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Abstract
This multidisciplinary research project aims to investigate the optimized information extrac-

tion from signals or data volumes and to develop tailored hardware implementations that

trade-off the complexity of data acquisition with that of data processing, conceptually allowing

radically new device designs. The mathematical results in classical Compressive Sampling (CS)

support the paradigm of Analog-to-Information Conversion (AIC) as a replacement for conven-

tional ADC technologies. The AICs simultaneously perform data acquisition and compression,

seeking to directly sample signals for achieving specific tasks as opposed to acquiring a full

signal only at the Nyquist rate to throw most of it away via compression. Our contention is

that in order for CS to live up its name, both theory and practice must leverage concepts from

learning. This work demonstrates our contention in hardware prototypes, with key trade-offs,

for two different fields of application as edge and big-data computing.

In the framework of edge-data computing, such as wearable and implantable ecosystems, the

power budget is defined by the battery capacity, which generally limits the device performance

and usability. This is more evident in very challenging field, such as medical monitoring,

where high performance requirements are necessary for the device to process the information

with high accuracy. Furthermore, in applications like implantable medical monitoring, the

system performances have to merge the small area as well as the low-power requirements, in

order to facilitate the implant bio-compatibility, avoiding the rejection from the human body.

Based on our new mathematical foundations, we built different prototypes to get a neural

signal acquisition chip that not only rigorously trades off its area, energy consumption, and the

quality of its signal output, but also significantly outperforms the state-of-the-art in all aspects.

In the framework of big-data and high-performance computation, such as in high-end servers

application, the RF circuits meant to transmit data from chip-to-chip or chip-to-memory

are defined by low power requirements, since the heat generated by the integrated circuits is

partially distributed by the chip package. Hence, the overall system power budget is defined

by its affordable cooling capacity. For this reason, application specific architectures and inno-

vative techniques are used for low-power implementation. In this work, we have developed a

single-ended multi-lane receiver for high speed I/O link in servers application. The receiver

operates at 7 Gbps by learning inter-symbol interference and electromagnetic coupling noise

in chip-to-chip communication systems. A learning-based approach allows a versatile re-

ceiver circuit which not only copes with large channel attenuation but also implements novel

v



Abstract

crosstalk reduction techniques, to allow single-ended multiple lines transmission, without

sacrificing its overall bandwidth for a given area within the interconnect’s data-path.

Key words:

Implantable integrated circuit, area-efficient, low-power, compressive sensing, neural sig-

nals, learning-based digital signal processing, signal recovery, medical monitoring, adaptive

compression. Far-end crosstalk, Decision-Feedback Equalizer, Inter-Symbol Interference,

source-synchronous architecture, Continuous Time Linear Equalizer.
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Résumé
Ce projet de recherche multidisciplinaire vise à étudier l’extraction d’informations optimisée à

partir de signaux ou de volumes de données et à développer des implémentations matérielles

dédiées qui transforment la complexité de l’acquisition de données en traitement de données

permettant de concevoir des dispositifs radicalement nouveaux. Les résultats mathématiques

de l’ Acquisition comprimée (Compressive Sampling, CS) classique prennent en charge le

paradigme de la Conversion analogique-à-information (Analog-to-Information Conversion,

AIC) en remplacement les technologies ADC classiques. Les AICs effectuent simultanément

l’acquisition et la compression des données, en cherchant à échantillonner directement les

signaux pour réaliser des tâches spécifiques, par opposition à l’acquisition d’un signal complet

uniquement à la fréquence de Nyquist pour en éliminer la plus grande partie par compression.

Notre thèse est que, pour que le CS suive son nom, la théorie et la pratique doivent tirer parti

des concepts de l’apprentissage. Ce travail démontre notre prétention dans les prototypes de

matériel, avec des compromis clés, pour deux domaines d’application différents comme le

calcul de bord et de big-data.

Dans le cadre de l’informatique de bord, tel que les écosystèmes portables et implantables, le

budget de puissance est défini par la capacité de la batterie, ce qui limite généralement les

performances et la facilité d’utilisation de l’appareil. Ceci est plus évident dans les domaines

très exigeants, tels que la surveillance médicale, où des exigences de haute performance sont

nécessaires pour que l’appareil traite l’information avec une grande précision. En outre, dans

des applications telles que la surveillance médicale implantable, les performances du système

doivent résulter en une petite taille tout en répondant aux exigences de faible puissance, afin

de faciliter la biocompatibilité de l’implant en évitant le rejet du corps humain. Sur la base de

nos nouvelles bases mathématiques, nous avons construit différents prototypes pour obtenir

une puce électronique d’acquisition de signaux neuronaux qui non seulement présentent des

compromis rigoureux entre sa surface, sa consommation d’énergie et sa qualité de sa sortie de

signal, mais qui surpasse également l’état de l’art.

Dans le cadre du calcul de données volumineuses et hautes performances, comme dans

l’application des serveurs haut de gamme, les circuits RF destinés à transmettre des données

de puce à puce ou de puce à mémoire sont définis par des exigences de faible consommation,

car la chaleur générée par les circuits intégrés est partiellement distribuée par le package des

puces. Par conséquent, le budget de puissance global du système est défini par sa capacité

de refroidissement. Pour cette raison, des architectures spécifiques aux applications et des

techniques innovantes sont utilisées pour une implémentation à faible consommation. Dans
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ce travail, nous avons développé un récepteur multi-voies à extrémité unique pour la liaison

entrée/sortie à haute vitesse dans l’application des serveurs. Le récepteur fonctionne à 7 Gbps

en apprenant l’interférence entre symboles et le bruit de couplage électromagnétique dans les

systèmes de communication puce à puce. Une approche basée sur l’apprentissage permet

au circuit récepteur polyvalent de, non seulement gérer l’atténuation des grands canaux,

mais également mettre en œuvre de nouvelles techniques d’annulation de diaphonie pour

permettre une transmission à plusieurs lignes sans sacrifier sa bande passante globale pour

une zone donnée dans le chemin de données de l’interconnexion.

Mots clés :

Circuit intégré implantable, taille efficace, faible puissance, acquisition comprimée, signaux

neuronaux, traitement de signal numérique basé sur l’apprentissage, reconstruction de si-

gnal, surveillance médicale, compression adaptative. Far-end crosstalk, égaliseur de décision-

rétroaction, interférence inter-symbole, architecture source-synchrone, Continuous Time

Linear Equalizer.
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Sommario
Questo progetto di ricerca multidisciplinare mira a studiare l’estrazione ottimizzata delle

informazioni da segnali o volumi di dati e a sviluppare implementazioni hardware su misura,

che compromettono la complessità dell’acquisizione dei dati con quella dell’elaborazione dei

dati, consentendo concettualmente di progettare dispositivi radicalmente nuovi. I risultati

matematici nel settore di Compressive Sampling (CS) supportano il nuovo paradigma della

conversione da Analogico a Information (AIC) in sostituzione delle tecnologie ADC convenzio-

nali. Le AIC eseguono simultaneamente l’acquisizione e la compressione dei dati, cercando di

campionare direttamente i segnali per ottenere compiti specifici anziché acquisire un segnale

completo alla frequenza di Nyquist, per poi buttarne via la maggior parte tramite la compres-

sione. La nostra tesi è che, affinché l’approccio CS mantenga il suo nome, sia la teoria che la

pratica devono sfruttare i concetti dell’apprendimento. In questo lavoro sono stati sviluppati

diversi prototipi di hardware, con trade-offs chiave, implementati su due diversi campi di

applicazione come edge e big-data computing.

Nell’ambito del edge-data computing, come sono le applicazioni wearable o impiantabili, il

budget energetico è definito dalla capacità della batteria, che generalmente limita le presta-

zioni e l’usabilità del dispositivo. Ciò è più evidente in un settore molto impegnativo, come il

monitoraggio medico, in cui sono necessari requisiti ad alte prestazioni del dispositivo per

elaborare le informazioni con elevata precisione. Inoltre, in applicazioni come il monitoraggio

medico in dispositivi impiantabili, le prestazioni del sistema devono essere raggiunte in un’a-

rea minima così come a bassa potenza, al fine di facilitare la biocompatibilità dell’impianto,

evitando il rifiuto da parte del corpo. Sulla base delle nostre nuove basi matematiche, abbiamo

costruito diversi prototipi per il chip di acquisizione del segnale neuronale, che non si limita

a compattare e minimizzare la sua area, il consumo di energia e ottimizzare la qualità del

segnale ricostruito, ma supera anche in modo significativo lo stato dell’arte in tutti aspetti.

Nell’ambito dei big-data e del calcolo ad alte prestazioni, come nelle applicazioni di server di

fascia alta, i circuiti RF dedocato a trasmettere dati da chip a chip o da chip a memoria sono

definiti da requisiti di bassa potenza, dal momento che il calore generato dai circuiti integrati è

solo parzialmente dissipato dal package del chip. Quindi, il budget complessivo di energia del

sistema è definito dalla sua capacità di raffreddamento. Per questo motivo, per l’implementa-

zione a bassa potenza vengono utilizzate architetture specifiche dell’applicazione e tecniche

innovative. In questo lavoro, abbiamo sviluppato un ricevitore a più linee, single-ended, per
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il collegamento I/O ad alta velocità per applicazioni server. Il ricevitore funziona a 7 Gbps

riducendo l’interferenza inter-symbol e il rumore di accoppiamento elettromagnetico nei

sistemi di comunicazione chip-to-chip. Un approccio basato sull’apprendimento consente

un circuito ricevitore versatile che non solo abbatte l’importante attenuazione dovuta alla

trasmissione nei canali, ma implementa anche nuove tecniche di riduzione del crosstalk, per

consentire la trasmissione di linee multiple single-ended, senza sacrificare la larghezza di

banda complessiva.

Parole chiave:

Circuiti integrati impiantabili, bassa potenza, area minima, compressive sensing, segnali

neuronali, learning-based digital signal processing, ricostruzione dei segnali, monitoraggio

medico, compressione adattiva. Far-end crosstalk, Decision-Feedback Equalizer, Inter-Symbol

Interference, source-synchronous architecture, Continuous Time Linear Equalizer.
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1 Introduction

Since the advent of Integrated Circuits (ICs) in 1958 [1], the semiconductor manufacturing

technology has improved constantly, to follow the need for integrating more complex functions

into a single chip. In the last few decades, there has been a revolution in the information

technology, in which Very Large Scale Integration (VLSI) technology has been the key to

develop systems capable to address different challenges for many applications, spanning from

telecommunications to imaging, high-speed transceivers, home automation, environmental

and medical monitoring etc. The continuous technology scaling, known as Moore’s law [2],

where the transistor physical size has been halved every two years, has been the feedstock

for the continuous innovation in the system performances. Indeed, this trend predicted by

Moore resulted into more complex system-on-chip architectures, with naturally increase of

the system’s bandwidth. Recently, IBM Research in collaboration with GlobalFoundries and

Samsung, has successfully made the first 7 nm node test chips at wafer scale, shown in Fig. 1.1.

Such new manufacturing technique has the potential to host 20 billion working transistors

packed into a chip of a fingernail’s size.

Although the miniaturization law has been followed rigidly for half a century, the prediction of

the 2015 International Technology Roadmap for Semiconductors (ITRS) [4], reports that the

transistor could stop shrinking in the next few years. The report forecasts that, after 2021,

it will be no longer economically viable for companies to continue the traditional effort in

transistor miniaturization, sacrificing the chip speed gains for energy savings. However, the

manufacturing technology will move towards other ways to increase chip density, turning the

chip design to the vertical geometry, allowing multiple layers of circuitry, one on top of the

other, namely allowing 3D microprocessor structures.

Moreover, system scaling is challenged with the limits on area, power and interconnect band-

width. Since the advent of cloud computing, there are mainly two kinds of data generation:

the big-data, requiring heavy computation and memory resources, and instant data, which

are produced by always-on low power devices, as depicted in Fig. 1.2. In such framework, the

industry is currently facing a new trend, named More Moore (MM), in which added value to

devices is enabled by integrating optimized solutions that do not scale following the Moore’s
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Chapter 1. Introduction

Figure 1.1 – The first 7 nm node test chip wafer from IBM Research [3].

Figure 1.2 – Big-data and instant data in the cloud era [4].
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1.1. Mobile computing and autonomous sensing systems

Table 1.1 – Power budget for different applications.

Application Sensors
Wireless Power Battery

Interfaces Consumption Lifetime

Pacemaker Pacing leads Inductive link 10 µW Several Years

Human body ECG, heart rate,
900 MHz ISM 1-8 mW Several Hours

monitoring Temperature

Smart Phone Multiple sensors
Bluetooth, WiFi,
GSM, 1 W Few Hours

HSDPA, LTE

law. MM technologies allow applications that go from mobile computing, autonomous sensing

and monitoring systems (targeting reduced energy and area costs) to the high performance

computing, requiring more performance and operating frequency.

In this work, we are concerned with optimized information extraction from signals or data

volumes. We therefore develop mathematical theory, computational methods and their hard-

ware implementations, for information recovery from highly incomplete data. Our approach

trades-off the complexity of data acquisition with that of data processing, conceptually al-

lowing radically new device designs. Our contention is that both theory and practice must

leverage concepts from learning processes, in order to validate the merging between mathe-

matical algorithms and circuit design. This work has been demonstrated in two new hardware

prototypes with key trade-offs, in the More Moore technologies.

1.1 Mobile computing and autonomous sensing systems

In mobile applications the power budget is defined by the battery limits, which, unfortunately,

does not improve from one node to the following one, as the amount of logic gates does in the

IC. Table 1.1 gives an overview of different battery power budget used in some of the current

electronic devices used for general daily life applications.

Among all the autonomous sensing applications, one of the most critical and challenging

field is medical monitoring, in which various biological signals have to be processed with a

relatively high accuracy, in order to extract reliable medical information for disease diagnosis

or therapy. The implantable medical sector is nowadays a highly consolidated market, which is

mainly dominated by few companies (e.g., Medtronic, St. Jude Medical and Boston Scientific).

According to a research report [6], the implantable medical market forecast expects to grow

from an evaluation of US$ 32.3 Billion in 2015 to US$ 49.8 Billion by the end of 2024.

In the last few decades, new health-oriented devices and wireless technologies have been

3
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Brain Implants

Gastric Stimulator

Foot Drop 
Implants

Cochlear Implants

Cardiac Pacemakers

Insulin Pumps

Figure 1.3 – Wireless implantable devices currently available in the medical market [5].

proposed, spanning from low-power implants that harvest energy from the body, to wireless

sensors for in-house medical monitoring. In particular, implantable medical devices, including

pacemakers, cardiac defibrillators, insulin pumps, and neurostimulators (shown in Fig. 1.3),

feature wireless communication, enabling remote personal health monitoring, and facilitate

the treatment procedures provided by health care systems.

Usually, the implant, also named sensor, is characterised by limited energy resources, due

to the limits on the battery. The power consumption by the wireless Transmitter (TX) unit,

in the sensor node, is usually higher than the required power by all the other blocks in the

signal acquisition system of the implanted chip. For this reason, some data treatment on the

sensor node is crucial to reduce the amount of data sent by the Radio Frequency (RF) TX, while

keeping a relatively high information content, enabled after a tailored signal reconstruction,

at the receiver node. Data compression becomes then crucial to reduce data telemetry power

costs, without losing any critical information of the signal. To address this challenge, a new

mathematical approach named Compressive Sensing [7] or Compressed Sensing [8] (CS) has

been exploited in many applications, spanning from remote controlling to imaging systems. In

a nutshell, CS allows to sample less the signal of interest than dictated by the Shannon-Nyquist

theorem, while the recovered signal performance is still robust. Such mechanism is possible

because, in natural signals, the information content is often much lower than the raw signal

data content.

Overall, CS reduces the costs on the sensor node, allowing less linear samples than standard

systems. However, the receiver has to deal with fewer data and requires to perform non-linear
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1.2. High performance computing

Figure 1.4 – The Watson supercomputer, based on IBM Power7 servers.

operation to get the reconstructed signal. This means that the receiver will present some

data latency and high energy costs. In this thesis, we propose hardware implementations of

different CS-based approaches, capable to boost the performance of autonomous sensing

systems, both on the area and power. Finally, an adaptive learning-based CS approach,

named LBCS, allows a linear sampling and linear recovery, resulting in a real-time high signal

reconstruction quality up to 64× compression rate, as quantitatively demonstrated on different

datasets.

1.2 High performance computing

High performance computing is needed to perform massive-scale and complex computing,

at server nodes. Such technology targets are energy efficiency, real-time responsiveness and

huge demand for processing power. As examples, the IBM Power Systems, shown in Fig. 1.4,

are servers designed for critical applications and massive workloads needed for advanced

machine learning, deep learning, advanced analytics and high performance computing.

The data processing capability of such big data computational infrastructures are highly de-

pendent on how fast is the system to perform the operations. In such framework, high speed

transceivers (TRX) play a crucial role connecting short range chip-to-chip or chip-to-memory,

to allow high performance big data treatment. High speed TRX capability has continuously

grown following the IC technology trend. However, the channel board in which the signal
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propagates has not improved accordingly, resulting in an intricate path in which the data

gets deteriorated. The electrical link through PCB or backplane channels is characterised by

the related signal losses, due to natural low pass filter characteristic of the board. In these

interconnects, the need of complex equalization grows as the channel loss increases, resulting

in a reduction in energy efficiency of the channel link. An increased bandwidth per pin ratio is

allowed by single-ended signaling architectures, which doubles the performance with respect

to the differential implementation. However, as the operating frequency of the system in-

creases, the electromagnetic coupling between the PCB traces, named crosstalk (XTK or xtalk),

becomes a significant noise source in single-ended parallel links. The combination of high

speed signal processing algorithms with technological challenge in the circuit implementation,

due to transistor scaling, becomes crucial, in order to reduce the signal degradation due to the

aforementioned noise sources. Moreover, the challenge is enhanced by the stringent power

constraints, so to meet the high performance requirements related to the application.

In this work, we propose a low power, multi-lane single-ended RX for high loss source-

synchronous links. In such system, a learning-based approach allows us to effectively cancel

insertion loss and electromagnetic coupling noise in hardware and increase communication

speed without sacrificing its overall bandwidth for a given area within the interconnect’s data-

path. Moreover, the receiver macro can be adapted to different board channels, presenting

high insertion losses and intricate crosstalk patterns.

1.3 Thesis Goal

The More Moore technologies depict an indispensable and stronger trade-off in the main

chip’s requirements, that is the device area, power and operating frequency. The goal of

this work is to improve the system performance boosting the information we have from the

signal and/or environment in which the device is exploited. In this thesis we developed

different learning-based approaches specifically tailored to the applications, defining new

architectures, efficient circuit implementations and silicon prototypes of integrated signal

processing algorithms. Fig. 1.5 depicts the die micrograph of the prototypes that have been

designed, fabricated and tested in the frame of this work. In particular, Fig. 1.5 (a) shows the

adaptive learning-based chip used for autonomous sensing systems, while Fig. 1.5 (b), depicts

the chip micrograph of the 8-lanes receiver for high performance computing applications.

Overall, particular emphasis is given to the efficient design and implementation of adaptive

architectures, in order to cope with the multiple scenarios in which the proposed systems are

used.

1.4 Organization and Thesis Overview

1.4.1 Part One: Wireless Implantable Device for Medical Monitoring Brain

Chapter 2 - Implantable ecosystem

6
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(a) (b) (c)

Figure 1.5 – Designed and tested prototypes in this thesis: (a) Learning-based CS hardware
design in 180nm CMOS technology; (b) Multichannel LBCS-based neuronal sensing system;
(c) high-speed, 8-lanes single-ended RX in 32nm SOI technology.

In Chapter 2, we give an overview of the implantable ecosystem, discussing the general

requirements of the implant. This will be followed by a discussion on neuronal bioelectricity

and biocompatible electrodes. Afterwards, this chapter presents the basic information needed

about the overall implantable system on chip.

Chapter 3 - Data compression for autonomous sensing systems

Chapter 3 describes the data compression algorithms developed during this work. We describe

the main concepts of compressive sensing, which is then followed by a discussion on structure-

aware sparsity, sampling and recovery methods. The final part of the chapter focuses on the

Learning-based compressive sampling, describing the main advantages of this method. For

all the CS-based methods described in this work, a performance evaluation is given, based on

iEEG human datasets (defined in the Appendix).

Chapter 4 - LBCS based hardware implementation and validation

In Chapter 4, we describe the different hardware prototypes based on the LBCS algorithm.

In particular, we show LBCS implementation applying different measurement schemes,

analysing the pros and cons of each one. Then, we show the global system on chip for a

single channel implementation, where we adopt an adaptive LBCS compression technique.

Afterwards, we give the silicon electrical measurements of the single channel implementation.

In the last part of the chapter is then discussed a multichannel implementation that, at the

time of writing, is under fabrication process.
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Chapter 1. Introduction

1.4.2 Part Two: Multi-lane Single-Ended High Speed I/O Receiver

Chapter 5 - High speed I/Os ecosystem

Chapter 5 describes the high speed Input/Output link interconnection. This Chapter gives a

general system level overview, discussing the channel board environment and the signal loss

caused by attenuation in high frequency wired link. The state-of-art reduction of crosstalk in

serial link high speed link is then described in the last part of the chapter.

