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In this thesis, compressive sensing (CS) has been used to compensate for the
physical layer impairments in orthogonal frequency division multiplexing (OFDM)
systems. At the transmitter of an OFDM system, we deal with high peak to
average power ratio (PAPR) of the transmission signal and the nonlinear response
of the power amplifier (PA). The high PAPR problem is solved by thresholding
at the transmitter and clipping recovery at the receiver. A pre-compensated over-
driven PA is used to simultaneously solve the problem of linearization and power
efficiency. The clipped transmitted signal is passed through a frequency selective
channel which causes inter-symbol interference. This channel is to be estimated
and compensated for acceptable performance of the communication system. To

this end, effective strategies are outlined to estimate the channel with clipped
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signal transmission. At the receiver, we may experience narrow-band interference
(NBI) which can deteriorate the performance of a multicarrier communication
system. This problem is addressed by sparse recovery of the NBI signal at the
receiver. Simulation results are presented that demonstrate the ability of CS

schemes to compensate for the mentioned physical layer impairments.
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CHAPTER 1

INTRODUCTION

With ever increasing demand of higher data throughput in wireless/wireline net-
works, researchers are continuously looking for innovative solutions. One scheme
that is dominatingly utilized in current communication standards is orthogonal
frequency division multiplexing (OFDM). OFDM provides numerous advantages
including high spectral efficiency and robustness against frequency selective chan-
nels. OFDM finds applications in digital subscriber line (DSL), wireless local area
network (WLAN) standards (e.g., IEEE 802.11 a/b/g and HIPERLAN/2) and
digital audio and video broadcasting (DAB/DVB) [1]. Further to that, OFDM is
incorporated in metropolitan area networks (IEEE 802.16¢), local area networks
(IEEE 802.11n), personal area networks (IEEE 802.15.3) and other emerging cellu-
lar systems e.g., third generation partnership project (3GPP), long term evolution
(LTE) and 4G+. The core idea is to use simple one-tap equalizers by creating a
set of parallel, orthogonal, frequency-flat sub-channels using the computationally

efficient inverse fast fourier transform (IFFT)/FFT modulation/demodulation.



Despite its numerous advantages, OFDM base communication systems suffer
from some physical layer impairments. These impairments can be broadly clas-
sified in the following three categories i) Transmitter Impairments, ii) Channel,
and iii) Receiver Impairments. In the subsequent sections we give these impair-

ments/problems a closer look.

1.1 Transmitter Impairments

At the transmitter of an OFDM communication system, we mainly have two
problems which are interrelated. One is the nonlinear response of the amplifier
that becomes increasingly nonlinear with higher amplitudes of the input signal.
Second is the high peak-to-average power ratio (PAPR) of the transmission signal.
Though high PAPR is not an impairment by itself, it is a characteristic that results

in nonlinear distortions by the power amplifier.

1.1.1 Peak-to-Average Power Ratio

The time domain OFDM signal has a high PAPR (see Fig. 1.1). The high PAPR
nature of the OFDM signal is troublesome as generally the power amplifiers (PA)
have nonlinear response for the higher input power levels. One way to avoid this
nonlinearity and hence compression is to backoff the PA. This is not a preferred
choice as power backoff causes power inefficiency.

The problem of PAPR reduction has received considerable research interest.

Some of the transmitter based PAPR reductions schemes include coding, partial
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Figure 1.1: A typical high PAPR OFDM symbol.

transmit sequence (PTS), selected mapping (SLM), interleaving, tone reservation
(TR), tone injection (TI) and active constellation extension (ACE) [2-5]. How-
ever, these schemes generally require an optimization algorithm, which is a source
of complexity at the transmitter end. Hence, for low power mobile terminals the
power efficiency obtained by the efficient operation of the PA is partly lost by run-
ning a complex optimization algorithm. Thus, there is a requirement for simple

PAPR reductions scheme.

1.1.2 Amplifier Nonlinearity

Another problem at the transmitter is the nonlinear distortions generated by the
PA. The amplifier has a nonlinear response especially for higher levels of the input
power, hence the signals with higher power levels are generally compressed by the

PA. The most commonly used methods of dealing with amplifier nonlinearity are



digital predistorter (DPD) and feedforward approaches [6-8]. The DPD consists of
applying a complimentary nonlinearity (predistorter) before the nonlinear PA such
that the cascade of the amplifier and predistorter behaves as a linear amplification
system. However, the DPD circuit is a source of complexity at the transmitter

and a power efficient solution is required.

1.2 Channel

Another source of physical layer impairments is the channel. Depending on its
nature (e.g., slow fading, fast fading, flat fading or frequency selective fading), the
channel introduces degradation to the transmitted signal. This is the reason why
channel has to be estimated and compensated for, before the transmitted signal
can be decoded.

An explanation of the matter will come in later parts of this thesis, but the fre-
quency response of the channel per sub-carrier in OFDM systems is generally flat
fading. This requires a simple one tap equalization of the channel per subcarrier
at the receiver. For OFDM channel estimation, known equi-spaced pilot symbols
are inserted at the transmitter and the channel frequency response is estimated
using these pilot tones [9-11].

However, in presence of amplifier nonlinearity (or deliberate clipping for PAPR
reduction) the performance of the channel estimation strategies based on minimum

mean square error (MMSE) is not optimal and needs further investigation.



1.3 Receiver Impairments

There are some impairments that may be experienced at the receiver. One of
these impairments is the narrow band interference (NBI) [12]. The OFDM signal
is highly susceptible to NBI. The sources of NBI include other narrowband devices
operating within the spectrum (e.g., cordless phones and garage door openers
etc.). Due to the importance of NBI estimation and removal, several works were
dedicated to address this issue. In [13] several tones are reserved at the transmitter
and are then used at the receiver to sense the NBI. The NBI is then estimated
using the linear minimum mean square error (LMMSE) approach. However, this
method requires at least a rough estimate of the center frequency of the NBI,
which, in general, is not available. In [14] prediction error filter (PEF) is used
to eliminate the frequencies near NBI similar to a notch filter. However, the
aforementioned NBI mitigation schemes do not utilize the fact that NBI is sparse.
Exploiting the sparse nature of NBI will possibly result in less complex solutions

towards its recovery.

1.4 Compressed Sensing

This thesis utilizes compressed sensing (CS) methodology to solve all the afore-
mentioned problems associated with OFDM systems. CS is a tool to recover sparse
signals using fewer measurements than the size of the unknown signal/system.
However, the signal and the measurements have to satisfy the following two con-

ditions:



1. The domain of signal measurements and signal sparsity are incoherrent.

2. Measurement are acquired by non-uniform sampling, i.e., measurements are

obtained randomly.

Over the last few years, CS has received considerable research interests and it
has been applied to many applications including OFDM communication [15-17],
ultra wide band (UWB) [18,19], image processing [20,21] and radar [22,23] to

name a few. The main idea is to cast any problem in the form

y=Ax+n

CMX*N is the measurement matrix

where x € C¥ is a sparse unknown vector, A €
and y € CM is the measurement vector. Once the problem is in the aforemen-
tioned form, the signal can be reconstructed using any sparse signal reconstruction
methodology e.g., ;-minimization [24], Bayesian methods [25-27] and matching
pursuits [28-30]. This thesis explores the application of these CS tools to solve
physical layer impairments in OFDM systems. To this end, we show how these
problems can be casted as a sparse signal recovery problems and present low com-
plexity recovery schemes. In addition, we exploit the inherent structure associated

with these problems towards a better recovery of the unknown sparse signal of

interest.



1.5 Organization and Contributions

From structural point of view, this thesis is divided into three portions. First
portion deals with the problem of power amplifier lienarization, the second portion
deals with the problem of PAPR reduction and channel estimation and the third
portion deals with the problem of narrow band interference cancellation.

In the first portion (Chapter 2), linearization of user equipment PAs driven
by OFDM signals is addressed. Particular attention is paid to the power effi-
cient operation of an OFDMA cognitive radio (CR) system and realization of
such a system using CS. Specifically, pre-compensated over-driven amplifiers are
employed at the mobile terminal. Over-driven amplifiers result in in-band distor-
tions and out of band interference. Out of band interference mostly occupies the
spectrum of inactive users, where the in-band distortions are mitigated using CS
at the receiver. It is also shown that the performance of the proposed scheme
can be further enhanced using multiple measurements of the distortion signal in
single-input multi-output (SIMO) systems. Numerical results verify the ability
of the proposed setup to improve error vector magnitude, bit error rate, outage
capacity and mean squared error.

The second portion (Chapter 3) deals with the problem of PAPR reduction.
Clipping is one of the simplest PAPR reduction schemes for OFDM. Deliberately
clipping the transmission signal degrades the system performance and clipping
mitigation is required at the receiver for information restoration. In this chap-

ter, we acknowledge the sparse nature of the clipping signal and propose a low



complexity Bayesian clipping estimation scheme. The proposed scheme utilizes
the a priori information about the sparsity rate and noise variance for enhanced
recovery. At the same time the proposed scheme is robust against inaccurate es-
timates of the clipping signal statistics. The undistorted phase property of the
clipped signal as well as the clipping likelihood is utilized for enhanced reconstruc-
tion. Further, motivated by the nature of modern OFDM based communication
systems, we extend our clipping reconstruction approach for i) multiple antenna
receivers and ii) multi-user OFDM. We also address the problem of channel esti-
mation from pilots contaminated by the clipping distortions. Numerical findings
are presented which depict favourable results for the proposed scheme compared
to the established sparse reconstruction schemes.

The third portion (Chapter 4) addresses the narrowband interference problem
and a novel NBI mitigation scheme is proposed for SC-FDMA systems. The
proposed NBI cancellation scheme exploits the frequency domain sparsity of the
unknown signal and adopts a low complexity Bayesian sparse recovery procedure.
At the transmitter a few non-uniformly placed sub-carriers are kept data free to
sense the NBI signal at the receiver. Further, it is noted that in practice, the
sparsity of the NBI signal is destroyed by a grid mismatch between NBI sources
and the system under consideration. Towards this end, first an accurate grid
mismatch model is presented that is capable of assuming independent offsets for
multiple NBI sources. Secondly, prior to NBI reconstruction, the sparsity of the

unknown signal is restored by employing a sparsifying transform. To improve the



spectral efficiency of the proposed scheme, a data-aided NBI recovery procedure
is outlined. This data-aided scheme relies on adaptively selecting a subset of
data carriers and using them as additional measurements to enhance the NBI
estimation. Numerical results are presented that depict the suitability of the
proposed scheme for NBI mitigation.

It is worth highlighting that the contributions of this thesis are rather di-
verse, tackling multiple problems (i.e., PAPR reduction, PA linearization, chan-
nel estimation and NBI mitigation) for different variants of OFDM (i.e., OFDMA,
SC-FDMA, SIMO-OFDM, SIMO-SC-FDMA). Hence, it is difficult to put forth
a common data model and a comprehensive literature review covering all these
topics at once. To circumvent this, each chapter of this thesis is made self con-
tained in a sense that it includes its own motivation of the problem, data model
and contributions. Furthermore, as chapters 2-4 (i.e., the core of this thesis) es-
sentially address separate problems, they are written in a manner that facilitates

their individual reading, eliminating the need to go through them sequentially.

1.6 Notations

Unless otherwise noted, the scalars are represented by italic letters (e.g. V). Bold-
face lower-case letters (e.g., x) are reserved to denote time domain vectors, and
frequency domain vectors are represented using bold-face upper-case calligraphic
letters (e.g., X'). Bold-face upper-case letters are associated with matrices (e.g.,

F) and a hat over a variable (e.g., X) represents its estimate. Further, x(/) denotes



the I'" entry of a vector x. Underlined vectors and matrices with a number in
superscript (e.g. X Z) will represent the it" portion of the vector X, where X is
partitioned in I segments. The Transpose and Hermitian of a vector are denoted
by T and H respectively (e.g., x' and x"). The operator |- | operating on a scalar
(e.g., |x(7)]) will give the absolute value and operating on a set (e.g., |S|) will
give the number of elements in S. Further, E[-], I and 0 denote the expectation
operator, identity matrix and the zero vector, respectively. The operator diag(X)
forms a column vector x from the diagonal of X and diag(x) construct a diagonal
matrix X with x on its diagonal. The operators |- ||2, ||-||1, ]| - [|o define the second,

first and zeroth norm respectively.

10



CHAPTER 2

POWER AMPLIFIER

LINEARIZATION

2.1 Motivation

In this chapter, we tackle the PA linearization problem for cognitive radio (CR)
systems. The CR system has the ability to adapt its transmission parameters to
dynamically access the under-utilized wireless spectrum. The basic idea of the
CR is to achieve spectrum efficiency by exploiting the existing wireless spectrum
opportunistically [31]. This approach has the capability of utilizing the spectrum
much more efficiently than the fixed spectrum assignment policy, whose typical
spectral efficiency ranges from 15% to 85% with high variance in time as reported
by federal communications commission’s (FCC) spectrum policy task force [32].
In orthogonal frequency division multiple access (OFDMA), each user is assigned

a subset of sub-carriers for use, and each carrier is assigned exclusively to one
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user [33]. Hence an OFDMA-CR system operates by allocating the available sub-
carriers to the users on demand and opportunistically. In these systems, the use of
the widespread and popular orthogonal frequency division multiplexing (OFDM)
technique allows for high-speed communication over frequency selective wireless
channels.

One major drawback of the OFDM scheme is the high peak to average power
ratio (PAPR) of the resulting time domain signals. The amplitude modulated,
high PAPR waveforms are severely affected by the nonlinear distortions when
passed through the power amplifier (PA). The obvious remedy is to operate the PA
in back-off, which results in poor power efficiency. Deliberate clipping is previously
used to avoid the nonlinear distortions from the PA [17], however, intentional
clipping produces out-of-band radiations and in-band distortions. Generally, the
preferred solution to this efficiency versus linearity dilemma, is to operate the
PA in its nonlinear region and then restore the linearity by means of system
level architecture. For transmitter based linearization, mainly techniques like
digital predistortion and feedforward are used [6,8,34,35]. In digital predistortion,
the cascade of digital predistorter (DPD) and PA is employed, which behaves
as a linear amplification system [6]. The main motivation behind the use of
transmitter based pre-compensation techniques is to meet the stringent spectrum
emission mask requirements imposed by regulatory authorities. In this work,
the operating power efficiency of a wireless transmitter is extended beyond its

conventional limit by over-driving digitally predistorted PAs and compensating
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for the resulting distortions at the receiver side. This novel joint-compensation
scheme, in which compensation of the amplifiers distortions is jointly performed
between the transmitter and receiver, is shown to have two major advantages; 1)
it controls the amount of spectrum regrowth at the output of the PA in order
to meet the regulatory spectrum emission mask requirements, and 2) it ensures
the sparsity of the distortions making it possible to use compressed sensing (CS)
based techniques to compensate for the distortions at the receiver without any
prior knowledge of the PA’s nonlinearity.

The proposed joint-compensation technique is applied in a CR context in which
the use of the radio frequency resources is optimized for power efficient rather than
spectral efficient operation. This can be perceived as an attractive application of
CR which is in-line with the global trend towards green communication systems.
In the typical case of spectral efficiency driven CR, the available spectrum, result-
ing from the silence of a particular user, is allocated to other users. Conversely,
in the proposed technique, the free OFDMA sub-carriers, resulting from inactive
users, are kept as a guard band between active users. The active users are thus
allowed to operate in a nonlinear but power efficient manner by spilling their spec-
trum regrowth energy mainly over the unused sub-carriers and to a lesser extent
over the sub-carriers allocated for data transmission of other active users. The
quality of the transmitted signals is then recovered at the receiver using CS in the
context of single and multiple antenna receivers.

In this work, power efficient green CR system based on the concept of joint-
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compensation is proposed. Pre-compensation is achieved using digital predistor-
tion technique at the transmitter to ensure power efficient amplification along
with sparsity of the distortions. This allows the use of sparse signal reconstruc-
tion scheme at the receiver for distortion estimation and cancellation. Further-
more, the reconstruction scheme is employed in a bandwidth efficient manner,
that doesn’t require tone reservation explicitly for sensing purposes, and hence
avoids any hit taken on the data rate, if data carriers of the active users were
to be spared. Single-input multiple-output (SIMO)-OFDMA system is considered
and it is shown how the distortion recovery can be improved considerably in SIMO
systems where the receiver is equipped with multiple antennas, and multiple mea-
surements of the unknown sparse distortion vector are available. Numerical results
of the performance of the entire transceiver, including the presence of a realistic

communication channel, are reported.

