
Deanship of Graduate Studies

Al-Quds University

Smart Intrusion Detection System for DMZ

 “Mohamed Rami” Zuher Hassan Isifan

M.Sc. Thesis

Jerusalem – Palestine

7341 / 2016

Smart Intrusion Detection System for DMZ

Prepared by:

“Mohamed Rami” Zuher Hassan Isifan

 B.Sc. Degree in Computer Science from An-Najah national

university Palestine

Supervisor: Dr. Jad Najjar

Co. Supervisor: Dr. Rashid Jayosi

A thesis Submitted in Partial fulfillment of requirements for

the degree of Master of Computer Science/Al-Quds University

1437 / 2016

Dedication:

I dedicate this to my mother; for supporting me throughout my life.

 “Mohamed Rami” Zuher Hassan Isifan.

 i

 ii

Acknowledgements

I would like to express my sincere gratitude to those who gave me the assistance and support

during my master study especially my mother.

I would like to thank professors, Dr. Badie Saratwi and Dr. Ahmad Alsadeh, who served on

my thesis committee. Their comments and suggestions were invaluable. My deepest gratitude

and appreciation goes to my supervisors Dr. Jad Najjar and Dr. Rashid Jayosi for their

continuous supports and advices at all stages of my work.

Another word of special thanks goes to Al-Quds University, especially for all those in the

Faculty of Graduate Studies / Computer Science department.

 iii

Abstract

Prediction of network attacks and machine understandable security vulnerabilities are complex

tasks for current available Intrusion Detection System [IDS]. IDS software is important for an

enterprise network. It logs security information occurred in the network. In addition, IDSs are

useful in recognizing malicious hack attempts, and protecting it without the need for change to

client‟s software. Several researches in the field of machine learning have been applied to

make these IDSs better and smarter.

In our work, we propose approach for making IDSs more analytical, using semantic

technology. We made a useful semantic connection between IDSs and National Vulnerability

Databases [NVDs], to make the system semantically analyzed each attack logged, so it can

perform prediction about incoming attacks or services that might be in danger. We built our

ontology skeleton based on standard network security. Furthermore, we added useful classes

and relations that are specific for DMZ network services. In addition, we made an option to

allow the user to update the ontology skeleton automatically according to the network needs.

Our work is evaluated and validated using four different methods: we presented a prototype

that works over the web. Also, we applied KDDCup99 dataset to the prototype. Furthermore,

we modeled our system using queuing model, and simulated it using Anylogic simulator.

Validating the system using KDDCup99 benchmark shows good results law false positive

attacks prediction. Modeling the system in a queuing model allows us to predict the behavior

of the system in a multi-users system for heavy network traffic.

 iv

Table of Contents

No. Content Page No.

Declaration .. Error! Bookmark not defined.

Acknowledgements ... ii

Abstract .. iii

List of Tables .. viii

List of Figures .. ix

List of Appendices .. x

Abbreviations ... xi

Chapter 1: Introduction ... 1

1.1 Introduction .. 2

1.2 Problem Statement .. 3

1.3 Research Questions .. 3

1.4 Research Motivation ... 4

1.4.1. The Need for Analytical Intrusion Detection System .. 4

1.4.2. Challenges of Analytical IDS ... 4

1.4.3. Limitations of Existing Work ... 5

1.5 Research Objectives ... 5

1.6 Research Methodology ... 6

1.7 Organization of the Thesis .. 7

Chapter 2: Background and Related Work ... 9

2.1 Background ... 9

2.1.1. Information Security ... 9

2.1.1.1. Basic Security Concepts .. 10

 v

2.1.1.2. Basic Information Security Attack Vectors ... 11

2.1.1.3. Security Tools .. 12

2.1.1.3.1. Offensive Tools .. 12

2.1.1.3.2. Defensive Tools .. 14

2.1.1.4. National Vulnerability Database ... 15

2.1.2. Semantic Web ... 17

2.1.2.1. Ontology .. 18

2.1.2.1.1. Ontology Components .. 18

2.1.2.2. SPARQL .. 21

2.1.2.3. Inference Engine [Reasoner] ... 21

2.1.2.4. Jena Framework ... 21

2.1.2.5. EasyRdf Library .. 21

2.1.3. Google Visualization .. 22

2.1.4. Queuing Model ... 22

2.2 Related Work .. 24

2.2.1. Related Works for IDS ... 24

2.2.2. Related Works for Applying Semantic Web to Information Security 25

2.2.3. Related Work for Performance ... 27

2.2.4. Related work for information security.. 27

2.2.5. Summary ... 29

Chapter 3: Architecture ... 35

3.1 Introduction .. 35

3.2 System Components ... 36

3.2.1. Database Preparer ... 38

3.2.2. System Updater .. 38

3.2.3. Structure Updater .. 38

3.2.4. Categorizer.. 39

3.2.5. Determiner .. 39

 vi

3.2.6. Visualizer .. 40

3.3 Workflow process ... 40

3.3.1. System Initialization ... 40

3.4 Algorithm ... 43

3.4.1. Prepare the Inference Engine .. 45

3.4.1.1. Building the Ontology Skeleton. ... 45

3.4.1.2. Update the Database Signature of NVD .. 52

3.4.1.2.1. Detailed Algorithm ... 55

3.4.1.3. Update the System Structure ... 56

3.4.1.4. Input Data from Network Traffic and Extract CVE‟s ... 60

3.4.1.5. Reading CVE‟s and preparing the Data .. 62

3.4.1.5.1. Methods that Concerned About the Services ... 63

3.4.1.5.2. Methods that Concerned About the Related Attacks ... 65

3.4.1.5.3. Methods that Connected Directly to the Visualizer ... 66

3.4.1.6. Querying and Inference Necessary Information from OKB 66

3.4.1.6.1. Classes Related to Services .. 67

3.4.1.6.2. Classes Related to Attacks .. 68

3.4.1.7. Prepare Data to be Displayed and Visualized ... 68

3.4.1.7.1. Pie Chart Method .. 69

3.4.1.7.2. Annotation Chart Method ... 69

3.4.1.7.3. Word Trees Chart Method .. 69

3.4.1.7.4. Column Chart Method .. 69

3.4.1.7.5. Organization Chart Method .. 70

3.5 Summary ... 70

Chapter 4: System Validation ... 71

4.1 KDDCup99 Experimental Data .. 71

4.1.1. Measuring the Accuracy of attack prediction ... 72

4.1.1.1. Predictions based on two parameters .. 72

 vii

4.1.1.2. Predictions based on three parameters .. 73

4.1.1.3. Predictions based on four parameters .. 73

4.1.1.4. Comparing the results with other systems ... 74

4.2 Queuing Model ... 75

4.3 Simulating the System using Anylogic .. 79

4.4 System User Interface ... 82

4.4.1. Annotation Bar Page ... 82

4.4.2. Service Display Page .. 84

4.4.3. Dashboard Page .. 86

4.4.4. System Updates / Upgrade page ... 88

4.5 Summary ... 90

Chapter 5: Summary and Future Work .. 91

5.1 Contribution .. 91

5.1.1. Extracting Useful Information from Snort NIDS and NVD....................................... 92

5.1.2. Automatic Ontology Updates ... 92

5.2 Results .. 93

5.2.1. Measures using KDD Benchmark .. 93

5.2.2. Queuing Model ... 93

5.3 Limitations and Assumptions ... 94

5.4 Future Work .. 94

References.. 96

 714 ... ملخص

 viii

List of Tables

Table No. Table Header Page No.

 2.1-A Summary of papers (1-2) .. 29

 2.1-B Summary of papers (3-5) .. 30

 2.1-C Summary of papers (6-7) .. 31

 2.1-D Summary of papers (8-10) .. 32

 2.1-E Summary of papers (11-13) .. 33

 4.1 Two parameters metric for accuracy prediction 72

 4.2 Three parameters metric for accuracy prediction 73

 4.3 Four parameters metric for accuracy prediction. 74

 4.4 System comparisons. .. 74

 4.5 Time Required to process different sizes of requests at same time. 76

 ix

List of Figures

Figure No. Figure Header Page No.

2.1 IC3 cyber-criminal report . .. 10

2.2 Sample NVD data feed ... 17

2.3 Sample RDF triple in XML/RDF format. .. 20

2.4 Sample of Google charts[Google]. ... 22

2.5 Jackson closed network for multiprocessors server with caches [marl]. 23

3.1 Placement of smart analysis engine. ... 36

3.2 System architecture. ... 37

3.3 Information flow chart in the proposed system. .. 42

3.4 Ontology skeleton. .. 46

3.5 Adding XML entries into built ontology. ... 54

3.6 Mechanism in structure update. .. 58

3.7 Input Data from Network Traffic and Extract CVE‟s. 62

4.1 System queue model. .. 77

4.2 Simulating the system using Anylogic. .. 81

4.3 Annotation bar page.. 83

4.4 Service display page. .. 85

 4 .5 Dashboard page. ... 87

4.6 System updates / upgrades process. .. 89

file:///C:/Users/mohamed/Desktop/Thesis.docx%23_Toc443462085
file:///C:/Users/mohamed/Desktop/Thesis.docx%23_Toc443462086
file:///C:/Users/mohamed/Desktop/Thesis.docx%23_Toc443462087
file:///C:/Users/mohamed/Desktop/Thesis.docx%23_Toc443462088
file:///C:/Users/mohamed/Desktop/Thesis.docx%23_Toc443462089
file:///C:/Users/mohamed/Desktop/Thesis.docx%23_Toc443462092
file:///C:/Users/mohamed/Desktop/Thesis.docx%23_Toc443462095
file:///C:/Users/mohamed/Desktop/Thesis.docx%23_Toc443462096

 x

List of Appendices

Appendex No. Appendex Header Page No.

 1 Snort………..…………….…..……...…………….101

 2 Protégé….…………….....………….…….………..102

 xi

Abbreviations

AFRL

Air Force Research Laboratory

AI Artificial Intelligent

BJA Bureau of Justices Assistance

CPE Common Platform Enumeration

CVE Common Vulnerabilities and Exposures

CVSS Common Vulnerability Scoring System

DARPA Defense Advanced Research Projects Agency

DMZ Demilitarized Zone

FBI Federal Bureau of Investigation

GA Genetic Algorithm

GUI Graphical User Interface

HIDS Host Intrusion Detection System

IC3 Internet Crime Complaint Center

IDS Intrusion Detection System

IPS Intrusion Prevention System

ISP Internet Service Provider

IT Information Technology

NIDS Network Intrusion Detection System

NVD National Vulnerability Database

NW3C National White Collar Crime Center

OKB Ontology Knowledge Base

OWL Web Ontology Language

 xii

PHP

Personal Home Page

RDF Resource Description Framework

SCAP Security Content Automation Protocol

URI Uniform Resource Identifier

XML Extensible Markup Language

 1

Chapter 1

Introduction

This chapter introduces the thesis. It describes the problem statement, research questions,

motivations, goals and objectives, background, and organization of the thesis.

1.1 Introduction

With increasing needs for online services in the world, and the sensitivity of information

transferred between peoples and organizations using the internet, the need for information

security has become one of the most important issues for every person and organization. Many

varieties of software and hardware‟s are used for the purpose of protecting the transferred

information, such as firewalls, logging systems, Intrusion Prevention Systems [IPS], Intrusion

Detection Systems [IDS], anti-virus programs, and others (Panda & Patra, 2007). Each one of

these tools differs in its functionality and methods of protecting the network. The research we

undertook concerns IDSs.

IDSs technologies are used for monitoring and logging attacks which occur in a single host or

network. Due to the complexity of attacks occurred, such as SSH brute force attacks, web

applications attacks, and other systems services attacks. Current IDSs suffers from the

following issues:

● Signature based IDS, cannot predict new attacks.

● Signature based IDS, cannot manage and connect huge amount of data logged.

● Anomaly based IDS, requires a data to be trained to predict attacks.

 2

● Anomaly based IDS, produces large false positive rate in detection.

For this, the need for analytical IDS is required. Which should combine the advantages of

both signature and anomaly based IDSs, and minimize the disadvantages of both.

1.2 Problem Statement

Currently, security systems such as intrusion detection systems manage engines [for log

management] do not provide rich analytics on security threats and vulnerabilities for system

administrators (Kotikela, Kavi , Gomathisankaran, & Singhal, 2013) (D. Kshirsagar & Kumar,

2013). For enterprise environments, such as ISPs, schools, and universities the Demilitarized

Zone [DMZ] contains several critical servers that are always targeted. The current tools, for

instance, do not predict attacks that may be launched against DMZ and cause the servers to be

compromised. Therefore, there is a high need for more security analytics and monitoring

software. In other words, the security analytics system should do the following:

● Predict related attacks that may hit the IT systems.

● Predict systems in the DMZ that may be compromised.

● Show the level of risk each attack may cause.

