research

A new structure for difference matrices over abelian pp-groups

Abstract

A difference matrix over a group is a discrete structure that is intimately related to many other combinatorial designs, including mutually orthogonal Latin squares, orthogonal arrays, and transversal designs. Interest in constructing difference matrices over 22-groups has been renewed by the recent discovery that these matrices can be used to construct large linking systems of difference sets, which in turn provide examples of systems of linked symmetric designs and association schemes. We survey the main constructive and nonexistence results for difference matrices, beginning with a classical construction based on the properties of a finite field. We then introduce the concept of a contracted difference matrix, which generates a much larger difference matrix. We show that several of the main constructive results for difference matrices over abelian pp-groups can be substantially simplified and extended using contracted difference matrices. In particular, we obtain new linking systems of difference sets of size 77 in infinite families of abelian 22-groups, whereas previously the largest known size was 33.Comment: 27 pages. Discussion of new reference [LT04

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 10/08/2021