47 research outputs found

    Channel Estimation and ICI Cancelation in Vehicular Channels of OFDM Wireless Communication Systems

    Full text link
    Orthogonal frequency division multiplexing (OFDM) scheme increases bandwidth efficiency (BE) of data transmission and eliminates inter symbol interference (ISI). As a result, it has been widely used for wideband communication systems that have been developed during the past two decades and it can be a good candidate for the emerging communication systems such as fifth generation (5G) cellular networks with high carrier frequency and communication systems of high speed vehicles such as high speed trains (HSTs) and supersonic unmanned aircraft vehicles (UAVs). However, the employment of OFDM for those upcoming systems is challenging because of high Doppler shifts. High Doppler shift makes the wideband communication channel to be both frequency selective and time selective, doubly selective (DS), causes inter carrier interference (ICI) and destroys the orthogonality between the subcarriers of OFDM signal. In order to demodulate the signal in OFDM systems and mitigate ICIs, channel state information (CSI) is required. In this work, we deal with channel estimation (CE) and ICI cancellation in DS vehicular channels. The digitized model of the DS channels can be short and dense, or long and sparse. CE methods that perform well for short and dense channels are highly inefficient for long and sparse channels. As a result, for the latter type of channels, we proposed the employment of compressed sensing (CS) based schemes for estimating the channel. In addition, we extended our CE methods for multiple input multiple output (MIMO) scenarios. We evaluated the CE accuracy and data demodulation fidelity, along with the BE and computational complexity of our methods and compared the results with the previous CE procedures in different environments. The simulation results indicate that our proposed CE methods perform considerably better than the conventional CE schemes

    Sparse channel estimation based on compressed sensing theory for UWB systems

    Get PDF
    Català: L'estimació de canal en receptors wireless esdevé un factor determinant a l'hora de incrementar les prestacions dels sistemes sense fils per tal de satisfer les exigències cada vegades més elevades dels consumidors en quant a velocitats de transmissió i qualitat. En aquesta tesi es proposa explotar la "sparsity" que mostren els canals wireless per tal de millorar els clàssics sistemes d'estimació de canal mitjançant les noves teòries de Compressed Sensing. Així doncs, es proposa un nou model freqüencial de senyal on el canal i un nou algoritme de reconstrucció de senyals sparse que redueix la probabilitat de detecció de falsos camins de propagació millorant d'aquesta manera l'estimació de temps d'arribada.Castellano: En los últimos años, la revolución inalámbrica se ha convertido en una realidad. Wi-fi está en todas partes, impactando significativamente en nuestro estilo de vida. Sin embargo, las comunicaciones inalámbricas nunca tendrán las condiciones de propagación igual que los cables debido a las duras condiciones de la propagación inalámbricas. El canal de radio móvil se caracteriza por la recepción múltiple, eso es que la señal recibida no sólo contiene una camino de propagación, sino también un gran número de ondas reflejadas. Estas ondas reflejadas interfieren con la onda directa, lo que provoca una degradación significativa del rendimiento del enlace. Un sistema inalámbrico debe estar diseñado de tal manera que el efecto adverso del desvanecimiento multicamino sea reducido al mínimo. Afortunadamente, el multipath puede ser visto como diversidad de información dependiendo de la cantidad de Channel State Information (CSI) disponible para el sistema. Sin embargo, en la práctica CSI rara vez se dispone a priori y debe ser estimado. Por otro lado, un canal inalámbrico a menudo puede ser modelado como un canal sparse, en la que el retraso de propagación puede ser muy grande, pero el número de caminos de propagación es normalmente muy pequeño. El conocimiento previo de la sparsity del canal se puede utilizar eficazmente para mejorar la estimación de canal utilizando la nueva teoría de Compressed Sensing (CS). CS se origina en la idea de que no es necesario invertir una gran cantidad de energía en la observación de las entradas de una señal sparse porque la mayoría de ellas será cero. Por lo tanto, CS proporciona un marco sólido para la reducción del número de medidas necesarias para resumir señales sparse. La estimación de canal sparse se centra en este trabajo en Ultra-Wideband (UWB) porque la gran resolución temporal que proporcionan las señales UWB se traduce en un número muy grande de componentes multipath que se pueden resolver. Por lo tanto, UWB mitiga significativamente la distorsión de trayectoria múltiple y proporciona la diversidad multicamino. Esta diversidad junto con la resolución temporal de las señales UWB crear un problema de estimación de canal muy interesante. En esta tesis se estudia el uso de CS en la estimación de canal altamente sparse por medio de un nuevo enfoque de estimación basado en el modelo de frecuencial de la señal UWB. También se propone un nuevo algoritmo llamado extended Orthogonal Matching Pursuit (eOMP) basado en los mismos principios que el clásico OMP, con el fin de mejorar algunas de sus característica.English: In recent years, the wireless revolution has become a reality. Wireless is everywhere having significant impact on our lifestyle. However, wireless will never have the same propagation conditions as wires due to the harsh conditions of the wireless propagation. The mobile radio channel is characterized by multipath reception, that is the signal offered to the receiver contains not only a direct line-of-sight radio wave, but also a large number of reflected radio waves. These reflected waves interfere with the direct wave, which causes significant degradation of the performance of the link. A wireless system has to be designed in such way that the adverse effect of multipath fading is minimized. Fortunately, multipath can be seen as a blessing depending on the amount of Channel State Information (CSI) available to the system. However, in practise CSI is seldom available a priori and needs to be estimated. On the other hand, a wireless channel can often be modeled as a sparse channel in which the delay spread could be very large, but the number of significant paths is normally very small. The prior knowledge of the channel sparseness can be effectively use to improve the channel estimation using the novel Compressed Sensing (CS) theory. CS originates from the idea that is not necessary to invest a lot of power into observing the entries of a sparse signal because most of them will be zero. Therefore, CS provides a robust framework for reducing the number of measurement required to summarize sparse signals. The sparse channel estimation here is focused on Ultra-WideBand (UWB) systems because the very fine time resolution of the UWB signal results in a very large number of resolvable multipath components. Consequently, UWB significantly mitigates multipath distortion and provides path diversity. The rich multipath coupled with the fine time resolution of the UWB signals create a challenging sparse channel estimation problem. This Master Thesis examines the use of CS in the estimation of highly sparse channel by means of a new sparse channel estimation approach based on the frequency domain model of the UWB signal. It is also proposed a new greedy algorithm named extended Orthogonal Matching Pursuit (eOMP) based on the same principles than classical Orthogonal Matching Pursuit (OMP) in order to improve some OMP characteristics. Simulation results show that the new eOMP provides lower false path detection probability compared with classical OMP, which also leads to a better TOA estimation without significant degradation of the channel estimation. Simulation results will also show that the new frequency domain sparse channel model outperforms other models presented in the literature

