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Abstract

Automatic methods with the ability to make accurate, fast and robust assessments
of medical images are highly requested in medical research and clinical care. Excel-
lent automatic algorithms are characterized by speed, allowing for scalability, and
an accuracy comparable to an expert radiologist. They should produce morpho-
logically and physiologically plausible results while generalizing well to unseen and
rare anatomies. Still, there are few, if any, applications where today’s automatic
methods succeed to meet these requirements.

The focus of this thesis is two tasks essential for enabling automatic medical
image assessment, medical image segmentation and medical image registration.
Medical image registration, i.e. aligning two separate medical images, is used as
an important sub-routine in many image analysis tools as well as in image fusion,
disease progress tracking and population statistics. Medical image segmentation,
i.e. delineating anatomically or physiologically meaningful boundaries, is used for
both diagnostic and visualization purposes in a wide range of applications, e.g . in
computer-aided diagnosis and surgery.

The thesis comprises five papers addressing medical image registration and/or
segmentation for a diverse set of applications and modalities, i.e. pericardium
segmentation in cardiac CTA, brain region parcellation in MRI, multi-organ seg-
mentation in CT, heart ventricle segmentation in cardiac ultrasound and tau PET
registration. The five papers propose competitive registration and segmentation
methods enabled by machine learning techniques, e.g . random decision forests
and convolutional neural networks, as well as by shape modelling, e.g . multi-atlas
segmentation and conditional random fields.

Keywords: Medical image segmentation, medical image registration, ma-
chine learning, shape models, multi-atlas segmentation, feature-based registration,
convolutional neural networks, random decision forests, conditional random fields.
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Part I

Introductory Chapters





Chapter 1

Introduction

Medical imaging, that is, tools for producing visual representations of the in-
terior (human) body, allows scientists and clinicians to examine, diagnose and
treat diseases with means of non-invasive radiology. Medical images, acquired
with techniques such as ultrasound, magnetic resonance (MR) imaging, positron
emission tomography (PET) and non-enhanced/enhanced computed tomography
(CT/CTA), provide information essential for understanding and modeling healthy
as well as diseased anatomy and physiology. Decades of successful development of
imaging techniques have brought an increased image quality capturing fine anatom-
ical and functional details while the amount of images acquired on a daily basis
is steadily growing. The demand for automatic tools for analysis has increased
along this development, since manual techniques for inspection cannot effectively
and accurately process the huge amount of image data [1].

The field of medical image analysis aims to develop automatic solutions to
problems pertaining to medical images. This thesis focuses on two fundamental
categories of tasks in this area of research, medical image segmentation and med-
ical image registration. Automatic segmentation and registration are useful for a
wide spectrum of clinical applications, such as computer-aided diagnosis (CAD)
systems, treatment planning and in computer-assisted surgery (CAS), including
surgery planning, virtual surgery simulation, intra-surgery navigation and robotic
surgery, as well as for medical research [2].

Medical image segmentation, the task of dividing an image into meaningful
parts by assigning each pixel a label, is an essential problem in medical image
analysis and thus utterly well-studied. Commonly, the labels are predetermined
and correspond to biologically meaningful object classes, such as different organs
or tissue types. The set of labels might correspond to anatomically derived objects
embedded in a ”background” (for example different organs in whole-body CT), or
physiologically derived sub-regions densely covering large parts of the image (for
example region parcellation in brain MR image). See Figure 1.1 for three examples
of medical segmentation problems. Medical image segmentation has numerous

1



Chapter 1. Introduction

(a) (b) (c)

Figure 1.1: Slices of medical 3D images and manual labellings (coloured contours)
from three different datasets considered in the included thesis papers. (a) Slice of a
Scapis [4] cardiac CTA image plus pericardium (”heart sack”) labelling. (b) Slice
of a Visceral [5] whole-body CT image plus organ labellings, such as lungs, liver,
kidneys etc. (c) Slice of a Hammers [6,7] brain MR image plus region labellings,
such as hippocampus, amygdala etc.

applications. Delineated organ and tissue boundaries are used for both diagnostic
and visualization purposes. Examples of tasks are localization of tumors and other
pathologies, organ or tissue volume quantification and radiotherapy planning [3].

Medical image registration, the task of establishing spatial correspondences
between two separate medical images, is one of the main challenges in contempo-
rary medical image analysis. The images to be registered are typically acquired
at different times, with different modalities (medical imaging techniques) or from
different subjects. See Figure 1.2 for an example of two aligned cardiac CTA
images. Medical image registration is an important pre-processing step in many
medical image analysis routines, for instance in segmentation methods. However,
the task is also important in itself. One such example is (multi-modal) image
fusion, where image registration helps combining images from different modalities
or protocols, which facilitates visual comparison in for example CAD and treat-
ment planning. Other applications are monitoring of anatomical or physiological
changes over time, including disease progress and growth of pathologies, as well as
statistical modeling of population variability and pixelwise comparisons between
subjects [8].

Manual registration and segmentation is time-consuming and the quality is
highly determined by the expert’s skill set. Further, the interobserver variability
is usually high. Thus, manual annotation of images is not feasible for applica-
tions such as large-scale studies or computer-assisted surgery. Compared to man-

2



1.1. Thesis aim and scope

Figure 1.2: Slices of Scapis [4] cardiac CTA images from two different subjects
aligned with each other.

ual methods, automatic segmentation and registration methods are typically fast,
cheap, objective and scale well. Accurate automatic methods are therefore highly
requested in medical research and by clinical care [9, 10].

Medical images offer several challenges compared to their non-medical coun-
terparts. Typically, medical images contain both low contrast details as well as a
moderate to a high level of noise. Inter- and intra-patient variability and imaging
ambiguities such as motion artifacts and partial volume effects further increase the
difficulty. Compared to neighbouring research fields, such as image analysis and
computer vision, manually labelled data is rarely abundant. However, common
challenges associated with 2D images, such as (partial) occlusion and light source
ambiguities, are usually avoided when processing medical images. Due to these
distinct differences (comparing medical images to natural 2D images), the research
field includes several analysis methods specifically adapted for medical imaging [3].

1.1 Thesis aim and scope

The included thesis papers propose medical image segmentation and registration
methods for several different medical applications. Method development is made
with regard to the requirements posed by computer-aided diagnosis and surgery
as well as large-scale studies, that is, with respect to (i) accuracy and anatom-
ical/physiological plausibility, (ii) speed and scalability, and (iii) robustness and
generalizability.

3



Chapter 1. Introduction

Methods and contributions. Machine learning techniques, e.g . random de-
cision forests and convolutional neural networks, are used to construct fast, ac-
curate and robust methods, while shape modelling, e.g . multi-atlas segmentation
and conditional random fields, provides regularization and ensures plausible re-
sults. Combinations of shape and learning are addressed in several of the included
publications, as well as in the concluding discussion regarding future research di-
rections.

Paper II-IV focus on developing accurate and robust segmentation methods.
Paper II and IV propose two versions of a segmentation pipeline using a combina-
tion of multi-atlas segmentation, random decision forests and conditional random
field models. In addition, paper II proposes an alternative segmentation pipeline
combining multi-atlas segmentation with convolutional neural networks. Paper IV
focuses on efficient use of the limited training set by incorporating a generalized
formulation of multi-atlas segmentation into the random forest classification frame-
work, while paper II focuses on the qualitative segmentation shape by incorporat-
ing an explicit shape prior into the multi-atlas segmentation framework. Paper III
also addresses the qualitative segmentation shape, and proposes a segmentation
method pairing a convolutional neural network with a conditional random field
model that is trainable end-to-end.

Paper I and V proposes two different alternatives to intensity-based image reg-
istration. Paper I proposes a deep model including a convolutional neural network
regressor as well as differentiable warping, while paper V proposes feature-based
image registration including clustering and robust optimization. Both papers focus
on increasing the speed, accuracy and generalizability compared to the intensity-
based baselines.

