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  How and why functional connectivity (FC), which captures the correlations among brain 

regions and/or networks, differs in various brain states has been incompletely understood. I review 

high-level background on this problem and how it relates to 1) the contributions of task-evoked 

activity, 2) white-matter fMRI, and 3) disease states in Chapter 1. In Chapter 2, based on the notion 

that brain activity during a task reflects an unknown mixture of spontaneous activity and task-

evoked responses, we uncovered that the difference in FC between a task state (a naturalistic movie) 

and resting state only marginally (3-15%) reflects task-evoked connectivity. Instead, these changes 

may reflect changes in spontaneously emerging networks. In Chapter 3, we were able to show 

subtle task-related differences in the white matter using fMRI, which has only rarely been used to 

study functions in this tissue type. In doing so, we also demonstrated that white matter independent 

components were also hierarchically organized into axonal fiber bundles, challenging the 

conventional practice of taking white-matter signals as noise or artifacts. Finally, in Chapter 4, we 

examined the utility of combining FC with task-activation studies in uncovering changes in brain 

activity during preclinical Alzheimer's Disease (mild cognitive impairment (MCI) and subjective 

cognitive decline (SCD) populations), based on data collected at the Indiana University School of 

Medicine. We found a reduction in neural task-based activations and resting-state FC that appeared 

to be directly related to diagnostic severity. Taken together, the work presented in this dissertation 

paves the way for a novel framework for understanding neural dynamics in health and disease.
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1. INTRODUCTION 

 Defining the Problem 

  For centuries, what has become known as the “mind-body problem” has endured as a 

challenge for philosophers, scientists, and religious scholars.  This famous conundrum can be 

simplified as follows: what is the relationship between the mind – that which is responsible for 

mental processes, such as consciousness, perception, memory, and thinking – and the body (i.e. 

the brain)? We now know, with the aid of measurement techniques (Hubel and Wiesel, 1959; 

Martinez et al., 2005), such as neural recordings and functional magnetic resonance imaging (fMRI) 

(Kwong et al., 1992; Ogawa et al., 1992), as well as from clinical observations (Broca, 1861; 

Harlow, 1848), that there is significant overlap between physical form and cognitive function. In 

spite of the numerous advances we have made about the innerworkings of the human brain, there 

is still much that remains to be explored in what may be considered a “final frontier” of 

understanding in human physiology. 

  We know that the brain is an enormously costly organ in terms of energy consumption; it 

accounts for about 2% of body weight, yet it uses about 20% of the body’s energy (Raichle, 2015). 

Metabolically, ~85% of the brain’s activity at rest is associated with glutamate recycling and thus, 

neural signaling processes (Raichle and Mintun, 2006; Shulman et al., 2004). Action potentials, 

the mechanism for electrical information propagation from one neuron to the next (i.e. neuronal 

signaling), are metabolically expensive (Attwell and Laughlin, 2001). Nevertheless, relative to rest, 

additional energy consumption related to engaging in various tasks is very small (less than 5%) 

(Raichle, 2010; Roland et al., 1987; Sokoloff et al., 1955).  

  Therefore, we can divide brain energetics and metabolism into two types of processes: 1) 

intrinsic, based on spontaneous, baseline brain signaling occurring at rest, and 2) extrinsic, “task-

evoked activity, which is associated with the engagement of various cognitive tasks. 

Unfortunately, the problem is that there is no clear consensus about the complex interplay 

between spontaneous, “intrinsic” processes and task-evoked activities. Findings range from 

reports of spontaneous and task-evoked activities being linearly additive (Arieli et al., 1996; Azouz 

and Gray, 1999; Fox et al., 2006b), to tasks suppressing spontaneous activity (Bianciardi et al., 

2009a; Borg-Graham et al., 1998; Churchland et al., 2010; He, 2013; Ponce-Alvarez et al., 2013), 
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to task-related increases in neuronal variability (Nir et al., 2006). Further, the role of the rest-task 

interaction in the brain’s organization in gray matter (Chapter 2), white matter (Chapter 3), and 

disease (Chapter 4) is unclear. 

 fMRI Is a Measurement Technique 

Functional magnetic resonance imaging (fMRI) measures changes in blood flow that 

indirectly relate to the activity of a particular region via metabolic and hemodynamic processes. 

Specifically, the blood oxygen level-dependent (BOLD) contrast is based on paramagnetic 

differences between oxygenated and deoxygenated hemoglobin, the oxygen-carrying protein in 

red blood cells (Bandettini et al., 1992; Kwong et al., 1992; Ogawa et al., 1992). Deoxygenated 

hemoglobin creates magnetic field inhomogeneities within and around vessels in the brain, 

dephasing the spins of the magnetized ions and reducing the value of the observed signal (Ogawa 

et al., 1990; Villringer et al., 1988). In response to a stimulus, the local BOLD signal can be 

described by 1) an initial dip in the signal, corresponding to increased deoxyhemoglobin from 

enhanced blood flow; 2) a compensatory overshoot as blood volume greatly increases relative to 

flow (reduced ratio of deoxyhemoglobin) (~4-6 seconds after stimulus onset); 3) a post-stimulus 

undershoot as blood volume decreases more slowly than flow (~10-20 seconds after stimulus onset) 

(Buxton et al., 1998). Thus, the BOLD fluctuation reflects the combined effects of cerebral blood 

flow (CBF), blood volume (CBV), and the metabolic rate of oxygen (CMRO2). Moreover, BOLD 

is thought to be closely related to neuronal synaptic activity, and to some degree, spiking activity 

(Lauritzen, 2001; Logothetis et al., 2001; Mukamel et al., 2005), and astrocytes are thought to be 

the important mediators linking neuronal activity to vasodilation (for review, see Petzold and 

Murthy (2011)). Various analysis methods, such as a general linear model approach, functional 

connectivity (which captures correlations between regions), and/or effective connectivity (which 

establishes directionality of neuronal processes), are then used to establish a relationship between 

vascular changes and behavioral or disease states after the T2
*-weighted acquisitions. 

Ultimately, the BOLD fMRI contrast allows for non-invasive, non-ionizing, high spatial 

resolution visualization of activated neuroanatomical regions associated with brain functions. 

From its inception in the early 1990s, fMRI has since become a preeminent imaging modality in 
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neuroscience, with over 40,000 research articles published as of 20171. The technique has vastly 

improved our understanding of how the brain functions, but is still primarily a research tool (Rosen 

and Savoy, 2012).  

 Experimental Paradigms in fMRI 

  fMRI research is primarily divided into two fields: task activation and resting-state. The 

early days of fMRI were particularly focused on task-evoked responses. The traditional approach 

utilizes intermittent periods of task (through block- or event-related designs, Fig. 1.1) to activate 

and thus, identify brain areas associated with a specific cognitive function (e.g. flickering 

checkboards for the visual cortex, finger tapping for the motor cortex). Analytically, the general 

linear model (GLM) has long been used to relate neural activity to these types experimental designs 

(Friston et al., 1995). In spite of the abundance of information gained from using these types of 

designs, such approaches are limited in that they 1) neglect the role of intrinsic activity of the brain, 

which composes the majority of metabolic activity; and 2) tend to be overly simplistic: the 

cognitive demands of daily life extend far beyond highly controlled task paradigms, such as simple 

button presses or the viewing of sinusoidal gratings. 

Resting-state fMRI is used to describe a task-free paradigm in which subjects are asked to 

lie still in the scanner with their eyes closed.  It is based upon the observation that the fMRI time 

series from one part of the motor cortex was temporally correlated with other related areas within 

the motor “system” (e.g. supplementary motor area), in the absence of any motor task (Biswal et 

al., 1995). Resting-state correlations have also been reproduced among brain regions involved in 

other sensory or cognitive processes (e.g. auditory, visual, attentional) (Cordes et al., 2000; Fox et 

al., 2006a; Lowe et al., 1998), and has been expanded to include the analysis of correlations even 

across unrelated brain regions (i.e. functional connectivity). In addition, resting-state work has 

been instrumental to identifying the default mode network (DMN), a collection of regions that 

decrease their activity across a broad spectrum of task conditions when compared to rest (Raichle 

et al., 2001). The discovery of the DMN was one example of an important fundamental 

contribution to our understanding of brain function and neuroscience made using fMRI. 

                                                 
1 This statistic is based on a December 20, 2017 PubMed (https://www.ncbi.nlm.nih.gov/pubmed/) search with 

“fMRI” as a keyword. 

https://www.ncbi.nlm.nih.gov/pubmed/
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  Over the last decade, resting-state studies have indeed come to dominate the field of fMRI. 

However, there are certain caveats to resting-state studies (see Duncan and Northoff (2013) for 

review). First, there is little consensus on how to perform these studies – the instructions given to 

the participant (e.g. whether told to relax and be still, ignore the scanner noise, etc.) has been shown 

to have an effect on the connectivity of the DMN at rest (Benjamin et al., 2010). Likewise, there 

is little consensus on whether subjects are instructed to keep their eyes opened or closed, and this 

does indeed have an impact on the data (Patriat et al., 2013) (Lynch, unpublished data; Fig. 1.2). 

