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Abstract— Multipolarimetric Synthetic Aperture Radar (SAR) 

interferometric phase optimization and phase series estimation 
have received a lot of attentions recently from the polarimetry 
SAR interferometry (PolInSAR) community. In this paper, a 
maximum likelihood estimation (MLE) method for the 
interferometric coherence matrix (ICM) is proposed, which is 
further applied to both interferometric phase optimization and 
phase series estimation. By modelling the PolInSAR coherence 
matrix as the Kronecker product of the polarimetric coherence 
matrix (PCM) and ICM, the MLE of ICM under complex circular 
Gaussian distribution hypothesis is acquired through an alternate 
iterative optimization method. In addition, it is theoretically 
proved in this paper that the two state-of-the-art methods, i.e., the 
TP (total power) method and the MLE-MPPL method, are 
suboptimal compared to the proposed method regarding the MLE 
of ICM. Numerical experiments are conducted on simulated fully 
polarimetric data, airborne fully polarimetric E-SAR data and 
spaceborne dual polarimetric Sentinel-1A data, to confirm the 
effectiveness and superiority of the proposed method.  
 

Index Terms—PolInSAR, interferometric phase optimization, 
phase series estimation, maximum likelihood estimation, 
interferometric coherence matrix. 
 

NOMENCLATURE 
 
CCG                         Complex circular Gaussian. 
DEM                   Digital elevation model. 
ESPO                  Exhaustive search polarimetric optimization. 
EMI                     Eigendecomposition-based maximum-

likelihood-estimator of interferometric 
phase. 

EVD                    Eigenvalue decomposition. 
ICM                     Interferometric coherence matrix. 
MLE-MPPL        Maximum likelihood estimator for 

multipolarimetric phase-linking. 
MLE                    Maximum likelihood estimation. 
PCM                    Polarimetric coherence matrix. 
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PolSAR               Polarimetric SAR. 
PolInSAR            Polarimetric SAR interferometry. 
RMSE                 Root-mean-square error. 
SKP                     Sum of Kronecker product. 
TP                       Total power. 

I. INTRODUCTION 
HE polarimetric capability of synthetic aperture radar 

(SAR) sensors has offered huge potentials for polarimetric 
SAR (PolSAR) and polarimetric SAR interferometry 
(PolInSAR) applications, including change detection [1] [2], 
classification [3] [4], forest structure inversion [5] [6], terrain 
digital elevation model (DEM) mapping [7] [8] and earth 
surface deformation monitoring [9]-[13]. Among them, the 
phase-based applications heavily rely on the accuracy of 
interferometric phase or phase series estimation, which is 
directly related to the PolInSAR coherence matrix. 

To exploit the potentials of PolInSAR coherence matrix in 
improving the accuracy of interferometric phase optimization, 
a unitary projection vector was first proposed in [14] to linearly 
combine data from all polarimetric channels and is optimized 
through the maximization of a new coherence value formed by 
two different projection vectors. Another optimization method 
with the same unitary projection vector to optimize was 
proposed in [15], which assumes the equality of polarimetric 
characteristics of two acquisitions spanned by a small baseline; 
in addition, a numerical radius method is applied to acquire the 
optimal projection vector. To ensure that the optimal projection 
vector is adaptive to the local characteristics in heterogenous 
scenes, a modified method was proposed in [8] to optimize the 
projection vector pixel-by-pixel. In general, these methods 
transform the PolInSAR coherence matrix to a new 
interferometric coherence matrix through an optimized 
projection vector; however, as pointed out by [16] [17], they are 
often limited by the finite looking effect, i.e., the estimated 
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coherence region is often biased due to insufficient number of 
looks, leading to unstable optimization results in many cases. 
Unlike the projection vector based methods, in [17], it was 
proposed to treat the interferometric coherence matrices of 
different polarimetric channels, i.e., the diagonal matrix 
elements of PolInSAR coherence matrix, as independent 
statistical samples and stack them up to form a total power (TP) 
coherence matrix, from which the optimized phase can be 
directly extracted. An equivalent form of the TP method was 
also presented in [18], which is called trace coherence method. 
However, different polarimetric channels are often not 
independent of each other, and therefore, simply stacking the 
coherence matrices of different polarimetric channels together 
is obviously not the optimal solution and fails to fully exploit 
the information containing in the PolInSAR coherence matrix. 

The first attempt to exploit the efficacy of multipolarimetric 
data in multi-temporal phase series estimation is attributed to 
[9], which simply selects polarimetric channels with the highest 
coherence value to estimate the phase series. Later on, an 
exhaustive search polarimetric optimization (ESPO) method 
[19] [20] was further developed to find the optimal projection 
vector that can produce the highest average coherence value. 
Different from the ESPO method, in [21], the temporal 
coherence was employed as the objective function for 
projection vector optimization. But neither a maximum average 
coherence nor a maximum temporal coherence can guarantee 
the lowest root-mean-square error (RMSE) in phase series 
estimation. In [22], it was proposed to extract the phase series 
by applying a phase-linking algorithm on the TP coherence 
matrix. However, despite its advantages over the projection 
vector based methods, it is still not the optimal solution in the 
sense of RMSE as the information contained in the PolInSAR 
coherence matrix is not fully exploited. A maximum likelihood 
method for persistent scatters phase series optimization was 
proposed in [23] by assuming independence of three 
polarimetric channels, whereas this assumption cannot hold in 
most cases. Recently, a maximum likelihood estimator for 
multipolarimetric phase-linking (MLE-MPPL) was proposed 
for phase series estimation in our previous work [24], which 
takes the inter-channel correlation into consideration and is 
derived within the framework of maximum likelihood 
estimation (MLE) under the hypothesis of complex circular 
Gaussian (CCG) distribution, making it the asymptotically 
optimal solution under the criterion of RMSE. However, in the 
MLE-MPPL method, the polarimetric coherence matrix (PCM) 
and interferometric coherence matrix (ICM) are only obtained 
by averaging the simple estimates over different tracks and 
polarimetric channels. According to the single-polarization 
phase linking uncertainty theory [25] [26], the accuracy of ICM 
exerts huge impact on phase series estimation accuracy. 
Analogously, inaccurate estimation of ICM and PCM in the 
MLE-MPPL method will degrade the phase series estimation 
result in the multipolarimetric case. 