Numbers of attacks that may be launched to compromise a system are huge, due to the

increasing number of automated hacking tools: such as METASPLOIT, CANVAS, CORE

IMPACT, and others (nmap CO., 2016). These hacking tools depend on the services opened to

lunch their remote attacks. In addition, each tool contains a huge database that automates

different types of attacks against single system service (Bairwa, Mewara, & Gajrani, 2014). A

normal IDS [signature based or anomaly based] that exists in the network cant neither predict

what attacks may be automated to a single service, nor draw a relation between existing

 3

systems in the network, to perform a prediction on other systems or services that may be in

danger. In other words, these IDSs only log the attacks that occurred [signature based], or

from the behavior of the network traffic, to predict if a packet is an attack or not [anomaly

based]. So there are no smart IDS that are able to log security information from network

traffic, and do a prediction on the logged traffic. From there the idea of semantic analysis

features for IDS is created.

1.3 Research Questions

The following questions should be answered by our proposed system:

● What are the attacks that may hit the network systems and make them vulnerable?

● What are the classifications of attacks that targeted network systems?

● What are the network systems that may be targeted in the future?

● How the system will display statistics and security information to the administrator?

● How the system will adapt to continuous changes in the network infrastructure?

 4

1.4 Research Motivation

1.4.1. The Need for Analytical Intrusion Detection System

Analyzing log files is very important to detect and correct errors in systems, especially

security errors. Many software systems, firewalls and Intrusion Prevention Systems [IPS] or

Intrusion Detection Systems [IDS], show only information about current attacks, attacks on a

specific date or signature or predict behavior of an attack. According to our knowledge, there

is no software that does semantic analytics and prediction on security threats and

vulnerabilities. So resolving these obstacles in smart IDS should produce the following

benefits:

 Adding analytical features to the IDS.

● Reducing the possibility of false alarms, since the predictions are based on attributes.

● Providing a better understanding of the data stored.

● Providing a dynamic system that can be adapted according to the needs of the user

environment, by allowing the user to add new system service dynamically. So the

attacks prediction becomes more accurate.

1.4.2. Challenges of Analytical IDS

Our proposed IDS consists of two parts: the logger system, and the analyzer system. These

parts should be able to communicate with each other‟s. The analytical part of the system

consists of multiple parts. Each part has its own functionality, and complements the others.

 5

Due to the nature of data that will be entered and presented, different programming languages

will be used, so that the connection between these components should be smooth.

Furthermore, the continuous changes in the needs of network services should be reflected

easily in the system, and the display of results must be easily understandable.

1.4.3. Limitations of Existing Work

Two types of IDSs exists: anomaly based IDS, and signature based IDS. Signature based IDS,

only reads the payload of a packet, and then checks it in its database, to determine if this

payload contains a signature of an attack or not. Anomaly based IDS examines the behaviors

of packets in network traffic, based on trained data before, to determine if the examined

packets payloads are normal, or containing security threats. This may produce a lot of false

alarms. For these reasons, smart IDS should resolve the issues of these IDSs. The new IDS

should take advantages of both types, by using a signature to log attacks, and perform

predictions on new attacks from the logged attacks without the need for data training.

1.5 Research Objectives

The overall goal of this thesis is to improve the IDS, and develop a new objective function to

propose a new analytical approach for IDS. We refer to our new approach as „Smart Intrusion

Detection System for DMZ‟, and it aims to introduce a new IDS with analytical features, good

minimized false rate attacks predictions, and a more easily adaptable IDS according to the

network needs. To achieve this overall goal, the following research objectives have been

established:

● Extract useful and needed security information from network traffic.

 6

● Create ontology for vulnerabilities identification.

● Automate the creation of ontology structure [schema], to reflect the changes according

to the needs of the user.

● Automate the creation of Ontology Knowledge Base [OKB], from vulnerabilities

databases.

● Map the extracted security information from network traffic to the created OKB, so

that additional security information can be extracted.

● Use a visualization technique, to display the results in an easily readable view.

● Validate the system using known benchmarks.

● Predict the behaviors of the system in a multi-user heavy network environment, using a

queuing model.

1.6 Research Methodology

This section describes the research methodology that was followed.

● Plan constructing our system using modular forms. This ensures that it can be easily

updated, and the changes can be smoothly performed.

● Create an ontology skeleton that reflects vulnerabilities and network services, taking

into account that the ontology should be changed, according to the demand of the

network services.

 7

● Develop OKB that we will use in analysis by extracting National Vulnerability

Databases [NVD] into the created ontology. We should take into accounts that NVD

databases continuously change.

● Conduct a method to extract security information from network traffic. After that,

convert the extracted security information, into information that can be understandable

by the created OKB.

● Develop communication protocols between the sniffed security information from snort

IDS and the created OKB.

● Analyze the information sent from the network, by performing extra processing on it in

the, by the created OKB. The analysis should be performed by semantic web tools, so

that it will reason and query information related to information extracted from network

traffic.

● Develop a way that presents the results in a nice Graphical User Interface [GUI]. So

the results with huge rich information should be easily understandable.

● Conduct experiments, by applying the proposed system in a known benchmark, to

ensure the effectiveness of it.

● Model the system in queuing model, to predict the behaviors of the system in a multi-

user heavy network environment.

1.7 Organization of the Thesis

This chapter gives an overview of the thesis. It presents the basic concepts of information

security, IDSs, performance and semantic web technology that should be understandable. The

 8

next chapter is literature review, which reviews traditional related works in information

security, IDSs, performance, datamining, and focuses on ways to create smart security tools

using semantic web technology. Chapter 3 introduces system architecture. This chapter

proposes a new novel approach, which improves the analytical feature in IDS, and develops

new functionality to the IDS, based on semantic technology. The validation and results will be

discussed in chapter 4. It examines our approach, and conducting three approaches to measure

it. The first approach is by testing the system on KDDCup99 dataset and comparing its results

with other systems. A queuing model is the second approach. Anylogic is the final way, to

simulate and validate the queuing model. Finally, the results are discussed. Chapter 5 is the

conclusion, which discusses the conclusions of the thesis, limitations and assumptions, and

also suggests some possible future work.

 9

Chapter 2

 Background and Related Work

2.1 Background

This section aims to provide a general discussion of the concepts needed to understand the rest

of the thesis. It covers basic concepts of information security, IDSs, ontology, Google

visualization, and queuing models.

2.1.1. Information Security

In our days, organizations depend greatly on networks, a huge amount of information is

exchanged though networks. Daily tasks performed rely on computers and networks, such as

email, portal services, RSS, and others. However, losing or revealing this information may

cause a terrible loss for an organization. Consequently, there is a sense of urgency to secure

electronic information.

Information security refers to protecting any kind of sensitive information systems from being

revealed by unauthorized access (Cornell University) (Wikipedia, 2016). For most people and

organizations, electronic information is a critical resource to be protected. On the other hand,

if sensitive information is revealed to the public or the wrong person, then an organization

may face a great threat, and the whole business may be in danger. For instance, if sensitive

database system for an organization is hacked, and such information falls in wrong hands, it

can create chaos in the normal functioning of an organization.

Figure (2.1) is the cyber-criminal report data from IC3; the Internet Crime Complaint Center

[IC3] is a partnership among the federal Bureau of Investigation [FBI], the National White

Collar Crime Center [NW3C], and Bureau of Justices Assistance [BJA]. According to IC3,

 10

online internet crime complaints are increasing daily. From the figure, we can observe that in

year 2010, there were 303,809 cyber-crime complaints, whereas in year 2011, complaints

increased to 314,246. When compared to 2011, Internet crime complaints in year 2013

decreased to some extent. But in subsequent year the internet crime compliant increased (IC3,

2014).

Figure 2.1: IC3 cyber-criminal report (IC3, 2014).

2.1.1.1. Basic Security Concepts

This section summarizes basic security concepts necessary to understand our research.

● Vulnerability: a weakness in design or an implementation error that can lead to

compromising the security of the system. In other words, vulnerability is a loop hole,

or a weakness that becomes a source for an attacker to enter into the system, bypassing

 11

various user authentications (Wang & Guo, OVM: An Ontology for Vulnerability

Management, 2009).

● Exploit: a defined way to break the security of a system through vulnerability. An

exploit can be performed locally or remotely through a network.

● Information security relies on three basics elements (Parker, 1995), which are:

 Confidentiality and Authenticity: to ensure that the information is accessible

to a person who is authorized to access these data, by using certain

authentication methods (Parker, 1995).

 Integrity: the trust of data or resources in terms of preventing unauthorized

changes (Parker, 1995).

 Availability: to ensure that a system is available and online whenever a service

request is performed.

2.1.1.2. Basic Information Security Attack Vectors

The following are possible attack vectors which attackers can exploit an information system:

● Unpatched software: where the system or software left not updated for a long time,

for which a lot of vulnerabilities exploits had been published against it (Ec-Council,

2010).

● Local attacker: where the attacker has a good knowledge of the systems exists in an

organization. For example, a descrambled employee that has access to the financial

system with authorized username and password (C. C. Palmer; IBM Research Divisio,

2001).

 12

● Network applications or services: where the attacks lunched from outside of an

organization targeting a system online services. Such as, company website (C. C.

Palmer; IBM Research Divisio, 2001).

● Botnets: where group of attackers lunched several attacks from different locations

targeting a system service, to hack the system or to bring it down (Ec-Council, 2010).

● Insufficient security policies: where the systems administration privilege is

distributed among different users (Ec-Council, 2010).

● Social networking: where there are not educated employees from security

perspectives can be easily fooled by attackers. For instance, email sent to an employee

to fill his username and password for organization portal in a form sent by that email

(C. C. Palmer; IBM Research Divisio, 2001).

2.1.1.3. Security Tools

Two types of tools are used in information security, offensive and defensive tools.

2.1.1.3.1. Offensive Tools

Offensive tools are the kinds of tools used by hacker[s] or security tester[s] to discover, and

exploits the vulnerabilities of information systems. Each professional attacker follows five

steps to perform a successful exploitation into information system. These steps are:

● Information gathering [reconnaissance]: in which an attacker retrieves general

information about the targeted organization (Phong & Yan, 2014).

 13

● Scanning and vulnerability analysis: in this phase the attacker actively tests the

systems available for an organization, to determine the type of services that are

available online and type of vulnerabilities that might exploit these services (Phong &

Yan, 2014) (Bairwa, Mewara, & Gajrani, 2014).

● Exploiting: the attacker will run various exploits on systems services, based on

previous steps performed (Phong & Yan, 2014).

● Root access: after successfully exploiting the required IT system, the attacker tries to

get administrator privilege on that hacked system, in order to attain full control over it

(Ec-Council, 2010).

● Log erase: the final steps performed by a professional attacker are to hide his or her

footprint on the hacked systems by installing malicious software‟s on it, such as a

rootkit (Ec-Council, 2010).

Offensive Hacking tools can be classified into three main categories:

● Information gathering tools: tools that are used to get information about IT systems,

such as the location, registrar, and subdomains. An example of these tools is WHOIS

(Ec-Council, 2010) (Phong & Yan, 2014).

● Scanning tools: tools are used to get information about online IT systems. They return

information about the system type, services opened, version of opened services, and

other useful information. NMAP is a good example of scanning tools (Bairwa,

Mewara, & Gajrani, 2014) (Phong & Yan, 2014).

● Exploiting tools: tools are used to penetrate the information system and gain

unauthorized access to it. They automate the attacks into a system based on services

provided. Examples of these tools are CANVAS, METASPLOIT and CORE-IMPACT

(Ec-Council, 2010) (Phong & Yan, 2014).

 14

2.1.1.3.2. Defensive Tools

The information system, especially the enterprise network and DMZ, containing the heart of

electronic information, should be protected. As the security increased the robust our system is.

On the other hand, we should take into account the usability of the system. Several varieties of

systems hardware or software can used to protect information systems in their own way. The

following subsections summarize some of the important security tools that an organization can

use.

Firewall: This tool should be the first layer of defense in any network. It may be hardware or

software. Furthermore, it might be commercial or open source. Today, these tools are smart

they inspect packet in all network layers, in other word they are state full inspection. Examples

of hardware commercial firewalls are: FOTINET and SONICALL. IPABLE is an example of

a software open source firewall.

Intrusion Prevention System [IPS]: Security tool that inspects network traffic, to detect

malicious behavior in it, then block it and report it (Wikipedia, 2016).

Antivirus: Software that is installed on a machine, to detect and protect it from malware, that

attempts to steal or destroy the information on that system.

Intrusion Detection System [IDS]: Security tool that might be software or hardware, which

is used to inspect network traffic. An IDS examines the packets inside network traffic, to

check if it contains any malware packets, then reports the results (Panda & Patra, 2007). Two

types of IDSs are available:

● Host based IDS (HIDS): software that evaluates information which exists on single

host or multiple hosts (D. Kshirsagar & Kumar, 2013).

● Network IDS (NIDS): software or hardware. NIDS evaluates and analyzes

information captured from network traffic. On other words, it monitors the network

 15

activity for a malicious behavior, logs it, and reports it to the administrator (D.

Kshirsagar & Kumar, 2013).