Second, during resting-state, subjects actually engage in a variety of introspective tasks that are 

not temporally controlled, raising the question of whether the resting-state is indeed simply a 

poorly controlled task (Delamillieure et al., 2010). These activities include, but are not limited to, 

mental imagery, inner language, somatosensory awareness, inner musical experiences, and inner 

processing of numbers, and they have also been shown to modulate fMRI findings (Doucet et al., 

2012). Third, resting-state, like simplistic block-design and event-related paradigms, does not 

mimic the cognitive demands of daily life in which functional demands (or deficits) may be 

exposed. 

In contrast, naturalistic tasks, in which subjects engage in the free-viewing of film clips or 

recorded narratives, are gaining popularity (Fig. 1.3). These tasks provide a rich behavioral context 

reflecting the activities of daily life. In natural vision (i.e. movie-watching), scenes with sharp 

moving edges that unfold over relatively long time scales simulate the interactions a person has 

regularly in his or her environment; recorded narratives reflect conversations and stories that 

develop sequentially. Further, neural responses to naturalistic stimuli, measured through inter-

subject or intra-subject correlations, are reliable and widespread (Hasson et al., 2010; Hasson et 

al., 2004; Jääskeläinen et al., 2008; McMahon et al., 2015; Mukamel et al., 2005), and that the 

high-level natural content of the movie is needed for reproducible responses (Lu et al., 2016) (Figs. 

1.4-1.5). Although also correlation-based, the inter-subject and intra-subject correlations central 

to this method isolate task-evoked activities, and thus do not reveal anything about the brain’s 

underlying intrinsic architecture (Simony et al., 2016). 

Each of these experimental paradigms has strengths and weaknesses. Because I am 

interested in uncovering the rest-task interaction, none of these methods were used in an isolated 

fashion. Instead, complementary information was obtained by using naturalistic task paradigms 

and resting-state studies in parallel, on the same subjects, in studies of that brain’s gray matter 
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(Chapter 2), white matter (Chapter 3), and at the onset of disease (Chapter 4). The next three 

sections provide a brief introduction to each of these chapters and how they relate to the problem 

presented in Section 1.1. A more complete rationale for the research conducted is contained within 

the “Rationale” sections within each chapter (Sections 2.1, 3.1, and 4.1, respectively). 

 Functional Connectivity at Rest and During Tasks 

  As previously mentioned, functional connectivity (FC) captures the correlations of 

different regions and/or networks2, and it is used to characterize the brain’s functional organization 

in various behavioral and disease states. FC is mostly conserved across states of consciousness 

(Horovitz et al., 2008; Vincent et al., 2007) and during the performance of various tasks (Arfanakis 

et al., 2000; Cole et al., 2014; Fair et al., 2007; Gratton et al., 2016; Harrison et al., 2008; Krienen 

et al., 2014). Preliminary work early in my doctoral training has also supported this finding (Figs. 

1.6-1.7). However, increasing evidence suggests that FC is altered within and between brain states 

(Buckner et al., 2013; Mennes et al., 2013; Rehme et al., 2013; Sepulcre et al., 2010; Van Dijk et 

al., 2010). Along these lines, I also found significant differences in FC between a visual task and 

the resting-state, which included significantly negative FC differences between visual areas and 

non-visual task related areas and positive FC differences between visual areas and the ventral 

DMN (task state relative to rest) (Fig. 1.8). Consistent alterations in FC leads to the potential use 

of this feature as a “network signature” of how the brain engages itself in various behavioral or 

cognitive tasks.  

Indeed, additional studies using dynamic functional connectivity found that differences in 

task FC over short temporal intervals (≥ 30 seconds) can be used to identify behavioral states with 

very high accuracy (Gonzalez-Castillo et al., 2015; Shirer et al., 2012). However, Shirer et al. 

(2012) also demonstrated the ability to classify four different tasks with temporal windows as long 

as 10 minutes at >80% accuracy, implying that stationary studies of FC differences provide similar 

utility in classification. 

 To fully understand FC differences between different tasks and/or resting-state, it is 

necessary to disentangle the different contributions of spontaneous (intrinsic) and task-evoked 

(extrinsic) activities. If the FC differences between rest and task are due to the task-evoked activity, 

                                                 
2 The brain’s functional networks are conserved across different states (Fig. 1.9; see also Smith et al. (2009)). This 

enables us to perform network-based analyses using a common set of networks across different tasks. 
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this pattern reflects only network interactions directly involved in task execution. If instead this 

difference in FC is attributed to ongoing activity, the pattern is driven by the brain’s intrinsic 

functional re-organization to facilitate the task. Alternatively, there may be an interaction between 

spontaneous and evoked activities such that the FC differences between resting-state and the task 

reflect correlational changes in both types of activity. I wondered which of these scenarios was 

most likely. Initially, I hypothesized that the FC difference would largely be due to the task-evoked 

activity based on the findings of several landmark studies demonstrating the independence of 

spontaneous and task-evoked activities and that they linearly superimpose (Arieli et al., 1996; Fox 

et al., 2006b). 

Prior studies have established some valuable analysis methods to disentangle sources of 

spontaneous and task-evoked activity that provide improved reliability and manageability over 

temporally averaging a very large number of subjects and/or sessions (Henriksson et al., 2015; 

Kim et al., 2017). Simony et al. (2016) proposed the use of inter-subject functional connectivity 

(ISFC) during a recorded narrative to isolate correlations from task-evoked networks without 

contributions from ongoing activity or non-neuronal noise. This technique builds off of the Hasson 

et al. (2004) study, which demonstrated that natural vision gave rise to reliable responses that were 

reproducible across individuals. A similar strategy is to assess the inter-regional correlation across 

different sessions of the same stimuli for the same subject, which gives rise to enhanced 

reproducibility over inter-subject correlations (Lu et al., 2016; Wilf et al., 2017). Therefore, after 

implementing an inter-session approach to isolate task-evoked activity from spontaneous sources, 

I set out to explore the rest-task interaction at the whole brain level using a natural vision task 

(Chapter 2).  

 White-Matter fMRI 

  Historically, fMRI has not been considered to be detectable in white matter tissue (see 

Gawryluk et al. (2014) for review). The two main reasons white matter fMRI is controversial are 

(1) that the cerebral volume and flow in white matter is three to seven times lower in white matter, 

resulting in a substantially smaller signal-to-noise ratio (Helenius et al., 2003; Jensen et al., 2006; 

Preibisch and Haase, 2001; Van Osch et al., 2009), and (2) that the primary source of fMRI signal 

is more commonly attributed to post-synaptic potentials non-existent in white matter (Logothetis 

and Wandell, 2004) (though this point remains slightly controversial, see ). Furthermore, although 
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fMRI studies have in fact produced activation in white matter, most commonly in the corpus 

callosum (Aramaki et al., 2006; D'Arcy et al., 2006; Fabri et al., 2011; Tettamanti et al., 2002) and 

internal capsule (Gawryluk et al., 2011b; Mosier et al., 1999); many argue that this activation is 

not a “true” representation of neural activity. Moreover, Ding et al. showed that resting-state fMRI 

signals in white matter were correlated over the optic radiations and corpus callosum, as well as 

locally, in a similar anisotropic manner as observed with diffusion tensor imaging (DTI) (2013). 

Further, the white matter-fMRI signal was recently shown (Ding et al., 2016) to be blood 

oxygenation level dependent (BOLD) through multi-echo acquisitions (Kundu et al., 2012) 

  Given the morbidity and mortality associated with known white-matter disorders (e.g. 

multiple sclerosis and traumatic brain injury), as well as the unknown role of white matter 

pathology in existing neurological disorders (e.g. Alzheimer’s disease), a tool to non-invasively 

characterize the functional dynamics of white matter could provide considerable insight. However, 

a major challenge in characterizing white activity is the substantially lower signal-to-noise ratio 

inherent in the tissue type; when traditional univariate or multivariate time-series analyses are 

applied to gray matter and white matter voxels together, the signal variance and structure are 

dominated by voxels in gray matter. One potential way to deal with this issue is to separate white 

matter from gray matter and establish a criterion to distinguish signal from noise (via 

reproducibility or otherwise). Once signal and noise are separated, conjoint evaluation of the roles 

of white matter and gray matter networks in various tasks may be conducted. Thus, after 

establishing a methodology through which fMRI in the white matter may be characterized, I sought 

to explore and compare the functional organization of the WM in resting-state and during a 

naturalistic visual task (Chapter 3). 

 Functional Changes in the Brain due to Alzheimer’s Disease 

  Alzheimer’s Disease (AD) is the most common form of dementia and affects one in three 

people aged 85 and older (Galvin et al., 2012). Further, it is the only top 10 cause of death that 

cannot be prevented, cured, or slowed (Alzheimer's Association, 2017). The most common initial 

clinical symptom is episodic memory impairment (Hodges, 2006), and, as the disease progresses, 

cognitive decline across widespread neuroanatomical systems becomes marked. Over time, 

patients experience declines in language/semantic ability (Henry et al., 2011; Leyton et al., 2017) 

visuospatial deficits (Cronin-Golomb and Hof, 2004; Risacher et al., 2013), attentional and 
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executive difficulties (Perry and Hodges, 1999; Wong et al., 2014) and 

neuropsychiatric/behavioral disturbances (De Souza et al., 2009; Hodges, 2006). Eventually, 

patients exhibit loss of control over bodily functions, and, typically, complications from 

immobility, swallowing disorders, and malnutrition lead to patient mortality (Alzheimer's 

Association, 2017). 