Scope and limitations. Typically, medical image analysis methods greatly de-
pend on modality and application, leading to task-specific methods of little use
for dissimilar tasks. In this thesis, the proposed methods aim to achieve the op-
posite, that is, generalizing well across a diverse set of applications and imaging
techniques. The included papers consider five significantly different datasets, see
Table 1.1 and Figure 1.3. Some of these datasets include very few labelled images.
Thus, the included thesis papers must address the shortage of labelled training
data when developing and evaluating the proposed methods.

The included papers do not intend to present complete solutions to the regis-
tration or segmentation problem at hand, but rather improvements to some parts
of the full framework. The included papers do not focus on the technical details
for acquiring, pre-processing and annotating medical images. The methods are im-
plemented for research settings, that is, there are no software solutions feasible for
everyday use in, for example, clinical care. Finally, the proposed methods should
be evaluated on larger datasets before being used in practice.

4



1.1. Thesis aim and scope

(a) (b) (c)

(d) (e)

Figure 1.3: Slices of medical images from five of the datasets considered in the
included thesis papers. (a) Slice of a Scapis [4] cardiac CTA image. (b) Slice
of a Visceral [5] whole-body CT image. (c) Slice of a Hammers [6, 7] brain
MRI. (d) Slice of an Echo (in-house) cardiac ultrasound time series. (e) Slice of
a BioFinder [11] brain tau PET image.

5



Chapter 1. Introduction

Table 1.1: Summary of the datasets included in the thesis publications.

Name Modality Task Papers

Scapis [4] cardiac CTA
pericardium
segmentation III, IV, V

Visceral [5] whole-body CT
multi-organ
segmentation II

Hammers [6, 7] brain MRI
brain region
parcellation II, V

Echo (in-house) cardiac
ultrasound

heart ventricle
segmentation III

BioFinder [11], Adni * brain tau PET multi-modal
registration I

*Alzheimer’s Disease Neuroimaging Initiative, https://adni.loni.usc.edu.

1.2 Thesis outline

The thesis is divided into two parts. Part I constitutes the introductory chapters:
Chapter 2 briefly compiles theory and methods necessary for understanding the
remainder of the thesis, Chapter 3 summarizes the main contributions for each
of the included thesis papers and Chapter 4 provides a concluding discussion and
potential future research directions. Part II comprises the five included thesis
papers.

6



Chapter 2

Preliminaries

The following sections briefly compile theory, concepts, methods and tools made
use of in the included thesis papers and can with ease be skipped by experienced
readers. Section 2.1 presents medical images as a concept and lists some common
medial imaging techniques. Section 2.2 formalizes the problem of medical image
registration and summarizes some common registration methods. Medical image
segmentation and two types of commonly used segmentation methods, multi-atlas
segmentation and conditional random fields, are accounted for in Section 2.3. Fi-
nally, brief introductions to two machine learning tools, random decision forests
and convolutional neural networks, are given in Section 2.4.

2.1 Medical images

In this thesis, an image refers to a 2D or 3D matrix whose elements contain inten-
sity levels measured by a medical imaging instrument. A matrix element in a 2D
image is referred to as a pixel, while a matrix element in a volumetric image can
be referred to as a voxel (VOlume piXEL). In this chapter, the term pixel will be
used for both 2D and 3D. The type of imaging technique, i.e. type of scanner or
probe, that has been used to acquire a medical image is referred to as the modality.
The included papers comprise five different modalities, listed below.

Computed Tomography (CT): A CT image is a 3D image produced by a ro-
tating x-ray tube. The 3D image is constructed using measurements of the
transmitted x-rays from different angles. CT mainly visualizes morphol-
ogy and is used for diagnosis of a wide spectrum of diseases, such as bone
trauma, abdominal diseases, lung tissue pathology and anatomical changes
in the head.

CT angiography (CTA): A CTA image is a CT image where contrast liquid
have been injected to the blood vessels. CTA visualizes arteries and veins
such as coronary arteries and brain vessels.

7



Chapter 2. Preliminaries

Magnetic Resonance (MR) Imaging: A MR image is a 3D image produced
by a magnetic field. The 3D image is constructed using measurements from
radio frequency signals emitted by excited hydrogen. MR can be used to
visualize morphology as well as physiology, and has a wide range of applica-
tions, including neuroimaging, cardiovascular imaging and musculoskeletal
imaging.

Medical ultrasound: Medical ultrasound (sonography, ultrasonography) uses
pulses of ultrasound transmitted from a probe to create 2D or 3D images
of the internal body. Medical ultrasound visualizes both anatomy and phys-
iology and is commonly used in obstretics and cardiology.

Positron emission tomography (PET): PET is a nuclear functional imaging
technique used to detect molecules in the body. In PET imaging, the scan-
ner detects gamma rays transmitted by positron-emitting radioligands intro-
duced into the body by radioactive tracers. Depending on the radioligand,
PET can be used to image, for example, metabolic activity in cancer metas-
tases and amyloid-beta plaques in the brain.

See [12] for a more detailed description of medical imaging and different modalities.

2.2 Medical image registration

To register two images means computing a transformation that aligns one of the
images, the source image (the moving image), to the other image, the target image
(the fixed/reference image). Image registration algorithms align the source image,
Is, to the target image, It, by solving an optimization problem of the form

T∗ = arg min
T

[ρ1(It,T ◦ Is) + ρ2(T)] , (2.1)

where T is a coordinate transformation from source image pixels to target image
pixels and T ◦ Is means mapping the source image pixels to the target image
space. The level of alignment of the target image and the warped source image
is quantified by the first term, ρ1, while the second term, ρ2, aims to regularize
the transformation, by penalizing implausible deformations and/or by introducing
prior knowledge of the deformation. The form of the regularization term should
be influenced by the choice of transformation.

Thus, image registration allows for several design choices; type of (i) transfor-
mation, (ii) objective function and (iii) optimization method. For a comprehensive
overview of different medical image registrations methods and their design choices,
see the surveys in [8, 13].

8



2.2. Medical image registration

2.2.1 Transformation types

Preferably, the type of transformation is determined by the application. In medical
applications, the images are typically first aligned using a rigid and/or an affine
transformation followed by a nonlinear local deformation.

The rigid transformation translates, rotates and/or reflects the image globally.
Mathematically, it can be described as a composition of an orthogonal map R and
a translation t:

T(x) = Rx + t, (2.2)

where x is the pixel coordinates.
The affine transformation translates, rotates, scales, reflects and/or shears the

image globally. Mathematically, it can be described as a composition of a linear
map A and a translation t:

T(x) = Ax + t. (2.3)

To capture the local nonlinear deformations commonly present in medical appli-
cations, the linear transformation is sometimes followed by a non-rigid registration
using a nonlinear dense transformation. This deformation is elastic and warps the
image locally by using a displacement field U (that varies with pixels):

T(x) = x + U(x). (2.4)

However, estimating an accurate non-rigid transformation tend to be more com-
putationally demanding than the linear counterpart. Thus, non-rigid registration
may be omitted in applications such as computer-assisted surgery or large-scale
studies due to timing issues.

2.2.2 Objective functions and optimization methods

The choice of objective function and optimization method is highly influenced
by the image registration approach. Roughly speaking, there are two different
approaches to image registration; intensity-based registration and feature-based
registration. Of course, there are hybrid methods combining advantages of both
approaches such as Dramms [14] (Deformable Registration via Attribute Matching
and Mutual-Saliency weighting) and the block-matching strategy in [15,16].

Using intensity-based methods, for example Demons [17], Elastix [18] and
Ants [19], is a popular choice in medical applications due to their capability
of producing accurate registrations, even between images of different modalities.
Unfortunately, intensity-based registration methods tend to be computationally
demanding and sensitive to initialization; the objective functions are usually com-
puted over the entire image domain and optimized locally (increasing the risk of
getting trapped in a sub-optimal local minimum).

9



Chapter 2. Preliminaries

Feature-based methods, using sparse point correspondences between images
for establishing coordinate transformations, are typically faster and more robust
to initialization and large deformations. The objective functions are typically
quantifying residual errors of the mapped point correspondences. This class of
objective functions enables efficient computations and optimization methods able
to find a global (approximate) minimum. However, these methods risk failing
due to the difficulty in detecting salient features in medical images: distinctive
features are crucial for establishing correct point-to-point correspondences between
the images. Therefore, the accuracy of (sparse) feature-based methods is generally
assumed to be inferior to intensity-based methods.

