
Bernoulli 18(3), 2012, 747–763
DOI: 10.3150/12-BEJ346

Skew-symmetric distributions and Fisher
information – a tale of two densities
MARC HALLIN1 and CHRISTOPHE LEY1,2

1E.C.A.R.E.S., CP 114, Université Libre de Bruxelles, 50 Avenue F.D. Roosevelt, 1050 Brussels, Belgium.
E-mail: mhallin@ulb.ac.be
2Département de Mathématique, CP 210, Université Libre de Bruxelles, Boulevard du Triomphe, 1050
Brussels, Belgium. E-mail: chrisley@ulb.ac.be

Skew-symmetric densities recently received much attention in the literature, giving rise to increasingly gen-
eral families of univariate and multivariate skewed densities. Most of those families, however, suffer from
the inferential drawback of a potentially singular Fisher information in the vicinity of symmetry. All exist-
ing results indicate that Gaussian densities (possibly after restriction to some linear subspace) play a special
and somewhat intriguing role in that context. We dispel that widespread opinion by providing a full char-
acterization, in a general multivariate context, of the information singularity phenomenon, highlighting its
relation to a possible link between symmetric kernels and skewing functions – a link that can be interpreted
as the mismatch of two densities.
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1. Introduction

Models for skewed distributions have become increasingly popular in recent years, as they pro-
vide a much better fit for data presenting some departure from normality, and from symmetry
in general. Many of the proposed models in the literature allow for a continuous variation from
symmetry to asymmetry, regulated by some finite-dimensional parameter.

The success of those skewed distributions started with the seminal papers by Azzalini [3,4] in-
troducing the scalar skew-normal model, which embeds the univariate normal distributions into a
flexible parametric class of (possibly) skewed distributions. More formally, a random variable X

is said to be skew-normal with location parameter μ ∈ R, scale parameter σ ∈ R
+
0 and skewness

parameter δ ∈ R if it admits the probability density function (p.d.f.)

x �→ 2σ−1φ
(
σ−1(x − μ)

)
�

(
δσ−1(x − μ)

)
, x ∈ R, (1.1)

where φ and � respectively denote the p.d.f. and cumulative distribution function (c.d.f.) of
a standard normal distribution. Besides their many appealing features, however, skew-normal
densities unfortunately also suffer from an unpleasant inferential drawback: in the vicinity of
symmetry, that is, at δ = 0, the Fisher information matrix for the three-parameter density (1.1) is
singular – typically, with rank 2 instead of 3. Consequently, skew-normal distributions happen to
be problematic from an inferential point of view, since that singularity violates the assumptions
for standard Gaussian asymptotics and precludes, at first sight, any nontrivial test of the null
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hypothesis of symmetry. Such a situation has been studied by Rotnitzky et al. [21], who show
that one of the parameters then cannot be estimated at the usual root-n rate, while the limit
distribution of maximum likelihood estimators might be bimodal.

This Fisher singularity problem, however, did not hamper the success of skew-normal densi-
ties among practitioners, while theoretical extensions were developing into various directions.
Azzalini and Dalla Valle [8] and Azzalini and Capitanio [6] consider multivariate skew-normal
distributions resulting from replacing in (1.1) the univariate normal kernel φ with its k-variate
version φk . In the same paper, Azzalini and Capitanio also propose substituting an elliptical ker-
nel fk for the normal one φk , and replacing the skewing factor � in (1.1) with an arbitrary,
possibly non-Gaussian, univariate symmetric c.d.f. G1. The resulting distributions are called
skew-elliptical. The class of skew-elliptical distributions is also studied in detail by Branco and
Dey [10], based, however, on a slightly different definition. Genton and Loperfido [15] introduce
a concept of generalized skew-elliptical distributions encompassing all previous ones, where ar-
bitrary skewing functions (not necessarily c.d.f.s, but satisfying c.d.f.-type conditions) can be
used in conjunction with the elliptical kernel fk . Finally, Azzalini and Capitanio [7] (who also
propose the nowadays commonly adopted definition of multivariate skew-t distributions), then
Wang et al. [24] are relaxing the assumption of elliptically symmetric kernels into a weaker
assumption of central symmetry, leading to multivariate skew-symmetric densities of the form

x �→ f �
ϑ (x) = f �

μ,�,δ(x)
(1.2)

:= 2|�|−1/2f
(
�−1/2(x − μ)

)
�

(
�−1/2(x − μ), δ

)
, x ∈ R

k,

where

(a) μ ∈ R
k is a location parameter, � ∈ Sk (throughout, |M| denotes the determinant and

M1/2 the symmetric square-root of any M in the class Sk of symmetric positive definite
k × k matrices) a scatter matrix, while δ ∈ R

k plays the role of a skewness parameter;
(b) the symmetric kernel f is a centrally symmetric nonvanishing p.d.f., meaning that 0 �=

f (−z) = f (z), z ∈ R
k , and

(c) the skewing function � : Rk × R
k → [0,1] satisfies �(−z, δ) + �(z, δ) = 1, z, δ ∈ R

k ,
and �(z,0) = 1/2, z ∈ R

k .

This definition is the one we are adopting in the sequel. While �(z, δ), in most practical situa-
tions, is of the simple form �(δ′z), with � : R → [0,1], Wang et al. [24] actually do not consider
any specific δ-parameterization. Our parametric approach (with the regularity assumptions (A2)–
(A2+) and (B2)–(B2+) of Sections 2.1 and 3.1, resp.) is in the spirit of – if not at the same level
of mathematical generality as – the differentiable path and tangent space approach taken in the
local and asymptotic treatment of semiparametric models (see, e.g., Chapter 25 of van der Vaart
[23]). Also, the condition that f is a nonvanishing density is not imposed by Wang et al. [24];
we are adding that requirement in order to avoid inessential complications related with bounded
and parameter-dependent supports. For further information about skew-symmetric models and
related topics, we refer the reader to the recent monograph by Genton [14], and to the review
papers Arnold and Beaver [2] and Azzalini [5].

