12 research outputs found

    Application of augmented reality and robotic technology in broadcasting: A survey

    Get PDF
    As an innovation technique, Augmented Reality (AR) has been gradually deployed in the broadcast, videography and cinematography industries. Virtual graphics generated by AR are dynamic and overlap on the surface of the environment so that the original appearance can be greatly enhanced in comparison with traditional broadcasting. In addition, AR enables broadcasters to interact with augmented virtual 3D models on a broadcasting scene in order to enhance the performance of broadcasting. Recently, advanced robotic technologies have been deployed in a camera shooting system to create a robotic cameraman so that the performance of AR broadcasting could be further improved, which is highlighted in the paper

    Object information based on marker recognition

    Get PDF

    Development of computer vision algorithms using J2ME for mobile phone applications.

    Get PDF
    This thesis describes research on the use of Java to develop cross-platform computer vision applications for mobile phones with integrated cameras. The particular area of research that we are interested in is Mobile Augmented Reality (AR). Currently there is no computer vision library which can be used for mobile Augmented Reality using the J2ME platform. This thesis introduces the structure of our J2ME computer vision library and describes the implementation of algorithms in our library. We also present several sample applications on J2ME enabled mobile phones and report on experiments conducted to evaluate the compatibility, portability and efficiency of the implemented algorithms

    Marker-Based Embodied Interaction for Handheld Augmented Reality Games

    No full text
    This article deals with embodied user interfaces for handheld augmented reality games, which consist of both physical and virtual components. We have developed a number of spatial interaction techniques that optically capture the device's movement and orientation relative to a visual marker. Such physical interactions in 3-D space enable manipulative control of mobile games. In addition to acting as a physical controller that recognizes multiple game-dependent gestures, the mobile device augments the camera view with graphical overlays. We describe three game prototypes that use ubiquitous product packaging and other passive media as backgrounds for handheld augmentation. The prototypes can be realized on widely available off-the-shelf hardware and require only minimal setup and infrastructure support

    Un Visor Web de Modelos 3D

    Full text link
    [ES] El trabajo consiste en el desarrollo de un visor de modelos tridimensionales operativo sobre un navegador web. El visualizador mostrar谩 modelos 3D contenidos en una base de datos junto con otra informaci贸n de referencia. Los modelos deber谩n estar en formato OBJ o STL. El visor permitir谩 al usuario examinar el modelo seleccionado desde diferentes puntos de vista, junto con otras utilidades como zoom o herramientas de medici贸n. Tambi茅n se mostrar谩 la informaci贸n relacionada con el modelo, ya sea formato de texto, o en otros formatos multimedia. El visor debe funcionar sobre los principales navegadores existentes.[EN] The goal of this work is the development of an operating display for three-dimensional models on a web browser. The display will shows 3D models contained in a database along with other reference information. The models must be in OBJ or STL format. The display will allow the user to examine the selected model from different viewpoints, along with other features such as zoom and measurement tools. Information related to the model, either plain text, or other media formats is also displayed. The display should work on major existing web browsers.Guillot Sillas, J. (2016). Un Visor Web de Modelos 3D. http://hdl.handle.net/10251/76313.TFG

    Marker-Based Embodied Interaction for Handheld Augmented Reality Games

    No full text
    Abstract This paper proposes embodied and manipulative interaction for handheld augmented reality games. We use camera-equipped mobile devices and marker-based interaction as a means for gesture-based control of games that incorporate physical and virtual aspects. In addition to being a controller that recognizes multiple game-dependent gestures, the mobile device displays the camera image and augments it with graphical overlays. The overlays are registered with objects and areas in the camera image. We have developed marker-based interaction techniques that capture the posture and movement of a device relative to a marker and thus enable manipulative control. We describe game prototypes that use ubiquitous product packaging and other passive media as backgrounds for handheld augmented reality games.