2.1.1 Chapter Contributions

The contributions made towards power amplifier linearization can be summarized

as follows:

e A joint-compensation approach, employing transmitter based digital predis-
tortion and receiver-based CS estimation, is proposed for power efficient and

linearized amplification systems.

e An OFDMA-CR communication system that emphasizes power efficient op-

eration is proposed based on the joint-compensation technique.
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e The joint-compensation based OFDMA-CR concept is extended from the
case of SISO system to the case of SIMO system where the presence of

multiple receiver antennas is exploited for enhanced distortion recovery.

Thanks to the digital predistortion, the distortions created by the over-driven
amplifier are sparse. Over-driven amplifiers operate at a higher power efficiency
but create in-band and out of band distortions. While out of band distortions
mostly affect inactive users, in-band distortions are mitigated using CS at the re-
ceiver. The presence of multiple antennas further enhances the distortion recovery

and hence mitigation.

2.2 (CS-Based Joint-Compensation for Power Ef-

ficient Linear Amplification

2.2.1 Principle of Joint-Compensation

To linearize a PA, generally a DPD is employed at the transmitter (for pre-
compensation) such that the PA-DPD combination is a linear amplification sys-
tem [6]. As long as the input signal remains within the saturation limit, the use
of linear PA-DPD cascade will result in distortion-free amplified signal. How-
ever, the emission mask criteria generally allows a limited amount of spectrum
regrowth (as shown in Fig. 2.1). Hence, under the mask operation of linear PA,
enables amplifier over-drive for enhanced power efficiency. It should be noted that

an over-driven linearized PA behaves as a limiter and the sparsity of over-driven
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Figure 2.1: Power spectrum of linearized PA’s output, as a function of amplifier
over-drive.

PA’s distortions can be controlled. Further, it is worthy to mention that though
the amount of allowable overdrive is independent of the PA-DPD characteristics,
it depends on the statistics (i.e. PAPR and complimentary cumulative distri-
bution function (CCDF)) of the drive signal. An adjacent channel leakage ratio
(ACLR) sensing algorithm can be added in the transmitter to adaptively deter-
mine, depending on the drive signal, the allowable over-drive level while meeting
the linearity mask.

Fig. 2.1 compares the spectral emissions of predistorted amplification system
for different values of amplifier over-drive. A normalized spectrum is presented
such that the maximum in-band emissions are 0 dBr. Linearized over-driven
amplifiers cause distortions which result in power spill and hence the extent to

which a PA can be over-driven is determined by the spectrum emission criteria. In
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this case, it is observed that a linearized PA over-driven by up to 4.8 dB will meet
the spectrum mask criteria. If amplifier over-drive exceeds 4.8 dB, there will be
significant distortions on the spectrum of adjacent users (as shown by the case of 6
dB and 8 dB over-drive in Fig. 2.1). However, under the mask requirement is to be
met only in the case where all users are active. This is because, amplifier over-drive
beyond the limit imposed by spectrum mask will cause severe distortions on the
spectrum of immediate neighbours and will eventually degrade their performance.
On the contrary, consider that a user is over-driving its PA while its immediate
neighbours are silent. In this case, the absence of the adjacent users will alow the
active user to over-drive its PA even beyond the limit imposed by the spectrum
criteria without degrading the performance. In such a case, how much a user can
over-drive will be dictated by the sparsity requirement on the distortion signal for
it to be successfully recovered at the receiver using CS.

As the amplifier over-drive is increased, higher power efficiency is achieved. As
an example when a linearized Doherty amplifier [36] is over-driven by 3 dB, its
efficiency increases to 47.52%, in contrast to the case of 38.03% efficiency when
no over-drive is applied. This shows around 9% increase in PA’s power efficiency
with 3 dB over-drive. The PA’s percentage efficiency for different over-drive levels
is presented in Table 2.1.

The proposed joint-compensation scheme improves the transmitter’s efficiency
by over-driving the PA. However, this is achieved at the expense of higher power

consumption at the receiver due to additional signal processing required to miti-
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Table 2.1: Over-drive level versus efficiency of the linearized Doherty amplifier.

Over-drive Level (dB) Efficiency (%)

0 38.0
0.5 39.3
1.0 41.2
1.5 42.6
2.0 44.1
2.5 46.3
3.0 47.5

gate the amplifier’s over-drive distortions. Though, the power efficiency increases
with over-drive, the number of nonzero distortion samples as well as their mag-
nitude increase. Fig. 2.2 shows the time domain distortions of an over-driven
PA-DPD combination as a function of amplifier over-drive. It is apparent that
the distortions increase as the over-drive is increased, both in their number and
amplitude. Further, Fig. 2.2 also shows that the over-drive distortions are sparse
in time domain (as expected due to the high PAPR nature of OFDM signals).
Hence, given that the distortions are sparse enough, CS based scheme can be uti-
lized at the receiver for post-compensation (i.e. estimation and cancellation) of
these distortions.

Use of joint-compensation ensures that in addition to the power efficient oper-
ation, the spectrum mask is also met and over-drive distortions are sparse enough
to be estimated at the receiver using CS. Further, this technique is applicable even
for systems utilizing highly nonlinear amplifiers as distortions from any combina-

tion of PA and DPD are transformed into that of a quasi-perfect limiter.
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Figure 2.2: Distortions’ sparsity rate and magnitude as a function of amplifier
over-drive.

2.2.2 Device Under Test

The device under test (DUT) in this work is a 20 W Doherty PA designed using
gallium nitride (GaN) transistor [36]. The amplifier is designed for applications in
the 2110 MHz to 2170 MHz frequency band. The AM-AM and AM-PM charac-
teristics of the DUT were measured using a 5 MHz OFDM signal centered around
2140 MHz. These are reported in Fig. 2.3. As can be seen from the AM-AM curve,
the amplitude response is nonlinear, especially for high amplitude input signals,
resulting in severe nonlinear distortion on the peaks. Also the phase response of
the amplifier is nonlinear and varies over 20° throughout the range of operation.
A linear amplification system is obtained using the cascade of nonlinear PA and
a DPD circuit matched to the characteristics of PA. The measured characteristics

of the linearized amplifier are shown in Fig. 2.4. It is apparent, that the PA-DPD
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Figure 2.3: Measured gain and phase characteristics of PA.
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Figure 2.4: Measured and approximated gain and phase characteristics of PA-
DPD combination.

cascade has a constant gain response to a point where the amplifier saturates, and

starts compressing. In the saturation region, the gain of the PA-DPD combination
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Figure 2.5: Block diagram of a typical communication system.

decreases linearly with increasing input power. However, the phase response of
the linearized PA is constant throughout the range of interest. To simulate the
PA, a look-up table (LUT) behavioural model, derived from the measured AM-
AM and AM-PM characteristics of the linearized PA, using exponential moving
average algorithm is adopted in this work [37]. The characteristics of the linearized
amplifier based on the LUT model are also shown in Fig. 2.4. For any linear
amplification system, if the characteristics of DPD match closely with that of the
PA, a system having the characteristics such as shown in Fig. 2.4 results. The low
dispersion of the AM-AM and AM-PM characteristics confirm the memoryless
behavior of the DUT and the suitability of the LUT behavioral model. This is

expected due to the narrowband nature of the transmission signals in handsets.

2.3 System Overview

2.3.1 Transceiver Model

A typical OFDMA-CR system can be divided into four major blocks as shown in

Fig. 2.5. Each of these blocks is discussed below.

21



Baseband Processing Unit

In an OFDM system, serially incoming bits are divided into N low rate paral-
lel streams. An N dimensional data vector X = [X(0), X(1),--- ,X(N — 1)]T
results when these parallel streams are mapped to an M-ary QAM alphabet
{Ao, A1, -+, Ay—1}. The time domain signal vector is obtained by an IFFT op-
eration, so that x = FHX. Here F denotes the unitary discrete fourier transform

(DFT) matrix with (n,ny) element

1 ,
—2mane/N - e € 0,1, N —1

fnl,nz - \/_Ne )

In the uplink of the OFDMA system, the total number of available sub-carriers
N is divided among subscribers and each user will be allocated K = N/I sub-
carriers for data transmission. Hence at the user equipment (UE), the incoming
stream of data is divided into K parallel streams followed by QAM modulation.
In the context of a complete OFDMA symbol, the frequency domain signal cor-

responding to the i*" user can be written as

X' =[0,X(0), X(1),--- , X(K —1),0]"

=0, 2" 0]" (2.1)

where X' = [X%(0), X(1), -, X{(K — 1)]T is a length K vector corresponding
to the data from i'" user mapped to the sub-carriers allocated to the i'" user by

virtue of preceding and succeeding zero vectors of appropriate dimensions. The
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time domain signal for user i, i.e., X’ can be obtained by taking the IFFT of X

RF Front End

The time domain signal that passes through a linear amplification system that is
not over-driven will go undistorted. However, the amplifier over-drive will result
in a distorted transmitted signal. This distortion can be modelled as addition of
a distortion signal x4 to the transmission signal. Hence the output of the PA can
be written as

X, =x"+x} (2.2)

Here, the small signal gain of the PA is taken to be unity for simplicity, as it
doesn’t affect the generality of the system model.

Since the main focus of this work is to study the effects of the PA’s distortions,
the RF front end is considered to be ideal except for the nonlinear distortions
generated by the amplifier. Thus, the RF front end is modelled using the baseband
equivalent behavioral model of the PA. To take into consideration the presence of
the DPD module in the baseband processing unit, while using a realistic model
based on the measured data of the linearized PA, the PA-DPD combination is
simulated using the LUT synthesized from the measured data presented in the

previous section.
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Channel

The RF front end output x; is transmitted through a channel with impulse re-
sponse h' = [h¥(0), hi(1),--- , h'(N,—1)]T, where the channel tap coefficients form

an independent and identically distributed (i.i.d) collection with zero mean and

h

independent real and imaginary parts. The time domain signal from *" user at
the output of the channel, can be written as
y'=H'x, (2.3)

where H' = F'D'F is a circulant channel matrix by virtue of the cyclic prefix in
OFDM signalling and D' is a diagonal matrix containing the frequency response
coefficients on its diagonal and zeros on non-diagonal entries.

In a quasi-static or block fading channel environment, the impulse response of
the channel associated with each user can be obtained at the receiver via training.
The training symbol, also called preamble, precedes the information containing
symbols in OFDM packets and is known at the receiver. The knowledge of pilot
sequence and statistics of additive white Gaussian noise (AWGN) (discussed in
the following section) at the receiver, mixed with realistic assumption that the
channel and noise are independent, allows the reconstruction of impulse response
using minimum mean squared error (MMSE) estimation. Having the knowledge
of the channel impulse response, the frequency response and the circulant channel

matrix can be subsequently reconstructed.
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Receiver

At the base station, the signals received from all I users combine to form a time

domain received signal y given as:
y = Z H'(x' +x}) +z (2.4)

where z ~ CN(0, 02T« y). The frequency domain received signal can be obtained

by the FF'T operation as

I I
Y= DXx'+) DX,+Z (2.5)

i=1 i=1

The last term on the right hand side (R.H.S) of eq. (2.5), Z, refers to the noise
vector z linearly transformed by F, and thus has the same statistics as z. The
product column vector D*X* will have nonzero elements only at the locations
corresponding to the sub-carriers that are allocated to user 7 for transmission.
Hence, the first summation on the R.H.S of eq. (2.5) can be written compactly as
DX, where X contains non-overlapping transmitted data from all the users, and

D contains the non-overlapping channel coefficients of all users, i.e.

X! D!

X = and D=
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Note that, although the channel frequency responses D', D2, ... D are diagonal
matrices of size N x N and hence are overlapping, the matrix D comprises of only
the portions of D?, belonging to the i*® user band, which is denoted by D’. Now

we can write

I
Y=DX+) DX)+Z (2.6)
=1

Unlike the first summation of (2.5) whose components add in a non-overlapping
manner, the elements of X spill over adjacent users and hence the second sum-
mation cannot be simplified like the first and needs further investigation.

In the absence of distortion (i.e. when the second term of (2.6) is zero), the
receiver could easily separate the users (as they occupy different carriers) and
equalize the users’ channels to recover the transmitted data. Mathematically we
can write

Y —DX 2 (2.7)

where ' is the portion of Y confined to the carriers of the i*" user (a similar

definition applies to D, X" and Z'). Upon equalizing, we obtain
X'= (D) Yy (2.8)

The noisy estimate X' is then rounded to the nearest constellation point, which
we denote by | X’| (from here on the operator |-] is used to denote rounding to
the nearest constellation point).

Note that the two steps of equalization and rounding could also be done in the
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presence of the distortion term in (2.6). In this case, the receiver simply ignores the
distortion and treats it as part of the additive noise, which will result in degraded
performance. However distortions could also be estimated and cancelled, which is

what we pursue in this work.

2.3.2 Spectrum Allocation

Consider the spectrum allocation in an OFDMA system, as shown in Fig. 2.6. As
illustrated, the available spectrum or total number of sub-carriers in the OFDMA
system are utilized to provide access to three users simultaneously. However,
consider the case in which only users 1 and 3 are active, while user 2 is in silent
mode (e.g. active but not transmitting). Two methods can be used to take benefit

of the situation at hand:

1. A rather conventional approach of allocating the free spectrum resulting
from the silence of user 2, to another user (e.g. user 1 or 3), which is true

to the essence of CR.

2. An alternative approach towards utilization of the free spectrum, which
allows one and possibly more of the active users to operate in a power

efficient manner by over-driving their PAs.

Here onwards, attention is paid only to the case where the advantage of the silent

user is taken by the power efficient operation of active users.
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Figure 2.6: Sub-carrier allocation in OFDMA system.

2.4 Over-driven Amplifier’s distortion

Both users 1 and 3 could make use of the absence of user 2 and over-drive their
PAs. For clarity of exposition, let’s focus first on the case when only one user is

over-driving his/her PA and subsequently consider the more general case.

2.4.1 Single User Over-drive

First consider the case where only one user among the active users is transmitting
by over-driving his/her PA and requires distortion estimation and cancellation at
the receiver (without loss of generality we consider it to be user 1). Other users
are operating their PAs in the linear region and hence only the signal from user
1 contributes to the nonlinear distortion seen at the receiver (absolute over-drive

distortions coming from user 1 are shown in Fig. 2.7). Hence we can write

y'=D'x'+D'X}+ 2 (2.9)

where by definition, Xl and Z' represent the portions of ) and Z corresponding

to the carriers assigned to user 1.
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Figure 2.7: Frequency domain view of distortion from user 1.
2.4.2 Multiuser Over-drive

Now consider the case when both user 1 and user 3 are over-driving their PAs.
Just like the first case, most of the distortion will be felt by the users immediately
adjacent (in this case user 2). The impact of user 1’s distortions on user 3 is
minimal as shown in Fig. 2.7 (this can actually be controlled by limiting the
degree to which the PA is over-driven). Similarly, the effect of user 3’s distortion
on user 1 is minimal. So the distortion of each user is felt mostly in-band and in
the spectrum originally reserved for user 2.

From the discussion above, we see that the multiuser over-drive case is similar
to the single user over-drive case (since most distortion is self inflicted and spills

are mostly to the spectrum of user 2). Thus (2.9) applies to all users and we can
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write

Y ~D'X' + DX+ Z' (2.10)

where the approximate equality comes from the fact that we are ignoring dis-
tortions coming from distant users (which is also equivalent to lumping these
distortions with additive noise). So the distortion model is same in the two cases
of single or multiple over-driving users and most of the distortion is self inflicted.

In the next section, we see how to estimate and cancel this distortion.

2.5 Compressive Sensing for

Post-Compensation

Our eventual goal is to recover the data X’ from (2.10), given noise and distortion.
As mentioned previously, we could ignore the presence of distortion and consider it
part of the additive noise which will result in inferior performance. Alternatively,
we could try to estimate and cancel this distortion which is accomplished here by
utilizing the distortion’s sparse nature in the time domain.