  Researchers and clinicians have become increasingly focused on early detection and 

characterizing the earliest clinical stages of the disorder – when future interventions could make 

the greatest impact. Amnestic Mild Cognitive Impairment (aMCI) is often regarded as a 

“prodromal” or “preclinical” AD state (Villemagne et al., 2013). Mild cognitive impairment (MCI) 

is defined as “cognitive decline greater than that expected for an individual’s age and education 

level but that does not interfere notably with activities of daily living” (as measured by various 

cognitive performance tests), and the amnestic subtype primarily involves a memory complaint 

(Henry et al., 2011). These patients are important to study because they convert to a diagnosis of 

AD at a faster rate than cognitively healthy controls (Small et al., 2007). 

  There is increasing evidence that individuals with cognitive complaints, even with normal 

performance on cognitive tests, also have an increased likelihood of biomarker abnormalities 

consistent with AD pathology and an increased risk for future cognitive decline and AD dementia 

(see Jessen et al. (2014) for review). A continuum of Alzheimer’s disease makes intuitive sense; 

pathologically, neurofibrillary tangles (NFTs), which consist of misfolded Tau protein in neurons, 

begin to accumulate in the transentorhinal region (Braak and Braak, 1995; Morrison and Hof, 

1997). From here, the pathology spreads to the entorhinal region, the hippocampus, and then to 

the neocortex (Braak and Braak, 1995). Thus, cognitive complaints, or subjective cognitive decline 

(SCD), may in fact indicate the very first effects of AD pathology on cognitive function, between 

completely intact functioning and first detectable decline.  

    AD patients have demonstrated alterations in both task activations and resting-state 

connectivity compared to healthy controls (HC). Task activation studies have consistently revealed 

reduced activations in medial temporal lobe structures in AD patients compared to controls (Golby 

et al., 2005; Kato et al., 2001; Machulda et al., 2003; Rombouts et al., 2000; Sperling et al., 2003), 

with some reports of compensatory hyperactivations in the prefrontal cortex (Grady et al., 2003). 

FC studies have shown decreased DMN connectivity (Damoiseaux et al., 2012; Greicius et al., 
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2004; Jones et al., 2011), increased prefrontal connectivity (Agosta et al., 2012), and increased 

salience network connectivity (Zhou et al., 2010) in AD patients.  

  However, research in MCI patients has generated conflicting results. Some groups have 

shown that MCI patients mostly mirror the medial temporal lobe hypo-activations and reduced 

connectivity found in AD populations (Machulda et al., 2003; Petrella et al., 2007; Rombouts et 

al., 2005; Sorg et al., 2007), whereas others have encountered paradoxical hyper-activations and 

hyper-connectivity of these same regions (Bai et al., 2011; Dickerson et al., 2005; Kircher et al., 

2007). To disentangle this difference, a nonlinear trajectory of neurovascular changes has been 

proposed. In the early stages of MCI, hyperactivity occurs as the brain attempts to compensate for 

the impaired signaling, which is then followed by a loss of activity as the disease progresses to the 

later stages of MCI, echoing the functional deficits seen in AD patients (Celone et al., 2006).  

  Reports of functional changes due to cognitive complaints or SCD are much sparser; 

nevertheless, we know that changes in hippocampal volume and visual contrast sensitivity are 

intermediate between healthy aging adults and patients with MCI (Risacher and Saykin, 2013; 

Saykin et al., 2006). Moreover, Wang et al. (2013) demonstrated that among MCI, SCD, and HC 

patient groups, significantly different FC of the DMN was localized to the hippocampus; further, 

the number of significantly different voxels appeared to have a direct relationship with disease 

progression. So far, neuroimaging-based evidence does appear to show that SCD brain changes 

are transitional between HC and MCI conditions, but more work is needed in this area. 

 There are several important motivations for establishing activation and/or correlational 

differences that occur in SCD and MCI patients. First, an improved understanding of brain changes 

that occur with SCD, which is postulated to precede MCI, may help us better appreciate the 

progression of changes that occur in MCI and subsequently, AD. Second, such findings may help 

give credence to theorized non-linear courses of disease progression or otherwise help resolve 

conflicting reports. Third, movement toward an imaging-based biomarker for SCD and MCI may 

allow for pharmacological treatments and other interventions at even earlier stages, when they may 

have the greatest possible impact. Hence, I sought to relate changes in task activations using a 

scene-encoding task (Detre et al., 1998) and resting-state functional connectivity to MCI and/or 

SCD status using participants from a longitudinal study of brain aging and memory (Indiana 

Memory and Aging Study) (Chapter 4).  
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Figure 1.1. Example Block-Design Paradigm. Alternating periods of a task (intact images) are 

compared against a control condition (scrambled images). (This paradigm was used for the scene-

encoding task activation data in Chapter 4.) 

 

 

 

 

 

 

Figure 1.2. Showing the correlation values of voxels in the optic tracts using an eyes-open resting 

state (left) and an eyes-closed resting-state (right).  Yellow is used to indicate high correlation 

values, blue is used to indicate low correlation values. Both resting-state paradigms were 

conducted in the dark. 
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Figure 1.3. Showing the scrambling of the original black and white movie clip (top) via phase 

shuffling with the image power preserved (bottom), with eye tracking data as a circular pattern of 

dots. The clip was taken from The Good, the Bad, and the Ugly, 1966, from 162:54 to 168:33 min. 

in the film. Eye movements had little effect on reproducible fMRI responses (see Lu et al. (2016)). 

(Figure adapted from Lu et al. (2016).) 
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Figure 1.4. Brain activations with the intact movie were found at regions that showed significant 

intra-subject (A) and inter-subject (B) correlations in cortical activity during free movie watching. 

The mapping results were based on data from nine subjects. From a single subject, the fMRI signals 

from two voxels within the primary visual cortex (V1) and the lateral occipito-temporal gyrus (V4) 

are shown as examples to illustrate the intra-subject reproducibility in cortical activity. The color 

indicates the cross correlation. (Figure adapted from Lu et al. (2016).) 
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Figure 1.5. Cortical activations with the scrambled movie were reduced and confined to V1, as 

revealed by the intra-subject (A) and inter- subject (B) reproducibility of the fMRI signal. The 

mapping results were based on data from nine subjects. From a single subject, the fMRI signals 

from two voxels within the primary visual cortex (V1) and the lateral occipito-temporal gyrus (V4) 

are shown as examples to illustrate the relatively low intra-subject reproducibility in cortical 

activity. The color indicates the cross correlation. (Figure adapted from Lu et al. (2016).) 
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Figure 1.6. Functional Connectivity of Networks in Resting-State. Top: Correlation matrix 

depicting the temporal correlations of 12 networks derived using independent component analysis 

(ICA). Bottom: Circle graph illustrating significant correlations among the networks. A Bonferroni 

correction for multiple comparisons was applied. Adapted from Marussich et al. (2015). 
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Figure 1.7. Functional Connectivity of Networks During the Visual Task. Top: Correlation matrix 

depicting the temporal correlations of 12 networks derived using independent component analysis 

(ICA). Bottom: Circle graph illustrating significant correlations among the networks. A Bonferroni 

correction for multiple comparisons was applied. Adapted from Marussich et al. (2015). 
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Figure 1.8. Difference between Task and Rest using T-Values (top) and Connectivity Diagram 

(bottom).  Red indicates increased strength of connectivity during the task relative to resting-state, 

Blue indicates decreased connectivity during the task relative to resting-state.  Connectivity was 

measured by cross-correlations followed by a Fischer’s R-to-Z transform, in which t-values were 

computed.  A Bonferroni correction for multiple comparisons was applied. Adapted from 

Marussich et al. (2015). 
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Figure 1.9. Consistent spatial configuration of task and resting-state networks derived from spatial 

independent component analysis (ICA). 
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2. MAPPING WHOLE BRAIN FUNCTIONAL ORGANIZATION AT 

REST AND DURING NATURALISTIC VISUAL PERCEPTION 

*The contents of this chapter have been submitted for review with Human Brain Mapping 

 Rationale 

 Functional connectivity (FC) captures the correlation of different networks or regions of 

the brain. Its structure and dynamics have been useful in characterizing the brain’s functional 

organization. Patterns of FC are similar across distinct states of consciousness (Horovitz et al., 

2008; Vincent et al., 2007), and they are also largely conserved during the performance of various 

tasks (Arfanakis et al., 2000; Cole et al., 2014; Fair et al., 2007; Gratton et al., 2016; Harrison et 

al., 2008; Krienen et al., 2014). However, increasing evidence suggests that FC is altered within 

and between brain states (Buckner et al., 2013; Hutchison et al., 2013; Mennes et al., 2013; Rehme 

et al., 2013; Sepulcre et al., 2010; Van Dijk et al., 2010). It leads to the potential use of FC as a 

network signature of how the brain engages itself in various behavioral or cognitive tasks, e.g. 

watching a movie. In fact, FC signatures have been used to accurately classify a multitude of brain 

states (Gonzalez-Castillo et al., 2015), leveraging this notion. 