Intensity-based image registration

Intensity-based registration methods rely on comparing pixelvise characteristics
such as intensities, colors, depths etc. directly. Typically, these methods use lo-
cal optimization or multiresolution strategies for minimizing an objective function
such as sum of squared distances (SSD), sum of absolute distances (SAD), cross-
correlation or (normalized) mutual information, (N)MI, [20]. See the comparisons
in [21, 22] for different optimization strategies. The non-rigid transformation is
commonly represented by deformations derived from physical models, such as
the diffusion model in [23] (Demons) or diffeomorphic mapping [24, 25], or by
interpolation-based models such as radial basis functions, e.g . thin plate splines
(TPS) [26], or free-form deformations, e.g . cubic B-splines [27]. However, there
are numerous nonlinear deformation models in the image registration literature,
see the survey in [8].

Feature-based image registration

Despite being a popular choice in computer vision and remote sensing, feature-
based image registration is less common in medical image analysis due to the
difficulty of detecting distinctive features in medical images. However, Svärm et
al . [28] showed that feature-based registration based on robust optimization out-
performs several intensity-based methods when applied to whole-body CT and
brain MRI.

Sparse feature-based registration methods rely on established point-to-point
correspondences between images for estimating coordinate transformations. The
procedure of establishing point-to-point correspondences includes (i) detection of
distinctive feature points in each image and (ii) matching the detected feature
points by taking their similarity in appearance into account.

There are numerous hand-crafted feature detectors where the prime examples
are Sift [29] (using difference-of-Gaussians) and Surf [30] (using integral images).
Detected features are paired with a descriptor, a histogram aiming to provide a
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unique description of the feature point and its neighbourhood. These descriptors
are computed locally and include image characteristics such as intensity informa-
tion, gradients, higher order derivatives and/or wavelets. Preferably, the descriptor
should be invariant to scale, pose, contrast and, for some applications, rotation.
Recently, feature detectors and descriptors learned with convolutional neural net-
works have proved to excel at several applications [31–33].

Once having detected and described a set of features points for the images that
are to be registered, the descriptors need to be matched, in a robust manner, in
order to derive correct point-to-point correspondences. Usually, a metric measur-
ing the distance (for example Euclidean distance) between the descriptors is used
to rank the quality of match hypotheses. A one-to-one correspondence is derived
by choosing the nearest neighbour in the descriptor space (either computed in one
direction, non-symmetrically, or compute in both directions, symmetrically), per-
haps combined with a criterion such as in [29] (comparing ratios between nearest
and second nearest neighbour). Recently, convolutional neural networks have been
used for matching as well [34, 35].

Given the correspondence hypotheses, robust optimization algorithms such as
Ransac [36] is used to estimate the parameters of a linear transformation ap-
proximately, and to sort of out matches that are inconsistent with this linear
transformation, outliers. Ransac is typically followed by a global, or a local iter-
ative, optimization procedure using only the inliers, that is, the matches deemed
correct by Ransac. A succeeding non-rigid deformation may be represented by
interpolation-based techniques, such as B-splines as in [37] or thin plate splines
as in [38]. There are also methods simultaneously establishing one-to-one point
correspondences while estimating the mapping, such as modified variants of the
Iterative Closest Point (ICP) method [39], see the registration method in [40].

2.3 Medical image segmentation

To segment an image means dividing an image into meaningful parts by assigning
each pixel to an object class. The classes are a predefined set of objects relevant
for the application, such as ”kidney”, ”pancreas”, ”liver” etc. for abdominal organ
segmentation. The output from a segmentation algorithm is an image labelling,
that is, an image of the same dimension as the input image where each pixel has
been assigned a label indicating which object class the specific pixel belongs to.
A manual labelling, delineated by a physician or other medical expert, is usually
referred to as the ground truth labelling. In medical applications, the term gold
standard is sometimes used instead (indicating the lack of objective truth when it
comes to medical image segmentation).
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Image segmentation algorithms aim to find an image labelling, L, that is as
similar to the ground truth labelling, LGT, as possible, that is,

L∗ = arg max
L

S(L,LGT), (2.5)

where S is a metric measuring the similarity between two labellings. Segmenta-
tion algorithms are typically tuned, or trained, to solve the optimization problem
in Equation (2.5) for training images, for which the ground truth labellings are
known. Note that the ground truth labellings are unknown for test (evaluation)
images. There are several similarity metrics commonly used to train and evaluate
segmentation algorithms. One common choice is the Dice coefficient (F1 score),
defined as

SDICE =
2|L ∩ LGT|
|L|+ |LGT|

, (2.6)

where L and LGT are binary labellings for one class. For multi-label problems, the
mean Dice metric over all classes is typically used. Another similar metric is the
Jaccard index (Intersection over Union), defined as

SJACCARD =
|L ∩ LGT|
|L ∪ LGT|

. (2.7)

The relation between the two metrics is SDICE = 2SJACCARD/(1+SJACCARD). Both
metrics have values between zero and one, where higher means better. There are
several other similarity metrics in the literature, where the Hausdorff distance
and the mean surface distance are two examples used in applications where the
qualitative segmentation shape is important.

There are numerous different segmentation algorithms based on thresholding,
region growing, edge detection, variational methods, level sets or shape models. In
this section, two commonly used methods for medical applications, using implicit
shape modelling, are summarized.

2.3.1 Multi-atlas segmentation

Multi-atlas segmentation [41–43], proposed over a decade ago, is one of the most
widely used methods for segmentation in medical applications. For an extensive
summary of the research field, see the survey in [10].

Multi-atlas segmentation is an extension of single-atlas segmentation. An at-
las is an image paired with a corresponding ground truth labelling. Single-atlas
segmentation relies on registering one atlas image to the unlabelled target image
and transferring the labelling according to the computed transformation. Thus,
the inferred target image segmentation equals the aligned labelling. For that rea-
son, single-atlas segmentation is also called registration-based segmentation, see
Figure 2.1.
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unlabelled target image

segmentationregistration label propagation

atlas = image + labelling

Figure 2.1: Example of single-atlas segmentation (registration-based segmenta-
tion) of the pericardium in a Scapis cardiac CTA slice.

Two or more single-atlas segmentations can be combined into a multi-atlas seg-
mentation. The motivation behind using several atlases is to capture more possible
anatomical variations and to increase the robustness to imperfect registration re-
sults. Thus, multi-atlas segmentation involves registration of several atlas images
to the unlabelled target image. According to the pairwise atlas-target registra-
tions, each atlas labelling is propagated to the target image space and thereafter
combined via label fusion, see below. Figure 2.2 depicts an example of a coarse
multi-atlas segmentation (Scapis pericardium segmentation) using three atlases.

Label fusion

In multi-atlas segmentation, there are several propagated atlas labellings that need
to be combined into one unique segmentation proposal. Each transferred atlas la-
belling can viewed as a vote, for each pixel indicating whether that particular atlas
estimates the pixel to be inside/at the organ boundary or not. By summarizing all
votes in one image a voting map is obtained. The voting map can be regarded as
an unnormalized pixelwise label likelihood over the entire image. From this voting
map, the final segmentation can be inferred by, for instance, thresholding or statis-
tical reasoning. The process of combining several transferred atlas labellings into
one voting map is referred to as label fusion. For some label fusion schemes, the
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(a) (b) (c)

Figure 2.2: Example of a multi-atlas segmentation of the pericardium in a slice of
a Scapis cardiac CTA image using three atlases. (a) The atlas images are regis-
tered to the unlabelled image and the labellings (coloured contours) are transferred
accordingly. (b) The transferred labellings are combined into one segmentation
proposal (red contour) by label fusion. (c) The inferred segmentation accurately
delineates the pericardium compared to the individual single-atlas segmentations.

output simply equals the voting map, that may be used in a subsequent analysis
step, while other fusion strategies output the final inferred segmentation proposal.

