91 research outputs found

    Using ontology in query answering systems: Scenarios, requirements and challenges

    Get PDF
    Equipped with the ultimate query answering system, computers would finally be in a position to address all our information needs in a natural way. In this paper, we describe how Language and Computing nv (L&C), a developer of ontology-based natural language understanding systems for the healthcare domain, is working towards the ultimate Question Answering (QA) System for healthcare workers. L&C’s company strategy in this area is to design in a step-by-step fashion the essential components of such a system, each component being designed to solve some one part of the total problem and at the same time reflect well-defined needs on the prat of our customers. We compare our strategy with the research roadmap proposed by the Question Answering Committee of the National Institute of Standards and Technology (NIST), paying special attention to the role of ontology

    Case Retrieval Nets as a Model for Building Flexible Information Systems

    Get PDF
    Im Rahmen dieser Arbeit wird das Modell der Case Retrieval Netze vorgestellt, das ein Speichermodell fĂŒr die Phase des Retrievals beim fallbasierten Schliessen darstellt. Dieses Modell lehnt sich an Assoziativspeicher an, insbesondere wird das Retrieval als Rekonstruktion des Falles betrachtet anstatt als eine Suche im traditionellen Sinne. Zwei der wesentlichen Vorteile des Modells sind Effizienz und FlexibilitĂ€t: Effizienz beschreibt dabei die FĂ€higkeit, mit grossen Fallbasen umzugehen und dennoch schnell ein Resultat des Retrievals liefern zu können. Im Rahmen dieser Arbeit wird dieser Aspekt formal untersucht, das Hauptaugenmerk ist aber eher pragmatisch motiviert insofern als der Retrieval-Prozess so schnell sein sollte, dass der Benutzer möglichst keine Wartezeiten in Kauf nehmen muss. FlexibilitĂ€t betrifft andererseits die allgemeine Anwendbarkeit des Modells in Bezug auf verĂ€nderte Aufgabenstellungen, auf alternative Formen der FallreprĂ€sentation usw. HierfĂŒr wird das Konzept der InformationsvervollstĂ€ndigung diskutiert, welches insbesondere fĂŒr die Beschreibung von interaktiven EntscheidungsunterstĂŒtzungssystemen geeignet ist. Traditionelle Problemlöseverfahren, wie etwa Klassifikation oder Diagnose, können als SpezialfĂ€lle von InformationsvervollstĂ€ndigung aufgefasst werden. Das formale Modell der Case Retrieval Netze wird im Detail erlĂ€utert und dessen Eigenschaften untersucht. Anschliessend werden einige möglich Erweiterungen beschrieben. Neben diesen theoretischen Aspekten bilden Anwendungen, die mit Hilfe des Case Retrieval Netz Modells erstellt wurden, einen weiteren Schwerpunkt. Diese lassen sich in zwei grosse Richtungen einordnen: intelligente VerkaufsunterstĂŒtzung fĂŒr Zwecke des E-Commerce sowie Wissensmanagement auf Basis textueller Dokumente, wobei fĂŒr letzteres der Aspekt der Wiederbenutzung von Problemlösewissen essentiell ist. FĂŒr jedes dieser Gebiete wird eine Anwendung im Detail beschrieben, weitere dienen der Illustration und werden nur kurz erlĂ€utert. Zuvor wird allgemein beschrieben, welche Aspekte bei Entwurf und Implementierung eines Informationssystems zu beachten sind, welches das Modell der Case Retrieval Netze nutzt.In this thesis, a specific memory structure is presented that has been developed for the retrieval task in Case-Based Reasoning systems, namely Case Retrieval Nets (CRNs). This model borrows from associative memories in that it suggests to interpret case retrieval as a process of re-constructing a stored case rather than searching for it in the traditional sense. Tow major advantages of this model are efficiency and flexibility: Efficiency, on the one hand, is concerned with the ability to handle large case bases and still deliver retrieval results reasonably fast. In this thesis, a formal investigation of efficiency is included but the main focus is set on a more pragmatic view in the sense that retrieval should, in the ideal case, be fast enough such that for the users of a related system no delay will be noticeable. Flexibility, on the other hand, is related to the general applicability of a case memory depending on the type of task to perform, the representation of cases etc. For this, the concept of information completion is discussed which allows to capture the interactive nature of problem solving methods in particular when they are applied within a decision support system environment. As discussed, information completion, thus, covers more specific problem solving types, such as classification and diagnosis. The formal model of CRNs is presented in detail and its properties are investigated. After that, some possible extensions are described. Besides these more theoretical aspects, a further focus is set on applications that have been developed on the basis of the CRN model. Roughly speaking, two areas of applications can be recognized: electronic commerce applications for which Case-Based Reasoning may provide intelligent sales support, and knowledge management based on textual documents where the reuse of problem solving knowledge plays a crucial role. For each of these areas, a single application is described in full detail and further case studies are listed for illustration purposes. Prior to the details of the applications, a more general framework is presented describing the general design and implementation of an information system that makes uses of the model of CRNs

    Autoplan: A self-processing network model for an extended blocks world planning environment