Therefore, to fully exploit the potential of multipolarimetric 
information contained in the PolInSAR coherence matrix for 
interferometric phase optimization and phase series estimation, 
an MLE of the ICM is proposed in this work. First, the 

PolInSAR coherence matrix is modelled as the Kronecker 
product of PCM and ICM. Next, the MLE of ICM under CCG 
distribution is analyzed and acquired through an alternate 
iterative optimization method. Then, in the single-baseline case, 
the MLE of ICM is used for interferometric phase optimization, 
which can achieve the best performance by fully exploiting the 
multipolarimetric information in the PolInSAR coherence 
matrix and it is the optimal solution in the sense of RMSE. In 
the multi-baseline case, the MLE of ICM is used for phase 
series estimation by further employing the phase-linking 
algorithm. In comparison to the MLE-MPPL method, it is 
proved that the proposed method with the MLE of ICM can 
achieve better performance because it provides more accurate 
estimation of ICM. Moreover, the suboptimality of the TP 
method has also been proved by demonstrating that the TP 
method is only a special case of the proposed method when the 
PCM is an identity matrix. 

The remainder of this paper is organized as follows. In 
Section II, the existing methods for multipolarimetric 
interferometric phase optimization and phase series estimation 
are briefly reviewed. The proposed MLE of ICM and its 
applications in interferometric phase optimization and phase 
series estimation are provided in section III. Numerical results 
on both simulated data and real data are presented in section IV. 
Conclusions are drawn in Section V. 

II. EXISTING METHODS FOR MULTIPOLARIMETRIC 
INTERFEROMETRIC PHASE OPTIMIZATION AND PHASE SERIES 

ESTIMATION   
Currently, there are mainly three kinds of methods for 

multipolarimetric interferometric phase optimization and phase 
series estimation, including the projection vector based method, 
the TP method and the MLE-MPPL method. The former two 
can be applied to both interferometric phase optimization and 
phase series estimation, and the MLE-MPPL method is 
primarily designed for phase series estimation. In this section, 
their basic principles are briefly reviewed. 

A. PolInSAR optimization based on projection vector 
In a fully polarimetric SAR acquisition, the Sinclair 

backscattering matrix can be vectorized by a Pauli basis 
scattering vector [19] as 

1 1, , 2
2 2

T

HH VV HH VV HVS S S+ −
 

=  
 

k             (1) 

under the co-polar reciprocity hypothesis, where [ ]T⋅ denotes 
the transpose operator. 

Given N  fully polarimetric SAR single look complex (SLC) 
acquisitions  

[ ]1 2, , , T
N=K k k k                              (2) 

The projection vector based methods [14] [15] [19] [20] 
introduce a unitary projection vector ω  to compress the Pauli 
basis scattering vector K  to a new vector 
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1 2, , ,
TH H H

N =  μ ω k ω k ω k                    (3) 

where ( )H⋅  denotes the Hermitian transpose. Then, the 
projection vector ω  is optimized by exploring the maximum 
average coherence magnitude of the newly formed coherence 
matrix ( )HE=μC μμ , where ( )E ⋅  denotes expectation 

operator, and the optimization problem can be expressed as  

( ) 1

2arg max
1

HN N
ij

opt H H
i j i ii jj

N N = >

=
− ∑∑

ω

ω Ω ω
ω

ω T ω ω T ω
  (4) 

where ⋅  is the modulus operator, H
ii i iE  =  T k k and 

,H
ij i jE i j = ≠ Ω k k .  

B. The TP method  
The TP method [17] [22] treats the sample coherence 

matrices of different polarimetric channels as independent 
statistical samples and directly adds them up to construct the TP 
coherence matrix, expressed as  

3

1

ˆ
TP i

i=

= ∑C C                                   (5) 

where ˆ
iC  is the sample coherence matrix of the thi  

polarimetric channel.  

C. The MLE-MPPL method 
By constructing and maximizing the multipolarimetric 

likelihood function, the MLE-MPPL method [24] derives the 
MLE of the multipolarimetric phase series θ  as  

( )( )
3 3

11
, ,

1
arg max traceH

MLE MPPL pol pol i coh coh i
i

×
−−

−
=

 = −  
 
∑

θ
θ Λ C C C C Λ 



(6) 

where  exp( )j= −Λ θ , ( )trace ⋅  denotes the matrix trace 

operator,


 is the Hadamard product, N N
coh

×∈C   and 
3 3

pol
×∈C 

 are the ICM and PCM, respectively. 3 3
,pol i

×∈C   

and ,
N N

coh i
×∈C  are obtained through the sum of Kronecker 

product (SKP) decomposition on the sample PolInSAR 
coherence matrix  T̂  as follows 