The simplest fusion scheme is unweighted voting [41–43], meaning that each
registered atlas is assigned the same weight, see Figure 2.3c. Typically, methods
using unweighted voting maps infer the final segmentation by majority voting,
that is, the most frequent label is assigned to each pixel.

It is common to sift out promising atlas candidates and only fuse this restricted
subset. This process, known as atlas selection, has proven to improve the com-
putational efficiency (by decreasing the amount of registrations that need to be
computed) and accuracy (by ignoring irrelevant anatomies), see Figure 2.3e. Atlas
selection can be done either before pairwise registration, as in [44], by choosing
atlas images believed to best represent the anatomical shape variation, or after, as
in [45], by choosing the atlas images which are more similar to the target image
and/or are believed to boost the algorithm performance. The most simple case
of atlas selection is best atlas selection [41], where merely one atlas is chosen, see
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Figure 2.3f. Atlas selection may be regarded as an extreme case of weighted vot-
ing, that is, fusing propagated labels by assigning each atlas different weights, see
Figure 2.3d. The atlas weights can be derived globally, as in [45, 46], or locally
(patchwise or pixelwise) as in [47–51].

There are numerous additional sophisticated fusion schemes including ideas
from statistics and machine learning. Among others, there are strategies us-
ing probabilistic reasoning regarding predicted performance [45,52–54], generative
probabilistic models [55] and convolutional neural networks [56].

(a) (b)

(c) (d)

(e) (f)

Figure 2.3: Toy example visualizing different label fusion strategies. (a) An
unlabelled image depicting a red, circular shape on a gray background. (b) Five
atlases are registered to the unlabelled image and labellings (coloured contours) are
propagated accordingly. (c) Unweighted voting assigns the exact same weight to
each atlas. The red contour represents the true boundary. (d) Weighted voting
assigns different weights to each atlas. (e) Atlas selection sifts out promising atlas
candidates. (f) Best atlas selection sifts out the most promising atlas candidate.
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2.3.2 Conditional random fields

Conditional random fields (CRFs), a variant of Markov random fields (MRFs) [57–
59], is a class of probabilistic graphical models suitable for modeling spatial con-
text such as smooth segmentation boundaries, coherent shapes etc. CRFs may be
regarded as implicit shape models; they do not directly enforce an explicit (param-
eterized) shape model but still encourage spatial smoothness between neighbouring
pixels. By also considering the classification of neighbours when assigning a label
to a pixel, noisy or implausible boundaries can be avoided. CRFs have successfully
been used for medical image segmentation [60–63], see the survey in [64].

When using CRFs for computing segmentations, the labelling problem is posed
as an optimization problem that is solved either exactly (if possible) or approxi-
mately. More specifically, the image is regarded as an observation of a conditional
random field and the labelling (the realization of the field) is inferred by solving
an energy minimization problem.

Mathematical model

Let lp ∈ L be a variable indicating what class a pixel, indexed by p ∈ P , is assigned
to and let ip ∈ I denote the observed intensity for the pixel. Here, I denotes the
image, L denotes the labelling and P denotes the set of all pixel indices. The
optimal segmentation is inferred as the labelling that maximizes the posterior
probability given by

P (L | I;θ) =
1

Z
e−E(L,I;θ), (2.8)

where θ = (θ1, θ2, θ3, . . .) are tunable parameters and Z is the partition function
(the normalizing constant). The parameters are either fixed (e.g . derived by prior
assumptions) or learned during training.

In most image applications, the energy E is assumed to decompose over unary
and pairwise potentials. If so, the energy can be expressed as

E(L, I;θ) =
∑
p∈P

φp(lp, I;θ) +
∑

(p,q)∈N

φp,q(lp, lq, I;θ), (2.9)

where the set of all pairwise neighbours is denoted as N . The unary potential φp
may also be referred to as the unary cost, unary energy or data cost. Similarly,
the pairwise potential φp,q may be referred to as the pairwise cost, pairwise energy
or regularization/coherence cost. In some applications, it may be beneficial to
include potentials of higher orders (cliques including three or more neighbours),
as in [65].

The neighbourhood of a pixel is defined by the pixel connectivity. In 2D appli-
cations, common choices are 4-connectivity (neighbours are defined by connected
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edges) and 8-connectivity (neighbours are defined by connected edges and corners).
For 3D, common choices are 6-connectivity (neighbours are defined by connected
faces), 18-connectivity (neighbours are defined by connected faces and edges) or
26-connectivity (neighbours are defined by connected faces, edges and corners).
However, larger neighbourhoods are also allowed. Further, one may incorporate
the distance between pixels directly in the potentials, letting the pairwise energy
depend smoothly on pixel distances (dense CRFs). If so, the second term in Equa-
tion (2.9) is summarized over all possible pixel combinations.

The unary cost, also known as the data cost, is usually dependent on conditional
probabilities learned from data, such as the label likelihoods computed by a multi-
atlas voting map or a machine learning classifier. A typical choice is

φp = θ1 log(P̂ (lp | I)), (2.10)

where P̂ (lp | I) equals the previously estimated likelihood.
The pairwise cost is an interaction term that regularizes the solution. In the

simplest case, the pairwise costs are set to a fixed constant for all neighbours
assigned with different labels, neighbours with the same labels are not penalized.
This is called a Potts model:

φp,q = 1lp 6=lqθ2, (2.11)

where 1lp 6=lq denotes the indicator function equaling one if lp 6= lq, that is, if the
neighbours are assigned different labels. However, more complex pairwise poten-
tials taking the neighbouring intensities into account as well are usually beneficial.
A common choice of the pairwise energy, consisting of two terms both penalizing
neighbouring pixels being labelled differently, is given by

φp,q = 1lp 6=lq
(
θ2 + θ3e

−d(ip,iq)
)
, (2.12)

where d(·, ·) is a metric measuring e.g . the contrast of the neighbouring pixels.
Unfortunately, the pairwise interaction term may lead to a bias towards shorter

segmentation boundaries, a shrinking bias. However, there are several proposed
solutions in the literature, cf . [66, 67]

Inference

A function on the form in Equation (2.9) can be formulated as a weighted graph
G = (V , E), where V is the set of nodes (pixels) and E is the set of edges connecting
neighbouring pixels. If the segmentation problem is binary and if the energy in
Equation (2.9) is submodular, the globally optimal labelling can be computed
exactly and in polynomial time using graph cuts [68]. Otherwise, methods such as
alpha expansion [69], mean field inference or linear programming relaxations may
be used to solve the minimization problem approximately.
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2.4 Machine learning for medical images

The last couple of decades, the field of machine learning has provided algorithms
excelling at computer vision tasks. Along this development, machine learning tools
for image classification and regression have received a great deal of attention from
the medical image analysis community. Hand-crafted features and models have
successfully been replaced with learned equivalents in segmentation and registra-
tion tasks. The increased interest and prosperity can predominantly be explained
by improved computer hardware and the increased access to large annotated med-
ical image datasets [70].

Included thesis papers make use of two types of machine learning tools, random
decision forests and convolutional neural networks. Therefore, a brief overview of
the techniques follows below.

2.4.1 Random decision forests

Random decision forests [71, 72] (short: random forests) are a machine learning
technique suitable for classification and regression tasks. It is a computationally ef-
ficient method and it generalizes well to unseen data. In the field of medical image
analysis, random forests have been applied to both registration tasks, e.g . abdom-
inal CT [73–75], spine CT [73, 75], whole-body CT [73] and brain MRI [76, 77],
as well as segmentation tasks, e.g . pelvic radiographs [78], cardiac and abdominal
MRI [79], brain MRI [80–82], pelvic CT [83–85], abdominal CT [83, 84, 86–88],
cardiac and pulmonary CT [83,89,90] and femur ultrasound [81].