The issue of singular Fisher information runs like a red thread through all those developments.
Mentioned, from the very beginning, in Azzalini [3] itself, it is discussed, in the univariate and
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multivariate skew-normal context, by Azzalini and Capitanio [6], Pewsey [19], Chiogna [11] and
Arellano-Valle and Azzalini [1]. The same issue has been considered in various subclasses of
skew-symmetric distributions. Pewsey [20] and Azzalini and Genton [9] establish that the sin-
gularity problem remains after replacement of the c.d.f. � in (1.1) with any c.d.f. H satisfying
mild regularity assumptions. DiCiccio and Monti [12] prove that, within the class of univariate
skew-exponential power distributions of Azzalini [4], the normal kernels are the only ones suf-
fering from singular Fisher information. The same result is shown to hold true for two classes of
scalar skew-t distributions by Gómez et al. [16] and DiCiccio and Monti [13]. The multivariate
counterparts of these statements are provided in Ley and Paindaveine [17,18], respectively.

Finally, the very general (still a special case of (1.2), though) class of multivariate skew-
symmetric densities of the form

x �→ 2|�|−1/2f
(
�−1/2(x − μ)

)
�

(
δ′�−1/2(x − μ)

)
, x ∈ R

k, (1.3)

encompassing all previous cases, is considered in Ley and Paindaveine [17], who characterize,
for each possible value 1 ≤ m ≤ k of the Fisher information rank deficiency, the form of the
symmetric kernels giving rise to such deficiency. Here again, Gaussian kernels are playing a very
special role. In the univariate setup and within the subclass of multivariate generalized skew-
elliptical distributions, only the skew-normal densities are affected by the singularity problem.
Although results in the fully general (for densities of the form (1.3)) multivariate case are more
complex, only kernels exhibiting Gaussian restrictions on some m-dimensional linear subspaces
can lead to degenerate Fisher information.

A tentative remedy to that singularity problem was suggested by Azzalini himself who, as
early as 1985, in his original paper, proposes a reparametrization of skew-normal families, the so-
called centered parametrization, under which Fisher information matrices remain full-rank. The
multivariate version of that reparametrization is examined in detail by Arellano-Valle and Azza-
lini [1]. That solution, however, never really caught up in practice, partly because the structure of
the skewing mechanism, hence of the resulting skew-normal family, under the new parametriza-
tion, loses much of its simplicity (certainly so in the multivariate context), partly because of its
limitation to skew-normal families. Azzalini and Genton [9] therefore once again emphasize the
need for a clarification of the Fisher singularity phenomenon in order to “remove, or at least
alleviate, the necessity of an alternative parametrization.”

The objective of the present paper is to provide such a clarification. While all comments and
existing results, in this singular Fisher information issue, seemed to be pointing at some special
status for normal kernels and, consequently, skew-normal distributions, we completely dispel
the idea of any particular role of Gaussian kernels. Turning to the fully general class of skew-
symmetric densities described in (1.2), we show indeed that information deficiency actually orig-
inates in an unfortunate mismatch between f and � – more specifically, between two densities,
the kernel f and an exponential density g� associated with the skewing function �.

A tale of two densities, thus, rather than a Gaussian mystery. . .
The paper is organized as follows. Section 2.1 deals with the univariate setup, where the sin-

gularity problem is simple, as the rank of the three-parameter Fisher information matrix only can
be 3 or 2. The result is derived in an informal way, and some examples of skewing functions
are treated in Section 2.2. A more formal statement of the general solution is provided for the
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multivariate setup in Section 3.1, along with some examples in Section 3.2. Final comments and
conclusions are given in Section 4.

2. The univariate setup

2.1. A tale of two densities . . .

We start by analyzing the information singularity problem in the univariate case. To do so, con-
sider the class of skew-symmetric probability density families of the form

x �→ f �
ϑ (x) = f �

μ,σ,δ(x) := 2σ−1f
(
σ−1(x − μ)

)
�

(
σ−1(x − μ), δ

)
, x ∈ R, (2.1)

with ϑ := (μ,σ, δ)′, where μ ∈ R is a location parameter, σ ∈ R
+
0 a scale parameter and δ ∈ R

an asymmetry parameter.
The symmetric kernel f : R → R

+ in (2.1) is a nonvanishing symmetric standardized p.d.f.,
that is, a probability density function such that f (z) = f (−z) �= 0 for all z ∈ R, with scale
parameter one – an identification constraint for σ that does not imply any loss of generality.
Classical standardization, with a constraint of the form

∫ ∞
−∞ z2f (z)dz = 1, involves the variance

of Z with p.d.f. f ; the scale parameter σ 2 then is the mean squared deviation E[(X − μ)2]
with respect to μ of X with p.d.f. f �

μ,σ,0. If moment assumptions are to be avoided, one may
rather consider, for instance, medians of squares, with an identification constraint of the form∫ 1
−∞ f (z)dz = 0.75: if X has p.d.f. f �

μ,σ,0, σ then is the median of the absolute deviation |X−μ|,
which exists irrespective of the density of X. Other quantiles of |X − μ| would enjoy similar
properties. We throughout assume that such an identification constraint, hence a concept of scale,
has been adopted. That choice, however, is completely arbitrary, and any element in the scale
family of p.d.f.’s of the form (2.1) with μ = δ = 0 could be chosen as the reference density
characterizing unit scale – hence could serve as a symmetric kernel for the same skew-symmetric
family. As we shall see, that choice has no impact on the results of this paper.