3 3

, ,
1

ˆ
pol i coh i

i

×

=

= ⊗∑T C C                          (7) 

where ⊗  denotes the Kronecker product.  
As mention earlier, the projection vector based methods are 

often affected by the finite looking effect in estimation of iiT  
and ijΩ , which can cause unstable optimization results. 
Besides, the maximum average coherence can not guarantee the 
optimum result under the RMSE criterion. The advantages of 
TP method over the projection vector based methods has 

already validated in [17], but its independence assumption on 
polarimetric channels is often invalid in practice; in other words, 
the cross-polarization information is not exploited. The MLE-
MPPL method has taken the cross-polarization information into 
consideration by removing all constraints on the PCM polC  and 
estimating it in the process. In addition, MLE-MPPL is derived 
under the CCG distribution, but the PCM polC  and ICM cohC  
in MLE-MPPL are only estimated through simple average over 
different acquisitions and polarimetric channels, given by 

1

1ˆ
N

H
pol i i

iN =

= ∑C k k                              (8) 

and  
3

1

1ˆ ˆ
3coh i

i=

= ∑C C                                  (9) 

Therefore, the estimations by (8) and (9) are often not 
accurate enough, which, according to the phase-linking 
uncertainty theory [25] [26], will degrade phase series 
estimation performance. Moreover, MLE-MPPL cannot be 
used directly for single-baseline interferometric phase 
optimization as it is primarily designed for phase series 
estimation. The proposed method presents the MLE of polC  

and cohC  through an alternate iterative optimization algorithm 
and then applies phase-linking on the MLE of cohC  for 
consistent phase series estimation; furthermore, the MLE of 

cohC  can be directly used in single baseline interferometric 
phase optimization. 

III. THE MLE OF ICM AND ITS APPLICATIONS ON 
INTERFEROMETRIC PHASE OPTIMIZATION AND PHASE SERIES 

ESTIMATION 
In this section, an MLE of the ICM is proposed and used in 

both interferometric phase optimization and phase series 
estimation. Performance analysis is provided to demonstrate its 
superiority over the state-of-the-art TP method and MLE-
MPPL method. 

A. MLE of the ICM 
Under the CCG distribution, the probability density function 

(PDF) of N fully polarimetric SAR SLC acquisitions can be 
written as  

( ) ( )
11 exp{ }

det
H

Nf
π

−= −y K T K
T

                (10) 

where ( )det ⋅  represents matrix determinant operator and 

( )HE=T KK  is the PolInSAR coherence matrix. Then, a 

multipolarimetric likelihood function can be constructed as  

( ) ( )1 ˆln det tracepolL −= − −T T T               (11) 

Consider the following model [5] [24] for the PolInSAR 
coherence matrix  
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pol coh= ⊗T C C                             (12) 

Substituting (7) and (12) into (11), a multipolarimetric 
likelihood function with respect to polC  and cohC  can be 
obtained as  

( ) ( )

( ) ( )( )3 3 1

, ,
1

, ln det

trace

pol pol coh pol coh

pol coh pol i coh i
i

L
× −

=

= − ⊗

− ⊗ ⊗∑

C C C C

C C C C 

         (13) 

Then, instead of further modelling cohC  as in the MLE-MPPL 
method, the MLE of the ICM is directly analyzed and acquired 
from (13) by maximizing the likelihood function 

( ),pol pol cohL C C .This is a bivariate function and there is no 

closed form solution for the MLE of polC  and cohC . Inspired by 
[27], an alternate iterative optimization method is proposed here 
to find the solution. The alternate iterative relationship between 

polC  and cohC  are derived as  

( )
3 3

1
, ,

1

1 trace
3coh coh i pol pol i

i

×
−

=

= ∑C C C C                   (14) 

( )
3 3

1
, ,

1

1 tracepol pol i coh coh i
iN

×
−

=

= ∑C C C C                 (15) 

The detailed derivation of (14) and (15) can be found in the 
appendix. Then, the MLE of ICM cohC  can be solved by an 
alternate iteration process, as described in Fig. 1.  

First, the sample PolInSAR coherence matrix T̂  is acquired 
from the multipolarimetric data and decomposed into ,pol iC  and 

,coh iC  through the SKP decomposition. In the meantime, an 

initial ICM 0
cohC  is selected to start the iteration process, which 

can be roughly estimated from the multipolarimetric data as  
3

0

1

1 ˆ
3coh i

i=

= ∑C C                                (16) 

After that, 0
cohC  is substituted into (15) to obtain the estimated 

PCM 1
polC  as  

( )( )3 3 11 0
, ,

1

1 tracepol pol i coh coh i
iN

× −

=

= ∑C C C C              (17) 

Likewise, the obtained 1
polC  is substituted in (14) to update the 

ICM 1
cohC   as  

( )( )3 3 11 1
, ,

1

1 trace
3coh coh i pol pol i

i

× −

=

= ∑C C C C                (18) 

 

SKP decomposition

Multipolarimetric 
data

Initial ICM 

Updating PCM with (21) and 
the likelihood value with (15)  

Calculating the likelihood value 
difference of two successive updates 

Updating ICM with (20) and 
the likelihood value with (15)

The MLE of 
ICM

Calculating the likelihood value 
difference of two successive updates 

Yes 

No

Yes 

No

 
 

Fig. 1. The flowchart of the alternately iterative optimization for the MLE of 
ICM. 

 

and 1
cohC  is again substituted into (16) for the next iteration. At 

the end of each update, the newly obtained ICM and PCM are 
substituted into the likelihood function in (13) to calculate 
corresponding likelihood value. The alternate iteration stops 
when the difference between the likelihood values of two 
successive updates is smaller than a prefixed value ε , which is 
set to 0.001ε =  here. The ICM at the end of the alternate 
iteration process is the final solution. 