For segmentation tasks, random decision forests typically estimate pixelwise
probabilities for each label, that is, a likelihood estimate for each pixel belonging
to a certain class. When applied to an unlabelled pixel, the random decision forest
is fed a set of features, i.e. characteristics derived from the image, as input and
outputs an estimated conditional probability over labels, P̂ (l|f), where l denotes
the pixel label and f denotes a vector consisting of the input features. The output
labelling may be found by maximizing the output distribution, or by feeding the
posterior distribution as a data term to a conditional random field model, see
Section 2.3.2.

Some of the listed applications use regression forests, instead of the classifi-
cation forests described above. The principles for regression forests are similar,
however, the prediction is instead computed as the mean of the output poste-
rior distribution. The included thesis papers use classification forests exclusively.
Therefore, classification forests are used as the running example in the detailed
description below.
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Decision trees

A random decision forest consists of a set of decision trees, binary trees where each
node is associated with its own splitting (decision) function. A common choice of
splitting function is a separating hyperplane of the same dimension as the input
feature vector. The parameters of the hyperplane are learned during training and
usually chosen such that the information gain (the confidence) is maximized and/or
the entropy (the unpredictability) is minimized.

The purpose of the splitting function is to separate the input data points based
on feature similarity. Typically, features such as image intensities, gradients and/or
higher order derivatives are used. It is also common to pre-process the image, for
example by filtering, and include these pre-processed intensities as features. It is
good practice to normalize each feature before training to have zero mean and unit
standard deviation with respect to the training set.

When classifying an unlabelled pixel, the input data point begins at the rote
node. Depending on the result of the current splitting function (the decision), the
data point is either passed to the right or to the left child node. The subsequent
nodes will continue passing the data point along the tree until it reaches a leaf
node. The leaf nodes contain posterior distributions over labels, learned during
training, and thus output a conditional probability for the data point belonging
to a certain class.

In Figure 2.4a training of a binary decision tree is visualized. In this specific
example, 20 data points are used for training. There are two classes, blue and red,
and two different features have been extracted for each data point. That is, the
classification problem is two-dimensional. The binary decision tree has in total
six nodes: one root node, two decision nodes and three leaf nodes. Below the leaf
nodes, the estimated posterior distribution for the two different classes (for that
particular leaf) is given.

In Figure 2.4b classification of one unlabelled data point is visualized. The data
point is passed along the three according to the decision nodes, and the estimated
posterior distribution over the classes is decided by the leaf node the data point
end up in. For this particular example, the data point would be classified as ”red”,
since the estimated posterior distribution is the largest for this class.
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Figure 2.4: Example of a binary decision tree consisting of six nodes; one root
node, two decision nodes and three leaf nodes. (a) The decision tree is trained on
20 data points belonging to two different classes, ”red” and ”blue”. For each data
point, two different features have been computed. The two decision nodes (contain-
ing splitting functions equaling separating hyperplanes) are trained to divide the
data into three different distributions (the leaf nodes). Each leaf node provides a
posterior distribution over the classes for test data points ending up in that partic-
ular leaf node. (b) Features for an unlabelled data point (green) are computed and
the data point is passed along the decision tree according to the splitting functions.
The unlabelled data point ends up in the middle leaf node and is thus classified as
”red”.
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Random forests

Decision trees tend to overfit training data, that is, they have a low bias but a
high variance. Therefore, random forests consist of several decision trees where
each decision tree is trained on a random subset of the training data (referred to
as tree bagging). The estimated posterior probability is typically computed as the
average over all trees:

P̂ (l|f) =
1

T

T∑
t=1

P̂t(l|f), (2.13)

where l denotes the label, f denotes the feature vector and T equals the number of
trees. To further reduce variance by decorrelating the trees, only a subset of the
features is randomly chosen at each tree node.

2.4.2 Convolutional neural networks

Convolutional neural networks (CNNs) constitute a class of machine learning tools
for classification and regression in image, video and natural language processing.
Despite being introduced already in the 70s [91] by the name ”Neocognitron”, CNNs
have received a great deal of attention from the image analysis and computer vision
research community the last decade. The popularity stems from recent success on
problems such as image classification [92] and object detection [93]. The success
can predominantly be explained by an increased computational power of modern
GPUs (Graphical Processing Units) and the access to large annotated datasets.
Below follows a brief introduction to the technique, see the overview in [94] for
more details.

Due to their outstanding results on a wide variety of tasks and applications,
CNN-based methods have emerged in the field of medical image analysis as well.
So far, CNNs have been applied to segmentation of e.g . electron microscopy im-
ages [95, 96], knee MRI [97], prostate MRI [98], abdominal CT [99, 100], spine
MRI [101], cardiac MRI [102] and brain MRI [103–106], as well as registration of
e.g . brain MRI [107–111], pulmonary CT [112, 113], cardiac MRI [114–116] and
multi-modal MRI/ultrasound [117].

CNNs are feed-forward artificial networks consisting of trailing computational
layers where connections enable the result from one layer to be forwarded to a
subsequent layer for further processing, see Figure 2.5. CNNs are universal function
approximators, that is, the they are (in theory) able to model any function. To
enable this capacity, the computational layers contain thousands or millions of
parameters that are automatically learned during training.

21



Chapter 2. Preliminaries

Figure 2.5: An example of a feed-forward artificial network with an input layer
consisting of two input units, two hidden layers consisting of five and ten compu-
tational units respectively, and an output layer consisting of one output unit.

Computational layers

A simple CNN consists of one input layer, one output layer and one or more hidden
layers. The input layer usually equals a full image, however, other input layers
such as smaller input patches are also common depending on the network architec-
ture. In contrast to other image analysis algorithms, pre-processing of the input
data is typically not required when using CNNs since any needed image processing
is learned automatically. In CNNs constructed for classification or segmentation
problems, the output layer typically equals conditional probabilities over prede-
fined object classes, cf . the output of random decision forests in Section 2.4.1. For
image classification problems, the CNN outputs a likelihood for image subjects,
for example whether the image depicts a dog, a cat or a horse. CNN constructed
for pixelwise classification, such as segmentation networks, instead outputs label
likelihoods for each pixel. For image regression problems, the CNN outputs image-
or pixelwise predictions, depending on the task at hand.

The purpose of the hidden layers is to map the given input to the desired
output. To enable modeling of any complex function, the hidden layers contain
several different building blocks such as sets of learnable filters (convolutional
layers), downsampling layers (pooling layers) and decision functions (nonlinear
activation functions). Typically, CNNs consist of a set of trailing convolutional
layers terminated with nonlinearities and layered with pooling layers. However,
there are numerous proposed architectures in the literature. It is generally assumed
that networks containing many small convolutional layers (deep networks) are more
likely to produce good results than networks containing a few large convolutional
layers (wide, shallow networks), but the findings so far are inconclusive [118].
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Convolutional layers. The purpose of the convolutional layers is to extract
image characteristics with means of automatically learned filters. Each convolu-
tional layer typically contains several learnable filters, filter banks. The output
from each filter, called the filter response or the feature map, is forwarded to
succeeding layers for further processing. Ideally, the first few convolutional layers
extract low-level features, such as blobs, edges, corners, lines etc., while later layers
combine these low-level features into more complex features such as human faces.
The depth and the width of the network, that is, the amount of subsequent layers
and their size, decide the learned filters ability to recognize high-level features. In
contrast to hand-crafted feature detectors and descriptors such as Sift or Surf,
the CNN filter parameters (filter weights) are automatically learned during train-
ing and thus not designed with any prior knowledge in mind. The convolutional
property enables translation invariance, that is, input patterns in different parts of
the image is processed in the exact same manner. Dilated convolutions [119] and
non-unit filter strides are two common strategies to increase the receptive field,
i.e. the region of the input image that is visible to each filter.

Pooling layers. The pooling layers aim to downsample the image (and subse-
quent filter responses) in order to reduce the parameter space preventing unde-
sired effects such as overfitting and unnecessary high computational complexity.
By downsampling, the pooling layers also introduce non-linearity. Two common
choices of pooling is max pooling, by applying a maximum filter, and average
pooling, by applying a mean filter. Note that pooling layers in principle equal
convolutional layers with fixed (non-learnable) filter weights. As for convolutional
layers, dilated pooling and non-unit filters stride may help increasing the receptive
field.

