2,125 research outputs found

    Incentive-compatible route coordination of crowdsourced resources

    Full text link
    Technical ReportWith the recent trend in crowdsourcing, i.e., using the power of crowds to assist in satisfying demand, the pool of resources suitable for GeoPresen-ce-capable systems has expanded to include already roaming devices, such as mobile phones, and moving vehicles. We envision an environment, in which the motion of these crowdsourced mobile resources is coordinated, according to their preexisting schedules to satisfy geo-temporal demand on a mobility field. In this paper, we propose an incentive compatible route coordination mechanism for crowdsourced resources, in which participating mobile agents satisfy geo-temporal requests in return for monetary rewards. We define the Flexible Route Coordination (FRC) problem, in which an agent’s flexibility is exploited to maximize the coverage of a mobility field, with an objective to maximize the revenue collected from satisfied paying requests. Given that the FRC problem is NP-hard, we define an optimal algorithm to plan the route of a single agent on a graph with evolving labels, then we use that algorithm to define a 1-approximation algorithm to solve the 2 problem in its general model, with multiple agents. Moreover, we define an incentive compatible, rational, and cash-positive payment mechanism, which guarantees that an agent’s truthfulness about its flexibility is an ex-post Nash equilibrium strategy. Finally, we analyze the proposed mechanisms theoretically, and evaluate their performance experimentally using real mobility traces from urban environments

    Analysis of Crowdsourced Sampling Strategies for HodgeRank with Sparse Random Graphs

    Full text link
    Crowdsourcing platforms are now extensively used for conducting subjective pairwise comparison studies. In this setting, a pairwise comparison dataset is typically gathered via random sampling, either \emph{with} or \emph{without} replacement. In this paper, we use tools from random graph theory to analyze these two random sampling methods for the HodgeRank estimator. Using the Fiedler value of the graph as a measurement for estimator stability (informativeness), we provide a new estimate of the Fiedler value for these two random graph models. In the asymptotic limit as the number of vertices tends to infinity, we prove the validity of the estimate. Based on our findings, for a small number of items to be compared, we recommend a two-stage sampling strategy where a greedy sampling method is used initially and random sampling \emph{without} replacement is used in the second stage. When a large number of items is to be compared, we recommend random sampling with replacement as this is computationally inexpensive and trivially parallelizable. Experiments on synthetic and real-world datasets support our analysis

    Multi-Output Gaussian Processes for Crowdsourced Traffic Data Imputation

    Full text link
    Traffic speed data imputation is a fundamental challenge for data-driven transport analysis. In recent years, with the ubiquity of GPS-enabled devices and the widespread use of crowdsourcing alternatives for the collection of traffic data, transportation professionals increasingly look to such user-generated data for many analysis, planning, and decision support applications. However, due to the mechanics of the data collection process, crowdsourced traffic data such as probe-vehicle data is highly prone to missing observations, making accurate imputation crucial for the success of any application that makes use of that type of data. In this article, we propose the use of multi-output Gaussian processes (GPs) to model the complex spatial and temporal patterns in crowdsourced traffic data. While the Bayesian nonparametric formalism of GPs allows us to model observation uncertainty, the multi-output extension based on convolution processes effectively enables us to capture complex spatial dependencies between nearby road segments. Using 6 months of crowdsourced traffic speed data or "probe vehicle data" for several locations in Copenhagen, the proposed approach is empirically shown to significantly outperform popular state-of-the-art imputation methods.Comment: 10 pages, IEEE Transactions on Intelligent Transportation Systems, 201

    A Collaborative Mechanism for Crowdsourcing Prediction Problems

    Full text link
    Machine Learning competitions such as the Netflix Prize have proven reasonably successful as a method of "crowdsourcing" prediction tasks. But these competitions have a number of weaknesses, particularly in the incentive structure they create for the participants. We propose a new approach, called a Crowdsourced Learning Mechanism, in which participants collaboratively "learn" a hypothesis for a given prediction task. The approach draws heavily from the concept of a prediction market, where traders bet on the likelihood of a future event. In our framework, the mechanism continues to publish the current hypothesis, and participants can modify this hypothesis by wagering on an update. The critical incentive property is that a participant will profit an amount that scales according to how much her update improves performance on a released test set.Comment: Full version of the extended abstract which appeared in NIPS 201

    'Preditors': Making citizen journalism work

    Get PDF
    Although there is great interest in citizen journalism services that harness user-generated content, the continuing contribution of professional staff who coordinate such efforts is often overlooked. This paper offers a typology of the work of the professional "preditors" who continue to operate at the heart of "pro-am" journalism initiatives. It shows that their work takes place along four dimensions – content work, networking, community work and tech work. It suggests that this is a structural change in journalistic practice, which has implications for journalists' professional identity and journalism education

    A data-driven game theoretic strategy for developers in software crowdsourcing: a case study

    Get PDF
    Crowdsourcing has the advantages of being cost-effective and saving time, which is a typical embodiment of collective wisdom and community workers’ collaborative development. However, this development paradigm of software crowdsourcing has not been used widely. A very important reason is that requesters have limited knowledge about crowd workers’ professional skills and qualities. Another reason is that the crowd workers in the competition cannot get the appropriate reward, which affects their motivation. To solve this problem, this paper proposes a method of maximizing reward based on the crowdsourcing ability of workers, they can choose tasks according to their own abilities to obtain appropriate bonuses. Our method includes two steps: Firstly, it puts forward a method to evaluate the crowd workers’ ability, then it analyzes the intensity of competition for tasks at Topcoder.com—an open community crowdsourcing platform—on the basis of the workers’ crowdsourcing ability; secondly, it follows dynamic programming ideas and builds game models under complete information in different cases, offering a strategy of reward maximization for workers by solving a mixed-strategy Nash equilibrium. This paper employs crowdsourcing data from Topcoder.com to carry out experiments. The experimental results show that the distribution of workers’ crowdsourcing ability is uneven, and to some extent it can show the activity degree of crowdsourcing tasks. Meanwhile, according to the strategy of reward maximization, a crowd worker can get the theoretically maximum reward
    • …
    corecore