The second factor in (2.1) is a skewing function, namely, a function � : R × R → [0,1]
such that �(−z, δ) + �(z, δ) = 1 for all z, δ ∈ R, and �(z,0) = 1/2 for all z ∈ R. Tradi-
tional choices involve �(z, δ) = �(δz) (skew-normal distributions, Azzalini [3]), �(z, δ) =
�(δ sign(z)|z|α/2(2/α)1/2) (skew-exponential power distributions, Azzalini [4]) or �(z, δ) =
G(δz) for any symmetric univariate c.d.f. G (skew-symmetric distributions, Azzalini and Capi-
tanio [6]). The class of skewing functions considered here is much broader.

The regularity assumptions we are making on f and � are as follows.

Assumption (A1). The mapping z �→ f (z) is differentiable, with derivative ḟ such that, letting
ϕf := −ḟ /f , the information quantity for location σ−2 If , with

If :=
∫ ∞

−∞
ϕ2

f (z)f (z)dz,

is finite.
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Assumption (A1+). Same as (A1), but the information quantity for scale σ−2 Jf , with

Jf :=
∫ ∞

−∞
(
zϕf (z) − 1

)2
f (z)dz,

moreover is finite.

Assumption (A2). (i) The mapping z �→ �(z, δ) is differentiable, and its derivative equals 0 at
δ = 0. (ii) The mapping δ �→ �(z, δ) is differentiable at δ = 0 for all z ∈ R, with derivative (at
δ = 0) ∂δ�(z, δ)|δ=0 =: ψ(z) such that z �→ ψ(z) admits a primitive, denoted as � .

Assumption (A2+). Same as (A2), but the quantity

∫ ∞

−∞
ψ2(z)f (z)dz

moreover is finite.

These assumptions essentially guarantee the existence and finiteness of Fisher information at
δ = 0; the differentiability and integrability conditions could be relaxed into weaker differentia-
bility properties such as quadratic mean differentiability. This small gain of generality, however,
would require a generalized definition of information (in the Le Cam style), with non-negligible
technical complications. For the sake of simplicity, we stick to a more traditional approach and
the traditional definition of Fisher information. Note that this definition differs from the one, used
by some authors, of an observed Fisher information, that is, the empirical value of the matrix of
negative second-order derivatives of the log-likelihood evaluated at the maximum likelihood es-
timator of the parameters.

Under Assumptions (A1) and (A2), the score vector �f ;ϑ , at (μ,σ,0)′ =: ϑ0, takes the form

�f ;ϑ0(x) := gradϑ logf �
ϑ (x)|ϑ0 =: (�1

f ;ϑ0
(x), �2

f ;ϑ0
(x), �3

f ;ϑ0
(x))′

=
⎛
⎝ σ−1ϕf

(
σ−1(x − μ)

)
σ−1

(
σ−1(x − μ)ϕf

(
σ−1(x − μ)

) − 1
)

2ψ
(
σ−1(x − μ)

)
⎞
⎠ ,

where the factor 2 in �3
f ;ϑ0

follows from the fact that �(z,0) = 1/2 for all z ∈ R. Assump-
tion (A2)(i) is a mild requirement which, in regular models, readily follows from the fact that
�(z,0) = 1/2, and ensures that the skewing function � plays no role in the score functions for
μ and σ at δ = 0.

Under Assumptions (A1+) and (A2+), the 3×3 Fisher information matrix for (μ,σ, δ) exists,
and takes the form

�f ;ϑ0 := σ−1
∫ ∞

−∞
�f ;ϑ0(x)�′

f ;ϑ0
(x)f

(
σ−1(x − μ)

)
dx =:

⎛
⎝

γ 11
f ;ϑ0

0 γ 13
f ;ϑ0

0 γ 22
f ;ϑ0

0

γ 13
f ;ϑ0

0 γ 33
f ;ϑ0

⎞
⎠ ,
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with

γ 11
f ;ϑ0

= σ−2 If , γ 22
f ;ϑ0

= σ−2 Jf , γ 33
f ;ϑ0

= 4
∫ ∞

−∞
ψ2(z)f (z)dz

and

γ 13
f ;ϑ0

= 2σ−1
∫ ∞

−∞
ϕf (z)ψ(z)f (z)dz.

The zeroes in �f ;ϑ0 are easily obtained by noting that �1
f ;ϑ0

and �3
f ;ϑ0

are antisymmetric func-

tions of (x − μ), whereas �2
f ;ϑ0

is symmetric with respect to the same quantity.
It then trivially follows that singularity of �f ;ϑ0 only can be due to the singularity of the 2 × 2

submatrix

�0
f ;ϑ0

:=
(

γ 11
f ;ϑ0

γ 13
f ;ϑ0

γ 13
f ;ϑ0

γ 33
f ;ϑ0

)
,

the existence of which, however, only requires Assumptions (A1) and (A2+). Clearly, either
�0

f ;ϑ0
is full-rank or, in case γ 11

f ;ϑ0
γ 33
f ;ϑ0

= (γ 13
f ;ϑ0

)2, it has rank 1.

Now, the Cauchy–Schwarz inequality implies that (γ 13
f ;ϑ0

)2 ≤ γ 11
f ;ϑ0

γ 33
f ;ϑ0

, with equality if and
only if

ϕf = aψ f -a.s. (equivalently, Lebesgue-a.e.) (2.2)

for some constant a ∈ R. It thus follows that �0
f ;ϑ0

is singular for any ϑ0 = (μ,σ,0)′ if and

only if (2.2) is satisfied for some a ∈ R. This holds under Assumptions (A1) and (A2+). If
Assumption (A1) is reinforced into (A1+), the 2 × 2 singularity of �0

f ;ϑ0
in turn is equivalent

to the 3 × 3 singularity of �f ;ϑ0 . Replacing ϕf with its definition, the necessary and sufficient
condition ϕf = aψ yields a first-order differential equation whose solutions are of the form
f (x) = c exp(−a�(x)) for some a ∈ R, where � is a primitive of ψ and c ∈ R

+ an integration
constant.