B. Application of the MLE of ICM to interferometric phase 
optimization and its performance analysis  

When the multipolarimetric data are in the single-baseline 
configuration, the ICM is an 2 2×  matrix, and the MLE can be 
used for interferometric phase optimization by directly 
extracting the optimized phase from the off-diagonal entries as  

 ( )( ), 1,2
argoptimized coh MLEϕ = C                   (19) 

where optimizedϕ  denotes the optimized interferometric phase, 

( )arg ⋅  denotes the argument of a complex number, ,coh MLEC  the 

MLE of ICM and ( )1,2⋅  the element of a matrix at its first row 

and second column. If much deeper filtering effect is required, 
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existing ICM-based [28] and interferogram-based [29] single-
polarimetric phase filtering methods can be further applied to 
the MLE of ICM and optimizedϕ , respectively. 

To theoretically prove the effectiveness and superiority of the 
proposed solution for interferometric phase optimization, the 
relationship between the proposed method and the TP method 
is analyzed.  

The optimized interferometric phase for the TP method is 
expressed as  

( )( ), 1,2argoptimized TP TPϕ = C                  (20) 

According to (19) and (20), the relationship between the 
optimized phase by the TP method and the proposed method is 
determined by TPC  and ,coh MLEC . 

On the one hand, the sample PolInSAR coherence matrix can 
be expressed as  

1 12 13

21 2 23

31 32 3

ˆ ˆ ˆ

ˆ ˆ ˆˆ

ˆ ˆ ˆ

 
 

=  
 
  

C C C

T C C C

C C C
                         (21) 

where ˆ ,ij i j≠C  denotes the sample inter-channel coherence 
matrix between the thi  and thj  polarimetric channels. In 

addition to (21), T̂  can also be expressed by the SKP 
decomposition as in (7). Combining (7) and (21), it follows that  

( )
3 3

, ,,
1

ˆ ,     1, 2,3k pol i coh ik k
i

k
×

=

= =∑C C C              (22) 

where ( ), ,pol i k k
C  is the element of ,pol iC  at  the thk  row and 

the thk  column. Considering (5), it follows that  

( )
3 3 3 3

, ,,
1 1 1

ˆ
TP k pol i coh ik k

k k i

×

= = =

= =∑ ∑∑C C C C                (23) 

Changing the order of the two summations on the right side of 
(23), we have  

( ) ( )
3 3 3 3 3

, , , ,,
1 1 1

traceTP pol i coh i coh i pol ik k
i k i

× ×

= = =

= =∑∑ ∑C C C C C       (24) 

On the other hand, considering the iterative relationship 
between the ICM and PCM in (14), the MLE of ICM can be 
expressed as  

( )
3 3

1
, , , ,

1

1 trace
3coh MLE coh i pol MLE pol i

i

×
−

=

= ∑C C C C          (25) 

where ,pol MLEC  is the MLE of PCM. Replacing the .pol MLEC  
term in (25) with an identity matrix, the MLE of ICM becomes  

( )
3 3

, , ,
1

1 trace
3coh MLE coh i pol i

i

×

=

= ∑C C C                 (26) 

where the constant scaling factor of 1 3  can be ignored as it 
does not affect the optimized interferometric phase. It can be 
found from (24) and (26) that the TP coherence matrix is 
equivalent to the MLE of the ICM when the PCM is an identity 
matrix, indicating that the TP method is a special case of the 
proposed method.  

However, the PCM is often not an identity matrix, and the TP 
method only uses the information of the diagonal elements in 
(21) by assuming that the PCM is an identity matrix, whereas 
the MLE of ICM has integrated all the information in T̂  by 
considering the  MLE of the PCM, rather than an identity matrix. 
Hence, a better performance on interferometric phase 
optimization can be expected by the proposed method. 

C. Application of the MLE of ICM to phase series estimation 
and its performance analysis 

When dealing with multitemporal multipolarimetric data, the 
MLE of ICM can be used for phase series estimation through 
phase-linking algorithms [30] [31] [32] [33]. The 
eigendecomposition-based maximum-likelihood-estimator of 
interferometric phase (EMI) phase-linking algorithm [33] is 
employed here to retrieve the phase series from the MLE of 
ICM, which can be expressed as  

( )1
. .arg max H

ICM coh MLE coh MLE
−= −

θ
θ Λ C C Λ            (27) 

where ICMθ  is the phase series to be retrieved. Similar to (6), 
the optimization problem in (27) can be solved using EVD. 

To theoretically prove the effectiveness and superiority of the 
MLE of ICM on phase series estimation, its solution for phase 
series estimation is compared to that of the state-of-the-art 
MLE-MPPL method and TP method.  

Replacing the .coh MLEC  term on the right side of Hadamard 
product in (27) with the expression in (25), it follows that  

(
( )

1
.

3 3
1

, , ,
1

1arg max
3

trace

H
ICM coh MLE

coh i pol MLE pol i
i

−

×
−

=

= −

 
 

 
∑

θ
θ Λ C

C C C Λ



 

            (28) 

Ignoring the constant scaling factor 1 3  and moving the 
1

.coh MLE
−C  term into the summation, (28) can be further 

transformed into  
 

( )( )3 3 11
, , , ,

1
arg max traceH

ICM pol MLE pol i coh MLE coh i
i

× −−

=

 = −  
 
∑

θ
θ Λ C C C C Λ 



(29) 

Compared to (6), it can be found that the phase series estimation 
solution using the MLE of ICM shares a similar form with the 
MLE-MPPL method. However, it provides more accurate 
estimations for the PCM and ICM i.e., ,coh MLEC  and ,coh MLEC , 
than the MLE-MPPL method. Hence, according to phase-
linking uncertainty theory [25] [26], the proposed method with 
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the MLE of ICM can achieve more accurate phase series 
estimation than the MLE-MPPL method. 

The solutions for phase series estimation by the TP method 
and the proposed method are obtained by employing the phase 
linking algorithm on TPC  and ,coh MLEC , which indicates that 
their estimation performance is completely determined by these 
two factors. Therefore, the proposed method can achieve better 
performance than the TP method as TPC  is only a special case 
of ,coh MLEC  when the PCM is an identity matrix, which has 
already been proved earlier.  