During a task, brain activity measurements reflect a mixture of spontaneous and evoked 

activities. Disentangling their differential contributions to the pattern of apparent FC is essential 

to proper interpretation of any FC difference between a task and resting-state, or between different 

tasks. If the task-dependent FC is due to the task-evoked activity, its pattern reflects the network 

interactions directly involved in information processing for task execution. If the task-dependent 

FC is attributed to ongoing activity, its pattern is driven by the brain’s functional re-organization 

or adaption to facilitate the task. Alternatively, evoked activity may interact with spontaneous 

activity. As such, the task-dependent FC should reflect correlational changes in both task-evoked 

networks and spontaneously emerging networks.  

  There is a lack of consensus on the relationship between evoked and ongoing activities. 

Some prior studies suggest that task-evoked activity is independent from spontaneous neural 

processes (Arieli et al., 1996; Mäkinen et al., 2005; Tsodyks et al., 1999). Initial evidence has led 
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to the notion that spontaneous and evoked processes linearly sum to yield the activity observed 

during a task (Arieli et al., 1996; Azouz and Gray, 1999; Becker et al., 2011; Fox et al., 2006b; 

Saka et al., 2010). There are, however, other reports to the contrary. Using electrophysiology, 

several groups have shown a reduction in neural variability following the onset of a stimulus, 

suggesting that the task suppresses ongoing activity during the task (Borg-Graham et al., 1998; 

Churchland et al., 2010; Finn et al., 2007; Oram, 2011; Ponce-Alvarez et al., 2013). Using fMRI, 

He (2013) also found a negative interaction between spontaneous activity and task-evoked activity 

during a visual attention task. However, how (and whether) such an interaction may occur with 

respect to functional connectivity has not been fully investigated. 

Prior studies have established some valuable analysis methods to address this question. 

Simony et al. proposed the use of inter-subject functional connectivity (ISFC) during sustained 

and natural stimulation to extract task-evoked networks without contributions from ongoing 

activity or non-neuronal noise (Simony et al., 2016). For any given pair of regions, cross-

correlation between one subject’s time series in one region with the mean time series from all other 

subjects in the other region was only attributable to task-evoked activity. This technique builds off 

of the Hasson et al. (2004) study, which showed that natural stimulation gave rise to reliable 

responses reproducible across individuals. Like ISFC, a similar strategy is to assess the inter-

regional correlation across different sessions of the same stimuli for the same subject (Lu et al., 

2016; Wilf et al., 2017), while further discounting the variation across subjects. 

  Using this strategy in this study, we sought to examine whether task-evoked networks were 

additive to spontaneous networks and were able to explain the change in FC during movie 

watching relative to the resting state (or the “task-rest FC” difference for simplicity). To address 

these questions, we began with examining the seed-based correlations for exploratory analysis, 

and subsequently performed systematic analysis of functional connectivity among brain parcels or 

networks.  

 Methods and Materials 

2.2.1 Subjects 

  Thirteen healthy volunteers (20 – 31 years old, 6 females, 10 right-handed, normal or 

corrected to normal vision) participated in this study in accordance with a protocol approved by 
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the Institutional Review Board at Purdue University. Three subjects were excluded because they 

either were self-reported to fall asleep or had excessive head motion during the experiment. 

2.2.2 Experimental Design 

  Each of the remaining 10 subjects underwent four fMRI sessions with two conditions. Two 

sessions were obtained in the eyes-closed resting state, and the other two sessions occurred during 

free-viewing of an identical movie clip (The Good, the Bad, and the Ugly, 1966, from 162:54 to 

168:33 min. in the film), as used in prior studies (Hasson et al., 2004; Lu et al., 2016). The visual 

stimulus was presented using the MATLAB Psychophysics Toolbox (Brainard, 1997; Pelli, 1997); 

it was delivered to the subjects through a binocular goggle system (NordicNeuroLab, Norway) 

mounted on the head coil. The display resolution was 800×600; through the goggle system, the 

visual field covered by the movie was about 26.9°×20.3°. No sound was presented during the 

movie. Each movie-stimulation session began with a blank gray screen presented for 42 s, followed 

by the movie presented for 5 min and 37 s, and ended with the blank screen again for 30 s. The 

resting-state sessions had the same duration as the movie-stimulation sessions. The session order 

was randomized and counterbalanced across subjects. For simplicity, hereafter the resting-state 

and movie-stimulation sessions were referred to as the “rest” and “task” conditions, following the 

general notions in a broader context (Cole et al., 2014).  

2.2.3 Data acquisition 

  Whole-brain structural and functional MRI images were acquired using a 3-Tesla Signa 

HDx MRI system (General Electric Health Care, Milwaukee, USA). As described previously 

(Marussich et al., 2017), the fMRI data were acquired using a single-shot, gradient-recalled (GRE) 

echo- planar imaging (EPI) sequence (38 interleaved axial slices with 3.5mm thickness and 3.5 × 

3.5 mm2 in-plane resolution, TR=2000 ms, TE=35 ms, flip angle=78°, field of view=22×22 cm2). 

T1-weighted anatomical images covering the whole head were acquired with a spoiled gradient 

recalled acquisition (SPGR) sequence (1×1×1mm3 voxel size, TR/TE=5.7/2ms, flip angle=12°). 

A 16-channel receive-only phase array coil (NOVA Medical, Wilmington, USA) was used for 

image acquisition. 
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2.2.4 Pre-Processing 

  Pre-processing of the fMRI images was carried out with a combination of AFNI (Cox, 

1996), FSL (Smith et al., 2004), and MATLAB (Mathworks, Natick, MA). T1-weighted 

anatomical images were non-linearly registered to the Montreal Neurological Institute (MNI) brain 

template using a combination of flirt and fnirt in FSL (Smith et al., 2004). T2*-weighted functional 

image time series were corrected for slice time variations using slicetimer in FSL, co-registered to 

the first volume within each series to account for head motion using mcflirt in FSL, restricted to 

within-brain tissues using 3dcalc in AFNI (Cox, 1996), aligned to the T1-weighted structural MRI 

using FSL’s Boundary Based-Registration (BBR) function (Greve and Fischl, 2009), and 

registered to the MNI space with 3-mm isotropic voxels using applywarp in FSL. The first six 

volumes in the fMRI data were discarded to avoid any pre-steady-state longitudinal magnetization. 

For the task sessions, we only analyzed the fMRI data during the movie while excluding 

any transient fMRI response during the first few seconds since the start of the movie. Thus, we 

excluded the first eight seconds and the last fourteen seconds of the movie.   For each session and 

each voxel, the voxel time series was detrended by regressing out a third-order polynomial function 

that modeled the slow trend; the detrended signal was bandpass filtered (0.0001 - 0.1 Hz). Spatial 

smoothing was applied by using a Gaussian kernel (FWHM=6 mm), and the spatially smoothed 

voxel time series were demeaned and normalized to unit variance. The global signal, i.e. the time 

series averaged across all brain voxels, was regressed out in all subsequent analyses except for the 

ICA-based whole-brain parcellation.  

2.2.5 Seed-Based Functional Connectivity in Rest Versus Task 

  We first explored the difference in seed-based correlation patterns between the resting state 

and the task state. For this purpose, seed voxels were selected from the primary visual cortex (V1), 

the middle temporal visual area (V5), precuneus (PCu), and primary motor cortex (M1); each of 

these regions of interest was defined in an independent study (Shirer et al., 2012). The MNI 

coordinates of these seed regions were (0, -54, 30) for PCu, (0, -87, 9) for V1, (48, -78, 0) for V5, 

and (39, -18, 57) for M1. These seed locations were chosen because they are representative of 

major functional systems activated by visual (V1 and higher visual areas) or motor tasks (M1), or 

deactivated by cognitive tasks (PCu as a part of the default-mode network).  
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Within either a rest or task session, the correlation between the seed voxel’s time series 

and every other voxel’s time series was calculated (after global signal regression), and the 

correlation coefficient was converted to a z-score using the Fisher’s transform. The voxel-wise z-

score was averaged across all rest (or task) sessions from all subjects. The significance of the mean 

z-score (against zero) was evaluated by using one-sample t-test (df = 19) corrected at the false 

discovery rate (FDR) q<0.05. The above analysis was performed separately for the rest and task 

conditions.  

To determine the task-rest FC difference, the mean z-score of the movie sessions was then 

compared to the mean z-score of the resting-state sessions using a paired t-test (df = 19, p<0.001, 

uncorrected). Then, to determine the task-evoked FC, the seed voxel’s time series in session 1 was 

cross-correlated with the time series of all voxels in session 2 for each subject; the resulting 

Pearson correlation values were z-transformed to allow for parametric statistical testing. This 

process was repeated was repeated using seed voxels in session 2 with cross-correlations to all 

voxels in session 1. To determine the statistical significance of the results, the mean z-score was 

compared to zero using one-sample t-tests for the task-evoked connectivity (df = 19, q<0.05, FDR 

corrected).  This process is illustrated in Fig. 2.1. 

2.2.6 Whole Brain Functional Connectivity 

 To compare the task-rest FC difference to the task-evoked FC in a systematic manner 

encompassing the whole brain, neural activity was decomposed into smaller networks and/or 

regions using three different methods: 1) using a 17-network atlas (Yeo et al., 2011), 2) via 

networks obtained using spatial independent component analysis (ICA), and 3) using a fine-

grained, 246-region functional atlas (the Brainnetome Atlas) (Fan et al., 2016) (Fig. 2.2). The 17-

network atlas was from http://surfer.nmr.mgh.harvard.edu/fswiki/CorticalParcellation_Yeo2011 

and the 246-region Brainnetome Atlas was obtained from http://atlas.brainnetome.org/. Using the 

17-network and 246-functional parcellation atlases, the mean intensity of brain regions over time 

was regressed from the signal.  