Furthermore, IDSs can be classified into:

● Signature based IDS: An IDS that is used to detect known attacks. It stores the

attacks signature on an IDS database. This type of IDS requires no knowledge of

network traffic: the IDS will only check the payloads in packets, then compare it in its

database, to determine if these packets are attacks or not. If they are malicious, then the

result will be logged and reported (Uddin, Khowaja, & Abdul Rehman, 2010).

● Anomaly based IDS: An IDS where the signature of an attack is not known before.

These types of IDSs are usually used to detect new types of attacks, based on previous

data behavior (Uddin, Khowaja, & Abdul Rehman, 2010). In other words, it requires

data to be trained, so that it can detect new attacks. A lot of research is performed on

these types of IDSs, specifically to discover zero day attacks. In general these IDSs are

created using smart algorithms, such as Genetic Algorithm [GA], and datamining

methods, such as naive bays.

Snort is an example of a signature based NIDS. It is considered the top open source intrusion

detection in the world.

2.1.1.4. National Vulnerability Database

“NVD is the U.S. government repository of standards based vulnerability management data

represented using the Security Content Automation Protocol [SCAP]” (Quinn, Waltermire,

Johnson, Scarfone, & Banghart, 2009). NVD contains rich data about vulnerabilities, and

useful attack information. The following is a summary of the important content of NVD:

● Vulnerability information: contains normal information about the vulnerability, such

as the date and name of the vulnerability.

 16

● Product: contains a list of all products that are affected by a given vulnerability. The

product name is in CPE format.

● Vulnerability score: contains a numeric number, stating how dangerous the

vulnerability is.

● Summary: contains useful information about how an attacker can exploit a given

vulnerability. In addition, it contains information of damage that can occur, if a

successful attack occurs.

Figure (2.2) shows a sample of NVD data feeds.

 17

Figure 2.2: Sample NVD data feed

2.1.2. Semantic Web

This section focuses on the semantic web technology, as well as the technologies that are used

in our research; such as Jena Java framework and easyRDF PHP library.

 18

2.1.2.1. Ontology

“Ontology is a formal explicit specification of a shared conceptualization” (Semantic Web,

2012). In a modern smart system, knowledge should be discovered and the ontology

technology should perform this task (Wang & Guo, OVM: An Ontology for Vulnerability

Management, 2009). Ontologies solve the problem of sematic interpretation between different

web services in a different organization through semantic web technologies. Recently,

ontologies have become a popular field of research in Artificial Intelligence [AI], and

knowledge discovery systems, such as modern social networks (Taye , 2010). Sematic web is

one of the applications that are built on the top ontology technology, to make the web machine

understandable, not just machine readable.

2.1.2.1.1. Ontology Components

Ontology should be represented using the following four main components:

● Concept (Class): an abstract set of objects.

● Instance (Individual): the “ground-level component of an ontology which represents a

specific object or element of a concept or class” (Taye , 2010).

● Relation (Slot): used to connect two classes for a given domain.

● Axiom: used to give a constraint on a value of a concept or individual.

Usually ontology is stored in a triple format file. This file may be in turtle format: which is the

most readable format, or in XML/RDF, or Notation 3, or RDF/JSON, or N-Triples, or JSONS

formats. Any triple inside a file [in any format], is made up of three parts: subject, predicate

and object, which form a statement. A subject of a statement is an entity that the statement

describes. A predicate describes a relationship between a subject and an object. The object is

 19

the value that the subject takes for that particular predicate. These statements inside a file form

a directed graph, with subjects and objects of each statement as nodes and predicates as edges

(Semantic Web, 2012).

The RDF or OWL files are the most common extensions of semantic web files. Each file

consists of two parts. Firstly, there is the schema [T-Box] part, which represents the concepts

and relations. In other words, it represents the structure of ontology. The other part of ontology

is the data [A-Box] part, which represents the instances. Figure (2.3) shows an example of

RDF graph in XML/RDF format.

 20

Figure 2.3: Sample RDF triple in XML/RDF format.

 21

2.1.2.2. SPARQL

A tool that is used to query data stored in RDF or OWL file, to get required information about

the stored triple.

2.1.2.3. Inference Engine [Reasoner]

An inference engine is used to extract additional factual from instance information. It

automates the analysis of data contents. Also, it may be used to ensure our data graph is

consistent (W3C org, 2015). Examples of reasoners are Hermit and Pellet.

2.1.2.4. Jena Framework

An open source java framework dedicated to dealing with semantic web technologies. It has

APIs that are able to create, change, and query RDF triples stored in any format. In addition,

Jena has a strong built-in inference engine, and further-more supports known reasoners, such

as Pellet (Apache Jena, 2015).

2.1.2.5. EasyRdf Library

A PHP open source library, which can read and add RDF triples over HTTP. It has vast APIs

that allow the reading of stored RDFs easier over the web. On the contrary, it has limitations

on performing SPARQL queries, and using of reasoners.

 22

2.1.3. Google Visualization

A free cross platform tool that is used to visualizes data over the web. It can be used by

including the visualization APIs inside a JavaScript script. It has many charts types; such as:

pie, annotation bar, histogram, organizational charts and many more. These charts are

interactive, and can be customized easily. Figure (2.4) shows some examples of charts of this

rich tool (Google org, 2015).

Figure 2.4: Sample of Google charts (Google org, 2015).

2.1.4. Queuing Model

"Is the mathematical study of waiting lines or queues”. We use queuing models to predict

waiting times, and queue length before getting a service (Wikipedia, 2016). In each queue

model design in any field, the following information should be known: arrival time, queue

size, queue type, number of servers and service time. Queuing model can be categorized into:

 23

single queue and multiple queues. Single queue is used if we have only one place for getting a

service, such as modeling a doctor clinic. We use multiple queues if there are multiple services

in a place, for example if we want to model multiprocessors with caches server. A Jackson

network is an example of a multiple queue models; it is the best way to model this scenario.

Figure (2.5) shows an example of Jackson closed network (Belch, Greiner, de Meer, &

Trivedi, Chapter 13. Applications, 1998).

Figure 2.5: Jackson closed network for multiprocessors server with caches (Belch, Greiner, de

Meer, & Trivedi, Chapter 13. Applications, 1998).

 24

2.2 Related Work

Several researches have been published in the area of information security, ontology,

datamining, semantic technology, Intrusion Detection Systems [IDSs] and applying these

technologies to information security. This chapter reviews related works for IDSs, semantic

web technology for security, security software‟s algorithms, and performance measuring. The

following subsections summarize these related works.

2.2.1. Related Works for IDS

There are many varieties of IDS software and they are widely used. Some of them are open

source and others are commercial. In addition there are two common types of IDSs: that might

use genetic algorithm, or data mining, or database signature to discover attacks. In our

research we used snort IDS to detect and log attacks from network traffic .The following

papers summarized these types of IDSs.

Panda et al (Panda & Patra, 2007), proposed anomaly based intrusion detection system [IDS].

The authors showed how to implement Naïve Biase classifier, to detect new attacks. However,

the proposed IDS is restricted to a network that has only two levels and assumes complete

independency between the information nodes. Also for this research, data was required to be

trained, to detect new attacks. This study produced an anomaly based IDS that has a goal to

enhance detection rate of newly unknown attacks. In our research, we used signature-based

detection to detect and log attacks, and for the analysis engine no data training was required, to

perform attacks predictions.

Hoque et al (Hoque, Mukit, & Bikas, 2012), created an intrusion detection system that is based

on Genetic Algorithms (GA). The implementation of this IDS was performed in two steps.

The first step is: the precalculation phase, where data will be trained. The second step is

detection phase. Controversially, using GA showed a lot of false positive alarm in the results.

 25

In our research the rate of false alarms and accuracy of attacks predictions were minimal. In

addition, there was no need for the data training.

2.2.2. Related Works for Applying Semantic Web to Information Security

Semantic web in our research represent the heart of it, from it we can predict and extract

additional useful information about vulnerabilities attacks. We created Ontology Knowledge

Base [OKB] from National Vulnerability Database [NVD], which we used in our analysis

system. Many of the following studies showed us how useful it is to use ontology in the field

of information security. Some of this research represents a way to create ontology for NVD.

But none of them are specialized for DMZ networks. Also, none of the following research

contains automatic ontology updates. The following research represents the importance and

usefulness of semantic web in information security:

In Gomathisankaran et al (Kotikela, Kavi , Gomathisankaran, & Singhal, 2013), the authors

worked on providing a smart vulnerability assessment framework for cloud computing. In this

study, NVD was converted to knowledge base that are dedicated for cloud computing; also a

web search was made on top of these vulnerabilities to get more information about the

vulnerability; Such as countermeasure for each vulnerability. However, the limitation of this

framework that it was neither validated nor did compared its results with other known

vulnerability assessment tools. The research presented a vulnerability assessment framework

that uses ontology for cloud computing. In our research, we also used ontology to group and

classify vulnerabilities for the systems services in the DMZ.

Khairkar A.D (D. Kshirsagar & Kumar, 2013) provided an intrusion detection system for

detecting web attacks. In this IDS, ontology was used to group and classify web attacks.

Furthermore, they used the ontology to identify new web attacks. On the other hand, the

limitation of the proposed system was that it‟s unable to detect complex web attacks,

especially for complex e-business systems. In this research ontology was used to classify web

 26

attacks only. However, in our research ontology was used to classify and group attacks for

different systems and services including known web attacks.

Wang et al (Wang & Guo, OVM: An Ontology for Vulnerability Management, 2009) ,

focused their research on providing semantic meaning to vulnerability database, and applying

network security standard; such as CWE, CPE, CAPE, and CVE to build vulnerability

ontology. On the other hand, generating data from vulnerability database was done manually

using protégé tool, instead of extracting the data automatically. This is considered as a

limitation. In our research, classes and relations for describing vulnerabilities were produced

automatically, and the structure of the ontology can be changed automatically.

Wang et al (Wang, Guo, Wang, Xia, & Zhou, 2009) proposed an ontology based approach, to

analyze and assets the situation of products from security perspective. The authors

implemented a mathematical formula to compute each vulnerability score, based on how it is

danger and its affection on the system or service.

In Saad et al (Saad & Traore, 2010), the authors provided a prototype for smart network

forensic tools. In this paper, two types of relations were used in building the network forensic

ontology: the taxonomic relation, and the ontological relation. In addition, three types of

knowledge specified to be presented: problem solving goals, problem solving knowledge, and

Factual knowledge. However, this prototype had one limitation in term of ontology creation;

where there was huge ontology construction was performed manually, to reflect every possible

scenario. On the contrary, in our research, ontology updates were performed automatically.

Salini et al (Salini & Shenbagam, 2015) constructed ontology to predict and classify web

attacks. Also their ontology system suggests countermeasure for the predicted attacks. On the

other hand, their ontology is created manually, and the system used only to detect web attacks.

Conversely, in our system ontology creation is automated, and our system includes most

common network services, including common web attacks.

 27

In Elahi et al (Elahi, Yu, & Zannone, 2009), they proposed ontology to identify

vulnerabilities, also they showed the impact of these vulnerabilities on systems and services on

their ontology model. However, the ontology creation was made manually, and the results of

attack prediction contain a lot of false alarm. On the contrary, ontology on our system is

updated automatically, and the rate of false alarm attacks prediction is minimal.

2.2.3. Related Work for Performance

The following papers show different ways to improve the performance of IDSs. Some of these

techniques may be partially implemented in our system, and other advanced techniques can be

considered in the future work.

Uddin et al (Uddin, Khowaja, & Abdul Rehman, 2010), improved the performance of IDS by

splitting the IDS into multiple IDSs. Each IDS is responsible for detecting and analyzing only

specific attacks signatures. In this study multiple IDSs devices were required for detecting and

analyzing attacks. This research has a limitation, in that it required a separate device for each

class of attacks. As the number of attacks classification increases, this research will be

impractical in the future.

Bulajoul et al (Bulajoul , James, & Pannu, 2013) , the main goal of this research was to show

that at some points NIDS will not be able to analyze and log network traffic, especially for

heavy network traffic with huge number of packets send through it. At the end of this research

the authors recommend using parallel IDSs, to enhance the number of packets captured and

analyzed.

2.2.4. Related work for information security

Bairwa et al (Bairwa, Mewara, & Gajrani, 2014), the authors showed the power of known

vulnerability scanning tools, such as NEKTO and NESSUS tools. NEKTO tool is considered

 28

one of the best web vulnerability scanning tools, whereas, NESSUS tool, is one of the best

known network vulnerability scanning tools (nmap CO., 2016). In their research they showed

how to use these tools in an effective way, to get the desired results.

 29

2.2.5. Summary

Table (2.1-A), table (2.1-B), table (2.1-C), table (2.1-D), and table (2.1-E) summarize these papers and show a short description of

each one of these researches.

Table 2.1-A: Summary of papers (1-2).

Reference

id

Setting Description of study

design methodology

Type of

research

Limitations Intervention Results Comments

1. Panda et

al,2007

IDS Apply naïve biase

classifier to detect

anomaly based

intrusion.

Empirical Restricted to a network that

has only two levels and

assumes complete

independency between the

information nodes.

Requires data to be trained.

Naïve classifier is

used in attack

detection.

