6 research outputs found

    Geometric Supervision and Deep Structured Models for Image Segmentation

    Get PDF
    The task of semantic segmentation aims at understanding an image at a pixel level. Due to its applicability in many areas, such as autonomous vehicles, robotics and medical surgery assistance, semantic segmentation has become an essential task in image analysis. During the last few years a lot of progress have been made for image segmentation algorithms, mainly due to the introduction of deep learning methods, in particular the use of Convolutional Neural Networks (CNNs). CNNs are powerful for modeling complex connections between input and output data but have two drawbacks when it comes to semantic segmentation. Firstly, CNNs lack the ability to directly model dependent output structures, for instance, explicitly enforcing properties such as label smoothness and coherence. This drawback motivates the use of Conditional Random Fields (CRFs), applied as a post-processing step in semantic segmentation. Secondly, training CNNs requires large amounts of annotated data. For segmentation this amounts to dense, pixel-level, annotations that are very time-consuming to acquire.This thesis summarizes the content of five papers addressing the two aforementioned drawbacks of CNNs. The first two papers present methods on how geometric 3D models can be used to improve segmentation models. The 3D models can be created with little human labour and can be used as a supervisory signal to improve the robustness of semantic segmentation and long-term visual localization methods. The last three papers focuses on models combining CNNs and CRFs for semantic segmentation. The models consist of a CNN capable of learning complex image features coupled with a CRF capable of learning dependencies between output variables. Emphasis has been on creating models that are possible to train end-to-end, giving the CNN and the CRF a chance to learn how to interact and exploit complementary information to achieve better performance

    End-to-End Learning of Deep Structured Models for Semantic Segmentation

    Get PDF
    The task of semantic segmentation aims at understanding an image at a pixel level. This means assigning a label to each pixel of an image, describing the object it is depicting. Due to its applicability in many areas, such as autonomous vehicles, robotics and medical surgery assistance, semantic segmentation has become an essential task in image analysis. During the last few years a lot of progress have been made for image segmentation algorithms, mainly due to the introduction of deep learning methods, in particular the use of Convolutional Neural Networks (CNNs). CNNs are powerful for modeling complex connections between input and output data but lack the ability to directly model dependent output structures, for instance, enforcing properties such as label smoothness and coherence. This drawback motivates the use of Conditional Random Fields (CRFs), widely applied as a post-processing step in semantic segmentation.This thesis summarizes the content of three papers, all of them presenting solutions to semantic segmentation problems. The applications have varied widely and several different types of data have been considered, ranging from 3D CT images to RGB images of horses. The main focus has been on developing robust and accurate models to solve these problems. The models consist of a CNN capable of learning complex image features coupled with a CRF capable of learning dependencies between output variables. Emphasis has been on creating models that are possible to train end-to-end, as well as developing corresponding optimization methods needed to enable efficient training. End-to-end training gives the CNN and the CRF a chance to learn how to interact and exploit complementary information to achieve better performance

    Combining Shape and Learning for Medical Image Analysis

    Get PDF
    Automatic methods with the ability to make accurate, fast and robust assessments of medical images are highly requested in medical research and clinical care. Excellent automatic algorithms are characterized by speed, allowing for scalability, and an accuracy comparable to an expert radiologist. They should produce morphologically and physiologically plausible results while generalizing well to unseen and rare anatomies. Still, there are few, if any, applications where today\u27s automatic methods succeed to meet these requirements.\ua0The focus of this thesis is two tasks essential for enabling automatic medical image assessment, medical image segmentation and medical image registration. Medical image registration, i.e. aligning two separate medical images, is used as an important sub-routine in many image analysis tools as well as in image fusion, disease progress tracking and population statistics. Medical image segmentation, i.e. delineating anatomically or physiologically meaningful boundaries, is used for both diagnostic and visualization purposes in a wide range of applications, e.g. in computer-aided diagnosis and surgery.The thesis comprises five papers addressing medical image registration and/or segmentation for a diverse set of applications and modalities, i.e. pericardium segmentation in cardiac CTA, brain region parcellation in MRI, multi-organ segmentation in CT, heart ventricle segmentation in cardiac ultrasound and tau PET registration. The five papers propose competitive registration and segmentation methods enabled by machine learning techniques, e.g. random decision forests and convolutional neural networks, as well as by shape modelling, e.g. multi-atlas segmentation and conditional random fields

    Incorporating Cardiac Substructures Into Radiation Therapy For Improved Cardiac Sparing