Specifically note that the distortion X’ iz experienced by the i user is related

to the time domain distortion x% by

X! =F'x, (2.11)

where as per convention F* is a K x N matrix with rows corresponding to those
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of the i*® user. Thus, (2.10) reads

Y -D'X' =DFx,+ Z' (2.12)

or

U =T'x; +2' (2.13)

where ¥’ £ D'F’ and U’ 2 XZ — D'X’. Assuming that U’ is known, this
represents an under-determined system of K equations in the unknown sparse
vector x. The N dimensional unknown vector x} is S sparse, i.e., it has S non-

zero elements and (N — S) zeros. The sparsity of x; makes it possible to recover

it from (2.13) using CS'.

2.5.1 Pilot Aided Compressed Sensing Scheme

Let’s reserve {L : L < K} of the carriers in X’ and keep them data free. If we

retain in eq. (2.13), the entries corresponding to these zero carriers, we obtain

Uy =Trx;+ 24 (2.14)

Since we are retaining only the carriers that are free of data, we have Y’ = X’L

As mentioned before, we can now recover x, using CS. Specifically we have

minimize ||x%]1,
subject to [[U} — W'y < e (2.15)
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where € restricts the amount of noise in recovered data [24]. Further, ||-||; and
||-||]2 represent the first and second norm of the vector, respectively. Although ¢;
minimization is widely used, it is not the only way of sparse signal reconstruction.
There are other sparse reconstruction techniques (e.g. Bayesian methods [25-27,
38], and matching pursuits [28-30]) which can be utilized, and some of these are

much less computationally intensive than ¢; minimization.

2.5.2 Data-Aided Compressed Sensing Scheme

The pilot aided scheme described above does not make the most efficient use
of bandwidth. So in this subsection, we pursue a data-aided approach which
essentially uses the most reliable data to form enough equations to recover the
sparse vector x} from (2.13). We call this approach data-aided compressed sensing
(DACS). The DACS algorithm is based on the assumption that after getting
corrupted by the distortion of the over-driven PA, part of the data samples still
remain within their corresponding correct decision regions.

For example in Fig. 2.8, X, and X, are perturbed versions of X and both
are reliable because they remain within the ML decision region of X. Note also
that while 2\?1 and /\?2 have the same distance to X, ?32 is more reliable than 2\?1.
The reason is that the distance of )22 to the next nearest constellation point A
is larger than the distance of X, to its next nearest constellation point X,. To
be more precise, consider (2.10) which we can use to equalize the received data

—

X' = (D")"'Y". In the absence of noise and distortions, we would have 2’ = X'
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Figure 2.8: Geometrical representation of adopted reliability criteria.
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In general, however, only some elements of X* will remain within the correct
decision region (we call the corresponding carriers reliable while the remaining

—

are unreliable). For the set of reliable carriers, we have | X% | = X%, where X%
is X’ confined to the set of reliable carriers R (X is similarly defined).
Now we use a similar strategy to what we did in the pilot-aided case. We use

(2.13) and confine our attention to the set of reliable carriers. At these carriers,

we have

U, =y, - DLX%

_Yi — Dy X (2.16)

where equality follows from the fact that at the reliable carriers, we have that
| X% | = X%. In other words, the reliable carriers are as good as pilot carriers. In

the pilot carriers case, we know that zeros are transmitted. In the reliable data
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carriers case, we know which constellation point is being transmitted.

When confined to the set of reliable carriers, (2.13) reads

U = Trx, + 25 (2.17)

where g’ﬁ is the matrix W' with rows confined to the set of reliable carriers R.
Note that (2.17) is an under-determined system of equations in the sparse vector
x’ and hence can be recovered by ¢; optimization similar to (2.15) or by utilizing
any other sparse signal recovery method.

The DACS algorithm developed above assumes that the set of reliable carriers
is available to us. It is important to note first that we need not to determine the
set of all reliable carriers R. Rather, it is sufficient to determine a large enough

subset? R’ C R and use that subset to recover the distortion

minimize ||x}]/;,

subject to [[U% — W x|l2 < € (2.18)

The reconstruction of R’ is necessary for successful implementation of DACS
and in this work, a geometrical approach is pursued to select the most reliable set
of carriers from the observed data.

In order to explain the adopted approach, we consider as a motivating example
the constellation shown in Fig. 2.8. Here X, and X, are two equalized data samples

which are equidistant from the closest constellation point X'. However, in spite
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of being equidistant from X, X, and X, have different reliability values. This
is because the distances of these two points from their respective next nearest
neighbours are different. Specifically, note that X, is next nearest neighbour of
231 and A}, is next nearest neighbour of 232, respectively. Given that )21 and 232
are equidistant from X, X, is considered more reliable than X, since in relative

terms we have
X — X - X — X
Xy — | X — A

(2.19)

This motivates the following reliability metric R(n),

Y N St
R(n) = — log <P€ - mNN') (2.20)

where as defined before, L)? | denotes rounding to the nearest constellation point
while |X | yn denotes rounding to the next nearest constellation point.

Thus, it is possible to calculate the reliability of all N carriers, sort the reli-
abilities in descending order R(n;) > R(ny) > --- > R(nk) and choose the R’

carriers with the highest reliability.

2.6 SIMO-OFDMA System

Let us consider an OFDMA receiver equipped with multiple antennas, i.e., a SIMO
communication system. Base station of the SIMO-OFDMA system receives mul-
tiple copies of the same transmitted signal via different paths. These multiple

received signals contain the same distortion signal convoluted with different chan-
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nel impulse responses. For acceptable performance of the communication system,
the distortion needs to be eliminated from all diversity branches before signals are
combined to obtain the estimate of transmitted signal. Further, the availability
of multiple measurement vectors of the same distortion can be exploited to gain
enhanced recovery of the sparse distortion signal. After removing the distortions,
the distortion free independent versions of the received signal can be combined
using any of the well known diversity combining methods e.g., equal gain combin-
ing (EGC), selection combining (SC) and maximal ratio combining (MRC) [39]
to obtain the estimate of transmitted signal.

Now, we need to generalize (2.10) to the case of multiple antenna receiver. We
see that in a P branch diversity system, the received signal of the i** user, on p'"

antenna can be written as

Y. =D X +D X, + Z' (2.21)

Here, Qfo is the frequency response of the i'" user’s sub-carriers associated with
p™ channel. Note that X’ and X’ in (2.21) are free of subscript p, as these
quantities are same for all diversity branches. If we consider a receiver that does
not eliminate the distortions and uses MRC for combining the signals from each

diversity branch, then the estimate of transmitted signal is given as

X' =3 (D)"Y (2.22)
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On the other hand, a receiver equipped with CS algorithm will first estimate the
distortions, will remove them and then use MRC combiner to achieve improved
performance. From (2.21), using the reasoning which led us from (2.10) to (2.13),

we can write for each diversity branch

U = Ui+ 2 (2.23)

Having a total of P systems of linear equations of the form (2.23), the following

two approaches can be pursued towards reconstruction of x’ via CS.

2.6.1 Individual Reconstruction per Diversity Branch

In this method, linear system associated with each diversity branch is treated as
an individual system and the procedure discussed in Section 2.5 is applied for
sparse signal reconstruction. Initially, estimation of distortion vector is carried
individually (with the help of reliable carriers) in each branch as shown in Fig. 2.9.
Having a total of P recovered versions of the unknown sparse vector, the distortion
associated with p'" diversity branch is subtracted from the received signal on p*
branch. This will yield a total of P distortion free received vectors, which can be

combined using MRC to obtain the estimate of the transmitted signal.

2.6.2 Joint Reconstruction Using Diversity Branches

Under-determined system of linear equations of the form (2.23) coming from

each diversity branch can be used jointly to estimate the distortions as shown

37



)

L(Distortion Estimation HDistortion Cancellation)—'
L>(Distortion Estimation HDistortion Cancellation)—'

MRC Combiner

L(Distortion Estimation HDistortion Cancellation)—'

Figure 2.9: Individual reconstruction per diversity branch.

in Fig. 2.10. First, we will find reliable carriers for each diversity branch resulting

in P systems of the following form:

U, =Y, pXy+ 2,5 (2.24)

where 14; » denotes the subset of most reliable measurements on the p' diversity

branch for i user (E; r and z; r are defined similarly). All these P systems

can be concatenated and setup into the following form:

U r 2R Z1 R
U r 2R | <9 R

= Xy + (2.25)
Upr 2P R Zp R

which can be written more compactly as
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It is evident in this case, that having R’ measurements per diversity branch, a total
of PR’ measurements, are available for the reconstruction of the same unknown
sparse vector x. Having more measurements helps in better reconstruction of the
unknown distortion signal. Here on, proceeding in the manner adopted previously,
this reconstructed signal is subtracted from each diversity branch to obtain P
distortion free signals. These distortion free versions can then be combined via

MRC to obtain the estimate of the transmitted signal.

L —>(Distortion Cancellation)—'
L —>(Dist0rtion Cancellation)—'

)

MRC Combiner

Distortion Estimation]

—{Distortion Cancellation)—'

Figure 2.10: Joint reconstruction using all diversity branches.

(

2.7 Simulation Results

The transceiver model was implemented in co-simulation between Advanced De-
sign System (ADS) software (from Agilent Technologies, Santa Clara, CA) and
MATLAB software (from MathWorks Inc., Natick, MA). For simulation a 1024
sub-carrier OFDMA is utilized. Each of the 3 users is allocated 256 sub-carriers
with no data transmission on DC subcarrier. All the remaining sub-carriers are
distributed equally among upper side and lower side guard bands. An OFDM

packet consists of 15 symbols with preamble containing the binary pilot symbols
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10dB below the information signal level. The low power transmission of the pilot
signal is required to ensure distortionless transmission of the pilot and hence cor-
rect estimation of the channel at receiver. Channel impulse response for each user
is 7 tap long, and is generated independently using complex normal distribution.
As MMSE estimation is employed at the receiver, it is worth mentioning that the
channel covariance matrix reduces to a diagonal matrix due to the i.i.d nature
of the channel taps. A normalized 64 QAM constellation is used for data trans-
mission. The resulting OFDM signals at the UE are used to over-drive the PA
according to results presented earlier, unless noted otherwise. For measurements
100 most reliable carriers are used, making the under-sampling factor 100/1024.
The simulation results are averaged over 200 Rayleigh channels, unless otherwise
stated.

A Bayesian approach entitled support agnostic Bayesian matching pursuit
(SABMP) is utilized to reconstruct the unknown sparse signal in this work [40].
The SABMP scheme estimates the unknown signal without any assumption on
the distribution of the active taps. This approach utilizes the a priori informa-
tion about the sparsity rate of the unknown over-drive distortion signal and the
noise variance. However, if such estimates are not available, the SABMP scheme
can bootstrap itself and estimate the required statistics (sparsity rate and noise
variance). It was shown in [40], that the SABMP scheme outperforms most al-
gorithms in estimation accuracy as well as time taken to estimate the unknown

sparse signal. The complexity incurred by the use of the SABMP is of order
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O(KNS), when an N dimensional signal with S nonzero elements is estimated
using K measurements. Further if exact estimates of the signal parameters are
not available and the greedy algorithm is run F,,,, times, the complexity increases
to an order of O(Fy.xKNS).

The metrics used for performance comparison in experiments (1-3 and 6) are

error vector magnitude (EVM) and bit error rate (BER).

e Error Vector Magnitude is defined by [41,42]:

A

LN |X(n) - ()|’

EVM = TN
N Zn:l‘X(n ‘

(2.27)

where X (n) and X (n) are the original and estimated data symbols, respec-

tively. The EVM (dB) is obtained by EVM (dB)=101og,,(EVM).

e Bit Error Rate is given by:

BER — total number of erroneous bits received

2.28
total number of bits received ( )

2.7.1 Experiment 1: Single Antenna Receiver

To quantify the impact of over-drive distortions from only user 1 or combined dis-
tortions from users 1 and 3, EVM and BER results are generated for both cases,
and are reported in Fig. 2.11 and Fig. 2.12, respectively. For each case, the perfor-
mances of the communication system were evaluated before and after applying CS

based recovery technique for the distortions’ post-compensation. Fig. 2.11 reports
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the EVM performance of the communication system as a function of the received
signal’s signal-to-noise ratio (SNR). Similarly, Fig. 2.12 presents the BER results
as a function of the received signal’s SNR obtained under the same conditions.
As apparent from the results reported in Fig. 2.11 and Fig. 2.12, there is very
little or no difference between the EVM and BER for cases of user 1 over-driving
and both user 1 and user 3 over-driving. This confirms the observations presented
in Section 2.4 about the effects of distortions on non-adjacent users. Indeed, the
presence or the absence of distortions from user 3 do not have a significant impact
on the EVM and BER of user 1. Further, it can be seen from the results reported
in Fig. 2.11 and Fig. 2.12, that CS can be used to improve the EVM and BER
performance of the communication system. It is further observed that the increase
in performance is limited by the channel state. In an optimistic scenario of a less
severe channel, significant improvement can be obtained as shown by the EVM
results in Fig. 2.13.

It can be noted however, that the proposed scheme gives significant improve-
ment only for high SNR regime. This is due to the fact that a highly dense two
dimensional signal constellation (i.e 64 QAM) is utilized keeping in view its band-
width efficient characteristics. As the order of constellation increases, the required
SNR for any given BER is increased. For example, WiMAX forum specifies 19.9dB
to be the minimum SNR required for 64 QAM with 5/6 forward error correction
(FEC) coding on the downlink [43]. In another work, it is shown that an SNR of

30dB or more is required for an intentionally clipped signal to achieve acceptable
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Figure 2.11: EVM performance of single antenna receiver averaged over fading

channels.
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Figure 2.12: BER performance of single antenna receiver averaged over fading
channels.
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Figure 2.13: EVM performance of single antenna receiver for optimistic channel.

symbol error rate (SER) performance with 64 QAM and 1024 sub-carriers on a
static inter-symbol interference (ISI) channel [44]. Furthermore, the transmitted
signal is extracted at the receiver via coherent detection which depends on the
channel estimation of a rayleigh fading channel. Hence any channel estimation
error resulting from MMSE estimation reflects in the performance of overall com-
munication system. The task of sparse signal reconstruction is challenging if we
note that though the signal at SNR 10dB is 10 times higher than the noise, the
distortions (that need to be reconstructed) are certainly not that high. The situ-
ation is further worsened by the fact that measurements of these distortions are
taken in frequency domain, hence, a sparse distortion vector in time domain is
spread throughout the frequency domain, with power not very high above the

noise floor.
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2.7.2 Experiment 2: Multiple Antenna Receiver

This experiment is carried to test the applicability of proposed sparse signal re-
construction scheme in multiple antenna receiver scenario. In SIMO-OFDMA
scenario, 3 diversity branches are combined at the receiver using MRC and pro-
posed distortion cancellation scheme is implemented. Once again, as shown in
Fig. 2.14, not only for the case where there is no post-compensation but also for
the case where there is post-compensation, it is true that the difference between
the case of over-drive distortions only from 1 user, and distortions from both user 1
and user 3 is marginal. Further to that, the joint-estimation of the over-drive dis-
tortion using multiple measurements jointly led to improved EVM performance.
BER results are shown in Fig. 2.15, which demonstrate the ability of proposed

scheme to significantly improve the BER of the communication system.

= € = NO CS - User 1 Over—driving
-9 —@— CS Recovered - User 1 Over—driving E
= © = NO CS - User 1 and 3 Over-driving
10 —6— CS Recovered - User 1 and 3 Over-driving
—10k ~a - i
SLAp N T T -
o
S -12p
=
>
W
_13 -
_14 L
_15 -
-16t ; ;
15 20 25 30 35

SNR (dB)

Figure 2.14: EVM performance of multiple antenna receiver averaged over fading
channels.
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Figure 2.15: BER performance of multiple antenna receiver averaged over fading
channels.