    Learning-Based Hardware Design for Data Acquisition Systems

    Get PDF
    This multidisciplinary research work aims to investigate the optimized information extraction from signals or data volumes and to develop tailored hardware implementations that trade-off the complexity of data acquisition with that of data processing, conceptually allowing radically new device designs. The mathematical results in classical Compressive Sampling (CS) support the paradigm of Analog-to-Information Conversion (AIC) as a replacement for conventional ADC technologies. The AICs simultaneously perform data acquisition and compression, seeking to directly sample signals for achieving specific tasks as opposed to acquiring a full signal only at the Nyquist rate to throw most of it away via compression. Our contention is that in order for CS to live up its name, both theory and practice must leverage concepts from learning. This work demonstrates our contention in hardware prototypes, with key trade-offs, for two different fields of application as edge and big-data computing. In the framework of edge-data computing, such as wearable and implantable ecosystems, the power budget is defined by the battery capacity, which generally limits the device performance and usability. This is more evident in very challenging field, such as medical monitoring, where high performance requirements are necessary for the device to process the information with high accuracy. Furthermore, in applications like implantable medical monitoring, the system performances have to merge the small area as well as the low-power requirements, in order to facilitate the implant bio-compatibility, avoiding the rejection from the human body. Based on our new mathematical foundations, we built different prototypes to get a neural signal acquisition chip that not only rigorously trades off its area, energy consumption, and the quality of its signal output, but also significantly outperforms the state-of-the-art in all aspects. In the framework of big-data and high-performance computation, such as in high-end servers application, the RF circuits meant to transmit data from chip-to-chip or chip-to-memory are defined by low power requirements, since the heat generated by the integrated circuits is partially distributed by the chip package. Hence, the overall system power budget is defined by its affordable cooling capacity. For this reason, application specific architectures and innovative techniques are used for low-power implementation. In this work, we have developed a single-ended multi-lane receiver for high speed I/O link in servers application. The receiver operates at 7 Gbps by learning inter-symbol interference and electromagnetic coupling noise in chip-to-chip communication systems. A learning-based approach allows a versatile receiver circuit which not only copes with large channel attenuation but also implements novel crosstalk reduction techniques, to allow single-ended multiple lines transmission, without sacrificing its overall bandwidth for a given area within the interconnect's data-path
    corecore