5 research outputs found

    Functional Organization of the Brain at Rest and During Complex Tasks Using fMRI

    Get PDF
    How and why functional connectivity (FC), which captures the correlations among brain regions and/or networks, differs in various brain states has been incompletely understood. I review high-level background on this problem and how it relates to 1) the contributions of task-evoked activity, 2) white-matter fMRI, and 3) disease states in Chapter 1. In Chapter 2, based on the notion that brain activity during a task reflects an unknown mixture of spontaneous activity and task-evoked responses, we uncovered that the difference in FC between a task state (a naturalistic movie) and resting state only marginally (3-15%) reflects task-evoked connectivity. Instead, these changes may reflect changes in spontaneously emerging networks. In Chapter 3, we were able to show subtle task-related differences in the white matter using fMRI, which has only rarely been used to study functions in this tissue type. In doing so, we also demonstrated that white matter independent components were also hierarchically organized into axonal fiber bundles, challenging the conventional practice of taking white-matter signals as noise or artifacts. Finally, in Chapter 4, we examined the utility of combining FC with task-activation studies in uncovering changes in brain activity during preclinical Alzheimer\u27s Disease (mild cognitive impairment (MCI) and subjective cognitive decline (SCD) populations), based on data collected at the Indiana University School of Medicine. We found a reduction in neural task-based activations and resting-state FC that appeared to be directly related to diagnostic severity. Taken together, the work presented in this dissertation paves the way for a novel framework for understanding neural dynamics in health and disease

    Task-evoked functional connectivity does not explain functional connectivity differences between rest and task conditions

    Get PDF
    During complex tasks, patterns of functional connectivity differ from those in the resting state. However, what accounts for such differences remains unclear. Brain activity during a task reflects an unknown mixture of spontaneous and task-evoked activities. The difference in functional connectivity between a task state and the resting state may reflect not only task-evoked functional connectivity, but also changes in spontaneously emerging networks. Here, we characterized the differences in apparent functional connectivity between the resting state and when human subjects were watching a naturalistic movie. Such differences were marginally explained by the task-evoked functional connectivity involved in processing the movie content. Instead, they were mostly attributable to changes in spontaneous networks driven by ongoing activity during the task. The execution of the task reduced the correlations in ongoing activity among different cortical networks, especially between the visual and non-visual sensory or motor cortices. Our results suggest that task-evoked activity is not independent from spontaneous activity, and that engaging in a task may suppress spontaneous activity and its inter-regional correlation

    The human brain networks mediating the vestibular sensation of self-motion

    Get PDF
    Vestibular Agnosia - where peripheral vestibular activation triggers the usual reflex nystagmus response but with attenuated or no self-motion perception - is found in brain disease with disrupted cortical network functioning, e.g. traumatic brain injury (TBI) or neurodegeneration (Parkinson's Disease). Patients with acute focal hemispheric lesions (e.g. stroke) do not manifest vestibular agnosia. Thus, brain network mapping techniques, e.g. resting state functional MRI (rsfMRI), are needed to interrogate functional brain networks mediating vestibular agnosia. Hence, we prospectively recruited 39 acute TBI patients with preserved peripheral vestibular function and obtained self-motion perceptual thresholds during passive yaw rotations in the dark and additionally acquired whole-brain rsfMRI in the acute phase. Following quality-control checks, 26 patient scans were analyzed. Using self-motion perceptual thresholds from a matched healthy control group, 11 acute TBI patients were classified as having vestibular agnosia versus 15 with normal self-motion perception thresholds. Using independent component analysis on the rsfMRI data, we found altered functional connectivity in bilateral lingual gyrus and temporo-occipital fusiform cortex in the vestibular agnosia patients. Moreover, regions of interest analyses showed both inter-hemispheric and intra-hemispheric network disruption in vestibular agnosia. In conclusion, our results show that vestibular agnosia is mediated by bilateral anterior and posterior network dysfunction and reveal the distributed brain mechanisms mediating vestibular self-motion perception

    Neural Encoding and Decoding with Deep Learning for Natural Vision

    Get PDF
    The overarching objective of this work is to bridge neuroscience and artificial intelligence to ultimately build machines that learn, act, and think like humans. In the context of vision, the brain enables humans to readily make sense of the visual world, e.g. recognizing visual objects. Developing human-like machines requires understanding the working principles underlying the human vision. In this dissertation, I ask how the brain encodes and represents dynamic visual information from the outside world, whether brain activity can be directly decoded to reconstruct and categorize what a person is seeing, and whether neuroscience theory can be applied to artificial models to advance computer vision. To address these questions, I used deep neural networks (DNN) to establish encoding and decoding models for describing the relationships between the brain and the visual stimuli. Using the DNN, the encoding models were able to predict the functional magnetic resonance imaging (fMRI) responses throughout the visual cortex given video stimuli; the decoding models were able to reconstruct and categorize the visual stimuli based on fMRI activity. To further advance the DNN model, I have implemented a new bidirectional and recurrent neural network based on the predictive coding theory. As a theory in neuroscience, predictive coding explains the interaction among feedforward, feedback, and recurrent connections. The results showed that this brain-inspired model significantly outperforms feedforward-only DNNs in object recognition. These studies have positive impact on understanding the neural computations under human vision and improving computer vision with the knowledge from neuroscience
    corecore