    Desarrollo de una aplicaci贸n de Realidad Aumentada para simulaci贸n de mol茅culas

    Full text link
    S谩nchez Bl谩zquez, D. (2010). Desarrollo de una aplicaci贸n de Realidad Aumentada para simulaci贸n de mol茅culas. http://hdl.handle.net/10251/10240.Archivo delegad

    Development of augmented reality software and QR codes for the academic support of students in the fifth grade of primary school in the mathematical subject

    Get PDF
    En su informe sobre el avance en los objetivos del milenio fijados por los pa铆ses inscritos por la ONU, se evidencia la gran brecha que existe entre instituciones urbanas y rurales, al no contar con recursos econ贸micos, tecnol贸gicos y oportunidades como el acceso a contenidos virtuales por medio de internet. Por este motivo surge la necesidad de desarrollar una aplicaci贸n que permita y apoye el proceso de ense帽anza de los estudiantes combinando la tecnolog铆a realidad aumentada, apoyada por un tipo de c贸digo de barras QR que cuente no solo con las mismas caracter铆sticas de los marcadores tradicionales, sino que pueda almacenar informaci贸n y ser identificado desde cualquier sentido por la aplicaci贸n. Este documento presenta la evoluci贸n de la realidad aumentada, la metodolog铆a y los resultados obtenidos a trav茅s del estudio comparativo de los c贸digos de barras bidimensionales m谩s usados; el proceso del desarrollo del software y su aplicaci贸n en un grupo experimental con el prop贸sito de conocer el grado de aceptaci贸n de los estudiantes hacia este tipo de aplicaciones, dejando un propuesta y vistazo sobre la importancia de esta aplicaci贸n como herramienta educativa.INTRODUCCI脫N 7 1. CONTEXTO GENERAL DEL PROYECTO 8 1.1 ORIENTACI脫N DEL PROYECTO 8 1.1.1 OBJETIVOS 8 1.1.2 OBJETO 8 1.1.3 LIMITACIONES 8 1.2 脕MBITO DE APLICACI脫N 9 1.2.1 SITUACI脫N ACTUAL EN LA INSTITUCI脫N 9 2. SITUACI脫N ACTUAL Y PERSPECTIVAS DE LA REALIDAD AUMENTADA 11 2.1 驴QU脡 ES LA REALIDAD AUMENTADA? 11 2.1.1 Realidad Aumentada de Laboratorio 13 2.1.2 Realidad Aumentada Simple 15 2.1.3 Realidad Aumentada Inmersiva 17 2.2 REALIDAD AUMENTADA CON MARCADORES 18 2.2.1 Plantillas 19 2.2.2 Marcadores de Datos 23 2.2.3 Im谩genes 27 2.3 REALIDAD AUMENTADA SIN MARCADORES 28 2.3.1 Sistema de Posicionamiento Global en AR 28 2.3.2 Obteniendo la posici贸n por Wifi 32 2.4 RESULTADO 33 3. EVALUACI脫N DE LOS C脫DIGOS QR FRENTE A OTROS C脫DIGOS 2D 35 3.1 IDENTIFICACI脫N DE LOS C脫DIGOS 2D USADOS EN REALIDAD AUMENTADA 36 3.2 AN脕LISIS DE LOS C脫DIGOS 2D SELECCIONADOS 37 3.2.1 C脫DIGO DATAMATRIX 38 3.2.2 C脫DIGO QR 43 3.3 EVALUACI脫N 49 3.4 RESULTADOS OBTENIDOS 52 4. EVALUACI脫N DE LOS MODELOS EDUCATIVOS ASOCIADOS A LAS TIC鈥橲 61 4.1 APRENDIZAJE ELECTR脫NICO (E-LEARNING) 61 4.1.1 CARACTER脥STICAS 62 4.1.2 ESTRATEGIAS ASOCIADAS A E-LEARNING 63 4.1.3 APLICACIONES ASOCIADAS A E-LEARNING 64 4.2 APRENDIZAJE MOVIL (M-LEARNING) 66 4.2.1 CARACTER脥STICAS 67 4.2.2 ESTRATEGIAS ASOCIADAS A M-LEARNING 68 4.2.3 APLICACIONES RELACIONADAS CON M-LEARNING 69 4.3 