146 research outputs found

    An efficient compressive sensing based PS-DInSAR method for surface deformation estimation

    Get PDF
    Permanent scatterers differential interferometric synthetic aperture radar (PS-DInSAR) is a technique for detecting surface micro-deformation, with an accuracy at the centimeter to millimeter level. However, its performance is limited by the number of SAR images available (normally more than 20 are needed). Compressive Sensing (CS) has been proven to be an effective signal recovery method with only a very limited number of measurements. Applying CS to PS-DInSAR, a novel CS-PS-DInSAR method is proposed to estimate the deformation with fewer SAR images. By analyzing the PS-DInSAR process in detail, first the sparsity representation of deformation velocity difference is obtained; then, the mathematical model of CS-PS-DInSAR is derived and the restricted isometry property (RIP) of the measurement matrix is discussed to validate the proposed CS-PS-DInSAR in theory. The implementation of CS-PS-DInSAR is achieved by employing basis pursuit algorithms to estimate the deformation velocity. With the proposed method, DInSAR deformation estimation can be achieved by a much smaller number of SAR images, as demonstrated by simulation result

    PSI deformation map retrieval by means of temporal sublook coherence on reduced sets of SAR images

    Get PDF
    Prior to the application of any persistent scatterer interferometry (PSI) technique for the monitoring of terrain displacement phenomena, an adequate pixel selection must be carried out in order to prevent the inclusion of noisy pixels in the processing. The rationale is to detect the so-called persistent scatterers, which are characterized by preserving their phase quality along the multi-temporal set of synthetic aperture radar (SAR) images available. Two criteria are mainly available for the estimation of pixels' phase quality, i.e., the coherence stability and the amplitude dispersion or permanent scatterers (PS) approach. The coherence stability method allows an accurate estimation of the phase statistics, even when a reduced number of SAR acquisitions is available. Unfortunately, it requires the multi-looking of data during the coherence estimation, leading to a spatial resolution loss in the final results. In contrast, the PS approach works at full-resolution, but it demands a larger number of SAR images to be reliable, typically more than 20. There is hence a clear limitation when a full-resolution PSI processing is to be carried out and the number of acquisitions available is small. In this context, a novel pixel selection method based on exploiting the spectral properties of point-like scatterers, referred to as temporal sublook coherence (TSC), has been recently proposed. This paper seeks to demonstrate the advantages of employing PSI techniques by means of TSC on both orbital and ground-based SAR (GB-SAR) data when the number of images available is small (10 images in the work presented). The displacement maps retrieved through the proposed technique are compared, in terms of pixel density and phase quality, with traditional criteria. Two X-band datasets composed of 10 sliding spotlight TerraSAR-X images and 10 GB-SAR images, respectively, over the landslide of El Forn de Canillo (Andorran Pyrenees), are employed for this study. For both datasets, the TSC technique has showed an excellent performance compared with traditional techniques, achieving up to a four-fold increase in the number of persistent scatters detected, compared with the coherence stability approach, and a similar density compared with the PS approach, but free of outliers.Peer ReviewedPostprint (published version

    A Method for Selecting SAR Interferometric Pairs Based on Coherence Spectral Clustering

    Get PDF
    To achieve accurate interferometric synthetic aperture radar (SAR) phase estimation, it is essential to select appropriate high-coherence interferometric pairs from massive SAR single-look complex (SLC) image data. The selection should include as many high-coherence interferometric pairs as possible while avoiding low-coherence pairs. By combining coherence and spectral clustering, a novel selection method for SAR interferometric pairs is proposed in this article. The proposed method can be adopted to classify SAR SLC images into different clusters, where the total coherence of interferometric pairs in the same cluster is maximized while that among different clusters is minimized. This is implemented by averaging the coherence matrices of representative pixels to construct an adjacency matrix and performing eigenvalue decomposition for estimating the number of clusters. The effectiveness of the proposed method is demonstrated using 33 TerraSAR-X and 38 dual-polarization Sentinel-1A data samples, yielding improved topography and deformation monitoring results

    Advanced Multitemporal Phase Unwrapping Techniques for DInSAR Analyses

    Get PDF

    Ground-based synthetic aperture radar (GBSAR) interferometry for deformation monitoring

    Get PDF
    Ph. D ThesisGround-based synthetic aperture radar (GBSAR), together with interferometry, represents a powerful tool for deformation monitoring. GBSAR has inherent flexibility, allowing data to be collected with adjustable temporal resolutions through either continuous or discontinuous mode. The goal of this research is to develop a framework to effectively utilise GBSAR for deformation monitoring in both modes, with the emphasis on accuracy, robustness, and real-time capability. To achieve this goal, advanced Interferometric SAR (InSAR) processing algorithms have been proposed to address existing issues in conventional interferometry for GBSAR deformation monitoring. The proposed interferometric algorithms include a new non-local method for the accurate estimation of coherence and interferometric phase, a new approach to selecting coherent pixels with the aim of maximising the density of selected pixels and optimizing the reliability of time series analysis, and a rigorous model for the correction of atmospheric and repositioning errors. On the basis of these algorithms, two complete interferometric processing chains have been developed: one for continuous and the other for discontinuous GBSAR deformation monitoring. The continuous chain is able to process infinite incoming images in real time and extract the evolution of surface movements through temporally coherent pixels. The discontinuous chain integrates additional automatic coregistration of images and correction of repositioning errors between different campaigns. Successful deformation monitoring applications have been completed, including three continuous (a dune, a bridge, and a coastal cliff) and one discontinuous (a hillside), which have demonstrated the feasibility and effectiveness of the presented algorithms and chains for high-accuracy GBSAR interferometric measurement. Significant deformation signals were detected from the three continuous applications and no deformation from the discontinuous. The achieved results are justified quantitatively via a defined precision indicator for the time series estimation and validated qualitatively via a priori knowledge of these observing sites.China Scholarship Council (CSC), Newcastle Universit
    corecore