2.7.3 Experiment 3: Single Antenna vs Multiple Antenna
Receiver

This experiment is carried to compare the results of single antenna and multiple
antenna receiver systems. Only the case of over-drive distortions from both user
1 and user 3 is used for comparison. Diversity combining causes the low EVM
floor for multiple antenna receiver system, as evident from Fig. 2.16. Though,
the advantage of MRC is significant on low SNR values, it diminishes with in-
creasing SNR if CS based post-compensation is not used. However, the use of the
proposed post-compensation technique maintains the superior performance of the

SIMO configuration. Furthermore, the performance enhancement obtained fol-
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lowing the use of CS based technique is more pronounced in the region of interest
corresponding to an SNR of 25 dB or higher. These findings are further validated

using to the BER results shown in Fig. 2.17.
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Figure 2.16: EVM performance comparison of single antenna vs multiple antenna
receiver averaged over fading channels.

2.7.4 Experiment 4: Outage Capacity

In this experiment, the outage capacity of the communication system on hand,
with and without the proposed distortion recovery scheme is studied. The largest
rate of reliable communication at a certain outage probability is called the outage
capacity [45]. It is well known that error correcting codes (i.e. block codes and
convolutional codes) can be used to correct erroneous bits at the receiver [46]. De-
pending on the code type and rate, an error correcting code can achieve maximum
capacity if the bit error rate is low enough. In this experiment, a coded communi-
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Figure 2.17: BER performance comparison of single antenna vs multiple antenna
receiver averaged over fading channels.

cation system with multiple receiver antennas and distortions coming from both
users is used. The targeted BER for error correction is 1072%; any BER below
the targeted threshold will result in maximum capacity throughput whereas, BER
above the threshold results in zero throughput. The outage capacity is studied
at over-drive levels of 4 dB and 4.5 dB and is plotted against SNR in Fig. 2.18.
It is observed that the communication system without distortion recovery will
achieve maximum capacity with SNR more than 22.6 dB, whereas with distortion
recovery, maximum capacity is achieved at SNR as low as 20.9 dB, in the case of
4 dB over-drive. Hence, the use of the proposed distortion recovery scheme gives
a margin of around 1.7 dB in required SNR. Similarly, as shown in Fig. 2.18, with
4.5 dB over-drive no distortion recovery requires 33.1 dB, in comparison with 28.5

dB required for CS recovery, which makes the SNR margin 4.6 dB.
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Figure 2.18: Outage capacity averaged over fading channels for 4 dB over-drive
and 4.5 dB over-drive.

2.7.5 Experiment 5: Mean Square Error

In this experiment, the mean squared error (MSE) between the transmitted signal

and the received signal is evaluated. The MSE is defined as
1 & 2
MSE = — ;\X(n) — X(n)| (2.29)

The MSE is evaluated for the case of multiple antenna receiver and over-drive
distortions coming from both users. From the results shown in Fig. 2.19, it can
be observed that the proposed distortion recovery scheme can significantly reduce
the MSE between the transmitted signal and received recovered signal. Though
performance enhancement is achieved throughout the range of interest, advantage

of using the proposed scheme is more pronounced for high SNR values. It is worth

49



mentioning that the distortion recovery using CS is probabilistic and not certain.
However, considering a large number of corrupted OFDM signals requiring distor-
tion mitigation, CS has shown satisfactory results as demonstrated unanimously

by all the experiments.
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Figure 2.19: MSE performance averaged over fading channels.

2.7.6 Experiment 6: Channel Delay Spread

In this experiment, the effect of channel delay spread on the performance of pro-
posed over-driven distortion recovery scheme is analyzed. Channels with 10 and
128 complex i.i.d taps coming from uniform normal distribution are generated
for comparison. To avoid ISI between successive OFDM symbols, the length of
the cyclic prefix is adjusted according to the length of channel impulse response

and perfect channel knowledge is assumed at the receiver. The results shown in
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Fig. 2.20 and Fig. 2.21 depict no significant difference in performance for channels
with high and low delay spread. This is expected because as the cyclic prefix
ensures no ISI between OFDM symbols, the channel frequency response per sub-
carrier is essentially flat fading. Hence, irrespective of the channel delay spread
the proposed distortion recovery scheme works satisfactorily. It is worth men-
tioning that though in this experiment perfect channel knowledge is assumed at
the receiver, this information can be easily obtained using MMSE estimation as
reflected through the results of experiments 1 to 5. As channel estimation in
quasi-static scenario is done via low power preamble signal (full of pilots and not
influenced by the amplifier’s distortions), the MMSE estimate will be sufficiently

good for any channel irrespective of the delay spread.
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Figure 2.20: EVM performance comparison of for channels with high and low
delay spread.
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Figure 2.21: BER performance comparison of for channels with high and low delay
spread.

2.8 Chapter Conclusion

In this chapter, a power efficient OFDMA-CR system is presented. Power ef-
ficiency is achieved by applying the proposed joint-compensation technique to
an amplifier operating beyond saturation. Such an operation caused over-drive
distortions which required to be estimated at the receiver. Hence sparse signal re-
construction scheme was employed at the receiver for distortion estimation. It was
shown by numerical results for the entire communication system including channel
effects, that proposed formulation leads to improved EVM and BER performance.
Further, the proposed technique was successfully applied in SIMO configuration.
The results illustrate that, compared to the SISO case, additional performance
enhancement can be obtained when multiple antennas are used at the receiver

with MRC.
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CHAPTER 3

PAPR REDUCTION IN OFDM

3.1 Motivation

The problem of high peak-to-average power ratio (PAPR) in orthogonal frequency
division multiplexing (OFDM) has received considerable research interest in the
past. As the power amplifiers (PA) have a nonlinear response for higher input
levels, the inflated PAPR causes nonlinear distortions. Though power back-off
in the operating point of the PA will reduce the nonlinear distortions, it is not
desirable as it results in inefficient operation of the PA and reduced battery life
of the mobile terminal. Hence PAPR reduction in OFDM signalling is a necessity
for the linear and power efficient operation of the PA. Some of the transmitter
based PAPR reduction schemes include coding, partial transmit sequence (PTS),
selected mapping (SLM), interleaving, tone reservation (TR), tone injection (TT)
and active constellation extension (ACE) [2-5]. The computational requirement

of the aforementioned transmitter based schemes make them unsuitable for appli-
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cations where the transmitter complexity is a bottleneck.

Clipping is one simple and low complexity PAPR reduction method. The clip-
ping operation is performed such that the magnitude of the time domain OFDM
signal is limited to a pre-specified threshold. The clipping operation, however, is
nonlinear and causes out-of-band radiations as well as in-band distortions. The
out-of-band power spill interferes with adjacent channels and reduces power spec-
tral efficiency. Though filtering can be used to significantly reduce the out-of-
band radiations, it results in peak regrowth. A compromise between out-of-band
spill and peak regrowth can be reached by iterative clipping and filtering opera-
tions [47-49]. Unlike out-of-band radiations, the in-band distortions can be taken
care of at the receiver. However, if not, they result in significant performance loss
evidenced e.g., by the high bit error rate (BER).

Recently the sparsity of the clipping signal has been exploited and compressed
sensing (CS) schemes were used for clipping recovery at the receiver. The sparse
nature of the clipping signal is evident as it originates when a high PAPR signal
(with only a few high peaks) is subjected to a thresholding operation. Here it is
noteworthy that the performance and applicability of any CS based PAPR reduc-
tion schemes is mainly limited by two factors: the complexity of the sparse signal
reconstruction scheme and the number of reserved /measurement tones. In [17] Al-
Safadi and Al-Naffouri utilized augmented CS for signal recovery in severe clipping
scenarios. However, the drawback of [17] is the severe hit taken on the data rate

due to dedicated measurement tones. A CS based approach using reliable carriers
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(RC) as measurement tones with no compromise on data rate is proposed in [50].
However, this method is tailored for one-user single-input-single-output system.
Hence it lacks the generality required by multiple receiver antenna systems and
multi-user communications.

In this work, we focus on deliberate clipping based PAPR reduction. The time
domain OFDM signal is limited to a pre-specified threshold and sparse clipping
signal is reconstructed at the receiver using a low complexity Bayesian recovery
algorithm. The proposed reconstruction scheme is agnostic to the signal statistics
and utilizes a priori information about the additive noise, sparsity rate of the sig-
nal and the clipping threshold. However, if accurate estimates of these quantities
are not available, it can bootstrap itself and estimate them from the data. The
proposed scheme also utilizes the a priori information about undistorted phase
of the clipped signal for enhanced recovery. Further, the recovery algorithm fo-
cuses on the most probable clipping locations by obtaining the clipping likelihood
from a comparison between the magnitude of the received data samples and the
clipping threshold. At the receiver, some of the data sub-carriers are designated
as RCs for sensing the clipping distortion (based on the criteria proposed in [50])
and hence there is no data loss in using the proposed clipping reconstruction
scheme. Considering that most modern communication standards use multiple
antennas at the receiver, the proposed scheme is extended to the case of single-
input multiple-output (SIMO) systems. It is also highlighted that the problem

of clipping estimation in multi-user communications (i.e., orthogonal frequency
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division multiple access (OFDMA) systems) is not straight forward. The compli-
cations arise due to the fact that clipping distortions from different users overlap
in frequency domain and are indistinguishable from one another. In light of this,
a clipping reconstruction scheme for OFDMA systems is also framed. The pro-
posed multi-user clipping recovery scheme initially performs the joint-estimation
of clipping distortions from all users. This is followed by the decoupling stage, in
which subsystems belonging to each users are formed such that they are interfer-
ence free from other users’ distortions. Then the clipping is individually recovered
on each decoupled subsystem. Lastly we consider the channel estimation problem
for clipped OFDM and present two data aided channel estimation schemes. The
main idea is to use RCs in addition to the pilot sub-carriers for enhanced minimum

mean square error (MMSE) estimation.

3.1.1 Chapter Contributions
The main contributions of this chapter can be summarized as follows

e A low complexity Bayesian clipping recovery scheme is presented, that has

the following features

— It is agnostic to the signal statistics.

— It uses a priori information about the additive noise, sparsity rate and
threshold. Further, it can bootstrap itself if accurate estimates of these

parameters are not available.

— It utilizes the a priori information of the undistorted phase and the
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clipping support from the vicinity of the received signal to the clipping

level.

— It has a data aided version that makes use of the RCs in place of

reserved carriers hence conserving the data rate.

e [t is able to make use of the multiple receive antennas for enhanced clipping

recovery.
e [t can be extended to the multi-user OFDMA systems.

In addition, in this chapter effective channel estimation strategies are proposed

that work in spite of pilot contamination from clipping distortion.

3.2 Data Model for Clipped OFDM

In OFDM transmission the incoming bitstream is first divided into N
parallel streams and is then modulated using an M-QAM constellation
{Ao, Ay, -+, Apr_1}. The modulated data X = [X(0), X(1),---, X(N — 1)]" is
converted to the time domain using the inverse discrete Fourier transform (IDFT)

i.e., x = F"X. Here F is the DFT matrix whose (n1,ny) element is given by

fnl,nz _ N71/2€*J27rn1n2/N’ ny,mg €0,1,--- N —1.

The time domain signal x has a high PAPR and is subjected to an amplitude
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limiter for PAPR reduction. The resulting clipped signal x,, is described by

vexp(pZa(i)) it |x(i)] >~
xp(1) = (3.1)

x(7) otherwise,

where | - | denotes the absolute value, x,(7) is the ith element of the signal after
clipping, « is the limiting threshold and Zz(7) is the phase of x(i). The clipping
ratio (CR) and threshold v are related by CR = ~/0,, where o, is the root mean
squared power of the OFDM signal. The hard clipping in (3.1) is equivalent to the
addition of a sparse signal ¢ (with active elements only at the clipping locations)

to the time domain signal x. The clipped signal x, is then given as

X, =X+ C. (3.2)

The equivalence of (3.1) and (3.2) dictates that ¢ must be anti-phased with x on
the clipping locations and zero everywhere else. Thus, the addition of c leaves
the phase unaltered i.e., Zz,(i) = Zx(i) = —Zc(i) ¥ . This undistorted phase
property is important and is exploited in the development of the proposed recon-
struction scheme.

The clipped signal x, is transmitted through a channel of length N, with im-
pulse response h = [h(0), h(1),- -+, h(N,—1)]T, where the channel tap coefficients

form a zero mean complex Gaussian independent and identically distributed (i.i.d)
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collection. The received time domain signal can be written as
y = Hx, + z, (3.3)

where H is the circulant channel matrix and z is the additive white Gaussian noise
(AWGN) with z ~ CN(0,02T). The circulant nature of H allows us to diagonalize
it using the DFT matrix F and write H = FA'DF, where D is a diagonal matrix
with channel frequency response on its diagonal. The data model and proposed
reconstruction scheme are developed assuming channel knowledge at the receiver.
The procedure for acquiring the channel impulse response (CIR) in clipped OFDM
is outlined in Section 3.6 further ahead.

The frequency domain received signal can be obtained from (3.3) by the DFT

operation as
Y=DX,+Z=DX +C) + Z, (3.4)

where Y = Fy and X, X,C, Z are similarly defined. Equalizing the received

data in (3.4) results in

X=D'Y=x+C+D'Z=x+Z' (3.5)
—Z

here Z' is the combined additive noise and clipping distortion. A naive receiver

will disregard the presence of clipping noise in (3.5) and will make the maximum
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likelihood (ML) decisions on X to obtain the estimated transmitted signal Li’ |
(the operator |-| is used to denote the ML decisions or equivalently rounding to
the nearest QAM constellation point). However, a receiver employing CS recon-
struction will exploit the sparse nature of ¢ for its estimation and hence removal.

As the clipping signal c is sparse in the time domain, its frequency domain
counterpart C perturbs all sub-carriers alike as the time and frequency domains
are maximally incoherent. Utilizing this incoherence via CS, it is possible to
reconstruct an N dimensional time domain sparse vector with only P random
projections on frequency domain, where P << N. These projections can be
made using randomly allocated pilot tones as done in [17] but doing so reduces
the data rate. In this work, we avoid this and use a data aided approach to
estimate c as we describe below.

Given the equalized signal X at the receiver we expect the following: for
some sub-carriers, the perturbation Z7(i) is strong enough to take X' (i) out of

S

its correct decision region ie. [X(i)] # X(i), while for others with a milder

—

perturbation, we expect to have | X (i)] = X(i). The subset of data carries which
satisfy L??(?)J = X(1) are called RCs and fortunately constitute a major part of all
sub-carriers. To select this subset, we note that the major source of perturbation

is the clipping distortion, especially for high signal-to-noise ratio (SNR). Hence,

from (3.5), we can write the reliability function of the ith sub-carrier in terms of

60



Z1(i) as

p(21(i) = X(i) ~ | X())) | (3.6)

S o PUETD) = X() — A(k)

N() =

where p(-) represents the pdf of ZT, which is assumed to be zero mean Gaussian
with variance o2 (see [50] for details). In (3.6), the numerator is the probability
that Z7(i) does not take X (i) beyond its correct decision region and the denom-
inator sums the probabilities of all possible incorrect decisions that ZT(i) can
cause. The detailed investigation of this reliability criteria is reported in [50].
After obtaining the reliability 2R(¢) for each carrier i, we pick the P sub-carriers
with highest reliability values and use them as measurement tones to recover
sparse clipping vector c¢. Consider an N x N binary selection matrix S, with
P ones along its diagonal, corresponding to the locations of the most reliable P

sub-carriers. Using S we construct a P x N matrix Sp by pruning S of its zero

rows. Subtracting D| X | from (3.4) and using Sp, we have

Sp(Y —D|X|) =SpD(X — | X|) + SpDFc + SpZ,

Y =W+ 2, (3.7)

where Y’ = Sp()?—DL)A(J), ¥ = SpDF and Z' = SpZ. To establish the equality
in aforementioned equation, we have used the fact that on RCs L.??(?)J = X(i),
and hence SpD(X — |X]) = 0. A typical CS problem of the form (3.7), with P

measurements and N dimensional sparse unknown (P << N) can be solved using
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any sparse reconstruction algorithm e.g., [25-30,38]. However, these schemes are
complex and do not utilize the clipping likelihood and undistorted phase property

of the clipped signal.

