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Abstract

Title: Sparse Channel Estimation based on Compressed Sensing Theory for UWB
Systems.
Author: Eva Lagunas Targarona
Department: Signal Theory and Communications
Supervisor: Prof. Montserrat Nájar Martón

Abstract:
In recent years, the wireless revolution has become a reality. Wireless is everywhere

having significant impact on our lifestyle. However, wireless will never have the same
propagation conditions as wires due to the harsh conditions of the wireless propagation.
The mobile radio channel is characterized by multipath reception, that is the signal
offered to the receiver contains not only a direct line-of-sight radio wave, but also a
large number of reflected radio waves. These reflected waves interfere with the direct
wave, which causes significant degradation of the performance of the link. A wireless
system has to be designed in such way that the adverse effect of multipath fading is
minimized. Fortunately, multipath can be seen as a blessing depending on the amount
of Channel State Information (CSI) available to the system. However, in practise CSI
is seldom available a priori and needs to be estimated.

On the other hand, a wireless channel can often be modeled as a sparse channel
in which the delay spread could be very large, but the number of significant paths is
normally very small. The prior knowledge of the channel sparseness can be effectively
use to improve the channel estimation using the novel Compressed Sensing (CS) theory.

CS originates from the idea that is not necessary to invest a lot of power into
observing the entries of a sparse signal because most of them will be zero. Therefore,
CS provides a robust framework for reducing the number of measurement required to
summarize sparse signals.

The sparse channel estimation here is focused on Ultra-WideBand (UWB) systems
because the very fine time resolution of the UWB signal results in a very large num-
ber of resolvable multipath components. Consequently, UWB significantly mitigates
multipath distortion and provides path diversity. The rich multipath coupled with the
fine time resolution of the UWB signals create a challenging sparse channel estimation
problem.

This Master Thesis examines the use of CS in the estimation of highly sparse chan-
nel by means of a new sparse channel estimation approach based on the frequency
domain model of the UWB signal. It is also proposed a new greedy algorithm named
extended Orthogonal Matching Pursuit (eOMP) based on the same principles than
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classical Orthogonal Matching Pursuit (OMP) in order to improve some OMP char-
acteristics. Simulation results show that the new eOMP provides lower false path
detection probability compared with classical OMP, which also leads to a better TOA
estimation without significant degradation of the channel estimation. Simulation re-
sults will also show that the new frequency domain sparse channel model outperforms
other models presented in the literature.

Keywords: Channel estimation, Ultra-WideBand, Compressed Sensing, Orthogo-
nal Matching Pursuit.
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Notation

Boldface upper-case letters denote matrices and boldface lower-case letters denote col-
umn vectors.

R,C The set of real and complex numbers, respectively.

Rn×m,Cn×m The set of n×m matrices with real- and complex-valued entries, respectively.

A∗ Complex conjugate of the matrix A.

AT Transpose of the matrix A.

AH Complex conjugate and transpose (hermitian) of the matrix A.

arg Argument.

max,min Maximum and minimum.

|a| Modulus of the complex scalar a.

‖a‖ Euclidean norm of the vector a: ‖a‖ =
√

aHa.

‖a‖p p-norm of the vector a ∈ Cn×1: ‖a‖p = (
∑n

i=1 |ai|
p)

1/p
.

π Pi π = 3.1416.

j Imaginary unit j =
√
−1.

δ(t) Dirac delta function.
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Acronyms

ADC Anaolog-to-Digital Converter

AIC Analog-to-Information Converter

AWGN Additive White Gaussian Noise

BP Basis Pursuit

ECC Electronic Communications Committee

CS Compressed Sensing

CSI Channel State Information

DSP Digital Signal Processing

eOMP Extended Orthogonal Matching Pursuit

FCC Federal Communications Commission

FFT Fast Fourier Transform

IEEE Institute of Electronical and Electrics Engineers

IFFT Inverse Fast Fourier Transform

i.i.d. Independent and Identically Distributed

JPEG Joint Photographic Experts Group

LOS Line of Sight

LP Linear Program

LS Least Squares

ML Maximum Likelihood

MP Matching Pursuit

MPC MultiPath Components

MRC Maximal Ratio Combining
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OMP Orthogonal Matching Pursuit

RIP Restricted Isometry Property

RMSE Root Mean Squared Error

SNR Signal to Noise Ratio

UWB Ultra WideBand

vs versus

WPAN Wireless Personal Area Network
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1
Motivation, Objectives and Structure

1.1 Motivation

Wireless communications systems have advanced significantly in the past years and
played an extremely important role in our society. The demand for communications
among people is increasing exponentially, requiring more connectivity, more services,
and higher quality.

Wireless communication is the transfer of information without the use of wires,
allowing the user the freedom to be mobile. Apart from user satisfaction, there is a
very legitimate justification of wireless connectivity from the service providers point of
view. There are many areas in the world that are still inaccessible to land line systems
due to their remoteness or because of intervening inhospitable terrain. In addition, the
economic point of view has also helped in the success of wireless communications. At
the beginning, the mobile devices get a little market penetration due to the high cost
and the technological challenges involved. But in the last thirty years, cellular tele-
phony alone has been growing at rates similar to that of television and the automobile.
Having this in mind, it is easy to guess that wireless communications holds enough
promise to be the technology that drives our lifestyle and indeed our culture into the
next millenium. However, skeptics will point out that wireless will never deliver the
same maximum bandwidth as wires, cables or fiber-optics due to the harsh conditions
of the wireless propagation. Every wireless system has to combat transmission and
propagation effects that are substantially more hostile than for a wired system.

Reflection, diffraction and scattering from surrounding objects are typical effects
suffered by signals while propagate through a wireless channel. Because of this effects,
the transmitted signal arrives at the receiver as a supperposition of multiple attenuated
and delayed copies of the original signal. This multipath leads to fading, which is one
of the most important factors when designing receivers. However, multipath can be
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1.2 Objectives Motivation, Objectives and Structure

seen both as a curse or as a blessing from a communications point of view depending
on the amount of Channel State Information (CSI) available to the system. If the
channel characteristics are known at the receiver, it can be effectively use to improve
the communications performance.

Channel estimation algorithms allow the receiver to approximate the impulse re-
sponse of the channel. This knowledge of the channel’s behavior is well-utilized in
modern radio communications. Adaptive channel equalizers utilize channel estimates
to overcome the effects of inter symbol interference. Diversity techniques (for e.g.
Rake receiver) utilize the channel estimate to implement a matched filter such that
the receiver is optimally matched to the received signal instead of the transmitted
one. Maximum likelihood detectors utilize channel estimates to minimize the error
probability.

From the physical layer point of view, the goal is to devise schemes and techniques
that increase the information rate and improve the robustness of a communication
system under the harsh conditions of the wireless environment.

On the other hand, Ultra WideBand (UWB) communications [3]-[4] has emerged
as a promising technology for wireless communications. Designed for low-power, short-
range, wireless personal area networks (WPANs), UWB is the leading technology for
freeing people from wires, enabling wireless connection of multiple devices for trans-
mission of video, audio and other high-bandwidth data. The transmision of ultrashort
pulses (on the order of nanoseconds) in UWB leads to several desirable characteristics
such as the rich multipath diversity introduced by the large number of propagation
paths existing in a UWB channel. The rich multipath coupled with the fine time
resolution of UWB create a challenging channel estimation problem. Fortunately, mul-
tipath wireless channels tend to exhibit impulse responses dominated by a relatively
small number of clusters of significant paths, especially when operating at large band-
widths [5]. Our intuition tells us that conventional channel estimation methods will
provide higher errors because they ignore the prior knowledge of the sparseness.

1.2 Objectives

In this research work, channel estimation in UWB systems is investigated. The main
objective of this thesis is to investigate the performance of channel estimation in UWB
systems based on the new Compressed Sensing theory [6]-[7] using a frequency domain
sparse model of the received signal. The resulting accurate channel state information
can be used in the receiver in order to increase the robustness. Due to the energy
dispersion, a robust receiver that is capable of collecting the rich multipath will mitigate
performance degradation.

It will be shown that the sparse channel estimation can be obatined from a set
of compressed samples obtained from an analog-to-information conversion (AIC) (an
alternative to conventional ADC) applying sparse signal reconstruction techniques.
There are many approaches discussed in literature for sparse signal recovery from linear
measurements. The study here is focused in Orthogonal Matching Pursuit (OMP) [8],
a fast and efficient greedy algorithm. However, imperfections between the assumed
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Motivation, Objectives and Structure 1.3 Structure of the Thesis

model and the received signal will cause false path detection. This false path detection
leads to a wrong TOA estimation. To improve the TOA estimation but preserving the
performance of the channel estimator it is proposed an extended OMP (eOMP).

The objective is to proof that the new sparse model can outperform other models
present in the literature and that the new eOMP algorithm is able to improve the TOA
estimation without degrading the sparse channel estimation obtained with classical
OMP.

1.3 Structure of the Thesis

The reminder of this thesis is organized as follows:
Chapter 2 introduces the Compressed Sensing theory following [6] and [7]. The

notation is briefly summarized and the most widely used sparse signal recovery algo-
rithms are explained. Then, a general Ultra WideBand (UWB) background, without
too many equations, is presented. Finally, a channel estimation introduction with some
references of the state of the art is given.

In Chapter 3 and Chapter 4 there are the major contribution of this thesis.
In Chapter 3 the new frequency domain sparse model of the UWB signal and the
extended OMP are presented with detail. Simulations are given in Chapter 4. Results
are discussed for different compression rates, comparing the classic OMP with the new
eOMP and comparing the new model with the previous ones present in the literature.

Finally, in Chapter 5 the conclusions are drawn and further work is proposed.
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2
Introduction

2.1 Compressed Sensing

Signal acquisition is a main topic in signal processing. Sampling theorems provide the
bridge between the continuous and the discrete-time worlds. The most famous theorem
is often attributed to Shannon [9] (but usually called Nyquist rate) and says that the
sampling rate must be twice the maximum frequency present in the signal in order to
perfectly recover the signal. In the field of data conversion, standard analog-to-digital
converter (ADC) technology implements the usual quantized Shannon representation:
the signal is uniformly sampled at or above the Nyquist rate.

However, as David L. Donoho said: The sampling theory is wrong; not literally
wrong but psychologically wrong. This Master Thesis surveys the theory of Compressive
Sampling, also known as Compressed Sensing (CS), a novel sampling paradigm that
goes further than Shannon’s theorem. The idea is to perfectly recover the signal using
far fewer samples of measurements than traditional methods. CS allows to compress
the data while is sampled. It originates from the idea that it is not necessary to invest
a lot of power into observing the entries of a sparse signal because most of them will be
zero. Considering a sparse signal, it should be possible to collect only a small number
of measurements that still allow for reconstruction.

As it is explained in [6] most of the data acquired by modern systems and technolo-
gies can be thrown away with almost no perceptual lost. This phenomenon raises very
natural questions: why to acquire all the data when most of that will be thrown away?
why don’t we try to just directly mesure the part that will not be thrown away?

CS methods provide a robust framework for reducing the number of measurement
required to summarize sparse signals. Is for that reason that CS is usefull in systems
where the analog-to-digital conversion is critical, for example UltraWideBand (UWB)
systems.
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2.1 Compressed Sensing Introduction

2.1.1 Review of Compressed Sensing

In the last years, thousands studies of sparse representation and compressive sensing
have been published, specially in the signal processing community. A tutorial overview
of some of the foundational developments in CS can be found in [7]-[10]. In order to
briefly review the main ideas of CS, consider the following real-valued, finite length,
discrete time signal x ∈ RM which can be expressed in an orthonormal basis Ψ =
[ψ1ψ2...ψM ] as follows:

x =
M∑

i=1

ψiθi (2.1)

where the vector θ = [θ1θ2...θM ] is a sparse vector, which means that is a vector with
very few non-zero components. Using matrix notation it may be respresented as

x = Ψθ (2.2)

where matrix Ψ has dimension M ×M . A vector with only K non-zero components
will be called from now on K-sparse vector in that particular basis.

2.1.2 Sparsity

Sparsity expresses the idea that the information rate of a continuous time signal may
be much smaller than suggested by its bandwidth, or that discrete-time signal depends
on a number of degrees of freedom which is comparably much smaller than its length
[7].