Chapter 6 - System level analysis for high speed receiver

In Chapter 6, we describe the system level analysis of the high speed link, motivating our

crosstalk cancellation technique on the receiver side only. We give the boards characteristics

before describing the crosstalk mathematical formulation for ideally coupled lanes. In the

last part of the chapter we discuss the system level simulations, followed by the analysis of

crosstalk cancellation over skewed lanes.

Chapter 7 - High speed receiver hardware implementation and validation

Chapter 7 describes the receiver architecture and gives the circuit design of its main compo-

nents. The validation of the overall receiver design is given by the measurement results over

two single-ended channel boards, presenting high insertion loss and crosstalk.

1.4.3 Last Part: Conclusion and Appendix

The conclusion of the work is presented in Chapter 8. The main results and the contributions

of this work are summarized in this chapter, and a perspective on future works is given.

8



Part IWireless Implantable Device for
Medical Monitoring Brain

9





2 Implantable ecosystem

Among all the autonomous sensing system applications, one of the most critical and challeng-

ing field is the medical monitoring, in which biological signals have to be processed with a

relatively high accuracy, in order to treat reliable medical informations.

A research study developed in all the high-income countries have evinced that brain disorders

are the major health problem [9]. Di Luca et al. [10] estimate that brain disorders cost to

the EU economy around 900 billion US$, with 179 million people afflicted in 2010. Fig. 2.1

shows the cost distribution of the main brain diseases in Europe [10], in 2010. A tentative

comparison is given with other major human disorders, such as around 200 billion US$ [11]

for cardiovascular diseases and from 150 to 250 billion US$ [9, 10], giving the global picture of

how important is the brain health as social and economic burden in Europe and the rest of the

world.

Since several decades, many scientists have tried to understand the brain activity. Since 90’s

clinicians have been able to implant devices capable to monitor the neuronal activity [12].

Micro/Nano fabrication of electromechanical systems (M(N)EMS) industry is currently improv-

ing the capability to interface with the brain. A multitude of applications are related to these

systems, from research experiments to personal health monitoring and in-house treatments.

In particular, electrodes and micro fabricated electrodes have enabled efficient electrical or

optical links, enhancing the functionality of the neuronal interfaces. Since 1997, the usage of

prostheses has been approved to provide medical treatments for some brain diseases, such

as Parkinson and Epilepsy, and in 2005 also for depression [13]. Nowadays over 5% of the

population worldwide had at least one epileptic seizure during lifetime and around 50 million

people worldwide are actively treated for epilepsy [14, 15]. Moreover, in the 30% of the cases

(around 20 million people) pharmaco-resistant epilepsy is diagnosed and standard medical

drugs are not sufficient to cope with this problem. Currently, the only available solution -when

applicable- requires a long term hospitalization in order to record and to localize the epileptic

seizures, using a bulky system directly connected with cables trough the skull and scalp to

the brain. After the localization of the epileptic hotspots an invasive surgery procedure is

required, with the aim of physically removing the brain cortex where the stroke starts. This
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Chapter 2. Implantable ecosystem

Figure 2.1 – European brain disorders costs in 2010, reprinted from [10].

would enable to propose possibly autonomous and with minimal maintenance requirements

wearable medical devices. According to the vision of Body Area Network (BAN), such set of

bio-electrical devices attached to the human body can either serve to carry out information to

a medical host or to provide some feedback as first aid treatment.

In the following, we first discuss the fundamentals of bioelectricity, giving an overview on the

different available biocompatible electrodes, focusing then on the sensor ecosystem.

2.1 Bio-compatible requirements of the implant

An medical device implanted under the skull gives raise to very strict constraints on area and

power. The implant is meant to be physically placed between the cortex and the skull, thus it

needs to be small, with maximum sizes of a few dozen of square millimeters.

One of the most important safety issues of using an implantable biomedical device inside

the body is the temperature elevation in the surrounding tissues due to the operation of the

implant. Temperature elevation may disturb the natural behavior of the cells nearby the

implant or may even cause cell death. Regulations allow maximum 1 ◦C temperature elevation

for body implants [16]. This temperature rise corresponds to 40 mW/cm2 power outflux

density [17].

The implant containing power management and data communication system, can be im-

12



2.2. Neuronal bioelectricity and biocompatible electrodes

planted in the Burr hole which is opened on the skull for neurosurgical treatment of epilepsy.

This hole can be defined as a cylinder having a height of approximately 10 mm (average skull

thickness) and a diameter of 15 mm (subject to change depending on the drill size) [17]. These

numbers, in fact, determines the size limitations for the system proposed in this project. These

numbers also determines the dimension limit of the communication antenna.

The packaging of cortical implants is one of the most critical challenges in the design of fully

implantable cortical recording devices. The requirements for the packaging include hermetical

sealing, bio-compatibility, transparency to magnetic fields, size,and weight. However, it has

been demonstrated that these challenges can be overcome feasibly with the current state of

the art. At this regard, Yilmaz et al. showed that hermetical sealing capability of the packaging

that is composed of epoxy and Parylene-C is successfully tested for one month to evaluate the

implant’s short-term performance [18].

2.2 Neuronal bioelectricity and biocompatible electrodes

The early studies on living tissues electricity can be tracked from the 1600’s. Since 1791, when

the Italian scientist Galvani discovered the electrical nature of nerve impulse in a frog muscle,

the bioelectrity in human bodies starts to be studied and observed.

The electrical activity of the neural cells of the brain are classified into three types, as depicted

in Fig. 2.2, depending on the setup required to measure the brain activity:

• Electroencephalography (EEG) measures potential fluctuations with non-invasive electrodes

placed along the scalp, over a period of time. EEG measures voltage variations due to ionic

current flows within the neurons of the brain. EEG signals represent the superposition of

millions of individual neural events, demonstrating the group behaviour of neurons in a

specific area of the brain. The EEG signals are characterized by amplitudes as high as 300µV

and frequency content up to 100 Hz. Because the EEG electrodes are placed relatively far

from the neural cells, the artefacts associated with this techniques are important. Indeed,

during the EEG recording, because of the scalp and the blood circulation, the neural electrical

information gets attenuated and distorted.

• Electrocorticographic (ECoG) or intracranial EEG (iEEG) techniques measure the voltage

fluctuations with electrodes directly placed on the bran surface, named cortex. In this way,

the quality of ECoG (iEEG) signals is improved, beside a minimal invasive procedure, which

requires a brain surgery to bypass the scalp, placing flat electrodes on the brain’s surface. The

ECoG records neural events associated with a small group of neurons or related to a single

neuron cell, depending on the size of the implanted electrodes. Since a large signal amplitude

and a wide frequency spectrum are related to this technique, the ECoG signals are generally

used for mapping of cortical functions [19, 20] and localization of seizure onsets [21].

• Needles-like Micro-Electrodes Arrays (MEA) are used to sense extracellular Action Potentials
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Figure 2.2 – Biocompatible electrodes, reprinted from [25].

(AP). The penetrating electrodes are placed into the cerebrum and measure the activity of a

defined group of neurons. Such technique is used for detection and sorting of neural spikes

[22, 23]. A minimal risk of haemorrhage is related to the micro-electrodes implanted in the

brain’s motor cortex [24]. A related Local Field Potential (LFP), which is an electro-physiological

signal generated by the electrical contribution given by multiple nearby neurons within a

small volume of nervous tissue, is also measured with this technique.

Table 2.1 reports a general overview of the bio-compatible electrodes employed to collect

the neuronal signals. The electrode’s geometry has to be considered in conjunction with the

application; for measuring the single neuron activity, the electrode size has to be in the order

of micrometers, matching the neuron size, while for studying the behaviour of population

of neurons, the size may be larger. The micro electrodes and their related read-out circuits

are designed according to the implant typology and targeted neural activity. For instance,

in Brain-Computer Interfaces (BCI) the needle-shaped micro electrodes are preferred [26],

while the flat electrodes are mostly used for motor cortex recordings [27]. Moreover, active

electrodes are preferred to increase the quality of the information, but a power supply for

the neural probes is then needed. The idea of wireless monitoring neural activities enable a

change in medical procedures and patients with implanted cortical systems will be allowed

to safely leave the hospital environment during a monitoring period, extending over several

months.

In this work, the implemented low-power IC acquires and wirelessly transmits the neuronal

data collected from iEEG electrodes, for epileptic seizure detection. For this application, we

decided to take into account micro-sized iEEG electrodes, in order to improve the seizure

detection capability. Such important choice is discussed in the following subsection.
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2.3. Implantable System on Chip

Table 2.1 – Neuronal signals characteristics.

Signal Amplitude Bandwidth Electrode Invasiveness Risk

EEG 5-300µV 1-100 Hz scalp non-invasive none

ECoG/iEEG ≤ 5mV 0.5-200 Hz cortical
minimally-
invasive

minimal

LFP ≤ 1mV ≤200 Hz microelectrodes invasive
possible local
haemorrhage

spikes/AP ≤ 500µV 1-7k Hz needles invasive
possible local
haemorrhage

2.2.1 Macro and Micro-electrodes iEEG recording

Recordings from micro-electrodes of diameter less than 100µm in the epileptic human hip-

pocampus and neocortex have enabled the identification of several classes of electrographic

activity localized to sub-millimeter-scale tissue volumes, inaccessible to standard iEEG tech-

nology with macro-electrodes [28]. Moreover, Stead and colleagues [21] have observed that

epileptic seizures identified on the macro-electrodes are often preceded by seizure-like activ-

ity on the micro-electrodes. In particular, some of the micro-electrodes record an ongoing

microperiodic epileptic form spiking discharge, which starts minutes before the onset of the

seizure itself [21].

Furthermore, the same researchers have also found that the signals recorded by adjacent

micro-electrodes can be uncorrelated, despite their spatial vicinity. Thus, the sub-millimeter

scale of high frequency oscillations involved in seizure generation motivates the wide-band

iEEG using micro-electrodes for monitoring epileptic patients. The number of recording

channels is predicted to exceed thousands in the near future and the major bottlenecks of

monitoring systems will be the power consumption of data telemetry and the large circuit

area requirement.

2.3 Implantable System on Chip

The hardware component which takes care of the neuronal signal collected by the electrodes is

a System-on-Chip (SoC), which is integrated on the implanted device and allows to collect/am-

plify, digitize, process and transmit the signal to an external receiver, named base station. A

high level view of the integrated SoC is depicted on the top left side of Fig. 2.4. On the external

base station (on the right side of Fig. 2.4), the transmitted data is reconstructed for medical

monitoring and storing.

In the following, we give an overview of the implantable neural recording system, mainly

divided into three blocks: the wireless recording System-on-Chip, the wireless powering and

the data communication units.
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Figure 2.3 – Hybrid electrodes grid containing macro and microelectrode arrays (a) for iEEG
signal recordings, reprinted from [21]. Signals recorded from micro and macro electrodes in
(b), with an highlight on micro electrode 27 that records a seizure onset seconds before the
macros.

16



2.3. Implantable System on Chip

Wireless Recording 
System-on-Chip

N

in
tra

cr
an

ia
l E

E
G

E
le

ct
ro

de
s

Multichannel Serializer
to RF Transmitter

Wireless 
Powering

and
Command SoC

Implanted System

RX
link

Wireless Data 
Recording

Wireless 
Powering

and
Command SoC

External Base Station

TX
link

Data 
Recontruction, Storing 

and Monitoring

Wireless Recording Sistem-on-Chip

iEEG
Electrodes

Implanted
System

Analog
Fronend ADC DSP

N
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2.3.1 Wireless recording System-on-Chip

Generally, the implanted SoC is composed by a neural amplifier, which collects the neural

informations recorded by the active electrodes, placed in contact with the brain surface. An

Analog to Digital Converter (ADC), samples and digitises the amplified neural signals; the ADC

output is processed by the Digital Signal Processor (DSP), which treat the digital informations,

aiming to reduce the amount of information sent by the wireless RF transmitter. Indeed,

the transmitter power budget in typical wireless monitoring systems, is usually one order of

magnitude higher than any other system on the chip [29, 30]. In this Section, we discuss more

into details each of the SoC blocks, on the system level perspective.

For each sampling electrodes, the collected signal by the electrodes is amplified by Low-Noise

Amplifier (LNA). Then, the ADC samples and digitises the analog neural informations. Before

data transmission, the digitised data are processed in order to reduce the wireless TX power

requirements. Data compression is usually employed to reduce the data packages which are

transmitted from the implant to the external base station. This allows to save on the telemetry

power, especially for multichannel neural signal system acquisition.

2.3.2 Data telemetry

In addition to the neural data acquisition and processing, the data has to be transmitted from

the implanted device to an external base station. Such communication link is named uplink

communication, and is required to transmit the digitized neural data to an external receiver

device. A downlink communication is also required, in order to allow data transfer from the

external station to the implant. Such link is required for the calibration and configuration of

the sensor and processing parameters, such as sampling coefficient selections.

The proposed epilepsy monitoring system in this project implements both uplink and down-

link communications. Since the downlink communication is only used for setting the system

parameters, there is no need for a high data rate communication. Thus, it is sufficient a down-

link receiver at the implanted SoC, which communicates at a data rate of 10 kbps. However, for

the uplink communication, very high data rate communication is required, since the number

of monitoring channels and their sampling rate is high. For the neural monitoring application

with tens of electrodes, uplink communication should at least provide a data rate in the order

of 10 Mbps. Accordingly, design of an uplink transmitter is challenging in such applications.

The minimum distance for both communication types is the average human skull thickness of

about 10 mm.

2.3.3 Power management

The powering of the implanted system can be managed exploiting the following solutions:

• implementation of medical grade batteries;
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• wireless power transfer;

• ambient energy harvesting.

Mainly the application scenario and ecosystem determines the most appropriate powering

solution. Typically, implantable devices meant for medical application require large energy

reservoirs which allow the system to operate over a wide period of time. A possible alternative

might be harvesting energy from the sources surrounding the implant. Such approach might

extend the implant life and, in case of sufficient available energy, allow the implant to operate

autonomously. For biomedical applications, there are different types of energy harvesters

such as piezoelectric [31], thermal [32], light [33] and infrared light [34] with power density of

microwatts per cm2. Although, the energy harvested by these types of devices is limited, they

can be used for ultra-low power implants. Mercier et al. demonstrated an electronic system

extracted a minimum of 1.12 nW from the endocochlear potential (EP) of a guinea pig for up

to 5 h, enabling a 2.4 GHz radio to transmit measurement of the EP every 40–360 s [35].

Concerning batteries for long-term implants, an additional surgery is required to replace

the exhausted one, or recharging them is required. Charge capacities of the batteries and

required power for certain time of operation should also be considered while selecting the

battery, as well as the size restrictions of the implant. As an example, Miranda et al. presents a

wireless biomedical system for recording and transmitting neural activity of the brain with

32 channels. The power consumption is low enough to operate continuously for 33 hours,

using two 3.6-V/1200-mAh Li-SOCI2 batteries [36]. A rechargeable battery can be used in

order to extent the duration of the operation. However, wireless power transfer is required for

recharging the implanted battery.

For long term and consuming milliwatts operations such as monitoring of neural signals, the

most appropriate solution is wireless power transfer. Remote powering can be divided in

two categories, depending on the distance between the implanted device and the external

power delivery station: near field and far field. The boundary between near field and far

field is defined by d=λ/2π, where, d and λ are the distance and the wavelength of the signal,

respectively. For long distance remote powering (about few meters), generally the far field

properties are exploited, such as radiation properties of antennas at several hundreds of MHz

frequencies [37]. Hence, such implementation is suited for applications that necessitate high

mobility. For what concerns the short distance range powering (few centimeters), reactive

coupling techniques, such as capacitive and inductive at several MHz frequencies, are im-

plemented. The capacitive coupling is given by an electrical coupling, while the inductive

coupling exploits magnetic coupling in the link. Capacitive coupling requires a dielectric

medium that allows strong coupling and is more sensitive to distance variations. On the

other hand, inductive coupling method exploits the mutual inductance between coupled

inductors. In the literature, there are numerous examples of wireless power transfer by means

of electromagnetic (EM) radiation [38, 39], magnetic coupling [18, 40, 41], ultrasonic coupling

[42], and infrared radiation [43]. For a chosen wavelength, if the distance between the coils
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is smaller than d, the magnetic coupling gives more efficient wireless power transfer [44].

Accordingly, magnetic coupling is more preferable for powering the implanted devices. It is

fair to claim that EM radiation and magnetic coupling based systems dominate the literature

especially for neural implant powering applications. Recently, Lee et al. has presented an

inductively-powered wireless integrated neural recording system for wireless and battery-less

neural recording from freely-behaving animal subjects inside a wirelessly powered standard

homecage [45]. The proposed system consumes 51.4 mW and it is powered by an inductive

link at 13.56 MHz.

For several biomedical applications such as hearing aids and pacemakers, batteries occupy

a significant amount of volume. However, the volume allocated for a neural implant is very

small compared to these applications. Moreover, the neural recording applications consumes

higher amount of power and this property reduces the duration of the operation. Considering

continuous power demand of the neural implants aiming for continuous data transmission

and the estimated power budget, current ambient energy harvesters are found to be insuf-

ficient to fulfill this task. Wireless power transfer link by means of inductive coupling as a

power source of the implanted system is good solution since the distance between implant

and external units is in the order of millimeters (human scalp thickness ∼10 mm) and sending

the required power to the implant is feasible with current technology.
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3 Data compression for autonomous
sensing systems

In this Chapter, we discuss the optimized information extraction from signals or data volumes.

Following an overview on the compressive sensing paradigm, we analyse the developed math-

ematical theory and computational methods for information recovery from highly incomplete

data. In the vast majority of applications, including imaging systems, home automation, envi-

ronmental remote controlling and real-time medical monitoring/treatment, data compression

becomes indispensable to reduce the amount of processed/transmitted information. The

data compression Integrated Circuit (IC) implementation has to be integrated in a compact

and low power device, such that its related costs are minimal with respect to the benefits in

the overall sensing system.

The remainder of this Chapter is organized as follows. First, in Section 3.1, a brief overview on

the CS approach is described, highlighting its main advantages and disadvantages. Afterward,

a recently proposed structure-aware compressive strategy, named Structured Sampling [46], is

then discussed in Section 3.2. The structured recovery and optimization details are followed by

numerical results that motivates this method. Then, a new compression architecture based on

Machine Learning, named Learning Based Compressive Subsampling (LBCS) [47], is described

in Section 3.3. The LBCS method is compared with state-of-the-art schemes, using iEEG

human datasets.

3.1 Compressive Sensing

The Compressive Sensing (CS) technique has recently emerged as a very efficient compression

method, which allows easy integration on-chip, reducing the sampling rate at the sensor node.

In this work, the CS technique has been the seed from which different algorithms have been

developed, tailored to hardware requirements. In a nutshell, CS consists in taking fewer linear

samples than dictated by the Shannon-Nyquist theorem, while still allowing robust off-line

signal reconstruction. This is possible by exploiting the fact that the information content of a

signal is often much lower than its raw data content.
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Figure 3.1 – Electrocardiography gives a time-sparse representation of the heart electrical
activity.

The CS system employs compressive measurements, obtained by linear projections of the

signal of interest. The signal reconstruction is the process that allows to recover these original

signal from the compressed measurements. One condition for accurate reconstruction is that

the signal needs to be sparse, i.e. the signal has few non-zero components. If it is not, it can be

projected onto a sparsifying signal domain (named basis). Other requirements and conditions

are discussed later in this chapter.

CS is a relatively novel field, but other similar methods have been proposed since a long while.

One of the first methods to reduce the sampling rate in sparse signals has been proposed by

Prony in 1795 [48], and it estimates the non-zero amplitudes in series of complex exponentials,

used for different application [49]. In 1989 Donoho and Stark proposed a method that shows

signal recovery with missing data, sparsity and band-limited measured signals [50]. In 2002,

Vetterli et al. proposed a method to reduce the sampling rate based on finite rate of innovation

of the sampled signals [51].

3.1.1 Signal Sparisity

If a band-limited signal occupies the overall bandwidth, then the Shannon-Nyquist theorem

sets the minimum sampling frequency as at least the double of its bandwidth [52, 53]. However,

if the signal does not occupy all the available bandwidth, CS states that it can be recovered from

less samples. In this case fall all the sparse signals, which are represented by few non-zeros

components in a certain domain or basis. Some natural signals are sparse in the given domain,

such as in the time representation. A classical example is given by the electrical activity of

the heart, such as the one depicted in Fig. 3.1, where an ideal electrocardiograph (ECG) is

characterised by few non-zero coefficients in the time domain.

Given an input signalα ∈RN which has K non-zero coefficients, this signal is named K -sparse.

The sparsity of the signal is then defined as p = K
N . Thus if a signal is very sparse, K << N

and p << 1. If the input signal α is not sparse in the given domain, another domain (e.g.,

Fourier, Wavelet, etc.) may allow for a sparse representation of the signal. This transformation

mechanism, named transformation coding, is very often used in CS and in compression
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Figure 3.2 – A multi-tone sine in the non-sparse time domain (left) and its sparser representa-
tion in Fourier domain (right).

algorithms in general. A very intuitive example to depict this concept can be given taking into

account a multi-tone sinusoidal signal, formulated as follows

y =
L∑

n=1
An sin(2π fn) , (3.1)

where, A is the signal amplitude and fn is the frequency of the n-th sine. Fig. 3.2 depicts the

multi-tone sine wave formulated in equation (3.1), with L = 3, both in the non-sparse time

domain (left) and its sparser representation in the Fourier domain (right).