 Group spatial ICA using the Infomax algorithm (Bell and Sejnowski, 1995) was applied to 

data after two additional processing steps. Prior to ICA, the data was concatenated across all 

subjects, sessions, and conditions; principal component analysis (PCA) was applied to the data 

such that 95% of the variance was retained. After ICA was applied to this result, 30 independent 

http://surfer.nmr.mgh.harvard.edu/fswiki/CorticalParcellation_Yeo2011
http://atlas.brainnetome.org/
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components were obtained; of those, 24 networks corresponded to canonical resting-state networks 

(RSNs) (Beckmann et al., 2005; De Luca et al., 2006; Power et al., 2011). One component with a 

global pattern was excluded from the analysis. Then each session’s time course was obtained by 

regressing the group spatial map into the session’s 4D dataset.   

 Large-scale FC was assessed within the resting-state and within the movie task (“mixed” 

FC). To create the within-session resting-state and movie FC, the correlations between each pair 

of networks or regions calculated based on based on their corresponding time series, and then the 

correlation coefficient was converted to the z-score. Significant correlations were identified using 

one-sample t-tests for each pair of regions in each condition (df = 19), FDR-corrected at q < 0.03. 

Then, task-rest FC differences were evaluated by subtracting the resting-state z-scores from the 

movie z-scores for each pair of regions. Significant differences were evaluated using paired t-tests 

(df = 19), FDR corrected at q < 0.03. Finally, to obtain the task-evoked FC, the cross-correlations 

between each network/region’s mean time series in session 1 (rows) and the mean time series in 

session 2 (columns) were determined and z-transformed. We also included the transposes of the 

task-evoked matrices (i.e. cross-correlation of session 2’s time series (rows) with session 1’s time 

series (columns)) for each subject, yielding two task-evoked FC matrices per subject. This was 

done in order to generate a complete and symmetric result after hypothesis testing; individually, 

each matrix was not symmetric because the parcels’ time series from session 1 to session 2 were 

not identical. We then evaluated significant correlations using one-sample t-tests (df = 19), FDR-

corrected at q < 0.03. Because our focus was on the functional connectivity between regions or 

networks, we ignored the correlation within the exact same region or network itself in our analysis. 

 In order to further characterize the similarity of the FC profiles, we performed a session-

wise cross-correlation analysis of the FC matrices prior to hypothesis testing. Spatial cross-

correlations between the resting-state FC matrices and the movie FC matrices were calculated for 

each pair of sessions (e.g. Subject 1 Rest Session 1 with Subject 1 Movie Session 1, and so on). 

Lower triangular elements (from one element below the diagonal) were used in these correlation 

calculations to represent only unique, meaningful information from these symmetric matrices. 

Then, spatial cross-correlations were calculated between the task-rest FC difference matrices and 

the task-evoked FC matrices.  In this case, the lower triangular elements of the first session’s FC 

difference (e.g. Subject 1 Movie Session 1 cross-correlation matrix – Subject 1 Rest Session 1 

cross-correlation matrix, a symmetric matrix) were cross-correlated with the lower triangular 
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elements of that subjects’ first task-evoked FC matrix (e.g. Subject 1 Movie Session 1’s time series 

cross-correlated with Subject 1 Movie Session 2’s time series, not a symmetric matrix), and the 

second session’s difference (e.g. Subject 1 Movie Session 2’s cross-correlation matrix – Subject 1 

Rest Session 2’s cross-correlation matrix) was correlated with the lower triangular elements of the 

transpose of the task-evoked FC matrix (e.g. Subject 1 Movie Session 2’s time series cross-

correlated with Subject 1 Movie Session 1’s time series). This was done to maximize the 

information obtained from individual subjects because, at each pair of parcels (an element in an 

FC matrix), there were two possible FC results: Parcel 1 Session 1’s time series cross-correlated 

with Parcel 2 Session 2’s time series and Parcel 1 Session 2’s time series cross-correlated with 

Parcel 2 Session 1’s time series.  

2.2.7 Comparing Significant Task-Rest FC Differences with Task-Evoked FC 

The specific functional connectivity implicated in the task-rest FC difference and the task-

evoked FC were investigated using the fine-grained, 246-region parcellation’s information. To test 

the significance of the functional connectivity between each pair of regions and/or networks, the 

average z-score was compared against zero by performing one- sample t-test on the z-score of 

every pair regions (q < 0.03, FDR corrected). The significant correlations for each analysis method 

were then compared in terms of reproducibility. 

2.2.8 Explaining the Task-Rest FC Differences with Task-Evoked FC 

To determine the extent to which the task-evoked FC explains the task-rest FC difference, 

we used the task-evoked FC matrices as regressors for the task-rest FC difference matrices at the 

session-level. This was performed separately using 1) the Yeo et al. 17-network atlas (2011), 2) 

the previously obtained 24 spatial ICs, and 3) the 246-region Brainnetome Atlas (Fan, et al., 2016).  

For each subject, the lower triangular elements (from one element below the diagonal) of task-

evoked FC matrix were used as regressors for the lower triangular elements of the first session’s 

FC difference matrix (i.e. Subject 1 Session 1 Task cross-correlation matrix – Subject 1 Session 1 

Rest cross-correlation matrix). Then, using the transpose of the task-evoked FC matrix, the 

resulting lower triangular elements were taken as regressors for the second session’s lower 

triangular elements of the FC difference matrix (i.e. Subject 1 Session 2 Task cross-correlation 

matrix – Subject 1 Session 2 Rest cross-correlation matrix). After obtaining regression coefficients 
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for each session, the estimated lower triangular elements of the task-rest FC difference matrix for 

that session were obtained by multiplying the calculated regression coefficients with the 

corresponding lower triangular elements of the task-evoked FC matrix. Then, the variance of the 

lower triangular elements of each session’s estimated task-rest FC difference matrix was divided 

by the variance of the lower triangular elements of the same session’s measured task-rest FC 

difference to yield the percentage of the task-rest FC difference that was explained by the task-

evoked FC. 

 Results 

2.3.1 Seed-Based FC Distributions 

  Seed voxels from the PCu, V1, V5, and M1 were used to assess voxel-wise FC at rest, 

voxel-wise FC during the naturalistic visual task (i.e. the “mixed” FC), the difference between 

these two states, and the task-evoked FC (Fig. 2.3, findings projected onto the surface).  

 FC patterns in the resting-state and during the movie were mostly consistent among the 

four seeds, but there were some differences between the two conditions. Although the PCu seed 

exhibited similar, positive distributions in both conditions, the anti-correlated voxels were more 

widespread during the movie task (Fig. 2.3A, far left and left middle columns). In the resting-state, 

the V1 seed (Fig. 2.3B, far left and left middle columns) was coupled not only to higher visual 

areas more laterally, but also to the superior/medial motor cortex; during the movie task, the broad 

primary visual cortex indeed was significantly correlated, but no coupling to other regions was 

observed. In addition, the V5 seed was more correlated to more medial visual areas (e.g. fusiform 

gyri) during resting-state (Fig. 2.3C, far left and left middle columns). Finally, the M1 seed elicited 

FC with visual regions at rest, but such correlations were more narrowly confined during the movie 

task (Fig. 2.3D, far left and left middle columns). 

 The task-evoked and task-rest FC difference distributions were largely very different. 

Using FDR-corrected thresholds, task-evoked FC was observed using the V1 and V5 seeds but not 

using the PCu and M1 seeds, in line with the findings of others (Kim et al., 2017; Wilf et al., 2017). 

Thus, the V1 and V5 seeds allowed for more in-depth analysis in that they were significantly 

activated by the naturalistic visual task. The positively connected voxels to V1 in the task-evoked 

FC (Fig. 2.3B, far right column), were, in fact, more weakly connected to the seed during the 
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movie than at rest (Fig. 2.3B, right middle column). Voxels which were more strongly correlated 

to the V1 seed during the movie than resting-state tended to instead lie within frontoparietal control 

networks (Niendam, et al., 2012). Moreover, the positively correlated voxels to the V5 seed arising 

from task-evoked activity (Fig. 2.3C, far right column) were not significantly different between 

the movie task and resting-state (Fig. 2.3C, right middle column) despite qualitatively appearing 

stronger during the movie (Fig. 2.3C, far left and left middle columns). Instead, with this seed, the 

movie condition elicited significantly more negative FC between motor and precuneus regions as 

compared to rest, with some more positive FC during the movie in the right lateral frontal cortex 

(Fig. 2.3C, right middle column). Instead, with this seed, the movie condition elicited significantly 

more negative functional connectivity between motor and precuneus regions as compared to rest, 

with some more positive connectivity in the right lateral frontal cortex and scattered through some 

white matter regions (Fig. 2.3C, right middle column).   

 When comparing the task-evoked networks from the V1 and V5 seeds (Figs. 2.3B and 2.3C, 

far right columns) to the corresponding resting-state networks (Figs. 2.3B and 2.3C, far left and 

left middle columns), we observed that these regions were more restricted using an inter-session 

approach than they were within-session during both the movie task and resting-state. Overall, there 

was little coupling of the primary and higher visual cortices to other parts of the visual system, let 

alone to other cortical regions. 