Many signals are sparse if they are expressed in a convenient basis. The implication
of sparsity is that one can discard the part of the coefficients without much perceptual
loss. Thus, it is not necessary to invest a lot of power into observing the entries of a
sparse signal in all coordinates when most of them are zero anyway. This principle is
applied for example in JPEG coders [11]. Such process requires not only the knowledge
of the M coefficients of θ but also the locations of the significant pieces of information.
Fortunately for us, these significant information tend to be clustered. As an example
of sparse-clustered model, it has been shown that many physical channels tends to be
distributed as clusters within respective channel spreads [12].

The sparsity is one of the constraints required for the reconstruction process.

• Sparsity : The signal x should be sparse in the basis Ψ. It means that x can be
represented using only a small number K << M of atoms from Ψ.

‖Ψx‖l0 ≤ K (2.3)

The theory extends to signals that are well approximated with a signal that is K -Sparse
in Ψ.
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Introduction 2.1 Compressed Sensing

2.1.3 Sensing and Incoherence definition

As it was said before, when applying CS theory to communications, the sampling rate
can be reduced to sub-Nyquist rate. Consider the classical linear measurement model
for the above signal,

y = Φx = ΦΨθ (2.4)

where ΦΨ form the effective measurement matrix for estimating the K-sparse vector
θ. Matrix Φ is called measurement matrix and it has rank N lesser than the rank of
the signal x which is equal to M. The N ×M matrix Φ is projecting the signal x.

Figure 2.1: Compressed Sensing: Mathematical Respresentation

The incoherence is defined as the maximum value amongst inner product of the
orthonormal basis and the orthonormal measurement matrix. A low value of incoher-
ence is desirable in order to ensure mutually independent matrices and therefore better
compressive sampling. The coherence can be measured as

µ(Φ,Ψ) = max
1≤k≤N

1≤j≤M

|〈φk, ψj〉| (2.5)

It follows from linear algebra that the maximal incoherence is obtained when µ = 1.
One example of maximal incoherence is when φk(t) = δ(t − k) and Ψ is the Fourier
basis, ψj(t) = ei2πjt/n. This example corresponds to the classical sampling scheme.

Finally, only remark that random matrices are largely incoherent with any fixed
matrix Ψ.

2.1.4 Sparse Signal Recovery

Restricted Isometry Property

The problem in CS consist of designing a convenient measurement matrix such that
salient information in any compressible signal is not damaged by the dimensionality
reduction and designing a reconstruction algorithm to recover θ from only N compressed
measurements. Remember that the sparse signal has N components and N << M .
Both problems are represented in Fig. 2.2.

25



2.1 Compressed Sensing Introduction

Figure 2.2: Sparse Signal Recovery

The most commonly used criterion for evaluating the quality of a CS measurement
matrix is the restricted isometry property (RIP) introduced in [10] by Candés, Romberg
and Tao (which they initially called the uniform uncertainty principle). This property
can be summarized as follows,

(1− δs) ‖θ‖2l2 ≤ ‖ΦΨθ‖2l2 ≤ (1 + δs) ‖θ‖2l2 (2.6)

for a particular positive constant δs. Here ‖·‖2l2 denotes the l2-norm of a vector. This
condition must be satisfied by Φ in order to successfuly recover the signal. Fortunately
again, RIP can be achieved with high probability by selecting Φ as a random matrix. It
was shown that Gaussian, Bernoulli and partial random Fourier matrices [13] possess
this important property.

If the RIP holds , then it is shown in [14] that the following linear program gives
an accurate reconstruction:

min
θ∗∈RM

‖θ∗‖l1 s.t. y = ΦΨθ∗ (2.7)

where ‖θ‖l1 =
∑M

i=1 |θi|.

Theorem 1. ([14]) Assume that θ is K-sparse and that we are given N Fourier co-
efficients with frequencies selected uniformly at random. Suppose that the number of
observations obeys,

N ≥ c ·K · logM/K (2.8)

Then minimizing l1 reconstructs θ exactly with overwhelming probability. In details, if
the constant c is of the form 22(δ + 1) in (2.8), then the probability of success exceeds
1−O(M−δ).

Signal Reconstruction Algorithms

The RIP provides the theoretical basis to not damage the compressed samples, but it
does not tell us how to recover the sparse vector.

Since N << M , there are infinitely many solutions θ∗ that satisfy: y = ΦΨθ.
This reconstruction problem is usually solved by using least norm procedures. The
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most common approach to solve it involves Euclidean norm (l2 norm) for which an
analytical solution exists and is given by,

θ∗ = (ΦΨ)H((ΦΨ)(ΦΨ)H)−1y (2.9)

In most cases least-norm solution with Euclidean norm gives very poor results: solution
is almost never sparse. The result is improved by using the sparse prior information.
If we know a priori that our original signal θ is sparse, then a natural choice would be
to find a vector with least non-zero entries. This is called l0 norm.

min
θ∗∈RM

‖θ∗‖l0 s.t. y = ΦΨθ∗ (2.10)

Note that ‖·‖l0 is not a norm by definition, but is known as quasi-norm. Unfortunately,
this problem requires an exhaustive search and, in general, it is not a feasible problem.
In general, the equality constraint can be relaxed (more details in [15]).

Surprisingly, Candes and Donoho have shown in their respective works in [16] and
[6] that from N ≥ cK log(M/K) i.i.d. Gaussian measurements it can be exactly
reconstruct K -sparse vectors and closely approximate compressible vectors with high
probability via l1 optimization.

min
θ∗∈RM

‖θ∗‖l1 s.t. y = ΦΨθ∗ (2.11)

The l1-minimization is a convex program and can be recast as a linear program (LP) [3]
and solved using any modern optimization technique [17]. When (2.11) is conveniently
reduced to a linear program it is known as Basis Pursuit (BP) [3]. Another practical
and tractable alternative proposed in the literature based on the convex relaxation
leading to l1-minimization is Matching Pursuit (MP), which use a sub-optimal greedy
sequential solver [18]-[19]. MP is the current most popular algorithm for computing
sparse signal reconstruction and is used in a variety of applications [20] [21].

MP begins with an empty representation (meaning a vector of zeros) and at each
iteration augments the current representation by selecting the atom from the dictionary
that maximally improves the representation. It is easy to implement and it ensures
with high probability a relatively sparse solution.

In the general problem, the compressed samples are inaccurate measurements. In
the literature there are a noise-aware variant which relaxes the data fidelity term. The
reconstruction program for these kind of problems is of the form,

min
θ∗∈RM

‖θ∗‖l1 s.t. ‖y− ΦΨθ∗‖l2 ≤ ε (2.12)

This problem has a unique solution, is again convex and could be solved applying
convex optimization techniques. In particular, Dantzig selector [22] and combinatorial
optimization programs [23] have provable results in the case of Gaussian variance-
bounded noise. Problem (2.12) is often called the LASSO (Least Absolute Shrinkage
and Selection Operator) [24].

Finally only mention an oversimplified situation where it is easy to see that l1 norm
fits better than l2 norm in our problem. The complete explanation can be found in
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Table 2.1: Signal recovery approaches

Norm Comments

l0-norm Find the sparsest solution. Not feasible.

l1-norm Correct, efficient mild oversampling.

l2-norm Solution is almost never sparse.

[25]. Fig. 2.3 depict the geometry of l1 and l2 balls. Let us assume our original signal
x∈ R2 has only one non-zero element, and we take only one measurement of that. In
part (b) and (c), H denotes the line on which all possible solutions lie. To visualize
how l1 reconstruction works, imagine that we start to inflate l1 ball from origin until
it touches the line H at some point, vector at that point will be the solution. We do
the same with the l2 norm in part (c). We can see how the solution achieved in part
(c) is the point on H closest to the origin, not even close to the sparse solution, which
is the one achieved in part (b) by the l1 norm. In Fig. 2.4 there is the same example
in 3 dimensions. However, an interesting observation made by Michael Elad is that in
many cases l1 norm successfully finds the sparsest representation.

Figure 2.3: Geometry of l1 minimization. (a) an l1 ball of radius r. (b) H represents a
hyperplane where all possible solutions to y = Φx, and l1 ball meets the hyperplane at some
vertex. (c) an l2 ball touching H at point closest to the origin

2.1.5 Analog-to-Information Conversion: Implementation Is-
sues

The power, stability, and low cost of digital signal processing (DSP) have pushed the
analog-to-digital converter (ADC) increasingly close to the front-end of many impor-
tant sensing, imaging, and communication systems. Unfortunately, many systems,
especially those operating in the radio frequency (RF) bands, severely stress current
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Figure 2.4: Geometry of l0, l1 and l2 minimization

ADC technologies. Fortunately, recent developments in the CS field suggests a new
framework for analog-to-information conversion (AIC) as an alternative to conventional
ADC.

CS seems clear with the matrix notation, but as in many others signal processing
techniques, the implementation in real systems involves certain difficulties. The imple-
mentacion and feasibility of these AIC systems is not the goal of this work. We kindly
recommended [26] and [27] reading for a deepest knowledge. In [26], the feasibility
of hardware implementation of a sub-Nyquist random-sampling based on analog to
information converter (RS-AIC), which utilizes the theory of information recovery of
wideband Locally Fourier Sparse (LFS) signals to reconstruct signals from far fewer
samples than required in Shannon theorem, is successfully demonstrated. In [27] a sys-
tem that uses modulation, filtering, and sampling to produce a low-rate set of digital
measurements inspired by the theory of compressive sensing is proposed.

2.1.6 Applications

Compressed sensing can be potentially used in all applications where the task is the
reconstruction of a signal or an image from a small set of linear measurements. Below
is a list of applications where CS is currently used.

• Data Compression

• Channel Coding

• Data Acquisition

• Analog-to-Information Conversion

• Electroenecephalography (EEG)

• Optical Coherence Tomography (OCT)

• Target Detection or Radar
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2.1.7 Summary

Section 2.1 describes the Compressed Sensing theory. It is shown that CS method
greatly reduces the number of digital samples required to reconstruct certain sparse
signals. The key ideas of this technology are presented, some mathematical support is
given and many references of interest published by the most prominent authors in this
topic are provided. A large collection of the vastly growing reserach literature on the
subject is available on the webpage http://www.compressedsensing.com.

2.2 Ultra WideBand (UWB) technology

This section tries to briefly present a general Ultra WideBand (UWB) background.

Short-range wireless technology will play a key role in scenarios where everybody
and everything is connected by different types of communication links. While the
majority of human to human information exchanges are still by voice, a rapid increase
in data transfers is observed in other types of links as manifested by the rising need for
location-aware applications and video transfer capability within the home and office
enviroments. UWB could play an important role in the realization of future pervasive
and heterogeneous networking. The new demands on low power, low interference and
high data rates makes the use of UWB an attractive option for current and future
wireless applications.

2.2.1 Ultra WideBand Overview

Ultra-Wideband, or UWB as it has become known, is a term for a classification of
signals that occupy a substantial bandwidth relative to their centre frequencies. The
definition of UWB signals is related to the occupied frequency bandwidth. To specif-
ically define what is meant by an UWB signal, the following fractional bandwidth
definition is employed:

Bf = 2
fh − fl
fh + fl

(2.13)

where fl and fh are the lower and upper end (3 dB points) of the signal spectrum,
respectively. UWB signals are then those signals that have a fractional bandwidth
greater than 25 percent. On the other hand, according to the Federal Communications
Commission (FCC) [28], a UWB signal is defined to have an absolute bandwidth of
at least 500 MHz. In general we can talk about UWB when referring to signals that
occupy a very large portion in the spectrum. Therefore, a set of regulations are imposed
on systems transmitting UWB signals. The transmitted average power spectral density
must not exceed -41.3 dBm/MHz over the frequency band from 3.1 to 10.6 GHz, and
it must be even lower outside this band. Fig. 2.5 illustrates the FCC limits for indoor
communications systems. After the legalizationof UWB signals in USA, a considerable
amount of effort has been put into development of UWB systems. Later, Japan and
Europe also allowed the use of UWB under certain regulations [29].
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Figure 2.5: FCC limits for indoor UWB communications systems

The use of large transmission bandwidths offers a number of benefits, including
accurate ranging, robustness to propagation fading, superior obstacle penetration, re-
sistance to jamming, interference rejection, and coexistence with narrow bandwidth
(NB) systems [30].