Assuming that x ∈RN is not sparse in the identity basis, it can be projected over a sparsifying

basisΦ ∈RN×N

α=ΦT x , (3.2)

such that α is the K -sparse representation of x in the transformed domain. Since Φ is an

orthonormal basis, thusΦΦT = I and

x =Φα , (3.3)

The support of the input signals is mathematically defined as the subset of the domain

containing the elements which are zero. Then, the cardinality of the signals’ support gives

the sparsity of the input signal. Moreover, the `0 "norm" (‖.‖0)1 gives the number of non-zero

1the `0 is not a norm by definition, but can be seen as the limit of the `p norms, with (p →∞).
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Figure 3.3 – Electrocardiography signal on top with the threshold level; its sparser representa-
tion at the bottom.

entries of the input signal, thus

K = |supp(α)| = ‖α‖0 . (3.4)

In general, natural signals are not perfectly sparse, but can be approximated to be sparse,

since they can be represented by few number of coefficients, while all the other are negligible.

The error introduced to sparsify these signals, named compressible signals, can be negligible

depending on the defined sparsifying level. Taking into account the example shown in Fig. 3.3,

it can be defined a threshold level, such that only the main signal’s variations are taken into

account (e.g., the ECG spikes), while the rest is neglected, as highlighted in Fig. 3.3-(bottom).

3.1.2 Compressive Signal Measurements

Given the input signal x ∈ RN , its compressed representation y ∈ RM is given sampling x

through a dense measurement matrix A ∈RM×N , with M < N , as

y = Ax . (3.5)

It is worth noticing that the ratio between the N and M defines the compression ration (CR)

C R = N

M
. (3.6)
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Figure 3.4 – Dimensionality reduction applying Compressive Sensing technique.

A compressed measurement is valid if each sample contains information from the non-zeros

values of the input signal. In order to allow a successful compressed sampling, as discussed in

paragraph 3.1.1 with equation 3.3, the measurement needs to be performed in the sparsifying

basis. Combining equation (3.5) with (3.3),

y = Ax = AΦα=Ψα , (3.7)

whereΨ= AΦ is defined as the measurement matrix and α is the sparse representation of x in

the ortho-normal basisΦ.

3.1.3 Signal Recovery

For simplicity, let’s assume that the input signal x is already sparse in the given domain. Fig. 3.4

illustrates this scenario, where x is sparse and it is sampled through a dense measurement

matrix A, which gives a compressed output y. In such case, the sparsifying matrix is the unitary

matrix (Φ= I ), thus, following equation (3.7): x =α.

In order to recover the input signal x from y = Ax an under-determined linear system of

equations needs to be solved. Normally, this system has no unique solution and we look for a

solution with specific properties. In order to clarify this point, we consider a two dimensional

reconstruction problem, meaning that x ∈R2. In such case, the system which we want to solve,

is defined as

y = Ax = a1x1 +a2x2 , (3.8)

The set of all the possible solutions of (3.8) is depicted by the thick line in Fig. 3.5. Our content

is to find the sparsest solution of the system, with the minimum norm. Then, for the example
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shown in Fig. 3.5, we need to find (0, x2),

x2 = y

a2
− a1

a2
x1

= cx1 +d ,
(3.9)

which is one sparse solution of the system defined in (3.8), and it is closer to the origin, thus

the norm is less then the solution (x1,0).

The sparse signal recovery requires to find the solution of

x̂ = argmin
x∈RN

‖x‖0

subject to y = Ax
(3.10)

However, it results to be an NP-hard combinatorial problem, whose complexity to find the

exact solution exponentially grows with size of N .

`1-norm, also known as Least Absolute Deviations (LAD) is defined as the minimization of

the sum of the absolute differences between the target value and the estimated values. A

possible way to circumvent the NP-hardness problem is to replace the `0 minimization by `1

minimization:

x̂ = argmin
x∈RN

‖x‖1

subject to y = Ax
(3.11)

The `1 optimization method, named Basis Pursuit (BP), under various conditions gives the

same unique solution to equation (3.10) and (3.11).

Fig. 3.5 shows the `n
p minimization considering a two dimentional reconstruction problem (n

= 2). In particular, it shows how with `1 optimization (p = 1), one of the `1 rhombus corners

intersects the line defined by equation (3.8), and the overlaps corresponds to the one-sparse

solution (0, x2). The `2 optimization (p = 2) gives instead a solution which does not touch the

constraint line on one of the axis, meaning that the solution is not sparse.

The measured input signal may be corrupted by some noise w ∈RN :

y = Ax+w . (3.12)

The Basis Pursuit De-Noising (BPDN) allows to recover the input signal, allowing some mea-

surement mismatch ε, as formulated by:

x̂ = argmin
x∈RN

‖x‖1

subject to ‖Ax−y‖2
2 ≤ ε

(3.13)
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p = 1

x1

x2

p = 2

Figure 3.5 – Shape of the `2
p minimization for p = 1 and p = 2, while the thick straight line

represents all the solutions to y = Ax.
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The conditions under which the signal x can be efficiently and accurately recovered from the y

measurements, discussed by Candès et al. [7, 54, 55], can be listed as:

• the Null Space or Kernel of the measurement matrix A contains all vectors x, which are

mapped to 0:

N (A) = {x : Ax = 0} . (3.14)

The Null Space Property (NSP) is satisfied if there is a constant γ ∈ (0,1), such that

‖nS ‖2 ≤ γ‖nS C ‖1 ,∀ n ∈N (A) , (3.15)

for all sets S ⊂ {1, . . . , N } and their complements S C (set of elements not in set S ), with

cardinality K.

• Restricted Isometry Property (RIP) property of the measurements matrix. A fulfils the RIP

if

(1−δk )‖x‖2
2 ≤ ‖Ax‖2

2 ≤ (1+δk )‖x‖2
2 ,∀ x K− sparse , (3.16)

where δk is a defined isometry constant.

• Incoherence of the projection basis A and the sparsifying basis Φ. The coherence is

defined as

µ= max | < A,Φ> | . (3.17)

When µ is close to 0, the coherence between A andΦ is minimal, so the reconstruction

performs better. A consequence of this definition is that if a signal is sparsely represented

in one basis, it is not sparse in the other one. The time and Fourier pair of bases is a

good example of incoherence, as previously illustrated in Fig. 3.2, where a sparse signal

in the Fourier base domain, is not sparse in the time base.

As demostrated by Candès et al. [56], randomly chosen measurement matrices perform,

with high probability, very well. Examples of random matrices are the random Gaussian

-where each A entry is independently given by a normal distribution with zero mean and

1/M variance- and random Binary -where the matrix entries are drawn from a Bernoulli

distribution, where the values ±1/
p

M have the same probability. Thus, on the theoretical

point of view, the A matrix can be generated with random coefficients, since independent

and identical distributed (i.i.d.) Gaussian matrices are incoherent and also satisfy the RIP

condition. Moreover, they are universal, i.e., the RIP or the incoherence of AΦ is the same

as of the original A [57], where matrix Φ (that needs to be unitary, i.e., ΦΦT = I ) is used to

move for a sparser representation of the signal x. However, Gaussian matrices are prohibitively

expensive to use in practice, since they require O (M N ) space and time.
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In the remainder of this section, it is briefly discussed some of the most common recovery

algorithms used at the place of the `0 minimization problem (3.10), in order to reduce the

complexity. The algorithms that result to be more practical are the convex `1 minimization

(3.11) and greedy approximations.

The convex relaxation formulation allow to solve the BP problem (3.11) or, considering noisy

data, the BPDN problem (3.13) [58]. In general, the convex relaxation problem is solved apply-

ing iterative algorithm, to arrive at the optimal solution. Popular choices to solve the convex

relaxation problem are primal-dual interior point methods [58] or fixed-point continuation,

that applies soft-thresholding approach [59], and the Least Absolute Shrinkage and Selection

Operator (LASSO) [60].

Even though the convex relaxation methods allow to solve large size problems, recovering

x, usually requires to solve a non-linear optimization problem that requires high numerical

precision and makes unsuitable for dedicated hardware implementation. To overcome this

limitation, greedy algorithms are implemented in VLSI designs, since they are generally sim-

pler and faster than what required by convex relaxation methods. On the other hand, such

implementation is generally traded-off with sub-optimal solutions. Greedy algorithms may be

divided into three main groups:

• Serial greedy pursuits: such as Matching Pursuit (MP), Orthogonal Matching Pursuit

(OMP) and Gradient Pursuit (GP);

• Parallel greedy pursuits: Compressive Sampling Matching Pursuit (CoSaMP) and Sub-

space Pursuit (SP);

• Thresholding Algorithms: Approximate Message Passing (AMP), Iterative Hard Thresh-

olding (IHT) and Iterative Soft Thresholding (IST).

3.2 Structured Sparsity, Sampling and Recovery

As discussed in previous section, sparsity of the input signal has a significant importance for

compression and signal sampling. Moreover, sparsity is widely used in machine learning,

optimization and signal analysis. This is motivated by the fact that most of natural signals are

characterized by sparse representations using an appropriate basis.

In this section, we introduce the concept of structured sparsity in subsection 3.2.1, which

aims to improve the simple sparsity model, exploiting the relationship between the nonzero

components of the input signal. Then, we propose our CS sampling approach in subsection

3.2.2 [46], where sampling schemes aware of the signal’s structure is adopted to outperform

the the standard Gaussian or Bernoulli schemes. Furthermore, we also exploit the signal

structure in the reconstruction phase, as discussed in subsection 3.2.3.

Overall, we reap the benefits of both structured sampling and structured recovery to yield
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Original Simple Sparsity Structured Sparsity

PSNR: 20.43 dB PSNR: 23.57 dB

PSNR: 28.43 dB PSNR: 33.24 dB

Figure 3.6 – Empirical performance of simple and structured sparsity recovery of natural
images, reprinted from [61].

state-of-art compression of up to 32×, while maintaining high signal reconstruction quality,

as numerically demonstrated on two clinical iEEG datasets.

3.2.1 Structured Sparsity

As discussed by Kyrillidis et al. in Chapter 12 of [61], the true underlying structure of many

signal processing and machine learning problems is often more sophisticated than sparsity

alone.

In the recent years, researchers have explored the Structured Sparsity, with models that go

beyond the simple sparsity idea, finding relationships between the nonzero coefficients. In

general, the main advantages of structured sparsity models are easier interpretation of the

solutions and better recovery performance, since the number of samples is reduced. Many

approaches have been applied to define the selection process: greedy algorithms for signal

approximation under a tree-structure model approximation, group Lasso etc. [61]. To highlight

the different outcomes from this approach to the general CS case, Fig. 3.6 (reprinted from [61])

depicts the difference between the general CS approach and the structured sparsity recovery

of images, with number of measurements M approximately 5% of N for the landscape picture
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(top row, original image on the left side, with dimension 2048×2048) and M=10% of N, for the

MRI image (bottom row, original image on the left side, with dimension 512×512).

3.2.2 Structured Sampling

More efficient types of sampling are being successfully used in real applications, such as

subsampled fast transforms, like the Fast Fourier (FFT), the Discrete Cosine (DCT) or the Fast

Walsh-Hadamard (FWHT) Transforms, which can be computed in O (N log N ) time. Despite

not being universal, recently, a new theoretical approach, discussed by Adcock et al. [62],

has explained the reasons why they work with some bases such as wavelets, introducing

the concepts of multi-level sampling, asymptotic sparsity and incoherence, as shown in

Fig. 3.7 (left).

Additional structures in the signal x, such as interdependencies between its non-zero coef-

ficients or constraints on its support, allow to reduce the number of samples required for

exact or stable recovery (see [63] and [64]). Many of these structures can be encoded via

linear inequalities that admit tight and tractable convex relaxations [65]. Interestingly, natural

signals are often characterized by sparse and structured representations in time-frequency (or

space-frequency) domains, such as provided by wavelets [66].

Following the asymptotic sparsity discussed in [62], our sampling scheme selects the indices

of the defined transformation basis according to a probability function which favours the low

frequencies of the signal, which carry most of its energy. Such probability function is defined

following the compression factor, and always samples the low frequencies, while the higher

frequencies are selected with fast decreasing probability, as depicted in Figure 3.7 (right). We

named this approach Structured Sampling [46].

The structured sampling has been developed tailored to the hardware requirements: the

sampling probability function selects the indices of the Walsh-Hadamard Transform, which

has the advantage of only requiring binary operations. For this reason, we call this approach

Structured Hadamard Sampling (SHS).

3.2.3 Structured Recovery

In order to reconstruct the original signal x from its compressive samples y, most structured-

sparsity methods resort to solving the following optimization problem on the wavelet coeffi-

cients α,

minimize
α∈A

f (α)

subject to AΦα−y ∈K
(3.18)

where f is a Gauge function that promotes the structure we expect in α, K encodes our

information about the noise and A is a constraint set that specifies further assumptions about
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Figure 3.7 – (left) Coherence between the Hadamard and the Wavelet bases. The coherence
decreases for higher frequencies (higher coefficients). (right) Probability functions used for
sampling the indices of the Fast Walsh-Hadamard Transform for 4x and 32x compression
factors.

the signal, e.g. boundedness. We reconstruct the signal as x̃ =Φα̃, where α̃ is the solution to

(3.18) andΦ is the wavelet transformation matrix.

For sparse signals, it is common to use the `1 norm, ‖x‖1 := ∑n
i=1 |xi |, leading to the Basis

Pursuit (BP) optimization problem.

It is well-known that biological signals are not only sparse in the wavelet domain, but their

wavelet coefficients can be naturally arranged on a dyadic tree with the coefficients decaying

from root to leaves. This type of structure can be promoted by a tree regularizer that gradually

penalizes the coefficients closer to the leaves. In order to do so, we define a group structure

T = {G1, . . . ,Gn} where each group Gi ⊆ {1, . . . ,n} contains the node i in the tree and all its de-

scendants. Such approach is named Hierarchical Group Lasso (HGL). Let x|G be the restriction

of the vector x to the coefficients indexed by G . The tree norm is then defined as [67]

‖x‖T := ∑
G∈T

‖x|G ‖. (3.19)

Given a sampling strategy that is not aware of the signal structure (e.g., MCS, discussed later

in subsection 3.2.3), in Figure 3.8, we show how this structure emerges in the reconstructed

signals when using the tree norm, but not when using the `1 norm. In the same figure, it can

also be noted that when using SHS, the hierarchical structure emerges even if it is not imposed

during reconstruction, because it is already mostly captured during sampling.

Considering the real application in which this encoding scheme is tailored for, we can exploit

the signal structure derived by the spatial distance between the micro-electrodes of the

implanted system. Indeed, when the micro-electrodes are very close to each other, due to the
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Figure 3.8 – Tree structure in one signal from iEEG.org dataset I001 P034 D01 (channel 6,
first annotated seizure, first 1024 samples window) and in three reconstructions obtained via
Bernoulli sampling (BERN) and structured Hadamard sampling (SHS). The tree structure can
be enforced via a specific tree regularizer or mostly captured via structured sampling.
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Figure 3.9 – First 64 Wavelet coefficients of the micro-electrode signals from two datasets from
the iEEG.org portal. (left) 7 channels from dataset I001 P034 D01. (right) 32 channels from
dataset Study 040. The group structure is evident among the correlated channels in both
datasets, however, there remain outlier channels which do not abide to the group structure.

high correlation among the signals, their time-frequency domain coefficients tend to be group

sparse. That is, when a certain coefficient is zero for a signal, it is likely to be zero also for the

correlated signals and vice-versa. Let X ∈RN×n be the signal matrix, each row containing the

signal for one of the N channels. In order to promote group-sparsity, [68] proposed to use

the `2,1 mixed norm, ‖X‖2,1 :=∑n
i=1

√∑N
j=1 X 2

i , j . In Figure 3.9, we report the first 64 wavelet

coefficients for the signals from two datasets, exhibiting the group structure among correlated

channels.

Optimization algorithm

In order to solve the constrained convex optimization problem (3.18), we use the primal-dual

algorithm proposed in [69], named DecOpt. This algorithm is very flexible in handling different

problem types, scalable and guaranteed to converge at an optimal rate [69]. Its iterations

require to compute the proximity operator of f and to apply AΦ or its adjoint, which for the

FWHT and wavelet transform require only O (n logn) time. The proximity operator of f is

defined as

prox f (z) = argmin
x∈Rn

1

2
‖x−z‖2

2 + f (x) .

The proximity operators of the `1 norm and of the `2,1 mixed norm can be computed in closed

form via soft-thresholding or group soft-thresholding, while the proximity operator for the

tree norm can be computed in a finite number of steps via an active set algorithm [67]. In

practice, there is almost no computational difference between the three approaches, thus we

can take advantage of additional structure at almost no increase in computational cost.
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SHS performance evaluation

The performance evaluation have been developed over two iEEG human dataset, named

I001-P034-D01 and Study 040 from iEEG.org portal. More details on the dataset are dis-

cussed in the Appendix A.

In the following, we compare Structured Hadamard Sampling applied to each channel inde-

pendently, with the same subsampling for all the channels, to two other sampling approaches:

• The first, named BERN, uses the same random Bernoulli {±1} matrix to sample each

channel independently [29];

• The second, named Multi-Channel Sampling (MCS) [68], designed to be highly power-

efficient, uses a Bernoulli {0,1} matrix to sample across the channels at each time step.

The compression achievable by this method depends on the number of samples taken

at each time step, with a minimum of one sample, yielding a compression factor equal

to the number of channels.

SHS and BERN sampling strategies are limited only by the length of the considered time

window.

We also compare the three structured recovery methods described in the previous section.

Namely, Basis Pursuit (BP) using the `1 norm, L2L1 using the `2,1 mixed norm and the TREE

method which uses the tree norm, ‖x‖T . As sparsifying basis, we use the Daubechies-4

Wavelet basis as provided by the Rice Wavelet Toolbox2. We pursue the following protocol for

the experiments:

1. Sample all channels in each window according to the sampling method chosen: MCS,

SHS or BERN.

2. Reconstruct using DecOpt [69] via BP, L2L1 or TREE.

3. Compute the signal-to-noise ratio (SNR) of the reconstructed signals.

4. Average over 20 different randomizations of the sampling scheme.

Tables 3.1 and 3.2 report the results on the first dataset averaged over 157 windows and chan-

nels 2 to 6. A posteriori, we excluded channels 1 and 7 from the analysis of the performance

because these channels are either inactive or not recording the neurological signal. An advan-

tage of channel-wise sampling (SHS or BERN) against the MCS sampling is that the former

does not suffer from mixing “noisy” channels with “clean” ones. In an embedded system, a

sub-circuit may be required for MCS in order to detect if a channel is recording properly. Fur-

thermore, the compression factor of MCS is limited by the number of channels, while SHS and

2http://dsp.rice.edu/software/rice-wavelet-toolbox
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Figure 3.10 – Dataset 1

BERN can achieve much higher compression rates. However, only SHS yields an acceptable

reconstruction performance above 16dB at 32× compression, with 10dB considered as the

minimum required performance in order to retain diagnostically relevant information [70].

Table 3.3 contains the reconstruction SNR for the second dataset. In this case, the SNRs for

all methods are very high, with an advantage for SHS with structured recovery, either L2L1

or TREE. The high SNRs can be explained by the fact that the signals in this dataset are quite

regular, whose wavelet coefficients are then very sparse, therefore requiring much fewer linear

measurements for robust recovery.

The running time of the optimization algorithm is, in general, less than 10 seconds per time

window for recovering the signals from all the channels simultaneously on an Intel Xeon

E5-2630 @ 2.40GHz.

Table 3.1 – iEEG.org portal dataset I001 P034 D01. Mean SNR over channels 2-6

Sampling Recovery
Compression factor

7/4 7/3 7/2 7

MCS
BP 29.3 25.7 21.4 15.2

L2L1 31.3 28.1 24.3 17.3
TREE 34.1 30.6 26.8 21.2

Table 3.2 – iEEG.org portal dataset I001 P034 D01. Mean SNR over channels 2-6

Sampling Recovery
Compression factor

2 4 8 16 32

SHS
BP 34.1 27.6 23.7 21.0 16.7

L2L1 35.3 28.4 24.0 21.2 16.8
(this work) TREE 35.6 28.8 24.6 22.2 17.6

BERN
BP 33.1 24.4 16.7 10.8 5.7

L2L1 35.8 27.3 18.5 11.8 6.6
TREE 36.9 29.5 23.0 17.8 13.5
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Figure 3.11 – Example of micro-electrode signals from iEEG.org dataset I001 P034 D01
(first seizure, first 1024 samples window). Channel 1 is inactive, since it simply jumps between
−1µV and 1µV . Channel 2 to 6 record normal activity, which is not much correlated. Channel
7 exhibits strong AC components, possibly picked up from the power sources.
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Figure 3.12 – Example of micro-electrode signals from iEEG.org dataset Study 040 (first
seizure, first 1024 samples window). Channel 26 seems completely inactive, it sends a constant
signal of approximately −131mV . Channels 3 and 28, among others, are highly correlated.
Channel 1 is an example of a channel which does not exhibit the smaller oscillations of
channels 3 and 28.
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Table 3.3 – iEEG.org portal dataset Study 040. Mean SNR over all channels.