Summing up, let the couple (f,�) satisfy Assumptions (A1+) and (A2+): �f ;ϑ0 is singular
for all ϑ0 if and only if the symmetric kernel f belongs to the exponential family

E� :=
{
ga := exp(−a�)

/∫ ∞

−∞
exp(−a�(z))dz

∣∣∣ a ∈ A
}

(2.3)

with minimal sufficient statistic � , natural parameter −a, and natural parameter space

A :=
{
a ∈ R such that

∫ ∞

−∞
exp(−a�(z))dz < ∞

}
.

The same statement can be made under Assumptions (A1) and (A2+) about the singularity
of �0

f ;ϑ0
.

Note that A, as the natural parameter space of an exponential family, is an open interval of R.
The unique value a� of a ∈ A such that f and ga� coincide, if any, is entirely determined by the
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standardization constraint on f . If the classical variance-based standardization is adopted, then
a� is solution of the equation

∫ ∞

−∞
z2 exp(−a�(z))dz =

∫ ∞

−∞
exp(−a�(z))dz.

If standardization is imposed via medians of squares, a� is solution of

∫ 1

−∞
exp(−a�(z))dz = 3

∫ ∞

1
exp(−a�(z))dz.

Letting fσ (x) := σ−1f (x/σ), σ ∈ R
+
0 , also note that f ∈ E� if and only if fσ ∈ E�◦σ−1 ,

where E�◦σ−1 stands for the exponential family with minimal sufficient statistic �◦σ−1 : z �→
�(σ−1z). It is easy to see that both conditions moreover determine the same a�, which confirms
that the arbitrary choice of a scale parameter has no impact on the result.

As a consequence of those results, it follows that, for any symmetric density f satisfying
Assumption (A1+) (resp., Assumption (A1)), there exists a skewing function �f (infinitely many
of them, actually) such that �f ;ϑ0 (resp., �0

f ;ϑ0
) exists and is singular for any ϑ0; among them,

with aπ = √
2π, �f (z, δ) := �(δϕf (z)), for which Assumption (A2+) holds.

The converse is slightly more subtle. Let � be a skewing function satisfying Assumption (A2);
a function � with derivative ψ thus exists, which automatically satisfies �(z) = �(−z). If there
exists a density ga in the corresponding exponential family (2.3) such that

∫ ∞
−∞ ψ2(z)ga(z)dz is

finite, then the skew-symmetric family with symmetric kernel f = ga and skewing function �

is such that Assumptions (A1) and (A2+) hold, and the corresponding 2 × 2 matrix �0
f ;ϑ0

exists

and is singular for any ϑ0. If moreover f = ga also satisfies Assumption (A1+), then the 3 × 3
information matrix �f ;ϑ0 exists, and is singular for any ϑ0. Note, however, that the reference
density for scale – the one that, by definition, provides the unit scale – here is f = ga .

A tale of two densities, f and ga� , is emerging, which demythifies the seemingly singular role
of the Gaussian distribution.

This treatment of the univariate case provides a good intuition for the more complex k-
dimensional problem where, as we shall see, the rank of the Fisher information matrix can take
any value between k + k(k + 1)/2 = k(k + 3)/2 and 2k + k(k + 1)/2 = k(k + 5)/2. Since the
univariate case follows as a particular case by letting k = 1 in the general result of Proposition 3.1
of the next section, we do not provide a more formal statement here.

2.2. Some examples

In order to illustrate the results of the previous section, we now apply our findings in three ex-
amples of skewing functions and determine the exponential family with corresponding minimal
sufficient statistic and natural parameter space leading to singular Fisher information matrices.

As a first example, we propose the most usual class of skewing functions, namely those of the
form �1(z, δ) := �(δz), where � : R → [0,1] is a function satisfying �(−y) + �(y) = 1 for
all y ∈ R (hence �(0) = 1/2) and such that �̇(0) := d�(y)/dy|y=0 exists and differs from 0.
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Clearly, any univariate c.d.f. could be used, in which case we retrieve the skew-symmetric distri-
butions of Azzalini and Capitanio [6], and, for f = φ and � = �, the skew-normal distributions
of Azzalini [3]. For more examples of skewed distributions of this type, we refer the reader to
Gómez et al. [16]. Straightforward calculations show that ψ1(z) = �̇(0)z, and hence the minimal
sufficient statistic characterizing the exponential family (2.3) is �1(z) = �̇(0)z2/2. The resulting
exponential family E�1 thus is nothing but the family of centered normal densities of the form

g(1)
a (z) = exp

(−a�̇(0)z2/2
)(

2π/(a�̇(0))
)−1/2

,

with natural parameter space A1 := sign(�̇(0))R+
0 . Assumptions (A1+) and (A2+) are satisfied,

hence the 3 × 3 matrix �f ;ϑ0 exists. Thus, whenever the traditional skewing function �1 is
used, Gaussian kernels are the only problematic ones regarding singular Fisher information at
δ = 0. This result, combined with the popularity of �1 as a skewing function, explains the long-
standing belief in a particular role of the Gaussian distribution. Note that our findings are in
line with earlier ones by Gómez et al. [16], who show that, by combining a Student kernel with
ν degrees of freedom and a skewing function of the form �1, Fisher information at δ = 0 is
non-singular in general but becomes singular as ν → ∞. And, more generally, our results are in
total accordance with those of Ley and Paindaveine [17] for the total class of skew-symmetric
distributions of this kind.

Next consider the class of skewing functions �2(z, δ) := �(δ sign(z)|z|α/2(2/α)1/2) with
α > 1 and y �→ �(y) satisfying the usual conditions. Clearly, for α = 2, �2 coincides with �1.
This second type of skewing function was used, with � = �, by Azzalini [4] to define skew-
exponential power distributions. One immediately obtains ψ2(z) = �̇(0) sign(z)|z|α/2(2/α)1/2,
and, consequently,

�2(z) = �̇(0)|z|α/2+1(2/α)1/2(α/2 + 1)−1.