3.3 Proposed Clipping Reconstruction Scheme

From (3.1) and (3.2), and the discussion that followed, it is known that the clipping
vector ¢ and the signal vector x are anti-phased. Hence, the phase information
can be deduced at the receiver from the time domain equivalent of (3.5), i.e.,
x = x+c+H'z. Since Zc(i) = —Zx(i) V i, only the support and the magnitudes

of the active clipping elements are left unknown. Hence we can rewrite (3.7) as

yl - lIlgccm + ZI7

= &¢c,, + Z/, (3.8)

where ® = ¥O,.. Here the matrix ®. contains the phases of ¢ on its diagonal,
ie, O, ~ —O; = —diag(£z(0), Zz(1),--- , Z&(N — 1)) and the vector c,, con-
sists of the magnitudes of the elements of c. Since the aforementioned system
of equations is complex with real unknown, we can split the real and imaginary

parts (designated as Re{-} and Im{-}, respectively) to obtain a system with 2P
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equations

Re{Y'} B Re{®} Re{Z'}
Im{Y’} Im{®} Im{Z'}
Y==a&c,+Z. (3.9)

From hereon, we simply use ¢ and not ¢, to denote the unknown signal, with the

understanding that ¢ contains only the magnitudes and rewrite (3.9) as

Y =oc+Z. (3.10)

To solve the under-determined system in (3.10), we employ a Bayesian sparse
reconstruction scheme. A tractable Bayesian approach e.g., [26] assumes Gaussian
distribution on active elements of the unknown signal. However, this is not the
case here, as the nonzero elements of ¢ are the differences of a Rayleigh distributed
elements |x(7)| and a constant 7. As the unknown is clearly non-Gaussian, we
pursue a Bayesian approach introduced in [51] that does not make any assumption
on the statistics of the nonzero elements of c.

Let us compute the MMSE estimate of ¢ given the observation Y as

Cmmse - E D) Zp C‘y S] (311)

where the sum is executed over all possible 2" support sets S of c. Now assuming
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that the support S is perfectly known, (3.10) reduces to
Y = dscs + Z, (3.12)

where ® is formed by selecting the columns of ® indexed by support S. Similarly,
cs is formed by selecting entries of ¢ indexed by S. Since the distribution of c is
unknown, computing E[c|Y, S] is very difficult, if possible at all. Thus, we resort

to the best linear unbiased estimate (BLUE) as an estimate of ¢, as given below
Ele[Y, 8] - (8585) " &5 (3.13)

Using Bayes rule, the posterior in (3.11) can be written as

p(SY) = %, (3.14)

where p(Y) is common to all posteriors, and hence can be ignored. Note that
Bayesian reconstruction schemes (e.g., support agnostic Bayesian matching pur-
suit (SABMP) [51] and fast Bayesian matching pursuit (FBMP) [26]) assume that
the elements of the unknown are activated according to a Bernoulli distribution
with success probability p. Hence, p(S) is calculated as p(S) = p!SI(1 — p)N=ISI,
However, for problem on hand it is reasonable to assume that c(i) is an active
element if the received sample Z(7) is in close proximity to 7. So, instead of assign-

ing a uniform probability p to all samples, we assign higher probabilities to the

samples which correspond to the elements of x that are more likely to have been
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clipped. To do so, we define a weight vector w with elements w(i) = v—|z(4)|, and
assign higher probabilities to the locations where the aforementioned difference is

w

small. One such assignment is p; = e~ where, p; is the probability of a clip on

ith element (p;’s are normalized to have max(p;) = 1). This gives us

p(S)=]]r [J1—rw), (3.15)

€S keS8

where SNS =@ and SUS = {1,2,--- ,N}.

We are left with the calculation of p(|S), which is difficult owing to the
non-Gaussian nature of cs. To go around, we note that Y is formed by a vector
in the subspace spanned by the columns of ®s plus a Gaussian noise vector Z.
This motivates us to eliminate the non-Gaussian component by projecting Y onto
the orthogonal complement space of ®@s. This is done by pre-multiplying Y by a

projection matrix Ps defined as

This leaves us with P4 = P4 Z, which is Gaussian with zero mean and covari-

alnce

K =E[(P52)(P52)"]
— PiE[2Z2"PL" = PLo2PL"

= 0?Pyg. (3.16)

z
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Thus we have,

1

(2mo2)2P

p(Y|S) = exp (—%(ngi)HK‘l(Péj))) . (3.17)

Simplifying and dropping the pre-exponential factor yields,

_ 1 _
pIS) = exp (5 IPSVIP). (5.18)

Substituting (3.15) and (3.18) in (3.14) gives the expression for posterior prob-
ability, which is then used to compute the sum in (3.11). However, this computa-
tion is challenging as the number of support sets is large (typical values of N in
OFDM are 256 and 512). The computational burden can be reduced with slight
compromise on the performance, if this sum is computed only on the support sets
corresponding to the significant posteriors S; (see [51] for details). Thus, we can

write the approximated MMSE estimate of ¢ as
Cammse = E[CD_)] = Zp($|37)E[C|)—7, S, (3.19)

Now, we pursue a greedy approach [26,51] to find a subset of the dominant support
S4. Note that though this approach of sparse signal reconstruction was presented
in [51], the proposed clipping recovery scheme has two differentiating characteris-
tics. First is the use of weighted p(S) in (3.15), which helps to find the dominant
support much faster than the un-weighted case. Second is the phase augmentation

which results in improved reconstruction accuracy.
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The Bayesian reconstruction approach discussed above relies on the a prior:

2

information about the sparsity rate p, the noise variance o7

and the clipping
threshold v to reconstruct the vector c. The threshold ~ can be communicated to
the receiver during the signalling period, p can be obtained from previously accu-
mulated data and any SNR estimation scheme can be used to find o2. Nonetheless,
if accurate estimates of these quantities are not available, the proposed scheme
can bootstrap itself and estimate these parameters from the data. Specifically,
in the absence of accurate estimates, we start with initial rough estimates of the
parameters and obtain ¢. The estimate of ¢ is then used to refine the parameters
62 and p, and these parameters are now used to obtain an improved estimate of
c. This procedure can continue iteratively, until a predetermined criteria is satis-
fied. The computational complexity of the proposed reconstruction scheme is of
the order O(FEpn.pPN?), if an N dimensional signal with pN non-zero elements
is estimated using P measurements and the parameter refinement is performed
FErax number of times [51]. As the proposed scheme uses weighting and phase
augmentation we term it weighted and phase augmented (WPA)-SABMP. An al-

gorithmic description of the WPA-SABMP reconstruction scheme is provided in

Table 3.1.

3.3.1 Simulation Results

The SABMP algorithm was proposed in [51] and was shown to outperform other

Bayesian and ¢; based sparse recovery algorithms. Hence in this work we com-
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Table 3.1: Summary of the proposed WPA-SABMP scheme

. Equalize: x = F'D™'Fy
. Estimate clipping level: 4 = max(X)
. Calculate the weight: w =4 — |X]|

. Find Reliable Carriers: Calculate SR and choose P carriers with highest
reliability.

~

7K

. Estimate sparsity rate: p(0) = Q , an initial estimate, where p and

o are the mean and standard deviation of X, respectively.
.t=1,2,---, repeat

(a) pt)s = p(t)e ™V, i=1,2,--- | N
(b) Compute: Eymmse and p(t) using the technique discussed in [51]

o (1) = p(t = 1)
until ( A= 1) < 0.02)

(¢) Phase augment: ¢ = O|Cammse|

(d) Remove distortion: x(t +1) =x(t) — ¢

pare the proposed WPA-SABMP scheme with SABMP [51], the phase augmented

version of FBMP i.e., PA-FBMP and weighted and phase augmented-LASSO

(WPAL) [17]. As a benchmark we use the oracle-least squares (LS) solution (i.e.,

the case when the support is perfectly known and LS solution is calculated on

the known support). In all simulations it is assumed that the statistics (i.e., the

mean and the variance) of the clipping signal are not known. These schemes

are compared for their BER performance and practical complexity. The practical

complexity is calculated as the average runtime for signal recovery and is presented

by subgraphs within the main figures (the independent axes of the subgraph and

the corresponding main figure are always identical).
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An OFDM system with 512 sub-carriers is simulated. The 64-QAM alphabet
is used for modulation and the data is passed through a channel with 10 i.i.d taps
of unit variance. All simulation results are averaged over 5000 bit errors unless

otherwise noted.

Experiment 1

In this experiment, the performance of the proposed scheme is tested vs the CR
while keeping the Ej,/Ny and P fixed. It is natural that the performance of the
reconstruction schemes improves as the clipping is reduced (i.e., higher CR values).
However, as shown in Fig. 3.1 the proposed WPA-SABMP scheme performs better
than SABMP and PA-SABMP for all CR values and better than WPAL for most
CR values. Further, observe that WPA-SABMP scheme recovers the clipping in

a small time irrespective of the CR.

Experiment 2

In this experiment, sparse reconstruction schemes are tested for their BER per-
formance. The CR is kept fixed at CR = 1.61 and the number of RCs is set
to P = 128. It can be observed from the results in Fig. 3.2 that the proposed
scheme provides significant gain over existing reconstruction schemes and attains
BER very close to the oracle-LS. Further, it can be noticed from the subgraph
that among the compared schemes, WPA-SABMP is the least complex clipping

reconstruction scheme.
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Figure 3.2: BER versus E,/Ny (CR = 1.61,P = 128).
Experiment 3
In this experiment, the Ej/Nj is kept fixed at 27 dB and the number of RCs P

used for reconstruction is varied from 75 to 175. Observe that if P is reduced,
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the reconstruction accuracy of SABMP and PA-FBMP is reduced, however, WPA-
SABMP and WPAL show robustness against reduced P. Though WPAL has good
reconstruction accuracy through the range of interest, it is the most complex
algorithm among the compared schemes. Further, this complexity is elevated
with increasing P. The time graph also shows that the WPA-SABMP has least

complexity that varies slightly with P.
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Figure 3.3: BER versus P (CR = 1.61,E,/Ny = 27dB).

Experiment 4

In this experiment, we compare the performance of the proposed scheme in ab-
sence of the accurate estimates of the signal statistics (i.e., the threshold ~, the
noise variance o2 and the sparsity rate p are not known). The results of this ex-
periments are depicted in Fig. 3.4. The WPA-SABMP (True) scheme in Fig. 3.4
represents the case when the actual estimates are available, WPA-SABMP (Est)
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Figure 3.4: BER versus CR (P = 128, E,/Ny = 27dB, pinit = 0.01p4ee and
o? =0.0102

z_init T z_true) .

represents the case where the actual estimates are not available but no refinement
is performed and WPA-SABMP (Ref) represents the case where the proposed
scheme is run F,,,, = 5 time for refinement of the initial estimates. The proposed
refinement based scheme is compared with WPAL as it does not require any sig-
nal statistics. The initial estimates of the signal sparsity and noise variance are

Pinit = 0.01pgrue and o2, . = 0.0102

< init 2 e+ 1t is observed that using the refinement

procedure, even in the absence of accurate statistics, performance very close to
the oracle-LS can be obtained. However, as the refinement procedure runs FE,,.y

times, it take more execution time than the non-refined counterpart.
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3.4 Clipping Reconstruction for SIMO Systems

Let us consider an OFDM communication system equipped with L receiver an-
tennas. At the receiver we have L independent copies of the transmitted signal.
All diversity branches contain the same distortion signal ¢, convoluted with the
channel impulse response h; of the [th branch. For acceptable performance of the
communication system, the distortion needs to be eliminated from all diversity
branches before signals are combined to obtain an estimate of the transmitted
signal. The distortion free independent versions of the received signal can be
combined using any of the well known diversity combining methods (e.g., equal
gain combining (EGC), selection combining (SC) and maximal ratio combining
(MRC) [39]) to obtain an estimate of the transmitted signal.

To pursue the reconstruction of ¢ using the scheme proposed in Section 3.3, a
system of equations of the form (3.10) is formulated for each diversity branch. In

general, for the [th branch we have

Vi=®c+ Z, (3.20)

where, ), is the measurement vector associated with the Ith diversity branch of
the system (similar definitions apply to ®; and Z;). Note that c is free of subscript
[, as it is same for all diversity branches.

One rather obvious approach towards estimation of ¢ given L systems of the

form (3.20) is individual reconstruction per diversity branch as shown in Fig. 3.5.
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Figure 3.5: Individual reconstruction per diversity branch.

Once the estimates of the clipping distortion are available, these estimates are
subtracted from the respective branches to obtain the distortion free versions
YV, = Y, — ¢ of the transmitted signal corresponding to each branch. These

signals are then combined by MRC to obtain X using the following definition

X = ZD?JV% (3.21)

=1

where D, is the diagonal frequency response matrix corresponding to the [th
branch. An alternative and a more effective approach is to utilize the fact that
the clipping signal is same over all diversity branches. As such, the L systems of

linear equations (3.20) can be concatenated and setup in the following form:

Vi ®, Z,
) 2 i)Z 2

= c+ : (3.22)
YL ) Z
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Figure 3.6: Joint reconstruction over all diversity branches.

which can be written more compactly as

Y —Bc+ 2. (3.23)

It is evident that with 2P measurements per diversity branch, a total of 2L P
measurements are now available to reconstruct the sparse unknown (see Fig. 3.6).
Once c¢ is obtained as done in Section 3.3 for single antenna case, the subsequent
distortion removal and MRC combining is identical to the case of individual re-

construction.

3.4.1 Simulation Results

In this experiment, the performance of the proposed joint reconstruction scheme
is compared with individual reconstruction for two receiver antenna systems i.e.,
L = 2. The CR is varied while E}, /Ny and P are kept fixed. The simulation is aver-
aged over 500 bit errors. The results in Fig. 3.7 show that the joint reconstruction
scheme achieves an error rate much lower than individual reconstruction. Further

to compare the computational complexity, we note that individual reconstruction
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Figure 3.7: BER versus CR for SIMO-OFDM Communication Systems (P =
77,Ey,/Nog = 27dB).

can be performed in parallel, so we consider the time required for signal recon-
struction in one branch only. It is observed from the subgraph that the average

time taken by the joint and individual reconstruction is almost the same.

3.5 Multi-user Communication

In multi-user OFDM systems i.e., OFDMA, each user is assigned a subset of sub-
carriers, and each carrier is assigned exclusively to one user [33]. The time domain
signal resulting from IDF'T on each user are clipped for PAPR reduction. Clipping
multiple users simultaneously complicates the estimation process at the receiver.
This is because the distortions from each user are spread over all sub-carriers and

hence overlap. The frequency domain overlap of distortions render many of the
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assumptions made in the single user scenario invalid. To be specific, weighting and
phase augmentation cannot be applied in multi-user clipping estimation directly.
Further, as the data on each sub-carrier is corrupted by clipping distortions from
all users (and additive noise), the perturbations are generally strong enough to
take the data out of the corresponding decision regions and hence the RCs method
is inapplicable. Hence, in multi-user clipping estimation we resort to the data free
pilot tones for measuring the clipping distortions.

Let us commence the formulation of a multi-user clipping estimation strategy
by generalizing the data model presented in Section 3.2 for OFDMA systems. In
this work, we consider the two user case for clarity of exposition, however, the
proposed scheme is easily extendable to the general U user case. In the uplink
of an OFDMA system, the total number of available sub-carriers N is divided
between the two subscribers and each user will be allocated K = N/2 sub-carriers
for data transmission. The sub-carriers can be allocated adjacently (sub-carriers
(u—1)N/K to uN/K — 1 reserved for uth user) or in an interleaved manner (user
u is allocated sub-carriers u+dK — (K +1), d € {1,2,---,N/K}). In this work,
we focus solely on the interleaved carrier allocation. In the context of a complete
OFDMA symbol, the frequency domain signal corresponding to the first user can

be written as

X! :[X1(0)707X1(1)707 to 7X1(N/2 - 1)70]1—7
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and signal corresponding to the second user is given by

A% =[0, X%(0),0,X%(1),0,--- , X*(N/2 - D),

The time domain signal for uth user (i.e., x*) is obtained by taking the IDFT
of X“. To reduce the PAPR, the signals x" are clipped as given by (3.1) and at
the receiver we have y = H!(x! + ¢!') + H*(x* + ¢?) + z. The frequency domain

received signal can be obtained by the DFT operation as

Y =D'X'+D!C' + D*x* +D*C*+ Z. (3.24)

Note that, although the channel frequency responses D" are diagonal matrices
of size N x N and hence are overlapping, the matrix D comprises of only the
portions of D“, belonging to the uth user band, which is denoted by D*. Hence

we can write

Y =DX +D'C' + D*C* + Z, (3.25)

where X = X'+ X?. In the absence of distortion (i.e., when D'C' = D?C? = 0),
the receiver could easily separate the users (as they occupy different carriers)
and equalize the users’ channels (as in (3.5)) to recover the transmitted data.
Mathematically, we can write Y* = D"X" 4+ Z", where Y" is the portion of Y

confined to the carriers of the uth user (a similar definition applies to D* X" and
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Z"). Upon equalizing, we obtain

The noisy estimate X" is then rounded to the nearest constellation point (Li\uj ).
However, in presence of the distortions, clipping needs to be estimated and can-
celled before the equalization step of (3.26).