Sampling Recovery
Compression factor

2 4 8 16 32

MCS
BP 79.6 72.4 66.5 61.2 55.6

L2L1 77.4 71.6 64.6 60.4 58.9
TREE 86.6 77.4 70.8 59.6 12.3

SHS
BP 91.1 84.0 80.0 77.5 73.8

L2L1 93.6 86.3 82.1 79.5 74.8
(this work) TREE 92.8 85.3 81.3 78.7 74.7

BERN
BP 104 85.9 70.0 63.4 60.9

L2L1 73.4 69.4 63.7 59.4 57.1
TREE 83.3 76.4 61.7 54.3 32.4

3.3 Learning Based Compressive Sampling

In the previous Section, the three different structured-sparsity recovery methods have been

compared for reconstructing iEEG signals sampled via the SHS, MCS and BERN approaches.

The best performance was obtained using a Gauge function that exploits the natural tree

representation of the wavelets coefficients in order to penalize the coefficients closer to the

tree leaves [46].

The compression architecture that is described in this Section is based on the idea of Learning-

Based Compressive Subsampling (LBCS) [47], which consists on linear encoding and linear

decoding with respect to a given orthonormal basis, resulting in a much simpler and faster

solution compared to the approaches described in Section 3.1.

LBCS can be summarized as follows. Given a signal x ∈ RN , we consider the compression

model

y = PΩΨx , (3.20)

whereΨ ∈RN×N is an orthonormal basis and PΩ ∈RM×N is a subsampling matrix whose rows

are canonical basis vectors. The effect of applying PΩ toΨx is to retain only the coefficients

indexed by the setΩ, also known as the subsampling map. The vector y ∈RM is the compressed

version of x, with a nominal compression rate (CR) of N
M . The signal x is then approximately

recovered via the fast linear decoder

x̂ =Ψ∗PT
Ωy . (3.21)

Given a training set D = {x1, . . . ,xm} of m fully sampled signals of unit norm, we learn the

optimal subsampling mapΩ by choosing the indices that capture most of the average energy
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in the transform domain:

Ω̂= argmax
Ω,|Ω|=M

1

m

m∑
j=1

∑
i∈Ω

|〈ψi ,x j 〉|2, (3.22)

where ψi is the i -th row ofΨ. Ω̂ can be exactly found by selecting the M indices whose values

of 1
m

∑m
j=1 |〈ψi ,x j 〉|2 are the largest [47]. The learnt sampling scheme is then used to directly

sample only those transform coefficients indexed by Ω̂ for all signals x.

3.3.1 Optimal encoding

Given a basisΨ and a desired number of samples M , the optimal linear encoding of each x

is given by retaining only the M largest coefficients of Ψx in absolute value. However, this

optimal encoding requires to first compute all the coefficientsΨx, which is prohibitive with

small area and power consumption, as discussed in next Chapter 4.2.3.

In Section 3.3.2, we use the optimal encoding approach to show the upper limit in terms of

quality of the reconstructed signal and we compare the results with the LBCS method.

3.3.2 LBCS performance evaluation

In this section, we first give the details related to the human iEEG datasets used in the ex-

periments and then we compare the numerical results obtained applying the LBCS encoder

against the other approaches described in Section 3.1.

Hadamard based LBCS performance evaluation

We conducted numerical experiments with all the methods described in this paper on both

datasets (discussed in Appendix A). We varied the length of the signal window N , the number

of bits, Bi , of the input A/D converter and the compression rate C R. We observed that the

LBCS approach is not very sensitive to the window length N , therefore, we present only

results for N = 256 and Bi = 10 bits, which seemed to offer a relatively high reconstruction

quality, with limited area-power consumption. A more into details discussion on the hardware

implementation is given in Chapter 4.

Tables 3.4 and 3.5 report the reconstruction quality, in dB, obtained on the I001-P034-D01
and the Study 040 datasets respectively. As expected, Optimal compression (subsection

3.3.1) sets the upper limit on the achievable performance. LBCS offers the best reconstruction

quality at any compression rate, with an increase in the SNR of several dBs compared to the

other methods. The SHS approach offers the second best performance, as its variable density

is adapted to the signals, but still fails at capturing as much structure as LBCS. The BERN and

MCS methods offer a much inferior performance at high compression rates, because impos-

ing structure only during reconstruction does not fully compensate the limitations of their
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Figure 3.13 – I001-P034-D01 Reconstruction example for channel Grid28 on four windows
of length 256 each.

structure-unaware sampling mechanisms. Figures 3.13 and 3.14 show some reconstructions

obtained with each method on both datasets. The LBCS reconstructions are much smoother

and better follow the original signal.

The linear decoder (3.21) yields reconstructions at a fraction of the computational cost of the

other methods. Indeed, solving a single optimization problem with the HGL norm, using

DecOpt [69], requires on average approximately 0.1s, while the linear decoder requires only

approximately 10−5s for a 256 samples signal.
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Table 3.4 – I001-P034-D01 N = 256, Bi = 10

Method
Compression rate

2 4 8 16 32 64
Optimal 41.60 39.86 36.38 31.40 25.42 19.43

LBCS 40.79 37.64 33.27 28.48 23.27 18.06
SHS HGL 36.92 27.96 23.89 20.26 18.53 14.49

BERN HGL 37.48 26.69 20.49 16.87 13.53 11.15
MCS HGL 28.96 24.40 20.92 17.48 n.a. n.a.

Table 3.5 – Study 040 N = 256, Bi = 10

Method
Compression rate

2 4 8 16 32 64
Optimal 40.79 40.05 38.11 35.28 32.07 28.61

LBCS 40.55 38.90 35.77 33.09 30.28 27.28
SHS HGL 37.58 33.67 31.75 29.21 27.73 24.75

BERN HGL 38.23 33.57 29.59 26.62 24.03 22.08
MCS HGL 37.20 34.22 30.82 27.03 23.00 18.45

Table 3.6 – Reconstruction performance (in dB) N = 32 - Bi = 10

Method
Compression rate

2 4 8 16 32
Optimal 41.51 39.39 35.08 28.61 23.27

LBCS 40.98 38.06 33.27 28.48 23.27
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Figure 3.14 – Study 040 Reconstruction example for channel LG50 on four windows of length
256 each.

DCT based LBCS performance evaluation

The numerical experiments have been developed with all the methods described in this paper,

varying the length of the signal window N , the ADC resolution Bi and the compression rate

C R.

The DCT-based LBCS approach has been evaluated considering N = 256 and Bi = 10 ADC

resolution bits, as in previous subsection 3.3.2. Moreover, the resolution of DCT transformation

matrix coefficient BDCT = 8 bits.

Table 3.7 reports the reconstruction quality, in dB, obtained on the I001-P034-D01 dataset. As

for the case of Optimal Hadamard-LBCS, Optimal DCT compression sets the upper limit on the

achievable performance. DCT-LBCS offers the best reconstruction quality at any compression
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Table 3.7 – Performance (dB) N = 256, Bi = 10, BDCT = 8

Method
Compression rate

2 4 8 16 32 64
DCT Optimal 42.03 41.96 40.16 37.36 32.88 25.63

DCT LBCS 41.65 40.66 38.59 35.55 31.00 23.97

Had-Optimal 41.60 39.86 36.38 31.40 25.42 19.43
Had-LBCS 40.79 37.64 33.27 28.48 23.27 18.06
SHS HGL 36.92 27.96 23.89 20.26 18.53 14.49

BERN HGL 37.48 26.69 20.49 16.87 13.53 11.15
MCS HGL 28.96 24.40 20.92 17.48 n.a. n.a.

rate, with an increase in the SNR of several dBs compared to the other methods. The Optimal

Hadamard yields the second best performance and sets the upper limit for the Hadamard-

based approach. Interestingly, the DCT-LBCS method offers a comparable performance to the

Optimal Hadamard even at higher compression rate. In the SHS approach the variable density

is adapted to the signals, but still fails at capturing as much structure as LBCS. The BERN

and MCS methods offer a much inferior performance at high compression rates, because

imposing structure only during reconstruction does not fully compensate the limitations of

their structure-unaware sampling mechanisms.

As for the Had-based LBCS, the linear decoder (3.21) yields reconstructions with less compu-

tational cost of the other methods.

Exploring trade-offs

In order to understand the impact of various design choices on the power and area consump-

tion, and on the quality of the compression, we vary the number of samples considered in

each window N = 256,512 or 1024. To understand the impact of the quantization, we simulate

an ADC with resolution Bi = 8,9,10 or 11 bits. Finally, we vary the CR from 2× to 64× in a

geometric fashion.

Figure 3.15 summarizes the results obtained with the proposed learning-based encoder and

linear decoder, both for Hadamard-based LBCS (left) and DCT-based transform. The x-axis

represents transmission bit rate, TBR, computed as TBR = MBo
N = Bi+log2 N

CR , where Bo is the

necessary bit resolution after the transformation (more details in next Chapter 4). The y-axis

measures the memory area size (MA), which is directly proportional to the number of entries

in the transformation matrix needed for sampling, MA = M ×N ×Bentr y = N 2

CR , where Bentr y

is 1 for Hadamard and 8 for DCT transform. For a given compression rate, the memory area

scales quadratically with the window length, N, thus we report MA in a log scale. The color,

and size, of the dots represent the reconstruction performance in SNR, measured as described

in the previous subsections.
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Figure 3.15 – Trade-off between bit-rate, memory size and reconstruction performance.

3.4 Summary

In this section we summarize the information presented in this chapter.

After the introduction to the main concepts of CS, in the first part of the chapter, we then

presented our mathematical theories applied for low-dimensional signal-models. In particular,

we showed that a structure aware signal sampling and reconstruction allows to outperform

the standard CS techniques. The proposed CS sampling scheme adapted to the structure of

intracranial EEG signals consists in taking random components of the Hadamard transform

of the input signal, where randomness is controlled by a probability function that fovors the

lower frequencies.

Afterwards, a learning based theory, named LBCS has been applied for the data compression

scheme. Such scheme has been tailored for reduced area and power costs for neural signal

encoding in wireless implantable devices. LBCS consists on linear encoding and linear decod-

ing with respect to a given orthonormal basis, resulting in a much simpler and faster solution

compared to the standard CS’s approaches. The set of indices is learnt from a training set of

fully sampled signals, by selecting the ones that capture most of the signals’ average energy.

LBCS approach allows a more faithful reconstruction of original signals, as compared with

state-of-the-art schemes.
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4 LBCS based hardware implementa-
tion and validation

This chapter describes the different prototypes we have developed for the neuronal signal

acquisition system, motivating the different circuit and system choices made to design the

dedicated ASICs. The integrated circuits proposed in this work are based on the Learning-

Based CS technique described in Chapter 3.

The remainder of this chapter is discussed as follows. In Section 4.1 we give an overview of the

overall implantable system. Then, Section 4.2 describes the LBCS implementations, based on

the Hadamard and Discrete Cosine Transformations. Afterwards, the complete single channel

implementation is described in Section 4.3. The multichannel implantable design is described

in Section 4.4, which is then followed by the Chapter summary in Section 4.5.

4.1 System level overview

A typical wireless system used in a multiple channels scenario, is depicted in Fig. 4.1. In

applications like monitoring systems, the transmitter (TX) side is powered by a battery, shown

in Fig. 4.1 (a), and comprises the signal sensors, the Analog Front End (AFE), the Analog

to Digital Converter (ADC) and the Digital Signal Processing (DSP) block, before the Radio

Frequency (RF) module. The TX node sends the signals to a remote system, where the data are

received, processed and stored, as shown in Fig. 4.1 (b). Usually, the TX side is characterised

by limited energy resources, due to the limits on the battery. Moreover, the power consumed

by the RF transmitter is usually higher than the signal acquisition system on the chip [29, 30].

For this reason, some data treatment on the sensor node is crucial to reduce the amount of

data sent by the RF TX, while keeping a relatively high information content, enabled after a

tailored signal reconstruction, at the receiver node.

4.1.1 Analog to compressed data stream

In this work, we consider neural signals collected and processed from every micro-electrode

node (discussed in Chapter 2), in order to accurately estimate the seizure onset using an
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Figure 4.1 – Typical wireless sensor system, with highlight in a battery-powered multiple lanes
TX (a) and its RX counterpart (b).

implantable monitoring device. The focus of this work is on compressive sampling and

wireless telemetry, while discussions on seizure detection algorithm are beyond the scope

of this thesis. For each sampling electrode, the recorded signal is boosted by a Low-Noise

Amplifier (LNA) (not present in this work). Then, the ADC, samples and digitises the analog

neural signal, which then is processed and transmitted by the RF unit.

Analog to Digital converter

The goal of an ADC is to convert a continuous time signal into a digital representation of its

amplitude. According to the Shannon-Nyquist sampling theorem, a conventional ADC sam-

ples the input signal with frequency at least twice its bandwidth [52, 53]. Then the conversion

involves the quantization of the input. The result is a sequence of digital representation of the

continuous time input signal into the discrete time and discrete-amplitude digital domain. An

ADC is generally defined by its Signal to Noise Ratio (SNR), its bandwidth (or sampling rate)

and its dynamic range (summarized in terms of effective number of bits of resolution ENOB)

[72]. There are many types of ADCs, and each one has a range of application defined by its

main characteristic (e.g., speed, resolution, area and power consumption). These are the most

common ways of implementing an electronic Analog to Digital (A2D) converter:

• Flash ADC: is the fastest type of ADC but usually has only 8 bits of resolution or fewer,

since the number of comparators needed is 2N −1, where N is the number of bits, and

it doubles with each additional bit, requiring a large and expensive circuit. ADCs of this

type have a large die size, a high input capacitance and high power dissipation;
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Figure 4.2 – Different ADC operating range, considering the sampling rate and the bit resolu-
tion, adapted from [71].

• Successive Approximation ADC: this topology requires just one comparator; an N-

bit SAR ADC will require N+1 comparison periods and will not be ready for the next

conversion until the current one is complete. This topology is expected to allow the

lowest power dissipation, but is also defined by a slow sampling rate. At each step in

this process, the approximation is stored in a successive approximation register (SAR);

• Pipeline ADC: combines the merits of the successive approximation and flash ADCs.

This architecture is fast, is defined by high resolution, and requires a relatively small die

size while the power consumption is relatively high;

• Delta-Sigma ADC: (or Sigma-Delta ADC) has a modulator and a decimator. The modula-

tor converts the input analog signal into digital bit sequences and the decimator receives

the input bit streams and, depending on the over sampling ratio (OSR) value, it gives

one N-bit digital output per OSR clock edge. The main advantage of delta sigma ADC

is that it suppresses noise including quantization noise near signal frequency thanks

to oversampling, so it can reach SNR the generally other ADC typologies can not. The

main drawback of this architecture is that it requires amplifiers which burn power and

area, and it is relatively slow.

Fig. 4.2 depicts the different ADC operating range, considering the sampling rate and the bit

resolution.
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In the proposed system, to meet the stringent area and power constraints of the SoC, we have

designed and implemented a Successive Approximation Analog to Digital Converter (SAR ADC),

which yields medium bit resolutions, while requiring low-power data conversion [71, 72]. More

details on the ADC are given in Section 4.3.

Compression implementations

Before data transmission, the digitized data is processed in order to reduce the power require-

ments of wireless TX. In many recently proposed implantable systems (e.g., [73, 29, 68, 74]

and references therein), Compressive Sampling (CS) [7, 8] has been exploited to drastically

reduce the amount of data transmitted, while still allowing robust (and complex) off-line

signal reconstruction. CS indeed, allows taking fewer linear samples, exploiting the natural

information content of the signal, which often is lower than the data content itself.

In the proposed work, we implement fully digital DSPs, which implements the Learning Based

CS, described in Section 3.3. All the different encoding prototypes developed during this thesis

work are described in Section 4.2.

4.1.2 Wireless Communication

In the literature, numerous methods have been presented for wireless data communication

aiming implanted biosensors [75, 76, 77, 78]. The variety is formed by the different modulation

schemes and number of communication channels. Modulation schemes are mainly based on

three modulation techniques, namely as amplitude shift keying (ASK), frequency shift keying

(FSK), and phase shift keying (PSK). Modern digital communication schemes employ modified

and improved versions of these basic schemes. On top of that, variety is enriched by the type

of the communications, namely as half-duplex or full-duplex. In half-duplex communication,

data transfer in both directions is performed on the same link but only one direction at a time.

Full-duplex communication refers to continuous data flow simultaneously for both directions.

As expected full-duplex communication requires two channels in the basic case.

To target even higher data rates than what can be achieved with conventional, narrowband

communication schemes at the expense of a shorter transmission range (i.e., tens of centime-

ters to several meters), pulse-based and in particular impulse radio ultra-wideband (IR-UWB)

transmission techniques have recently garnered much attention for a wide range of wearable

and implantable medical sensor applications [79, 80, 81, 82].

Wireless data communication solutions can be classified into two groups: data communica-

tion on the power line by charging parameters of the wireless power transfer link or employing

a dedicated transceiver on both parts. Downlink communication can be directly performed

by modulating the signal source in amplitude, frequency or phase. Uplink communication

performed by perturbing the characteristics of the power line is called load modulation for

magnetic coupling based power transfer links [78] and backscattering for electromagnetic
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radiation based links [83]. Using a dedicated transceiver isolates power and data transmis-

sion channels, allowing these two links to be designed independently [84]. A compromise

between these two solutions can be formulated with respect to the power budget and data

rate requirement of the recording application. Moreover, additional components such as

antennas occupy a non-negligible volume that may violate size restrictions. In both cases,

the selection of operation frequencies has to be carried out in careful consideration of the

bandwidth requirement imposed by the data rate of the application.

The decision of uplink communication is a trade-off based on the high data rate communi-

cation and absorbed power by the tissue. At low MHz frequencies, tissues absorb less power

than at few hundreds of MHz. However, communication data rate and bandwidth is limited at

these frequencies. The additional loss at the tissue is accepted and communication at high

frequency is selected in order to be able to send the data at higher speed. For the uplink

communication, a dedicated UWB transmitters is selected since the data communication on

power channel is limited in terms of data rate. Pulse UWB transmission is particularly suited

for this application since it does not require the generation of a carrier signal and the circuitry

can be operated in a very low duty cycle regime. A circuit topology proposed by [80] is selected

since each cycle of the RF pulse is digitally programmable in amplitude and duration, enabling

a very flexible shaping of the transmitted PSD signal, without the use of an output filter.

Downlink communication is decided to built on the power transfer link. Yilmaz and Dehollain

showed that 500 kbps data rate can be reached for a downlink communication superposed on

the wireless power transfer link [85]. In such work, data is fed to the power source to modulate

it in ASK mode. Fig. 4.3 shows the downlink communication over the powering channel for

500 kbps and 50 kbps data rates. The first green square signal corresponds to the data to

be sent at the external base station. The purple wave shows the induced AC voltage at the

implanted system. The second green signal shows the demodulator output which determines

the downlink data by using the purple wave.

By applying these two methodologies, an ASIC for neural monitoring system with the data

rates of 24 Mbps and 500 kbps can be reached for uplink and downlink communication,

respectively.

4.1.3 Implanted System Powering

For most of the powering methods that are mentioned in 2.3.3, the power source generates

an AC signal. However, a DC supply is required to power up the electronic circuits inside

the implant. Therefore, this AC signal is first converted to a DC signal with ripples by means

of a rectifier and then, this signal is converted to a stable DC signal using a regulator. For

the power sources that generates DC voltage, generally it does not match with the required

power supply level. In such cases, there is a need for a DC-DC converter block. In both of the

approaches, there is a high requirement for high conversion efficiency since it determines the

system efficiency directly. In order to keep the system alive for short power interruptions, a
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Figure 4.3 – Downlink data communication at (a) 500 kbit/s and (b) 50 kbit/s (waveforms from top to bottom;
turquoise: modulator input (5V/div), purple: demodulator input ((a)2V/div (b)5V/div), and green: demodulator
output (1V/div), respectively) [85].

load capacitor or a super-capacitor can be used.

The inductive links are commonly realized by two coils and they are placed in the vicinity

of each other to create mutually coupled inductors. Several studies have been conducted to

maximize the efficiency of the wireless power transfer systems incorporating 2-coils [86]. In

addition to the 2-coil inductive links, a 4-coil power transmission link was proposed in [87] to

further increase the Power Transfer Efficiency (PTE), particularly at large distance. Kiani and

his colleagues have proposed a 3-coil inductive power transfer link with comparable PTE over

its 4-coil counterpart at large coupling distances,which can also achieve high power delivered

to the load [88]. This structure is considered as suitable for desired application of powering

neural implant. The simplified schematic diagram of 3-coil inductive link is shown in Fig. 4.4.

The implanted coil in this work is designed such that its outer diameter is 10 mm which is in

the size limitation of the desired application.

The received AC signal from the 3-coil structure can be converted to a DC voltage by using a

half-wave rectifier. An active rectifier which is composed of a pass transistor with dynamic

bulk biasing, a comparator, and a multiplexer is proposed by [89]. The PMOS pass transistor

works as a switch and is controlled by the comparator and the multiplexer according to the

input and output voltage levels. It is turned on when the input is higher than the output,

and turned off otherwise. Therefore, the reservoir capacitance at the output is charged when

the switch is on, and reverse leakage to the input is minimized when the switch is off. The

comparators decides to pull-up or pull-down the gate voltage of the PMOS pass transistor

according to the difference between input and output voltages and the multiplexer changes
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Figure 4.4 – Lumped circuit model of the 3-coil inductive link [88].

