53,363 research outputs found

    Towards design of prognostics and health management solutions for maritime assets

    Get PDF
    With increase in competition between OEMs of maritime assets and operators alike, the need to maximize the productivity of an equipment and increase operational efficiency and reliability is increasingly stringent and challenging. Also, with the adoption of availability contracts, maritime OEMs are becoming directly interested in understanding the health of their assets in order to maximize profits and to minimize the risk of a system's failure. The key to address these challenges and needs is performance optimization. For this to be possible it is important to understand that system failure can induce downtime which will increase the total cost of ownership, therefore it is important by all means to minimize unscheduled maintenance. If the state of health or condition of a system, subsystem or component is known, condition-based maintenance can be carried out and system design optimization can be achieved thereby reducing total cost of ownership. With the increasing competition with regards to the maritime industry, it is important that the state of health of a component/sub-system/system/asset is known before a vessel embarks on a mission. Any breakdown or malfunction in any part of any system or subsystem on board vessel during the operation offshore will lead to large economic losses and sometimes cause accidents. For example, damages to the fuel oil system of vessel's main engine can result in huge downtime as a result of the vessel not being in operation. This paper presents a prognostic and health management (PHM) development process applied on a fuel oil system powering diesel engines typically used in various cruise and fishing vessels, dredgers, pipe laying vessels and large oil tankers. This process will hopefully enable future PHM solutions for maritime assets to be designed in a more formal and systematic way

    Shipboard Crisis Management: A Case Study.

    Get PDF
    The loss of the "Green Lily" in 1997 is used as a case study to highlight the characteristics of escalating crises. As in similar safety critical industries, these situations are unpredictable events that may require co-ordinated but flexible and creative responses from individuals and teams working in stressful conditions. Fundamental skill requirements for crisis management are situational awareness and decision making. This paper reviews the naturalistic decision making (NDM) model for insights into the nature of these skills and considers the optimal training regimes to cultivate them. The paper concludes with a review of the issues regarding the assessment of crisis management skills and current research into the determination of behavioural markers for measuring competence

    Safety in maritime oil sector: Content analysis of machinery space fire hazards

    Get PDF
    An in-depth study of the practice within the maritime oil industry was undertaken to ascertain safety issues in seafaring vessels. It was more concentrated on the type of accidents that occur in machine spaces of seafaring vessels in this industry. The main focus of the research was streamlined to fire in machinery spaces. The literature review later concentrated on two of such incidences, they are oil spill and fire events. An investigation was done to assess those factors which actually contribute or are in association to fire outbreak. A content analysis methodology was used to investigate the associative relationships to fire outbreak with the aid of NVivo 9.0 software. The investigation focused on 15 key in-depth reports on machinery space incidences which were uploaded into the software. The results indicate that leakages on hot surfaces were the major causes of fire hazards in seafaring vessels. The results from using this methodology also highlighted two more fire hazards that were not so apparent in previous studies. They are generator fire and compressors fire. The results supported other studies about leakages on hot surfaces as a major contributor, but also clearly show that there are other hazardous factors of fire in machinery spaces that require further investigation

    Documenting the last surviving traditional boats on the Maltese Islands: a case study on the firilla

    Get PDF
    This report focuses on research carried out on the collection of firilli boats found at the Maritime Museum in Vittoriosa, Malta. The objectives were to document and record this boat type, by collecting knowledge from oral traditions and literature, paintings and photographs, tools and materials and ideologies. An environmental and historical background is outlined at the beginning of this study, providing the context for the firilla boat. Following this, previous literature dealing with documentation of traditional craft is presented. The methodology applied to document the primary sources is explained, along with a brief description of the secondary data collection. The subsequent section describes the results of the boat documentation, leading to a discussion of the most prominent differences.peer-reviewe

    From Offshore Operation to Onshore Simulator: Using Visualized Ethnographic Outcomes to Work with Systems Developers