Now to demonstrate how clipping distortions can be estimated, we re-write

(3.25) as

Cl 1
Y=DX +[D'D? +Z=DX +[D'D*F +Z, (3.27)
C? c?
where we have made the substitution C* = Fc". Using a selection matrix Sp we

proceed by projecting Y onto the subspace spanned by the reserved carriers. This

yields

SpY=Sp(DX+[D'D*Fc+Z) ie., Y'=¥c+Z' (3.28)

The clipping ¢ can be recovered from the under-determined systems in (3.28)
by sparse signal reconstruction. However, the assumptions used for weighting and
phase augmentation in earlier parts of this chapter are no longer valid. Though the
signal can be recovered using sparse signal recovery tools (e.g., FBMP, SABMP

and /¢1-optimization), however, in multiuser scenario it is not really effective espe-
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cially as the number of users gets larger. For example, in the two user scenario of
(3.25), the sparse vector is twice as large and could have twice the number of active
elements. As such to maintain the quality of the estimate in two-user scenario,
we need to double the number of free carriers, which will reduce the throughput.
Alternatively here, we get by with the estimate obtained from (3.28) and once
these estimates are available we proceed in a decoupled manner to improve these
estimates.

Once the clipping signals are initially reconstructed using (3.28) (i.e., the joint
estimation), it is possible to setup two uncoupled systems of equations for user
1 and 2 respectively. After the isolated systems are formed, the sparse clipping
reconstruction can be performed for each user for enhanced recovery. Therefore,
the crux of the proposed reconstruction scheme can be summarized in the following

two steps: 1) Estimate ¢ = [¢!'¢2']T

via joint sparse reconstruction using (3.28)
and 2) Decouple the two systems of linear equations corresponding to user 1 and
user 2 and perform clipping reconstruction for each user.

To obtain the decoupled systems, we modify the approach initially proposed for
channel estimation [52] (we term this approach the contaminated pilot approach).
It was noted that as the clipped signal is transmitted (transmitted pilots are also
clipped) hence it is not optimal to use ideal pilot sequence at the receiver as a
reference for channel estimation. Instead, the clipped pilot sequence was first

estimated at the receiver and then used for enhanced channel estimation. As the

clipped pilots are used in [52] instead of clean pilot signals, we call this scheme
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the contaminated pilot approach. In this work, we use the idea of reconstructing
the clipped version of the transmitted signal at the receiver to form the decoupled
systems. To do that, the initial estimate of ¢ obtained using (3.28) is subtracted

from (3.25) to get

V=Y - D'D’lF¢ =DX + Z'. (3.29)

We proceed by extracting the carriers allocated to user v and get Y, which
is then equalized using (3.26) to obtain Xt = (D*)~'Y%. Now, we estimate the
transmitted frequency domain signal by making the ML decisions Li\“J The
time domain signal is obtained by IDFT as x% = FH Li\“j This time domain

signal is then clipped using (3.1) to get )/(E. Now the difference between the

clipped and un-clipped versions of X" i.e., ¢ = (X — X") is entrusted as the

improved estimate of the clipping distortion and is subtracted from (3.25) to form
the decoupled systems. The stepwise procedure for formulation of the decoupled

system is outlined below,

1. Do the joint sparse signal reconstruction based on (3.28).

2. Subtract the estimated distortion ¢ from (3.25) to obtain

Y.=Y - [D'D)Fc=DX + Z
3. Get Y =D"X"+Z" by extracting user u’s carriers.
4. Equalize Y using (3.26) and obtain (Li\“j)

5. Using pilots and Li\“J, form a time domain signal X%
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6. Obtain }/CE from x¥ using (3.1) and obtain C' = 5(; — X

7. Obtain Y'=Y—DUC'=DX +D'C"+Z, @ # u based on (3.25).

Note that Y* is decoupled from user u’s clipping. Now with this decoupled
system for user %, we can extract sub-carriers allocated to user @ to form Y* =

D*X" + D"C" + Z" and reconstruct ¢ using sparse recovery.

3.5.1 Simulation Results

The OFDMA system with two users is simulated using 512 sub-carriers and 64-
QAM modulation. Each user is assigned a total of 256 sub-carriers in an in-
terleaved fashion. The number of reserved tones used for CS measurements is
P, =75 for u = 1,2. The threshold for both users is chosen such that CR = 1.61.
For sparse signal reconstruction FBMP [26] is used and results are presented in
Fig. 3.8. The results compare the proposed (two stage recovery) scheme with the
joint estimation scheme. It can be seen that the joint reconstruction of the clip-
ping distortions gives very little gain in BER. However, the proposed decoupling
based two stage multi-user clipping reconstruction scheme significantly improves

the BER and achieves the no clipping rate for high Fj,/Nj.

3.6 Channel Estimation in Presence of Clipping

Clipping the transmission signal results in pilot contamination, hence the MMSE

estimation based on these pilot signals is not optimum. In this section we discuss
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Figure 3.8: BER versus E,/Ny for Multi-user clipping recovery scheme (CR =
1.61,P, = 75).

the channel estimation problem for clipped OFDM and present data aided CIR
estimation strategies.

The received OFDM signal is given in (3.4) and can be written as

Y=DX+DC+Z=DX+2Z2 (3.30)

where Z' = DC + Z is the combined AWGN noise and clipping distortion. Let
us define D £ diag(D) = v/ NFh (where, F represents the N x N, partial DFT
matrix obtained by pruning F of its last N — N, columns). Now note that, DX is

a product of a diagonal matrix and a column vector, and hence we can exchange
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the roles of D and X by rewriting (3.30) as

Y = diag(X)diag(D) + Z’ = diag(X)D + Z’

— VNdiag(X)Fh + 2’ = Xh + Z/, (3.31)

where X £ /N diag(X)F. For channel estimation in OFDM, @ equally spaced
pilot signals are inserted at the transmitter [9-11]. Based on this known pilot
sequence, the receiver finds the MMSE estimate of the channel. Let Z, denote the
index set of the pilot locations, then we can write Yz, = Xz,h + Z’Iq, where Uz,
prunes U of all rows except for the rows belonging to Z,. Now the MMSE estimate
of h can be obtained by solving the regularized LS problem h = arg tIlnax{Hqu —
XIqhHQR;} + ||h|? ;1} where Ry, = E[hh"] = ¢71. Further, ignoring the clipping
noise component of Z’ we can write Rz, = E[Z'Z"""] = 621 (the subscript Z, of Z'

is dropped here for notational convenience). Solving this LS problem yields [53]
h =X (X7, X} + (02/o)D) "' Vs, (3.32)

Increasing the number of pilot tones for CIR estimation results in improved
estimation accuracy. However, generally it is not feasible to spare additional pilots
as it reduces the data rate. In this work, we increase the number of measurements
without increasing the number of reserved pilots by using RCs (for the procedure
to find the RCs see the discussion following (3.5)). Let Z, denote the index set of

the RCs and the pilot carriers. We can now retain these carriers in estimating h
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and prune all other sub-carriers from (3.31). This yields

Vi, =Xz,h+ 27, (3.33)

Now we can obtain the refined estimate of h based on (3.32) by replacing the pilot
index set Z, with enhanced set Z, consisting of the pilots and RCs. The enhanced
MMSE estimation procedure based on RCs can be summarized in the following
three steps: 1) Find the initial MMSE estimate of the CIR using (3.32), 2) Find
reliability 2R for all sub-carriers using (3.6) and select R sub-carriers with highest
reliability index as RCs and 3) Use RCs as additional measurements (by using
(3.33)) and find MMSE estimate using (3.32).

It is important to note that however many pilots and RCs we use to enhance
the channel estimate, we are bottle-necked by the clipping distortions. Another
way to look at this is to notice that what passes through the channel is not
the pure signal or pilots but their clipped versions. As such, motivated by the
work of [52], we first estimate the contaminated (pilots + RCs) and use them for
enhanced MMSE estimation. The proposed data aided CIR estimation scheme

can be summarized as:
1. Obtain the initial MMSE estimate by using (3.32).

2. Equalize the received data and make ML decisions on the equalized data

ie, |[YV(@)/D@)] = [X(@)].
3. Find reliability R for all sub-carriers and select R sub-carriers with highest
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reliability index as RCs.
4. Construct time domain signal x = FH| X (i)].
5. Find x, by clipping % using (3.1) and obtain i'p = Fx,,.
6. Obtain (clipped pilot sequence + RCs) X}, and X,,, = diag(X,, ).

7. Use X,,, in (3.32) to obtain the improved CIR estimate.

3.6.1 Simulation Results

For channel estimation 256 sub-carrier OFDM and 64-QAM modulation is used. A
total of 16 equispaced pilots are inserted for channel estimation and the number of
RCs is chosen to be 16 (i.e., @ = R = 16). Fig. 3.9 shows the mean squared error
(MSE) results of simple MMSE estimation (MMSE), the RCs approach (RC),
the contaminated pilot approach (CPA) [52], the proposed scheme (RC+CPA)
and the MMSE for unclipped OFDM (No clipping). The MSE as a function of
Ey/ Ny results are generated by keeping CR = 1.73. The results show that for high
Ey/Ny the proposed scheme provides upto 7.2 dB advantage over simple MMSE
estimation. Further, considering a 7.8dB difference between Ej, /Ny and SNR, the
findings are consistent with the general observation that the MSE cannot go below

the noise floor.
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Figure 3.9: E,/Ny MSE (dB) for data aided CIR Estimation (CR = 1.73,Q =
R = 16).

3.7 Chapter Conclusion

In this chapter, a low complexity Bayesian clipping recovery scheme was presented.
The proposed WPA-SABMP scheme utilizes the undistorted phase property and
weighting for enhanced clipping recovery. The proposed approach is agnostic to
the non-Gaussian distribution of the clipping signal and so outperforms other tra-
ditional Bayesian approaches and ¢; sparse recovery schemes. The WPA-SABMP
scheme also utilizes the available statistics for enhanced recovery, however, when
these statistics were unavailable the proposed scheme bootstrapped itself and suc-
cessfully estimated the clipping distortions. Simulation results showed significant
performance enhancement for WPA-SABMP scheme in both the error rate and

complexity. The proposed scheme was then extended for the SIMO-OFDM sys-
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tems and numerical findings were presented. In addition, a multi-user clipping
recovery scheme was proposed and channel estimation strategies were presented
for clipped OFDM signal. The simulation results for OFDMA clipping mitigation

and data aided channel estimation also showed favourable results.
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CHAPTER 4

NARROWBAND

INTERFERENCE PROBLEM

4.1 Motivation

In this chapter, we tackle the problem of narrow band interference mitigation
in a multi-carrier communication system. Orthogonal frequency division multi-
plexing (OFDM) has been the modulation of choice in modern wireless/wireline
communication standards [1]. The popularity of OFDM based communication
systems is due to their robustness against multipath fading, high data rates and
single tap equalization. To benefit from these characteristics, a multi-user ver-
sion of OFDM, i.e., orthogonal frequency division multiple access (OFDMA), has
been extensively used for uplink communications. However, the transmission sig-
nal in OFDMA is the sum of orthogonal sinusoids (with random amplitudes and

phases), causing high peak-to-average power ratio (PAPR). The conflicting inter-
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est between linearity and power efficiency of the power amplifier renders the high
PAPR an intolerable characteristic. The consequences of high PAPR are more
pronounced in the uplink as inefficient operation of the power amplifier limits the
battery life of the mobile terminal. Thus, peak reduction has received consid-
erable research interest and multiple (transmitter/receiver based) schemes have
been proposed [4,5,17,54]. The high PAPR problem has also motivated the devel-
opment of a modified OFDMA system, namely Fourier pre-coded OFDMA. The
Fourier pre-coded OFDMA (more commonly known as single carrier - frequency
division multiple access (SC-FDMA)) retains the positives of the OFDMA, while
eliminating the problem of high PAPR. Due to these characteristics, SC-FDMA
has been adopted as the uplink multiple access scheme in 3GPP long term evolu-
tion (LTE) [55].

The wideband nature of SC-FDMA makes it highly susceptible to narrow band
interference (NBI). The NBI sources include other devices operating in the same
spectrum (e.g., cordless phones, garage openers etc.) and other communication
systems operating in a cognitive manner. Here it is worth mentioning that though
OFDMA is equally susceptible to these NBI sources, there is a fundamental dif-
ference in the way NBI affects the data in SC-FDMA and OFDMA. To this end,
consider a single NBI source (aligned with the grid of the system under consid-
eration) that affects only one sub-carrier in OFDMA | perturbs all data points in
SC-FDMA system. This makes NBI mitigation in SC-FDMA vital for reliable

performance of the communication system. At high signal-to-interference ratio
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(SIR), coding can be relied on to mitigate the errors introduced by the NBI.
However, at low SIR levels, the interference begins to overwhelm the code and
necessitates a receiver that is able to intelligently deal with it.

Intensive studies have been carried to circumvent the impact of NBI in multi-
carrier systems and numerous strategies are devised. The NBI mitigation schemes
available in the literature commonly adopt one of the following three methodolo-
gies: spreading [12,56], avoidance [57-59], and subtraction [60-63]. Avoidance
relies on spectrum sculpting or shaping, through filtering or subcarrier nulling.
Spreading offers inherent robustness against NBI and hence OFDM combined
with Walsh sequence is termed interference suppressing OFDM (IS-OFDM) [56],
and other spreading codes such as carrier interferometry spreading are also ex-
plored [12]. Subtraction either involves an iterative procedure for successive in-
terference cancellation [60,61] or NBI estimation followed by mitigation [62,63].
Beyond this tertiary classification, more recently weighted-type fractional Fourier
transform (WFRFT) pre-coding is studied in the context of NBI mitigation [64].
However, among the aforementioned NBI removal strategies only [62,63] exploit
the a priori information about the sparsity of the unknown signal. Gomma and
Al-Dahir [62], opted for ¢;-optimization based recovery of the unknown signal,
which is prohibitively complex for real time implementation. Though Sohail et
al. [63], proposed a low complexity solution for NBI recovery, their methodology
is tailer made for zero padded-OFDM (ZP-OFDM) and is unsuitable for cyclic

prefix based multi-carrier communication systems.
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In this work, we exploit the sparse nature of the NBI to recover it using a
low complexity Bayesian sparse reconstruction procedure. Specifically, we uti-
lize the support agnostic Bayesian matching pursuit (SABMP) algorithm for NBI
recovery [51]. The SABMP is agnostic to the distribution of active elements,
a characteristic that plays a vital role in NBI-impaired signal restoration. The
practical scenario of grid mismatch is considered and the spreading effect is more
realistically modelled by allowing all NBI sources to have independent grid offset.
It is noted that the spectral spillover caused by the grid mismatch destroys the
sparsity of the unknown signal. A well-accepted methodology to spectrally con-
tain the spread NBI is windowing [65]. However, in this work, we adopt a rather
unconventional sparsity restoration approach that utilizes Haar wavelet transfor-
mation. Further, to justify this choice, the Haar transform and windowing are
numerically compared for their ability to sparsify the NBI. Due to the devastat-
ing effect of the NBI in low SIR regime, we presume (throughout this work) that
sparing a small subset of data points for measurements is a reasonable choice.
However, to minimize the number of reserved tones (and hence to maximize the
spectral efficiency) a data-aided NBI mitigation technique is proposed. Using the
proposed data-aided technique, the receiver probabilistically assigns a confidence
level to each data point. A few data points (with highest confidence levels) are
then selected and used in conjunction with reserved tones to enhance the NBI
estimation accuracy. Finally, we extend the proposed reconstruction scheme for

base-stations (BS) employing multiple-receiving antennas (i.e., single-input multi-
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output (SIMO) systems). This extension is motivated by the observation that NBI
on each antenna will have the same support (due to the spatial proximity of an-
tenna elements) and possibly different magnitudes and phases (as the NBI signal
may experience different fades). Therefore, a collaborative attempt is made to-
wards finding the support of the NBI signal, resulting in a better estimate of the

support and hence the NBI signal.