2.3.2 Whole-Brain Differences Between Task and Rest Conditions 

  Whole brain patterns of resting-state FC, task FC (still containing spontaneous activity), 

the task-rest FC difference, and task-evoked FC were evaluated in a systematic manner using three 

different atlases: 1) a 17-network atlas (Yeo et al., 2011), 2) networks obtained using spatial 

independent component analysis (ICA), and 3) a 246-region functional atlas (the Brainnetome 

Atlas) (Fan et al., 2016).  Because the ICA components used were derived in-house, we have 

provided them in Fig. 2.6; the 24 ICs that were used corresponded to 40.1% of the variance of the 

signal present in the concatenated data. Based on this more systematic approach, similar overall 

findings were observed to those we had uncovered with the previous seed-based approach (Fig. 

2.4A).  

 Similarity between the within-session resting-state and mixed (task-evoked + spontaneous) 

FC profiles was again made apparent, although the resting-state again showed more widely 
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distributed FC (Fig. 2.4A). There was stronger functional connectivity from visual areas (all 

methods), the dorsal attention network (17-network atlas), and dorsal default mode network 

(dDMN) (ICA) to other networks during resting-state.  Within-visual functional connectivity (e.g. 

Vis1 to Vis2) were surprisingly weaker during the movie as compared to rest. At the q < 0.03 level, 

the 17-network atlas yielded no significantly different correlations among visual regions, ICA gave 

rise to 3 significantly different correlations (t = -5.2323 to -5.2042, q = 0.0072-0.0081), and the 

246-region parcellation resulted in 4 significantly different correlations (t = -7.9544 to -6.3931, q 

= 0.0046-0.0196).  

  Moreover, non-visual sensory networks (e.g. somatomotor, auditory networks) exhibited 

weaker FC strengths with visual areas during the movie. With respect to visual-somatomotor FC, 

the 17-network atlas gave rise to 3 significantly different correlations (t = -7.0622 to -4.5202, q = 

0.0008-0.0250), ICA resulted in 6 significantly different correlations (t = -8.0592 to -4.7280, q = 

0.0003-0.0147), and the 246-region parcellation yielded 14 significant correlations (t = -7.0389 to 

-5.8485, q = 0.0129-0.0291). Auditory regions were included within the Som2 region in the Yeo 

et al. parcellation (2011); therefore, we were unable to evaluate the visual-auditory FC using this 

atlas. However, we observed 4 significantly weaker visual-auditory correlations during the movie 

using ICA (t = -6.5712 to -4.4074, q = 0.0012-0.0259) and 23 significantly weaker correlations 

using the 246 region parcellation (t = -11.0213 to -5.8682, q = 0.0004-0.0291).  

  In addition, frontoparietal networks (i.e. executive control networks) displayed stronger FC 

with visual regions during the movie. Using the 17-network atlas, we observed 4 significantly 

different visual-frontoparietal correlations (t = 4.3116-4.5027, q = 0.0228-0.0281), no significantly 

different correlations with ICA (q<0.03), and 12 significantly more positive correlations using the 

246-region parcellation that all involved the right inferior frontal junction (IFJ R) (t = 5.9733-

9.2107).  

  Finally, by cross-correlating the resting-state and movie FC profiles, it was evident that 

baseline connectivity patterns in the two states were highly similar, though not entirely so (mean 

± SD: 17-network: r = 0.6064 ± 0.1100; ICA: r = 0.5503 ± 0.0900; 256-region: r = 0.5086 ± 0.0928) 

(Fig. 2.4B). 
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2.3.3 Whole-Brain Patterns: Task-Rest FC Difference Versus Task-Evoked FC 

Using the different parcellations, we also uncovered additional similar results to what we 

had observed using seed-based FC: that the task-evoked FC and task-rest FC differences were 

strikingly different. Task-evoked FC gave rise to 5 significant correlations using the 17-network 

parcellation (3.67%), 3 significant correlations using ICA (1.21%), and 174 significant correlations 

using the 246-region parcellation (0.577%). Examining the task-rest FC difference while using the 

17-network atlas, only two of these five correlations (40%, Vis1-Som1 and Som2-dAt1) were 

found to be both significant and in the same direction (i.e. both more connected or more 

disconnected during the movie) as in the task-evoked profile. None of the significant task-evoked 

correlations found using ICA were also significant in the task-rest FC difference (0%). Finally, 

only four of the significant task-evoked correlations found using the 246-region parcellation 

(2.30%) were also significant and in the same direction in the task-rest FC difference (A37mv L 

to A1/2/3tru R, A39c R to G R, A1/2/3tru R to rLinG R, and G R to mOccG L). In fact, two 

significant task-evoked correlations were significant with the opposite sign in the task-rest 

difference (rCunG R to cCunG R and msOccG R to msOccG L).   

   This result is surprising considering the comparable number of significant correlations with 

respect to the task-rest difference: 10 correlations using the 17-network atlas (7.35%), 21 

correlations using ICA (7.31%), and 140 correlations using the 246-region parcellation (3.05%). 

Overall, the significant functional connectivity found using task-evoked FC were not at all 

reproduced by the task-rest difference (Fig. 2.4A). Finally, the correlation analysis further 

quantitatively validated that the task-rest FC difference and task-evoked FC had very little 

similarity (mean ± SD: 17-network: r = 0.2330 ± 0.1923; ICA: r = 0.1487 ± 0.1120; 256-region: r 

= 0.1413 ± 0.0771) (Fig. 2.4C). 

2.3.4 Specific Differences Between Task-Evoked FC and the Task-Rest FC Difference 

  In the interest of revealing more in-depth information about the fine-scale differences 

between the FC profiles elicited by the task-evoked FC and the task-rest FC difference, the 

significant correlations were plotted in connectivity circle graphs and compared (Fig. 2.3). Indeed, 

these graphs are vastly different, with very little overlap. Visual regions using the fine-scale 246-

region parcellation were considered to consist of areas in the lateral occipital cortex, medioventral 

occipital cortex, and fusiform gyrus.  
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Task-evoked FC indicated that visual regions were positively coupled with one another 

due to the movie task using all three methods (Fig. 2.4A). Using the 17-network Yeo et al. atlas 

(2011), the Vis1 to Vis2 functional connectivity was significant (t = 7.5001, q = 0.0003). In 

addition, we discovered that there were three significant correlations involving the Vis1, Vis2, and 

Vis 5 ICA networks (t = 6.8589-7.9547, q = 0.0005-0.0009). The 246-network Brainnetome 

parcellation (2016) gave rise to 280 significant correlations within visual areas (t = 5.7474-17.2342, 

q = 1.5347x10-7-0.0291); every parcel within the Lateral Occipital Cortex, MedioVentral Occipital 

Cortex, and Fusiform Gyrus was positively connected with at least one other parcel within those 

regions. However, the areas implicated in these correlations were actually more positively coupled 

with one another during resting-state than during the movie, eliciting mostly negative, but largely 

not significant, t-values in terms of the task-rest FC difference using all three parcellations. The 

Vis1 to Vis 2 functional connectivity in the 17-network atlas fit this pattern, though the difference 

was not statistically significant (t = -1.9711, q=1.0535). Similarly, using ICA, the Vis1 to Vis 2 

correlation was marginally weaker during the movie (t = -2.0315, q=0.8544), but the Vis1 and 

Vis2 to Vis 5 correlations were slightly, but not significantly, positive (t = 0.4500-2.8524, q = 

0.2491-4.8305). Using 246-region parcellation, 81.43% of the significant (and entirely positive) 

task-evoked correlations in fact gave rise to negative task-rest FC differences. Of these, two 

correlations were statistically significant (t = -7.9544 to -6.6811, q = 0.0046-0.0159). The results 

of the 246-region parcellation can be more easily appreciated using the circle graphs (Fig. 2.3); the 

within-visual correlations that dominate the task-evoked FC connectivity graph (Fig. 2.3B) were 

almost completely non-existent with respect to the task-rest FC difference (Fig. 2.3A). The spatial 

locations of these regions are shown in Fig. 2.8. 

Additionally, when assessing task-evoked FC, we were largely unable to observe the 

previous finding that sensory regions not recruited by naturalistic visual stimulation (e.g. 

somatomotor, auditory regions) were more negatively coupled with visual regions. The 17-

network atlas demonstrated only one significant task-evoked correlation between Vis1 and Som1 

(t = -4.9515, q = 0.0165) that was reproduced in the task-rest FC difference (t = -6.0447, q = 

0.0020), and there were no significant task-evoked correlations with visual to auditory and visual 

to somatomotor regions found using ICA (t = -4.6912-1.622, q = 0.0680-6.0868). Using the 246-

region parcellation (Fig. 2.4A – right column, Fig. 2.5), there were 3 significant task-evoked 

correlations between visual and auditory areas, which all involved TE1.0/TE1.2 R and TE1.0/1.2 



30 

 

L in the superior temporal gyrus (t = -6.8119 to -5.8406, q = 0.0049-0.0246). These specific 

correlations were not observed to be significant in the task-rest FC difference (t = -4.2848 to -

5.1558, q = 0.0533-0.1310). Additionally, there were 6 significant task-evoked correlations 

between visual and somatomotor areas involving A1/2/3tru R and A1/2/3tru L in the post-central 

gyrus and A4ul R in the pre-central gyrus (t = -7.7223 to -5.8511, q = 0.0049-0.0246) (Fig. 2.3B); 

of these, only two (A37mv L to A1/2/3tru R and rLinG R to A1/2/3 R) were reproduced in the 

task-rest difference (t = -6.6699 to -6.5433, q = 0.0156-0.0179) (Fig. 2.3A).  

