points.

Theorem 4. For any m ≥ 1 there exist point sets of cardinality n = 2m+1 − 2
that contain n3

2
−Θ(n2 log n) non-convex 4-holes.

Proof. We consider special point sets Xm, m ≥ 1, with |Xm| = n = 2m+1−2
points, that have been introduced in [17]. The point sets are defined recur-
sively in layers, starting with two points X1 := R1 in the first layer. An
additional layer Ri is added to Xi−1 := R1 ∪ · · · ∪ Ri−1 by placing two new
points close to each point in Ri−1 outside the convex hull of Xi−1, such that
the following conditions hold:

1. Xi = R1 ∪ · · · ∪ Ri is in general position,

2. the points in Ri are precisely the extremal points (i.e., vertices on the
convex hull) of Xi, and

3. any triangle determined by Ri contains precisely one point of Xi in its
interior.
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See Figure 3 for an example and [17] for a detailed description of the
construction. Furthermore, in [17] it is shown that every triangle spanned by
Xm contains at most one interior point of Xm; i.e., every non-empty triangle
of Xm contains exactly one point. Thus, using Lemma 1, the number of
non-convex 4-holes of Xm is three times the number of non-empty triangles.

Ap

Bp

p

q

Bq

Aq

Figure 3: Sketch of the special point set defined in [17], for m = 4.

For each point x ∈ Ri−1, 2≤ i≤m, we will count the number of triangles
that contain x in its interior. Note that points in Rm are extremal points of
Xm and thus not in the interior of any triangle spanned by points of Xm. To
this end, we consider the two points in the next layer Ri which are closest
to x. We denote by Ax and Bx the subsets of Xm which consist of one of these
points of Ri, respectively, plus all points in outer layers Rj (j > i) which
were subsequently added to this point of Ri by the construction. We say that
Ax and Bx are the induced subsets of x, and that Cx := Xm\{Ax ∪Bx ∪{x}}
is the remainder (of Xm) for x.

First, fix a point in the first layer R1, say p in Figure 3. Any triangle
containing p in its interior is formed by one point of Ap, one point of Bp, and
one point of the remainder Cp. As a1 := |Ap| = |Bp| = n−2

4
and c1 := |Cp| =

n − 2 · a1 − 1 = n
2
, this gives a21 · c1 triangles containing p in the interior,

and thus the number of triangles containing a point of R1 in the interior is
2 · a21 · c1 = 2 · (n−2

4
)2 · n

2
.

Now consider a point q in the second layer R2. Its induced subsets Aq

and Bq have size a2 = n−6
8

, and the remainder Cq has c2 = n−2 ·a2−1 = 3n+2
4

points. In combination with r2 := |R2| = 4 this gives a total of 4·(n−6
8

)2 · 3n+2
4

triangles containing a point of R2 in the interior.
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In general, |Ri| = ri = 2i, and the size of the two induced subsets of a
point pi in Ri is

ai =
1

ri+1

(n− |Xi|) =
n− (2i+1 − 2)

2i+1
.

Thus with the size of the corresponding remainder Cpi of

ci = n− 2 · ai − 1 =
(2i − 1)n + 2i − 2

2i
,

we get ri · a2i · ci triangles containing one point of Ri in the interior.
Using that every non-empty triangle of Xm gives three non-convex 4-holes,

and summing up over all layers Ri, we obtain

3 ·
m∑
i=1

ri · a2i · ci = 3 ·
m∑
i=1

2i

(
n− (2i+1 − 2)

2i+1

)2
(2i − 1)n + 2i − 2

2i

=
1

2
n3 − 3n2 log2(n + 2) +

39

4
n2

1

2
n3 − 12n log2(n + 2) +

41

2
n− 12 log2(n + 2) + 12

for the total number of non-convex 4-holes of Xm.

5. Minimizing the Number of (General) 4-Holes

As already mentioned, we have n2

2
− 9

4
n−o(n) ≤ h4(n) ≤ 1.9397n2+o(n2)

for the minimal number h4(n) of convex 4-holes. For non-convex 4-holes, the
lower bound trivially is zero. In the following we will show a lower bound for
the number of (general) 4-holes.

By checking all order types of cardinality eight from the order type data
base [6, 2], we obtained the following observation for general 4-holes.

Observation 5. Let S be a set of n = 8 points in the plane in general
position, and p1, p2 ∈ S two arbitrary points of S. Then S contains at least
five 4-holes having p1 and p2 among their vertices.

Let us make a few remarks on this observation. On the one hand, consider
any set S with n ≥ 8 points, and any two points p1, p2 ∈ S. Then p1 and
p2 together with the six points of S\{p1, p2} that are closest to the segment
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p1 p2

p3 p4

p5 p6

p7 pn

Figure 4: A point set containing only five 4-holes (one convex and four non-convex) that
have both p1 and p2 as a vertex.

p1p2 form a set S ′ of eight points. Obviously, the convex hull of S ′ does not
contain any points from S\S ′. By Observation 5, S ′ contains at least five
4-holes having p1 and p2 among its vertices and thus S does as well.