2.2.2 Origins

UWB radio is a field of research that is old and new at the same time. The idea of
periodically sending ultra-short duration pulses is nothing new and can be dated back
to 1887 when Hertz experimented with the spark gap, which was later incorporated into
the telegraph by Guglielmo Marconi. The radar community has been using similar pulse
signals for ground-penetration radars for many years. In the early 1990s, conferences
on UWB technology were initiated and proceedings documented in book form. For
the most part, the papers of these conferences are motivated by radar applications.
UWB communications gained prominence with the groundbreaking work on impulse
radio by Win and Scholtz [4]-[31] in the 1990s and received a major boost by the
2002 decision of the US FCC to allow unlicensed UWB operations. Since that time,
an unprecedented transformation in the design, deployment, and application of short-
range wireless devices and services is in progress.

2.2.3 Unique Features and Issues

UWB has a number of advantages that make it attractive for consumer communica-
tions applications. The low complexity and low cost of UWB systems arises from the
essentially baseband nature of the signal transmission.

The lack of available spectrum to support the growing number of wireless devices is
well known. In the short-range application space, UWB can drive potential solutions for
many of today’s problems identified in the areas of spectrum management. The novel
approach proposed by UWB is based on optimally sharing the existing radio spectrum
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resources rather than looking for still available but possibly unsuitable new bands.
UWB transmissions do not cause significant interference to existing radio systems.
The interference phenomenon between impulse radio and existing radio systems is one
of the most important topics in current UWB research.

Due to their large bandwidth, UWB systems are characterized by very short du-
ration waveforms, usually on the order of a nanosecond. Its large frequency spectrum
that includes low frequencies as well as high frequencies results in an important pen-
etration capability. This large spectrum also results in high time resolution, which
improves the ranging accuracy.

The huge new bandwidth opens a door for an unprecedented number of bandwidth-
demanding position-critical low-power applications in wireless communications, radar
imaging, and localization systems. The Power Spectral Density (PSD) of UWB systems
is generally considered to be extremely low. For UWB systems, the transmitted energy
is spread out over a very large bandwidth and one of the benefits of a low PSD is a low
detection probability, which is of particular interest for military applications. This is
also concern for wireless consumer applications, where the security of data is considered
to be insufficient. The comparison for the PSD of UWB with other systems is shown
in Fig. 2.6.

Figure 2.6: Low-energy density and high-energy density systems

At this point, is unavoidable to highlight the transmission speed of UWB technol-
ogy. Most UWB communications transmissions are achieving the range of 100-500 MHz
(which is 100 to 500 times the speed of Bluetooth, see Table. 2.3). Currently, stan-
dardization institutions are working on legislation that classifies the UWB transmission
rates into three different categories (see Table 2.2).

2.2.4 TOA in UWB

One of the reasons why UWB radio is considered a viable solution for indoor localization
is the great time resolution of the signal, which translates into good ranging accuracy
and good ability to distinguish different arriving multi-path components (MPCs). That
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Table 2.2: UWB bit rate
Standard Speed (Mbps)

UWB 480

UWB (4m min) 200

UWB (10m min) 110

Table 2.3: Wireless standards bit rate
Standard Speed (Mbps)

802.11a 54

802.11g 20

802.11b 11

Ethernet 10

Bluetooth 1

is why among all the parameters that have been traditionally used for positioning
(received signal strength intensity (RSSI), the angle of arrival and time of arrival), the
Time of Arrival (TOA) stands out as the most suitable signal parameter to be used
for positioning with UWB devices. The basic problem of TOA-based techniques is to
accurately estimate the propagation delay of the radio signal arriving from the direct
line-of-sight (LOS) propagation path.

TOA estimation algorithms have been extensively studied these years, including
those considering high sampling rate, matched filtering (MF) based coherent algo-
rithms, and those considering lower sampling rate, energy detection based non-coherent
algorithms.

TOA estimation in a multipath environment is closely related to channel estimation,
where channel amplitudes and time of arrivals are jointly estimated using, for example,
a maximum likelihood (ML) approach [32] [33]. Typical approaches for UWB impulse
radio ranging in the literature are based on computing the correlation between the
received signal and a reference signal. On a white additive Gaussian noise (AWGN)
channel their TOA can be measured within the accuracy of the Cramer-Rao bound by
correlating the received signal with a template waveform shaped as the transmitted
pulse and looking for the time shift of the template that yields the largest correla-
tion. However, the implementation of a correlation-based TOA estimator is practically
impossible because pulse overlaps are likely to occur.

TOA estimation based on signal energy measurements is pursued in [34]. The
incoming signal is squared and integrated over intervals comparable with the pulse
width. The location of the first arriving path is computed as the index of the first
interval where the energy overcomes a suitable threshold.

The correlation method outperforms the non-coherent algorithms, on the cost that
an extreme high sampling rate is required. Accuracy in UWB TOA measurements is
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linked to implementation limitations: Working with digital approaches involve analog-
to-digital (ADC) converters operating in the multi-GHz range. Due to the practical
limitations of the correlation based methods, energy detection based algorithms are
preferred in most sensor applications. Unfortunately, the ranging precision of energy
detection is mainly restricted by the threshold decision, which is based only on the
noise level in traditional algorithms.

Summarizing, TOA estimation is a challenging task and is currently the focus of
intense research.

2.2.5 UWB Architecture Challenges

Any practical UWB system design should take into account implementation feasibility
and complexity issues.

The signal bandwidths and fractional bandwidths of UWB radio are at least an
order of magnitude greater than those existing narrowband radios. In a UWB receiver,
the analog-to-digital converter (ADC) can be moved almost up to the antenna, resulting
in a dramatic reduction of the required analog circuitries, which often dominate the
size, power and cost of a modern receiver. Critical to this design approach, however,
is the ability for the ADC to efficiently sample and digitize at least at the signal
Nyquist rate of several GHz. The ADC must also support a very large dynamic range
to resolve the signal from the strong narrowband interferers. Currently, such ADCs
are far from being practical [35]. There are numerous implementation challenges in
the UWB radio. Chief among them are the extremely high sampling ADC and the
wideband amplification requirements mentioned before. But other design challenges
include for example the generation of narrow pulses at the transmitter and the digital
processing of the received signal at high clock frequencies.

2.2.6 Channel Estimation with UWB

The impulse response of narrowband propagation channels can be represented as the
sum of the contributions of the different MPCs. The model would be purely deter-
ministic if the arriving signals consisted of completely resolvable echoes from discrete
reflectors. However, in most practical cases, the resolution of the receiver is not suf-
ficient to resolve all MPCs. A UWB channel differs in that the number of physical
MPCs that make up one resolvable MPC is much smaller, due to the fine delay reso-
lution. A categorization of impulse response that we will encounter in the subsequent
section is sparse channel. In a sparse channel, MPCs arrive at time intervals that
are (sometimes) larger than the inverse of the bandwidth of the considered channel.
Whether a power delay profile is sparse or not depend on two aspects: the considered
bandwidth (the larger the bandwidth, the more likely it is that the channel shows
sparse structure) and the considered enviroment. Enviroments with a large number of
reflecting and diffracting objects can lead to dense channels even for extremely large
bandwidths.

If the channel is known at the receiver, all these resolvable copies can be com-
bined coherently to provide multipath diversity. The rich multipath diversity of an
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impulse wideband channel calls for the use of Rake receivers for significant energy cap-
ture, higher performance and flexibility. In addition, accurate multipath delays (and
amplitudes) extimation is indispensable.

Currently research on non-sparse channel estimation specifically for UWB wireless
systems has been conducted [33][36][37][38] extensively. Although the maximum likely-
hood (ML) approach [33] produces excellent results, it is impractical since the number
of parameters to estimate in a realistic UWB channel is very high. Suboptimal receivers
such as the energy detectors [39] and autocorrelation receivers [40] generally take a SNR
penalty in order to achieve similar performance to the coherent counterpart.

The emerging theory of compressed sensing (CS) outlines a novel strategy to jointly
compress and detect a sparse signal with fewer sampling resources than the traditional
method.

Compressed sensing for UWB was first proposed in [41] as a generalized likeli-
hood ratio test receiver taking advantage of the signal structure by incorporating pilot
assisted modulation. In [38], it is transformed the problem into an equivalent on-off-
keying (OOK) problem by exploting the sparsity in the UWB channel structure.

The issue of sparse channel estimation will be addressed later with more detail.

2.2.7 Summary

Whilst UWB is still the subject of significant debate, there is no doubt that the tech-
nology is capable of achieving very high data rates and is a viable alternative to existing
technology for WPAN; short-range, high-data-rate communications; multimedia appli-
cations, and cable replacement. Particularly in ranging and localization, UWB-IR has
shown to be a promising candidate that can enable centimeter accuracy with minimal
cost on the SNR. On the other hand, the rich multipath characteristic of a wireless
communication system operating with sub-nanosecond pulses is another attractive fea-
ture of UWB-IR. In this section we have seen these and other advantages of UWB,
focusing on channel estimation and TOA estimation applications.

2.3 Channel Estimation

In a typical scattering enviroment, a radio signal emitted from a transmitter is reflected,
diffracted, and scattered from the surrounding objects, and arrives at the receiver as
a superposition of multiple attenuated, delayed, and phase- and/or frequency-shifted
copies of the original signal. Usually we call all these effects under one word: mul-
tipath. The superposition of multiple copies of the transmitted signal is the defining
characteristic of many wireless systems [42]. In the communication comunity, mul-
tipath is both a curse and a blessing. When a signal propagates through a wireless
channel, it usually suffers fluctuations in the received signal strength which can affect
the rate and also the reliability of communication. On the other hand, research in
the last decade has shown that multipath propagation also results in an increase in
the number of degrees of freedom (DoF) available for communications which can lead
to significant gains in the rate (multiplexing gain) and/or reliability (diversity gain)
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of communication. Of course, the multipath information can only be used effectively
depending on the amount of channel state information (CSI) available to the system.

2.3.1 Methods to Estimate the Channel

In practise, CSI is seldom available to communication systems a priori and the channel
needs to be estimated at the receiver in order to exploit the benefits of additional DoF
afforded by multipath propagation. The methods to estimate multipath channels at the
receiver can be classified into two classes: training-based channel estimation methods
and blind channel estimation methods.

Training-Based Methods

In training-based channel estimation methods, the transmitter multiplexes signals that
are known to the receiver (henceforth referred to as training signals) with data-carrying
signals in time, frequency, and/or code domain, and CSI is obtained at the receiver
from knowledge of the training and received signals. Training-based methods require
relatively simple receiver processing and often lead to decoupling of the data-detection
module from the channel-estimation module at the receiver, which reduces receiver
complexity even further. See [43] for an overview of training-based approaches to
channel estimation.

Blind Methods

In blind channel estimation methods, CSI is adquired at the receiver by making use of
the statistics of data-carrying signals only. Although it is theoretically feasible, blind
estimation methods typically require complex signal processing at the receiver and
often entail inversion of large data-dependent matrices, which also makes them highly
prone to error propagation in rapidly varying channels. See [44] for an overview of
blind methods to channel estimation.

2.3.2 Sparse Channel Estimation

Experimental studies undertaken in the recent past have shown though that wireless
channels associated with a number of scattering enviroments tend to exhibit sparse
structures at high signal space dimension in the sense that majority of the channel DoF
end up being either zero or below the noise floor when operating at large bandwith and
symbol durations and/or with large plurality od antennas. See [45] for the wideband
case and see [46] for the MIMO case.

Our intuition tells us that conventional channel estimation methods will provide
higher errors because they ignore the prior knowledge of the sparseness. In this case,
our intuition was not wrong and there are several publications that prove that [47].

The research in wireless communications, in particular the area of sparsity in chan-
nel estimation has a history that takes back to the early 1990s. Firstly, the problem of
sparse-channel estimation was first faced in the context of underwater acoustic com-
munications using training-based methods. In underwater communications only few
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echoes are dominant and recursive least squares estimation can be applied ignoring
the weakest dimension of the channel. Later, inspired by the fact that digital televi-
sion channels and broadband channels in hilly terrains also exhibit sparse structures,
Cotter and Rao proposed a sparse-channel estimation method based on the Matching
Pursuit [48]. In contrast to the MP-based approach, Raghavendra and Giridhar pro-
posed a modified Least-Squares (LS) estimator in [49] which uses a generalized Akaike
information criterion to estimate the locations of non-zero channel taps.