The corresponding exponential family E�2 contains all densities of the form

g(2)
a (z) = c exp

(−a�̇(0)(2/α)1/2(α/2 + 1)−1|z|α/2+1),
where c is a normalization constant and a again ranges over either the positive or the negative
real half line, depending on the sign of �̇(0). One easily can check that the complete Fisher
information matrix is well-defined in this case. DiCiccio and Monti [12] prove that, for α �= 2,
skew-exponential power distributions do not suffer from singular Fisher information matrices in
the vicinity of symmetry. Our findings do not only confirm that result, but also provide some
further insight into the reasons for that absence of singularity. Actually, the exponent of |z| in
g

(2)
a has to be α/2 + 1, while the symmetric kernels in skew-exponential power distributions as

defined in Azzalini [4] are of the form c exp(−|z|α/α). Thus, while skew-normal distributions
involve a symmetric kernel and a skewing function which are in a problematic relationship, this
is avoided with the class of skew-exponential power distributions.

As a final example, consider skewing functions of the form �3(z, δ) := �(δ sin(z)), with �

belonging to the same class of functions as in the two preceding examples. It is easy to check
that �3 then actually is a skewing function satisfying Assumption (A2+). Direct manipulations
yield ψ3(z) = �̇(0) sin(z) and �3(z) = −�̇(0) cos(z). The natural parameter space A3 of the
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Figure 1. Plots of the original Azzalini [3] skew-normal density 2φ(x)�(δx) (left) and the �3-based
version 2φ(x)�(δ sin(x)) (right), for δ =0 (darker), 0.5, 2, and 6 (lighter).

exponential family E�3 corresponding to the minimal sufficient statistic �3 is empty. In other
words, no symmetric kernel f yields a reduced Fisher information matrix when the skewing
function �3 is adopted. Figure 1 shows some of the skewed densities obtained by combining �3
(for � = �) with a standard normal kernel. Comparison with the original skew-normal distri-
butions of Azzalini [3] indicates that the new family, which is immune from degenerate Fisher
information problems, is nevertheless extremely close to Azzalini’s classical one.

3. The multivariate setup

3.1. A further tale . . .

Before starting our investigation of the multivariate case, let us introduce some further notations
required when passing from dimension 1 to k > 1. For any given k × k matrix M, we denote
by vec(M) the k2-vector obtained by stacking the columns of M on top of each other, and by
vech(M) the k(k + 1)/2-subvector of vec(M) for which only upper diagonal entries in M are
considered. We write Pk for the k(k + 1)/2 × k2 matrix such that P′

k(vech M) = vec(M) for any
symmetric M and Ik for the k × k identity matrix.

The general multivariate skew-symmetric densities (generalizing (2.1)) we are considering are
of the form (1.2), with ϑ , f and � satisfying the general conditions (a)–(c). The symmetric
kernel f moreover is supposed to have identity scatter matrix Ik , which provides the required
identification constraint for �.

As in the univariate setup, we need to impose some mild regularity assumptions on f and �.

Assumption (B1). The mapping z �→ f (z) is differentiable, with gradient ḟ such that, letting
ϕf := −ḟ /f , the k × k information matrix for location �−1/2If �−1/2, with

If :=
∫

Rk

ϕf (z)ϕ′
f (z)f (z)dz,

is finite and invertible.
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Assumption (B1+). Same as (B1), but the k(k + 1)/2 × k(k + 1)/2 information matrix for scat-
ter (actually, for �1/2, or more precisely, for vech(�1/2), as �1/2 is symmetric) Pk(�

−1/2 ⊗
Ik)J f (�−1/2 ⊗ Ik)P′

k , with

J f :=
∫

Rk

vec
(
zϕ′

f (z) − Ik

)(
vec

(
zϕ′

f (z) − Ik

))′
f (z)dz,

moreover is finite and invertible.

Assumption (B2). (i) The mapping z �→ �(z, δ) is differentiable, and has gradient 0 at δ = 0.
(ii) The mapping δ �→ �(z, δ) is differentiable at δ = 0 for all z ∈ R

k , with gradient (at δ =
0) gradδ �(z, δ)|δ=0 =: ψ(z) such that ψ admits a primitive � , that is, a real-valued function
z �→ �(z) such that gradz�(z) = ψ(z).

Assumption (B2+). Same as (B2), but the k × k matrix∫
Rk

ψ(z)ψ ′(z)f (z)dz

moreover is finite and invertible.

These assumptions admit the same interpretation as in the univariate case, and basically ensure
the existence of a finite Fisher information matrix. The standardization issue also calls for the
same comments as in Section 2.1. The interpretation of the scatter matrix � is related to the
choice of a standardization constraint on f . If we impose that Z with p.d.f. f has unit covariance
matrix, then � = ∫

Rk (x − μ)(x − μ)′f �
μ,�,0(x)dx. However, concepts of scatter that make sense

irrespective of the underlying density also can be used in this multivariate setup, such as the
celebrated Tyler matrix VTyler (Tyler [22]), defined as the unique symmetric positive definite
matrix V with tr V = k satisfying

E
[
(X − μ)(X − μ)′/

(
(X − μ)′V−1(X − μ)

)] = k−1V.

Note however that the Tyler matrix VTyler in fact is a shape matrix, not a scatter matrix: the cor-
responding scatter is � = σVTyler, with σ = k−1 tr(�). As in the univariate case, the scatter �,
for the kernel f , safely and without any loss of generality, can be fixed to identity for identifica-
tion purposes, implying that, for f , σ takes value 1, while VTyler is an identity matrix. As in the
univariate case, this choice has no impact on the final results.

Here also, we could relax classical differentiability conditions by considering weaker differen-
tiability and generalized Fisher information concepts, at the expense, however, of non-negligible
technical complications.