On the other hand, there exist arbitrarily large point sets S such that
there exist points p1, p2 ∈ S which are contained in at most five 4-holes. For
example, given the point set shown in Figure 4, we consider 4-holes having
both p1 and p2 as a vertex. Note that such a 4-hole cannot contain any of
the points p7, . . . , pn. The reason is that every triangle p1p2pk, 7 ≤ k ≤ n,
contains p3, . . . , p6 and thus cannot be completed to a 4-hole; cf. the proof of
Lemma 1. Thus, the vertex set of any 4-hole in S having both p1 and p2 as
a vertex is a subset of {p1, . . . , p6}. As {p1, . . . , p6} contains only five such
4-holes, Observation 5 is tight in that respect also for n > 8.

Moreover, for n ≤ 7, there are point sets Sn and points p1, p2 ∈ Sn for
which only n−3<5 4-holes are incident to both, p1 and p2. Figure 5 shows an
example with 7 points. According examples with less points can be derived
by disregarding the points with higher indices. Also, adding an 8th point
on the chain yields the second 8-point order type having only five 4-holes
incident to both p1 and p2.

Based on Observation 5, we can derive a lower bound for the number of
general 4-holes. Note that there exist sets which contain fewer than 1.94n2

convex 4-holes, while by the following result any set contains at least 2.5n2−
Θ(n) general 4-holes.
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p1 p2

p3 p4 p5 p6
p7

Figure 5: A 7-point set containing only four 4-holes (all convex) that have both p1 and p2
as a vertex.

Theorem 6. Let S be a set of n ≥ 8 points in the plane in general position.
Then S contains at least 5

2
n2 −Θ(n) 4-holes.

Proof. Assume w.l.o.g. that no two points of the set S have identical x-
coordinates. We consider S in x-sorted order, S = {p1, . . . , pn}, and define
subsets Si,j = {pi, . . . , pj} ⊆ S. The number of sets Si,j having at least 8
points is

n−7∑
i=1

n∑
j=i+7

1 =
n−7∑
i=1

(n− i− 6) =
n2

2
− 13

2
n + 21.

By Observation 5, each set Si,j contains at least five 4-holes having pi and
pj among their vertices. Moreover, as pi and pj are the left- and rightmost
points of Si,j, they are also the left- and rightmost points for each of these
4-holes. This implies that any 4-hole of S counts for at most one set Si,j,
which gives a lower bound of 5

2
n2−Θ(n) for the number of 4-holes in S.

The principle of the proof of the above theorem can also be used to obtain
an asymptotic lower bound of Ω(n2) on the number of k-holes (for any c<1
and 3≤k≤c·n) [3]. Expectedly, such a generalization cannot provide specific
constants, like the dominant factor of 5

2
in Theorem 6, which is obtained by

using Observation 5.

6. Conclusion

We have shown lower and upper bounds on the numbers of general and
non-convex 4-holes in point sets; see again Table 1 on page 3.

Several questions remain open, of which the following is perhaps the
most intriguing: What is the minimum number of general 4-holes that any
n-element point set in general position must have? In Section 5 we have
shown a quadratic lower bound for this number. By Proposition 7 below,
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a super-quadratic lower bound would solve a conjecture of Bárány in the
affirmative, showing that every point set in general position contains a pair
of points that is incident to a super-constant number of 3-holes; see e.g. [8],
Chapter 8.4, Problem 4.

Proposition 7. Assume that a point set S in general position contains a
super-quadratic number of general 4-holes. Then S also contains a pair of
points that is incident to a super-constant number of 3-holes.

Proof. Consider two arbitrary points p, q ∈ S and let ♦(p, q) be the number
of 4-holes in S for which pq is an interior diagonal. A 4-hole counted by
♦(p, q) consists of two empty triangles which lie on opposite sides of pq and
both have pq as an edge. Let ∆1(p, q) and ∆2(p, q) be the numbers of empty
triangles incident to pq on each of the two sides of pq, respectively. Then
♦(p, q) = ∆1(p, q) ·∆2(p, q).

A convex 4-hole has two interior diagonals, while a non-convex 4-hole
has only one. Hence, summing up ♦(p, q) over all pairs of points p, q ∈ S
gives twice the number of convex plus once the number of non-convex 4-holes
in S, which is at least the number of general 4-holes in S and thus super-
quadratic. This implies that ♦(p∗, q∗) = max{♦(p, q) : p, q ∈ S, p 6= q} is
super-constant. Thus, the number of empty triangles incident to p∗q∗, which
is ∆1(p

∗, q∗) + ∆2(p
∗, q∗) ≥ 2 ·

√
♦(p∗, q∗), is super-constant as well.
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