745 research outputs found

    VNF Placement and Resource Allocation for the Support of Vertical Services in 5G Networks

    Get PDF
    One of the main goals of 5G networks is to support the technological and business needs of various industries (the so-called verticals), which wish to offer to their customers a wide range of services characterized by diverse performance requirements. In this context, a critical challenge lies in mapping in an automated manner the requirements of verticals into decisions concerning the network infrastructure, including VNF placement, resource assignment, and traffic routing. In this paper, we seek to make such decisions jointly, accounting for their mutual interaction, efficiently. To this end, we formulate a queuing-based model and use it at the network orchestrator to optimally match the vertical's requirements to the available system resources. We then propose a fast and efficient solution strategy, called MaxZ, which allows us to reduce the solution complexity. Our performance evaluation, carried out an accounting for multiple scenarios representing the real-world services, shows that MaxZ performs substantially better than the state-of-the-art alternatives and consistently close to the optimum.This work was supported by the European Commission under the H2020 projects 5G-TRANSFORMER (Project ID 761536) and 5G-EVE (Project ID 815074

    Dynamic service chain composition in virtualised environment

    Get PDF
    Network Function Virtualisation (NFV) has contributed to improving the flexibility of network service provisioning and reducing the time to market of new services. NFV leverages the virtualisation technology to decouple the software implementation of network appliances from the physical devices on which they run. However, with the emergence of this paradigm, providing data centre applications with an adequate network performance becomes challenging. For instance, virtualised environments cause network congestion, decrease the throughput and hurt the end user experience. Moreover, applications usually communicate through multiple sequences of virtual network functions (VNFs), aka service chains, for policy enforcement and performance and security enhancement, which increases the management complexity at to the network level. To address this problematic situation, existing studies have proposed high-level approaches of VNFs chaining and placement that improve service chain performance. They consider the VNFs as homogenous entities regardless of their specific characteristics. They have overlooked their distinct behaviour toward the traffic load and how their underpinning implementation can intervene in defining resource usage. Our research aims at filling this gap by finding out particular patterns on production and widely used VNFs. And proposing a categorisation that helps in reducing network latency at the chains. Based on experimental evaluation, we have classified firewalls, NAT, IDS/IPS, Flow monitors into I/O- and CPU-bound functions. The former category is mainly sensitive to the throughput, in packets per second, while the performance of the latter is primarily affected by the network bandwidth, in bits per second. By doing so, we correlate the VNF category with the traversing traffic characteristics and this will dictate how the service chains would be composed. We propose a heuristic called Natif, for a VNF-Aware VNF insTantIation and traFfic distribution scheme, to reconcile the discrepancy in VNF requirements based on the category they belong to and to eventually reduce network latency. We have deployed Natif in an OpenStack-based environment and have compared it to a network-aware VNF composition approach. Our results show a decrease in latency by around 188% on average without sacrificing the throughput

    Knowledge-defined networking : a machine learning based approach for network and traffic modeling