A wireless channel can often be modeled as a sparse channel in which the de-
lay spread could be very large, but the number of significant paths is normally very
small. We can start with the basic assumption that when a short duration pulse (high
frequency, for example UWB technology) propagate through multipath channels, the
received signal remain sparse in some domain and thus compressed sensing is indeed
aplicable. To illustrate this concept, consider the 8th order Butterworth pulse typi-
caly used in the UWB Standards as the information carrier pulse having a duration
of Tp = 1ns. Fig. 2.7 shows the received signal per frame for a UWB channel that
models an indoor residential enviroment with Line-Of-Sight (LOS) (according to the
IEEE 802.15.4a channel model CM1 [50]) in the absence of noise.
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Figure 2.7: Effect of UWB channel indoor propagation in residential enviroment (LOS)

As is depicted in Fig. 2.7, the received signal is composed of sets of spaced clusters
of the transmitted pulse. It can also be seen relatively long time intervals between
clusters and rays where the signal takes zero or negligible values. In this particular
example, the signal plotted in Fig. 2.7 has 12.672 taps, of which 9.765 have amplitude
lower than 10−5.
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Existing Techniques

Existing techniques for sparse channel estimation can be categorized into two types.
First of all, there are algorithms which are approximation schemes that solve the non-
linear optimization problem of minimizing the squared residual error as a function
of the gain and the delay location of all the dominant paths [51]. This means that
optimization is carried out jointly in all coefficients. Algorithms of the second type
sequentially choose the most important taps of the sampled channel impulse response.
Among the techniques to do that are the Lp-norm regulized method [52] and greedy
algorithms such as Matching Pursuit (MP) algorithm [48] and its orthogonal version
OMP [8].

Currently, the two most popular approaches are MP [48] and basis pursuit (BP)
[3]. With MP (and one of its variants OMP) the sparse signal is iteratively built up by
selecting the atom that maximally improves the representation at each iteration. On
the other hand, BP directly looks for the vector that minimizes the l1-norm coefficients,
which is computationally expensive. In this thesis, simulations are focused on OMP
[8], which achieves faster and more efficient reconstruction.

More information about the sparse recovery methods are available in Section 3.3.

2.4 Summary

Three topics are studied in this thesis: channel estimation, compressed sensing and
UWB. UWB technology has been chosen as a framework because of its high time
resolution and multipath immunity. Channel estimation is faced under the compressed
sensing point of view. Exploiting the sparseness of the channel the classical channel
estimation approches can be improved. An overview of the three topics has been
explained in this Chapter emphasizing the most important concepts that will be most
used in the following chapters.
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3
Frequency domain Sparse Channel

Estimation

Channel estimation for purposes of equalization is a long standing problem in signal
processing. Wireless propagations are characterized by sparse channels, that is channels
whose time domain impulse response consists of a large number of negligible time
intervals. This chapter examines the use of compressed sensing, an emerging theory for
sparse signals, in the estimation of highly sparse channels. In particular, a new channel
sparse model for UWB communication systems based on the frequency domain signal
model is developed. It is also proposed an extended OMP (eOMP) that improves the
TOA estimation without significantly degrading the channel estimation obtained with
classical OMP.

3.1 UWB Signal Model

The transmitted UWB signal model can be written as,

s(t) =
∞∑

k=0

Nf−1∑

j=0

akp(t− jTf − kTsym) (3.1)

where the data ak ∈ ±1 is the k-th transmitted bit, Tsym is the symbol duration and
Tf = Tsym/Nf is the pulse repetition period. To simplify notation, in the following it
is assumed ak = 1. The mother pulse p(t) is depicted in Fig. 3.1.

Signal s(t) propagates through an L-path fading channel whose response to p(t) is∑L−1
l=0 hlp(t − τl). Note that it is assumed that the received pulse from each l-th path

exhibits the same waveform but experiences a different fading coefficient, hl, and a
different delay, τl. Without loss of generality we assume τ0 ≤ τ1 ≤ . . . ≤ τL−1. In Fig.
3.2 is shown the resulting signal when a pulse propagates through an especific channel.
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Figure 3.1: UWB Pulse

The received waveform can be written as

r(t) =
∞∑

k=0

Nf−1∑

j=0

L−1∑

l=0

hlp(t− T jk − τl) + w(t) (3.2)

where w(t) is thermal noise with two-sided power spectral density No/2 and T jk =
jTf + kTsym.

The signal associated to the j-th transmitted pulse corresponding to the k-th sym-
bol, in the frequency domain yields

Y k
j (w) =

L−1∑

l=0

hlS
k
j (w)e−jwτl + V k

j (w) (3.3)

with
Skj (w) = P (w)e−jw(kNf+j)Tf (3.4)

where P (w) denotes the Fourier Transform of the pulse p(t) and V k
j (w) is the noise

in the frequency domain associated to the j-th frame interval correspondig to the k-th
symbol. Sampling (3.3) at wm = w0m for m = 0, 1, . . . ,M − 1 where w0 = 2π

Tf
and

rearranging the frequency domain samples Y k
j [m] into the vector Yk

j ∈ CM×1 yields

Yk
j =

L−1∑

l=0

hlS
k
jeτl + Vk

j = SkjEh + Vk
j (3.5)

where the matrix Skj ∈ CM×M is a diagonal matrix whose components are the frequency
samples of Skj (w) and the matrix E ∈ CM×L contains the delay-signature vectors
associated to each arriving delayed signal

E =
[
eτ0 . . . eτl . . . eτL−1

]
(3.6)
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Figure 3.2: Signal through Channel: (a) Channel (b) Pulse propagated through the
channel in (a)

with eτl =
[
1 e−jw0τl . . . e−jw0(M−1)τl

]T
. The channel fading coefficients are ar-

ranged in the vector h =
[
h0 . . . hL−1

]T ∈ RL×1, and the noise samples in vector

Vk
j ∈ CM×1.

3.2 Sparse Frequency Domain Model

A proper sparse representation of the channel is required in order to easily apply the
Compressed Sensing (CS) theory. A tutorial overview of some of the basic developments
in CS can be found in [7]. The expression in (3.5) free of noise can be extended and
reformulated as,

Yk
j = Bk

jhe = SkjEehe (3.7)

The main difference between (3.7) and (3.5) is the extended matrix Ee, which is an
M ×M extended delay-matrix which contains not only the L delay-signature vectors
corresponding to the multipath, but also M−L delay-signature vectors with no channel
contribution (see Fig. 3.3). Therefore, vector he is an L-sparse vector whose elements
different from zero correspond to the original channel coefficients, that is, calling eτm
the m-th column of Ee, when

eτm = eτl for l = 0, . . . , L− 1 (3.8)

Note that the dimension M will determine the path resolution.
In a typical CS notation, he can be identified as the L-sparse vector and Bk

j ∈ CM×M

as the dictionary where the channel becomes sparse. In order to compress the frequency
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Figure 3.3: Sparse Sructure of the channel

domain samples a widely used random matrix Cf ∈ RN×M with entries i.i.d. taken
from a normal distribution with zero-mean and unit variance is used.

Yc = CfY
k
j = CfB

k
jhe (3.9)

where Yc is the N × 1 vector of measurements. Cf is known as measurement matrix
and it has rank N lesser than the rank of the signal which is equal to M (see Fig.
3.4). Thus, the N ×M matrix Cf is projecting the signal Yk

j . Randomness in the
measurement matrix can lead to very efficient sensing mechanisms. It has been shown
that random matrices are largely incoherent with any fixed basis (which is one of the
principles of CS).

Figure 3.4: Compressed Sensing Structure

Therefore, the sparse channel estimation ĥe can be obtained from the compressed
samples Yc applying sparse signal reconstruction techniques. The sparse signal recov-
ery problem is formulated as,

min
ĥe∈RM

∥∥∥ĥe
∥∥∥
l1

s.t. Yc = CfB
k
j ĥe (3.10)

where
∥∥∥ĥe
∥∥∥
l1

=
∑M

i=1

∣∣∣ĥe(i)
∣∣∣. Note that the only prior knowledge required is that he is

sparse. Reconstruction then only requires the space in which the signal is sparse.
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3.3 Sparse channel recovery

There are many approaches discussed in literature for solving (3.10). Besides from
Section 2.1.4, a good reference to learn more about the algorithms for sparse signal
recovery can be found in [18].

As it was said before, the sparsest solution can be obtained with l0-norm optimiza-
tion. Unfortunately, this optimization problem is unfeasible under computational point
of view. The problem is relaxed using l1-norm. Matching Pursuit (MP) [48] and Basis
Pursuit (BP) [3] are the most popular approaches.

MP introduced by Mallat and Zhang is a pioneering work of greedy pursuit algo-
rithms. With MP (and one of its variants OMP) the sparse signal is iteratively built
up by selecting the atom that maximally improves the representation at each itera-
tion. On the other hand, BP directly looks for the vector that minimize the l1-norm
coefficients, which is computationally expensive. In this thesis we will focus on OMP
[8]-[53] because is the simpler, faster and more efficient solution.

3.3.1 MP variants: OMP

At each step of MP, the atom that has the strongest correlation with the residual
signal is selected. This is what matching means. Note that MP selects atoms among
the whole dictionary at each step. That means that an atom can be selected more than
once, which slows down the convergence.

Orthogonal matching pursuit (OMP) [8] conquers this problem by projecting the
signal onto the subspace spanned by the selected atoms. With this restriction OMP
implies that no atom is selected twice. The resulting approximation is optimal in the
least squares sense. Therefore, fewer steps are required to converge.

Based on the same key idea, Donoho et al. [54] proposed stagewise orthogonal
matching pursuit (StOMP), with OMP as its special case. At each step, StOMP selects
the atoms whose inner products with residue exceed a specially-designed threshold.
Lower computational complexity is achived with StOMP compared with MP and OMP
with similar sparsifying capability than BP.

Latter, Cotter and Rao [55] reduced the computation of atom matching by searching
the atoms in a tree structure. The tree-structured searching was later fully studied by
Jost et al. [56], known as tree-based pursuit (TBP). In a few words, TBP organize
the dictionary in a tree structure: similar atoms are clustered together recursively until
reaching a unique root. For each step, TBP selects the atom by traversing the tree from
the root node until reaching a leaf node instead of searching over the whole dictionary.
This is a simple way to develop fast searching algorithms.

In this thesis we will focuse on OMP algorithm because is simple, fast and provide
good enough results.

3.3.2 OMP Historical Developments

OMP was developed independently by many researchers. A prototype of the OMP
algorithm first appeared in the statistics community at some point in the 1950s, where
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it was called stagewise regression. The algorithm later developed a life of its own in
the signal processing [48] [53] [57] and approximation theory [58] [59] literatures. In
this thesis it is used the adaptation for the signal recovery problem proposed in [8].

3.3.3 OMP Drawbacks

Of course not everything is good in OMP. Its simple and heurisic design lead to some
drawbacks. It was demonstrated that if OMP selects a wrong atom in some iteration
it might never recover the original signal. Skeptics pointed out that there is not solid
theoretical foundation about its reliability. However, lots of studies have shown that
it works in most of the cases and its widespread use in today’s world are sufficient to
believe in its reliability.

As it was commented before, OMP is computationally more demanding compared
with MP but at the expense of ensuring that no repeated atoms are selected. Some-
times, the storage also becomes a problem, especially for highsized problems. Addi-
tionally, the OMP response against noise seems to be worse than other BP algorithms.

In my opinion, the most important drawback is the requirement of the level of
sparsity to solve the problem. In our case of channel estimation we will never know
the number of channels to be estimated a priori. Thus, in this master thesis we need a
new criterion in order to decide when to halt the OMP algorithm and this design will
have an important impact on the final performance of the algorithm. See section 3.3.5
for further information.

Despite the mentioned shortcomings, OMP is said to be the algorithm with better
performance from the whole family of matching pursuits.

3.3.4 Extended OMP (eOMP)

Imperfections between the assumed model and the received signal can cause false path
detection when using classic OMP. To improve the sparse signal recovery it is proposed
an extended OMP (eOMP) (described with detail in Algorithm 1). Both OMP and
eOMP are iterative greedy algorithms. The OMP select at each step the dictionary
element best correlated with the residual part of the signal. Then it produces a new
approximation by projecting the signal onto the dictionary elements that have already
been selected. The main difference between OMP and eOMP is that eOMP not only
pick the column of the dictionary that is most strongly correlated but also the 2k
neighbors of it (see Fig. 3.5). Then, as OMP does, it produces a new approximation
by projecting the signal onto the dictionary elements that have already been selected.
To obtain the final values of the non-zero elements of the sparse vector in eOMP the
same steps with only the most strongly correlated element is parallel computed.