Figure 4.5 – (Left top) Half-wave active rectifier composed of a pass transistor, comparator, and a multiplexer;
(right) the low drop-out voltage regulator with its cascoded bootstrapped current source; and (left bottom)
connection of rectifier and the regulator. [89].

the bias voltage accordingly. In order to eliminate ripple at the operating frequency and

provide a DC voltage independent of the input voltage, a regulator needs to be employed.

Fig. 4.5 depicts the half-wave rectifier and regulator proposed by [89]. By using a large load

capacitance or a super-capacitance at the output of the regulator, effect of a short interruption

in the power link on supply voltage of the system can be eliminated.

4.2 Learning based sampling implementations

In the proposed work, we implement fully digital signal processor, which implements the

Learning Based CS, described in Section 3.3. In the following, a first LBCS-based implementa-

tion is described, highlighting the main Hadamard based LBCS (LBCS-Had) encoding scheme

design. Moreover, it is compared the optimal encoding system (discussed in subsection 3.3.1)

versus the LBCS-based Hadamard one, motivating our choice in the hardware implementation.

Furthermore, it is demonstrated how the Discrite Cosine Transform based LBCS (LBCS-DCT)

allows for better performances on the signal recovery compared to the LBCS-Had, but with an

important payload on the hardware design, making it a weak solution for implantable device
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implementation, while it becomes very interesting for applications like imaging. This analysis

is then followed by two LBCS-Had designs, where both the system and circuits are improved

through design strategies which allows the dynamic generation of the transformation coeffi-

cients, and variable compression ratio, allowing for an adaptive LBCS implementation, very

suited for neural signal acquisition systems that not only rigorously trades off area, energy

consumption, and the quality of its signal output, but also significantly outperforms the

state-of-the-art in all aspects.

4.2.1 LBCS-Had Implementation

Walsh-Hadamard based transformation has been used in recent publications [90, 91] because

of its hardware friendly implementation, since each transformation coefficient requires one

bit resolution, resulting in easy related computations. In particular, in [91] authors propose a

threshold-based Walsh-Hadamard compression, to sample the Action Potentials (AP) related

to neuronal signals for brain machine interfaces. The authors apply a butterfly scheme to

transform the input signal samples into the Hadamard domain. However, such butterfly-based

method can be performed on very few number of consecutive samples (8 samples in [91]),

limiting any kind of learning approach because of the low signal statistic. For this reason,

such work is used for AP signal detection, with limited implementation in constant medical

monitoring for applications like epilepsy, where the whole signal behaviour is required by

clinicians. Authors in [90] propose the generation of the full Hadamard matrix Ψ ∈ R16×16

for a parallel neural recording system. However, such implementation does not apply any

compression mechanism, requiring an important power budget.

In our work, we have applied the Hadamard-based LBCS compression algorithm, performing

the temporal to Hadamard domain through different implementations [92, 93]. The first

version [92], described in this subsection, the whole Hadamard transformation matrix is

stored in static memories. In a more advanced encoding system, described in subsection

4.3.1, the LBCS-based compression algorithm performs the transformation through on-the-fly

generated Hadamard coefficients. Such implementation also allows adaptive compression

rates based on energy threshold method, as discussed in 4.3.1.

Sampling procedure

In this section, we propose the architecture to allow an embedded sampling and compression

of the neural input signal based on the LBCS approach described in Section 3.3.

In the following, we fixΨ equal to the Hadamard matrix H which has the advantage of only

requiring a single bit to represent each matrix entry and also minimizes the matrix multiplica-

tion operations. Let HΩ = PΩH be the matrix composed of the rows of H indexed by Ω. We
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sequentially compute y = HΩx, in order to obtain:


h11 h12 h13 . . . h1N

h21 h22 h23 . . . h2N
...

...
...

. . .
...

hM1 hM2 hM3 . . . hM N

×



x1

x2
...
...
...

xN


=


y1

y2
...

yM

 . (4.1)

Looking at each component of y, we have

yk =
N∑

j=1
hk j x j , k ∈ {1, . . . , M }, (4.2)

where hk j is the (k, j )-entry of HΩ.
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Figure 4.6 shows the block diagram of the LBCS architecture proposed in this work for one-

channel sampling. The Matrix Sequence Generator Logic is a chip memory that stores the

entries of HΩ that are used for the sub-sampling procedure performed by the LBCS Encoder

block. The entries are stored into the chip memory in a sequential fashion through the Matrix

Input. The sampling procedure starts once the memory is loaded and a serializer is used to

sequentially send the hk j weights to the summation node.

The input signal x j is the digital output of an A/D converter with a resolution of Bi bits. At the

beginning of each window of length N , we set y = 0 and then, at each time step j , x j is summed

or subtracted to the Bo-bit accumulator value yk depending on the one-bit Hadamard entry

hk j , updating each component via the rule:

y ′
k = yk +hk j x j , k ∈ {1, . . . , M }, (4.3)

Instead of performing the subtraction through a subtractor, the Bo-bit signal y ′
k is formed with

a single Bo-bit ripple carry adder, and the hk j input defines the polarity of yk . This also allows

to avoid any multipliers in the weighting phase when yk is fed-back to the summation node.

Each accumulator has to be updated before the next sample x j arrives, therefore we use an

enable signal to drive the multiplexer of the accumulator block, shown in Figure 4.7, in order

to update only one register per time. With this design choice, we avoid having one adder per

accumulator lane, but require an internal digital clock frequency

fencoder = M × fs , (4.4)

where fs is the signal sampling frequency1 .

When M = N
C R is large, the internal clock frequency may become a limiting factor, requiring

additional digital blocks to synchronize the clock. However, with the sampling frequency of

5 kHz for the considered datasets, choosing N = 256 and a hypothetical compression rate of

16×, the LBCS encoder frequency results to be 5 kHz×256
16 = 80 kHz, which is still in a relatively

low frequency range.

Circuit implementation

To implement the proposed architecture, we have defined our target signal quality close to

30dB. Then, considering a sampling time window of 256 samples and assuming an ADC

resolution Bi = 10 bits, we have set the compression ratio C R = 16 following the numerical

results reported in Tables 3.7 and 3.5. The internal encoder core clock frequency is then

fencoder = M × fs = 80kHz and the accumulator resolution is set as Bo = Bi + log2 (N ) to avoid

overflow.

The architecture shown in Figure 4.6 has been implemented in a 1P9M 90 nm CMOS tech-

1The hk j -serializer works at frequency fencoder too.
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Figure 4.8 – One channel encoder layout showing the LBCS encoding circuit and the matrix
sequence generation logic for N = 256 and C R = 16.

nology. Table 4.1 shows the comparison between the LBCS-Had implementation with the

state-of-art and our SHS results, previously described in Section 3.2.2. The design is fully

digital and the layout of a one-channel encoder is shown in Fig. 4.8. To verify the functionality

of the digital encoder, the digitized neuronal data is directly given as input to the LBCS block.

A post place-and-route simulation has verified that the M outputs given by the encoder are

equal to the expected values computed in Matlab. The simulation has been run considering a

worst case scenario with slow-slow process corner operating at 0.9V, which results in an esti-

mated power consumption of the LBCS encoder around 1µW . The silicon area of the encoder

block is 210×210µm. Considering the fact that the electrode pitch in a typical Utah-MEA is

400µm, the resulting size of the encoder is fully suitable for such embedded applications.

4.2.2 LBCS-DCT implementation

The LBCS technique has been applied on circuit implementation with DCT-based trans-

form [94]. Even though its implementation shows great signal reconstruction performances,

the actual hardware implementation, which requires relatively larger area and power con-

sumption with respect to its LBCS-Hadamard counterpart, makes it more suitable for different

application, such as image processing.

The one-channel sampling DCT-LBCS architecture proposed in this work is depicted in Fig-

ure 4.9. The embedded sampling and compression of the neural input signal follows the

description presented in Section 3.3.
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Table 4.1 – Comparison With Published Work

Parameter [29] [68]
This This

Work I Work II
Compression Method BERN MCS SHS LBCS-Had

Compression Rate 10 16 16 16
Technology [µm CMOS] 0.09 0.18 - 0.09

Compression Power [µW] 1.9 17.83a - 1.0
Compression Area [mm2] 0.090 0.090 - 0.044

Recovered Signal [dB]b 21.7 22.2 24.7 30.8
a Compression power cost over 16 channels.
b Average SNR calculated from Tables 3.7 and 3.5, considering CR=16
for all the compression methods.

In the following, we fixΨ equal to the DCT matrix. Let DΩ = PΩΨ be the matrix composed of

the rows ofΨ indexed byΩ. We sequentially compute y = DΩx: looking at each component of

y, we have

yk =
N∑

j=1
dk j x j , k ∈ {1, . . . , M } , (4.5)

where dk j is the (k, j )-entry of DΩ.

The DCT transformation matrix DΩ contains real valued coefficients (positive and negative),

which are stored into an SRAM, shown in Figure 4.9, with N ×M cells of size BDC T .

Sampling procedure

A finite state machine (FSM) drives the LBCS encoder sub-sampling procedure. The entries

dk j are stored into the chip memory in a sequential fashion through the DCTCoef input. The

input signal x j is the digital output of an A/D converter with a resolution of Bi bits. The

sampling procedure starts once the memory is loaded and the operations are carried out by a

single multiplier and an adder, which are used in a time-multiplexed manner to accumulate

the M output values into the registers.

At each time step j , x j is multiplied to the DCT entry dk j , and summed to the Bo-bit accumula-

tor value yk , updating each component following the rule y ′
k = yk +dk j x j , k ∈ {1, . . . , M }. At the

beginning of each window of length N , the registers are then reset (y = 0). The enable signal

is meant to drive the digital registers, so that each accumulator is updated before the next

sample x j arrives. This design choice avoids having one multiplier-adder per accumulator

lane, but requires an internal digital clock frequency fencoder = M × fs , where fs is the signal

sampling frequency.

The input data sampling frequency for the considered dataset is 5 kHz, and choosing a window
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Figure 4.9 – One channel block diagram showing the LBCS encoder and the matrix sequence
generation logic.

length N = 256 with a compression rate of 32×, the DCT-LBCS encoder frequency results to be

5 kHz×256
32 = 40 kHz, which is a relatively low frequency range. Indeed, if M = N

C R is large, the

internal clock frequency may become a limiting factor, requiring additional digital blocks for

clock synchronization.

Circuit implementation

The circuit implementation has been defined following the experimental results discussed in

Section 3.3.2 and considering the trade-off between area and power requirements. The target

signal reconstruction quality is set to 30 dB. Considering a sampling window length of 256

samples and assuming an ADC resolution of Bi = 10 bits, the Had-LBCS method reaches 30 dB

performance with a compression ratio C R = 16. As reported in Table 3.7, with the DCT-LBCS

approach a compression ratio C R = 32 still allows to have a performance higher than 30 dB

(and improved with respect to the Had-LBCS design). Thus, we are allowed to relax the number

of bits to transmit, which is directly related to the RF data transmission cost. The internal

encoder core clock frequency is fencoder = M × fs = 40 kHz with the accumulator resolution

set as Bo = Bi + log2 (N )+1 to avoid overflow. This leads to define an effective compression

ratio defined as

C Re f f =C R × Bi

Bo
, (4.6)

which takes into account the actual number of bits per accumulator, after the compression.
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Table 4.2 reports the performance of the system and presents a comparison with recent

published work. In this table is summarized the compression power and area requirements

for each methods discussed in this paper. It also reports the simulated recovered signal and

transmitter performances, highlighting how the DCT-LBCS approach reduces the RF data

telemetry cost while improving by almost 3 dB the performances with respect to the best

approach presented in [92]. On the other hand, the area requirement is higher because of an

increased bit resolution per DCT matrix entry and because of a different CMOS technology

node. However, considering a multiple channel application, the memory content is shared

among all the channels, reducing the impact of the storage area over the overall chip.

The architecture shown in Figure 4.9 has been implemented in a 1P6M 0.18 µm CMOS tech-

nology. The layout of the fully digital one-channel encoder is shown in Figure 4.10. To verify

the functionality of the digital encoder, the digitized neuronal data is directly given as input

to the DCT-LBCS block. A post place-and-route simulation has verified that the M outputs

given by the encoder are equal to the expected values computed through MATLAB software.

The simulation has been run considering a worst case scenario with slow-slow process corner

operating at 1.8 V, which results in an estimated power consumption of the DCT-LBCS encoder

around 2 µW . The silicon area of the encoder block is 490×650 µm.
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Table 4.2 – Comparison With Published Work

Parameter [29] [68] [92]
This
Work

Compression Method BERN MCS
Had DCT

LBCS LBCS
Technology [µm CMOS] 0.09 0.18 0.09 0.18

Compression Rate 20 16 16 32
Compression Power [µW] 1.9 17.83* 1.0 2.0
Compression Area [mm2] 0.090 0.090 0.044 0.3

Recovered Signal [dB] 15.76 17.48 28.48 31.00
TX-Power @ fs [µW] 1.5 0.94 1.7 0.85

* Compression power cost over 16 channels.

4.2.3 Optimal vs LBCS encoders

Section 3.3.1 describes that the best linear encoder, for a fixed compression rate, is given by

sampling the coefficients that capture most of the energy of each signal in each sampling

window, naming this approach as optimal encoding. We now analyze the power and area costs

for LBCS and optimal encoding respectively.

LBCS encoding power and area analysis

• Power cost: as shown in Figure 4.6, M Bo-bit accumulators are used to store the Hadamard

coefficients. This leads to a dynamic power consumption of:

PLBC S ∝ M ·Bo · fs ·V 2
DD ·Cr e f , (4.7)

where VDD is the operating voltage of the digital block and Cr e f is the reference capaci-

tance defined by the technology.

• Area cost: since a single adder is used for sampling, the area of the digital encoder block

is proportional to the number M of accumulators:

Ar eaLBC S ∝ M . (4.8)

Optimal encoding power and area analysis

• Power cost: considering a similar architecture, the adaptive encoder requires N accumu-

lators, leading to a dynamic power consumption:

POpti mal ∝ N ·Bo · fs ·V 2
DD ·Cr e f . (4.9)
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• Area cost: the area cost is proportional to the number of accumulators used to store all

the the Hadamard coefficients:

Ar eaOpti mal ∝ N . (4.10)

Comparison

Comparing the area-power costs of the two approaches, we obtain

POpti mal

PLBC S
≥ N

M
=C R,

Ar eaOpti mal

Ar eaLBC S
≥ N

M
=C R.

Combining these observations with Tables 3.7 and 3.5, we conclude that LBCS yields recon-

structions almost as good as the ones obtained with the adaptive encoder, but at a fraction of

its power and area cost. The advantage is more significant the higher the compression ratio.

4.3 Single channel Adaptive LBCS-Had implementation

In previous section, two different LBCS prototypes have been discussed. In particular, it has

been highlighted how the Hadamard-based LBCS encoding scheme results as a more suited

implementation for implantable devices, with respect to the LBCS-DCT scheme.

In this section we first discuss some techniques we adopt to improve the LBCS-Had hardware

implementation, in terms of area and overall performance. Then, we describe the com-

plete single channel system architecture and circuit implementation, including the ADC, the

Hadamard based LBCS and the RF parts (developed in collaboration with RFIC group at EPFL),

for power and data wireless link. Afterwards, we present the electrical measurements.

4.3.1 Adaptive LBCS

As previously discussed, Hadamard transform is particularly suited for hardware implementa-

tion since each coefficient can be computed by performing only simple additions or subtrac-

tions.

The on-the-fly generation of only the selected rows of the Hadamard matrix (defined by Ω̂) is

required for embedded compression, which results as a dynamic generation of the coefficients

used to apply the LBCS approach. Such technique would drastically reduce the encoder

memory requirements needed by previous LBCS-Hadamard implementation (described in

Section 4.2.1), while the signal reconstruction quality is preserved within a low power chip

implementation.
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Moreover, a variable compression rate based on the signal energy content allows a recovery

mechanism that adapts its performance to the data information content. This approach,

named adaptive LBCS then varies the compression rate, hence the overall device power

consumption, based on the input signal behaviour.

Dynamic Hadamard entries generation

The reduction of hardware area in the Had-based LBCS described in Section 4.2.1 is possible by

replacing the SRAM dedicated to store the Hadamard coefficients, with a direct computation

of each matrix entry [90]. Such computation is feasible due to the intrinsic structure of

the Hadamard matrix, which is summarized as follows. The non-normalized Hadamard

transformation matrix Ĥn ∈ (−1,1)N×N of size n, with N = 2n is expressed as a recursive

Kronecker product of two matrices

Ĥn = Ĥ1 ⊗ Ĥn−1, where Ĥ1 ,

[
1 1

1 −1

]
. (4.11)

Each matrix coefficient indexes k and j , can be expressed in binary representation

k =
n−1∑
i=0

ki 2i , j =
n−1∑
i=0

ji 2i with, ki , ji ∈ (0,1) . (4.12)

Each Hadamard entry hk, j can then be expressed as

hk, j = (−1)
∑n−1

i=0 ki ji ≡ (−1)mod2(
∑n−1

i=0 li ji ) . (4.13)

In particular, mapping the (1, -1) to (0, 1), each Hadamard entry can be derived by

hk, j = mod2(
n−1∑
i=0

li ji ) . (4.14)

Such expression can be efficiently implemented in hardware, through logic AND gates to per-

form li ji , while the module-2 sum is derived by a logic XOR. Thus, the circuit implementation

takes the row and column indexes k and j and computes the Hadamard coefficient in the

binary map (0, 1).

Adaptive Hadamard compression

The simulation results shown in Fig. 4.12-(a), depict the energy content of the N samples

in the Hadamard domain, for a particular sampling window. As described in Sec. 3.3, the

Learning-based algorithm allows to define the coefficients that, in average, have the most

energy contribution. However, depending on the signal evolution in the sampling window, the

coefficients defined by the learning process might have a low energy content. This analysis

is useful to define the system’s trade-off and a variable compression rate, which adapts from
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Figure 4.11 – Variable CR block diagram, defined by the threshold level (Thr).

window to window, depending on the energy levels defined by the neural signal evolution in

time.

On the system level implementation, for a window length of N=64, a maximum compression

rate of 8 has been defined, in order to allow relatively high SNR after the signal reconstruction.

Since in the N
C R = 8 Hadamard coefficients the energy might be below a certain level, a thresh-

old is also defined during the learning process, in order to transmit only the most relevant

coefficients, enabling a dynamic compression. The dynamic detection of the Hadamard coef-

ficients results in an easy hardware implementation, and allows a variable CR from window

to window. Fig. 4.11 shows the block diagram of the variable CR implementation, depicting

how, the energy content of the coefficient value yK is transmitted or substituted with a BO bit

stream by means of a multiplexer, mathematically resumed as:

y ′
k =

{
0, |yk | < Threshold

yk , otherwise.
(4.15)

In such a design implementation, the SoC features a compression which varies from CR=8 to

CR=64, and allows the TX to transmit fewer coefficients, thus drastically reducing its power

consumption. Fig. 4.12-(b) shows the trade-off between the mean signal reconstruction SNR

and the mean CR over the whole dataset, as the threshold varies. In particular, Fig. 4.12-(c)

and Fig. 4.12-(d), show respectively the mean signal recovery quality and the mean window

compression rates, with respect to the threshold levels. In particular, it is worth highlighting

how a relatively small Hadamard energy threshold (e.g., below 100) allows to reduce the

number of coefficients transmitted (thus, higher CR level), while the SNR is still relatively high

(above 28 dB).

4.3.2 Implantable Architecture

The implantable single channel chip architecture is described in this Section. The SoC de-

signed in this work consists of the analog to digital converter, followed by the encoder which

compresses the sampled data, implementing the Learning-based CS algorithm described in

Section 3.3. The compressed bit stream is then serialized and wirelessly sent out by the RF

transmitter. The circuit can be powered wirelessly through an inductive link between the

implant and a power delivery unit.

64



4.3. Single channel Adaptive LBCS-Had implementation

16

20

24

28

32

16

20

24

28

32

Coefficients
10 20 30 40 50 600

100

105

104

103

102

101

70
60
50
40
30
20
10

Threshold

mean CR

m
ea

n 
S

N
R

m
ea

n 
C

R

m
ea

n 
S

N
R

Threshold

H
ad

 e
ne

rg
y

10 20 30 40 50 60

100 103102101 100 103102101

(a) (b)

(c) (d)

Figure 4.12 – SNR analysis for adaptive approach.

Analog to compressed data stream design

The neural signal digitization is realized by a Successive Approximation Analog to Digital

Converter (SAR ADC). Such ADC design results in a compact and low-power implementation,

which matches the stringent area and power constraints of our implantable SoC. The SAR

ADC has 8 bit resolution and a sampling rate of 45 kHz, in order to match the 5 kS/s rate

of the input signal from iEEG dataset. A compact ADC implementation is achieved by a

binary-weighted capacitive array, with attenuation capacitor [68]. Since the neural signal

bandwidth is relatively low, the compression computations are completed at the DSP, with

the same frequency defined by the ADC. In particular, the ADC requires 9 cycles to complete

the digitization of the input signal (at 5 kHz), thus running at 45 kHz. The DSP core frequency

runs at the same speed, performing the data compression.