4.2 Chapter Contributions

The main contributions of this chapter can be summarized as follows:

e A low complexity, sparsity aware, Bayesian NBI reconstruction methodology

is proposed.

e A realistic model for grid mismatch is used that allows all NBI sources to

have independent grid offsets.

e Haar wavelet transformation is utilized to sparsify the unknown spread NBI

signal.

e A data-aided approach for NBI recovery is presented to improve the spectral

efficiency of the proposed scheme.

e The proposed scheme is extended for SIMO systems by exploiting the joint

sparsity of NBI signals over all antenna elements.

93



4.3 SC-FDMA and NBI Model

Consider an N dimensional SC-FDMA system shared between U users. In such
a system, the uth user converts the incoming high rate bit stream into P = N/U
parallel streams. These low rate bit streams are then modulated using a Q-ary
QAM alphabet { Ay, Aj, -+, Ag_1}, resulting in a P dimensional data vector &’,,.
The data X', is Fourier pre-coded to lower the PAPR of the transmission signal.
Owing to the linearity of discrete Fourier transform (DFT), the pre-coding can be
achieved by a matrix vector product of Fp and X,. Here Fp is the Px P DFT

matrix whose (k,1)th element is given by

Fp =P ?exp (—jQWde) . kleol,---,P—1. (4.1)
The pre-coded data FpX, is now mapped to the sub-carriers designated for the
uth user. The sub-carrier/resource allocation can be done in a localized or dis-
tributed manner (see [55] for details). In this work, we only consider interleaved
SC-FDMA, a special case of distributed SC-FDMA in which sub-carriers allocated
to any user are spread over the entire signal band in equi-spaced fashion. The
motivation behind the use of interleaved allocation is the robustness of this setting

to frequency selective fading [55]. For interleaved assignment, the N x P resource
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allocation matrix R, is defined as

1, k=@m-1)+Ul, 0<I<P—1,
R ) = (4.2)

0, otherwise.

Further, for different users R,, are orthonormal, i.e.,
R/R; = (4.3)

The resource allocation is followed by the time domain conversion of the N di-
mensional signal R, FpX,. This conversion is accomplished by pre-multiplying
the signal of interest by the N x N inverse DFT (IDFT) matrix FY. After adding
the cyclic prefix, the time domain signal is fed to a finite impulse response channel
of length N., h, = [h,(0),h,(1), -, hy(N. — 1)]T. The channel tap coefficients
form a zero mean, complex Gaussian, independent and identically distributed
(i.i.d) collection. At the BS, after removing the cyclic prefixes, the received time

domain signal (in absence of NBI) can be written as
U-1
y=> HF\RFpX, +z, (4.4)
u=0

where H,, is the circulant channel matrix for the uth user and z is the additive
white Gaussian noise (AWGN) with z ~ CA(0, 02I). The circulant nature of H,

allows us to diagonalize it using the DFT matrix Fy and write H, = FY A, Fy,
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where A, is a diagonal matrix with channel frequency response on its diagonal.
In this work, the channel impulse response (CIR) knowledge is assumed at the re-
ceiver and hence H, and A, are readily available. The frequency domain received

data vector Y is now given by

U—-1
Y=Fyy=)> ARFpX,+Z, (4.5)

u=0

where A, = FyH,FY and Z = Fyz. Utilizing (4.3) and the diagonal nature of
A, the data vector X, can be estimated by projecting Y on FRRTA'. This

projection results in the following estimate

X,=X,+FIRIA'Z. (4.6)

Though (4.6) provides a good estimate of X, in NBI free regime, it is not
suitable for systems experiencing NBI. To contemplate this idea, let us develop

the model for an SC-FDMA system impaired by NBI.

4.3.1 The NBI impaired SC-FDMA

Let us consider the received signal impaired by the interference caused by a single
or multiple time-varying NBI sources. In practice, these sources may have a grid
offset with the SC-FDMA system, causing the energy of the NBI to spill over all
tones. A spreading matrix Hy, = FyA ;,FY is commonly used to model the grid

offset between the NBI signal and the system under consideration [62,63]. The
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diagonal matrix Ay, is defined as Ay, = diag(1, eXp(]M, - exp(y

2ra(N—1
ol #))’

N

where « is a random number uniformly distributed over the interval [—%, %] A
fundamental limitation of this model is its inability to assume independent grid
offsets for multiple NBI sources. To overcome this limitation, we define the fre-
quency domain NBI signal as

T =F,FH

con

7, (4.7)

where Z is an L dimensional NBI vector (L is the number of active NBI sources).

Further, F,, is the L x N continuous DFT matrix, with (f;, £)th entry

1€0,1,--,L—1,
27Tfll{3> : (48)

FCO”:(fl’k) = N71/2 eXp (_] N

ke0,1,---,N—1.

As the normalized frequencies f;/N € [0, 1) are drawn independently, they emulate
independent grid offsets for different NBI sources. Recently, Tang et al. used
a similar modelling approach in an attempt to estimate continuous frequencies
and amplitudes of a mixture of complex sinusoids [66]. Here, it is important to
understand that channels between NBI sources and the BS are concealed within
Z;. In other words, we can say that Z; = Ayp;Z1, where Ayp; is a diagonal
L x L matrix containing the frequency domain channel gains and Z; represents

NBI sources. Hence, a simple addition of (4.7) in (4.5) will yield the NBI impaired
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SC-FDMA received signal. This received signal is given as

U—-1
Y=> ARFpX,+I+Z. (4.9)

u=0

Ignoring the presence of NBI and estimating X, along the lines of (4.6) will yield

X,=X,+FIRIANT + 2), (4.10)

which is not a reliable estimate of X, owing to Z. Further, note that Z perturbs
X, through an IDFT operation, hence, even in the more optimistic case (i.e.,
a single NBI source with no grid offset) all data points are corrupted. In low
SIR scenarios, the interference might be strong enough to take a majority of
data symbols out of their correct decision regions, resulting in an intolerably high
BER. Thus, our task is the estimation/mitigation of Z, which we pursue using a

Bayesian sparse recovery procedure.

4.4 Bayesian Sparse Recovery of the NBI

To motivate the Bayesian sparse NBI recovery, we start with the case of no grid
offset, i.e., when f; € 0,1,--- , N — 1, and later extend it to the general case of
f1 €10, N). In the simplistic case of no offset, the unknown N dimensional vector
T is L sparse, i.e., it has only L active elements. As time-frequency basis are
maximally incoherent, the impact of the sparse NBI is felt on each data point. It

is for this reason that only a small number of randomly observed measurements
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(i.e., data points) will be enough to reconstruct Z using CS. With this in mind,
we keep a randomly chosen subset of vector X', data free and index this subset
using 7. Now a |7 | x P binary selection matrix Sy can be used to obtain the
projection of X, (in (4.10)) onto the subspace spanned by the reserved points, as

given below

ST X, =S X, + S7FRRIA (T + 2),
—— N e’ e
X;,T ‘IJU,T Il

— X, =V,,T, (4.11)

where S+ X, = 0. At this stage, we drop the subscript u for notational con-
venience and simply write X7 = W7Z' (the subscript u will reappear when
required). To recover Z, the aforementioned under-determined system of equa-
tions can be solved using any compressed sensing (CS) reconstruction algorithm
(e.g., [24,25,28-30]). One such scheme is the SABMP algorithm by Masood and
Al-Naffouri, which has been shown to outperform many existing algorithms, both
for reconstruction accuracy and computational complexity (see [51] for details).
However, the main motivation of employing SABMP in this work is its agnos-
tic nature towards the distribution of active taps. This agnosticism is in sharp
contrast with all contemporary Bayesian schemes that assume a known prior (see
e.g., [26,67]). Further, this characteristic is vital for NBI recovery as i) we may
not know the distribution of Z and ii) even if we did know the distribution, it

might be difficult to estimate its parameters (i.e., moments). Towards this end,
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let us recall that Z; represents the joint channel-NBI source i.e., Z; = AygiZy.
Here, an appropriate treatment would be to assume circularly symmetric com-
plex Gaussian prior for both Z; and Ayp;. This implies that the entries of Z,
are formed by the product of two independent complex normal random variables.
O’Donoughue and Moura coined the term compler Double Gaussian for such a
distribution [68]. Hence, in this case, though the distribution is known, its param-
eter estimation is relatively difficult. Further, if non-Gaussianity is assumed on
the NBI-BS channel model, it may yield more complex statistical behaviour for
Z ;. As we are interested in recovering Z, we note that for no grid offset, the active
elements of Z will assume the distribution of Z;. However, grid offset will make
the statistical characterization of Z even more challenging. For these reasons, a
suitable reconstruction scheme would be able to work regardless of the distribution
of unknown signal and whether this distribution is known or not. As the SABMP
algorithm possesses these qualities and incurs low computational complexity, we
employ SABMP as a sparse reconstruction scheme for NBI mitigation.

Another important observation is that (in (4.11)) 2 is considered to be a part
of the unknown Z’, and the NBI reconstruction problem is casted as a noiseless
case. In other words, in recovering Z' we are actually estimating the NBI plus
noise. This interpretation has important implications, as the sensing matrix ¥
contains the inverse channel A, ' (or simply A™'). Before commenting further on
the A™! contained sensing matrix, let us highlight the impact of weak channels on

the bit error rate (BER) of an SC-FDMA system. The noise corresponding to a
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spectral null (i.e., a weak channel) is greatly enhanced upon zero-forcing equaliza-
tion. As the enhanced noise impacts the data points through an IDFT operation,
a single spectral null can considerably increase the BER. To address this issue,
turbo equalizers and feedback decision equalizers are explored as replacements for
the simple frequency domain linear equalization [69, 70]. Solving the system of
equations in (4.11) (i.e., the joint NBI plus noise recovery) offers an alternative
solution to the noise enhancement problem. To comprehend this assertion, note
that due to the presence of Z, the unknown signal Z’ is not truly sparse, but
rather compressible. Hence, though none of the entries is exactly zero, only a few
elements (corresponding to the active locations of Z) constitute almost all of the
signal energy. Further, the presence of A~! enhances the ¥ columns correspond-
ing to the weak channels. As the measurement vector X7 is a linear combination
of the columns of W, the stronger columns have a significant contribution in X7-.
In other words, the entries of Z' corresponding to the weak channels are seen much
more prominently in X’ , and hence have a high probability of recovery. Due to
the sparsity of Z and dense nature of Z, it is likely that some noise-only entries
correspond to the weak channels and are recovered while solving (4.11). Recall
that it is the noise at exactly these weak channels that inflates the BER. Now,
that this noise is recovered and taken out (while compensating for Z'), the noise
enhancement problem is resolved to a great extent.

Having formulated the NBI recovery procedure for the optimistic case of per-

fect grid alignment, we now turn our attention to the case when there exists a
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mismatch between the grids of NBI sources and the SC-FDMA system. A fun-
damental requirement of sub-Nyquist sampling based reconstruction (as pursued
in this work) is the sparsity of the unknown signal. Though there are only a few
active NBI sources, the non-orthogonality of these sources to the SC-FDMA grid
destroys the frequency domain sparsity of the unknown signal (see Fig. 4.1). To
overcome this practical hindrance towards sparse NBI reconstruction, the subse-

quent discussion focuses on sparsity restoration techniques.
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Figure 4.1: NBI spreading as a result of grid mismatch between NBI sources and
the SC-FDMA system.

4.4.1 Sparsifying 7'

A well-known approach to spectrally contain an NBI signal experiencing energy

spill-over (due to the grid mismatch) is windowing [62]. A windowing matrix
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function H,;,, = F NAwF]'f, applied to the received signal sparsifies the unknown
vector Z'. Here A, =diag(w(0),w(1), -+ ,w(N —1)), and w(n) is the nth sample
of the window function. It is a common practice to window the received time
domain signal before taking the DFT. However, as the sole purpose of introducing
windowing is enhancing the sparsity of Z', we can postpone its inclusion till NBI
reconstruction. To incorporate the windowing matrix function at NBI recovery

stage we can re-write (4.11) as

X, =9 H, H,,T, (4.12)

win

-1
win’

where we assume the non-singularity of H,,;,. Now, if we sense through ¥+H
we will be reconstructing H,,;,Z’, which is much more sparse compared to Z'. As
the formulation (4.12) requires only the non-singularity of H,,, we are motivated
to look for other possibilities towards sparsifying Z'. Speaking in terms of time and
frequency domain, as the signal Z' is no longer sparse in either, we seek another
domain that has a sparse representation of Z'. Any transformation possessing
the three properties namely, i) linearity, ii) invertibility and iii) good sparsifying
ability will serve the purpose. While choosing a sparsifying transform for NBI
reconstruction, though property i) and ii) will be promptly evident, property iii)
needs some consideration. To this end, note that though truly sparse signals are
comparable by the number of active elements, compressible signals are not, as

|IZ'|le, = N. As practical signals are seldom sparse, other sparsity measures e.g.,
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Gini index (GI) [71] and numerical sparsity [72] have been put forth to compare
compressible signals. In this work, we use GI (a normalized measure of sparsity) to
compare sparsifying transforms. Given a vector Z' = [Z'(0),Z'(1),--- ,Z'(N —1)],

with its elements re-ordered, such that |Z'(0)| < |Z'(1)| <,--- , < |Z'(N —1)|, then

N—1 | 1
I@ﬂ(N—k—-

GIT)=1-2%" £ 2, 413

B2 g, )

where || -||,, represents the 1 norm. An important advantage of GI over the

conventional norm measures is that it is normalized, and assumes values between
0 and 1 for any vector. Further, it is 0 for the least sparse signal with all the
coefficients having an equal amount of energy and 1 for the most sparse signal
which has all the energy concentrated in just one coefficient (for details see [71]).
Numerical findings based on GI suggest that Haar wavelet transform [73] possesses
the three desired characteristics. As the discussion of all the tested transforms
will take us too far afield, we will confine our attention to the sparsifying ability of
the Haar transform in comparison with windowing. The unitary Haar transform

Hj,..r can be applied to Z' in a manner identical to (4.12), i.e.,

L=WrHY Hp T (4.14)

where H?  =H !

haar haar*
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4.4.2 Simulation Results

A 512 sub-carrier SC-FDMA system is simulated, with 2 active users accessing the
frequency resources in interleaved manner. The channel delay spread is quarter
the symbol duration i.e., N. = N/4 and 16-QAM modulation is utilized with SIR
being —10dB. As the robustness of the SABMP reconstruction in the absence of
statistical information has already been demonstrated in [51], we obtain Z;, from
complex normal distribution without loss of generality. Two experiments are con-
ducted in order to demonstrate the ability of the proposed reconstruction scheme
to successfully recover the NBI. In first experiment no grid offset is assumed,

whereas, the second experiment assumes the realistic grid mismatch case.

Experiment 1: Reconstruction with no Grid Offset

In this experiment, the number of active NBI sources vary from symbol to symbol
with a maximum of 4 active NBI sources per symbol. The locations of the active
NBI sources also vary, however, all NBI sources are restricted to fall on grid.
Fig. 4.2 presents the BER results as a function of energy per bit (E,/Ny) with
64 reserved tones per user (this makes the subsampling rate % = % = %) The
results depict the ability of the proposed scheme to recover not only the NBI but
also the noise on weak channels, resulting in a BER that is much lower than the no
NBI case. Fig. 4.3 depicts the BER performance as a function of reserved tones

with Fj/Ny fixed at 20dB. These results show the sensitivity of the proposed

reconstruction scheme towards the number of reserved carriers and depict that
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acceptable BER performance cannot be achieved by choosing an arbitrarily small

number of reserved tones.