The running time of the OMP is dominated by Step 2, whose total cost is O(mNM)
where m is the number of iterations. This step is the same for OMP and eOMP so the
running time has not increased significantly due to the modifications introduced. In
fact, the number of iterations m is reduced with eOMP due to the design itself. See
next section for further information about the stopping criteria.
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Algorithm 1 eOMP
Input
(·) An N ×M matrix CfB

k
j which columns are expressed as ϕj

(·) An N dimensional data vector Yc

(·) An energy threshold
(·) Number of neighbors k (related to the pulse duration and the channel estimation
resolution)
Procedure
(1) Initialize the residual r0 = Yc, the index sets Λ0 = ∅ and Λe

0 = ∅, and the
iteration counter t = 1.
(2) Find the index λt that solves the easy optimization problem

λt = arg max
j=1,...,N

|〈rt−1, ϕj〉|

(3) Augment the extended and non-extended index set and the extended and non-
extended matrix of chosen atoms:

Λe
t = Λe

t−1 ∪ {λt − k} ∪ . . . ∪ {λt} ∪ . . . ∪ {λt + k}

Φe
t =

[
Φe
t−1 ϕλt−k . . . ϕλt . . . ϕλt+k

]

Λt = Λt−1 ∪ {λt}

Φt = [Φt−1 ϕλt ]

We use the convention that Φ0 and Φe
0 are empty matrices.

(4) Solve the least square problem to obtain a new signal estimate

xet = arg min
x
‖Yc − Φe

tx‖
2
2

xt = arg min
x
‖Yc − Φtx‖22

(5) Calculate the new approximation of the data and the new residual

at = Φe
tx

e
t

rt = Yc − at

(6) Increment t, and return to Step 2 if the energy threshold is not achieved.
(7) The estimate ĥe for the ideal signal has nonzero indices at the components listed
in Λt and the value of the estimate ĥe in component λj equals the j-th component
of xt.

ĥe(Λt) = xt
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Figure 3.5: eOMP not only pick the column of the dictionary that is most strongly
correlated but also the 2k neighbors

Therefore, it is clear that the idea behind the algorithm is to pick columns in a
greedy fashion. At each iteration we look for the column of CfB

k
j that is most strongly

correlated with the remaining part of Yc.

3.3.5 eOMP Stopping Criteria

The sparsity level is assumed to be known in the classical version of OMP. As it was
mentioned before, in the sparse channel estimation problem the number of paths to be
estimated is not known a priori. Thus, in our case, after each iteration, the algorithm
has to decide whether or not to proceed. It may just stop after a fixed number of
iterations, or it may use current information more subtly to determine whether another
iteration would be beneficial.

Algorithms for the estimation of channels whose impulse reponse is sparse involving
OMP are well studied in the literature. Since OMP is an iterative algorithm, in general
they all face the same problem: a method for deciding when to halt the iteration.

Previously reported approaches [60] [61] try to determine when a channel tap is
active (non-zero) based on the use of a measure requiring the definition of an activity
threshold. Such measures are chosen according to some intuitive criterion. Other
approaches try to limit the reconstruction error obtained under some threshold. As
Joel A. Tropp comment in [62], there are several natural methods for deciding when
to halt the iteration. He summarizes all the methods in the following classification:

• Halt the algorithm after a fixed number of iterations.

• Halt the algorithm when ‖rt‖2, the norm of the residual, declines below a specific
tolerance.

• Halt the algorithm when
∥∥∥
(
CfB

k
j

)H
rt

∥∥∥
∞

, the maximum correlation between the

residual and the dictionary, drops below some threshold.
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Naturally, the appropiate criterion depends on the application domain. Next it is
indicated which criterion is chosen for the problem we are facing.

As it was introduced when describing the eOMP algorithm, here we will use a
stopping criteria based on the noise energy level. However, in order to simplify the
simulations, the energy threshold mentioned in Section 3.3.4 is computed as a function
of the received signal free of noise energy and the received signal energy, both without
compressing,

Eth(%) =
Erwn

Er
× 100 (3.11)

with rwn being the received signal without noise. In general, rwn is not available to
the receiver and therefore the percentage Eth(%) has to be computed based on the
estimated noise energy level.

Therefore, the algorithm is halted when the energy of CfB
k
j ĥ

t

e achieve the corre-

sponding percentage of Yc. Here we have use the notation ĥ
t

e to denote the sparse

channel estimation at the end of the iteration t, which is formed as ĥ
t

e(Λt) = xt.
The mean energy threshold used in simulations is plotted in Fig. 3.6. Remember

that this threshold is the percentage of signal without noise over the noisy signal. It
can be observed that starting at SNR=10dB the energy threshold begin to fall down
below the 90%. It has to be mentioned that we are taking advantage of the inherent
temporal diversity of the IR-UWB signal, with Nf repeated transmitted pulses for each
information symbol by averaging over all the available symbols.
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Figure 3.6: Threshold Energy
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4
Simulations

For numerical evaluation of the algorithm we consider the channel models developed
within the framework of the IEEE 802.15.4a. In particular it is used the CM1 Resi-
dential LOS channel model [50]. All simulations are given for 100 independent channel
realizations. M is fixed at 768 and the compression rate is expressed with ρ = N

M
.

The compression rate notation has been extracted from [63]. ρ measures the degree
of determinacy/indeterminacy of the system: 0 < ρ < 1, with ρ = 1 meaning the
matrix CfB

k
j is square and so the system Yc = CfB

k
jhe is well determinated, while

ρ << 1 meaning the matrix CfB
k
j is very wide and the system Yc = CfB

k
jhe is very

undeterminated. Equivalently, ρ is the undersampling factor: ρ = 1 indicates marginal
undersampling while ρ << 1 means high undersampling.

The pulse duration is equal to 0.77ns (which theoreticaly correspond to a compres-
sion rate equal to ρ = 0.333 if we want to acquire the same samples than an ADC
working at the Nyquist rate). The number of multipath components L that form the
UWB channel can be quite large, however many of those paths are negligible. There-
fore, we limit ourselves to estimate the Lc most significant paths which are the ones
capturing 80% of the channel energy.

The algorithm input signal is obtained taking advantage of the inherent temporal
diversity of the UWB signal, with Nf repeated transmitted pulses for each informa-
tion symbol. This approach provides robustness to noise compared to applying the
estimator individually to each arriving frame.

The quality of the channel estimation is evaluated with the RMSE computed as,

RMSE =
1

M
eHe (4.1)

where the error e is defined as,

e = ifft(Bk
j ĥe)− rwn (4.2)

with rwn being the received signal without noise.

49
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4.1 Receiver Structure

Imagine a receiver that picks up the analog received signal and directly applies an
AIC converter. We will assume that the analog signal can be interpreted as a digital
signal with a lot of samples (that tend to infinity). Look at Fig. 4.1 where a scheme is
proposed only to clarify the concept. After the compression step, the signal is passed
though the OMP algorithm in order to obtain the sparse channel estimation.

Figure 4.1: Receiver Scheme

The approach proposed in this thesis assumes finite-dimensional model for the ana-
log signal like general problems treated in the context of CS. Prof. Yonina Eldar
from the Israel Institute of Technology has developed and is still working on a few
on-going research projects regarding the analog compressed sensing. Her contribution
is a methodology for sub-Nyquist sampling, named Xampling. A summary of her work
related to the analog compressed sensing can be found in [64] and [65]. A large col-
lection of the vastly growing reserach literature on the subject is available on Yonina’s
webpage: http://webee.technion.ac.il/Sites/People/YoninaEldar

The details of the compressed sensing implementation are considered as out of the
scope of this thesis and the discussion is limited to the theoretical evaluation of the
proposed model and the performance of the new proposed algorithm. Nevertheless,
implementation of CS systems is a hot topic on the CS research world and, in some
cases, a very thin implementation has been realized.

4.2 Why eOMP?

4.2.1 OMP Weakness

Let us begin with a simple example. Imagine the channel depicted in Fig. 4.2 and
the resulting signal when the mother pulse propagates through this particular channel
(also depicted in Fig. 4.2).

To see the insights of the OMP procedure, here the compression is not applied in
order to plot the inverse Fourier Transform of the OMP output. Therefore the model
considered in this example is,

Yc = Yk
j = Bk

jhe (4.3)

where Bk
j ∈ CM×M is the dictionary where the channel becomes sparse and Yc is the

M × 1 vector of measurements. There is no compression.
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Figure 4.2: A channel realization and its corresponding received signal

The inputs of the OMP algorithm are: Yc, Bk
j and the energy threshold. In the

absence of noise, the OMP is stopped when the recovered signal achieves 99% of the
input compressed signal. In our particular example it corresponds to 12 iterations.

In the first iteration, the first channel active tap is set at 4.8889ns. However the
first path in the channel is at 4.91ns. This mismatch is due to the limited resolution
of the sparse estimated channel, which can never achieve the analog resolution. Fig.
4.3 shows the original received pulse compared with the reconstructed pulse with the
resulting estimated channel after the first iteration. The differences are hard to see but
they exist and that would be a problem for us.
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Figure 4.3: Original received pulse compared with the reconstructed one using the sparse
channel estimation after first iteration

In Fig. 4.4 the input signal Yc is plotted in (a) and the remaining part of Yc after
extracting the contribution of the first selected atom of the dictionary is plotted in (b).
It can be observed how the contribution of the first path is not completely removed.

This remaining part of pulse will cause the appearance of a false path at iteration
number 8. The algorithm assume that this residual contribution is caused by another
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Figure 4.4: Comparison within the original input Yc and the remaining part of it after
extracting the contribution of the first selected atom of the dictionary

path and tries to substract it. In Fig. 4.5, the input Yc, the residual signal at iteration
number 7 and the residual signal at iteration number 8 are plotted in (a),(b) and (c)
respectively. A zoom has been made at the area of interest in Fig. 4.6 where it can be
better perceived the difference between (b) and (c).

Finally, in Fig. 4.7 is depicted the real channel compared with the sparse channel
estimation obtained with the OMP algorithm. With black arrows are pointed out the
false path introduced by OMP due to the imperfections between the model and the
real received signal. These errors will persist and probably increase when compressing
the signal. Finally in Fig. 4.7 is also depicted the sparse channel estimation applying
a compression with Cf ∈ RN×M . It can be seen that the false path detected are higher
than before.
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Figure 4.5: Residual Signal (1): (a) Original Yc (b) Residual signal at iteration number
7 (c) Residual signal at iteration number 8
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Figure 4.6: Received Residual Signal (2): Zoom of Fig. 4.5 at the area of interest
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(a) Resulting sparse channel estima-
tion compared with the real channel
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(b) Resulting sparse channel estima-
tion compressing with Cf ∈ RN×M

Figure 4.7: Resulting sparse channel estimation
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4.2.2 OMP improvement: eOMP

The goal of the extended OMP is to remove the false path detection. The main
difference between OMP and eOMP is that eOMP not only pick the column of the
dictionary that is most strongly correlated but also the 2k + 1 neighbors. Proceeding
in this way ensures that the contribution of that particular path is completely removed.
Therefore, the eOMP tends to clean the channel estimation obtained by classic OMP.
A critical parameter is k : if k is chosen so high it could happen that the algorithm
miss some real important paths (low detection probability) and if k is chosen so low
it could still happen high false path detection probability. We will show simulations
varying the parameter k later.

Now, focusing on the comparison between OMP and eOMP, let’s see a simple
example as before. Look at Fig. 4.8 where is plotted a particular channel realization
compared with the channel estimation obtained with OMP and eOMP. With black
arrows are indicated the false path detected and with black circles are indicated the
missed paths. The recovered signal RMSE computed is equal to 0.0016659 for the
eOMP and 0.0017609 for the OMP. Regarding the TOA estimation, it is easy to see
that with eOMP it is simple to detect the TOA of the first detected path. With eOMP,
the TOA estimation error is 0.078788 meters while using eOMP it is equal to 0.0016659
meters.
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Figure 4.8: Comparison between OMP and eOMP for a particular channel realization
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It is important to highlight that if eOMP doesn’t miss any path, the recovered
signal with eOMP outperforms the recovered signal with OMP since OMP is assuming
false paths. Unfortunately, to ensure that we are not missing any path is not an easy
task. Nevertheless, the TOA estimation is expected to improve using eOMP. All these
hypotheses strongly depend on the parameter k chosen.