Under Assumptions (B1) and (B2), the score vector �f ;ϑ , at ϑ0 := (μ′,vech(�1/2)′,0′)′, takes
the form

�f ;ϑ0(x) := gradϑ logf �
ϑ (x)|ϑ0 =: (�1′

f ;ϑ0
(x) �2′

f ;ϑ0
(x) �3′

f ;ϑ0
(x) )′

=
⎛
⎝

�−1/2ϕf

(
�−1/2(x − μ)

)
Pk(�

−1/2 ⊗ Ik)vec
(
�−1/2(x − μ)ϕ′

f

(
�−1/2(x − μ)

) − Ik

)
2ψ

(
�−1/2(x − μ)

)
⎞
⎠ ,
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where ⊗ stands for the standard Kronecker product. Note that, for k = 1, this score vector coin-
cides with the one we obtained in Section 2.1. Under Assumptions (B1+) and (B2+), the corre-
sponding Fisher information matrix

�f ;ϑ0 := |�|−1/2
∫

Rk

�f ;ϑ0(x)�′
f ;ϑ0

(x)f
(
�−1/2(x − μ)

)
dx

exists and is finite, and naturally partitions into

�f ;ϑ0 =
⎛
⎝

�11
f ;ϑ0

0 �13
f ;ϑ0

0 �22
f ;ϑ0

0

�13′
f ;ϑ0

0 �33
f ;ϑ0

⎞
⎠ ,

with

�11
f ;ϑ0

= �−1/2If �−1/2, �22
f ;ϑ0

= Pk(�
−1/2 ⊗ Ik)J f (�−1/2 ⊗ Ik)P′

k,

�33
f ;ϑ0

= 4
∫

Rk

ψ(z)ψ ′(z)f (z)dz and �13
f ;ϑ0

= 2�−1/2
∫

Rk

ϕf (z)ψ ′(z)f (z)dz.

As in the univariate case, the blocks of zeroes in �f ;ϑ0 readily follow from symmetry argu-
ments and, without loss of generality, we can focus our attention on the submatrix

�0
f ;ϑ0

:=
(

�11
f ;ϑ0

�13
f ;ϑ0

�13′
f ;ϑ0

�33
f ;ϑ0

)
,

the existence of which only requires Assumptions (B1) and (B2+). In the univariate case, the
2 × 2 matrix �0

f ;ϑ0
was either full-rank or singular with rank 1; here, the 2k × 2k matrix �0

f ;ϑ0

can be singular with any rank ranging from k to 2k − 1 (note that the lower bound k is a direct
consequence of either Assumption (B1) or (B2+)).

The following proposition fully characterizes, for each possible rank 2k − m, m ∈ {1, . . . , k},
the relation between the kernel f and the skewing function � causing such degeneracy (for
simplicity, we restrict to a characterization of the singularity of �0

f ;ϑ0
).

Proposition 3.1. Let the symmetric kernel f and the skewing function � satisfy Assump-
tions (B1) and (B2+). The following statements are equivalent:

(i) the 2k × 2k matrix �0
f ;ϑ0

is singular with rank 2k − m, 1 ≤ m ≤ k, for any ϑ0;
(ii) denoting by Z a random k-vector with p.d.f. f , there exists a k × k orthogonal matrix

O′ = (O′
1,O′

2), where O′
1 and O′

2 are k × m- and k × (k − m)-dimensional, respectively,
such that, letting Y := OZ and y := Oz, for Lebesgue-almost all O2z = (ym+1, . . . , yk)

′ ∈
R

k−m, the density of O1Z = (Y1, . . . , Ym)′ conditional on O2Z = (Ym+1, . . . , Yk)
′ =

(ym+1, . . . , yk)
′ belongs to the exponential family{

(y1, . . . , ym) �→ ga(y1, . . . , ym) := C−1 exp(−a�(O′y))

∣∣∣
(3.1)

a such that C = C(ym+1, . . . , yk) :=
∫

Rm

exp(−a�(O′y))dy1 · · · dym < ∞
}
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with parameter a and minimal sufficient statistic �(O′(Y1, . . . , Ym, ym+1, . . . , yk)
′).

Note that the natural parameter space

A = A(ym+1, . . . , yk) :=
{
a ∈ R such that

∫
Rm

exp(−a�(O′y))dy1 · · · dym < ∞
}

of the exponential family (3.1) in principle also depends on (ym+1, . . . , yk). Natural parameters in
exponential families being well identified, the values a�(ym+1, . . . , yk) of the natural parameter
a achieving, whenever condition (ii) of Proposition 3.1 holds, the matchings f = ga , are uniquely
defined for Lebesgue-almost all (k − m)-tuple (ym+1, . . . , yk), yielding exponential densities
ga�(ym+1,...,yk).

Proposition 3.1 has the following straightforward corollary.

Corollary 3.1. (i) Let f be a symmetric kernel satisfying Assumption (B1): there exists a skewing
function �f such that the rank of �0

f ;ϑ0
reaches its minimal value k for any ϑ0.

(ii) Let � be a skewing function satisfying Assumption (B2) with � such that, for some a�,

(iia) z �→ ga�(z) := C−1 exp(−a��(z)) is a p.d.f. with identity scatter matrix, and
(iib)

∫
Rk ψ(z)ψ ′(z)f (z)dz is finite and invertible (meaning that (B2+) is satisfied).

Then, there exists a symmetric kernel f� such that the rank of �0
f�;ϑ0

reaches its minimal value
k for any ϑ0.