The Hadamard-based LBCS encoder block diagram is depicted in Fig. 4.13, where is shown

the input data path from the Analog to Digital Converter (ADC), through the LBCS Digital

Signal Processor (DSP) to the encoded data transmitter. The Finite State Machine (FSM) of the

DSP drives the Had-block and the main DSP core, where the encoding process is executed.

The Had-block generates the Hadamard bit streams and replaces the SRAM used in previous

implementation [92], reducing the encoder area. The Had-block is mainly composed by the
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Figure 4.13 – One channel block diagram showing the LBCS encoder and the matrix sequence
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Row-Index Look up Table (LuT), and the Hadamard bit generator. The Row-Index LuT is

meant to store the learnt indices of the sub-sampling matrix PΩ, described in subsection 3.3.

Assuming that only M rows of the full Hadamard matrix H ∈RN×N have to be used to apply the

LBCS-based compression, then we can define a mapping function w(k) =∈ [0 N −1], where

k ∈ [0 M −1] is the index of the output value, and we define hk, j = hw(k), j . Then, the LuT

implements such mapping function w(k).

The LuT coefficients, driven by the FSM, are sent to the Hadamard-bit generator, which pro-

duces the transformation entries hk, j , following the description in subsection 4.3.1. Fig. 4.14

shows the block diagram of the Hadamard bit generator, highlighting the logic gates used to

generate the hk, j entries [90]. During a calibration phase, the learnt Hadamard row indices,

defined by the RowIDX input (l og (N ) bit wide, to code all the possible Hadamard matrix in-

dexes) are loaded in the LuT. As soon as the program enable (Pr_en) is active, the initialization

starts and the FSM programs the M indexes into the LuT, following the RowIDX and the k

signals used to correctly address the register. The FSM also generates and programs the enable

and reset commands sent to the DSP, to correctly synchronize the encoding procedure, and to

reset the accumulator registers (Accum in Fig. 4.13) at the end of each encoding window.
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The encoder input signal x j , digitized by the ADC with Bi bit resolution, is summed or sub-

tracted from the previous accumulator register values, at each sampling instant j in the

sampling window of length N. The LBCS-DSP block performs the embedded compression,

defined as

yk =
N∑

j=1
hk, j x j , k ∈ {1, . . . , M }, (4.16)

where hk, j is the (k, j )-entry of HΩ = PΩH; the Hadamard matrix H (=Ψ described in subsec-

tion 3.3), requires a single bit per entry, minimizing the computation costs in the transfor-

mation process. The encoder processing frequency is M times faster than the input signal

frequency, in order to update each of the accumulator registers, where the transformation

coefficients are stored.

The previous Hadamard based LBCS implementation shown in [92], has been designed for

sampling window of 256 samples (N = 256), with a fixed CR of 16×. In this work, we propose

the hardware implementation with an on-the-fly Hadamard generation, with a sampling

window length of N=64 and compression rate of CR=8. The same dataset as in [92] has been

taken into account, to validate the proposed hardware implementation. The N=64 and CR=8

combination allows to get similar average reconstruction quality, while the LBCS encoder

frequency fs is halved, resulting in a lower power consumption. Indeed, since M is defined as

N /C R, the larger is the number of the Hadamard rows M, the higher is the core LBCS clock
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Figure 4.15 – Schematic of the LC cross-coupled voltage controlled oscillator [93].

frequency, which might become a limiting factor. On the other hand, a further reduction on

the number of samples N, would degrade the signal statistics over which the learning approach

is based on.

Wireless data transmitter

Two different wireless transmitters are designed and implemented with different data rates,

operating frequency, and transmission distance, in order to cover different applications. The

narrowband transmitter which operates in the MedRadio band at 416 MHz is designed for

low data rate and indoor communication. The other transmitter is based on impulse-radio

ultra-wideband (IR-UWB) in the 3.1-10.6 GHz frequency range and utilized for high data rate

and very short distance transmission. The two transmitters provide the flexibility of sending

compressed or raw data.

Narrowband Transmitter The proposed on-off keying (OOK) modulated narrowband trans-

mitter is based on the turning on and off a voltage controlled oscillator (VCO). The VCO which

is shown in Fig. 4.15 is composed of NMOS and PMOS cross-coupled pairs and data is applied

to the bias current for modulation. Reuse of the current by PMOS and NMOS pairs provides

higher transconductance and higher voltage swing on the inductor. For setting the resonance

frequency of the VCO, a bank of three capacitors are utilized for coarse tuning and varactors

are used for fine tuning. An off-chip loop antenna is connected to the differential output of

the VCO to transmit the signal and create the required inductance for LC tank [95].
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Ultra-wideband Transmitter IR-UWB is a promising technique based on transmission of

short pulses and it is very efficient for low range applications which requires high data-rate. In

2002, the Federal Communications Commission (FCC) approved and limited the maximum

effective isotropic radiated power (EIRP) to -41.3 dbm/MHz for bandwidth between 3.1 and

10.6 GHz [96].

In this work, in addition to the narrowband transmitter, we present a high data-rate, energy

and area efficient, and low complexity IR-UWB transmitter. Fig. 4.16 shows the schematic

block diagram of the IR-UWB transmitter. The core of the transmitter is based on the current

starved ring oscillator (RO) which generates output in the range of 3.5-4.5 GHz frequency.

The pulse generator (PG) block creates short pulses at the rising edges of the data signal.

The output of the RO and PG is mixed with cascode connected transistors. The drain of the

transistor driven by the RO is connected to external resonator circuit formed by an inductor

and a capacitor. Before the 50ΩUWB antenna, a band-pass filter (BPF) centered at 4 GHz is

used in order to satisfy the FCC regulation.

Wireless power transfer

To design an implantable system, wireless power transfer (WPT) method is chosen since

batteries increase the total weight and dimensions of device. Considering the required power

of the implant and the power transmission distance, which is in the order of millimeters, an

inductive link is selected for power transmission. The losses due to remote powering are a

critical concern that can cause a temperature elevation, which may damage the tissue. Hence,

a power efficient transmission link composed of 4-coils, an active half-wave rectifier, and a

low drop-out voltage regulator is designed and represented in Fig. 4.17.

Different approaches are used for various applications, but the average power consumptions

of the implants are considered nearly constant in system parameters. However, in some

applications such as neural monitoring with a variable number of active electrodes, the power

consumption of the implant is not always the same. Hence, the power efficiency of WPT and
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the dimensions of the implanted coil become the major limitations in designing the coils

for remote powering. In the fundamental approach with two coupled coils, there is a direct

relation between the delivered power to the load and the efficiency. The variation in the load

power requires an additional approach for keeping PTE maximum for different activity rates. A

modified version of inductive link with 4-coil instead of 2-coil has been introduced for 2 meters

remote powering [87], and the structure was adapted for implant powering applications[18].

The results show a significant improvement in the efficiency. The low coupling coefficient and

the low quality factor of the coils in 2-coil link are compensated by the introduced two high

quality factor coils between them[97]. Moreover, the introduced coils transform different load

impedances to the optimal impedance at the input of the inductive link and efficiency does

not significantly change with load power. Therefore, a 4-coil inductive link is implemented to

take the advantage of high PTE and tolerance for variable load power.

The induced AC voltage by the 4-coil inductive link requires to be rectified to a DC voltage.

To achieve high conversion efficiency, an active half-wave rectifier is selected at the price of

the losses in the comparison and decision blocks in Fig. 4.17. In this study, the half-wave

rectifier is designed based on the work published in [98]. Pass transistor with dynamic bulk

biasing constitutes the core of the rectification. To prevent the leakage from the capacitor to

the input, the n-well of the two PMOS transistors are dynamically biased. Hence, the transistor

conducts current only when the input voltage is higher than the voltage at the accesses of the

capacitor. The comparator decides the condition of the PMOS pass transistor by comparing

the input voltage and the charged voltage on the capacitance. Timing and control block

applies the decision given in the comparator with an optimum switching time such that it

is fast enough compared to operation frequency and minimizes the switching power losses.

The low drop-out voltage regulator eliminates the ripples at the output of the rectifier and

generated clean voltage supply for the other circuits in the implant. The capacitors at the

output of the rectifier and regulator are implemented externally.
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4.3.3 Measurement results

The chip, fabricated in UMC 180 nm 1P6M MM/RF process technology, has been packaged

and bonded to a dedicated PCB. A Xilinx development board, providing a Virtex 5 FPGA [99],

is linked to the PCB trough rigid headers, as shown in Fig. 4.19. The board is used to set and

program the SoC blocks with a PC station.

Sampling and data compression

Each block of the SoC has been independently connected to dedicated pads on the chip, in

order to validate each design. The analog input of ADC and the DSP digital bit streams are

connected to ESD protection circuits, to reduce any possible damage due to electrostatic

discharges during the measurements.

As shown in Fig. 4.18-left, the ADC and the two encoder versions (the variable CR on top

and the non-variable version on the right side of the ASIC) do not share the power-grids, in

order to separate the analog and digital domains. The power-grid has been designed in a very

dense manner, with capacitors that surround the SoC blocks, stabilizing the VDD to ground

fluctuations. Fig. 4.18-right shows the micrograph of the tested chip.

The 8 bit resolution SAR-ADC with a sampling rate of 45 kHz requires an area of 230µm×××150µm,

with a power consumption of 0.46 µW. The low power requirements of the ADC is mainly

dictated by the medium resolution of 8 bits, and the low sampling frequency of the neural

signals.

A Verilog code, implemented on Xilinx ISE tool, has been developed to program the encoder

registers, to provide the clock at 45 kHz to the SoC, and to send the input bit stream to the

encoders through the FPGA. The compressed data sequences at the output of the DSPs are

collected as input to the FPGA, and analyzed with Xilinx ChipScope tool. The measurement

setup is shown in Fig. 4.19.

The measured compressed bit streams have been plotted by an oscilloscope and are high-

lighted in Fig. 4.20. Both plots have been generated with the variable CR encoder version, in

order to show, on the same plot, the dynamic generation of the transformation coefficients,

and the different outputs due to low threshold (on Fig. 4.20 top-left) and high threshold (on

Fig. 4.20 top-right) settings. The reconstructed signal versus the original data is plotted for 4

sampling windows, at the bottom of Fig. 4.20.

Table 4.3 reports the numerical results of the recovered signal, for the different compression

methods discussed in this work, with fixed compression rates. In particular, this table shows

how the LBCS-based signal recovery performs better than Bernoulli [29], Multi-channel [68]

or Structured Hadamard Sampling [46]. The comparison of reconstruction performance has

been done considering N=256 and an ADC resolution Bi = 10, for the iEEG dataset described in

Appendix A. Furthermore, the LBCS signal recovery requires the linear decoder (3.21), which
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Figure 4.20 – Measured compressed values with low threshold (on the left) and high threshold
(on the right).

yields the reconstructions at a fraction of the computational cost of the other methods [92].

Since the actual hardware implementation of this work has been developed with N=64 and

Bi = 8, Table 4.4 summarizes the recovery performances for the variable encoder design, for

different fixed energy thresholds (the reported CR are in average over the whole dataset). For

this reason, Table 4.4 gives an energy content based comparison, while Table 4.3 reports a

CR-based comparison.
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Table 4.3 – Recovery performance comparison with published work (N = 256, Bi = 10)

Method
Compression rate

8 16 32 64
LBCS 33.27 28.48 23.27 18.06

SHS HGL 23.89 20.26 18.53 14.49
BERN HGL 20.49 16.87 13.53 11.15
MCS HGL 20.92 17.48 n.a. n.a.

Table 4.4 – Recovery performance summary for this work (N = 64, Bi = 8)

Method
Compression ratea

8 16 32 64
LBCS 30.4 29.5 26.1 15.7

a Average compression rate over the
whole dataset.

The Learning-based compression algorithm with dynamic generation of the transformation

coefficients requires an area of 230µm×××230µm. A comparable area of 230µm×××265µm is re-

quired for the adaptive DSP design, which only consumes 0.47 µW at 0.8 V. Table 4.5 reports

the hardware comparison with respect to other published works.

Wireless Power Transfer

The resonance frequency of each LC tank in the 4-coil inductive link is fixed at 8 MHz. Power

transfer efficiency of 55% is obtained for the inductive link when the separation between the

coils and the load is 10 mm and 10 mW, respectively. The performance of the rectifier and

the regulator is also characterized for 10 mW load and their efficiency reach to 82% and 78%,

respectively. As a result, wireless power transmission beginning from the signal generator to

implant load is achieved at 36% efficiency.

Table 4.5 – Compression hardware comparison with published work

Parameter [29] [68]
This
Work

Compression Method BERN MCS LBCS
Compression Rate 10 16 Variable CR from 64bto 8b

Technology [µm CMOS] 0.09 0.18 0.18

Compression Power [µW]
1.9 17.83a 0.47

at 0.6 V at 1.2 V at 0.8 V
Compression Area [mm2] 0.090 0.090 0.054

a Compression power cost over 16 channels.
b Average compression rate over the whole dataset.
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Figure 4.21 – Spectrum of the LC cross-coupled voltage controlled oscillator [93].

Narrowband Transmitter

The VCO is supplied with internally generated 1.8 V and the measured average power con-

sumption during operation is 248.4 µW. Thanks to the discrete and fine tuning capacitors,

VCO covers the two MedRadio bands (401-406 MHz and 413-419 MHz). Fig. 4.21 shows the

frequency spectrum of the OOK transmitter with the highest data rate of 2 Mbps. During the

measurement of the spectrum, the distance between the transmitter antenna and the receiver

antenna (Taoglas Limited-TI.10.0112), which was directly connected to the spectrum analyzer,

is fixed to 60 cm. A custom made OOK receiver board based on discrete components is used

to demodulate the transmitted data.

Ultra-wideband Transmitter

The proposed IR-UWB transmitter is fabricated and it occupies a 60 µm × 30 µm area. Fig. 4.22

shows the measured output waveform of the implemented IR-UWB transmitter with 250 MHz

pulse repetition rate. The maximum peak-to-peak amplitude of the measured pulse is 111 mV

while its duration is 2.2 ns. Fig. 4.23 depicts the measured power spectral density of the

transmitter and FCC regulation. The triangular envelope of the output waveform suppress

the side-lobes and measured spectrum fully meets the FCC mask. When the pulse repetition

frequency is 250 Mpps, the complete IR-UWB transmitter consumes 11.3 mW power which
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Figure 4.22 – Transient pulses of the IR-UWB transmitter at 250 Mpps [93].

corresponds to 45.2 pJ/pulse. High throughput of the IR-UWB transmitter makes it possible to

buffer the raw data and transmit it in several bursts.

4.4 Multichannel Adaptive LBCS-Had implementation

Based on our findings described in previous sections, a multiple channel implementation has

been designed in the latest part of this work. Such design is discussed in this Section.

4.4.1 Multichannel Implantable Architecture

In this design, we have 8 independent neural recording channels, whose compressed output

is serialized and wirelessly transmitted by the RF blocks.

The multichannel SoC consists of a 8 independent channel implementation. Each channel

features a dedicated 8 bits SAR ADC, which digitizes the input signal. The ADC output bit

stream is compressed by the adaptive Hadamard based LBCS implementation. Then, the

compressed data stream of every channel is serialized with all the channel outputs, before

being transmitted. As for the single channel implementation, this chip features an inductive

link between the implant and the power delivery unit.

The dedicated ADC per channel has been a design strategy to avoid time-multiplexing imple-
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mentation. In this design, we trade-off the higher area requirement due to the dedicated ADC

per channel, with different advantages which are described here.

A shared among all the channels time-multiplexed ADC, would require a higher neural ampli-

fier bandwidth. This because, at each sampling time, the input signal comes from a different

neural electrode, requiring the amplifier to settle at a new level at each time the electrode

address is changed. Furthermore, a multiplexed multichannel implementation suffers from

noise aliasing. Indeed, while each channel has a limited bandwidth, named fBW , the N-

channels multiplexed output requires the ADC to sample the signal at frequency ≥ 2N fBW .

For this reason, each channel is subjected to the thermal noise spread in the whole bandwidth,

which then folds in the first Nyquist zone.

4.4.2 Multichannel Layout

The 8 channels implantable device layout is depicted in Fig. 4.24. The 8 channels are placed

on the top side of the design. The ADC-DSP block of each channel has been placed together, in

order to guarantee a minimum area requirements. A semi-custom block, placed in the middle

of the 8 channels, serves to collect the output of each DSP and serializes the bit-streams, which

then are transmitted by the RF TX, placed at the bottom of the design, together with the power

delivery block.

4.5 Summary

In this chapter we have proposed different sampling methods, based on our new mathematical

foundations described in the previous chapter. We built different prototypes of neural signal

acquisition systems that not only rigorously trades off area, energy consumption, and the

quality of its signal output, but also significantly outperforms the state-of-the-art in all aspects.

Our learning-based digital encoder scheme leverages the benefits of structured linear sampling

and linear recovery to yield state-of-the-art compression performance, maintaining a high

signal reconstruction quality up to 64×compression, as quantitatively demonstrated on two

human iEEG datasets. We designed different digital encoders for neuronal signals where both

the system architecture and the circuit design have been developed to reduce the overall

implantable chip’s power and area requirements.

Overall the designed prototypes, the best encoding scheme, in terms of area, power and perfor-

mance, for the implantable application results to be the adaptive LBCS-based implementation.

The proposed encoding solution enables dynamic generation of the transformation coeffi-

cients, allowing on-the-fly compression with faster and improved off-line signal recovery than

Random Bernoulli [29], Multi-channel [68] or Structured Hadamard Sampling [46]. Moreover,

a variable compression rate is achieved by energy based threshold method. The proposed

data compression reduces the amount of bit stream transmitted wirelessly, thus lowers the
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Figure 4.24 – Layout of the designed multichannel implementation.

TX and implantable system’s power requirements. Such learning-based encoder scheme has

been implemented in the single channel and multiple channel design.

In the proposed implementation, the threshold that defines the coefficients to be transmitted

is set during the off-line learning process. A further development of the current chip imple-

mentation can include an on-chip calibration, which sets the threshold level of the encoder in

the implanted device.
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5 High speed IOs ecosystem

Advances in CMOS process technologies have led to an exponential increase in the digital

processing power of high performance microprocessor units, leading to an increment of the

data transfer bandwidth between local chips. CMOS fabrication allows design of RF circuits

for transmitting data from chip to chip over relatively short distances, with reduced costs with

respect to other technologies.

These RF circuits are defined by low power requirements, since the heat generated by the chip

is partially distributed by the chip package. More generally, the overall system power budget is

limited by its affordable cooling capacity, such as in high-end servers application. Thus, low

power designs allow for more integrated circuits in the same chip. For this reason, application

specific architectures and innovative techniques are used for low-power implementation.

Every electrical signal travelling in a medium, such as in a Printed Circuit Board (PCB), suffers

from attenuation. Such signal loss generally increases with the signal frequency. Fig. 5.1 depicts

a classical chip-to-chip link, named backplane, over a printed circuit board, highlighting the

signalling path. For signal frequencies above the GHz, the skin-effect and dielectric losses

are the main contributions to signal attenuation. Reflections due to connectors and via

stubs in the PCB, shown in Fig. 5.1, further deteriorates the transmitted signal. Moreover,

electromagnetic coupling, named crosstalk (XTK or xtalk), between different lines also impacts

over the signal integrity.

In order to minimize the signal attenuation and to preserve the data integrity, equalization

and coding are generally implemented. Consequently, these techniques must trade-off the

system complexity with the higher power and area requirements.

In this work, we propose a versatile receiver circuit which not only copes with large channel

attenuation but also implements novel crosstalk cancellation techniques, to allow single-

ended multiple lines transmission.

In the reminder of this Chapter, we motivate the single-ended signalling. Then, we briefly

discuss the channel boards characteristics and the noise and interference sources that define
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Figure 5.1 – Chip-to-chip backplane link, SE 4.8 Gb/s [100].

the overall signal attenuation in a transceiver link.

5.1 System overview

Over the past years, the data rate required for each pin has almost doubled every four years

across different I/O standards, as depicted in Fig. 5.2, [101]. However, due to packaging

constraints as well as chip size limitation, the number of package pins is increasing only

slightly, while the number of transistors served by one I/O approximately doubles every new

CMOS technology node, [102].

At the same time, low power consumption is a first order design constraint for I/O circuits.

ITRS assumes that high performance serial transceivers can consume a maximum of 10% of

the chip power and I/O links should occupy maximum 20% of the entire chip area.

In combination with innovative circuits techniques, adopting single-ended signaling tech-

nology doubles the performance (bandwidth per pin) with respect to similar channel boards

operating with differential lines per signal, such as Quick Pack Interconnect (QPI) by Intel

[103] and Hypertransport by AMD [104]. The main limitation of using single-ended PCB traces

comes from the increasing of crosstalk noise due to electromagnetic coupling because of

increased wire density. As data rate increases, crosstalk becomes then the most significant

noise source in single-ended parallel links.
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Figure 5.2 – Pin data rate evolution across most common I/O standards [101].

5.1.1 Channel boards environment

In this subsection, we give an overview of the main limiting factors that define the link perfor-

mance.