Non-linear activation functions. Non-linearities are important to enable the
universal function approximator property; using only linear combinations of con-
volutional layers would enable nothing but linear maps from input to output.
The non-linearities also restrict unbounded layer outputs to a certain range, and
thus help avoiding an accumulation of large values in some sections of the net-
work. There is a wide selection of activation functions such as the rectified linear
units (ReLUs) [120], sigmoid units and tangens hyperbolicus units. In modern
networks, ReLU or its variants (leaky ReLU [121], parametric ReLU [122] and
Swish [123]) are the most popular choices. The nonlinear softmax unit, mapping
real numbers to probabilities, is particularly useful in the output layer of classifi-
cation/segmentation networks.
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Fully connected layers. Before the output layer, there are sometimes one,
two or more fully connected layers. The fully connected layers aim to map a
large set of multidimensional filter responses to a more manageable 1D histogram.
For instance, a CNN constructed for distinguishing two image classes typically
terminates with fully connected layers mapping the filter responses to a histogram
of size two. Applying the softmax operator to this histogram gives a conditional
probability estimate for the two classes.

Fully convolutional networks

CNNs including fully connected layers are not particularly efficient when dealing
with pixelvise classification (or regression) tasks; these networks can not be trained
on nor be applied to images of arbitrary sizes. Moreover, the fully connected layers
have a large amount of parameters and are computationally demanding.

Another class of networks, fully convolutional networks [96,98,104,124,125], is
better suited for tasks requiring pixelwise outputs. Fully convolutional networks
drop the terminating fully connected layers. Instead, they solely use convolutional
and pooling layers for filtering and downsampling the image. These networks
are capable of processing images of arbitrary sizes, and they are computationally
more efficient than their fully connected counterparts. To enable outputs of the
same size as the input, some fully convolutional networks include deconvolution
layers. The purpose of the deconvolution layers is to upsample and merge the
filter responses from earlier layers, enabling dense pixelwise predictions. Fully
convolutional networks having this structure of filtering/downsampling and ”de-
filtering”/upsampling the image are called encoder-decoder networks. To avoid
loosing spatial information due to pooling, these networks typically process the
features at different resolutions, and/or replace the pooling layers entirely with
dilated convolutions and non-unit filter strides. See Figure 2.6 for an example of
an encoder-decoder network.

Learning

The convolutional layers of a CNN consists of a huge amount of parameters that
need to be learned. Learning is achieved by optimizing an objective function that
quantifies the compatibility of the network’s output and the desired output (such
as the ground truth labelling for segmentation tasks).

CNNs are trained using local optimization methods, common choices are stochas-
tic gradient descent or mini-batch gradient descent. To speed up convergence,
there are variants using batch normalization [126], Nesterov’s momentum [127] and
adaptive learning rate (e.g . AdaGrad [128], RMSprop/AdaDelta [129], Adam [130],
Nadam [131]). Despite complex architectures and a huge amount of parameters,
the gradients can be efficiently computed using the backpropagation algorithm,
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Convolutional layer ReLU Pooling layer Upsampling layer Softmax

Encoder network Decoder network

Skip connection

Figure 2.6: An example of a fully convolutional encoder-decoder network consist-
ing of convolutional layers, ReLU activations, pooling layers, upsampling layers
and a terminating softmax layer. The skip connections enable forwarding of fea-
tures from early to late layers, in order to avoid loosing information necessary for
the reconstruction in the down-sampling phase.

first proposed in [132–134]. Training is done in epochs, where all training samples
are utilized in each epoch. For classification networks using a terminating softmax
unit, pixelwise cross-entropy is commonly used as objective function. Another
choice of objective function is the max-margin hinge loss allowing for a support
vector machine (SVM) classifier. For regression networks, mean square error and
mean absolute error are the most common choices of objective function.

Due to the large amount of learnable parameters, an important consideration
during network training is to prevent overfitting. An overfitting network performs
well on training data, but fails to generalize to unseen data. There are several
techniques for this, such as batch normalization (mentioned above), dropout [135],
filter weight regularization and early stopping [136]. Ideally, overfitting is solved
by presenting a sufficient amount of training examples to the network. However,
manually labelled data is rarely abundant. The training data can be artificially
augmented by adding small random perturbations to the training samples, such
as rotations, additive noise, scaling etc. When faced with a new task, it can
be beneficial to use a pre-trained CNN, especially if training data is limited. Pre-
training can be done either using other (preferably similar) datasets or with means
of unsupervised training as in [137]. Pre-training facilitates learning by enabling
the network to re-use filters that have already learned to recognize certain low-level
features.
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Chapter 3

Thesis contributions

As detailed in Section 1.1, excellent medical registration and segmentation algo-
rithms are characterized by speed, allowing for scalability, and an accuracy com-
parable to an expert radiologist. They should allow for plausible organ (or region)
shapes while generalizing well to unseen and rarely occurring anatomies. Prefer-
ably, training the algorithms should be data-efficient since manually labelled data
typically is scarce in the medical community. Thus, these are all aspects considered
in the included papers:

Paper I mainly concerns increasing image registration speed, accuracy and
generalizability with means of a CNN.

Paper II mainly concerns improving the multi-atlas segmentation pipeline
taking plausible organ shapes into account.

Paper III mainly concerns improving CNN segmentation results by incorpo-
rating a CRF model ensuring plausible boundaries.

Paper IV mainly concerns improving a multi-atlas segmentation framework
paired with a random decision forest classifier with respect to ac-
curacy and data-efficiency.

Paper V mainly concerns speeding up a feature-based image registration pro-
cedure via clustering and robust optimization.

This chapter is structured as follows: each section constitutes an overview of
one of the included thesis papers including a summary of the main algorithmic
contributions. Also, the contributions of the thesis author are stated for each
paper respectively.
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Figure 3.1: Schematic illustration of the implemented network in paper I, see
paper for more details.

3.1 Paper I

J. Alvén, K. Heurling, R. Smith, O. Strandberg, M. Schöll, O. Hansson and F. Kahl. ”A
Deep Learning Approach to MR-less Spatial Normalization for Tau PET Images”. The
International Conference on Medical Image Computing and Computer Assisted Interven-
tion (MICCAI), 2019.

The procedure of aligning a subject’s PET image with a common MR template
is called spatial normalization, and is essential for PET analysis. Most approaches
to spatial normalization align the PET image with the template space via a MR
image of the same subject. One major disadvantage is the need for the subject’s
MR, and enabling PET spatial normalization without MR would most definitely
benefit large-scale studies. Common for all previous attempts on spatial normal-
ization without MR is the use of standard image registration techniques with an
explicit PET template as target. However, such template models do not always
capture the full variation of PETs, which makes these methods less robust and
unreliable for general PET images.

This paper proposes a method that aligns the PET image directly without MR,
and without using an explicit PET template. A deep neural network estimates an
aligning transformation from the PET input image, and outputs the spatially
normalized image as well as the parameterized transformation. In order to do so,
the proposed network iteratively estimates a set of rigid and affine transformations
by means of convolutional neural network regressors as well as spatial transformer
layers, and is trainable end-to-end.

Author contribution. I implemented the full method, run all experiments and
wrote large parts of the paper. Kahl and Schöll helped with the writing. I, Kahl,
Heurling and Schöll proposed the main idea. Smith, Strandberg and Hansson
acquired the BioFinder data.
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3.2. Paper II

(a) Triangles (b) Majority voting (c) Shape averaging

Figure 3.2: The concept behind the shape averaging in paper II.

3.2 Paper II

J. Alvén, F. Kahl, M. Landgren, V. Larsson, J. Ulén and O. Enqvist. ”Shape-Aware Label
Fusion for Multi-Atlas Frameworks”. Pattern Recognition Letters, 124:109-117, 2019.