    Get PDF
    Growing evidence suggests that radiation therapy (RT) doses to the heart and cardiac substructures (CS) are strongly linked to cardiac toxicities, though only the heart is considered clinically. This work aimed to utilize the superior soft-tissue contrast of magnetic resonance (MR) to segment CS, quantify uncertainties in their position, assess their effect on treatment planning and an MR-guided environment. Automatic substructure segmentation of 12 CS was completed using a novel hybrid MR/computed tomography (CT) atlas method and was improved upon using a 3-dimensional neural network (U-Net) from deep learning. Intra-fraction motion due to respiration was then quantified. The inter-fraction setup uncertainties utilizing a novel MR-linear accelerator were also quantified. Treatment planning comparisons were performed with and without substructure inclusions and methods to reduce radiation dose to sensitive CS were evaluated. Lastly, these described technologies (deep learning U-Net) were translated to an MR-linear accelerator and a segmentation pipeline was created. Automatic segmentations from the hybrid MR/CT atlas was able to generate accurate segmentations for the chambers and great vessels (Dice similarity coefficient (DSC) \u3e 0.75) but coronary artery segmentations were unsuccessful (DSC\u3c0.3). After implementing deep learning, DSC for the chambers and great vessels was ≥0.85 along with an improvement in the coronary arteries (DSC\u3e0.5). Similar accuracy was achieved when implementing deep learning for MR-guided RT. On average, automatic segmentations required ~10 minutes to generate per patient and deep learning only required 14 seconds. The inclusion of CS in the treatment planning process did not yield statistically significant changes in plan complexity, PTV, or OAR dose. Automatic segmentation results from deep learning pose major efficiency and accuracy gains for CS segmentation offering high potential for rapid implementation into radiation therapy planning for improved cardiac sparing. Introducing CS into RT planning for MR-guided RT presented an opportunity for more effective sparing with limited increase in plan complexity

    Incorporating Cardiac Substructures Into Radiation Therapy For Improved Cardiac Sparing

    Get PDF
    Growing evidence suggests that radiation therapy (RT) doses to the heart and cardiac substructures (CS) are strongly linked to cardiac toxicities, though only the heart is considered clinically. This work aimed to utilize the superior soft-tissue contrast of magnetic resonance (MR) to segment CS, quantify uncertainties in their position, assess their effect on treatment planning and an MR-guided environment. Automatic substructure segmentation of 12 CS was completed using a novel hybrid MR/computed tomography (CT) atlas method and was improved upon using a 3-dimensional neural network (U-Net) from deep learning. Intra-fraction motion due to respiration was then quantified. The inter-fraction setup uncertainties utilizing a novel MR-linear accelerator were also quantified. Treatment planning comparisons were performed with and without substructure inclusions and methods to reduce radiation dose to sensitive CS were evaluated. Lastly, these described technologies (deep learning U-Net) were translated to an MR-linear accelerator and a segmentation pipeline was created. Automatic segmentations from the hybrid MR/CT atlas was able to generate accurate segmentations for the chambers and great vessels (Dice similarity coefficient (DSC) \u3e 0.75) but coronary artery segmentations were unsuccessful (DSC\u3c0.3). After implementing deep learning, DSC for the chambers and great vessels was ≥0.85 along with an improvement in the coronary arteries (DSC\u3e0.5). Similar accuracy was achieved when implementing deep learning for MR-guided RT. On average, automatic segmentations required ~10 minutes to generate per patient and deep learning only required 14 seconds. The inclusion of CS in the treatment planning process did not yield statistically significant changes in plan complexity, PTV, or OAR dose. Automatic segmentation results from deep learning pose major efficiency and accuracy gains for CS segmentation offering high potential for rapid implementation into radiation therapy planning for improved cardiac sparing. Introducing CS into RT planning for MR-guided RT presented an opportunity for more effective sparing with limited increase in plan complexity

    Max-margin learning of deep structured models for semantic segmentation

    No full text
    During the last few years most work done on the task of image segmentation has been focused on deep learning and Convolutional Neural Networks (CNNs) in particular. CNNs are powerful for modeling complex connections between input and output data but lack the ability to directly model dependent output structures, for instance, enforcing properties such as smoothness and coherence. This drawback motivates the use of Conditional Random Fields (CRFs), widely applied as a post-processing step in semantic segmentation. In this paper, we propose a learning framework that jointly trains the parameters of a CNN paired with a CRF. For this, we develop theoretical tools making it possible to optimize a max-margin objective with back-propagation. The max-margin loss function gives the model good generalization capabilities. Thus, the method is especially suitable for applications where labelled data is limited, for example, medical applications. This generalization capability is reflected in our results where we are able to show good performance on two relatively small medical datasets. The method is also evaluated on a public benchmark (frequently used for semantic segmentation) yielding results competitive to state-of-the-art. Overall, we demonstrate that end-to-end max-margin training is preferred over piecewise training when combining a CNN with a CRF
    corecore