    Get PDF
    Self-processing network models (neural/connectionist models, marker passing/message passing networks, etc.) are currently undergoing intense investigation for a variety of information processing applications. These models are potentially very powerful in that they support a large amount of explicit parallel processing, and they cleanly integrate high level and low level information processing. However they are currently limited by a lack of understanding of how to apply them effectively in many application areas. The formulation of self-processing network methods for dynamic, reactive planning is studied. The long-term goal is to formulate robust, computationally effective information processing methods for the distributed control of semiautonomous exploration systems, e.g., the Mars Rover. The current research effort is focusing on hierarchical plan generation, execution and revision through local operations in an extended blocks world environment. This scenario involves many challenging features that would be encountered in a real planning and control environment: multiple simultaneous goals, parallel as well as sequential action execution, action sequencing determined not only by goals and their interactions but also by limited resources (e.g., three tasks, two acting agents), need to interpret unanticipated events and react appropriately through replanning, etc

    Numerical Study of Owls’ Leading-Edge Serrations

    Get PDF
    The silent flight ability of owls is often attributed to their unique wing morphology and its interaction with their wingbeat kinematics. Among these distinctive morphological features, leading-edge serrations stand out – these are rigid, miniature, hook-like patterns located at the leading edge of the primary feathers of their wings. It had been hypothesized that these leading-edge serrations serve as a passive flow control mechanism, influencing the aerodynamic performance and potentially affecting the boundary layer development over the wing, subsequently influencing wake flow dynamics. Despite being the subject of research spanning multiple decades, a consensus regarding the aerodynamic mechanisms underpinning owls’ leading-edge serrations remains elusive. While the literature extensively explores the aerodynamic and aeroacoustic properties of serrated wing geometries, the predominant focus had been on owl-like serrations, including sawtooth patterns, wavy configurations, cylindrical shapes, and slitted variations. This emphasis has often overshadowed the authentic geometry of owl wing serrations, which are notably shorter than the wing\u27s chord and oriented at an angle relative to the freestream airflow. In order to shed light on the flow dynamics associated with owls\u27 leading-edge serrations, this study delves into numerically simulating the flow field surrounding an owl wing, meticulously replicating the serrated leading-edge geometry, at an intermediate chord-based Reynolds number (40000). A direct numerical simulation (DNS) approach is employed to simulate the fluid flow problem, where the Navier-Stokes equations for incompressible flow are solved on a Cartesian grid with sufficient resolution to resolve all the relevant flow scales, while the wing is represented using an immersed boundary method. Two wing planforms are considered for numerical analysis: one featuring leading-edge serrations and another without them. The findings suggest that the serrations improve suction surface flow by promoting sustained flow reattachment via streamwise vorticity generation at the shear layer, prompting weaker reverse flow, and thus augmenting stall resistance. However, aerodynamic performance is negatively impacted due to the shear layer passing through the serration array which results in altered surface pressure distribution over the upper surface. It is also found that serration increases turbulence level in the downstream flow. Turbulent momentum transfer near the trailing edge is significantly increased due to the presence of serrations upstream the flow which also influences the mechanisms associated with separation vortex formation and its subsequent development over the upper surface of the wing. Turbulent budget analysis at the leading-edge shear layer demonstrates that serration reduces turbulence production in the immediate vicinity; however, the reduction effect does not persist further downstream when the shear layer rolls up, and eventually merges with a large separation vortex. In the wake of the serrated wing, integral scale was found to be larger than the smooth wing which implies that serrations at the leading-edge does not promote scale reduction at the wake

    Multi-step approach for automated scaling of photogrammetric micro-measurements

    Full text link
    [EN] Photogrammetry can be used for the measurement of small objects with micro-features, with good results, low costs, and the possible addition of texture information to the 3D models. The performance of this technique is strongly affected by the scaling method, since it retrieves a model that must be scaled after its elaboration. In this paper, a fully automated multi-step scaling system is presented, which is based on machine vision algorithms for retrieving blurred areas. This method allows researchers to find the correct scale factor for a photogrammetric micro model and is experimentally compared to the existing manual method basing on the German guideline VDI/VDE 2634, Part 3. The experimental tests are performed on millimeter-sized certified workpieces, finding micrometric errors, when referred to reference measurements. As a consequence, the method is candidate to be used for measurements of micro-features. The proposed tool improves the performance of the manual method by eliminating operator-dependent procedures. The software tool is available online as supplementary material and represents a powerful tool to face scaling issues of micro-photogrammetric activities.Frangione, A.; SĂĄnchez SalmerĂłn, AJ.; Modica, F.; Percoco, G. (2019). Multi-step approach for automated scaling of photogrammetric micro-measurements. The International Journal of Advanced Manufacturing Technology. 102(1-4):747-757. https://doi.org/10.1007/s00170-018-03258-w7477571021-

