3,925 research outputs found

    A new structure for difference matrices over abelian pp-groups

    Full text link
    A difference matrix over a group is a discrete structure that is intimately related to many other combinatorial designs, including mutually orthogonal Latin squares, orthogonal arrays, and transversal designs. Interest in constructing difference matrices over 22-groups has been renewed by the recent discovery that these matrices can be used to construct large linking systems of difference sets, which in turn provide examples of systems of linked symmetric designs and association schemes. We survey the main constructive and nonexistence results for difference matrices, beginning with a classical construction based on the properties of a finite field. We then introduce the concept of a contracted difference matrix, which generates a much larger difference matrix. We show that several of the main constructive results for difference matrices over abelian pp-groups can be substantially simplified and extended using contracted difference matrices. In particular, we obtain new linking systems of difference sets of size 77 in infinite families of abelian 22-groups, whereas previously the largest known size was 33.Comment: 27 pages. Discussion of new reference [LT04

    Properties and Construction of Polar Codes

    Full text link
    Recently, Ar{\i}kan introduced the method of channel polarization on which one can construct efficient capacity-achieving codes, called polar codes, for any binary discrete memoryless channel. In the thesis, we show that decoding algorithm of polar codes, called successive cancellation decoding, can be regarded as belief propagation decoding, which has been used for decoding of low-density parity-check codes, on a tree graph. On the basis of the observation, we show an efficient construction method of polar codes using density evolution, which has been used for evaluation of the error probability of belief propagation decoding on a tree graph. We further show that channel polarization phenomenon and polar codes can be generalized to non-binary discrete memoryless channels. Asymptotic performances of non-binary polar codes, which use non-binary matrices called the Reed-Solomon matrices, are better than asymptotic performances of the best explicitly known binary polar code. We also find that the Reed-Solomon matrices are considered to be natural generalization of the original binary channel polarization introduced by Ar{\i}kan.Comment: Master thesis. The supervisor is Toshiyuki Tanaka. 24 pages, 3 figure

    Skew-symmetric distributions and Fisher information -- a tale of two densities

    Get PDF
    Skew-symmetric densities recently received much attention in the literature, giving rise to increasingly general families of univariate and multivariate skewed densities. Most of those families, however, suffer from the inferential drawback of a potentially singular Fisher information in the vicinity of symmetry. All existing results indicate that Gaussian densities (possibly after restriction to some linear subspace) play a special and somewhat intriguing role in that context. We dispel that widespread opinion by providing a full characterization, in a general multivariate context, of the information singularity phenomenon, highlighting its relation to a possible link between symmetric kernels and skewing functions -- a link that can be interpreted as the mismatch of two densities.Comment: Published in at http://dx.doi.org/10.3150/12-BEJ346 the Bernoulli (http://isi.cbs.nl/bernoulli/) by the International Statistical Institute/Bernoulli Society (http://isi.cbs.nl/BS/bshome.htm

    List decoding of noisy Reed-Muller-like codes

    Full text link
    First- and second-order Reed-Muller (RM(1) and RM(2), respectively) codes are two fundamental error-correcting codes which arise in communication as well as in probabilistically-checkable proofs and learning. In this paper, we take the first steps toward extending the quick randomized decoding tools of RM(1) into the realm of quadratic binary and, equivalently, Z_4 codes. Our main algorithmic result is an extension of the RM(1) techniques from Goldreich-Levin and Kushilevitz-Mansour algorithms to the Hankel code, a code between RM(1) and RM(2). That is, given signal s of length N, we find a list that is a superset of all Hankel codewords phi with dot product to s at least (1/sqrt(k)) times the norm of s, in time polynomial in k and log(N). We also give a new and simple formulation of a known Kerdock code as a subcode of the Hankel code. As a corollary, we can list-decode Kerdock, too. Also, we get a quick algorithm for finding a sparse Kerdock approximation. That is, for k small compared with 1/sqrt{N} and for epsilon > 0, we find, in time polynomial in (k log(N)/epsilon), a k-Kerdock-term approximation s~ to s with Euclidean error at most the factor (1+epsilon+O(k^2/sqrt{N})) times that of the best such approximation

    Counting problems for special-orthogonal Anosov representations

    Get PDF
    For positive integers pp and qq let G:=PSO(p,q)G:=\textrm{PSO}(p,q) be the projective indefinite special-orthogonal group of signature (p,q)(p,q). We study counting problems in the Riemannian symmetric space XGX_G of GG and in the pseudo-Riemannian hyperbolic space Hp,q1\mathbb{H}^{p,q-1}. Let SXGS\subset X_G be a totally geodesic copy of XPSO(p,q1)X_{\textrm{PSO}(p,q-1)}. We look at the orbit of SS under the action of a projective Anosov subgroup of GG. For certain choices of such a geodesic copy we show that the number of points in this orbit which are at distance at most tt from SS is finite and asymptotic to a purely exponential function as tt goes to infinity. We provide an interpretation of this result in Hp,q1\mathbb{H}^{p,q-1}, as the asymptotics of the amount of space-like geodesic segments of maximum length tt in the orbit of a point.Comment: To appear in Ann. Inst. Fourier. 40 pages, 1 figur

    Parrondo games as disordered systems

    Full text link
    Parrondo's paradox refers to the counter-intuitive situation where a winning strategy results from a suitable combination of losing ones. Simple stochastic games exhibiting this paradox have been introduced around the turn of the millennium. The common setting of these Parrondo games is that two rules, AA and BB, are played at discrete time steps, following either a periodic pattern or an aperiodic one, be it deterministic or random. These games can be mapped onto 1D random walks. In capital-dependent games, the probabilities of moving right or left depend on the walker's position modulo some integer KK. In history-dependent games, each step is correlated with the QQ previous ones. In both cases the gain identifies with the velocity of the walker's ballistic motion, which depends non-linearly on model parameters, allowing for the possibility of Parrondo's paradox. Calculating the gain involves products of non-commuting Markov matrices, which are somehow analogous to the transfer matrices used in the physics of 1D disordered systems. Elaborating upon this analogy, we study a paradigmatic Parrondo game of each class in the neutral situation where each rule, when played alone, is fair. The main emphasis of this systematic approach is on the dependence of the gain on the remaining parameters and, above all, on the game, i.e., the rule pattern, be it periodic or aperiodic, deterministic or random. One of the most original sides of this work is the identification of weak-contrast regimes for capital-dependent and history-dependent Parrondo games, and a detailed quantitative investigation of the gain in the latter scaling regimes.Comment: 17 pages, 10 figures, 2 table

    Open Problems on Central Simple Algebras

    Full text link
    We provide a survey of past research and a list of open problems regarding central simple algebras and the Brauer group over a field, intended both for experts and for beginners.Comment: v2 has some small revisions to the text. Some items are re-numbered, compared to v
    corecore