 Frontoparietal networks (i.e. executive control networks) were not observed to have 

significant task-evoked FC with visual networks using the 17 network parcellation and ICA, in 

contrast with positive FC differences that were observed. The 246-region parcellation yielded 4 

positive task-evoked visual correlations with frontoparietal regions, specifically with A7c 

(Superior Parietal Lobule) and A39c (Inferior Parietal Lobule) (t = 6.0503 – 7.2768, q = 0.0022-

0.0170) (Fig. 2.3B). None of these correlations were significant at the q < 0.03 level in the task-

rest FC difference (t = 2.8834-5.2753, q = 0.0478-0.7629) (Fig. 2.3A). Moreover, the positive 

visual functional connectivity from visual areas to the inferior frontal junction (IFJ) that were 

strongly evident in the task-rest FC difference graph were not at all observed in the task-evoked 

FC at the q < 0.03 level (t = 0.0241 – 5.4687, q = 0.0472-10.8194) (Fig. 2.3). 

We also observed stronger visual-to-thalamus FC within-session during the movie than at 

rest; these differences were not observed during the task-evoked FC (Fig. 2.3). The 17-network 

parcellation and ICA networks did not include any thalamus-specific networks (Fig. 2.4A, left + 

middle), but the Brainnetome parcellation was fine-grained enough to more reliably segregate 

relationships regarding the basal ganglia and thalamus (though it did not provide classical thalamic 

nuclei, such as the lateral geniculate nucleus). Eleven significant correlations were uncovered from 

visual regions to the thalamus when investigating the task-rest FC difference (t = 5.8489-6.4350, 

q = 0.0191-0.0293) (Fig. 2.3A). Conversely, there were zero significant task-evoked correlations 

between any visual and thalamus regions (t = -3.3433-4.1352, q = 0.3524-10.8733) (Fig. 2.3B). 

2.3.5 How Much of the Task-Rest FC Difference Is Explained by the Task-Evoked FC? 

  After linearly regressing the task-evoked FC from the task-rest FC difference using 1) the 

Yeo et al. 17-network atlas (2011), 2) the previously obtained 24 spatial ICs, and 3) the 246-region 

Brainnetome Atlas (Fan et al., 2016), we determined that the mean percent variance explained by 
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the task-evoked FC for the 17-network atlas was 15.86 ± 3.30%, 5.19 ± 1.25% for the ICA maps, 

and 3.55 ± 0.73% for the 246-region atlas (all values: mean ± SEM); the mean value was calculated 

across sessions. Taking the mean percent variance of these three methods yielded an overall value 

of 8.20 ± 1.40% across both sessions and methods. Thus, only about 3-15% of the task-rest FC 

difference can be explained by the task-evoked FC. 

 Discussion 

  We have shown that the difference between FC at rest and during a task, which contains 

an unknown mixture of task-evoked and spontaneous signals, cannot be explained by separating 

the task-evoked FC from the connectivity profile. The results lead to the following findings: 1) 

connectivity between resting-state and task states is mostly conserved; 2) during the resting-state, 

non-visual sensory-related functional networks (e.g. somatomotor, auditory) were more coupled 

to visual networks than during the natural movie; 3) the task-evoked FC was predominantly 

characterized by positive and restricted correlations among regions within the visual system, and 

4) task-evoked FC accounted for only 3-15% of the FC difference between task and rest conditions. 

Therefore, the results suggest that the task-evoked FC and the spontaneous FC are neither linear 

nor additive, which was somewhat surprising to us.  

2.4.1 FC Is Mostly Conserved During a Task and at Rest 

  Consistent with several prior studies (Cole et al., 2014; Gratton et al., 2016; Krienen et al., 

2014), we also identified a relatively high degree of similarity between the apparent FC during 

resting-state and the task using both seed-based and whole-brain methods (Pearson correlation 

values of 0.5-0.6, Fig. 2.4B). This is likely due to the presence of dominating spontaneous, ongoing 

sources in both conditions that strongly contribute to the signals correlated with one another in FC 

fMRI. Despite this similarity, however, we observed more widespread connectivity in the resting-

state, as well as stronger within-visual coupling as compared to during the movie task.   

2.4.2 Apparent FC Differences Between Rest and Task Are Not Explained by Task-

evoked Correlations 

 

 Task-evoked FC was only observed within task-related, visual regions. These areas 

appeared to be more restricted and less coupled to other regions than in the resting-state or during 
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the task (Fig. 4.1). In contrast, the connectivity differences involving visual regions between the 

two conditions were predominantly negative and/or not significant. Instead, we found widespread 

negative differences between task-related networks and non-visual sensory areas (e.g. 

somatomotor, auditory cortices). In addition, thalamic regions, which have not often been 

incorporated in analyses of FC changes, were more anti-correlated with one another and more 

positively correlated to portions visual cortex during the movie task. Finally, positive functional 

connectivity from the occipital cortex and fusiform gyrus to the inferior frontal junction (IFJ) 

resulted from the subtraction that also were not reproduced; functionally, the IFJ has been 

implicated in attentional circuits and in cognitive control (Baldauf and Desimone, 2014; 

Sundermann and Pfleidferer, 2012). Overall, these differences between rest and task FC were 

largely not represented in the task-evoked FC patterns. 

The fact that the task-evoked FC did not reveal the difference between the FC during the 

task and the FC at rest (i.e. spontaneous FC) suggests that correlations in ongoing, spontaneous 

activity are driving this difference. Other studies have found that modulations in task state 

functional connectivity may be driven be changes in intrinsic networks, and that flexible “hubs”, 

typically within the frontoparietal network, dorsal attention network, and/or default mode network, 

are thought to be flexible across tasks and play a role in “linking” different networks to facilitate 

different behavioral states (Bray et al., 2015; Cole et al., 2013; Dixon et al., 2017; Gilson et al., 

2017). Therefore, it is likely that this intrinsic activity drives the coupling of task-evoked networks 

to other regions. 

2.4.3 Rest and Task Correlations Negatively Interact 

  The task-evoked FC explained less than 15% of the FC differences between the task and 

resting-state. Therefore, it seems that the task-evoked FC and spontaneous FC are neither 

independent nor linearly additive.  Beyond this, however, we would like to tease apart the nature 

of the rest-task interaction: is the task suppressing spontaneous activity or amplifying it? Our 

observations that the movie-watching task reduced the extent and strength of FC suggest that the 

task suppresses spontaneous correlations. This can be explained mathematically: 

  If Xo is the spontaneous activity and Xe is the task-evoked activity, and if the two sources 

are independent, the measured activity during the task, Xm, would be described by  
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 Xm=Xo+Xe 

if Xo and Xe are independent. Rearranging, the inequality becomes  

 Xm−Xo=Xe 

However, if instead the spontaneous activity is suppressed during the task, the equation then 

becomes  

 Xm<Xo+Xe 

rearranging to  

 Xm−Xo<Xe 

  Therefore, the difference may yield smaller and/or more negative values than actually 

reported by the task-evoked activity.  

This can be re-written using covariances to reflect FC relationships for locations 1 and 2:  

cov(Xm1,Xm2) = cov(Xo1+Xe1,Xo2+Xe2) = cov(Xo1,Xo2) + cov(Xe1,Xe2) 

if Xo and Xe are independent. (Random signal theory allows the distribution of covariances.) 

Rearranging,  

 cov(Xm1,Xm2) − cov(Xo1,Xo2) = cov(Xe1,Xe2) 

If instead the spontaneous correlations during the task are suppressed,  

 cov(Xm1,Xm2) < cov(Xo1,Xo2) + cov(Xe1,Xe2) 

Rearranging,  

 cov(Xm1,Xm2) − cov(Xo1,Xo2) < cov(Xe1,Xe2) 

Covariances and correlations are related by a scaling factor of the standard deviations of the signals 

involved. We standardized the resting-state signals Xo and the mixed signals during the task Xm 

such that they have equal variance; therefore, a negative sign for the left side of this inequality 

cannot explain a positive sign in the right side (e.g. Fig. 2.3, right middle and far right columns). 
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Thus, the suppression of spontaneous correlations during the task may be the driving force behind 

what we have observed, particularly with respect to the different parts of the visual cortex. 

  He (2013) and several others (Churchland et al., 2010; Monier et al., 2003; Ponce-Alvarez 

et al., 2013), also suggest a negative task-rest interaction. Initial evidence suggests that this 

negative interaction may help facilitate the task execution (Boly et al., 2007; Deneux and Grinvald, 

2017; Hesselmann et al., 2008) (see Northoff et al. (2010) and Ferezou and Deneux (2017) for 

review), or  may increase with task difficulty (Garrett et al., 2014; Szostakiwskyj et al., 2017). As 

such, it may bear functional significance.  