IV. NUMERICAL RESULTS  
In this section, simulation results and experiments on real 

data are presented to demonstrate the effectiveness of the 
proposed method, where the proposed alternate iterative 
optimization method for the MLE of ICM is verified by its 
convergence performance and estimation accuracy, and the 
performance of the proposed MLE of ICM on interferometric 
phase optimization and phase series estimation is assessed by 
comparing with the existing methods. In real data experiments, 
fully polarimetric airborne SAR data and dual polarimetric 
spaceborne SAR data are employed for interferometric phase 
optimization and phase series estimation, respectively. 

A. Simulation results  
The multipolarimetric data are simulated using the Monte 

Carlo method in [34] with a given PolInSAR coherence matrix, 
which is modelled as the Kronecker product of polC  and cohC
as in (12). Therefore, the modeling of PolInSAR coherence 
matrix breaks down to the modeling of polC  and cohC . 

The extended Bragg scattering model [3] is considered for the 
modeling of polC , as in [24]. 

cohC  can be modelled by its phase and magnitude terms as  

H
coh =C Θ ΓΘ                                    (30) 

where [ ]diag exp( )j= −Θ θ , [ ]1 2, , , T
Nθ θ θ=θ   denotes 

the phase term, and N N×∈Γ   is the magnitude term. The 
phase term θ  is generated by considering a constant 
deformation velocity of 1 cm/year. A general temporal 
decorrelation model is considered for Γ  [33], which is  

( ) ( ) ( )0 exp ijij tγ γ δ τ γ∞ ∞= − − +Γ              (31) 

where ( )ijΓ  is the element of Γ  at the thi  row and thj  

column, 0γ  and γ ∞  are the initial coherence and the long-term 
coherence values, respectively, ijtδ  is the temporal baseline 

between the thi  and thj  acquisitions, and τ  indicates the 
extent to which the coherence decreases with the temporal 

baseline. Here 0γ  and γ ∞  are set to 0.6 and 0.2, respectively,  
τ  is set to 50 days, and the sampling interval for temporal 
baseline 0τ is 6 days. Since a single phase center is assumed in 
this paper, volume decorrelation is not considered, and the 
atmospheric phase is also ignored here to ensure stationarity of 
simulated CCG data, as in [33]. 

Three different groups of phase series are generated. Without 
loss of generality, the first element of each phase series is set to 
zero. The first group of phase series 1θ  is one-dimensional and 
generated by applying a constant deformation velocity 1 
cm/year, and a total of 20 fully polarimetric SLC images with 6 
days temporal sampling interval are simulated with 100 
independent samples for verifying the alternate iterative 
optimization and phase series estimation; the second one 2θ  is 
two-dimensional with only two SLC images and the 
interferogram between the two SLC images is generated by 
mapping a realistic DEM provided by NASA SRTM mission 
into the SAR coordinates. The temporal baseline between the 
two SLC images is 30 days for interferometric phase 
optimization; the third one 3θ  is also two-dimensional, and the 
temporal and spatial patterns of the phase series are generated 
by applying a constant deformation velocity and MATLAB’s 
peaks function, respectively. Like 1θ , a total of 20 fully 
polarimetric SLC images with 6 days temporal sampling 
interval are simulated for phase series estimation. 
1) Convergence performance and estimation accuracy of the 
alternate iterative optimization method 
Using the simulated multipolarimetric data generated by 1θ , 

the sample PolInSAR coherence matrix T̂  can be acquired and 
then decomposed into ,pol iC  and ,coh iC  through the SKP 
decomposition, while the initial ICM is obtained using (16). In 
addition, an identity matrix and a random matrix are also 
employed as the initial ICM to start the alternate iteration. The 
corresponding convergence curves using three initial ICMs are 
plotted in Fig. 2(a), 2(b) and 2(c), respectively. Moreover, to 
show the convergence speed, 1000 independent simulations are 
conducted and the average number of iterations with the three 
initial matrices are calculated and listed in Table I. It can be 
seen from Fig. 2 that the proposed alternate iteration method 
converges to the same value under all three different 
initializations within a few iterations, even with the random 
initial matrix. Among the three initial matrices, the one 
provided by (16) takes the least number of iterations to 
converge, on average 5.000 iterations, and the random initial 
matrix takes the most number of iterations to converge, which 
is 7.161 iterations on average, as shown in Table I. In addition, 
a correlation coefficient ρ  is proposed to evaluate the 
estimation accuracy of the estimated PCM and ICM, which is 
defined as follows 
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(a) 

 
(b) 

 
(c) 

Fig. 2. The convergence curves by three different initial ICMs: (a) the initial ICM from (16); (b) an identity matrix; (c) a random matrix; 

 
(a) 

 
(b) 

 
 
 

TABLE I 
AVERAGE NUMBER OF ITERATIONS WITH THREE 

DIFFERENT INITIAL MATRICES 
The one in 

(16) 
Identity 
matrix 

Random 
matrix 

5.000 5.488 7.161 
 

 
Fig. 3. The histograms of PCMρ  and ICMρ  by two methods: (a) histograms of the PCMρ ; (b) histograms of the ICMρ . 
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where 
F

⋅  denotes the Frobenius norm, ( )∗⋅  represents the 

complex conjugate, and ˆ
polC  and ˆ

cohC  are the estimated PCM 

and ICM, respectively. According to (32), PCMρ  and ICMρ  
reflect the similarity between the estimated PCM, ICM and 
their corresponding true values, respectively. The closer PCMρ  
and ICMρ  are to one, the more accurate the estimated PCM and 
ICM. 1000 independent simulation runs are conducted on the 
multipolarimetric data generated using the first group of phase 
series 1θ . The histograms of PCMρ  using the proposed alternate 
iteration method and (8) are shown in Fig. 3(a), and those of  

ICMρ  using the proposed alternate iteration method and (9) are 
shown in Fig. 3(b). It can be observed from Fig. 3 that the 
histograms of PCMρ  and ICMρ  by the proposed alternate 
iteration method are more concentrated around one than those 
by (8) and (9), indicating the effectiveness and superiority of 
the proposed alternate iteration method. 