If k is low, it means that we are not missing so many paths but we can still have
false path detection. The TOA could be wrong if the first detected pulse still have
some false path close to him. On the other hand, if k is high we are ensuring that we
make no false detections at the expense of a low correct path detection probability.

The criterion for choosing the value of k would depend on the final objective of
each application.

4.3 eOMP vs OMP

A comparison with the classical OMP will be developed in order to show the perfor-
mance of the proposed eOMP.

First and foremost, the RMSE of the reconstructed signal is evaluated. Fig. 4.9
depicts the RMSE of the reconstructed signal using OMP and eOMP for different
compression rates. Examining the reconstruction error of each algorithm as a function
of the SNR, we observe that OMP exhibits slightly better performance than eOMP.
However, the biggest diference is of the order of 10−4 and it decreses as the noise level
increases. Although OMP obtains lots of false path detections (we will see this in Fig.
4.11), they have low contribution to the overall channel. Thus, the contribution of the
false paths detected by OMP affect less on the reconstruction than missing paths with
big contribution. That is what is happening when using eOMP whatever the value
of k : we have no false path detection but probably we are missing some paths with
significant contribution to the overall channel. It is also confirmed by the fact that the
error increases ad the value of k increases, meaning that the higher the value of k, the
more the missing paths. The previous hypothesis will be checked with other simulation
results. Regarding to the compression rate, it can be observed that the error increase
as the compression rate decrease whatever the algorithm is used. Thus, the recovery
performance improves as we take more measurements.

To show that the classical OMP provides better correct path detection let us now
study the probability of detecting a true path of OMP compared with the proposed
eOMP. Fig. 4.10 provides the simulation results regarding the correct path detection
probability using OMP and eOMP for different compression rates. Prior to the sim-
ulations we have commented that a high value on the parameter k could cause miss
detection of true paths. This is the reason why in Fig. 4.10 we have obtained higher
correct path detection when k is equal 2. The fact that OMP is detecting more true
paths than eOMP is also proved with these results. Thus, OMP always exhibits more
correct path detection than eOMP in part because the more paths detected, the more
likely hitting a true one. Regarding to the compression rate, it can be observed that
the probability of correct path detection decrease as the compression rate decrease
whatever the algorithm is used.
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Figure 4.9: RMSE of the recovered signal. Comparison between OMP and eOMP for
different compression rates.

With Fig. 4.10 we show that the correct path detection probability is sensitive to the
compression rate. It can be observed that ρ = 0.083 leads to perceivable performance
loss compared with the curves corresponding to ρ = 0.333 and ρ = 0.167. From the
comparison of the three compression rates is concluded that the more the samples
acquired, the better the correct path detection probability.
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Figure 4.10: Correct path detection probability. Comparison between OMP and eOMP
for different compression rates.
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Again, to confirm that the proposed eOMP reduces the false path detection let us
now study the probability of false path detection of eOMP compared with the classical
OMP. Fig. 4.11 depicts the false path detection probability using OMP and eOMP for
different compression rates. The results show that the false path detection probability
is significantly reduced when using eOMP. For the same reason as before, a high value
on the parameter k could cause, in addition to miss detection of true paths, low false
path detection probability.
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Figure 4.11: False path detection probability. Comparison between OMP and eOMP for
different compression rates.

One thing that attracts our attention is the peak of false alarms around the 20dB of
SNR. The peak can be perfectly seen in the case of OMP and, although not distinguish
very well, it persists in the case eOMP. To understand what is happening, Fig. 4.12
shows the number of iterations required for OMP and eOMP for different compression
rates.

The first conclusion extracted from Fig. 4.12 is that another advantage of eOMP
compared with classical OMP is its high speed. In eOMP fewer steps are required
to converge. This is a direct consequence of the eOMP design itself. The stopping
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Figure 4.12: Number of Iterations. Comparison between OMP and eOMP for different
compression rates.

criteria is a function of the number of neighbors used since the recovered signal energy
is computed using all the neighbors. Returning to the peak of false alarms observed
in Fig. 4.11, we can see that the iterations also have a peak at the same point of
SNR=20dB. This demonstrates that it is possible that we are running the algorithm too
long, when, in fact, we should stop the algorithm much earlier. As it was commented
in Section 3.3.5, the design of a convenient method for deciding when to halt the
iteration is a difficult task. A natural stopping rule for the subset selection problem
is not immediately apparent. Here an intuitive stopping criteria is being used but,
apparently it is a point for further research.

Besides the peak, the number of iterations remain constant whatever the compres-
sion rate is.

The RMSE of the estimated TOA using OMP and eOMP are depicted in Fig. 4.13
for different compression rates

The general conclusion about the TOA estimation is that eOMP achieve better
TOA estimation than OMP. In particular, whatever the value of k the behavior for
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Figure 4.13: RMSE of the estimated TOA. Comparison between OMP and eOMP for
different compression rates.

high SNR is similar in both cases, achieving an accuracy of 5 cm when ρ = 0.333 (this
is when there is no compression, the number of mesurements is the same for an ADC
working at the Nyquist rate). In general, the behavior of eOMP is more o less the same
whatever the value of k.

The improvement provided by eOMP is still present when the compression rate is
set at ρ = 0.167 (this corresponds to the half the measurements acquired by an ADC
at Nyquist rate). In this case, the simulation results show that with eOMP k=2 an
accuracy of few centimeters is achieved while the OMP accuracy is about one meter.
Therefore, is clearly seen how the eOMP algorithm outperforms the classical OMP.
Unfortunately, using a compression rate equal to the fourth part of samples acquired
by an ADC working at the Nyquist rate (this is ρ = 0.083), the differences are not so
obvious but still significant.
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4.4 Time Domain vs Frequency Domain Simulations

4.4 Time Domain vs Frequency Domain

The perfomance of the new frequency domain estimator is compared with the time
domain sparse model proposed in [1].

In [1], Jose L. Paredes et Al. wonder if a new dictionary that better fits the
UWB model can be generated in order to better represent the sparseness of the signal.
Inspecting the characteristic of the received UWB waveform, which is formed by scaled
and delayed versions of the transmitted pulse, they naturally derive a new dictionary
based on the pulse waveform used to covey the information. This leads to a set of
parametrized waveforms given by,

dj(t) = p(t− j∆) (4.4)

that define the dictionary D = {d0(t), d1(t), d2(t), ..., } where ∆ is a shifting parameter.
The idea is simple: use a dictionary with delayed versions of the UWB mother pulse.

Therefore, the dictionary used here for simulations is a circulant matrix P ∈ RM×M

whose columns are shifted replicas of the mother pulse p(t). The compressed samples
are obtained with a random measurement matrix as in (3.9),

yc = CtPĥe (4.5)

where Ct ∈ RN×M . In this case the RMSE is obtained with the following error defini-
tion,

e = Pĥe − rwn (4.6)

For a complete study we have compared [1] with the new sparse model proposed
here considering: OMP, eOMP k=2, eOMP k=4, eOMP k=6, eOMP k=8 and eOMP
k=16.

4.4.1 OMP

In Fig. 4.14 the RMSE of the reconstructed signal, the false path detection probability,
the correct path detection probability and the number of iterations required using the
model proposed in [1] and the number of iterations required, all obtained using OMP
for both the time domain approach proposed in [1] and the frequency domain approach
proposed here. The results are compared for different compression rates.

The simulation results shown that the new frequency domain sparse model out-
performs the time domain sparse model proposed in [1] when using OMP. Whatever
the algorithm used and whatever the value of k, the new model achieve better results
regarding the recovery process. At the compression rate ρ = 0.333 (equivalent to an
ADC working at the Nyquist rate), the RMSE remains more or less the same for both
approaches. However, as the compression rate decrease, the errors in the time domain
increase faster than the frequency domain errors.

The better performance achieved with the frequency domain sparse model with
respect to the time domain sparse model can be justified from a theoretical point of view
using the incoherence property. As it was explained in Section 2.1.3, the incoherence
is defined as the maximum value amongst inner product of the dictionary and the
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(a) RMSE of the recovered signal
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Figure 4.14: Comparison between the proposed model and [1] using OMP

orthonormal measurement matrix. A low value of incoherence is desirable in order to
ensure mutually independent matrices and therefore better compressive sampling. The
spike basis achieves maximal incoherence with the Fourier basis and is for that reason
that seems more convenient to work with frequency domain measurements. Although
here the dictionary P is not the identity matrix and the dictionary SE is not the
Fourier matrix, they both are approximations of these.

The same happens with the false path detection probability. The time doamin
approach proposed in [1] tend to exhibit higher false path detection than the frquency
domain sparse model proposed in this thesis, especially when the compression rate
decreases.

For the correct path detection probability, the same conclusion as for the false path
detection probability is extracted. The new frequency domain sparse model outper-
forms the model proposed in [1]. Again the differences increase as the compression rate
decrease.

Regarding the number of iterations, the algorithm requires more or less the same
number of iterations for both sparse models.
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Fig. 4.15 depicts the RMSE of the estimated TOA using OMP for [1] and for the
frequency domain approach proposed here.
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Figure 4.15: RMSE of the estimated TOA. Comparison with [1] using OMP

Simulation results show that the new frequency domain sparse model slightly out-
performs the time domain sparse model proposed in [1] regarding the TOA estimation.
The curve corresponding to the RMSE of the estimated TOA corresponding to the new
frequency domain sparse model is always below the curve corresponding to [1].
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4.4.2 eOMP

A comparison between [1] and the new sparse model proposed here has been done
considering the new eOMP for different number of neighbors.

First of all, in Fig. 4.16 is shown the RMSE of the reconstructed signal for different
values ok k. As happened before, the curve corresponding to the new frequency sparse
model always achieves better reconstruction error than the model proposed in [1]. The
differences increase as the compression rate decreases.
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Figure 4.16: RMSE of the recovered signal. Comparison between the proposed model
and [1] using eOMP

Fig. 4.17 compares the correct path detection probability using eOMP for [1] and
the frequency domain approach followed here. From the simulation results we can
conclude that using the new model, the correct path detection is improved, specially
when the compresion rate decreases.

Fig. 4.18 depicts the false path detection probability corresponding to the model
proposed in [1] and the false path detection probability obtained assuming the new
frequency sparse model proposed here, both using eOMP. We observe that [1] works
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Figure 4.17: Correct path detection probability. Comparison between the proposed
model and [1] using eOMP

slightly worse than the new model regarding the false path detection probability, what-
ever the compresion rate is.

In Fig. 4.19 are shown the number of iterations required using [1] and using the
frequency domain approach proposed here, both using eOMP. There are no signifi-
cant differences between [1] and the new model regarding to the running time of the
algorithm. Both approaches take the same number of iterations to achieve the final
result.

To show the TOA estimation performance, the simulation results are divided into
different figures (each figure corresponding to a different value of k) in order to easily
draw the conclusions. Fig. 4.20, Fig. 4.21, Fig. 4.22 and Fig. 4.23 depict the RMSE
of the estimated TOA using eOMP for [1] and for the frequency domain approach
proposed here for k equal to 2,4,6 and 8, respectively.

Simulation results show that the frequency domain sparse model proposed here
significantly outperfomes the time domain sparse model proposed in [1] regarding the
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Figure 4.18: False path detection probability. Comparison between the proposed model
and [1] using eOMP

TOA estimation. The curve corresponding to the RMSE of the estimated TOA corre-
sponding to the frequency domain approach goes always below the curve corresponding
to [1]. Moreover, the TOA estimation accuracy of [1] is always above half meter.
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Figure 4.19: Number of Iterations. Comparison between the proposed model and [1]
using eOMP
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Figure 4.20: RMSE of the estimated TOA. Comparison with [1] using eOMP (k=2)
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Figure 4.21: RMSE of the estimated TOA. Comparison with [1] using eOMP (k=4)
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Figure 4.22: RMSE of the estimated TOA. Comparison with [1] using eOMP (k=6)
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Figure 4.23: RMSE of the estimated TOA. Comparison with [1] using eOMP (k=8)
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4.5 Naini vs new model

A comparison with another frequency domain model presented in [2] has been done. In
[2], the spectrum is spread pre-modulating the input signal with a pseudorandom se-
quence p[n] before the Fourier transformation ensuring that every measurement carries
information,

yc = RFdiag(p[n])Phe (4.7)

where F is the column normalized DFT matrix and R is the sub-sampling operator
(an N by M matrix filled with zeroes except one element on each row that is equal to
M/N and such that there is at most one non-zero element on each column). Therefore
RF is simply standard Fourier sub-sampling matrix.