APRENDIZAJE MIXTO (B-LEARNING) 70 4.3.1 CARACTER脥STICAS 71 4.3.2 ESTRATEGIAS ASOCIADAS A B-LEARNING 72 4.3.3 APLICACIONES RELACIONADAS CON B-LEARNING 73 4.4 CLASIFICACI脫N DE LOS MODELOS EDUCATIVOS 74 4.4.1 Modelo Colaborativo 74 4.4.2 Modelo Conductista 74 4.4.3 Modelo Constructivista 74 4.4.4 Modelo Informal 75 4.4.5 Modelo Situacional 75 4.4.6 Modelo Social 75 4.5 EVALUACI脫N Y ESCOGENCIA DEL MODELO EDUCATIVO A APLICAR EN EL AULA 75 5. DEFINICI脫N Y TERMINOLOG脥A DE LAS HERRAMIENTAS USADAS EN EL DESARROLLO DE LA APLICACI脫N 77 5.1 ECLIPSE 77 5.1.1 FRAMEWORKS Y PLUGINS 77 5.1.2 LIBRER脥AS 78 6. DISE脩O Y DESARROLLO DE QuAR 79 6.1 ESPECIFICACI脫N DE REQUERIMIENTOS DE SOFTWARE 79 6.1.1 Requerimientos funcionales 79 6.1.2 Requerimientos no funcionales 79 6.2 DISE脩O DE LA APLICACI脫N 80 6.2.1 Prop贸sito 80 6.2.2 Diagrama de caso de uso 80 6.2.3 Diagrama de colaboraci贸n 81 6.2.4 Diagrama de clases 82 6.2.5 Diagrama de componentes 83 6.3 ARQUITECTURA DEL SOFTWARE 83 6.3.1 Contexto De Negocio 84 6.3.2 Descripci贸n Del Problema 84 6.3.3 Stakeholders Y Actores 85 6.3.4 Drivers De Arquitectura 86 6.3.5 Restricciones T茅cnicas 87 6.3.6 Restricciones Del Negocio 88 6.3.7 Pol铆tica 88 6.3.8 Supuestos 88 6.3.9 Descripci贸n Del Sistema 89 6.3.10 Dise帽o de la interfaz 91 6.4 MANUAL DE USUARIO DE LA APLICACI脫N QuAR 95 6.4.1 ELABORACI脫N DEL MARCADOR 95 6.4.2 USO DEL MARCADOR POR MEDIO DE LA APLICACI脫N 97 7. REALIDAD AUMENTADA EN EL AULA 99 7.1 ELABORACI脫N DEL CUESTIONARIO PRE 100 7.2 DESARROLLO DE LAS SESIONES 101 7.2.1 Etapa de planeaci贸n. 102 7.2.2 Etapa de dise帽o. 102 7.2.3 Desarrollo de las actividades. 103 7.3 ELABORACI脫N DEL CUESTIONARIO POST 103 7.4 RESULTADOS OBTENIDOS DE LAS ENCUESTAS 105 7.4.1 CUESTIONARIO INICIAL (PRE) 105 7.4.2 CUESTIONARIO INICIAL (POST) 107 8. DISCUSI脫N 111 9. TRABAJOS FUTUROS 112 10. CONCLUSIONES 113 11. REFERENCIAS 114Maestr铆aIn its report on the advancement of the millennium goals set by the countries registered by the UN, the great gap that exists between urban and rural institutions is evident, without having economic, technological resources and opportunities such as access to virtual content Through internet. For this reason the need arises to develop an application that allows and supports the teaching process of students combining augmented reality technology, supported by a type of QR barcode that has not only the unique characteristics of traditional markers, but that can identify information and be identified in any way by the application. This document presents the evolution of augmented reality, the methodology and the results obtained through the comparative study of the most used two-dimensional barcodes; The process of software development and its application in an experimental group with the purpose of knowing the degree of acceptance of students towards this type of applications, leaving a proposal and seeing the importance of this application as an educational tool.Modalidad Presencia