Anomaly based

intrusion detection

system.

2. Hoque et

al, 2012

IDS Implements GA to

IDS.

 In the

implementation

two phases

performed by the

IDS: the

precalculation

phase and

detection phase.

Empirical Require data to train in

earlier stage.

How to use GA to

detect novel

attacks.

Anomaly based

intrusion detection

system.

In our work we

don‟t need to

train data set to

make a

prediction.

 30

Table 2.1-B: Summary of papers (3-5).

Reference

id

Setting Description of study

design methodology

Type of

research

Limitations Intervention Results Comments

3. Gomathisa

nkaran et

al, 2013

Semantic web Convert national

vulnerability

database into

OKB.

 Do a web search

on each

vulnerability.

Empirical This framework is neither

validated nor compares its

results with other known

vulnerability assessment

tools.

Using knowledge

base in

vulnerability

assessment tool for

cloud computing.

Vulnerability

assessment tool for

cloud computing that

uses ontology.

4. Khairkar

A.D,2013

Semantic web Build ontology to

classify web

attacks.

 Use the created

ontology to

identify zero day

web attack.

 Reduce false

positive rate and

high detection rate.

Empirical Unable to detect complex

web attack especially for

complex e-business system.

Using ontology

knowledge base to

detect web attacks.

Intrusion detection

system for web.

5. Wang et

al,2009

Semantic web Study standard

network security

classifier such as

CWE, CPE, and

CAPE.

 Apply these

standards to build

ontology

knowledge base.

Empirical No automatic way to

extract data from

vulnerability database.

Using standard

security classifier

to build ontology

knowledge base.

Ontology knowledge

base that classify

vulnerabilities.

 31

Table 2.1-C: Summary of papers (6-7).

Reference

id

Setting Description of study

design methodology

Type of

research

Limitations Intervention Results Comments

6. Wang et

al,2009

Semantic web ontology approach

to compute

security metric

Analytical Formula used to

compute score for

each vulnerability

based on how it is

danger

Ontological approach

for security metric.

7. Saad et al,

2010

Semantic web Building forensic

security tool based

on ontology based

on taxonomic

relation and

ontological

relation.

 Three types of

knowledge

specified to be

presented: problem

solving goals,

problem solving

knowledge and

factual knowledge.

Empirical Ontology construction is

done manually.

Using ontology

technology to

build security

forensic tool.

Prototype of smart

forensic tool.

Good for future

work.

 32

Table 2.1-D: Summary of papers (8-10).

Reference

id

Setting Description of study

design methodology

Type of

research

Limitations Intervention Results Comments

8. Wu et al,

2009

Performance Intrusion detection

system that uses

two devices: one

for monitoring the

traffic, capturing

packets and

decoding packets,

and the other

device for attack

detection and

analysis.

Empirical This research shows how to

improve the performance

but it does not add anything

new in detection or

analysis.

Distribute the

services of

intrusion detection

system.

Intrusion detection

system.

9. Uddin et

al, 2010

Performance Splitting the IDS

into multiple IDSs,

so that each IDS is

responsible for

detecting and

analysis only

specific attacks

signatures.

Empirical Multiple IDSs devices are

required. As the number of

attacks signatures increases

over time, we think this is

not a practical design of

IDS.

Enhancing the

speed of detection

and analysis of

intrusion detection

system.

Intrusion detection

system.

10. Bulajoul et

al, 2013

Performance Measuring the

amount of packets

that can be

captured and

logged by a single

snort IDS.

Empirical Recommendation to

enhance the

performance of IDS.

 33

Table 2.1-E: Summary of papers (11-13).

Reference

id

Setting Description of study

design methodology

Type of

research

Limitations Intervention Results Comments

11. Bairwa et

al, 2014

Information

security

 Introduce the most

known

vulnerability

scanning tools.

 Shows the strength

of each of these

tools

Analytical Showing the features of

known vulnerability tools

in easy way.

 Presented an easy way

to show how we can

use security tools in

effective ways.

12. Salini et al,

2015

Ontology Constructed

ontology to predict

and classify web

attacks.

 The system

suggests

countermeasure

for the predicted

attacks

Empirical Ontology

construction is

done manually.

 System only

detects web

attacks.

Ontology is used

to predict and

classify the

severity on each

web attack

predicted

Ontology Knowledge

Base to classify and

predict web attacks.

13. Elahi et al,

2009

 Proposed ontology

to identify

vulnerabilities, and

the impact of these

vulnerabilities on

systems.

Empirical Ontology

construction is

done manually.

 The results of

attack prediction

contain a lot of

false alarm.

Ontology is used

to identify

vulnerabilities.

Ontology Knowledge

Base for

vulnerabilities

identifications

 34

This chapter gives us an overview of researches that has been performed on IDS, in term of

making them smarter and more efficient. In addition, it showed us how to implement

ontologies and semantic web technologies in the field of information security as in (Kotikela,

Kavi , Gomathisankaran, & Singhal, 2013) and (D. Kshirsagar & Kumar, 2013). The next

chapter shows how we implement these technologies, to present our smart system.

 35

Chapter 3

 Architecture

This chapter proposes new analytical features for IDSs in DMZ zones. The analytical features

were based on semantic web technologies, which is the core of knowledge-based discovery in

modern systems. Furthermore, this chapter demonstrates the algorithms and the mathematical

formulas that were used to build the analytical engine.

3.1 Introduction

Our proposed Smart Intrusion Detection System for DMZ specifically for DMZ zone uses

ontology for creating, and displaying information about specific attacks that hit, or may hit the

servers in the DMZ zone[s]. Our objectives were: to extract useful and needed security

information from network traffic; to create a dynamic ontology model that serves in the DMZ

needs; to create a strong analysis system that should be able to predict the incoming attacks;

and to be able to predict the systems in the DMZ that may be in danger. The proposed system

consists of two machines; one for traffic sniffing and packets inspection, for which we used

the best known open source Network Intrusion Detection System [NIDS] snort. On the other

hand, the second machine contained the analysis engine that is the smart engine, which is

responsible for displaying, querying and reasoning attacks information. Figure (3.1)

demonstrates the placement of our proposed smart NIDS.

 36

Figure 3.1: Placement of smart analysis engine.

3.2 System Components

The vulnerabilities were classified and grouped according to operating system and service

type. Following subsections describe the system components and the communications between

these components. Figure (3.2) shows the proposed system architecture, and its different

components.

 37

Figure 3.2: System architecture.

 38

3.2.1. Database Preparer

The database preparer has a main function, which is storing information about attacks that hit

our system, using snort log. In addition, it stores information about servers in our network.

The database preparer operates by reading snort logs, applying snort rule to the read logs,

converting each attack ID into NVD ID, and finally storing the new attacks IDs information in

the database.

3.2.2. System Updater

The system updater is a web component. It takes the new specified NVD XML file, and adds

its content [entries] to our pre-defined Ontology Knowledge Base [OKB]. NVD is an

international vulnerabilities database, which contains various information about security holes

existing in software‟s or operating systems (Nist, 2016). In this module, the new XML NVD

file is uploaded to our system, and then converted into RDF triple inside our OWL file to

update our created OKB system.

3.2.3. Structure Updater

The structure updater is a web module which makes changes dynamically occurring inside a

pre-built ontology [T-Box part]. It will add new class to the pre-built ontology dynamically

through web interface. For instance, if a specific system service is a part of our system, and it

is not defined on the built ontology, this service should be added to the system dynamically

without any problem using this module. This will assist the administrator to add any new

service to the system dynamically, without the need for development involvement. Adding

specific service class will improve and enhance the results for querying, retrieving information

about specific vulnerabilities, and gives better results, since the service become a classified

service, not a general service.

 39

 3.2.4. Categorizer

The categorizer is considered as coordinator in our proposed system. It is connected to various

parts on the system, and it determines which data should be passed, and to what part. The

categorizer consists of multiple web components [modules/methods]. Each component has its

own functionality, in term of preparing, and determining the type of data that should be

returned. In general, each component prepares the data to be processed and queried, then

passes these data to a specific part [class] in the determiner, to do its work. After that, the

determiner returned the information required. Finally the returned data is passed to the proper

visualizer component, so the results of the required information will be displayed to the

administrator. There are three main categorizer components. The first component is related to

information about service[s]. Its function is to classify service[s] about server[s], then reading

attacks from database that are related to service[s] which have been read, grouping this

information, passing them to proper determiner class; to do its work by reasoning and query

information from Ontology Knowledge Base [OKB], and return the results to specific

visualizer component to display the results. The second component is concerned with related

attacks. This component read attacks that hit specific service or system or all the systems in

DMZ, then it group these attacks and passes them to specific determiner class for attacks

results information. After that, the determiner passes this information to a proper visualizer

method. The final component in the categorizer is the one that is connected directly to the

visualizer. It reads attacks about specific service(s) or system(s) from database then passes the

data directly to a specific visualizer method, to show the results.

3.2.5. Determiner

The determiner is software consisting of multiple java classes. Its main function is to work

with the built OKB; in term of querying and extracting useful information‟s. Each categorizer

component connects to one or multiple determiner class[es]. Each class is responsible for

getting specific information ordered by categorizer module. After that, it groups the extracted

information in a specific format, then passes the data to the visualizer module. One example of

 40

a determiner class is a class that is concerned with related attacks information. Another

example is the class concerned with grouping the predicted attacks related to an attack that

might hit a service. A further example is the class that groups attacks information, and gets the

services that might be related to these attacks.

3.2.6. Visualizer

The visualizer is the gate for the administrator to get the required results. It has multiple web

components [modules/methods]. The main function of this module, is displaying the results in

a web browser in a readable view. As well as determiner, each categorizer, or determiner

component connects to one or multiple visualizer component. Each component in a visualizer

is responsible for preparing the data received from the categorizer or determiner module in a

specific format, calling the necessary Google visualization scripts, and visualizing the results.

3.3 Workflow process

3.3.1. System Initialization

System initialization should be performed before working on the system. It is performed in

two steps. The first step is done by adding the NVD database into our built ontology

[skeleton], which reflects the most DMZs in term of operating systems and services. The

structure of the system services can be changed according to our needs [section 3.3.1.3 update

the system structure]. NVD contains information about all security holes that are discovered,

and information about these threats as XML entries in XML file (Kotikela, Kavi ,

Gomathisankaran, & Singhal, 2013). Each vulnerability in the NVD is identified by an ID

[CVE-ID]. We extract these XML entries, and apply them to our built ontology in this

initialization step, so OKB is populated. This step should be performed at least once, to be

able to fill our system with some data about vulnerabilities. The second step in system

 41

initialization is to read snort logs, then apply snort CVE rules on attacks logged, to convert

SNORT-ID into CVE-ID. After that, store this information in our database. This step is a

continuous process as new attacks always hit the systems. After populating the OKB and

filling the database with attacks, a specific action is required by administrator, so this action is

translated into a query performed on a data stored in the database by a categorizer method then

the returned data from categorizer passed to determiner class to get information about these

data. The determiner continuously packs the results information then passes it to a visualizer

method to display the results. Figure (3.3) shows how the flow of information in our proposed

system.

 42

Figure 3.3: Information flow chart in the proposed system.

 43

3.4 Algorithm

Each step in our algorithm has its own handlers and algorithm. The basic steps for our

proposed semantic analysis engine for IDS are as follow:

● Step 1: Prepare the inference engine.

● Step 2: Input data from network traffic, and extract CVE‟s using CVE snort rule.

● Step 3: Read CVE‟s from database and pass them to inference engine.

● Step 4: The inference engine performs necessary data extraction from OKB.

● Step 5: Return the extracted data to a handler function.

● Step 6: Pass the data to the visualizer handlers.

● Step 7: Display the results.

Algorithm (3.1), shows pseudo code and mathematical formulas demonstrate the above steps.

 44

Algorithm 3.1: Mathematical formula and pseudo code for the proposed system.

 45

3.4.1. Prepare the Inference Engine

In this step we prepared the inference engine. The inference engine performs the necessary

query, and obtains useful information about specific attacks. The preparation of the inference

engine was performed using three steps: building the ontology skeleton, updating the database

signature of NVD, and updating the system structure.

3.4.1.1. Building the Ontology Skeleton.

Building ontology has no specific standards; it is usually built according to our needs. We

followed standards used in (Wang & Guo, OVM: An Ontology for Vulnerability Management,

2009), and added our specific classes that are related to DMZ networks, which take into

accounts the standards used in NVD XML file; such as: CPE, CWE, CVE, CVSS, and other

network security standards. Figure (3.4) shows the main classes in our built ontology. We

mainly used protégé tool to build the skeleton that can be changed dynamically according to

our needs, as we will see in later section [3.4.1.2 Update the database signature of national

vulnerability database].

 46

Our built ontology consists of the following classes:

 Vulnerability class. Contains a security hole that may be exists in a software, or

operating system, or hardware (Wang & Guo, OVM: An Ontology for

Vulnerability Management, 2009). We defined the following data properties for it:

 hasVulnerabilityName. Contains the CVE-ID of the vulnerability individual.