As before, for a complete study we have compared [2] with the new sparse model
proposed here considering: OMP, eOMP k=2, eOMP k=4, eOMP k=6, eOMP k=8
and eOMP k=16.

4.5.1 OMP

Fig. 4.24 compares the RMSE of the reconstructed signal, the false path detection
probability, the correct path detection probability and the number of iterations re-
quired obtained with OMP for the frequency domain approach proposed in [2] and
the frequency domain approach proposed here. The results are compared for different
compression rates.

The simulation results shown that the new frequency domain sparse model out-
performs the one proposed in [2] if we consider the classical OMP. At the Nyquist
compression rate (meaning ρ = 0.333), the RMSE remains more or less the same for
both approaches. However, as the compression rate decreases, the errors using [2]
increase faster than the error using the new sparse approach.

The same conclusion can be derived for the false path detection probability. The
new frequency domain sparse model outperforms the model proposed in [2] regarding
the correct path detection probability. Again the differences increase as the compression
rate decrease.

The number of iterations required are more or less the same for both sparse models.
Fig. 4.25 depicts the RMSE of the estimated TOA using OMP for [2] and for the

frequency domain approach proposed here.
Simulation results show that the frequency domain sparse model proposed here

significantly outperforms the time domain sparse model proposed in [2] regarding the
TOA estimation. The curve corresponding to the RMSE of the estimated TOA corre-
sponding to the frequency domain sparse model proposed here goes always below the
curve corresponding to [2].
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(a) RMSE of the recovered signal
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(b) False path detection probability
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(c) Correct path detection probability
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Figure 4.24: Comparison between the proposed model and [2] using OMP
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(b) ρ = 0.167
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(c) ρ = 0.083

Figure 4.25: RMSE of the estimated TOA. Comparison with [2] using OMP
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4.5.2 eOMP

Fig. 4.26 compares the RMSE of the reconstructed signal obtained with eOMP for the
frequency domain approach proposed in [2] and for the frequency domain approach
proposed here. The results are compared for different compression rates.
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(b) k=4
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(c) k=6
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(d) k=8

Figure 4.26: RMSE of the recovered signal. Comparison between the proposed model
and [2] using eOMP

At first sight, it can be conclude that the frequency model proposed here improves
the reconstruction error provided by [2], at least when the compression rate is reduced.
The improvements are not only illustrated in the reconstruction process, but also in
Fig. 4.27 and Fig. 4.28 where the corresct path detection and the false path detection
probabilities are shown, respectively. In both, the frequency domain sparse model pro-
posed here outperforms the one proposed in [2], providing higher probability of correct
path detection and lower probability of false path detection. Again the differences
increase as the compression rate decrease.

Fig. 4.29 shows that there are no differences on the running time of the algorithms
depending on the model used.
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(b) k=4
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(c) k=6

0 5 10 15 20 25 30 35

10

20

30

40

50

60

70

80

90

100

SNR (dB)

D
et

ec
tio

n 
P

ro
b.

 (
%

)

ρ=0.333 Naini

ρ=0.167 Naini

ρ=0.083 Naini

ρ=0.333 Lagunas

ρ=0.167 Lagunas

ρ=0.083 Lagunas

(d) k=8

Figure 4.27: Correct path detection probability. Comparison between the proposed
model and [2] using eOMP

To show the TOA estimation performance, as before the simulation results are
divided into different figures (each figure corresponding to a different value of k) in
order to easily draw the conclusions. Fig. 4.30, Fig. 4.31, Fig. 4.32 and Fig. 4.33
depict the RMSE of the estimated TOA using eOMP for [2] and for the frequency
domain approach proposed here for k equal to 2,4,6 and 8, respectively.

Whatever the value of k, the TOA estimation error obtained with [2] is higher
than the error obtained with the frequency sparse model proposed in this thesis. The
differences are enlarged when the compresion rate increases.
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(b) k=4
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(c) k=6
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(d) k=8

Figure 4.28: False path detection probability. Comparison between the proposed model
and [2] using eOMP
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(b) k=4
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(c) k=6
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Figure 4.29: Number of Iterations. Comparison between the proposed model and [2]
using eOMP
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(a) ρ = 0.333
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(b) ρ = 0.167
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(c) ρ = 0.083

Figure 4.30: RMSE of the estimated TOA. Comparison with [2] using eOMP (k=2)
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(b) ρ = 0.167

0 5 10 15 20 25 30 35

10
−1

10
0

10
1

SNR (dB)

R
M

S
E

 T
O

A
 (

m
)

Naini
Lagunas

(c) ρ = 0.083

Figure 4.31: RMSE of the estimated TOA. Comparison with [2] using eOMP (k=4)
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(a) ρ = 0.333
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(b) ρ = 0.167
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(c) ρ = 0.083

Figure 4.32: RMSE of the estimated TOA. Comparison with [2] using eOMP (k=6)
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Figure 4.33: RMSE of the estimated TOA. Comparison with [2] using eOMP (k=4)
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4.6 Summary

A frequency domain UWB sparse channel estimator based on the compressed sensing
(CS) theory has been presented. The identified shortcomings of the classical OMP
leaves a gap which here is filled with a new algorithm called extended OMP (eOMP).

Therefore, a new algorithm named eOMP based on the classic OMP is proposed in
order to improve some OMP characteristics. It has been shown that the new eOMP
provides lower false path detection probability compared with classical OMP, which
also leads to a better TOA estimation, without significant degradation of the channel
estimation.

Simulation results of the new sparse channel estimator are compared with a time
domain approach presented in [1] and with another frequency model presented in [2].
In general, results have shown that the new model significantly outperforms the models
presented in [1] and in [2].
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5
Conclusion

The main goal of this thesis is to conceive a new frequency domain sparse channel model
and to design a new algorithm in order to improve certain aspects of the classical
Orthogonal Matching Pursuit. In this chapter a conclusion is given based on the
analysis performed followed by additional guidelines for future work.

5.1 Main Contributions

This research has contributed to the channel estimation field by exploring the role
of sparsity. Specifically, this thesis examines the use of compressed sensing in the
estimation of highly sparse channels such the UWB ones. A sparse channel estimation
approach has been developed based on the sparse frequency domain model of the UWB
signals. It has been proposed to exploit the sparse nature of the channel through the
use of a new greedy algorithm named extended OMP (eOMP) which is based on the
classic OMP. The new eOMP provides lower false path detection probability compared
with classical OMP, which also leads to a better TOA estimation, without significant
degradation of the channel estimation. From the simulation results carried out in
this master thesis, it can be concluded that eOMP reduces the false path detection
probability at the expense of a negligible lost in the channel estimation itself. This can
be useful in applications where it is required to be sure that a detected path is a true
one, e.g in ranging applications where the first path is used to estimate the TOA.

The new frequency domain sparse channel model is compared with two other exist-
ing approaches in the literature. The sparse channel estimation problem is faced in [1]
under a time domain sparse model point of view. In [1] a suitable dictionary formed by
delayed versions of the UWB transmitted pulse is defined in order to better match the
UWB signal. However, the spike basis achieves maximal incoherence with the Fourier
basis [7] and is for that reason that seems more convenient to work with frequency
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5.2 Future Work Conclusion

domain measurements. In [2] the sparse model is defined in the frequency domain. To
ensure that every measurement counts, they propose to pre-modulate the input signal
with a spread spectrum sequence before the Fourier transformation. From the analysis
performed, it can be concluded that the proposed sparse model can outperform the
ones proposed in [1] and in [2].

5.2 Future Work

Sparse channel estimation and Compressed Sensing Theory are hot concepts in commu-
nications world. This means that there is much research going on and many issues that
remains to be solved. Due to limited time, we have only focussed on UWB channels
and we have only studied the OMP as a sparse signal recovery algorithm. However
there are many issues that could be subject to further studies which are out of the
scope of this thesis.

Moreover, there are several limitations on the assumptions used in this thesis which
can be investigated as possible future work. First and foremost, channel characteristics
such as pulse distortion must be accounted for in the channel modeling to be realistic.
Even worse, in urban centers, the line-of-sight is often blocked by obstacles, and a
collected of differently delayed waves is all what is received by a wireless receiver.
Another limitation of the assumed model is that it requires the sparse structure of the
channel impulse response to remain stable over a certain time scale, which could be
easily violated for the channel considered here.

Regarding the sparse signal recovery algorithms, there are some issues to take into
account for further research. In general, a drawback of Matching Pursuit algorithms
is its greediness. It could happen that MP (MP or any of its variants) initially selects
an atom that is not part of the optimal sparse representation; as a result, many of
the subsequent atoms selected simply compensate for the poor selection [66]. In a
further work, other sparse signal recovery algorithms such BP have to be studied and
compared with the proposed eOMP. As it was mentioned in Section 3.3.5, another
important shortcoming of iterative algorithms such as MP is the criteria to decide
when the algorithm is halted. Here, an heuristic threshold has been used based on
the noise energy level. The stopping criteria has an important impact on the final
performance of any iterative algorithm and that is why further reserach has to be
developed on this point.

UWB has been next year’s big technology for five years or so no, but it’s starting
to look a bit like last year’s failure. UWB has never made the kind of breakthrough
expected when the technology started to move from theory through regulatory approval
and into actual working, shipping silicon. When UWB was first fully realized as the
preferred method for personal area networking (PAN) inside the engineering group
IEEE’s 802.15 PAN group (the 802.15.3a task group), its speed looked like it would be
several times higher than anything happening in 802.11; this would make UWB be an
effective future direction for the wireless standard to be used by USB. Later, Bluetooth
signed on to work with UWB, as well. A big question is: Will ultra-wideband high-
speed wireless technology ever find its market?
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Fortunately, the UWB technology still has adherents, applications, and purposes
for which WiFi won’t work, because WiFi isn’t meant for simple, ad-hoc networks in
which a computer is the hub of interaction.
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6
Appendix: Submitted paper ICASSP 2011

The main results in this master thesis dissertation have been submitted to the 36th

International Conference on Acoustics, Speech and Signal Processing which will take
place at the Prague Congress Centre (PCC), May 22-27, 2011.

The ICASSP meeting is the worlds largest and most comprehensive technical con-
ference focused on signal processing and its applications.
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ABSTRACT

Channel estimation for purposes of equalization is a long stan-
ding problem in signal processing. Wireless propagation is char-
acterized by sparse channels, that is channels whose time do-
main impulse response consists of few dominant multipath fin-
guers. This paper examines the use of compressed sensing in the
estimation of highly sparse channels. In particular, a new chan-
nel sparse model for ultra-wideband (UWB) communication sys-
tems based on the frequency domain signal model is presented.
A new greedy algorithm named extended OMP (eOMP) is pro-
posed to reduce the false path detection achieved with classical
Orthogonal Matching Pursuit (OMP) allowing better TOA esti-
mation.

Index Terms— Channel estimation, Ultra WideBand tech-
nology, Compressed Sensing.

1. INTRODUCTION

Reflection, diffraction and scattering from surrounding objects are
typical effects suffered by signals while propagate through a wire-
less channel. Because of these effects, the transmitted signal arrives
at the receiver as a superposition of multiple attenuated and delayed
copies of the original signal. However, multipath can be seen both
as a curse or as a blessing from a communications point of view de-
pending on the amount of CSI available to the system. If the channel
characteristics are known at the receiver, it can be effectively use to
improve the communications performance.

On another hand, UWB communications [1] has emerged as
a promising technology for wireless communications. Designed
for low-power, short-range, wireless personal area networks, UWB
is the leading technology for freeing people from wires, enabling
wireless connection of multiple devices for transmission of high-
bandwidth data.

The transmission of ultrashort pulses in UWB leads to several
desirable characteristics such as the rich multipath diversity intro-
duced by the large number of propagation paths existing in a UWB
channel. The rich multipath coupled with the fine time resolution of
UWB create a challenging channel estimation problem. Fortunately,
multipath wireless channels tend to exhibit impulse responses dom-
inated by a relatively small number of clusters of significant paths,

This work was partially supported by the Catalan Government under
grant 2009 SGR 891, by the Spanish Government under project TEC2008-
06327- C03 (MULTI-ADAPTIVE) and by the European Commission under
project NEWCOM++ (ICT-FP7-216715).