2) Performance on interferometric phase optimization 
For interferometric phase optimization, the second group of 

phase series 2θ  with only two SLC images are employed to 
simulate multipolarimetric data and the dimension of each SLC 
image is 1000 1000× . Three other methods, including single 
polarimetric boxcar method, the numerical radius (NR) method 
[15] and the TP method [17], are also applied and compared to 
the proposed method. A 7 7×  window is selected to estimate 
the PolInSAR coherence matrix. The true interferogram and the 
single polarimetric noisy interferogram formed by the 
simulated SLC images are shown is Fig. 4(a) and 4(b), 
respectively. The optimized interferograms by four methods are 
shown in Fig. 5 and their corresponding histograms for 
estimation error are shown in Fig. 6. 

It can be seen from Fig. 6 that the estimation error by the NR 
method is the largest among three multipolarimetric methods, 
with the RMSE of 0.3324 rad, which is even worse than that of 
the single polarimetric method, indicating the instability of the 
NR method. A similar result has also been reported in [17]. 
Compared to the TP method, the result by the proposed method 
looks thinner and more concentrated around zero, with the 
lowest RMSE of 0.2510 rad among all four methods. Hence, 
the proposed MLE of the ICM has achieved the best 
performance for interferometric phase optimization.  
3) Performance on phase series estimation 

For phase series estimation, both the one-dimensional phase 
series 1θ from first group and the two-dimensional phase series 

3θ  from the third group are employed to simulate the 
multipolarimetric data. The projection vector based ESPO 
method [20], the TP method [22], the MLE-MPPL method [24]  

1 2 3 4 5 6 7 8 9 10
number of iterations

39.6

39.8

40

40.2

40.4

40.6

40.8

41
lik

el
ih

oo
d 

va
lu

e

converged to : 40.841

1 2 3 4 5 6 7 8 9 10
number of iterations

5

10

15

20

25

30

35

40

45

lik
el

ih
oo

d 
va

lu
e

converged to : 40.841

1 2 3 4 5 6 7 8 9 10
number of iterations

-10

0

10

20

30

40

50

lik
el

ih
oo

d 
va

lu
e

converged to : 40.841



>  < 
 

8 

 

 
(a) 

 
(b) 

Fig. 4. The true interferogram and the single polarimetric noisy interferogram formed by the two simulated SLC images: (a) true interferogram; (b) single 
polarimetric noisy interferogram. 
 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 5. Optimized interferograms by four methods: (a) single polarimetric boxcar; (b) NR; (c) TP; (d) proposed. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 6. Histograms of estimation error by four methods: (a) single polarimetric boxcar; (b) NR; (c) TP; (d) proposed. 
 

 
Fig. 7. RMSE curves of four different methods. 
 
and the proposed method are applied and their phase series 
estimation performance compared. In the ESPO method, the 
searching step size for the parameter group ( ), , ,α β δ ϕ  is set 

to ( )5 ,5 ,5 ,5    . To retrieve the phase series, the EMI phase 

linking algorithm [33] is used in the ESPO, TP and proposed 
methods. 

For the one-dimensional data, Fig. 7 shows the RMSE curves 
of four different methods with 1000 independent runs. In 
addition, the Cramer-Rao lower bound (CRLB) for 
multipolarimetric phase series estimation [24] is also plotted in 
Fig. 7. It can be observed from Fig. 7 that the RMSE curve of 
the MLE-MPPL method and the proposed method is much 
lower than those of ESPO and TP, while the RMSE of the 
proposed method is the closest to the CRLB, achieving the very 
best performance in phase series estimation. 
For the two-dimensional data, the interferograms constructed 
by estimated phase series of four methods are shown in Fig. 8, 
using the first and thi  images, where 4,8,12,16,20i = , 
respectively. The average RMSEs of the four methods are 
calculated and listed in Table II. To further demonstrate the 
detail preservation ability of the proposed method, a typical 
area with dense fringe is selected (see the black rectangular area 
in Fig. 8) and its enlarged view is shown in Fig. 9. It can be seen 
that the proposed method has achieved the best performance in 
recovering the fringe pattern. Moreover, Table II shows that the 
proposed method presents the lowest average RMSE among the 
four methods. 
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(a) 

     

(b) 

     

(c) 

     

(d) 

     

(e) 

     

(f) 

     
Fig. 8. Interferograms constructed by the first and thi images, 4,8,12,16,20i =  respectively (left to right) by each method: (a) reference; (b) original single 
polarimetric channel; (c) ESPO; (d) TP; (e) MLE-MPPL; (f) proposed. 
 

TABLE II 
AVERAGE RMSES OF FOUR METHODS  

ESPO TP  MLE-MPPL  Proposed  

0.2468 rad 0.2024 rad 0.1723 rad 0.1547 rad 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

Fig. 9. Enlarged views of the black rectangular areas in Fig. 8 by different methods: (a) reference; (b) ESPO; (c) TP; (d) MLE-MPPL; (e) proposed. 
 

 
(a) 

 
(b) 

 
(c) 

Fig. 10. Optical, SAR intensity and interferogram images of the investigated scene: (a) Google Earth optical image; (b) PauliRGB SAR intensity image. (c) single 
look interferogram from VV channel. 
 