Figure 3.4: Ontology skeleton.

 47

 hasVulnerabilityData. Contains to the data where this vulnerability individual

is published.

 hasVulnerbilityDescription. Contains additional useful information about the

vulnerability; such as: how the vulnerability can be exploited.

Vulnerability class has the following object properties, which were used to connect

vulnerability individuals to others related individuals in OKB.

 hasCVSSMetric. Connects vulnerability individual to its CVSS score

individual.

 hasAttackMechanism. Connects vulnerability individual to attack mechanism

individual.

 isAffectedITProduct. Connects vulnerability individual to all ITProducts

individuals that is affected by this specific vulnerability.

 hasAttack. Connects vulnerability individual to attack individual.

 hasAttacker. Connects vulnerability individual to its corresponding Attacker

individual.

 CVSSMetric class. Contains a measurement that shows how dangerous the

vulnerability is (Kotikela, Kavi , Gomathisankaran, & Singhal, 2013) (Nist, 2016).

We defined three subclasses, which are:

 CVSSHigh. Contains all individuals, for which if a vulnerability individual

connects to it, is considered danger vulnerability. That means this vulnerability

individual could result in catastrophic damage if it is exploited, and affects the

data in term of confidentiality, integrity and availability.

 48

 CVSSMed. Contains all individuals, for which if a vulnerability individual

connects to it is considered medium danger vulnerability. For example, it may

affect availability only.

 CVSSLow. Contains all individuals, for which if a vulnerability individual

connects to it is considered low danger vulnerability. It means that it is an

informational attack only.

CVSSMetric class has the following data property:

 hasCVSSScore. Contains numeric value of the vulnerability dangerous rank.

 hasCVSSIntegrityImpact. Determines if the connected vulnerability

individual with this CVSS score affected the integrity. It has three values which

are: complete, meaning it affected the integrity. Partial, meaning it partially

affected the integrity. None value, meaning it did not affect the integrity.

 hasCVSSConfidintialityImpact. Determines if the connected vulnerability

individual with this CVSS score affected the confidentiality. It has three values:

complete, meaning it affected the confidentiality. Partial, meaning it partially

affected the confidentiality. None value, meaning it did not affect the

confidentiality.

 hasCVSSAvailabilityImpact. Determines if the connected vulnerability

individual with this CVSS score affected the availability. It has three values:

complete, meaning it affected the availability. Partial, meaning it partially

affected the availability. None value, meaning it did not affect the availability.

CVSSMetric has one object property, which is isCVSSMetricPartOf. This property is

an inverse of object property hasCVSSMetric.

 49

 Attack class. Contains the common method that is used to exploit a system (Wang

& Guo, OVM: An Ontology for Vulnerability Management, 2009). We defined a

data property isAttack for it, which may have one of the following common values:

remote value, meaning the vulnerability individual connected to this attack, can be

exploited remotely. Authenticated value, meaning that the vulnerability individual

connected to this attack individual can be exploited if the attacker is part of domain

users. Attack class has an object property isExploitOf, which is an inverse of

hasAttack object property.

 Attacker class. Describes software or a human, who has a reason to compromise

the computer system (Wang & Guo, OVM: An Ontology for Vulnerability

Management, 2009).It has the following subclasses:

 Context-dependent. Contains individuals of attackers, who have to be part of a

system domain, to compromise the vulnerabilities; such as: the attacker should

be authenticated to windows active directory domain.

 Guest. Contains individuals of attackers who don't have to login to a system, to

compromise the vulnerabilities in it. For example, guest login in a website.

 Local. Contains individuals of an attacker who has to be part of a local user in

a system, to compromise certain vulnerabilities in it. For instance, a local user

account in Unix/Linux system.

 Man-in-the-middle. Contains individuals of attackers who should be able to

intercept the network traffic.

 Physical. Contains individuals of attackers who have physical access to the

system.

 50

 Remote. Contains individuals of attackers who can remotely compromise a

system. Such as: SQL injection attack against a website.

 Uncategorized. Contains individuals of attackers who have no certain or

specific classification.

Attacker class has a data property isAttacker, which display the types of attacker in a

string. This class has an object property isAttackerOf, which is an inverse of object

property hasAttacker.

 AttackerMechanism class. Individuals from this class contain information about

the mechanism used by attackers, to exploit certain vulnerabilities. This class has

one data property called hasActiveLocation, which contains information about a

certain vulnerability exploitation method. For instance, a certain file in JOOMLA

sites is hacked by certain commands. AttackMechanism class has object property

isAttackMechanismOf, which is an inverse of object property

hasAttackMechanism.

 ITProduct class. Contains a group of products that is affected by vulnerability. It

has the following subclasses:

 OS class. Contains all individuals of type ITProduct, that has a vulnerability

affecting the operating system or application related to a defined operating

system. It has the following subclasses:

 Microsoft class. Contains all individuals that affected Microsoft

operating systems. It also has a subclass called Microsoftservices that

contains all individuals of vulnerability products that affects Microsoft

services. It has subclasses DotNet, LDAP, Exchange, IIS,

NTPMicrosoft, SMB, and others.

 51

 Unix class. Contains all individuals that affected Unix/Linux like

operating system. It also has a subclass called Unixservices, that

contains all individuals of vulnerability products that affect Unix system

services. It contains subclasses Postfix, Samba, Zimbra, SSH and

others.

 OSUnknown class. Contains all individuals that affected systems other

than Unix or Windows like operating system. For example Apple IOS.

 Software class. Contains all products individuals of services that may exist in

both Unix like systems and Microsoft systems. For instance, Apache Web

Server is an application that may be installed on both Unix and Windows

operating system. It has several subclasses; such as Tomcat, PHP, Oracle,

Apache, and others.

 Hardware class. Contains all individuals of products that may be affected by

physical attacks. This class is out of the scope of our research.

ITProduct class has an isITProduct data property which contains a literal of all

products affected by certain vulnerability. It has the following object property:

 isAffectedITProduct object property. This is an inverse of hasVulnerability

object property.

 isVendorOf object property. This is used to links ITProduct indvidual to

ITVendor indvidual class.

 ITVendor class. Contains information about the supplier of ITProduct individual

(Wang & Guo, OVM: An Ontology for Vulnerability Management, 2009). It has a

data property isAvendor, which contains a string of information about the supplier

 52

of a specific ITProduct individual. It has an object property hasVendor that is an

inverse of isVendorOf object property.

3.4.1.2. Update the Database Signature of NVD

NVD is an XML format file; it is updated frequently by NIST organization. In order to be able

to query and inference the vulnerabilities that hit our systems, we converted these XML files

into RDF/OWL triples that match our built ontology. Figure (3.5) shows how the XML file

was added to our ontology. Algorithm (3.2) shows pseudo code and mathematical formulas

that demonstrates how an updating database signature was performed.

 53

Algorithm 3.2: mathematical formula and pseudo code for updating system vulnerabilities

signature.

 54

Figure 3.5: Adding XML entries into built ontology.

 55

3.4.1.2.1. Detailed Algorithm

The NVD database is continuously updated, so the database signature updater is a continuous

process. The implementation of this module was performed using four major steps. These

steps were implemented using PHP scripting language, specifically using simpleXML library

for data extracting from XML feed, and easyRDF library to deals with RDF triples and OWL

files. These steps can be summarized as follow:

 Read NVD xml file then parse each entry in it.

 If the entry does not already exists in our built OKB, then:

 The placement and the conversion of Vulnerability and ITVendor are

performed normally, by calling a handler method to each type. The handlers

will extract the objects from the the XML file then convert them in to RDF

triple.

 The extraction of CVSS score is performed by calling CVSS handler method.

This handler checks the type of CVSSscore according to its score value. After

that, it places an entry individual according to that score, then links this

individual to the vulnerability individual using object property hasCVSSMetric.

The value of the CVSS score is determined according to the following three

values; CVSSHigh, in the case if the score value of the attack is greater than

7.0. CVSSMed, if the score value of vulnerability in rang of 4.0-6.9, and

finally, CVSSLow if score value between ranges 0 - 3.9.

 The placement of Attackmechanism, Attacker, and Attack individuals are done

by applying lexical analysis code, to summary part for each XML entries in

NVD file. So the information extracted about the attack mechanism, attacker,

 56

and attack are linked to vulnerability individual by hasAttackMechanism,

hasAttacker and hasAttack accordingly.

 Placement of products is performed by calling the product handler method, in

which the products are categorized according to operating system and

application type that were built by protégé, and can be can be changed and

edited dynamically as we will see later [section 3.4.1.3 Update the system

structure]. For example, let's say that a vulnerability CVE-123 that may hit an

Apache web server, and it can also hit an IIS web server. In this situation, the

product handler method should place two individuals in the product class; one

under Apache class, and the other one under IIS class. It should then link each

individual of those classes with object property hasVulnerability to CVE-123.

 The placement of ITVendor indvidual is performed by calling the ITVendor

handler. After that, the handler links the extracted individual to ITProduct

individual using hasITVendor object property.

 Publish the RDF graph, update the OKB, and commit the changes to OWL file.

3.4.1.3. Update the System Structure

In this module of our proposed analysis engine for intrusion detection engine, we allowed the

network administrator to update the skeleton of the ontology [T-Box] dynamically. We created

this step to allow the system to be flexible, according to the changes that occurs in an

organization. This means that the organization does not have to call the developer every time a

change occurs in its infrastructure. Furthermore, given that technologies always changes, and

the need for new services always appears, it does not make any sense to call a developer,

every time an organization needs to add new service to its infrastructure. We built the skeleton

of ontology based on well-known services that are common and exist on the most DMZs. But

each organization has its own needs, and for that we added this feature to allow organization

 57

to add its required services, to provide better query and reasoning about the attack that may

have hit the added service, or any other related services. Since individuals of unclassified

service or a service that does not belong to a certain class, go to a general class called

Software class providing inferior results, when administrator requires information about that

service. On the other hand, applying this step will allow the whole structure to be changed.

Thus, it requires erasing all the NVD XML, and re-entering them, to allow the entries to be

fitted to match the new ontology structure. Figure (3.6) demonstrates the mechanism used in

this module. Algorithm (3.3) shows the mathematical formulas, and pseudo code for this

module.

 58

Figure 3.6: Mechanism in structure update.

 59

Algorithm 3.3: Structure updates pseudo code and mathematical formula.

We scripted this module using PHP scripting language, and easyRDF to deal with OWL files.

The following steps are followed to complete this module:

 Administer the request to add new service.

In this step we allow the administrator to choose from three options to add new service

in the created ontology. The first choice is adding a Windows service. The second

choice is for if the request requires adding Unix/Linux service. The last option, if it is a

common service, which may work on both Unix/Linux and Windows operating

systems.

 Open the structure OWL file for editing.

 60

According to the choice made by the administrator in the first step, we add necessary

headers to the ontology structure OWL file.

 Erase all RDF entries from our OKB file.

 Copy new structure from structure OWL file to our new OKB file.

 Re-enter all the NVD xml files, and updates the OKB file, using the update NVD

database module for all saved NVD xml files.

3.4.1.4. Input Data from Network Traffic and Extract CVE’s

Traffic that passes through The DMZ normally is an active continuous process. Snort, which is

an open source network intrusion detection system, plays a critical role in our proposed

system. It sniffs network traffic and log security attacks into a database. In conclusion of this

process, each attack which occurred has an ID given to it by snort. In the proposed system we

take a security logs from snort log, then apply snort CVE‟s rule to it, which is a PHP script

that converts snort ID to CVE‟s ID, so that we can extract additional information‟s about

attacks in the analysis engine, figure (3.7) demonstrates this step. The following algorithm

(3.4) explains the procedure performed in this module.

 61

Algorithm 3.4: Converting Snort log to CVE log pseudo code.

 62

 Figure 3.7: Input Data from Network Traffic and Extract CVE‟s.

3.4.1.5. Reading CVE’s and preparing the Data

The categorizer in our proposed system is responsible for reading CVE‟s and other

information from the database. In addition, it is responsible for categorizing these data and

passing them to the determiner or the visualizer -step 3 and step 5 in the algorithm [section

3.4.1.3.1]. All categorizer methods were written in PHP scripting language. Figure 4.2 shows

how a categorizer module works. As mentioned before [section 3.2.4], there are three main

categorizer methods, which are methods that concerned with services, methods that concerned

about related attacks, and methods that connect directly to the visualizer. Each method is

invoked according to the type of data required by the administrator, to be displayed and

visualized.

 63

3.4.1.5.1. Methods that Concerned About the Services

These methods are concerned with displaying information about attacks that hit a single

service or group of services, in one system or multiple systems. These methods can be

categorized into three subcategories. The first methods category is concerned with all system

services in the whole DMZ. The second category is concerned with attacks that may be used

to hit a single service. The third group is the same as second group, but for multiple services.

This categorization was performed, because each category has its own way of preparing data

read from the database. Furthermore, each method has its own protocol, for sending data to the

determiner class.

The following algorithm (3.5) is used by methods that are concerned about all the services in

the DMZ from the begging of getting data to display results.