Good segmentation algorithms should generalize well to unseen or rarely occur-
ring anatomies while still producing plausible organ (or region) shapes. Multi-atlas
segmentation frameworks tend to generalize well, also when labelled training data
is limited. However, standard multi-atlas segmentation methods puts no explicit
constraints on the output shape. On the contrary, standard multi-atlas label fusion
combines transferred labels locally by merely considering the current voxel and/or
spatially neighbouring voxels. In order to guarantee a preserved topology and to
prevent disjoint organ shapes or lost structures, global shape regularization needs
to be included. Unfortunately, most methods with explicit shape constraints fail
generalizing as well as multi-atlas methods do.

This paper incorporates a shape prior into multi-atlas label fusion without los-
ing the generalizability of multi-atlas methods. Instead of fusing the labels at the
voxel level, each transferred labelling is regarded as a shape model estimate. The
shape model is a point distribution model of the organ surface consisting of land-
mark correspondences established offline. Online, pairwise registrations provide
coordinate estimates for these landmarks in the target image. These estimates
are used for computing an average shape by using robust optimization techniques.
In this manner, an awareness of the overall shape is directly incorporated into
the label fusion preventing implausible results while keeping robustness to outlier
registrations. See Figure 3.2 for a visualization of the concept of shape averaging.

Author contribution. Implementations, experiments as well as the writing
were joint work. I mostly contributed to (i) implementations related to the CNNs
and the landmarks establishment, (ii) running the experiments and (iii) writing
the paper. I, Kahl and Enqvist proposed the main idea.
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Figure 3.3: Qualitative results on a Scapis CTA sagittal slice from paper III.
The red number in the upper right corner is the Jaccard similarity index (%). See
paper for more details.

3.3 Paper III

M. Larsson, J. Alvén, and F. Kahl. ”Max-margin learning of deep structured models for
semantic segmentation.” Scandinavian Conference on Image Analysis (SCIA), 2017.

Convolutional neural networks have proven powerful for image segmentation
tasks, due to their ability to model complex connections between input and output
data. However, CNNs lack the ability to model statistical dependencies between
output variables, for instance, enforcing properties such as smooth and coherent
segmentation boundaries. In order to guarantee plausible segmentation shapes,
condition random fields can be used as a post-processing step. However, using
CRFs only as a refinement step means that the paired CNN and CRF are trained
separately, that is, the parameters of the CRF are learned while the parameters of
the CNN are fixed, and vice versa. A better solution is end-to-end learning, where
the CNN and CRF parameters are learned jointly.

This paper proposes a learning framework that jointly trains the parameters
of a CNN paired with a CRF. In order to do so, a theoretical framework for
optimization of a max-margin objective with back-propagation is developed. The
max-margin objective ensures good generalization capabilities, which makes the
method especially suitable for applications where labelled data is limited, such
as medical applications. The method is successfully evaluated on two medical
segmentation tasks, pericardium segmentation in Scapis CTA slices and heart
ventricle segmentation in Echo ultrasound slices. Figure 3.3 shows a comparison
of the piecewise and jointly trained models for a Scapis CTA sagittal slice.

Author contribution. I implemented methods for producing the manual la-
bellings of the Scapis CTA slices and the Echo ultrasound slices. Larsson carried
out the algorithm implementations and the experiments. The writing of the paper
were joint work, and Kahl proposed the main idea.
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(a) (b) (c) (d)

Figure 3.4: Visualization of the main parts of the algorithm in paper IV. (a)
Slice of target volume, (b) multi-atlas distance map, (c) random forest posterior
probability and (d) the ground truth (green) and the final segmentation (blue).

3.4 Paper IV

A. Norlén, J. Alvén, D. Molnar, O. Enqvist, R. Rossi Norrlund, J. Brandberg, G. Bergström
and F. Kahl. ”Automatic Pericardium Segmentation and Quantification of Epicardial Fat
from Computed Tomography Angiography”. Journal of Medical Imaging, 3(3), 2016.

Voxelwise classification with means of machine learning techniques can improve
segmentation results, especially for challenging tasks such as pericardium segmen-
tation. However, machine learning tools are dependent on large sets of labelled
data, which are rarely occurring in medical applications. The paper addresses the
problem of overcoming a shortage of labelled data when applying a random forest
classifier to pericardium segmentation.

The primary algorithmic contribution of this paper is the incorporation of a
generalized formulation of multi-atlas segmentation based on distance maps into a
random forest classification framework. More specific, transferred atlas labellings
define a voxelwise distribution over distances to the organ boundary. This distribu-
tion serves as a global initialization for the organ boundary search space. Further,
it provides a local coordinate system enabling alignment of extracted features to
the organ boundary. Rotation invariant features greatly simplify the voxel classi-
fication task (reducing the 3D boundary detection problem to 1D line search) but
also normalize the training data leading to more efficient use of the labelled data
set. In this manner, the random decision forest classifier learns recognizing organ
boundaries irrespective of the orientation relative the image coordinate axes. For
a visualization of the main steps, see Figure 3.4.

Author contribution. I carried out all baseline experiments and contributed
with some ideas. Norlén carried out most of the algorithm implementations. The
rest of the implementations and experiments as well as the writing were joint work.
Norlén, Enqvist and Kahl proposed the main idea.
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A1 co-registration

A1 ◦A2

A2 matching

Figure 3.5: An outline of the proposed framework in paper V, see paper for more
details.

3.5 Paper V

J. Alvén, A. Norlén, O. Enqvist and F. Kahl. ”Überatlas: Fast and Robust Registration
for Multi-Atlas Segmentation”. Pattern Recognition Letters, 80:245–255, 2016.

Multi-atlas segmentation has the disadvantage of requiring multiple atlas reg-
istrations to capture the full range of possible anatomical variation. In general,
image registration is computationally heavy which consequently limits the practi-
cal size of the atlas set. To speed up the registration procedure, and thus allowing
for larger atlas sets, the paper proposes an intermediate representation of the atlas
set. The intermediate representation consists of feature points that are similar
and consistently detected throughout the atlas set. This intermediate represen-
tation may be used for simultaneously finding point correspondences and affine
transformations to a target image from an arbitrarily large set of atlas images.

The main idea is to cluster extracted feature points from the atlas set to form
the intermediate representation. To make sure the feature points in a cluster
describe the same anatomical feature, the clustering procedure takes both descrip-
tor distances and spatial distances (according to an offline spatial co-registration
of the atlases) into account. At running time, point correspondences to all atlas
images are automatically obtained at once, and affine transformations can be com-
puted quickly and robustly with means of the iteratively reweighted least squares
algorithm. For a schematic overview, see Figure 3.5.

Author contribution. I implemented most of the framework including the
clustering algorithm, the atlas co-registration and the iteratively reweighted least
squares algorithm. I also run all the Elastix experiments. The remainder of the
implementations, experiments as well as the writing were joint work. All authors
contributed to the main idea.
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Chapter 4

Concluding discussion

The thesis papers propose possible improvements to medical image segmentation
and registration algorithms based on shape modelling and machine learning. Im-
provements are made with respect to accuracy, anatomical/physiological plausibil-
ity, speed and scalability as well as generalizability. Below follows a brief discussion
regarding how successfully these objectives are handled as well as an introduction
to two future research projects each addressing one or several of these objectives.

4.1 Discussion

4.1.1 Accuracy and fair evaluation

All included papers seemingly manage to meet the objective to increase the seg-
mentation and registration accuracy, each paper proposes algorithms performing
better or on par with compared methods. However, these improvements need to be
seen in the light of the difficulties of objectively evaluating and comparing medical
segmentation and registration algorithms. Choice of similarity metrics, evalua-
tion data and tuning parameters may greatly impact the results, and re-running
competing methods locally may lead to unfair experimental setups. Moreover,
installing, tuning and running competing methods are time-consuming and imple-
mentations of current state-of-the-art may not be publicly accessible. Due to this,
only a fraction of previously published methods are used for comparison, which of
course is crippling for evaluations said to be meticulous.