TABLE III 
DETAILED PARAMETERS ABOUT THE SELECTED E-SAR DATA 

Master image acquisition time 
(UTC) 

Slave image acquisition time 
(UTC) 

Baseline 
(m) 

Range resolution 
(m) 

Azimuth resolution 
(m) 

Frequency 
(GHz) 

15 October 2008 
09:56:42 

15 October 2008 
11:20:54 30 2.12 1.20 1.3 

 

B. Real data experiments  
To further verify the effectiveness of the proposed method, a 

set of L-band airborne fully polarimetric data and C-band 
spaceborne dual polarimetric data are employed for 
interferometric phase optimization and phase series estimation, 
respectively.  
1) Interferometric phase optimization on E-SAR data  

The airborne data are provided by European Space Agency 
through the E-SAR BioSAR2008 campaign carried out in 
October 2008, which is primarily designed for tomographic 
inversion of forest structure and biomass retrieval. The test site 
is located at the Krycklan River catchment, Sweden. 
BioSAR2008 campaign provides six tracks of fully polarimetric 
SAR SLC data, from which the two tracks with the longest 
spatial baseline are selected in this experiment. Detailed 
parameters about the selected data are listed in Table III. The 
optical image from Google Earth and the PauliRGB SAR 
intensity image of the investigated scene are shown in Fig. 10(a) 
and 10(b), respectively. The single look interferogram 
constructed by the original VV polarimetric channel is shown 
in Fig. 10(c). The single polarimetric boxcar method, the NR 
method and the TP method are also applied and compared to 
the proposed method. The windows size to estimate the 

PolInSAR coherence matrix is 7 7×  and the optimized 
interferograms by these four methods are shown in Fig. 11. To 
quantitatively evaluate the performance of these methods, the 
pseudo coherence φρ  [35] and number of residue points [36] 
are introduced. The pseudo coherence represents the spatial 
variance in a local window and thereby can reflect the 
smoothness and stability of an interferogram, and higher φρ  
indicates higher phase quality. The number of residue points is 
also a common metric as it can reflect the difficulty of 
subsequent phase unwrapping operation, which is a necessary 
step in many applications. Less residue points indicates higher 
phase quality and can therefore lead to less phase unwrapping 
errors. 
The distributions of the pseudo coherence value of the 
interferograms by four methods are plotted in Fig. 12(a). To 
highlight the differences of these methods at the high pseudo 
coherence end, the blue rectangular area in Fig. 12(a) is  
selected and its enlarged view is given in Fig. 12(b). The 
average pseudo coherence value and the number of residue 
points are listed in Table IV. In addition, the pixels with pseudo 
coherence 0.7φρ >  are defined as high quality ones and their 
numbers by four differe methods are listed in Table IV. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 11. Optimized interferograms by four methods: (a) single pol; (b) NR; (c) TP; (d) proposed. 
 

 
(a) 

 
(b) 

Fig. 12. Distributions of the pseudo coherence value by four methods. (a) Original distributions of the pseudo coherence. (b) Enlarged view of the blue rectangular 
area in (a). 
 

TABLE IV 
INTERFEROMETRIC PHASE OPTIMIZATION PERFORMANCE EVALUATION  

OF FOUR METHODS 

Method  Average pseudo 
coherence 

Number of residue 
points 

Number of high quality 
pixels (×106) 

Single pol  0.8617 11184 2.037 

NR 0.8468 16791 2.003 

TP 0.8890 7409 2.134 

Proposed 0.8993 6961 2.170 

 
From Table IV and Fig. 12, it can be observed that the 

proposed method has the highest average pseudo coherence, 
largest number of high quality pixels and lowest number of 
residue points, and its pseudo coherence distribution is more 
concentrated around one than the other three, indicating the best 
performance in interferometric phase optimization. 
2) Phase series estimation on Sentinel-1A data  

The spaceborne dual polarimetric data are acquired by ESA’s 
C-band Sentinel-1A satellite with VV-VH polarization. A total 
of 30 VV-VH SAR SLC images of northern China area 
acquired from December 10, 2017 to December 29, 2018 are 
selected. The average time interval between two adjacent 
acquisitions is about 12 days and the spatial-temporal baseline 
distribution of the dataset is shown in Fig. 13(a), where the 

common master image is acquired on June 20, 2018. The 
investigated scene is situated in Yanjiao Town, Hebei Province. 
The temporally averaged PauliRGB SAR intensity image of the 
investigated scene is shown in Fig. 13(b). 

Prior to phase series estimation, all other 29 images are co-
registered to the common master image using the enhanced 
spectral diversity method [37]. The flat earth phase and 
topographic phase in each SLC image are all removed using the 
DEM provided by NASA SRTM mission. And the 
Kolmogorov-Smirnov (KS) test [30] with significance level 

0.01α =  and a 15×15 test window is applied to identify 
statistical homogeneous pixels (SHPs) for the estimation of 
PolInSAR coherence matrix. The KS test is applied on both  
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(a)  

(b)  
(c) 

 
(d) 

Fig. 13. Illustration of the investigated scene and corresponding dataset. (a) Spatial-temporal baseline distribution of the dataset. (b) PauliRGB image of the 
investigated scene (Red: VV ,Green: VH , Blue: 0). (c) Map of SHPs number. (d) Single look VV interferogram constructed by the first and 30th images. 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 14. Interferograms constructed by the first and 30th images of each method: (a) ESPO; (b) TP; (c) MLE-MPPL; (d) proposed. 
 

 
Fig. 15. Distributions of the pseudo coherence value by four 
methods. 