 64

Algorithm 3.5: Pseudo code used by Methods that Concerned About the Services.

In the first two steps in our algorithm, we normally read system services and pack them using

as followed format; service1#service2#.......servicen.

The second and the third subcategories are the same as first one. Conversely, they are different

in the way they communicate with its cross bonding determiner classes, as we mentioned early

in this section. For example, the following protocol is used to communicate if we want to keep

track of a server, to determine which service belongs to what server:

service1@IPn#servicen@IP1#servicen@Pn+1.

 65

3.4.1.5.2. Methods that Concerned About the Related Attacks

These methods use almost the same steps algorithm used in methods related to services. But

here we have additional two steps, which are reading attacks from snort database, and keeping

track of these attacks. So the modified algorithm 3.6 will be as follows:

Algorithm 3.6: Pseudo code used by Methods that Concerned About the Related Attacks.

 66

In step two in the algorithm, we read attacks that hit a particular system service, or a group of

systems services from snort database. After that, we group these data, which are about attacks

with data about systems services in a predefined format then sending the packed data to a

determiner class. These methods were categorized according to number of systems services,

since we want to get information about attacks that hit services, or getting the ranks of the

attacks that hit these systems services. On the other hand, all of these methods followed the

same sequences, but with some differences in the parameters, and protocols used in sending

data to the determiner class. The protocol used in sending the data is;

 service1@IPn<cve1,cve2 …… cven>#servicen@IP1<cve1,cve2 ……

cven>#servicen@Pn+1<cve1,cve2 …… cven>.

3.4.1.5.3. Methods that Connected Directly to the Visualizer

These methods are considered the simplest. They require neither grouping for data, nor

creating a protocol of passing data to the determiner class, since it does not call any determiner

class. These methods make a normal query to data from snort database to get information

about attacks. After that, it passes the requested data directly to the required visualizer method,

to display the results.

3.4.1.6. Querying and Inference Necessary Information from OKB

The determiner is the system module responsible for dealing with OKB, in terms of query and

getting necessary information. It is consists of multiple java classes, each with its own

functionality in terms of unpacking the data taken from categorizer, querying the data from

OKB, and packing the results back to the visualizer. These classes uses Jena library, a set of

java classes that are programed to deal with semantic web technology. It also has a group of

APIs to read, query and inference OKB. In addition, this library has a built in capability that

allows easy interaction with a different type of reasoner, such as PELLET, HAMLIT, and

others (Semantic Web, 2012) (Apache Jena, 2015). As mentioned before, each categorizer

method has one or more cross ponding determiner class. For instance, service method [section

 67

3.4.1.5] has multiple sub categorizes; each subcategory connects to only one class from the

determiner. In this module we also categorized the determiner classes into two subcategories;

one category contains all service related classes, and the other category is attacks related

classes.

3.4.1.6.1. Classes Related to Services

In this group of classes, the types of information that will be queried are the information‟s

about attacks that might hit a system service, or group of systems services. The main steps

used in these classes can be summarized as follows:

 Step 1: Read the data passed from the categorizer method.

 Step 2: Extract these data into variables.

 Step 3: Build the necessaries query, using SPARQL and different reasoners.

 Step 4: Pack the data in a special format.

 Step 5: Pass the data back to visualizer method.

Each determiner class gets the data from categorizer method in a special format. The first

thing which should be performed is to unpack these data as we mentioned in earlier sections,

each categorizer packing the data in a special format then passing the packed data to a

determiner class. The next steps should be reading it and querying it. Finally, it must use its

own packing method, to prepare the data to be returned for the visualized method. For

example, the query related java class reads the systems services passed to it, and then builds

queries to get information about the attacks that might hit these services. After that, the

information will be returned to the visualizer method in the following format:

$ListOfReslated[] = serv1, $ListOfReslated[]= $cve2, and so on.

 68

Another example is if we want to display the related attacks that might hit a service or a group

of services. It uses almost the same procedures used in related system services. But here the

communication protocol in returning the information data is different. The protocol used in

this class is as follow: Service1[] = CVE1#ProductsHit, Service1[] = CVE2#ProductsHit …..

Servicen[] = CVEn#ProductsHit.

3.4.1.6.2. Classes Related to Attacks

These types of classes are concerned with returning information about attacks that are related

to an attack, or getting the CVSS metrics of attacks. Classes from this category, followed the

same steps used by classes related to the services, but, with changes in type of query and

inclusion of CVSS score. In addition, the protocols used in these classes are quite different.

One example is the class that is concerned with getting all the attacks that might hit our

systems, with the rank of each attack shown in the result. The following protocol is used in

this class, to pass the result information back to the visualizer.

ServiceName1CVSSType1[] = cve1 , ServiceName1CVSSType1[]= cve2, ….,

ServiceNamenCVSSTypen[]=cven.

3.4.1.7. Prepare Data to be Displayed and Visualized

The visualizer module is responsible for displaying the results in a nice GUI. It accepts the

data that are passed by the determiner class. It is consist of multiple web methods that were

written in PHP scripting language. Each method uses a different Google visualization library

to display the results in different views. Google visualization library is a set of scripts that are

written by Google Co. to display data in a nice visualized view. Each library has its own data

format, which should be followed to visualize the results. We followed Google‟s guide to

prepare and display our data results (Google org, 2015). The following subsections

demonstrate some of the visualization methods that were used in our proposed system.

 69

3.4.1.7.1. Pie Chart Method

We used these kinds of charts to display information about the attacks that might hit systems

services, and the attacks that already hit systems services. We accepted the data from the

determiner methods, specifically from the methods that are related to the services, prepare the

information accepted, and finally display the results.

3.4.1.7.2. Annotation Chart Method

This method displays the data in a time line view. We used this type of chart to display attacks

statistics that occurred before a specific date time. In other words, this method displays

historical information about attacks. This method accepts data from the attack related

determiner method then performs necessary preparation to the data before displaying it.

3.4.1.7.3. Word Trees Chart Method

This method displays the result in a word trees format. We used this method to display related

systems services that might be in danger in our DMZ. This method accepts its data from an

attacks related service determiner methods.

3.4.1.7.4. Column Chart Method

This method is the same as the pie chart method. However, it has minimal changes in data

preparation.

 70

3.4.1.7.5. Organization Chart Method

This method takes its data directly from the categorizer method. For that, it is considered the

fastest method that displays result for the administrator.

3.5 Summary

The goal of this chapter is to show how the semantic analytical engine for IDS was developed.

Also, we showed the procedures followed to make the system semantically analyze each

attack logged, so it can perform prediction about incoming attacks or services that might be in

danger. In addition, we explained how semantic connection between IDSs and NVDs was

made.

This chapter shows the steps needed to be performed on each attack logged, before visualizing

the results.

Furthermore, this chapter demonstrates the algorithms and mathematical formulas that we

used to build the analytical engine. In addition, we showed that the predictions are based on

predefined criteria‟s that are passed, to be queried.

Then next chapter shows how we validated our system using real data (from KDDCup99

dataset). Furthermore, explain how we measured the performance of our system using a

queening model, and Anylogic simulation tool.

 71

Chapter 4

System Validation

In the previous chapter we showed how we built our prototype using PHP scripting language,

and Jena java library. In this chapter we will show how our prototype was validated using

three different techniques. The first technique is by validating our system using KDDCup99

dataset. KDD is considered the main source of attacks that hit the DMZ system. On the other

hand, the source of vulnerability attacks information is the NVD database. We used the NVD

database from 2002 to 2008 in the implementation of our experiments, which it's stored in the

OKB as discussed earlier [chapter 3]. The second technique is the queuing model, which we

used to validate our system in a heavy multi-user environment. The Anylogic simulator was

the last technique we used to validate the system. Furthermore, in this chapter we present

some of the web user pages that are shown to the administrator.

4.1 KDDCup99 Experimental Data

 KDDCup99 is the most widely used data for evaluating and validating the intrusion detection

systems. In our experiments, we used these data; to predict attacks related to attacks stored in

this dataset. The Defense Advanced Research projects Agency [DARPA] and Air force

Research Laboratory [AFRL], MIT Lincoln Laboratory had collected these large datasets from

real networks, for the evaluation of computer network intrusion detection systems (Panda &

Patra, 2007).

We used and queried the data in this dataset, to predict new and related attacks from the

created OKB. We performed different tests on these data to get predicted attacks based on the

tests requested. These experiments were performed on an Intel dual core 3.0 GH machine,

with 3 GB memory, and a PHP java support environment. The tested machine has the

following services enabled on it; snmp, internet_information_server, frontpage and

pdg_shopping_carte [in CPE format].

 72

4.1.1. Measuring the Accuracy of attack prediction

The main source of attacks predictions is our created OKB; we use it to predict the attacks

related to the stored sniffed attacks, by using ontology inferences reasoners and SPARQL

queries. The predictions are based on the reasoners to extracted additional facts about specific

attacks; we depend on four metrics passed to reasoners to extract information which are:

CVSSScore, AttackMechanism, Attacker, and products. We performed three tests and

manipulate the threshold of these parameters.

4.1.1.1. Predictions based on two parameters

In this test we pass four parameters [which are mentioned earlier], and we limit the threshold

of the resoners to two, which means that if two parameters that are passed or more match in

the OKB, it return vulnerability as predicted attack; i.e. if for example vulnerability CVE-123

that are sniffed and logged has a CVSSScore is high, Attacker type is remote,

AttackMechanism is by .htaccess file, and the vulnerable product is Apache server 1.3. The

reasoners will check the OKB files if two or more of the above information is true for the

vulnerabilities inside it, For instance if CVE-456 inside OKB affected Apache Server 1.3, and

has CVSScore high the resoner will ignore the Attacker type and Attack Mechanism and

return that CVE-456 is predicted attack for CVE-123. Table (4.1) shows the results of

prediction for services if we limit the threshold of reasoners to two.

Table 4.1: Two parameters metric for accuracy prediction

Service name Predicted

True

alarm

False

alarm

Accuracy

percentage

snmp 17 4 13 23.5%

internet_information_server 11 2 9 22.3%

frontpage 45 31 14 68.8%

pdg_shopping_carte 3 2 1 66.6%

 73

4.1.1.2. Predictions based on three parameters

We repeat the same experiment as in [section 4.1.1.1]. But in this experiment we made the

threshold of reasoners to three instead of two. In other word, must at least three of passed

parameter be true to return an attack as predicted attack. Table (4.2) shows the result of

prediction based on three parameters.

Table 4.2: Three parameters metric for accuracy prediction

Service name Predicted

True

alarm

False

alarm

 Accuracy

percentage

snmp 9 4 5 44.4%

internet_information_server 2 2 0 100%

frontpage 39 31 8 79.5%

pdg_shopping_carte 2 2 0 100%

4.1.1.3. Predictions based on four parameters

We repeat the same experiment as in [sections 4.1.1.1 and 4.1.1.2]. On the contrary, in this

experiment we made the threshold of reasoners to four, i.e. the four passed parameters must be

true to return an attack as predicted attacks. Table (4.3) shows the result of prediction based on

four parameters. The only misses that occurs in frontpage service for example is because the

value of attacker type does not exists in original NVD XML file that was converted into RDF

triple [the summary part of the original XML file does not contains information about

attacker], so that the reasoners added a virtual value from the passed attacker attribute value

and made it the value that is missed.

 74

Table 4.3: Four parameters metric for accuracy prediction.

Service name Predicted

True

alarm

False

alarm

Accuracy

percentage

snmp 5 4 1 80%

internet_information_server 2 2 0 100%

frontpage 34 31 3 91.2%

pdg_shopping_carte 2 2 0 100%

From the results of three experiments we can see if we increase the threshold of reasoners, the

prediction accuracy increased. But, the attacks relation between different services will be

decreased, thus if we concerned about attacks relation we can safely increase the threshold of

the reasoners.

4.1.1.4. Comparing the results with other systems

We compare the results of inferences made by reasoners [reasnoer threshold = 4] used in our

system with two other systems that are used reasoners for attacks prediction (Salini &

Shenbagam, 2015) and (Elahi, Yu, & Zannone, 2009) , also we compare our approach with

other system that uses other datamining algorithms [GA] (Hoque, Mukit, & Bikas, 2012) for

attacks prediction. Table (4.4) shows the result of comparisons.

Table 4.4: System comparisons.

System Used Prediction Accuracy

Our System 92.8%

Other OKB infernces 1 84.6%

Other OKB infernces 2 70.5%

Using GA 53%

 75

As we can see from the results our system gives the best results because the prediction

depends on two sources of data semantically connected for attack prediction, not as other

systems that use pre trained data to do prediction, nor uses pre built ontology to predict attacks

from normal network traffic. Thus, this makes the system more practical to be applied for

production environment.

4.2 Queuing Model

To validate our proposed system in other way, rather than using KDDCup99 benchmark, we

considered modeling our system using a queuing model. Queuing model is a mathematical

model (Wikipedia, 2016) (Belch, Greiner, de Meer, & Trivedi, Queueing Networks and

Markov Chains, 1998), which we used in our proposed system to predict waiting time and

how much time each request is takes to be processed, by different modules of the system.