    Connectionist Inference Models

    Get PDF
    The performance of symbolic inference tasks has long been a challenge to connectionists. In this paper, we present an extended survey of this area. Existing connectionist inference systems are reviewed, with particular reference to how they perform variable binding and rule-based reasoning, and whether they involve distributed or localist representations. The benefits and disadvantages of different representations and systems are outlined, and conclusions drawn regarding the capabilities of connectionist inference systems when compared with symbolic inference systems or when used for cognitive modeling

    Semantic networks

    Get PDF
    AbstractA semantic network is a graph of the structure of meaning. This article introduces semantic network systems and their importance in Artificial Intelligence, followed by I. the early background; II. a summary of the basic ideas and issues including link types, frame systems, case relations, link valence, abstraction, inheritance hierarchies and logic extensions; and III. a survey of ‘world-structuring’ systems including ontologies, causal link models, continuous models, relevance, formal dictionaries, semantic primitives and intersecting inference hierarchies. Speed and practical implementation are briefly discussed. The conclusion argues for a synthesis of relational graph theory, graph-grammar theory and order theory based on semantic primitives and multiple intersecting inference hierarchies

    Texture Coding in the Rat Whisker System: Slip-Stick Versus Differential Resonance

    Get PDF
    Rats discriminate surface textures using their whiskers (vibrissae), but how whiskers extract texture information, and how this information is encoded by the brain, are not known. In the resonance model, whisker motion across different textures excites mechanical resonance in distinct subsets of whiskers, due to variation across whiskers in resonance frequency, which varies with whisker length. Texture information is therefore encoded by the spatial pattern of activated whiskers. In the competing kinetic signature model, different textures excite resonance equally across whiskers, and instead, texture is encoded by characteristic, nonuniform temporal patterns of whisker motion. We tested these models by measuring whisker motion in awake, behaving rats whisking in air and onto sandpaper surfaces. Resonant motion was prominent during whisking in air, with fundamental frequencies ranging from approximately 35 Hz for the long Delta whisker to approximately 110 Hz for the shorter D3 whisker. Resonant vibrations also occurred while whisking against textures, but the amplitude of resonance within single whiskers was independent of texture, contradicting the resonance model. Rather, whiskers resonated transiently during discrete, high-velocity, and high-acceleration slip-stick events, which occurred prominently during whisking on surfaces. The rate and magnitude of slip-stick events varied systematically with texture. These results suggest that texture is encoded not by differential resonant motion across whiskers, but by the magnitude and temporal pattern of slip-stick motion. These findings predict a temporal code for texture in neural spike trains

    A unified platform for experimental and computational biology

    Get PDF
    PhD ThesisIn natural sciences, the correct engineering of a system’s chemical, biological and physical properties may allow it to sustain life. Bioengineering cells is probably one of the most complex challenges of biological research; yet, the little we do know about the nature of life is sufficient to guide scientific research, and to explore the elements beyond the apparent simple proliferation of living cells. Although Mendel first characterised the concept of genetic heredity over 150 years ago, we only recently became able to perform tailored genetic modification of living organisms. The development of digital technologies, in particular, has positively influenced the quality and reproducibility of experimental results emerging from biological assays. However, the use of any equipment may require the need for a specific expertise in order to perform a given experimental procedure. Therefore, multidisciplinary research can bring benefits to all fields of science by helping the development of analytical methods that cross the boundaries of individual disciplines. This emerges as a systematic view of scientific problems, and relies on the adequation and integration of results from different research areas. Nevertheless, there is a complex interface between hard sciences that often creates a gap between experimental and theoretical models. In this thesis, we explored synthetic biology approaches and created a unified platform to fill this gap. We propose the first barcoding platform (Bac2code) that allows the identification and the tracking of bacterial strains. In order to facilitate communication between researchers, we developed a barcode system in DNA that physically links bacteria to their genetic description. We designed DNA barcodes as bioorthogonal elements, elaborated a universal cloning strategy to integrate these sequences in Gram-negative and Gram-positive bacteria, and demonstrated their stability over time. Through a generic protocol, any barcoded strain can later be identified via a single sequencing read. With the engineering of a synthetic circuit library, we built a biorepository of genetic constructs for our barcoding platform. These biological devices were optimised based on the closest achievable interface between experimental biology and viii computational results. Following their characterisation, and in the context of intercellular communication, we studied the behaviour of small cohorts of bioengineered cells at the microscale in microfluidics. We pushed the biological and physical boundaries of engineering techniques to the maximum, in order to observe physiological changes between bacteria separated by distances down to 20”m. However, we also showed that we reached a technological barrier, where even the use of nanoscale features was found insufficient to maintain cells isolated under high cellular density. Yet, microfluidics remains a remarkable technology, and we propose the expansion of barcoding methods to automated systems, which would allow serial barcode integration and documentation retrieval at any one time. Here, we developed and tested a barcoding method to ensure the cohesion of experimental and computational biology resources. We demonstrated its use by the in vitro assembly and the in vivo or in silico characterisation of a series of genetic circuits via different techniques. The research output of this thesis is realised as a step forward in interdisciplinary studies, and is now being adapted to reach a larger community of users as a startup companyEngineering and Physical Sciences Research Council and Newcastle University’s School of Computing Science
    • 

    corecore