5 research outputs found

    Novel Correspondence-based Approach for Consistent Human Skeleton Extraction

    Get PDF
    This paper presents a novel base-points-driven shape correspondence (BSC) approach to extract skeletons of articulated objects from 3D mesh shapes. The skeleton extraction based on BSC approach is more accurate than the traditional direct skeleton extraction methods. Since 3D shapes provide more geometric information, BSC offers the consistent information between the source shape and the target shapes. In this paper, we first extract the skeleton from a template shape such as the source shape automatically. Then, the skeletons of the target shapes of different poses are generated based on the correspondence relationship with source shape. The accuracy of the proposed method is demonstrated by presenting a comprehensive performance evaluation on multiple benchmark datasets. The results of the proposed approach can be applied to various applications such as skeleton-driven animation, shape segmentation and human motion analysis

    Automatic Alignment of 3D Multi-Sensor Point Clouds

    Get PDF
    Automatic 3D point cloud alignment is a major research topic in photogrammetry, computer vision and computer graphics. In this research, two keypoint feature matching approaches have been developed and proposed for the automatic alignment of 3D point clouds, which have been acquired from different sensor platforms and are in different 3D conformal coordinate systems. The first proposed approach is based on 3D keypoint feature matching. First, surface curvature information is utilized for scale-invariant 3D keypoint extraction. Adaptive non-maxima suppression (ANMS) is then applied to retain the most distinct and well-distributed set of keypoints. Afterwards, every keypoint is characterized by a scale, rotation and translation invariant 3D surface descriptor, called the radial geodesic distance-slope histogram. Similar keypoints descriptors on the source and target datasets are then matched using bipartite graph matching, followed by a modified-RANSAC for outlier removal. The second proposed method is based on 2D keypoint matching performed on height map images of the 3D point clouds. Height map images are generated by projecting the 3D point clouds onto a planimetric plane. Afterwards, a multi-scale wavelet 2D keypoint detector with ANMS is proposed to extract keypoints on the height maps. Then, a scale, rotation and translation-invariant 2D descriptor referred to as the Gabor, Log-Polar-Rapid Transform descriptor is computed for all keypoints. Finally, source and target height map keypoint correspondences are determined using a bi-directional nearest neighbour matching, together with the modified-RANSAC for outlier removal. Each method is assessed on multi-sensor, urban and non-urban 3D point cloud datasets. Results show that unlike the 3D-based method, the height map-based approach is able to align source and target datasets with differences in point density, point distribution and missing point data. Findings also show that the 3D-based method obtained lower transformation errors and a greater number of correspondences when the source and target have similar point characteristics. The 3D-based approach attained absolute mean alignment differences in the range of 0.23m to 2.81m, whereas the height map approach had a range from 0.17m to 1.21m. These differences meet the proximity requirements of the data characteristics and the further application of fine co-registration approaches

    3D FACE RECOGNITION USING LOCAL FEATURE BASED METHODS

    Get PDF
    Face recognition has attracted many researchers’ attention compared to other biometrics due to its non-intrusive and friendly nature. Although several methods for 2D face recognition have been proposed so far, there are still some challenges related to the 2D face including illumination, pose variation, and facial expression. In the last few decades, 3D face research area has become more interesting since shape and geometry information are used to handle challenges from 2D faces. Existing algorithms for face recognition are divided into three different categories: holistic feature-based, local feature-based, and hybrid methods. According to the literature, local features have shown better performance relative to holistic feature-based methods under expression and occlusion challenges. In this dissertation, local feature-based methods for 3D face recognition have been studied and surveyed. In the survey, local methods are classified into three broad categories which consist of keypoint-based, curve-based, and local surface-based methods. Inspired by keypoint-based methods which are effective to handle partial occlusion, structural context descriptor on pyramidal shape maps and texture image has been proposed in a multimodal scheme. Score-level fusion is used to combine keypoints’ matching score in both texture and shape modalities. The survey shows local surface-based methods are efficient to handle facial expression. Accordingly, a local derivative pattern is introduced to extract distinct features from depth map in this work. In addition, the local derivative pattern is applied on surface normals. Most 3D face recognition algorithms are focused to utilize the depth information to detect and extract features. Compared to depth maps, surface normals of each point can determine the facial surface orientation, which provides an efficient facial surface representation to extract distinct features for recognition task. An Extreme Learning Machine (ELM)-based auto-encoder is used to make the feature space more discriminative. Expression and occlusion robust analysis using the information from the normal maps are investigated by dividing the facial region into patches. A novel hybrid classifier is proposed to combine Sparse Representation Classifier (SRC) and ELM classifier in a weighted scheme. The proposed algorithms have been evaluated on four widely used 3D face databases; FRGC, Bosphorus, Bu-3DFE, and 3D-TEC. The experimental results illustrate the effectiveness of the proposed approaches. The main contribution of this work lies in identification and analysis of effective local features and a classification method for improving 3D face recognition performance

    MASSIVELY PARALLEL ALGORITHMS FOR POINT CLOUD BASED OBJECT RECOGNITION ON HETEROGENEOUS ARCHITECTURE

    Get PDF
    With the advent of new commodity depth sensors, point cloud data processing plays an increasingly important role in object recognition and perception. However, the computational cost of point cloud data processing is extremely high due to the large data size, high dimensionality, and algorithmic complexity. To address the computational challenges of real-time processing, this work investigates the possibilities of using modern heterogeneous computing platforms and its supporting ecosystem such as massively parallel architecture (MPA), computing cluster, compute unified device architecture (CUDA), and multithreaded programming to accelerate the point cloud based object recognition. The aforementioned computing platforms would not yield high performance unless the specific features are properly utilized. Failing that the result actually produces an inferior performance. To achieve the high-speed performance in image descriptor computing, indexing, and matching in point cloud based object recognition, this work explores both coarse and fine grain level parallelism, identifies the acceptable levels of algorithmic approximation, and analyzes various performance impactors. A set of heterogeneous parallel algorithms are designed and implemented in this work. These algorithms include exact and approximate scalable massively parallel image descriptors for descriptor computing, parallel construction of k-dimensional tree (KD-tree) and the forest of KD-trees for descriptor indexing, parallel approximate nearest neighbor search (ANNS) and buffered ANNS (BANNS) on the KD-tree and the forest of KD-trees for descriptor matching. The results show that the proposed massively parallel algorithms on heterogeneous computing platforms can significantly improve the execution time performance of feature computing, indexing, and matching. Meanwhile, this work demonstrates that the heterogeneous computing architectures, with appropriate architecture specific algorithms design and optimization, have the distinct advantages of improving the performance of multimedia applications
    corecore