    Analyzing the Impact of Spatio-Temporal Sensor Resolution on Player Experience in Augmented Reality Games

    Get PDF
    Along with automating everyday tasks of human life, smartphones have become one of the most popular devices to play video games on due to their interactivity. Smartphones are embedded with various sensors which enhance their ability to adopt new new interaction techniques for video games. These integrated sen- sors, such as motion sensors or location sensors, make the device able to adopt new interaction techniques that enhance usability. However, despite their mobility and embedded sensor capacity, smartphones are limited in processing power and display area compared to desktop computer consoles. When it comes to evaluat- ing Player Experience (PX), players might not have as compelling an experience because the rich graphics environments that a desktop computer can provide are absent on a smartphone. A plausible alternative in this regard can be substituting the virtual game world with a real world game board, perceived through the device camera by rendering the digital artifacts over the camera view. This technology is widely known as Augmented Reality (AR). Smartphone sensors (e.g. GPS, accelerometer, gyro-meter, compass) have enhanced the capability for deploying Augmented Reality technology. AR has been applied to a large number of smartphone games including shooters, casual games, or puzzles. Because AR play environments are viewed through the camera, rendering the digital artifacts consistently and accurately is crucial because the digital characters need to move with respect to sensed orientation, then the accelerometer and gyroscope need to provide su ciently accurate and precise readings to make the game playable. In particular, determining the pose of the camera in space is vital as the appropriate angle to view the rendered digital characters are determined by the pose of the camera. This defines how well the players will be able interact with the digital game characters. Depending in the Quality of Service (QoS) of these sensors, the Player Experience (PX) may vary as the rendering of digital characters are affected by noisy sensors causing a loss of registration. Confronting such problem while developing AR games is di cult in general as it requires creating wide variety of game types, narratives, input modalities as well as user-testing. Moreover, current AR games developers do not have any specific guidelines for developing AR games, and concrete guidelines outlining the tradeoffs between QoS and PX for different genres and interaction techniques are required. My dissertation provides a complete view (a taxonomy) of the spatio-temporal sensor resolution depen- dency of the existing AR games. Four user experiments have been conducted and one experiment is proposed to validate the taxonomy and demonstrate the differential impact of sensor noise on gameplay of different genres of AR games in different aspect of PX. This analysis is performed in the context of a novel instru- mentation technology, which allows the controlled manipulation of QoS on position and orientation sensors. The experimental outcome demonstrated how the QoS of input sensor noise impacts the PX differently while playing AR game of different genre and the key elements creating this differential impact are - the input modality, narrative and game mechanics. Later, concrete guidelines are derived to regulate the sensor QoS as complete set of instructions to develop different genres or AR games

    Metodolog铆a para un sistemas de visi贸n artificial apoyado con realidad aumentada en base a marcadores para un robot m贸vil

    Get PDF
    En la presente investigaci贸n, se propone una metodolog铆a para integrar sistemas de visi贸n artificial apoyada con realidad aumentada en base a marcadores, para robots m贸viles, con el fin de evaluar la navegaci贸n en ambientes de trabajo, combinando objetos virtuales y reales en un solo escenario, de modo que no sea obligatorio tener los elementos f铆sicos para estudiar el comportamiento de los robots, permitiendo diferentes pruebas en los prototipos, obteniendo la flexibilidad del mundo virtual y la fiabilidad de los ambientes de prueba realesIn the present research, there is a proposition of a methodology forwarded to integrate artificial vision systems, supported whit amplified reality, based on markets for mobile robots, trying to evaluate its navigation in working environments, mixing both virtual and real objects in only one scenery in a way that possibilities or makes no mandatory, the existence of the objects in order to study the behavior of the robots, allowing different kinds of test in the prototypes, obtaining by this way, the flexibility of the virtual environment, and the trustiness of the actual test environmentsMagister en Automatizaci贸n y Contro
    corecore