Proof of Proposition 3.1. Clearly, �0
f ;ϑ0

has rank 2k − m, 1 ≤ m ≤ k, if and only if m is the
largest integer such that there exist (k × m) matrices V and W with (V′,−W′) of rank m such
that

V′ϕf = W′ψ Lebesgue-a.e. (3.2)

(note that the matrix �−1/2 is incorporated in V, and hence plays no role in the characterization
(3.2)). Both V and W are of maximal rank m. Suppose indeed that V is not: then, there exists
0 �= λ ∈ R

m such that Vλ = 0, so that λ′W′ψ = λ′V′ϕf = 0 (Lebesgue-a.e.). Then, in view of
Assumption (B2), Wλ = 0 as well, hence λ′(V′,−W′) = 0, which contradicts the assumption
that (V′,−W′) has rank m. The same reasoning holds for W. It follows that V, without loss of
generality, can be assumed to be orthonormal, and therefore can be extended into an orthogonal
matrix O′ := (V,v), v being the k × (k − m) orthogonal complement to V. The necessary and
sufficient condition (3.2) then takes the form

[Oϕf ]1...m = W′ψ Lebesgue-a.e. (3.3)

where [Oϕf ]1...m stands for Oϕf ’s m first rows.
Define Y := OZ. Since Z has density f , Y has density y �→ f Y(y) = f (O′y). This density

f Y has gradient ḟ Y and score ϕf Y , with

ϕf Y(y) := −ḟ Y(y)/f Y(y) = −Oḟ (O′y)/f (O′y) = Oϕf (O′y).
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This, combined with (3.3), yields

[ϕf Y(y)]1...m = W′ψ(O′y) Lebesgue-a.e.

or, more explicitly,

⎛
⎝

∂y1 logf Y(y)
...

∂ym logf Y(y)

⎞
⎠ = −W′ψ(O′y) Lebesgue-a.e. (3.4)

As a function of (y1, . . . , ym), the left-hand side in (3.4) has primitive

logf Y(y1, . . . , ym, ym+1, . . . , yk) + c(ym+1, . . . , yk),

where the “integration constant” c is an arbitrary function of (ym+1, . . . , yk). The right-hand side
therefore has the same primitive, still up to an additive c(ym+1, . . . , yk). Now, partitioning O′
into (O′

1,O′
2) where O′

1 and O′
2 are k × m and k × (k − m), respectively, a necessary condition

for

(y1, . . . , ym) �→ W′ψ
(
O′

1(y1, . . . , ym)′ + O′
2(ym+1, . . . , yk)

′)
to be the gradient of a scalar function is W′ = aO1 for some a = a(ym+1, . . . , yk) ∈ R: in view
of Assumption (B2), a primitive of

(y1, . . . , ym) �→ aO1ψ
(
O′

1(y1, . . . , ym)′ + O′
2(ym+1, . . . , yk)

′)
is then a�(O′

1(y1, . . . , ym)′ + O′
2(ym+1, . . . , yk)

′), up to the usual additive constant – here, an
arbitrary function of (ym+1, . . . , yk). The necessary and sufficient condition (3.4) thus takes the
further form

f Y(y) = exp(−c(ym+1, . . . , yk)) exp
(−a�

(
O′

1(y1, . . . , ym)′ + O′
2(ym+1, . . . , yk)

′))
for some a = a(ym+1, . . . , yk) ∈ R; in other words, the conditional density of (Y1, . . . , Ym)′ given
(Ym+1, . . . , Yk)

′ = (ym+1, . . . , yk)
′ is

f (Y1,...,Ym)′|(Ym+1,...,Yk)
′=(ym+1,...,yk)

′
(y1, . . . , ym)

= f Y(y1, . . . , ym, ym+1, . . . , yk)
/∫

Rm

f Y(y1, . . . , ym, ym+1, . . . , yk)dy1 · · · dym (3.5)

= C(ym+1, . . . , yk) exp
(−a�

(
O′

1(y1, . . . , ym)′ + O′
2(ym+1, . . . , yk)

′)),
where C−1(ym+1, . . . , yk) :=∫

Rm exp(−a�(O′
1(y1, . . . , ym)′+O′

2(ym+1, . . . , yk)
′))dy1 · · · dym,

for some a = a(ym+1, . . . , yk) ∈ R.
Summing up, there exists an orthogonal matrix O′ = (O′

1,O′
2) such that, for any (ym+1, . . . ,

yk)
′ ∈ R

k−m, the density of O1Z =: (Y1, . . . , Ym)′ conditional on O2Z = (ym+1, . . . , yk)
′ belongs

to the exponential family with minimal sufficient statistic

�
(
O′

1(Y1, . . . , Ym)′ + O′
2(ym+1, . . . , yk)

′),
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as was to be proved. �

So far, we have formally solved the singularity problem for the 2k × 2k information matrix
�0

f ;ϑ0
. As in the univariate case, the singularity problem for the full k(k + 5)/2 × k(k + 5)/2 in-

formation matrix �f ;ϑ0 is slightly different. Indeed, the existence of �f ;ϑ0 requires the stronger
Assumption (B1+), as the information for scatter, which is not present in �0

f ;ϑ0
, has to exist

as well; this adds a further condition on the exponential family in Proposition 3.1. Nevertheless,
there is no fundamental difference between the two setups: it only could happen that a solution to
the singularity problem of �0

f ;ϑ0
is not a solution of the larger problem because the matrix �f ;ϑ0

simply does not exist, hence cannot be singular. This explains why, for the sake of simplicity, we
state the results of this section in terms of �0

f ;ϑ0
. The message is clear: the tale of two densities

has turned into a more elaborate plot, starring a much larger number of actors.

3.2. Further examples

As in the univariate case, we now analyze three concrete examples of skewing functions in the
light of the findings of the previous section, which provides the theoretical statement in Proposi-
tion 3.1 with some further intuition.

The first example is the natural extension of the univariate skewing function �1 to the multi-
variate context, with �

(k)
1 (z, δ) := �(δ′z), where � : R → [0,1] satisfies exactly the same con-

ditions as in Section 2.2. The resulting class of skewing functions �
(k)
1 is the most common one

in the literature. A skewing function � = � combined with a multinormal kernel f = φk yields
the class of skew-multinormal densities of Azzalini and Dalla Valle [8]. When f is only required
to be spherically symmetric and the skewing function � is a univariate symmetric c.d.f., we
obtain the class of skew-elliptical distributions as defined by Azzalini and Capitanio [6], itself
a subclass of the generalized skew-elliptical distributions of Genton and Loperfido [15] where
� is left unspecified. Finally, relaxing the assumption of spherical symmetry into the weaker
assumption of central symmetry, we retrieve the popular class of multivariate skew-symmetric
distributions analyzed in Ley and Paindaveine [17].