 
 

TABLE V 
PHASE SERIES ESTIMATION PERFORMANCE EVALUATION  

OF FOUR METHODS 

Method  Average 
Pol-detR 

value 

Average 
pseudo 

coherence 

Number of 
residue 
points 

Number of 
high quality 

pixels  

Running 
time (hour) 

ESPO  26.40 0.4886 115247 164132 43.91 

TP 24.39 0.7092 47140 427403 3.183 

MLE-MPPL  23.95 0.7441 35782 473079 9.252 

Proposed 23.82 0.7511 34134 481686 10.38 
 

 
polarimetric channels, and pixels that are identified as SHPs in 
both channels are used for PolInSAR coherence estimation. Fig. 
13(c) shows the map of SHPs number of each pixel. The 
original single look interferogram constructed by the first and 
30th images of the VV channel is shown in Fig. 13(d). 

The four methods including ESPO, TP, MLE-MPPL and the 
proposed one are applied for phase series estimation. To 

demonstrate their phase restoration capabilities, the 
interferometric phase of the largest temporal baseline is shown 
as a representative, i.e., the interferometric phase of the first and 
the 30th SLC images. Therefore, the interferogram in Fig.13(d) 
is constructed by the first and the 30th SLC images with VV 
polarization. Similarly, the interferograms in Fig. 14 are 
generated from the estimated phase series of the four methods 
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by subtracting the first element from the 30th element. By 
comparing the restored phase from the largest temporal 
decorrelation interferometric pair, their performance is 
evaluated. In addition to pseudo coherence, the number of 
residue points and the number of high quality pixels, the Pol-
detR proposed in [24] is also introduced to quantitatively assess 
the performance, and a lower average Pol-detR indicates a 
lower average RMSE in phase series estimation. Pseudo 
coherence distributions of the interferograms are shown in Fig. 
15, and the number of residue points, the number of high quality 
pixels, the average Pol-detR value and the average pseudo 
coherence value by the four methods are listed in Table V. 

It can be observed from Fig. 15 and Table V that the pseudo 
coherence by the proposed method is more concentrated around 
one and presents a higher average value than the other three 
methods. In addition, the proposed method has the lowest 
number residue points and the highest number of high quality 
pixels. These statistics indicate that the proposed method can 
produce the best quality interferogram among four methods. 
Moreover, the average Pol-detR value of the proposed method 
is also the lowest, which implies that it can achieve the 
minimum average RMSE in phase series estimation. Despite 
that the improvement of the proposed method with respect to 
the MLE-MPPL method is not such significant, it can be 
applied to both single-baseline and multi-baseline or multi-
temporal scenarios, whereas the MLE-MPPL method is 
primarily designed for multi-temporal and multi-baseline 
scenarios and therefore not applicable to the single-baseline 
phase optimization. Moreover, with the explicit interferometric 
coherence matrix, many other phase linking algorithms [38] [39] 
can be adopted to adapt to different scenarios, rather than just 
the EMI algorithm [33] in the MLE-MPPL method. 

In terms of computational load, the proposed method requires 
an additional alternate iteration process compared to the MLE-
MPPL method. Nevertheless, the iteration converges after only 
a few iterations (typically 5), which has been demonstrated in 
the simulation results (see Table I). Therefore, the additional 
computational load incurred compared to the MLE-MPPL 
method is small. To quantitatively evaluate the computational 
burden, the program running time of the four methods on the 
sentinel-1A dataset is listed in Table V. It can be found that the 
program running time of ESPO is the largest due to its 
exhaustive searching process in the solution space; TP is the 
fastest as it simply adds up the coherence matrices of different 
polarimetric channels; MLE-MPPL and the proposed method 
are slower than TP as they both involve sum of Kronecker 
product (SKP) decomposition. In addition, the proposed 
method is slightly slower than MLE-MPPL since it demands 
additional alternate iteration. 

V. CONCLUSIONS AND DISCUSSIONS  
In this work, a maximum likelihood estimation method for 

the interferometric coherence matrix has been proposed and 
applied for both interferometric phase optimization and 
consistent phase series estimation. By modelling the PolInSAR 
coherence matrix as the Kronecker product of PCM and ICM, 
the estimation under the complex circular Gaussian distribution 
assumption is obtained through an alternate iterative 
optimization process. Its superiority on interferometric phase 

optimization and phase series estimation over the state-of-the-
art TP method and the MLE-MPPL method has been proved 
theoretically, and also demonstrated by simulation results and 
experiments based on real data. Potential estimate errors can 
happen when the sample polarimetric interferometric coherence 
matrix is estimated using a rectangular spatial window in 
heterogeneous contexts, which can be greatly alleviated by 
performing polarimetric homogeneous pixel selection. The 
limitation of the proposed method lies in its computational 
efficiency and single phase center assumption, which makes it 
less suitable for real time processing or dense forest scenarios. 
Therefore, future work will focus on polarimetric homogeneous 
pixel selection and extending single phase center model to 
double or even multiple phase center model. 

APPENDIX 
Detailed derivation of the alternate iteration relationship 

between polC  and cohC  is derived in this appendix. 
Invoking the determinant, inverse, trace and mix-product 

properties of Kronecker product (see in [24]), (13) can be 
transformed into  

( ) ( ) ( )
( ) ( )

3 3
1 1
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1

, trace trace
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C C
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(33) 

Consider the partial derivatives of ( ),pol pol cohL C C  with respect 

to polC  and cohC  , which are  
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and  
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respectively. The necessary condition for polC  and cohC  to 
reach the maximum value is  

( )
3 3

1 1 1 1
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1
tracepol pol i coh coh i pol pol
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×
− − − −

=
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and  
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=
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respectively. According to (36) and (37), the following alternate 
iteration relationship between polC  and cohC  can be derived  
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