107" ¢ E
1072 ¢ E

o i ]
= I ]
M 1073 - |
1074 ¢ E

E —— No NBI E

| | = NBI |

1072 | | ——SABMP Recovery .
5 10 15 20 25

Ey /Ny (dB)

Figure 4.2: BER performance as a function of E,/Ny (|T| = 64).

4.4.3 Experiment 2: Sparsifying usnig haar transform and
reconstruction accuracy

In this experiement, first we compare the Haar transform and windowing (Ham-
ming [62]) for their sparsifying ability. The average GI (as a function of active
NBI sources) of Z', Hy;, Z' and Hyeo, L' over 1000 runs is shown in Fig. 4.4.
From the results it is clear that for small number of active sources (i.e., < 4)
the Haar transform has better sparsifying ability than windowing. As we expect

the number of active NBI sources to be small, we conclude that Haar transform
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Figure 4.3: SABMP reconstruction results with no grid offset (£,/Ny = 20dB).

is a better choice towards sparsity restoration in the context of NBI recovery.
Further, the BER performance of proposed reconstruction scheme for the cases
of no sparsity restoration, windowing and Haar transform is shown in Fig. 4.5.
These results also support the conclusion that Haar transform possesses better
sparsifying characteristics. Fig. 4.6 shows the BER performance as a function of
reserved tones. It is evident from the results that the advantage of using the Haar

transform becomes significant as the number of measurements is increased.
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4.5 Augmented NBI Recovery and the concept

of Reliability

Reserved tones reduce the number of available data-carriers, hence, we attempt
to improve the system spectral efficiency by minimizing the number of data free
tones. First, we note that due to low SIR, a majority of data points in received
NBI impaired signal are out of their correct decision regions (as demonstrated by

the high BER of the NBI curves in Fig. 4.2,4.3,4.5,4.6). However, after subtracting
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the NBI estimate from (4.10), we have

X, =X, +FRIAN (T -T) = x, + D, (4.15)
——

T

where D, = FERTA,, 122'/, and is henceforth called the residual perturbation. At
this stage, it is reasonable to assume that the residual perturbation is not strong
and a majority of data points are in their correct decision regions. Now we look
for a subset of the data points that have not crossed their corresponding decision
regions (with a high probability) and call them reliable carriers. Note that, the
severe impact of the NBI disallows the use of data-aided NBI recovery from the
outset (to completely eliminate the requirement of reserved tones). Nonetheless,
reliable carriers can still be used in conjunction with reserved tones to signifi-
cantly improve the system spectral efficiency and minimize the hit taken on the
data rate. Further, we must highlight that the concept of using reliable data car-
riers is not new, (see e.g., [74,75]). However, the Fuclidean distance reliability
criteria employed in [74,75] is simplistic and relies solely on the relative distance
of the received constellation point from its neighbours to determine the confidence
level. In comparison, the reliability metric used in this work utilizes additional
information about perturbations and is rigorous towards analyzing the reliability
of the data points.

There are two fundamental questions associated with the use of data-aided
approach: i) How to find a subset of data carriers that is reliable and ii) How
to use this data set in conjunction with the reserved tones to improve the recon-
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struction accuracy. We start by addressing the second question and later present
a systematic procedure to select a subset of data points that is reliable.

Let us assume that a set of |R| reliable carriers indexed by R is available,
where R UT = (. Now proceed by projecting (4.10) onto a binary selection

matrix S and obtain

SrX . = SrX. + SRFRRIA (T + 2),

— SrX, — SrX., = SRFARTA N (T + 2). (4.16)
A \,/ ~~ JW_/
X% Wy T

The aforementioned equation has the same form as (4.11), where the unknown Z’
is identical to (4.11) and the sensing matrix Wx is similar to the sensing matrix
Wr. Hence given the measurements X7, are available, we can use the set of
equation (4.16) in conjunction with (4.11) to find a better estimate of Z'. A

simple concatination of the the systems (4.11) and (4.16) yields

Xl U,
= T, — X = VT (4.17)
r Yz
—— =
X’ v

In comparison with (4.11) (which had |7 equations), the aforementioned system
has |T|+ |R| equations, and hence the solution of (4.17) is expected to provide
better NBI estimate. However, to solve (4.17), we require the set of measurements

X/, = SpX, — SgX,. The term SgX, is available, and to obtain SgX,, we
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proceed by projecting (4.15) on Sk and get
SrX, = SrX, + SgD,. (4.18)

As the set R indexes the reliable carriers, the equality LSRQA( w] = SrX, holds in
(4.18), where |- ] represents a maximum likelihood (ML) decision. Hence, now we
have both components required for the evaluation of X, and hence (4.17) can be
solved for Z'.

The formulation (4.17) assumes that the index set R is available. To obtain this
index set note that, in (4.15), we expect the following: for some sub-carriers, the
perturbation D(i) is strong enough to take X'(i) out of its correct decision region

—

ie., |X(i)] # X (i), while for others with a milder perturbation, we expect to have

—_

| X (7)] = X(7) (the subscript u is dropped for notational convenience). The subset
of data carries which satisfy L)?(?)j = X(1) are the reliable carriers and fortunately
constitute a major part of all data sub-carriers (after initial NBI compensation).
To select this subset, we note that the major source of perturbation is the residual

NBI distortion, especially for high signal-to-noise ratio (SNR). Hence, we can write

the reliability function of the ith sub-carrier in terms of D(7) as

p(D(i) = X(i) — |

I]c\/iz),lA(k)yéLf(i)j p(D(i) = X(i) — A(k))

i(i)J) (4.19)

Y

R(i) =

where p(-) represents the pdf of D, which is assumed to be zero mean Gaussian

with variance o2, (see [50] for details)!. In (4.19), the numerator is the proba-
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bility that D(i) does not take X'(i) beyond its correct decision region and the
denominator sums the probabilities of all possible incorrect decisions that D(7)
can cause. After obtaining the reliability 9R(i) for each carrier i, we pick the |R]
sub-carriers with highest reliability values and index them using R. This index
set is used in the previously discussed manner to reconstruct the unknown clip-
ping vector. Further, it is observed that the set R constructed using the reliability
metric (4.19) indexes non-uniformly placed tones and hence is fitting for CS based
sparse recovery. In addition, it must be highlighted that the advantage of spec-
tral efficiency expected by the use of data-aided approach comes at the expense
of increased computational complexity. As the data-aided reconstruction is a two
stage process, its complexity is roughly twice the computational complexity of the
one stage (reserved tones only) reconstruction.

The selection of | 7| and |R] is also critical for NBI mitigation and needs some
consideration. From sparse signal reconstruction point of view, it is desirable
to increase the measurements, however, other limitations render it infeasible to
choose an arbitrarily large |7| and |R|. The choice of |T| is mainly dictated
by the desired data rate and the number of NBI sources that the system may
experience. The selection of |R| is dependent on the conflicting interests associated
with increasing or decreasing the number of utilized reliable tones. Note that,
though a larger |R| promises improved estimation accuracy but at the same time
the risk of feeding erroneous information to the reconstruction algorithm is also

increased. In this regard, the study in [50] bounds the number of maximum reliable
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carriers that can be used without risking incorrect measurements. Further, in the
current framework, a sensible criteria towards selecting the cardinality of R is to
choose |R| o< |T|. This heuristic is based on the observation that an increased
number of reserved tones will reduce the residual NBI and hence the proportion

of reliable carriers also increases.

4.5.1 Simulation Results

Experiments are conducted to check the effectiveness of the proposed data-aided
reconstruction scheme. The general simulation setup (i.e., sub-carriers, users,
channel length, SIR, QAM order etc) is kept consistent with the previously ex-
plained setting (changes whenever made are highlighted in the description of ex-

periments).

Experiment 1: data-aided CS for Spectral Efficiency

We start by choosing |7] = 32 and use |R| = |T| = 32 for data-aided NBI

reconstruction. This way, though the subsampling rate is still (w = % =
1), the reserved tones rate (L = 22 = 1) is cut into half. It is evident from

Fig. 4.7 that the signal reconstruction accuracy considerably improves by using
reliable tones in conjunction with reserved tones. Further, the results of data-
aided reconstruction for the optimistic case of no grid offset are shown in Fig. 4.8.
The findings for the case of perfect grid alignment are inline with the observations

for the grid offset case and the advantage of using the reliable tones is evident.
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Figure 4.7: Reconstruction accuracy of the data-aided sparse recovery with grid
offset.

Experiment 2: Proportionality between |7| and |R|

This experiment is carried to demonstrate the relationship between the number
of reliable tones available and the reserved tones. In Fig. 4.9, it is shown that
the number of correct decisions made based on the utilized reliability criteria will
significantly improve, if we choose more reserved tones. The format |R|%/|T|%,
depicts the percentage of reliable carriers |R|% chosen, when the reserved tones
were |T|%. The results are obviously expected, as more reserved tones result in
better NBI reconstruction in the first stage and hence lower residual perturbation,

yielding more reliable carriers.
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Figure 4.9: Reliability of the data-aided scheme as a function of reserved tones.
The |R|%/|T|% format represents the ratio of the percentage of reliable carriers
picked |R|% to the percentage of reserved tones |7 |%.

116



4.6 Multiple Antenna Base-station

In this section, we consider the practical case of a BS equipped with multiple
receiving antennas i.e., a SIMO setup. In this scenario, each antenna will receive
the same transmitted signal impaired by NBI sources. While modelling NBI over
multiple antennas, though it will be too restrictive to assume the same signal over
all antennas, it is practical to expect the NBI signal to share a common support
(i.e., to consider the received NBI signals jointly sparse). Further, the values
of the active elements are considered to be varying across antennas. The com-
mon support property stems from the fact that the antenna elements are in close
proximity and hence a distant NBI source will experience the same propagation
delay (also true for multipaths). However, as the NBI sources may experience
different fades to each antenna element, the values of the received signal will be
different (i.e., both the phase and magnitude). Given an NBI impaired signal
on each antenna element and the a priori information about the joint sparsity
of the unknown, we propose to reconstruct it using the multiple measurement
vector (MMV) based SABMP (i.e., MMV-SABMP) [76]. The main idea behind
MMV-SABMP is to reconstruct the support of the unknown signal collabora-
tively, based on all measurement vectors and later reconstruct the amplitudes of

the active elements individually.
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4.6.1 Simulation Results

The performance of MMV based jointly sparse NBI reconstruction is compared
against single measurement vector (SMV) based reconstruction. The number of
receiver antennas is assumed to be 2 and received signals are combined using

maximal ratio combining (MRC).

Experiment 1: SMV vs MMV reconstruction for jointly sparse NBI

In this experiment, the number of reserved tones is kept fixed at |T| = 32 and
the BER performance of MMV and SMV reconstruction is compared for varying
Ey/Ny. The results are presented in Fig. 4.10, and demonstrate the ability of the

MMYV reconstruction to improve the BER performance for a wide range of E;,/Ny.

4.7 Chapter Conclusion

The problem of NBI reconstruction is addressed in this chapter. The proposed
NBI cancellation scheme exploits the frequency domain sparsity of the unknown
signal and adopts a low complexity Bayesian sparse recovery procedure. At the
transmitter a few non-uniformly placed sub-carriers are kept data free to sense
the NBI signal at the receiver. Further, it is noted that in practice, the sparsity
of the NBI signal is destroyed by a grid mismatch between NBI sources and the
system under consideration. Towards this end, first an accurate grid mismatch

model is presented that is capable of assuming independent offsets for multiple
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Figure 4.10: Reconstruction accuracy of the MMV scheme (|7 = 32).

NBI sources. Secondly, prior to NBI reconstruction, the sparsity of the unknown
signal is restored by employing a sparsifying transform. To improve the spectral
efficiency of the proposed scheme, a data-aided NBI recovery procedure is outlined.
This data-aided scheme relies on adaptively selecting a subset of data carriers and
using them as additional measurements to enhance the NBI estimation. Numerical
results are presented that depict the suitability of the proposed scheme for NBI

mitigation.
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CHAPTER 5

CONCLUSION AND FUTURE

WORK

5.1 Concluding Remarks

In this thesis, fundamental problems with physical layer of multicarrier commu-
nications based on OFDM systems are addressed. These include power amplifier
nonlinearity, peak-to-average power ratio reduction, channel estimation and the
narrow band interference cancellation.

We started by presenting a power efficient OFDMA-CR system. Power ef-
ficiency is achieved by applying the proposed joint-compensation technique to
an amplifier operating beyond saturation. Such an operation caused over-drive
distortions which required to be estimated at the receiver. Hence sparse signal re-
construction scheme was employed at the receiver for distortion estimation. It was

shown by numerical results for the entire communication system including channel
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effects, that proposed formulation leads to improved EVM and BER performance.
Further, the proposed technique was successfully applied in SIMO configuration.
The results illustrate that, compared to the SISO case, additional performance
enhancement can be obtained when multiple antennas are used at the receiver
with MRC.

Next, we presented the problem of PAPR reduction. To this end, a low com-
plexity Bayesian clipping recovery scheme was presented. The proposed WPA-
SABMP scheme utilizes the undistorted phase property and weighting for en-
hanced clipping recovery. The proposed approach is agnostic to the non-Gaussian
distribution of the clipping signal and so outperforms other traditional Bayesian
approaches and ¢; sparse recovery schemes. The WPA-SABMP scheme also uti-
lizes the available statistics for enhanced recovery, however, when these statistics
were unavailable the proposed scheme bootstrapped itself and successfully esti-
mated the clipping distortions. Simulation results showed significant performance
enhancement for WPA-SABMP scheme in both the error rate and complexity. The
proposed scheme was then extended for the SIMO-OFDM systems and numerical
findings were presented. In addition, a multi-user clipping recovery scheme was
proposed and channel estimation strategies were presented for clipped OFDM
signal. The simulation results for OFDMA clipping mitigation and data aided
channel estimation also showed favourable results.

Finally we addressed the narrowband interference problem and a novel narrow

band interference (NBI) mitigation scheme was proposed for SC-FDMA systems.
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The proposed NBI cancellation scheme exploits the frequency domain sparsity of
the unknown signal and adopts a low complexity Bayesian sparse recovery proce-
dure. At the transmitter a few non-uniformly placed sub-carriers are kept data
free to sense the NBI signal at the receiver. Further, it is noted that in prac-
tice, the sparsity of the NBI signal is destroyed by a grid mismatch between NBI
sources and the system under consideration. Towards this end, first an accurate
grid mismatch model is presented that is capable of assuming independent off-
sets for multiple NBI sources. Secondly, prior to NBI reconstruction, the sparsity
of the unknown signal is restored by employing a sparsifying transform. To im-
prove the spectral efficiency of the proposed scheme, a data-aided NBI recovery
procedure is outlined. This data-aided scheme relies on adaptively selecting a
subset of data carriers and using them as additional measurements to enhance
the NBI estimation. Numerical results are presented that depict the suitability of

the proposed scheme for NBI mitigation.

5.2 Future Work

The work we have presented in this thesis represents nodes with many potential
branches. Here, we try to highlight some of the most important branches.

1. Amplifier Linearization: The proposed linearization approach doesn’t
use any information about the characteristics of the power amplifier and assumes
any linearized power amplifier will behave as a limiter. An alternative approach

might be to remove the DPD from the transmitter and utilize the power spectral
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density of the power amplifier output for its linearization at the receiver.

2. PAPR Reduction: Bayesian recovery produces the estimate of the clip-
ping signal in one go, appreciates the sparsity and incorporates the a prior: infor-
mation about the structure of the problem. On the contrary, a class of clipping
recovery schemes, rely on iterative decoding and clipping of the received signal
to mitigate the distortions (e.g., iterative maximum likelihood (ItML)). However,
these schemes do not acknowledge the sparsity of the unknown or the available
phase information. It appears that iterative thresholding based sparse recon-
struction lies at the verge of the aforementioned techniques and can combine the
advantage of iterative reconstruction while exploiting the available information.

3. Narrow Band Interference: Though there is numerical evidence to-
wards the sparsifying ability of Haar transform in comparison with windowing.
This brings up an important question about the availability /design of sparifying
transforms. Keeping the sparsity of unknown signal as the cost function and look-
ing for a transform that minimizes this lost function will not only help deepen the
understanding of the characteristics that make Haar transform a suitable choice,

but also lead to better linear sparsifying transforms.
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