The channel is the communication link between one chip to the other. The on-chip 50 Ω

termination resistor, linked with the device capacitance, define a parasitic low-pass filter

that degrades the transmitted signal. Such signal has to traverse different traces, in order to

be collected by the receiver, as shown in Fig. 5.3. Skin effect and dielectric loss, along with

the long backplane traces, improve the line attenuation at higher frequencies. Furthermore,

higher attenuation is due to shorter traces, such as vias or connectors to extension boards,

that are used to connect different components in the backplane link. These traces can define

large impedance mismatches and cause reflections of the signals that impacts on the signal

integrity.

Noise and interferences

The limitation to the number of bits that we can transmit across a channel is determined

by the signal to noise and interference ratio at the receiver. The larger this ratio, the more

distinguishable are the levels that one can transmit in each symbol, increasing the effective

bit rate. Unfortunately at high symbol rates, the interference levels are often quite high. In

backplane systems the interference occurs between symbols that travel on the same wire, due

to the limited bandwidth of the wire, and also between different wires due to electromagnetic

coupling of signals travelling in densely spaced channel bundle, as depicted in Fig. 5.4. These

two different kind of noise are described in the following paragraphs.
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Figure 5.3 – Chip-to-chip block diagram (top), depicting the transmitted signal before and after
the attenuation due to the channel link. Section of a typical backplane system, highlighting
the signalling paths [100] (bottom).

Figure 5.4 – ISI and crosstalk highlight in a multilane high speed I/O link [105].

Inter-Symbol Interference (ISI) Dispersions and reflections of the main signal in the chan-

nel link defines the overall Inter-Symbol Interference (ISI). These two phenomena are based on

different mechanisms.

• Dispersion: for frequencies over the gigahertz the skin-effect and the dielectric loss are

the main contributions to have a lossy transmission line.

Indeed, at high frequency, the current flow gets distributed into the wire with an higher

density near the conductor surface, reducing the effective section of the wire. This

phenomena is named skin-effect.

The dielectric loss is attributed to the energy loss in the dielectric surrounding the

transmission line. Such attenuation strongly depends on the insulator material and

linearly depends in frequency. For this reason, the dielectric loss dominates over the
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Figure 5.5 – Highlight of the pulse response and its derived crosstalk pulse response in a 2
lanes single ended I/O link, reprinted from [105].

skin-effect at very high frequency [100].

• Reflection: a signal that travels in the transmission line suffers from reflections at

several distinct points. This effect is due to the impedance discontinuities caused by

the interconnections in the backplane link and the frequency dependent impedance

discontinuity due to parasitic device capacitance at both the transmitter and receiver

and the via stubs.

Inter-Channel Interference (Crosstalk) The Inter-Channel Interference, known as crosstalk,

is caused by the electromagnetic coupling of signals travelling in a parallel channel link.

Crosstalk occurs at points with dense wiring and can be divided into far-end (FEXT) and

near-end (NEXT) crosstalk. Near-End Crosstalk (NEXT) does not affect the signal integrity in

unidirectional links [106], while Far-End Crosstalk (FEXT) heavily affects single-ended PCB

traces.

This section introduces the far-end crosstalk (FEXT) channel model for both single-ended and

differential I/Os [105]. As previously mentioned, if an active signal is transmitted on one of the

line of the channel bundle, then the end of the neighbour channel collects the coupled FEXT

signal, as illustrated in Fig. 5.5. If the adjacent channel is transmitting another independent

signal in the same direction, it will receive both its own original signal and the FEXT coupled

from the adjacent channel. Hence, since these two signals are uncorrelated, the horizontal

and the vertical eye-opening of the original signal are deteriorated.

In a homogeneous channel, like strip-line, the inductive and capacitive coupling is well-

balanced and the FEXT becomes negligible [107] but in an inhomogeneous channel like a

micro-strip line, significant crosstalk energy couples through the asymmetrical field [108].

As PCBs are required to have more and more channels in a limited board area for higher

data throughput, the physical spacing between channels is reduced and crosstalk is rapidly

becoming the dominant factor affecting signal integrity. Long channel lengths and reduced

channel spacing bring in a higher coupling coefficient and more crosstalk transfers onto the

adjacent channel.
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Fig. 5.5 presents the physical parameters used to formulate the crosstalk model in single-ended

I/Os. L is the channel length, W is the channel width and d is the center-line distance between

channels. When the aggressor signal Vi n(ω) is transmitted on closely spaced channels, the

FEXT signal VF E X T (ω) occurs at the adjacent channel output as

VF E X T (ω) =− jωτH(ω)Vi n(ω)

=− jω(
u

d k
)H(ω)Vi n(ω) ,

(5.1)

where H(ω) is the channel transfer function, t = u/d k is the forward coupling strength and u

is a function of channel length and channel height [105].

As discussed in [109] and [107], the crosstalk energy diminishes approximately by a factor

of d k , where, for single-ended I/Os, the nominal value for k is between 1-2 depending on

channel conditions. Interestingly, as derived in equation (eq:fext), in most low-impedance

micro-strip lines used in portable electronics, the inductive coupling component is dominant

and the FEXT pulse response is approximately the negative derivative of the channel pulse re-

sponse. Such model has been validated by means of measurements on physical PCB channels

fabricated at IBM Zurich Research Laboratory.

5.2 Crosstalk cancellation state-of-art

Conventionally, board level techniques allow to handle FEXT, increasing, for instance, the

distance between channels, or including shielding techniques [110, 111]. However, these

techniques require additional space on PCB and are rarely implemented in high density and

high speed links.

On the circuit side, there is a lack of crosstalk cancellation schemes that simultaneously handle

a multichannel board. Most previous work focuses on crosstalk compensation circuits for

memory channels. Crosstalk-induced timing distortion is reduced by means of the timing-

delay adjustment of data transition versus the state of the data [112]. However, the challenge

is in knowing the correct timing compensation, which is also dependent on the process

variation [113]. Crosstalk in the memory interface has also been addressed by Bae et al. [114],

where it limits the maximum number of transitioning lanes, but does not compensate for

the distorted signals. Other approaches to compensate for crosstalk noise include the use of

staggered I/Os combined with a glitch suppression scheme to improve vertical eye opening

or a slew rate control driver on transmitter. Sham et al. proposed to cancel FEXT injected by

neighboring aggressor lanes by using Finite Impulse Response (FIR) at the transmitter [115].

Nazari et al. [116] used a switched capacitor technique linearly combining two analog signals

to reduce crosstalk, where the amount of FEXT is controlled attenuating a passive filter output.
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RX

In this work, we propose a versatile receiver (RX) circuit capable of coping with large insertion

loss and can minimize crosstalk with multiple channels having identical lane spacing and

important channel attenuation of 28 dB and 30 dB at Nyquist frequency. This study has been

pubhised in [117] and extends our previous work [118], by considering different crosstalk

reduction methodologies tailored with the channel board characteristics (Section 6.2).

In high-loss single-ended communication links the main signal path needs to be equalized

to cope with Inter-Symbol Interference (ISI) noise. Moreover, the pre-cursors, cursor and

post-cursors FEXT components need to be minimized to improve the signal integrity.

This Chapter is organized as follows. In this section we first discuss the crosstalk cancellation

strategy we adopt on the RX macro (Section 6.1), then we present the different channel board

characteristics used to test the chip (Section 6.2). The mathematical paragraph (Section 6.3),

discusses the crosstalk reduction in ideally coupled lanes, highlighting its limitations. Section

6.4 shows the system level simulations of a Continuous Time and a Decision Feedback based

crosstalk canceller blocks, highlighting how their co-existence has to be tailored depending

on the channel board characteristics. The last part of this Chapter (Subsection 6.5) analyses

the crosstalk cancellation techniques proposed by this work, in case of skewed board lanes.

6.1 Crosstalk cancellation considerations

Analog filters can be used at the RX side to remove crosstalk components. The compensation

scheme relies on the fact that, in ideally coupled lanes, FEXT is proportional to the derivative

of the crosstalk source signal. A differentiation (easily implemented with analog filters), with

appropriate gain β, can then reproduce FEXT and subtract it to the forward signal component

to effectively remove far-end crosstalk [119]. It is possible to replace the RX analog filters

with Feed-Forward Equalizer (FFE) at the transmitter side. However, such architecture is

unable to prevent jitter amplification in the transmitted signal and imposes stringent linearity

specifications in the output drivers.
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CTXC

Figure 6.1 – Crosstalk cancellation using CTXC front-end on 3 lanes channel.

For these motivations, in the proposed I/O link, the received data from adjacent lanes are

processed in the analog domain by means of a Continuous Time Crosstalk Canceller (CTXC)1,

to generate precursors and cursor FEXT cancellation signals [105], [118], [120]. The CTXC

concept for 3-lanes channel is shown in Fig. 6.1, where a passive differentiator block is used to

emulate the FEXT signal.

In presence of an 8-lanes single ended bus, the extension of the scheme introduced for 3-lanes

system would differentiate the received signals from the 7 aggressors (the crosstalk sources)

and add them to the forward signal lane with appropriate gain. However, processing the

received signal from all aggressor lanes to remove FEXT in a defined victim lane (the crosstalk

recipient) is not a practical solution, since it would enlarge the capacitance at the summation

node, limiting the bandwidth of the overall system.

Based on these motivations, our CTXC implementation receives the signals from the two

adjacent channels only, which have the greatest impact on the signal integrity over the victim

lane. By doing so, large FEXT cursor and precursor components can be reduced.

The residual crosstalk noise is then treated and effectively removed by means of a decision-

feedback based block, cross-connected between each lane of the channel board [118], [120].

The analog correction of such Decision Feedback Crosstalk Canceller (DFXC)2, is based on

the switch-cap approach proposed in [121]. As a result, the transmitted signal over each lane

1named XCTLE in reference [118]
2named XDFE in reference [118]
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Table 6.1 – Crosstalk boards key parameters

Name Extensions & Stubs Length Geometry
Ch1 none 995 mm s=1.5×w=142 µm
Ch2 2 via stubs 720 mm s=1.5×w=142 µm

is corrected by CTLE and DFE for the ISI distortion, while CTXC and 7 DFXCs minimize the

crosstalk noise.

The CTXC and DFXC systems dovetail and ensure the crosstalk cancellation completely on the

RX side, thereby coupling the RX circuit with transmitters sourced by different vendors.

6.2 Boards characteristics

In this work, two different boards have been used to emulate multi-lane single-ended legacy

channels for servers applications. For consistency we consider two complementary cases,

labelled as Ch1 and Ch2, which are defined as follows:

6.2.1 Ch1 board

The crosstalk board Ch1 consists of a Rogers-PCB mother card, which hosts eight clean

channels (no notches in the frequency response) due to the absence of extension boards, vias

and connectors. The signal travels for 995 mm on the mother card, in a lane defined by its trace

width w=95 µm and lane-to-lane spacing s=142 µm. Ch1 is an example of large attenuation

channel, -30 dB at Nyquist frequency, and important FEXT contribution. Fig. 6.2 (a) displays

the S-parameters (insertion loss and FEXT from all switching lanes) with respect to lane 3, in

each channel bundle.

6.2.2 Ch2 board

Channel Ch2 consists of a 720 mm Rogers-PCB mother card with extension Rogers-PCB board

mounted on top with two Erni MicroSpeed connectors. The signal travels for 100 mm on

the mother card, then goes to the first extension board, travels back to the mother card for

100 mm, travels in the second extension board and finally arrives to the RX. In this channel

s=1.5×w=142 µm. Board Ch2 FEXT does not follow the ideal derivative model, due to the

presence of connectors and via arrays in the signal path. With respect to Ch1, Ch2 results as a

more severe board channel, with an important channel attenuation around 28 dB, and a more

severe FEXT contribution. Fig. 6.2 (b) displays the S-parameters for lane 3 in each channel

bundle.
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Figure 6.2 – Forward and FEXT frequency responses (magnitude) for the Ch1 (a) and Ch2 (b)
PCB board.
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6.3 Mathematical formulation for ideally coupled lanes

This section provides an overview of the crosstalk contribution within N ideally coupled lanes

(e.g., Ch1 board), where the FEXT follows the derivative model [119].

The frequency domain representation of the received vector signal Z ∈ RN is given by Z =
G ·H ·X [105], where G ∈RN×N is given by the CTXC contribution, H ∈RN×N is the frequency

channel response matrix and X ∈RN is the input signal vector.

As addressed in Oh et al. [105], the setting that ensures zero crosstalk contribution from

the nearest neighbour is Gx = βG0, where Gx and G0 define the CTXC analog gain for the

crosstalk cancellation component and forward received strength, respectively. Under this

scenario, the multiplication between the channel response matrix H and the CTXC matrix

G, shows the additional reused crosstalk energy (2ω2β2)G0H . Nonetheless, it also shows an

error contribution at each lane from the 2nd neighbours and reveals the presence of additional

uncompensated noise terms ω2β2G0H . In [105], it is proposed to solve this issue by pairing

up every two lanes and maintaining sufficient distance between the bundle, thereby trading

board area for residual error term. However, this reduces the PCB area efficiency and it may

not even be possible in applications where dense PCB routing is required. It should be noticed

that using such analog front-end, residual errors terms can never be forced to zero.

In this work, instead of zero forcing the FEXT from adjacent lanes (setting Gx = βG0) and

trying to minimize the error term by increased board spacing, we optimize the gain settings

Gx and G0 in the CTXC with the goal of maximizing the vertical and horizontal eye opening.

Paragraph 6.4.1 discusses this crosstalk reduction technique, applied for channel Ch1, where

CTXC is sufficient to open the eye diagram in each lane.

However, if the board presents connectors and via arrays in the signal path (e.g., Ch2 board),

the crosstalk patterns will be more intricate and will not follow the ideal coupled lanes model.

Therefore, the CTXC only would not be sufficient to ensure operations at BER=10−12, and

necessitates the DFXC to reduce the FEXT postcursors. Such crosstalk cancellation technique

is addressed in Paragraph 6.4.2.

6.4 System level simulations

A system level analysis is performed to investigate the optimized crosstalk cancellation strate-

gies for the channels described in section 6.2.

Fig. 6.3 highlights one of the 8 single-ended lanes within the channel bundle. The 8-lanes

channel bundle frequency domain data (forward and FEXT response) have been collected

in a 16 ports S-parameter file, which models the interconnect. On the RX side, each lane

features a CTXC followed by a CTLE, 8-taps DFE and 7×8-taps DFXC. In the 8-lane topology, it

is assumed that data patterns of different lanes are uncorrelated.
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Figure 6.3 – Single-lane transceiver block diagram with crosstalk compensation scheme com-
bining CTXC on the front-end.

6.4.1 Ch1 board crosstalk reduction

In this section, the crosstalk reduction technique applied for Ch1 board (described in Sec-

tion 6.2.1) is addressed.

The calibration is performed over R, C , Gx , Go and CTLE settings. Due to large channel

attenuation, both CTLE and DFE are required to effectively remove ISI. The simulation results

are presented in Fig. 6.4. All simulations include a 5 ps TX random uncorrelated jitter (roughly

3.5% UI for 7 Gb/s data rate). The data eye is completely closed when all aggressors are

transmitting. The CTXC front-end is able to open a closed data eye with 35% UI eye width and

75 mV eye height. Fig. 6.5 shows the FEXT pulse response between the aggressor and victim

at 7 Gb/s, before and after the crosstalk compensation scheme (with optimal filter settings

calibration). Such analysis highlights that the CTXC makes the system less sensitive to jitter

noise, since it flattens the derivative of the crosstalk pulse response.

6.4.2 Ch2 board crosstalk reduction

This section discusses the crosstalk reduction technique addressed for channel board Ch2

(defined in Section 6.2.2). The limits of CTXC with this particular board, are evinced in Fig. 6.6,

which shows a completely closed eye for 7 Gb/s with only the two nearest aggressor lanes

switching. Thus, a different crosstalk minimization technique is involved for this type of

channel board. First, the CTXC-CTLE strength calibration targets the reduction of precursors

and cursor crosstalk contribution. Then, the crosstalk terms are determined from detected
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Figure 6.4 – Simulated RX data eye for Ch1 board, with all aggressors switched (a) off and on
(b) without crosstalk compensation scheme (CTLE and DFE on, in both cases). (c) Data eye
and (d) bathtub plot with optimally calibrated CTXC front-end. All aggressors are transmitting.
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Figure 6.5 – FEXT pulse response from the aggressor to victim lane before and after CTXC.
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  -12
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Figure 6.6 – Simulated RX data eye for Ch2 board, with all aggressors switched off (a) and
on (b) without crosstalk compensation (CTLE and DFE on, in both cases). (c) Data eye and
(d) bathtub plot with optimally calibrated CTXC front-end with the two nearest aggressors
transmitting.

bits in the aggressor lanes and its derived voltage is subtracted over the victim by means of

the DFXC filters. A statistical analysis using MATLAB Software has been performed to validate

the CTXC-DFXC effect. A Probability Distribution Function (PDF) of the ISI and crosstalk

pulse-response spanned over all postcursor taps has been developed, where values have been

found convolving the ISI and crosstalk terms. The crosstalk PDF allows to analyse all the

possible combinations postcursor ISI and the FEXT taps. Such analysis is valid by assuming

that the data over the victim and the aggressors are white and uncorrelated.

To perform such analysis, the pulse-response on the victim lane (only the victim lane TX

is transmitting, while all the aggressors are silent) is combined with the crosstalk pulse-

responses (only the aggressor transmits a pulse, while the victim TX is silent) of the aggressor

lanes. During this phase, the CTLE is activated, while DFE is off. Given a sampling window
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Figure 6.7 – Highlight of the vertical eye aperture (a) and signal, crosstalk and ISI (b) evolution
for different CTLE peaking settings.

D = {x1, . . . , xm} of m=32 sampling points in one UI, the optimal h0 has been found by choosing

the index of the sampling point in D that maximizes the eye aperture Ve ye , which is defined

as:

Ve ye = Si g nal −C DF−1
N I X −Sensi t i vi t y, (6.1)

where Si g nal = h0− | h−1 |, is the signal amplitude given by the cursor h0 minus the absolute

value of the first of the precursors h−1 (which has the same polarity as the cursor value in these

types of channels); the C DF−1
N I X is the inverse of the Cumulative Distribution Function of the

Noise, ISI and crosstalk (NIX) at BER=10−12. The CDF is computed convolving the ISI, crosstalk

and noise distributions, given by the PDF analysis. The input referred noise includes CTLE,

comparator and jitter noise. The term Sensi t i vi t y = 5 mV is the minimum comparator

voltage sensitivity.

Using the precise PDF approach for analyzing ISI and crosstalk has been necessary, since

using a simpler RMS summation of ISI and crosstalk components was found to give overly

pessimistic results, which is due to the non-Gaussian nature of distributions for ISI and

crosstalk.

Fig. 6.7 (a) shows the vertical eye opening versus CTLE peaking settings, including 8-tap DFE

equalization co-optimized with CTXC and 56-tap DFXC at BER=10−12. The trend reveals that

high peaking settings provide the maximum vertical eye opening, even in presence of crosstalk.

This counter intuitive trend can be explained in Fig. 6.7 (b), where the signal, ISI and crosstalk

contribution (derived by the PDF analysis) are plotted independently. Even-though the CTLE

peaking is generated by lowering the DC-gain, larger CTLE peaking settings increase the signal.

This is because lower peaking results in more ISI, which requires the CTLE output to be scaled

to meet linearity requirements for DFE equalization. Moreover, crosstalk components increase

with CTLE peaking, since the CTLE tends to amplify crosstalk. Overall, increasing the CTLE
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Table 6.2 – Crosstalk Cancellation Performances

Board Ch2
Si g nal = h0 −h−1 [mV] 138

∆I SI [mV] 26
σNoi se [mV] 4

Sensi t i vi t y [mV] 5
CTXC OFF ON OFF ON
DFXC OFF OFF ON ON

∆X T K [mV] 200 101 115 74
∆I SI+X T K [mV] 211 114 126 88

∆I SI+X T K+Noi se [mV] 214 121 131 95
Ve ye [mV] −105 −7 2 38

peaking, the signal grows faster than crosstalk does and ISI is reduced; then, the net eye

opening is larger with high peaking settings.

The crosstalk PDF obtained with the statistical analysis is reported in Fig. 6.8 in four differ-

ent scenarios, with the maximum CTLE peaking setting. In particular, Fig. 6.8 (a) shows the

crosstalk PDF with no FEXT cancellation, while in Fig. 6.8 (b) only the CTXC is activated, reduc-

ing the crosstalk noise amplitude at BER=10−12 from 200 mV to 113 mV. The PDF distribution

for the DFXC-only is reported in Fig. 6.8 (c). When CTXC is combined with DFXC, as shown

in Fig. 6.8 (d), the crosstalk error term ∆X T K at BER=10−12 is equal to 73.5 mV, showing a

significant improvement in vertical eye opening. The results from the PDF analysis are re-

ported in Table 6.2, which highlights the crosstalk cancellation strength for all the CTXC-DFXC

combinations. Without crosstalk reduction, the FEXT contribution overcomes the cursor h0

amplitude, resulting to a closed eye. The vertical eye aperture is improved once both the CTXC

and the DFXC crosstalk canceller blocks are optimally calibrated, resulting in 38.7 mV vertical

eye opening.

6.5 Crosstalk cancellation over skewed lanes

Some difference in the lane length, due to manufacturing tolerance, can be the cause of some

skew experienced by the NRZ signal travelling the channel bundle, both on the transmitter and

on the receiver side. Fig. 6.9 (a) shows the skewed impulse responses for all the 8 single-ended

lanes of channel board Ch2, once the signals are launched at the same time at the TX. Such

unwanted issue can be solved forcing delay adjustments on the transmitter side, resulting in

aligned impulse-responses, as depicted in Fig. 6.9 (b).