    Get PDF
    This paper focuses on the process of translating insights from a Computer Supported Cooperative Work (CSCW)-based study, conducted on a vessel at sea, into a model that can assist systems developers working with simulators, which are used by vessel operators for training purposes on land. That is, the empirical study at sea brought about rich insights into cooperation, which is important for systems developers to know about and consider in their designs. In the paper, we establish a model that primarily consists of a ‘computational artifact’. The model is designed to support researchers working with systems developers. Drawing on marine examples, we focus on the translation process and investigate how the model serves to visualize work activities; how it addresses relations between technical and computational artifacts, as well as between functions in technical systems and functionalities in cooperative systems. In turn, we link design back to fieldwork studies

    Energy efficiency parametric design tool in the framework of holistic ship design optimization

    Get PDF
    Recent International Maritime Organization (IMO) decisions with respect to measures to reduce the emissions from maritime greenhouse gases (GHGs) suggest that the collaboration of all major stakeholders of shipbuilding and ship operations is required to address this complex techno-economical and highly political problem efficiently. This calls eventually for the development of proper design, operational knowledge, and assessment tools for the energy-efficient design and operation of ships, as suggested by the Second IMO GHG Study (2009). This type of coordination of the efforts of many maritime stakeholders, with often conflicting professional interests but ultimately commonly aiming at optimal ship design and operation solutions, has been addressed within a methodology developed in the EU-funded Logistics-Based (LOGBASED) Design Project (2004–2007). Based on the knowledge base developed within this project, a new parametric design software tool (PDT) has been developed by the National Technical University of Athens, Ship Design Laboratory (NTUA-SDL), for implementing an energy efficiency design and management procedure. The PDT is an integral part of an earlier developed holistic ship design optimization approach by NTUA-SDL that addresses the multi-objective ship design optimization problem. It provides Pareto-optimum solutions and a complete mapping of the design space in a comprehensive way for the final assessment and decision by all the involved stakeholders. The application of the tool to the design of a large oil tanker and alternatively to container ships is elaborated in the presented paper

    Preserving and Protecting New York City's Working Waterfront: Our Critical Yet Less Visible Economic Engine

    Get PDF
    The New York-New Jersey Harbor is an economic engine and the center of a logistics cluster that includes rail, highway, and air connections to the rest of the nation and the world. The welcoming waters and shoreline that greeted Henry Hudson have fostered the commerce that built our city over the centuries. Today's working waterfront continues to be a vital part of the regional economy and must be protected and New York City's waterfront has long been a mainstay of its economy.Jobs associated with the working waterfront also continue to increase. Much of the shipping activities is clustered around Newark Bay in New Jersey. But New York City also remains a vibrant home to the maritime support industry: more than 90 percent of support vessels, including tug boats and barges as well as ship repair facilities are located either on the Kill Van Kull shoreline of Staten Island or the Brooklyn waterfront. Overall, the port contributes to NYC's economy more than 31,000 jobs, nearly 2.1billioninpersonalincome,nearly2.1 billion in personal income, nearly 6.8 billion in business activity and nearly $1.3 billion in tax revenues.The Metropolitan Waterfront Alliance calls on New York City to promote key programs, facilities and industries to preserve, protect, and grow the working waterfront of New York City. By doing so the city will ensure the viability of its working waterfront and in doing so will preserve deep-water maritime areas on the city's waterfront that have infrastructure that cannot be recreated

    Litigate or Innovate? US Shipping in [the] 21st Century

    Get PDF

    Maintenance/repair and production-oriented life cycle cost/earning model for ship structural optimisation during conceptual design stage

    Get PDF
    The aim of this paper is to investigate the effect of the change in structural weight due to optimisation experiments on life cycle cost and earning elements using the life cycle cost/earning model, which was developed for structure optimisation. The relation between structural variables and relevant cost/earning elements are explored and discussed in detail. The developed model is restricted to the relevant life cycle cost and earning elements, namely production cost, periodic maintenance cost, fuel oil cost, operational earning and dismantling earning. Therefore it is important to emphasise here that the cost/earning figure calculated through the developed methodology will not be a full life cycle cost/earning value for a subject vessel, but will be the relevant life cycle cost/earning value. As one of the main focuses of this paper is the maintenance/repair issue, the data was collected from a number of ship operators and was solely used for the purpose of regression analysis. An illustrative example for a chemical tanker is provided to show the applicability of the proposed approac
    • …
    corecore