As mentioned earlier we have three modules, so we must have three different queues:

categorizer, determiner and visualizer queues. Each request [query requested by

administrator], comes to the system in the form of 2000 rows per query [i.e. we limit the query

to only 2000 rows per request, which we found good in term of time required for processing.

Table (4.5) demonstrates different chunk sizes and the time required by different part to

process it, the time taken by determiner was unchanged, because, the data set contains

replicated attacks extracted and filtered before entered this module].

 76

Table 4.5: Time Required to process different sizes of requests at same time.

Number of

attacks per

request

Time in

categorizer(Sec)

Time in

determiner(Sec)

Time in

visualizer(Sec)

Total

time(Sec)

Number of

attacks per

request

500 3.82 1.4 1.014 6.234 500

1000 6.6 1.4 1.033 9.033 1000

2000 13.8 1.4 1.064 16.264 2000

4000 25.9 1.4 1.13 28.43 4000

6000 37.8 1.4 1.22 40.42 6000

8000 56.7 1.4 1.32 59.42 8000

These requests enter the categorizer first and are grouped by it, then mostly go to determiner,

and finally to visualizer to display results. However, in some cases these grouped requests go

to the visualizer directly from categorizer, to display the information grouped. So each request

consists of a chunk of rows [2000 rows], and it is treated as one request by the system. These

requests come to our system in a poison distribution in average, with one request each second;

since we know that in each network there is a peak time and normal and we care about events

that are arrive. In our system, we can use Jackson open network model, to present our system,

because the system consists of multiple queues. In addition, the requests come from outside

the system. Figure (4.1) below shows the queuing model for our proposed system.

 77

Figure 4.1: System queue model.

So, we have three queues; each queue in our system is an m|m|1|∞ queue, since the requests

come to our system in a poison distribution, with an average of one request per second. We

have one server in each queue, to serve the requests. In addition, each queue type is a FIFO

and we have infinite queue size for each queue in the system. The following information

represents data obtained by performing sample query on KDD data set, and it records how

much time each component require to perform the necessary data processing. From these

data we could predict the behavior of the proposed system, so that we can estimate how much

each requests required to be processed. Furthermore, the throughput of a busy system, the

utilization of the system, the probability of the system being idle, and other useful information

shows us how the system will reacts in a busy environment. In the following calculations: q1

represent categorizer, q2 represent determiner and q3 represent visualizer.

λ1 = 1/seconds [chunk of 2000] [rate of arrival for q1], µ1 = 13.8 sec [service time for q1]

λ2 = 0.9 * 1 = 0.9 [rate of arrival for q2], µ2= 1.4 sec [service time for q2]

λ3 = 0.1 * 1 + 0.9 = 1 [rate of arrival for q3], µ3= 1.064 sec [service time for q3]

● Total throughput = 2.9 requests.

 78

● Expected number of requests in the system (L)

By using the normalization condition we can see that this geometric sum is convergent,

iff λ/µ < 1 = P, Thus:-

P(q1) = 0.07 (λ1/µ1) for queue1.

P(q2) = 0.64 (λ2/µ2) for queue2.

P(q3) = 0.9 (λ3/µ3) for queue3.

L(q1) = 0.075 (expected number of requests in queue q1).

L(q2) = 1.77 (expected number of requests in queue q2).

L(q3) = 9 (expected number of requests in queue q3).

L = 0.075 + 1.77 + 9 = 10.8 requests is the Expected number of requests in the system.

● Waiting time for the next request to be served (W)

w(q1) = 0.075 second in q1.

w(q2) = 1.96 second in q2.

w(q3) = 9 second in q3.

W = 0.075 + 1.96 + 9 = 11.04 second Waiting time for the next request to be served.

● Probability of the system being idle

p(0,0,0) = 0.93 * 0.36 * 0.1 = 0.03348

3.3% the system is being idle.

● Probability of the system is busy

p = (1 – p0) = 0.967

96% the system is busy.

● Expected number of requests in the categorizer

Lq(q1) = Ls(q1) – P(q1) = 0.05 requests.

● Expected waiting time spend in the categorizer

Wq(q1) = Lq(q1) / λ1 = 0.05 seconds

 79

● Expected number of requests in the determiner

Lq(q2) = Ls(q2) – P(q2) = 1.13 requests.

● Expected waiting time spend in the categorizer

Wq(q1) = Lq(q1) / λ2 = 0.57 seconds

● Expected number of requests in the visualizer

Lq(q3) = Ls(q3) – P(q3) = 8.1

● Expected waiting time spend in the categorizer

Wq(q1) = Lq(q1) / λ3 = 8.1 seconds

● The probability that are at least two requests in the system

p(n ≥ 2) = 1 – p0 – p1 = 0.913

91% there are two requests in the system

● The probability that there are five requests in the system

p(5) = P^5 p0 = 0.361

36% five requests exist in the system.

4.3 Simulating the System using Anylogic

Anylogic is simulation software; it provides an easy way to predict the behavior of a system. It

has an easy way to display and simulate an event-based system (anylogic, 2016), the same as

our proposed system. We simulated our system using Anylogic, with enterprise tools to

present event processes in our system, and to implement our queuing model in a trusted

simulation tool. Also, we used analysis tools to display statistics and the expectation of our

proposed system. Furthermore, we used java classes to keep a track of events occurred, while

 80

simulating our system. The code snippet below shows how we used java classes in anylogic,

to keep a track of a total waiting time in the queues, before displaying the results.

 double startWaiting;

 double enteredSystem;

 double startWaitingDet;

 double startWaitingVis;

 double currentTime;

 ……………..

 entity.currentTime = time()-entity.enteredSystem;

 …..repeated for each queue

 timeInSystemDistr.add(time()-entity.enteredSystem);

Figure (4.2), shows the implementation, and results of simulating our system in Anylogic

software.

 81

Figure 4.2: Simulating the system using Anylogic.

 82

4.4 System User Interface

The user interface that is displayed to the network administrator consists of; PHP files that are

connected to Google visualization libraries, to display information easily and nicely. The main

user pages are the annotation bar page, the service display page, the dashboard page and the

system update or upgrade page.

4.4.1. Annotation Bar Page

This page display the information in a timeline, to allow the administrator to choose the date,

for which attacks occurred in a specific system with all services enabled on it. Figure (4.3)

shows the annotation bar page.

 83

 Figure 4.3: Annotation bar page.

 84

4.4.2. Service Display Page

In this page the information is displayed according to a specific service, for the entire DMZ in

specific date time interval. It displays information in a bar chart format for a group of events

which occurred in slots of dates. Figure (4.4) below demonstrates how information is

displayed for a specific service.

 85

Figure 4.4: Service display page.

 86

4.4.3. Dashboard Page

This main page displays three kind of information. The first type of information is about the

dangerous attacks that hit the system services. The second type is to display prediction

statistics, about the attacks that may make our system vulnerable. The final type of

information is to display the severity and the risk of each attack that hit system services. The

first two types of information are displayed in pie chart format, and the later one displayed in a

percentage bar chart. Figure (4.5) shows these charts.

 87

Figure 4.5: Dashboard page.

 88

4.4.4. System Updates / Upgrade page

The system update / upgrade page, allows the administrator to update the vulnerabilities

database signature, by adding the latest vulnerability database. It also allows the administrator

to update the structure of the system to better suit the organization‟s needs. Figures (4.6)

below demonstrate the mechanism of how the system can be updated or upgraded.

 89

Figure 4.6: System updates / upgrades process.

 90

4.5 Summary

This chapter examined the proposed system by some experiments, and discussed the results

for these experiments. We had validated our system in three different ways; KDDCup99,

queuing model, and Anylogic simulation.

The results of validating the system using KDDCup99 show that if we increase the threshold

of the reasoners the attack prediction increased. Furthermore, the results show that if the

number of attacks increased [queried], the processing time increased.

Measuring the performance using queuing model, shows that 96% of the time the system will

be busy.

Simulating the system in Anylogic enterprise tools, shows same results as showed in queuing

model.

In this chapter we continuously presented some of important page designs that are used in the

system. In next chapter, we will conclude, summarize, and suggest some of the future work for

the system.

 91

Chapter 5

 Summary and Future Work

This chapter concludes the thesis. A review of the importance of the system is presented with

focus on the main contributions, results, limitations and assumptions, and possible future

work.

In our thesis we modeled a new analysis engine in intrusion detection system for DMZs.

DMZs are known as the most important part in the network for each enterprise organization.

Our system depends on OKB; which was built based on the basics of the network security

attributes [chapter 3], to perform predictions about attacks. We automated the process of

extracting useful attacks information, in addition to updating the knowledge of our smart

engine by automating the processes of updating and upgrading the system. We believe that

adding OKB to the intrusion detection system adds a certain values in terms of making it

smarter. This also adds valuable characteristics to the system, in terms of making NIDS

perform predictions, which are based on multiple attributes. Thus, the predictions are more

accurate [chapter 4].

The rest of this chapter presents the conclusion, including contributions, summary of results,

limitations and assumptions. It also presents potential research areas for future work.

5.1 Contribution

In our research, we have two main contributions: extracting useful information that

semantically connects snort network intrusion detection system [IDS] logs, and the National

Vulnerability Database [NVD] using semantic web technology, so that the signature based

IDSs become almost anomaly based IDSs because of the prediction ability. The other

contribution is to automate the way of updating ontology structure that is specialized for

computer network services. These contributions are summarized in the following subsections.

 92

5.1.1. Extracting Useful Information from Snort NIDS and NVD

In our proposed system we have two main sources of information; snort logs, which are

sniffed from the network traffic then logged, and the NVD vulnerabilities databases that are

converted into Ontology Knowledge Base [OKB]. In the smart analysis engine for DMZ, we

read the attacks which hit our systems from snort logs, after that reasoning and querying these

attacks from the stored OKB file, to get extra useful information about each attack recorded.

5.1.2. Automatic Ontology Updates

OKB in analytic engine represent the heart of it because from it we can predict and extract

additional useful information about vulnerabilities attacks. OKB consists of two parts; the

schema part [T-Box], and the data part [A-Box]. Ontology in our system represents the

schema and the relations between vulnerabilities and services. Ontology should be created

carefully, since it reflects the structure where the data should be placed. Ontology creation in

most cases is performed by specialized tools; such as protégé. The skeleton of our ontology is

created by protégé; it reflects the most common network services existing. Due to the

continuously changes in the information technology services, and the needs for organizations

differ from each other‟s. Ontology should reflect the organization‟s needs to allow better

prediction and extraction of information, so that it should be updated each time the

organization needs changed. Manual ontology updating is not a practical procedure, and

makes the system hard to use, as it requires the user to be a semantic web programmer. In our

proposed system, we made the ontology creation automated in an easy way [chapter 4], and

that allows the data to be easily added to it and reflects the structure modified.

 93

5.2 Results

Our work is evaluated in three different ways; we apply KDDCup99 dataset to our system, and

we model our system using queuing model then simulate it using Anylogic simulator. The

following subsections summarize how our system is evaluated.

5.2.1. Measures using KDD Benchmark

We used and queried data existing in this dataset, to predict new and related attacks from the

created OKB. We performed different tests on these data to get prediction. The results are

found as follows:

● The accuracy of prediction depends on several factors that are queried and reasoned

[chapter 4].

● As the number of reasoner threshold increased the prediction accuracy increased.

● The best number for the reasoner threshold is four, which shows low false alarm

predictions.

● The prediction accuracy for the system is 92.8%, if we set the reasoner threshold to

four.

5.2.2. Queuing Model

We applied this mathematical model to our proposed analytical engine, to predict waiting

time, and how much time each request is taken to be processed by different modules of the

system. This is useful model for a multiuser system, and heavy network systems. The

following results showed after applying queuing model to the system:

 94

● Total throughput = 2.9 requests.

● Expected number of requests in the system = 10.8 requests.

● Waiting time for the next request to be served = 11.04 Sec.

● 96% of the time, the system will be busy.

Also we simulated our system using Anylogic software, and showed almost the same results

[chapter 4].

5.3 Limitations and Assumptions

All versions of KDDCup99 datasets are combined and used for evaluating our system. These

datasets share common attacks signatures. In addition, we used NVD vulnerabilities databases

from 2002 to 2008. It is impossible to test all kind of attacks existing in the world. But we

think that all attacks can be queried, and informed in the same way as our proposed system

performs it, since each attack in the world has behaviors and attributes. One limitation in our

system is that we depend on snort IDS, in capturing attacks, and some research shows that

snort for heavy networks can drop packets (Bulajoul , James, & Pannu, 2013). Another

limitation is that snort is a signature based IDS and some attacks; especially web attacks may

be not recognized and logged.

5.4 Future Work

Several open issues can be worked on, such as work on enhancing the performance of data

processing; especially by the categorizer module in the system. In addition, work could be

undertaken to enhance the predictions performed by the determiner. Also, anomaly based

intrusion detection systems can be used, to perform detection on masqueraded attacks.