However, the skew adjustment on the TX for each forward paths, does not solve the crosstalk

pulse responses skew issue, on the RX side. Fig. 6.10 (a) shows two signals travelling a multi-

lanes board, with identical channel lengths. The crosstalk coupling from the aggressor to the

victim lane is then perfectly corrected by the CTXC signal, given by −βd/d t of the aggressor
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6.5. Crosstalk cancellation over skewed lanes

pulse response, at the time t0.

In case of different channel lengths, the crosstalk coupling signal arrives to the RX terminal at

a different instant with respect to its correction version, because of the channel skew. Consid-

ering that the aggressor lane is shorter than the victim lane, as highlighted in Fig. 6.10 (b), the

XTC coupling arrives at time t0 − tskew , while the FEXT cancellation signal, generated in the

CTXC, is ready at time t0. This produces a residual crosstalk signal, which might be partially

reduced by the DFXC. For this reason, the CTXC of each lane has to be adapted accordingly.

An analysis is performed to verify how the DFXC system interacts with the RX system sensitivity.

Fig. 6.11 shows the vertical eye aperture with different lane skews at the RX, with different

DFXC number of taps activated, over a single lane of Ch2 board. The DFXC contribution is

already evident on the vertical eye aperture, from no crosstalk reduction (i.e., n=0 curve) to

tap-1 of the DFXC activated (n=1 curve). Interestingly, it is important to evince how the DFXC

reduces the sensitivity to the skew. For instance, considering in Fig. 6.11 the curve with the

first 4-taps activated (i.e., n=4 curve), the vertical eye opening is flattened with respect to the

one without DFXC contribution. Moreover, the DFXC contribution is limited to the first 2 to 4

taps, since only marginal crosstalk reduction is obtained with more taps activated.
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number n of taps activated on the DFXC. The simulations are performed with Ch2 channel
board.
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7 High speed receiver hardware imple-
mentation and validation

In this Chapter we describe the RX architecture and circuit details. Furthermore, we provide

the electrical characterizations, which are aligned with the system-level analysis discussed in

previous Chapter 6 and demonstrate the ISI equalization and crosstalk reduction strength of

the overall RX circuit.

This Chapter is organized as follows. The receiver macro architecture and its functional units

are described in Section 7.1. Section 7.2 gives the electrical measurements and Section 7.3

discusses the results and concludes the Chapter.

7.1 Receiver Architecture and Circuits
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Figure 7.1 – 8-lane single-ended receiver architecture.
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C
par

Figure 7.2 – CTXC stage with single-ended passive differentiator, variable gain amplifier and
current summation. The two high pass RC differentiators are highlighted in the boxes.

The architecture of the source synchronous RX is shown in Fig. 7.1. It consists of 8 single-ended

data lanes and 1 shared differential clock lane. Each data-path starts with the termination

front end, followed by a product level ESD protection combined with T-COIL for bandwidth

extension. The CTXC processes the input signal together with the nearest aggressor. The

CTXC output goes to a 2-stage CTLE followed by a direct feedback 8-tap DFE and 56-tap

DFXC running at full rate. Equalized output at full rate is then deserialized to quarter rate and

sampled by a digital engine, used for adaptation and BER check.

7.1.1 Clock generation

A full rate clock supplied off chip with 1Vpp swing and 750mV CM is terminated differentially

before being amplified by a CML buffer [122]. The reference voltage Vr e f is extracted directly

from the input clock common mode without the need of a dedicated pin as in many single-

ended standards such as DDRX. The buffered input clock is then converted to CMOS level and

buffered to the local clock distribution within each lane.

7.1.2 CTXC and CTLE

The CTXC is located after the impedance matching network and presents a FEXT reduced

signal to the CTLE. Fig. 7.2 shows the circuit implementation of the proposed CTXC circuit.

The CTXC consists of two passive differentiators followed by a current domain adder. The

differentiators produce a single-ended crosstalk cancellation signal from the two adjacent

lanes. The values of R=972 Ω and C=30 fF have been chosen to provide return-loss below

-10 dB up to 4 GHz at each of the broadband 50 Ω RX inputs. In [105], a resistor-capacitor

replica circuit is added in the forward path to equalize phase delays between forward and

crosstalk cancellation paths. In this way, the transfer function of the differentiator differs

from the replica circuit by sRC , providing 90◦ phase shifts at all frequencies. However, this

creates a parasitic pole on the main signal path. In this design, only the resistor is added in

the main path while the capacitor consists of the CTXC input stage loading directly. Circuit
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Figure 7.3 – Simulated AC response of main signal path VGA with maximum gain setting.

simulations across corners resulted in acceptable distortion with marginal impact on crosstalk

cancellation.

A current domain adder with programmable gain combines the signals from the three paths.

Three digitally programmed bias currents enable to adjust the gain of the forward and crosstalk

cancellation paths independently. VGA bias currents are binary weighted and can be adjusted

with 4-bit resolution, enabling crosstalk cancellation over a wide range. The forward path uses

a degenerated differential pair to improve linearity. Since the differentiated signals have a small

amplitude because FEXT is typically much smaller than the main signal component, there is

no degeneration resistor in the crosstalk cancellation VGA. The single-ended to differential

conversion is performed in the CTXC directly by connecting the VGA input differential pair to

Vr e f on one side and to the differentiator/ compensator on the the other.

Fig. 7.3 displays the simulated (after RC extraction) frequency response of the forward path

VGA. The DC gain is 3.9 dB with a 3 dB bandwidth of 4.19 GHz. Bandwidth limitations comes

from the large capacitance at the current summation node, which corresponds to 16 fF. This is

still acceptable for 7-8Gb/s hence no architecture change is needed.

The CTLE circuit, depicted in Fig. 7.4, is a differential buffer stage with programmable capac-

itive and resistive source degeneration [121]. A negative capacitance is in parallel with the
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Figure 7.4 – CTLE stage with negative-C bandwidth enhancement. Reprinted from [121].

differential pair and, if enabled, is used to enhance the bandwidth of the circuit. The pro-

grammable resistive degeneration is controlled with 9 thermometer coded steps, providing 17

settings in total. The degeneration capacitance is binary programmable with 4 bits resolution.

Each capacitance step is implemented with two anti-parallel connected varactors. Two CTLE

stages are cascaded to provide up to 17 dB peaking at 3.5 GHz with -3.7 dB DC gain.

7.1.3 DFE and DFXC

The DFE core, shown in Fig 7.6, includes 8-tap DFE and 7×8 DFXC switched-capacitor cells.

A current integrating stage amplifies the CTLE output for 1/2 UI. A track and hold stage is

avoided to limit the kT/C noise with a cost of 0.9 dB loss due to half UI time window integration.

The DFE core loop is based on a direct feedback full rate DFE, where the critical timing loop is

for tap-1 (h1) equalization feedback. Digitally programmable Switched Capacitors SC-DAC

are implemented to add charge on the integration node. This approach, enables a fast DFE

feedback thanks to the instantaneous effect of the charge injection on the summation node

and allows a relaxation of the DFE timing loop, compared with current summation DFE [121].

Each capacitive DAC is programmable with 6-bit resolution, with 1 LSB=250 aF (Cmax=15.75 fF)

and is realized with metal M1 and M2 layers for the finger caps. Correction tap h1 uses 3 SC-

cells connected in parallel, allowing a wider range correction. The less critical DFE taps h2

to h8 and the remaining 48-DFXC taps are driven by FIFO data. The implemented DFE, with

a capacitance charge feedback, is shown in Fig. 7.5. A dynamic differential latch receives

the digital data resolved by the strongARM data-latch [121], and samples them at the falling

clock edge. The DCVS and dynamic latch together implement the function of a flip-flop. The

dynamic latch avoids charge injection, which occurs before the integration period. In fact, in a

SC-DFE, no DFE correction is performed if the charge injection occurs during the reset phase.
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Figure 7.5 – Integrating DFE using SC feedback.

The data format is kept in pre-charged dynamic logic from the data-latch to each SC-DAC

input. In this way, it is possible to close the DFE tap-1 timing with reasonable margin, since a

conversion step to static CMOS logic is avoided.

Each lane includes an additional offset-programmable latch (amplitude path), shown at the

top part of Fig. 7.6, for RX internal eye measurement and DFE tap calibration. It consists of a

DCVS latch with integrated voltage offset followed by a Set-Reset (SR) latch. The amplitude bit

is fed into the digital calibration block, where the information is processed to find a correlation

between the received amplitude samples and previous data bits indicating the presence of ISI

or FEXT.

7.2 Measurement Results

The layout of the fabricated circuit, whose RX macro measures 300×350µm2 is shown in Fig. 7.7.

The chip, fabricated in 32 nm SOI CMOS, has been flip-chip mounted on an high frequency,

low loss substrate, Liquid Crystal Polymer (LCP) PCB, shown in Fig. 7.8 (left). The LCP itself

is embedded in a rigid metallic frame which includes impedance-matched high-frequency

coaxial connectors, as shown in Fig. 7.8 (right).

The RX performances have been tested with both the channels described in Section 6.2. The

characterization has been performed using high frequency probing cables connected to an

Agilent PARBERT. Fig. 7.9 shows the measurement setup. Read/write process have been

performed thanks to a bidirectional digital interface, used to interface the RX chip with a PC.

An on-chip error counter (PRBS checker) and correlator, running at quarter rate, has been
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exploited to run the electrical characterization for latch offset correction, timing adjustment

and CTXC-CTLE, DFXC-DFE coefficients tuning. A 3-lane measurement was performed owing

to limitation of the measurement equipment. The data streams sent over the three adjacent

lanes were PRBS7 on aggressors and PRBS11 on the victim, thus uncorrelated bit sequences.

7.2.1 Ch1 measurement results

The calibration of the internal registers have been addressed as follows: as first step, we

calibrate the forward signal path only, switching off the aggressor transmitters. The RX output,

read by the on-chip amplitude-path, is sent to the correlator and analysed on a PC, using

MATLAB tool. The new CTLE-DFE coefficients are written to the internal registers, in order

to reduce the ISI. Following this step, we switch on one of the two nearest TX lanes, and we

perform the CTXC parameters sweep, through the PC. The same process is performed for

tuning the other nearest aggressor lane, calibrating the second branch of the CTXC. Once the

two CTXC set-points have been defined, the forward signal calibration is repeated, to reduce

the impact of the CTLE on the reduced crosstalk pulse responses, trading-off the CTLE and

CTXC contribution.

Fig. 7.10 shows the measured BER bathtub curves related to board Ch1, generated internally

by doing an horizontal sweep of the data through the Agilent PARBERT phase generator (32
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Figure 7.8 – On the left, the chip is flip-chip mounted on the LCP PCB. On the right, the LCP is
packaged in a rigid metallic frame.

steps UI). Once the aggressor lanes are transmitting, the bathtub curve shows an horizontal

aperture of 12% UI, which rises to above 25% UI once the CTXC is activated.

7.2.2 Ch2 measurement results

The correlation measurement between the two aggressors towards the victim post-cursors is

necessary for the DFXC taps tuning, over board Ch2. The correlation values were read through

the on-chip amplitude-path, by the PC and the updated coefficients re-written to the circuit

registers, driving the correlation with postcursor channel taps to zero (Fig. 7.11 (left)). In

Fig. 7.11 (right) are shown the BER bathtub curves. With silent aggressors, the RX eye is open

with an horizontal margin of 40% UI at 10−12 BER. Once the 2 adjacent aggressor lanes are

transmitting, the link does not operate error free, since the bathtub curve reaches only 10−4

BER. After switching on the crosstalk cancellation blocks, the eye is reasonably open with a

12.5% UI margin (highlighted in Fig. 7.12 (d)), showing that both CTXC and DFXC are necessary

to ensure error-free operation of the RX. Fig. 7.12 (a), Fig. 7.12 (b) and Fig. 7.12 (c) display the

measured eye diagrams, generated internally by doing an horizontal sweep of the data through

the Agilent PARBERT phase generator and vertically by sweeping the amplitude programmable

latch offset. The measured vertical eye margins are 22.4 mVppdiff and 64 mVppdiff at 10−8 BER

with and without crosstalk, respectively.

A power breakup for 7 Gb/s operation is shown in Table 7.1, which reports the power consumed

by one lane. The clock generation circuit is amortized by 8 lanes. The DFE core data-path

includes integrating amplifier, DCVS latches, dynamic datapath and digital FIFO. The total

power dissipation once the CTLE, CTXC, 8 taps DFE and 56 taps DFXC are active amounts to
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clock

generator

PRBS

generator
Test Board

Chip-Package

Figure 7.9 – Measurement setup: clock generators on top left, PARBERT for PRBS generation
on bottom left, test board Ch2 on bottom right and the RX in the middle.
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Figure 7.10 – Measured bathtub plots for Ch1 board with CTXC switched off (a) and switched
on (b), with the two nearest aggressor lanes transmitting.
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Figure 7.11 – Board-Ch2: measured correlation with postcursor taps with and without DFXC,
on the left; measured bathtub plots, on the right.

5.9 mW/Gb/s with 1 V supply at package, from which 3.9 mW/Gb/s are used in the 64 taps

DFE+DFXC SC-cells and core data-path.

Table 7.2 shows a comparison of the RX macro with prior art. The power overhead compared

to the prior art mainly comes from DFXC function. Moreover, the power number reported

here includes the complete RX macro, including digital correlation logic. Finally, the proposed

scheme results to be an extremely flexible FEXT compensation scheme, which can be adapted

for different single-ended boards.
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Figure 7.12 – Received eye diagrams with silent aggressors (top-left), crosstalk cancellation off
(top-right), crosstalk cancellation activated (bottom-left) with related bathtub plot (bottom-
right).

7.3 Summary

In this work we reported an 8 lane single-ended receiver circuit for source-synchronous

links for high loss channels affected by FEXT. Each lane performs ISI equalization and FEXT

cancellation based on a CTXC and 7×8-taps DFXC ensuring robust operation. Unlike previous

literature [119], [116], where crosstalk cancellation schemes were tested on channel with

moderate insertion loss, the proposed RX macro can equalize both a 30 dB insertion loss single-

ended channel with a signal-to-crosstalk ratio of 0 dB from the nearest lanes at Nyquist, and a

channel with 28 dB attenuation and reflections due to VIA stubs with signal-to-crosstalk ratio

of 6 dB. The crosstalk reduction strategy can be used across a variety of channels with different

crosstalk patterns, due to board geometry. This trend demonstrated with measurements,

showed good agreement with system level analysis. Interestingly, it has been shown how

the vertical eye opening improves by increasing CTLE peaking even with severe crosstalk.
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Table 7.1 – RX power distribution

µW/Gb/s
clk path (amortized by 8 lanes) 66
local clock distribution 260
CTLE-CTXC 1150
DFE-DFXC 3894
digital correlator 250
1:4 demux 280
Total 5900

Table 7.2 – Comparison of 8 lanes × 7 Gb/s RX macro with prior art

Reference [119] [116] [123] [105] This work
XTC type CTXC Rx passive SC TX FIR CTXC CTXC, 7x8 DFXC
I/O type Single-ended Differential Single-ended Single-ended Single-ended

Multi-channel num. 2 2 2 4 8
Data-rate (Gb/s) 6 15 7 12 7

Channel Attenuation 9 dB 14.5 dB N/A 11 dB 30 dB 28 dB
Signal-to-Crosstalk ratio N/A 1 dB N/A 0 dB 0 dB 6 dB
Eq. power (pJ/bit/lane) 2.4 0.033 N/A 0.96 8 (full RX)

process node 130 nm 45 nm SOI 40 nm 65 nm 32 nm SOI
area (mm2/lane) 0.03 N/A N/A 0.036 0.012

Moreover, it has been demonstrated that the first 2 to 4 DFXC taps are sufficient to reduce the

crosstalk even in presence of skew between lanes in the channel bundle.
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8 Conclusion and future work

In this thesis we discussed the algorithm development, architectural design and system/circuit

level implementation and silicon validation for learning-based driven hardware, implemented

for the edge and big-data computing. The main subject of this work has been to fill the gap

between algorithm development and actual prototypes, by means of dedicated hardware

designs that trade-off area, power and overall performances in their field of application.

Regarding the implantable device for medical application, this has been obtained by devel-

oping tailored algorithm that can be easily implemented in hardware fashion, still allowing

relatively high signal reconstruction, enabling efficient medical monitoring. In particular, a

structured sampling approach has been discussed, showing how a probability function that

favours the low frequencies in the sparse domain can be exploited to enhance the sampling

procedure, thus improving the sensing performance. Afterwards, a learning-based compres-

sive sampling algorithm has been described. Such compressive scheme is based on the simple

idea of sampling a fixed set of coefficients that preserve as much of the signal’s energy as

possible. The set of indices is learnt from a training set of fully sampled signals, by selecting

the ones that capture most of the signals’ average energy. LBCS offers a pair of highly effi-

cient linear encoder and decoder, thus challenging the conventional recovery approach in CS,

where non-linear decoding procedures such as basis pursuit are necessary for reliable signal

reconstructions.

The different learning-based hardware prototypes have been described in Chapter chap-

ter:LBCSHardware. In particular it has been highlighted how the Hadamard measurement

matrix in the LBCS encoding scheme is more suited for implantable application with respect

to the LBCS-DCT scheme, which gives better signal recovery quality in terms of SNR, while

requiring more area. Then, it has been described the complete single channel system ar-

chitecture and circuit implementation, including the ADC, an adaptive compression rate

Hadamard-based LBCS and the RF parts, for power and data wireless link, followed by the elec-

trical measurements on silicon. Finally, a multichannel implementation has been discussed

that, at the time of writing, is under fabrication process.

The second subject of this work has been the design of a multi-lane single-ended high speed
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I/O receiver for high-end servers application. In Chapter 5 we have described the high speed

Input/Output link interconnection, giving the main informations about the different signal

losses in the channel board bundle. Then we have described the system level analysis of the

high speed receiver, motivating our crosstalk cancellation technique on the receiver side only.

The crosstalk mathematical formulation for ideally coupled lanes introduced the system level

simulations. The receiver architecture, circuit details and measurement have been given in

Chapter 7, demonstrating a versatile receiver circuit which can be adapted to different channel

bundle characteristics, by learning the ISI and crosstalk contribution.

8.1 Future Work

Concerning the edge-data computing, wireless implantable devices capable of monitoring

the brain’s activity are becoming an important tool for understanding mental diseases and

potentially treat some mental disorder or restore motor functions due to central nervous

system disorders, such as spinal cord injury. Innovative machine learning based approaches,

are used to design very efficient data encoders on hardware, which are signal-structure aware.

With this premise in mind, we can significantly improve the encoder/decoder combination,

tailoring their design to boost the overall system performance. A possible future step of this

work is to implement a neural network system that exploits the signal structure and enhance

the performance of the macro, by using minor assumptions on the signal of interest.

A further improvement on this work might consider security and privacy issues in implantable

medical devices. A product level implementation must include a security system that fits in

the inherent constraints defined by the implantable application: limited area and low-power

consumption. The implantable device have to merge the safety of the patient with an adequate

level of security.
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A Appendix: Dataset details

The iEEG.org portal contains several datasets of EEG and iEEG data which are manually

annotated by expert clinicians. We focus on the following two datasets.

A.1 I001-P034-D01

The I001-P034-D01 dataset consists of approximately 1 day, 8 hours and 10 minutes of

recordings at 5kHz, or approximately 6 ·108 samples. In order to reduce the dataset size, we

use samples only from the 12-th and 13-th seizure, and an equal number of samples before

the seizure onset, for training and testing respectively.

We consider the 32 active grid electrodes which, from a first visual inspection, more clearly

show significant changes between the samples annotated as seizures from the rest. In order to

better compare to the sampling strategy that combines samples across the channels (MCS),

we consider only a sub-grid of 4×4 electrodes.

A.2 Study 040

The Study 040 dataset consists of approximately 2 days, 23 hours and 50 minutes of record-

ings at 5kHz, or approximately 1.3 ·109 samples. In order to reduce the dataset size, we use

samples only from the 1st and the 3rd seizure and an equal number of samples before the

seizure onset, for training and testing respectively. We consider all the 64 active grid electrodes.

A.3 Experimental protocol

The training set of both datasets are used to learn the sampling pattern for the LBCS approach

and also to tune the variable density parameters for the SHS method. Once the sampling pat-

tern is fixed, LBCS uses it to compress all the signal windows in the test set. The reconstruction

is then performed with the linear decoder (3.21). For the randomized methods, MCS, BERN
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and SHS, we draw 20 different sampling patterns from the relative distributions for each signal

window in the test and reconstruct using the tree-based HGL norm (3.19), which was shown

in [46] to yield the best results.

A.4 Performance Evaluation

We concatenate all reconstructed windows for each channel j together, forming the entire

reconstructed signal, x̂ j for the test seizure. We then compute the SNR for each channel as

SNR j = 20log10

( ‖x j ‖2

‖x j−x̂ j ‖2

)
, where x j is the recorded signal for channel j , and average these

SNRs to obtain our final measure of performance, SNR = 1
#ch

∑#ch
i=1 SNR j . For the randomized

methods, we also average over the 20 draws.
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