    Get PDF
    The research community has considered in the past the application of Machine Learning (ML) techniques to control and operate networks. A notable example is the Knowledge Plane proposed by D.Clark et al. However, such techniques have not been extensively prototyped or deployed in the field yet. In this thesis, we explore the reasons for the lack of adoption and posit that the rise of two recent paradigms: Software-Defined Networking (SDN) and Network Analytics (NA), will facilitate the adoption of ML techniques in the context of network operation and control. We describe a new paradigm that accommodates and exploits SDN, NA and ML, and provide use-cases that illustrate its applicability and benefits. We also present some relevant use-cases, in which ML tools can be useful. We refer to this new paradigm as Knowledge-Defined Networking (KDN). In this context, ML can be used as a network modeling technique to build models that estimate the network performance. Network modeling is a central technique to many networking functions, for instance in the field of optimization. One of the objective of this thesis is to provide an answer to the following question: Can neural networks accurately model the performance of a computer network as a function of the input traffic?. In this thesis, we focus mainly on modeling the average delay, but also on estimating the jitter and the packets lost. For this, we assume the network as a black-box that has as input a traffic matrix and as output the desired performance matrix. Then we train different regressors, including deep neural networks, and evaluate its accuracy under different fundamental network characteristics: topology, size, traffic intensity and routing. Moreover, we also study the impact of having multiple traffic flows between each pair of nodes. We also explore the use of ML techniques in other network related fields. One relevant application is traffic forecasting. Accurate forecasting enables scaling up or down the resources to efficiently accommodate the load of traffic. Such models are typically based on traditional time series ARMA or ARIMA models. We propose a new methodology that results from the combination of an ARIMA model with an ANN. The Neural Network greatly improves the ARIMA estimation by modeling complex and nonlinear dependencies, particularly for outliers. In order to train the Neural Network and to improve the outliers estimation, we use external information: weather, events, holidays, etc. The main hypothesis is that network traffic depends on the behavior of the end-users, which in turn depend on external factors. We evaluate the accuracy of our methodology using real-world data from an egress Internet link of a campus network. The analysis shows that the model works remarkably well, outperforming standard ARIMA models. Another relevant application is in the Network Function Virtualization (NFV). The NFV paradigm makes networks more flexible by using Virtual Network Functions (VNF) instead of dedicated hardware. The main advantage is the flexibility offered by these virtual elements. However, the use of virtual nodes increases the difficulty of modeling such networks. This problem may be addressed by the use of ML techniques, to model or to control such networks. As a first step, we focus on the modeling of the performance of single VNFs as a function of the input traffic. In this thesis, we demonstrate that the CPU consumption of a VNF can be estimated only as a function of the input traffic characteristics.L'aplicació de tècniques d'aprenentatge automàtic (ML) pel control i operació de xarxes informàtiques ja s'ha plantejat anteriorment per la comunitat científica. Un exemple important és "Knowledge Plane", proposat per D. Clark et al. Tot i això, aquestes propostes no s'han utilitzat ni implementat mai en aquest camp. En aquesta tesi, explorem els motius que han fet impossible l'adopció fins al present, i que ara en permeten la implementació. El principal motiu és l'adopció de dos nous paradigmes: Software-Defined Networking (SDN) i Network Analytics (NA), que permeten la utilització de tècniques d'aprenentatge automàtic en el context de control i operació de xarxes informàtiques. En aquesta tesi, es descriu aquest paradigma, que aprofita les possibilitats ofertes per SDN, per NA i per ML, i s'expliquen aplicacions en el món de la informàtica i les comunicacions on l'aplicació d'aquestes tècniques poden ser molt beneficioses. Hem anomenat a aquest paradigma Knowledge-Defined Networking (KDN). En aquest context, una de les aplicacions de ML és el modelatge de xarxes informàtiques per estimar-ne el comportament. El modelatge de xarxes és un camp de recerca important el aquest camp, i que permet, per exemple, optimitzar-ne el seu rendiment. Un dels objectius de la tesi és respondre la següent pregunta: Pot una xarxa neuronal modelar de manera acurada el comportament d'una xarxa informàtica en funció del tràfic d'entrada? Aquesta tesi es centra principalment en el modelatge del retard mig (temps entre que s'envia i es rep un paquet). També s'estudia com varia aquest retard (jitter) i el nombre de paquets perduts. Per fer-ho, s'assumeix que la xarxa és totalment desconeguda i que només es coneix la matriu de tràfic d'entrada i la matriu de rendiment com a sortida. Es fan servir diferents tècniques de ML, com ara regressors lineals i xarxes neuronals, i se n'avalua la precisió per diferents xarxes i diferents configuracions de xarxa i tràfic. Finalment, també s'estudia l'impacte de tenir múltiples fluxos entre els parells de nodes. En la tesi, també s'explora l'ús de tècniques d¿aprenentatge automàtic en altres camps relacionats amb les xarxes informàtiques. Un cas rellevant és la predicció de tràfic. Una bona estimació del tràfic permet preveure la utilització dels diversos elements de la xarxa i optimitzar-ne el seu rendiment. Les tècniques tradicionals de predicció de tràfic es basen en tècniques de sèries temporals, com ara models ARMA o ARIMA. En aquesta tesis es proposa una nova metodologia que combina un model ARIMA amb una xarxa neuronal. La xarxa neuronal millora la predicció dels valors atípics, que tenen comportament complexos i no lineals. Per fer-ho, s'incorpora a l'anàlisi l'ús d'informació externa, com ara: informació meteorològica, esdeveniments, vacances, etc. La hipòtesi principal és que el tràfic de xarxes informàtiques depèn del comportament dels usuaris finals, que a la vegada depèn de factors externs. Per això, s'avalua la precisió de la metodologia presentada fent servir dades reals d'un enllaç de sortida de la xarxa d'un campus. S'observa que el model presentat funciona bé, superant la precisió de models ARIMA estàndards. Una altra aplicació important és en el camp de Network Function Virtualization (NFV). El paradigma de NFV fa les xarxes més flexibles gràcies a l'ús de Virtual Network Functions (VNF) en lloc de dispositius específics. L'avantatge principal és la flexibilitat que ofereixen aquests elements virtuals. Per contra, l'ús de nodes virtuals augmenta la dificultat de modelar aquestes xarxes. Aquest problema es pot estudiar també mitjançant tècniques d'aprenentatge automàtic, tant per modelar com per controlar la xarxa. Com a primer pas, aquesta tesi es centra en el modelatge del comportament de VNFs treballant soles en funció del tràfic que processen. Concretament, es demostra que el consum de CPU d'una VNF es pot estimar a partir a partir de diverses característiques del tràfic d'entrada.Postprint (published version