 95

Furthermore, further research could enable attacks confirmation, by enabling automatic

penetration test for each attack that has high risk severity. Other work could integrate the

system with firewalls; for example, if attack that is logged and reasoned with high severity,

will notify the firewall to automatically create a rule to block the traffic comes from that

destination.

 96

References

1. Elahi, G., Yu, E., & Zannone, N. (2009). A Modeling Ontology for Integrating Vulnerabilities

into Security Requirements Conceptual Foundations. Springer Berlin Heidelberg, 99-

114.

2. Ontology. (2012). Retrieved 2016, from Semantic Web:

http://semanticweb.org/wiki/Ontology

3. anylogic. (2016). about-us. Retrieved March 27, 2016, from anylogic:

http://www.anylogic.com/about-us

4. Apache Jena. (2015). Apache Jena Tutorial. (Apache Jena Co.) Retrieved February 20,

2016, from Apache Jena: https://jena.apache.org/getting_started/index.html

5. Bairwa, S., Mewara, B., & Gajrani, J. (2014). VULNERABILITY SCANNERS: A

PROACTIVE APPROACH TO ASSESS WEB APPLICATION SECURITY. SCNDS

2013 Conference (pp. 113-124). Ajmer: International Journal on Computational

Sciences & Applications (IJCSA).

6. Belch, G., Greiner, S., de Meer, H., & Trivedi, K. S. (1998). Chapter 13. Applications. In G.

Belch, S. Greiner, H. de Meer, & K. S. Trivedi, Queueing Networks and Markov

Chains (pp. 603-678). New York: John Wiley & Sons, Inc.

7. Belch, G., Greiner, S., de Meer, H., & Trivedi, K. S. (1998). Queueing Networks and

Markov Chains. New York: John Wiley & Sons, Inc.

8. Bulajoul , W., James, A., & Pannu, M. (2013). Network Intrusion Detection Systems in

High-Speed Traffic in Computer Networks. e-Business Engineering (ICEBE), 2013

IEEE 10th International Conference on (pp. 168-175). Coventry: IEEE.

9. C. C. Palmer; IBM Research Divisio. (2001). Ethical hacking. IBM Systems Journal, 769-

780.

 97

10. Cornell University. (n.d.). Legal Information Institute. Retrieved January 2, 2016, from

Cornell University Law School: https://www.law.cornell.edu/uscode/text/44/3542

11. D. Kshirsagar, D., & Kumar, S. (2013). Ontology for Detection of Web Attacks.

Communication Systems and Network Technologies (CSNT), 2013 International

Conference on (pp. 612-615). Gwalior: IEEE.

12. Ec-Council. (2010). Ethical Hacking and Countermeasures. New Mexico: Ec-Council Co.

13. Google org. (2015). Charts. (Google) Retrieved March 6, 2016, from Google:

https://developers.google.com/chart/

14. Handong Wu, J. F. (2009). NETWORK INTRUSION DETECTION AND ANALYSIS

SYSTEM AND METHOD.

15. Hoque, M. S., Mukit, M. A., & Bikas, M. A. (2012). AN IMPLEMENTATION OF

INTRUSION DETECTION SYSTEM USING GENETIC ALGORITHM. International

Journal of Network Security & Its Applications, 4(2), 109-120.

16. Horridge, M. (2011). A Practical Guide To Building OWL Ontologies Using Protégé 4 and

CO-ODE Tools Edition 1.3. Machester: University of Machester.

17. IC3. (2014). 2014 Internet Crime Report. IC3.

18. Kotikela, S., Kavi , K., Gomathisankaran, M., & Singhal, A. (2013). VULCAN: Vulnerability

Assessment Framework for Cloud Computing. Software Security and Reliability

(SERE), 2013 IEEE 7th International Conference on (pp. 218-226). Gaithersburg, MD:

IEEE.

19. Nist. (2016). National Vulnerability Database. Retrieved 2 March, 2016, from National

Vulnerability Database: https://nvd.nist.gov/

 98

20. nmap CO. (2016). exploitation tools. Retrieved March 12, 2016, from SecTools:

http://sectools.org/tag/sploits/

21. nmap CO. (2016). sectools. Retrieved 2016, from vulnerability scanners:

http://sectools.org/tag/vuln-scanners/

22. Panda, M., & Patra, R. M. (2007). NETWORK INTRUSION DETECTION USING NAÏVE

BAYES. IJCSNS International Journal of Computer Science and Network Security,

7(12), 258-263.

23. Parker, D. (1995). Using threats to demonstrate the elements of information security.

Security and Detection, 1995., European Convention on (pp. 11-17). Brighton: IET.

24. Phong, C. T., & Yan, W. Q. (2014). An Overview of Penetration Testing. International

Journal of Digital Crime and Forensics, 50-74.

25. Quinn, S., Waltermire, D., Johnson, C., Scarfone, K., & Banghart, J. (2009, November).

The Technical Specification for the Security Content Automation Protocol

(SCAP):SCAP Version 1.0. Gaithersburg, USA: NIST.

26. Rehman, R. U. (2003). C HAPTER 3: Working with Snort Rules. In R. U. Rehman,

Intrusion Detection with SNORT: Advanced IDS Techniques Using SNORT, Apache,

MySQL, PHP, and ACID (pp. 75-129). New York, United States Of America: Prentice

Hall Professional.

27. Roesch, M., Green, C., Sourcefire Inc, & Cisco. (2015). SNORT Users Manual.

(amazonaws) Retrieved December 1, 2015, from manual-snort-org: http://manual-

snort-org.s3-website-us-east-1.amazonaws.com/

28. Saad, S., & Traore, I. (2010). Method ontology for intelligent network forensics analysis.

Privacy Security and Trust (PST), 2010 Eighth Annual International Conference on

(pp. 7-14). Ottawa, ON: IEEE.

 99

29. Salini, & Shenbagam. (2015). Prediction and Classification of Web Application Attacks

using Vulnerability Ontology. International Journal of Computer Applications, 116, 42-

47.

30. Semantic Web. (2012, June 13). Ontology. Retrieved February 1, 2016, from Semantic

Web: http://semanticweb.org/wiki/Ontology

31. Stanford. (2015, November 3). Protege Desktop. Retrieved March 21, 2016, from

protegewiki.stanford: http://protegewiki.stanford.edu/wiki/Protege4UserDocs

32. Stanford. (2015, November 10). WebProtégé. (stanford) Retrieved March 21, 2016, from

rotegewiki.stanford: http://protegewiki.stanford.edu/wiki/WebProtegeUsersGuide

33. Stanford. (2016, April 11). WebProtégé. (stanford) Retrieved May 1, 2016, from

protegewiki.stanford: http://protegewiki.stanford.edu/wiki/WebProtege

34. Taye , M. M. (2010). Understanding Semantic Web and Ontologies: Theory and

Applications. Journal of Computing, 182-192.

35. Uddin, M., Khowaja, K., & Abdul Rehman, A. (2010). Dynamic Multi-Layer Signature

Based Intrusion Detection System Using Mobile Agents. International Journal of

Network Security & Its Applications (IJNSA), 2(4), 129-141.

36. W3C org. (2015). Inference. Retrieved February 24, 2016, from W3C:

https://www.w3.org/standards/semanticweb/inference

37. Wang, J. A., & Guo, M. (2009). OVM: An Ontology for Vulnerability Management.

CSIIRW- Cyber Security and Information Intelligence Research (pp. 34-38). New

York: ACM.

38. Wang, J. A., Guo, M., Wang, H., Xia, M., & Zhou, L. (2009). Ontology-based Security

Assessment for Software Products. CSIIRW '09 Proceedings of the 5th Annual

Workshop on Cyber Security and Information Intelligence Research: Cyber Security

and Information Intelligence Challenges and Strategies (pp. 1-10). New York: ACM.

 100

39. Wikipedia. (2016, January 2). Information security. Retrieved January 2, 2016, from

Wikipedia: https://en.wikipedia.org/wiki/Information_security

40. Wikipedia. (2016, January 1). Intrusion prevention system. Retrieved January 28, 2016,

from Wikipedia: https://en.wikipedia.org/wiki/Intrusion_prevention_system

41. Wikipedia. (2016, February 13). Queueing theory. Retrieved March 7, 2016, from

Wikipedia: https://en.wikipedia.org/wiki/Queueing_theory

 101

Appendix 1

Snort

Snort is an open source cross platform network intrusion detection system. It works in one of

the following three modes: the sniffer mode, which is simply, sniffs the network traffic, and

displays the sniffed traffic on the screen. The second mode is Packet mode, which simply

sniffs the traffic, and saves them to the hard disk. The final mode is Network Intrusion

Detection Mode [NIDS], which inspects and logs traffic in the network (Uddin, Khowaja, &

Abdul Rehman, 2010) (Roesch, Green, Sourcefire Inc, & Cisco, 2015).

Snort uses rules for detection of malware in network traffic. These rules can be applied to

snort, and customized to detect new attacks signatures. In addition, we can write a rule to pass,

or drop, or log a certain packets based on their payloads. Rules simply understandable syntax;

a simple line, and can be extended to multiple lines. In all cases, these rules must be included

in the snort configuration file called snort.conf file. Snort rules, have two parts: the rule

header, and rule options. The rule header contains actions that should be taken about a specific

packet. It is logically divided into Action, Protocol, Address, Port, Direction, Address, and

port. The rule options, should be true, to invoke an action in rule header part (Roesch, Green,

Sourcefire Inc, & Cisco, 2015) (Rehman, 2003).

The following example is a simple snort rule, which logs all UDP traffic except for source port

number 161, which is a SNMP protocol.

log udp any !23 -> any any log udp

 102

Appendix 2

 Protégé

Protégé is an open source cross platform written in java programing language. This tool can be

used to create an Ontology Knowledge Base [OKB]. Furthermore, it can be used to query

information about stored OKB. Protégé is a GUI tool, which either works through a web

browser, or through a desktop application.

Web protégé, supports OWL 2.0, allows collaboration with different users. It also, allows a

customizable user interface, and supports multiple ontologies format, such as XML/RDF,

Turtle,WL/XML, OBO, and others.

Desktop protégé has the same features as web protégé. In addition, it has support of reasoners.

Furthermore, it has a built in capabilities that allow the developer to extend the functionality of

protégé, by updating its core (Stanford, 2015) (Stanford, 2016) (Stanford, 2015) (Horridge,

2011). The interface of protégé is easy to use, and consists of: menu, tabs, work area, and

selection area .The following example shows the main interface of ontGraph in protégé

desktop tool.

 103

Figure A.1.1: protégé Ontgraph area.

 104

 النظام الذكي المختص بأنظمة مراقبة التسمل الإلكترونية بمناطق خوادم الشبكة

 حسن سعيفانحمد رامي" زهير مإعداد: "

 جيوسيو د. رشيد اد النجارهج : د.اشراف

 :ممخص

التنبأ بالهجمات الالكترونية الممكن حصولها عمى الشبكات الإلكترونية هو مهمة صعبة لأنظمة الحماية
الحالية، حيث أن انظمة المراقبة الحالية تواجة مشكمة في التنبأ بما يمكن الحصول في الشبكة من

واخطار، وهناك العديد من الابحاث التي يتم اجرائها عمى هذة الانظمة لجعمها اكثر قدرة عمى تهديدات
 " .Machine Learningالتنبأ من خلال خوارزميات تعميم الألة "

من خلال البحث الحالي تم إستحداث طريقة جديدة لجعل هذة الانظمة تستبط المعمومات وتحميمها من

". حيث قمنا Semantic Technologyالتسمل الإلكترونية مع التقنيات الدلالية " خلال دمج أنظمة مراقبة
 Nationalبربط أنظمة مراقبة التسمل الإلكترونية دلاليا مع قواعد بيانات الإختراق العالمية "

Vulnerability Database لجعل هذة الأنظمة دلاليا تستنبط معمومات الأخطار المتوقع حصولها ,"
كة الإلكترونية ومعرفة الأنظمة المعرضة لهذة الأخطار. وقمنا ببناء النظام التحميمي لمنظام من عمى الشب

خلال تطبيق معايير أمن شبكات الحاسوب الإلكترونية واضافة معايير أخرى مختصة بأنظمة الحاسوب
بناء عمى متطمبات الموجود فيها خوادم المؤسسات, كما وقمنا بجعل هذا النظام قابل لمتعديل والتحديث

 المؤسسة.

وفي مرحمة التقييم قمنا بتطبيق النظام بإستخدام أربعة طرق: بناء نظام ويب و قمنا بتجربة هذا النظام
" لتوضيح دقة النتائج التي يقوم بها KDDC up 99 data setعمى مجموعة بيانات عالمية تسمى "

النتائج الغير صحيحة الناتجة من التنبأ، كما وقمنا النظام في التنبأ عمى هذة البيانات والتخفيف من
" لمعرفة قدرة النظام عمى العمل في البيئة Queuing Modelبمحاكاة النظام باستخدام تقنية الطوبير "

 ."Anylogicالالكترونية الضخمة, وقمنا بإختبار نظام الطوابير باستخدام اداة محاكاه مختصة تسمى "