Ideally, each method should be evaluated on unseen test data provided by a
public benchmark. Moreover, the public benchmark should decide for relevant ac-
curacy metrics. In this way, unbiased conclusions can be made directly with means
of a public benchmark leaderboard, without needing to re-run compared methods
locally. This procedure enables fair comparisons between competing methods,
unfortunately, there is often no such benchmark available for the particular appli-
cation at hand. In fact, this is the case for a majority of the thesis datasets.
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Papers I, II and V validate the proposed methods on publicly accessible data,
the Adni, Visceral and Hammers datasets. For the Adni and the Hammers
dataset, the proposed methods are evaluated on the same test set as reported in
the publications corresponding to the compared methods. Thus, there is no need
to re-run the compared methods locally, and fair comparisons to these particular
methods can be made directly as described above. Unfortunately, there are no pub-
lic leaderboards summarizing all previous attempts on these particular datasets.
For the Visceral dataset, evaluation is done by splitting the provided training
data into smaller sets and by running public or in-house versions of the competing
methods. Hyperparameters are chosen following the recommendations in the cor-
responding papers. Thus, the evaluation suffer from an unfair experimental setup,
since the competing methods are not tuned with respect to the dataset at hand.

Paper III does validate the proposed method on test data from a public bench-
mark with favorable results. However, this benchmark dataset is not a medical
dataset, which makes it hard to draw any conclusions regarding the potential for
medical applications. The medical datasets in the paper, the Scapis and the Echo
datasets, are unfortunately not public. That is, there are no previous results on
these particular datasets to compare with. Of course, this makes it hard to draw
any objective conclusions. The same holds for paper IV, only the Scapis dataset
is considered due to the very task-specific objective (delineating the pericardium).
Unfortunately, neither datasets nor implemented versions of previously proposed
methods for pericardium segmentation are (as of date) publicly available. These
difficulties highlights the advantages of general-purpose algorithms independent
of application and modality: only considering one, or a few, specific tasks makes
comparisons highly inconvenient in the absence of benchmark databases.

4.1.2 Running times and scalability

One paper out of five, paper V, addresses running time (and scalability) as an
explicit research objective. The paper does succeed in speeding up parts of the
multi-atlas framework, however, some time-consuming steps are heavily overlooked
(such as image warping and non-rigid registration). Moreover, the paper does not
report the running times for all compared methods. Some of the papers (I, II and
IV) acknowledge the running time as an issue, but lack in evaluation. Paper II
and IV merely report the running times for the proposed methods. Paper I also
reports running times for some, but not all, of the compared methods. Ideally,
running time comparisons should be carried out on the same hardware for all
compared methods. Again, such fair comparisons would be helped by a framework
for benchmark comparisons as discussed above.
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4.1.3 Limited datasets and generalizability

Limited access to labelled data is a common issue in medical image analysis, and
also in a majority of the included thesis papers. Standard solutions, such as cross-
validation and data augmentation, are included in all papers. For a majority of the
papers, the lack of labelled data makes it hard to draw conclusions regarding gener-
alizability, since this objective should be evaluated on large, and diverse, datasets.
Again, publicly available benchmark datasets including a large amount of diverse
cases would definitely simplify evaluation of properties such as generalizability and
robustness.

Two papers, III and IV, address the lack of labelled data explicitly. For paper
IV, it remains somewhat unclear whether the proposed solution (rotation-invariant
features) manages to tackle this issue, especially since the test set is very limited (10
subjects) and similar to the training set. Paper III evaluates the method on several
different datasets, where one of the datasets (Scapis) includes 300 test images.
This should indeed indicate that the proposed method is capable to generalize.
However, paper I does present the most convincing evaluation when it comes to
generalizability. In this paper, the proposed method is successfully evaluated on
111 test subjects from a completely different dataset than the training set, which
should indicate that the method is general and robust.

4.1.4 Anatomical and physiological plausibility

Two out of five of the papers address the qualitative segmentation shape as an
research objective, paper II and III. Paper III evaluates the improvement with
means of qualitative (visual) examples, however, the included evaluation metric
(the Jaccard index) does not capture the qualitative shape very well. Paper II
presents a, perhaps, more convincing evaluation of the qualitative shape with
means of a more suitable evaluation metric (the Hausdorff distance) in addition to
visual examples. However, qualitative shape is highly subjective and thus difficult
to quantify. A thorough visual inspection by a medical expert would most surely
benefit both evaluations.

In paper II, the shape prior did seem to impact the segmentation negatively
for some cases, leading to over-regularized boundaries, which may infuse doubt
regarding the generalizability. Additionally, one may dispute the choice of merely
including the shape-regularized segmentation as input to a classifier, and not di-
rectly enforcing the refined solution to cohere with the shape prior. In retrospect,
one could consider executing a comparison to a similar classifier merely trained on
pure image features. Paper III proposes a method for incorporating shape regu-
larization that should be more capable of generalizing, thanks to the max-margin
loss and the end-to-end training. A discussed above, the evaluation does indeed
indicate good generalization capabilities.
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4.2 Future directions

4.2.1 Shape and learning for coronary artery segmentation

Buildup of vascular plaque in the coronary arteries, the blood vessels that provide
oxygenated blood to the heart, is a biomarker for myocardial infarction (”heart
attack”). Vascular plaques cause stenosis, a narrowing of the blood vessel, that
can be detected and quantified by comparing the width of the lumen and the ves-
sel wall of the coronary arteries. Automatic segmentation of coronary arteries,
including lumen, wall and plaque delineations, can help assessing the risk of my-
ocardial infarctions. Currently, 600 cardiac CTA images from the Scapis dataset
are manually annotated for coronary artery segmentations. The manual annota-
tions include lumen and vessel wall of the main coronary arteries (vessels large
enough to be deemed medically relevant) as well as plaques and stenoses. The aim
is to train a deep model able to detect and classify plaques and stenoses with an
accuracy comparable to an expert radiologist.

The idea of using a deep network for analysing the coronary artery tree is
not new, see [138, 139]. However, these previous attempts neither provide full
segmentations nor enforce necessary shape constraints. The anatomy of coronary
arteries cannot vary in every possible way, that is, there are a number of anatomical
constraints that an automatic software should obey. The lumen, and plaques if
present, always lie inside the vessel wall, the cross-section of the vessel wall has a
convex shape and the coronary arteries grow like a tree from the aorta. Conditional
random field models could be one way of posing such shape constraints on the
output segmentation while still generalizing well to unseen data. Previous work
has proposed CRF models enforcing star-shaped and convex shapes [140–142],
relative position of multiple regions [143,144] and tree structures [145]. The tubular
tree structure could also be enforced by other shape modelling techniques, such
as Active Shape Models (ASMs) as in [146], or shortest geodesic path trees as
in [147]. Enabling end-to-end training of deep networks coupled with shape models
enforcing these necessary geometric priors is yet to be done, and will surely boost
the qualitative performance of a deep segmentation algorithm for coronary artery
segmentation.
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4.2.2 Generalizable deep models for echo assessment

Echocardiography (cardiac ultrasound, ”echo”) is a widely used medical imaging
technique for heart function assessment. However, it takes several years to train a
physician to become a senior specialist in echocardiography assessment. An auto-
matic echocardiography assessment software could be of great use in the clinical
work: it could work as a as a gate keeper to sort out the less complex cases, it could
reduce the burden of physicians and it could enable echocardiography assessments
at clinic sites with no senior echocardiography specialist. A unique dataset at
the Sahlgrenska university hospital, including over 90000 echo examinations with
manual annotations of the size, function and disease status of the heart ventricles
and atriums as well the heart valves, should allow for training a deep model able
to automatically assess an echo examination.

Using existing clinical data for training and evaluating a deep model able to
perform a diverse set of tasks is of course a challenging problem. The examinations
are acquired during different years, by different physicians, from different view
points and with means of different scanner types. The assessments vary from
volume estimation to valve function classification. Thus, the model must generalize
between tasks and between domains. Further, the model should be robust to bad
quality examinations, perhaps with missing images or performed by inexperienced
physicians. Finally, the memory footprint of each examination and the very size
of the dataset put demands on running times and hardware. Developing a deep
model that successfully masters these requirements on robustness, generalizability
and scalability would open up for other projects using already existing clinical
data, instead of relying on new time-consuming manual annotation.
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