    Conceptual Design and Implementation of a Cloud Computing Platform Paradigm

    Get PDF
    In recent times, organizations all over the world have stopped expanding infrastructures and building competencies in IT for enhanced efficiencies. Rather, they focus on their primary lines of businesses and “simply” connect to an existing IT cloud in the neighborhood or on the internet for their IT demands. Cloud computing is a new paradigm of large-scale distributed computing that centralizes the data and computation on the virtual “super computer” with unprecedented storage and computing capabilities. This paper focuses on the design of a conceptual framework and implementation of a cloud computing platform. This study attempts to design a platform on which users can plug-in anytime from anywhere and utilize enormous computing resources at a relatively low cost. Alongside the design, the mathematical model structures that support the design of the framework are explicitly described. The study is of paramount importance because the new framework provides opportunity to avoid network congestions that degrade performance among other shortcomings being experienced in some implementation cases. Keywords: Cloud Computing, Framework, Platform, Paradig

    Multiprotocol Authentication Device for HPC and Cloud Environments Based on Elliptic Curve Cryptography

    Get PDF
    Multifactor authentication is a relevant tool in securing IT infrastructures combining two or more credentials. We can find smartcards and hardware tokens to leverage the authentication process, but they have some limitations. Users connect these devices in the client node to log in or request access to services. Alternatively, if an application wants to use these resources, the code has to be amended with bespoke solutions to provide access. Thanks to advances in system-on-chip devices, we can integrate cryptographically robust, low-cost solutions. In this work, we present an autonomous device that allows multifactor authentication in client–server systems in a transparent way, which facilitates its integration in High-Performance Computing (HPC) and cloud systems, through a generic gateway. The proposed electronic token (eToken), based on the system-on-chip ESP32, provides an extra layer of security based on elliptic curve cryptography. Secure communications between elements use Message Queuing Telemetry Transport (MQTT) to facilitate their interconnection. We have evaluated different types of possible attacks and the impact on communications. The proposed system offers an efficient solution to increase security in access to services and systems.Spanish Ministry of Science, Innovation and Universities (MICINN) PGC2018-096663-B-C44European Union (EU

    Optimality of a Network Monitoring Agent and Validation in a Real Probe

    Get PDF
    The evolution of commodity hardware makes it possible to use this type of equipment to implement traffic monitoring systems. A preliminary empirical evaluation of a network traffic probe based on Linux indicates that the system performance has significant losses as the network rate increases. To assess this issue, we consider a model with two tandem queues and a moving server. In this system, we formulate a three-dimensional Markov Decision Process in continuous time. The goal of the proposed model is to determine the position of the server in each time slot so as to optimize the system performance which is measured in terms of throughput. We first formulate an equivalent discrete-time Markov Decision Process and we propose a numerical method to characterize the solution of our problem in a general setting. The solution we obtain in this problem has been tested for a wide range of scenarios and, in all the instances, we observe that the optimality is close to a threshold type policy. We also consider a real probe and we validate the good performance of threshold policies in real applications.This research was partially supported by the Department of Education of the Basque Government, Spain through the Consolidated Research Groups NQaS (IT1635-22) and MATHMODE (IT1456-22), by the Marie Sklodowska-Curie, Spain grant agreement No 777778, by the Spanish Ministry of Science and Innovation, Spain with reference PID2019-108111RB-I00 (FEDER/AEI), by grant PID2020-117876RB-I00 funded by MCIN/AEI (10.13039/501100011033) and by Grant KK-2021/00026 funded by the Basque Government

    Smart Intrusion Detection System for DMZ

    Get PDF
    Prediction of network attacks and machine understandable security vulnerabilities are complex tasks for current available Intrusion Detection System [IDS]. IDS software is important for an enterprise network. It logs security information occurred in the network. In addition, IDSs are useful in recognizing malicious hack attempts, and protecting it without the need for change to client‟s software. Several researches in the field of machine learning have been applied to make these IDSs better a d smarter. In our work, we propose approach for making IDSs more analytical, using semantic technology. We made a useful semantic connection between IDSs and National Vulnerability Databases [NVDs], to make the system semantically analyzed each attack logged, so it can perform prediction about incoming attacks or services that might be in danger. We built our ontology skeleton based on standard network security. Furthermore, we added useful classes and relations that are specific for DMZ network services. In addition, we made an option to mallow the user to update the ontology skeleton automatically according to the network needs. Our work is evaluated and validated using four different methods: we presented a prototype that works over the web. Also, we applied KDDCup99 dataset to the prototype. Furthermore,we modeled our system using queuing model, and simulated it using Anylogic simulator. Validating the system using KDDCup99 benchmark shows good results law false positive attacks prediction. Modeling the system in a queuing model allows us to predict the behavior of the system in a multi-users system for heavy network traffic
    corecore