E. Lagunas was supported by the Catalan Government under grant FI-
DGR 2010.

especially when operating at large bandwidths. Our goal herein is to
exploit the sparse structure of the wireless channel impulse reponse
in order to improve the channel estimation by means of the emerging
CS theory.

CS [2] is a novel sampling paradigm that goes further than Shan-
non’s theorem. The idea is to perfectly recover the signal using far
fewer samples of measurements than traditional methods. CS allows
to compress the data while is sampled. It originates from the idea
that it is not necessary to invest a lot of power into observing the
entries of a sparse signal because most of them will be zero.

It is proved that conventional channel estimation methods pro-
vide higher errors because they ignore the prior knowledge of the
sparseness [3]. The sparse channel estimation problem is faced in [4]
under a time domain sparse model point of view. In [4] a suitable dic-
tionary formed by delayed versions of the UWB transmitted pulse
is defined in order to better match the UWB signal. However, the
spike basis achieves maximal incoherence with the Fourier basis [5]
and is for that reason that seems more convenient to work with fre-
quency domain measurements. In [6] the sparse model is defined
in the frequency domain. To ensure that every measurement counts,
they propose to pre-modulate the input signal with a spread spectrum
sequence before the Fourier transformation.

Here, a sparse channel estimation approach is developed based
on the sparse frequency domain model of the UWB signals with-
out pre-modulation. We propose exploiting the sparse nature of the
channel through the use of a new greedy algorithm named extended
OMP (eOMP) in order to reduce the false path detection probability
achieved with classical OMP and to derive an improved TOA esti-
mation. The performance of the new model is compared with [4]
and [6].

The reminder of this paper is as follows: Section II describes
the classic UWB signal model. In Section III the sparse frequency
domain model is formulated and the extended OMP (eOMP) is intro-
duced. Simulation results of the new model and comparations with
the previous work in the literature are given in Section IV. Finally,
conclusions are drawn in Section V.

2. UWB SIGNAL MODEL

The transmitted UWB signal model can be written as,

s(t) =
∞∑

k=0

Nf−1∑

j=0

akp(t− jTf − kTsym) (1)

where the data ak ∈ ±1 is the k-th transmitted bit, Tsym is the
symbol duration and Tf = Tsym/Nf is the pulse repetition period.
To simplify notation, in the following it is assumed ak = 1.
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Signal s(t) propagates through an L-path fading channel whose
response to p(t) is

∑L−1
l=0 hlp(t − τl). The received waveform can

be written as

r(t) =
∞∑

k=0

Nf−1∑

j=0

L−1∑

l=0

hlp(t− T j
k − τl) + w(t) (2)

where w(t) is thermal noise with two-sided power spectral density
No/2 and T j

k = jTf + kTsym. The signal associated to the j-th
transmitted pulse corresponding to the k-th symbol, in the frequency
domain yields

Y k
j (w) =

L−1∑

l=0

hlS
k
j (w)e−jwτl + V k

j (w) (3)

with
Sk

j (w) = P (w)e−jw(kNf +j)Tf (4)

where P (w) denotes the Fourier Transform of the pulse p(t) and
V k

j (w) is the noise in the frequency domain associated to the j-
th frame interval correspondig to the k-th symbol. Sampling (3)
at wm = w0m for m = 0, 1, . . . , M − 1 where w0 = 2π

Tf
and

rearranging the frequency domain samples Y k
j [m] into the vector

Yk
j ∈ CM×1 yields

Yk
j =

L−1∑

l=0

hlSk
j eτl + Vk

j = Sk
j Eh + Vk

j (5)

where the matrix Sk
j ∈ CM×M is a diagonal matrix whose com-

ponents are the frequency samples of Sk
j (w) and the matrix E ∈

CM×L contains the delay-signature vectors associated to each arriv-
ing delayed signal

E =
[
eτ0 . . . eτl . . . eτL−1

]
(6)

with eτl =
[
1 e−jw0τl . . . e−jw0(M−1)τl

]T
. The channel

fading coefficients are arranged in the vector h =
[
h0 . . . hL−1

]T ∈
RL×1, and the noise samples in vector Vk

j ∈ CM×1.

3. EXTENDED OMP IN FREQUENCY DOMAIN

A proper sparse representation of the channel is required in order to
easily apply the CS theory. A tutorial overview of some of the basic
developments in CS can be found in [5]. The expression in (5) free
of noise can be extended and reformulated as,

Yk
j = Bk

j he = Sk
j Eehe (7)

The main difference between (7) and (5) is the extended matrix Ee,
which is an M ×M extended delay-matrix which contains not only
the L delay-signature vectors corresponding to the multipath, but
also M−L delay-signature vectors with no channel contribution (see
Fig. 1). Therefore, vector he is an L-sparse vector whose elements
different from zero correspond to the original channel coefficients,
that is, calling eτm the m-th column of Ee, when

eτm = eτl for l = 0, . . . , L− 1 (8)

Note that the dimension M will determine the path resolution.
In a typical CS notation, he can be identified as the L-sparse

vector and Bk
j as the dictionary where the channel becomes sparse.

Fig. 1. Sparse Sructure of the channel

In order to compress the frequency domain samples a widely used
random matrix Cf ∈ RN×M with entries i.i.d. taken from a normal
distribution with zero-mean and unit variance is used.

Yc = Cf Yk
j = Cf Bk

j he (9)

where Yc is the N × 1 vector of measurements. Cf is known as
measurement matrix and it has rank N lesser than the rank of the
signal which is equal to M . Thus, the N×M matrix Cf is projecting
the signal Yk

j . Randomness in the measurement matrix can lead to
a very efficient sensing mechanisms. It has been shown that random
matrices are largely incoherent with any fixed basis (which is one of
the principles of CS).

Therefore, the sparse channel estimation ĥe can be obtained
from the compressed samples Yc applying sparse signal reconstruc-
tion techniques. The sparse signal reconvery problem is formulated
as,

min
ĥe∈RM

∥∥∥ĥe

∥∥∥
l1

s.t. Yc = Cf Bk
j ĥe (10)

where
∥∥∥ĥe

∥∥∥
l1

=
∑M

i=1

∣∣∣ĥe(i)
∣∣∣. Note that the only prior knowledge

required is that he is sparse. Reconstruction then only requires the
space in which the signal is sparse.

There are many approaches discussed in literature for solving
(10). Currently, the two most popular approaches are matching pur-
suit (MP) [7] and basis pursuit (BP) [8]. With MP (and one of its
variants OMP) the sparse signal is iteratively built up by selecting
the atom that maximally improves the representation at each itera-
tion. On the other hand, BP directly looks for the vector that min-
imize the l1-norm coefficients, which is computationally expensive.
Here, OMP [9] is used to achieve faster and more efficient recon-
struction. However, imperfections between the assumed model and
the received signal can cause false path detection. This false path
detection leads to a wrong TOA estimation. To improve the TOA
estimation but preserving the performance of channel estimator it
is proposed an extended OMP (eOMP) (Algorithm 1). Both OMP
and eOMP are iterative greedy algorithms that select at each step
the dictionary element best correlated with the residual part of the
signal. Then they produce a new approximation by projecting the
signal onto the dictionary elements that have already been selected.
The main difference between OMP and eOMP is that eOMP not only
pick the column of the dictionary that is most strongly correlated but
also the 2k +1 neighbors of it. To obatin the final values of the non-
zero elements of the sparse vector the same step with only the most
strongly correlated element is computed in parallel.
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Algorithm 1 eOMP
Input
(·) An N ×M matrix Cf Bk

j which columns are expressed as ϕj

(·) An N dimensional data vector Yc

(·) An energy threshold
(·) Number of neighbors k (related to the pulse duration and the
channel estimation resolution)
Procedure
(1) Initialize the residual r0 = Yc, the index sets Λ0 = ∅ and
Λe

0 = ∅, and the iteration counter t = 1.
(2) Find the index λt that solves the easy optimization problem

λt = arg max
j=1,...,N

|〈rt−1, ϕj〉|

(3) Augment the extended and non-extended index set and the ex-
tended and non-extended matrix of chosen atoms:

Λe
t = Λe

t−1 ∪ {λt − k} ∪ . . . ∪ {λt} ∪ . . . ∪ {λt + k}

Φe
t = [Φe

t−1 ϕλt−k . . . ϕλt . . . ϕλt+k]

Λt = Λt−1 ∪ {λt}
Φt = [Φt−1 ϕλt ]

We use the convention that Φ0 and Φe
0 are empty matrices.

(4) Solve the least square problem to obtain a new signal estimate

xe
t = arg min

x
‖Yc − Φe

t x‖2

xt = arg min
x
‖Yc − Φtx‖2

(5) Calculate the new approximation of the data and the new resid-
ual

at = Φe
t xe

t

rt = Yc − at

(6) Increment t, and return to Step 2 if the energy threshold is not
achieved.
(7) The estimate ĥe for the ideal signal has nonzero indices at
the components listed in Λt and the value of the estimate ĥe in
component λj equals the j-th component of xt.

ĥe(Λt) = xt

4. SIMULATION RESULTS

For numerical evaluation of the algorithm we consider the channel
models developed within the framework of the IEEE 802.15.4a. In
particular it is used the CM1 Residential LOS channel model. All
simulations are given for 100 independent channel realizations. M
is fixed at 768 and the compression rate is expressed with ρ = N

M
(meaning ρ << 1 high undersampling). The pulse duration is equal
to 0.77ns (which theoreticaly correspond to a Nyquist compression
when ρ = 0.33). The number of multipath components L that form
the UWB channel can be quite large, however many of those paths
are negligible. Therefore, we limit ourselves to estimate the Lc most
significant paths which are the ones capturing 80% of the channel
energy.

The quality of the channel estimation is evaluated with the
RMSE computed as,

RMSE =
1

M
eHe (11)

where the error e is defined as,

e = ifft(Bk
j ĥe)− rwn (12)

with rwn being the received signal without noise.
Fig. 2 depicts the TOA estimation expressed in meters using

OMP and eOMP with k=2. It is shown that the new eOMP outper-
forms the classical OMP without degrading the RMSE of the channel
estimation (Fig. 3).
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Fig. 2. TOA estimation for ρ = 0.167
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Fig. 3. RMSE of the sparse channel estimation

Fig. 4 depicts the false path detection probability using OMP
and eOMP. The results are also compared for different compression
rates. Results shown that the new eOMP reduces the false alarm
probability. In both cases, performance is slightly worse as the com-
pression rate decrease.

From now on, eOMP will be used in future simulations.
The perfomance is compared with the time domain sparse model

proposed in [4] where the dictionary used is a circulant matrix P ∈
RM×M whose columns are shifted replicas of the mother pulse p(t).
The compressed samples are obtained with a random measurement
matrix as in (9),

yc = CtPĥe (13)
where Ct ∈ RN×M . In this case the RMSE is obtained with the
following error definition,

e = Pĥe − rwn (14)
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Fig. 4. False path detection probability for different compression
rates

Fig. 5 depicts the RMSE of the recovered signal using the chan-
nel estimation presented here compared with [4]. At the Nyquist
compression rate, the RMSE remains the same for both approaches.
But as the compression rate decrease, the errors in the time domain
increase more than in the frequency domain for high SNR.
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Fig. 5. RMSE of the recovered signal compared with the time do-
main approach in [4]

A comparison with another frequency domain model presented
in [6] has been done. In [6], the spectrum is spread pre-modulating
the input signal with a pseudorandom sequence p[n] before the
Fourier transformation ensuring that every measurement carries
information,

yc = RFdiag(p[n])Phe (15)

where F is the column normalized DFT matrix and R is the sub-
sampling operator. Therefore RF is simply standard Fourier sub-
sampling matrix.Results depicted in Fig. 6 show that the estimation
error with the new model outperforms [6] whatever the compression
rate is.
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Fig. 6. RMSE of the recovered signal compared with the approach
in [6]

5. CONCLUSIONS

A frequency domain UWB sparse channel estimator based on CS
theory has been presented and a new algorithm named eOMP is pro-
posed. Simulation proved that eOMP improve the classical OMP
TOA estimation. Simulation results carried out with eOMP have
shown that the new sparse channel model can outperform other mod-
els presented in [4] and [6] for high SNR and for high compression
rates.
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