Direct calculation yields ψ
(k)
1 (z) = �̇(0)z, hence, writing z = (z′

1, z′
2)

′ with z1 ∈ R
m and

z2 ∈ R
k−m, m = 1, . . . , k, we obtain minimal sufficient statistics of the form

�
(k)
1 (O′(Z′

1, z′
2)

′) = �̇(0)(Z′
1Z1/2 + z′

2z2/2)

for a k × k orthogonal matrix decomposing into O′ = (O′
1,O′

2). Quite nicely, the possibility of

separating the vectors Z1 and z2 in �
(k)
1 (O′(Z′

1, z′
2)

′) allows us to express the corresponding
exponential densities in terms of z1 only, yielding the m-dimensional Gaussian densities

z1 �→ exp
(−a�̇(0)z′

1z1/2
)(

2π/(a�̇(0))
)−m/2

.

As in the univariate case, the sign of a is the same as that of �̇(0). Degenerate information thus
takes place iff, for some adequate rotation OZ of Z ∼ f , the m-dimensional marginal distribu-
tion of [OZ]1...m is standard m-variate normal. Note that this does not imply k-variate normal
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distributions. Consider, for example, a random k-vector whose first m components are i.i.d. stan-
dard Gaussian, and independent of the remaining k − m ones, themselves i.i.d. with some other
standardized univariate symmetric distribution. In such a case, the conditional distribution of the
m first components given the k − m last ones belongs to the exponential family of distributions
just described. Thus, contrary to the univariate setup, multinormal densities are not the only sym-
metric kernels leading to singular Fisher information when combined with the skewing functions
�

(k)
1 . Multinormal kernels, however, are the only ones for which Fisher information has minimal

rank (corresponding to m = k). All this is in total accordance with earlier findings by Ley and
Paindaveine [17], who examine in detail the singularity issues related to skew-symmetric distri-
butions generated via �

(k)
1 . We therefore refer the reader to that reference for more details about

the skewing functions �
(k)
1 , especially so for the special case of skew-elliptical distributions.

Our second example corresponds to another classical type of skewing functions, namely

�
(k)
2 (z, δ) := �

(
δ′z(ν + k)1/2(z′z + ν)−1/2), (3.6)

where � satisfies the same properties as above, and ν > 0. Clearly, as ν → ∞, the skewing
functions �

(k)
2 tend to skewing functions of the �

(k)
1 type just considered. When � in (3.6)

corresponds to the c.d.f. T1(·, ν + k) of a Student variable with ν + k degrees of freedom, and the
symmetric kernel used is a k-dimensional t variable with ν degrees of freedom, then we obtain
the celebrated multivariate skew-t distributions of Azzalini and Capitanio [7] – up to some minor
details, since their non-standardized skewing functions are of the form

T1
(
δ′ω−1(x − μ)(ν + k)1/2((x − μ)′�−1(x − μ) + ν

)−1/2;ν + k
)
,

with ω = diag(�11, . . . ,�kk)
1/2. Elementary calculation yields

ψ
(k)
2 (z) = �̇(0)z(ν + k)1/2(z′z + ν)−1/2,

hence minimal sufficient statistics and exponential densities of the form

�
(k)
2 = �̇(0)(ν + k)1/2(z′z + ν)1/2

and

exp
(−a�̇(0)(ν + k)1/2(z′z + ν)1/2)

(3.7)/∫
Rm

exp
(−a�̇(0)(ν + k)1/2(z′z + ν)1/2)dz1 · · · dzm,

respectively. Here again, the sign of a is determined by the sign of �̇(0). Azzalini and Genton
[9] conjecture that, as long as ν is finite, multivariate skew-t distributions should be free of
singularity problems. DiCiccio and Monti [13] prove the conjecture in the univariate case, Ley
and Paindaveine [18] in any dimension k. Proposition 3.1 confirms those earlier results, as (3.7),
whatever the value of a, cannot be derived from a k-dimensional t distribution with ν degrees
of freedom. Actually, letting X = (X′

1,X′
2)

′ follow a k-variate t distribution where X1 and X2,
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respectively, are m- and (k − m)-dimensional random vectors, it can be shown that the density
of X1|X2 = x2 cannot be of the form (3.7).

We conclude this section with a possible extension of the singularity-free univariate skewing
function �3 of Section 2.2. Consider �

(k)
3 (z, δ) := �(δ′ Sin(z)), with � defined as above and

Sin(z) := (sin(z1), . . . , sin(zk))
′. Checking the validity of Assumption (B2+) is immediate, and

one also directly obtains that ψ
(k)
3 (z) = �̇(0)Sin(z) and �

(k)
3 = −�̇(0)(cos(z1)+· · ·+cos(zk)).

The same reasoning as for �3 readily yields that the natural parameter space related to the ex-
ponential family with minimal sufficient statistic �

(k)
3 is empty, hence skewing functions of the

type �
(k)
3 can be used without worrying about possibly singular Fisher information.

4. Final comments

In this paper, we fully dispel the widespread opinion that Gaussian densities, in the context
of skew-symmetric distributions, constitute an intriguing worst-case situation, being the only
ones (possibly, after restriction to linear subspaces) leading to degenerate Fisher information
matrices in the vicinity of symmetry. Our main result provides a complete characterization of
that information degeneracy phenomenon, which generalizes and extends all previous results of
that type, and highlights the link between the symmetric kernel and the skewing function causing
singularity. We also show how that link, in the univariate as well as in the multivariate case,
can be described as a mismatch between two densities, in which the Gaussian distribution plays
no particular role. By avoiding such mismatch, one can deal with skew-symmetric distributions
without worrying about singular Fisher information and its consequences.
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