 The negative task-rest interaction may or may not hold true for all tasks. Passive versus 

active task engagement may not equally affect spontaneous signals (Ferezou et al., 2006; Otazu et 

al., 2009). Crochet and Petersen (2006) found that active and conscious engagement in a task gave 

rise to more desynchronization of ongoing activity than passive or conscious states (e.g. in the 

anesthetized states). In our natural vision task, subjects actively engaged in the movie with free 

eye movement. Speculatively, cognitively engaging in the task itself, rather than simply having a 

visual experience, explains the nonlinear interaction between spontaneous and evoked functional 

connectivity. However, this remains to be tested.  

  Using natural vision, we noticed that the suppression of spontaneous correlations during 

the task was not consistent throughout the brain. The greatest magnitude of this change was within 

the components of the visual system; these regions exhibited the greatest dissimilarity between 

task-evoked FC and the apparent FC difference between the movie and resting-state conditions. 

These findings may be mediated simply by 1) reduced spontaneous activations in visual areas 

relative to other regions, or 2) by a reduced synchrony of cortical oscillations in task-related 

regions. In EEG, alpha band oscillations are postulated to stem from the rhythmic fluctuations of 

inhibitory neurons, and engaging in certain tasks such as eye-opening, desynchronizes the alpha-

band power (see Klimesch et al. (2007) for review). Other reports relate resting-state inhibitory 

neurotransmitter concentrations, such as GABA (Muthukumaraswamy et al., 2009; Northoff et al., 

2007) or anesthetics thought to modulate GABA (Maandag et al., 2007), to task-induced changes 

in specific regions. Here, we cannot disentangle whether location differences in spontaneous FC 

suppression are mediated by region-specific reduced activations or de-coupling of neuronal 

oscillations, but this is certainly an area for future investigation. 



35 

 

2.4.4 Is Resting-State Really a “Second” Cognitive State? 

  Another possible explanation for why the task-evoked FC did not match the task-rest FC 

difference lies in the mischaracterization of resting-state as a proxy for spontaneous activity. Over 

the last decade, the field of fMRI has been dominated by studies of the brain in the so-called resting 

state: a ‘task-free’ paradigm in which subjects are asked to lie still in the MR scanner with their 

eyes opened or closed (with little consensus as to which is preferred, see Patriat et al. (2013)) (Fox 

and Raichle, 2007; Raichle, 2015). However, as researchers in the field of dynamic functional 

connectivity have astutely identified, during resting-state, subjects actually engage in a variety of 

introspective tasks that are not temporally controlled. Using post-experiment questionnaires, 

Delamillieure et al. (2010) demonstrated that, during resting-state, subjects engage in visual mental 

imagery, inner language experiences, somatosensory awareness, inner musical experiences, and 

the inner processing of numbers; the average percent time reported in these different activities 

were 40 ± 22% (mental imagery), 30 ± 19% (inner language), 19 ± 16% (somatosensory 

awareness), 23 ± 17% (inner musical experiences), and 12 ± 10% (inner processing of numbers), 

further proving the heterogeneity of resting state. These different “mini-cognitive states” have also 

been shown to modulate fMRI findings (Doucet et al., 2012), and exhibit similar functional profiles 

to those regions active while subjects engage in internally directed mental operations (Spreng et 

al., 2008). Additionally, it is worth noting that this assortment of mind-wandering states during 

rest has also been posited as the sources of the “spontaneous multi-stability” hypothesis that 

attempts to reconcile increased variability during resting-state as compared to task states (Ponce-

Alvarez et al., 2015). 

If “resting-state” does not represent spontaneous activity, but is instead a second cognitive 

state, the FC difference between these two conditions may actually represent the difference 

between task-evoked activity and mental imagery, inner monologues, or somatosensory awareness, 

etc. If the FC within different parts of the visual cortex is more strongly positive during these 

various activities than is positive during the movie, for example, the task-rest FC difference would 

elicit negative values in these regions, in spite of the positive FC values obtained during the movie. 

However, upon close inspection of prior fMRI studies of subject-driven cognitive states, we failed 

to uncover strongly negative resting-state FC within parts of the visual cortex or from visual to 

other task areas (somatomotor, auditory) consistent with our findings (Chou et al., 2017; Doucet 

et al., 2012; Shirer et al., 2012).  Though mind-wandering is a nearly impossible to control potential 



36 

 

confound in all fMRI studies using resting-state protocols, we feel it is unlikely to have driven the 

findings obtained in this study for those reasons.  

2.4.5 Methodological Considerations 

Indeed, naturalistic stimuli (Hasson et al., 2004) are of particular significance in studies of 

rest-task interaction. Natural stimuli provide a rich behavioral context reflective of the activities 

of daily life (e.g. viewing natural scenes with sharp, moving edges or engaging in conversation) 

that unfold over relatively long time scales (Hasson et al., 2010). It has experimentally been proven 

that neural responses to naturalistic stimuli are reliable and widespread (Hasson et al., 2010; 

Jääskeläinen et al., 2008; McMahon et al., 2015; Mukamel et al., 2005), and the connectivity 

patterns that appear during naturalistic activations better reflect spontaneously emerging patterns 

in the resting-state as compared to controlled, artificially designed stimuli (Wilf et al., 2017). 

Further, it has been shown that naturalistic stimuli reduce head motion, improve arousal, and lead 

to more stable and more individualized estimates of FC (Vanderwal et al., 2017). The high-level 

natural content of such movies is necessary for reproducible responses; by spatiotemporally 

scrambling the natural stimulus, widely distributed and highly reproducible fMRI responses cannot 

not be well demonstrated (Lu et al., 2016). Therefore, naturalistic visual stimuli provide rich task-

evoked information about neural dynamics as compared to more traditional psychophysical stimuli 

(e.g. Gabor filters).  

 Unlike our study, Simony et al. (2016) observed default mode network FC to a seed in the 

Precuneus during a naturalistic auditory task. Therefore, the lack of DMN FC to the precuneus 

seed in Fig. 1 of this study may be surprising to some readers. However, in Supplementary Fig. 5 

in Simony et al. (2016), the authors compared two different naturalistic auditory conditions and 

found that “belief” content (relating to inferring the beliefs held by different protagonists, found 

using a “Theory of Mind” localizer) was necessary for the DMN to be observed. Such content 

likely relates to more to introspective processes thought to relate to DMN function (Andrews-

Hanna et al., 2014; Buckner et al., 2008). The control condition, in which with narratives 

describing photographs and maps with no belief content were presented, instead yielded a null 

functional connectivity result with the seed in the Precuneus. Like this control condition, the 

natural movie task presented little opportunity for inference about beliefs or introspection, and thus 

may be the source of the lack of DMN FC observed. 
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Optimally isolating the task-evoked activity from the unknown mixture of spontaneous 

activity and task-evoked activity obtained during fMRI scans is important for comprehensive 

studies of the difference between resting-state and task states. The presence of intrinsic activity in 

both conditions often leads to over-estimation of the similarity of FC estimates between rest and 

task (Kim et al., 2017). One way of reducing the variability present in fMRI signals from intrinsic 

activity is through temporal averaging; however, a very large number of subjects and/or sessions 

is needed to achieve appropriate statistical power. Even with a great number samples, the efficacy 

of simple averaging in removing spontaneous activity has been shown to be inferior to that of inter-

session or inter-subject correlations (Henriksson et al., 2015; Kim et al., 2017).  Moreover, using 

inter-session correlations allows one to generate task-evoked FC specific to each subject, which 

cannot be accomplished through averaging.  Along these lines, between inter-session (i.e. “intra-

subject”) and inter-subject approaches, inter-session correlations have shown enhanced 

reproducibility (Henriksson et al., 2015; Lu et al., 2016). An earlier approach uses the general 

linear model (GLM) to construct a trial-to-trial series of activation parameters (β) for each voxel 

that can be cross-correlated (Mennes et al., 2013; Rissman et al., 2004); however, whether this 

method more effectively removes intrinsic activity than inter-session and inter-subject approaches 

has yet to be shown.  

Further, the extent to which global signal regression (GSR) may have impacted results is a 

potential concern. GSR improves the spatial specificity of FC fMRI maps, but there are concerns 

about whether it artificially introduces anticorrelations among certain networks (Fox et al., 2009; 

Murphy et al., 2009; Weissenbacher et al., 2009). In addition, others have shown evidence that 

there may indeed be neural contributions of the global signal (Wen and Liu, 2016; Wong et al., 

2013). Therefore, we repeated this analysis without performing the global signal regression step 

(Fig. 2.9-2.11). Overall, the same overall conclusion was formed: the task-evoked functional 

connectivity did not explain the FC difference between rest and task conditions. We observed 

stronger global correlations in the resting-state than during the task; this is most likely because 

there are no additional contributions from a task-evoked signal that may otherwise reduce this 

effect. Because of this, it was more difficult to disentangle the difference between task FC and 

resting-state FC. However, global correlations did not appear to have much of an effect on the 

task-evoked functional connectivity (comparing Figs. 2.1-2.3 with Figs. 2.9-2.11), suggesting that 

they are likely unrelated to visual task-related neural processing. Consequently, an additional 
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potential advantage of inter-session and inter-subject correlations is that the confounding effects 

of physiological and motion variability that are so challenging to remove from typical within-

subject FC analyses are effectively reduced (Simony et al., 2016). It may be beneficial for others 

studying FC to consider such approaches when investigating the veridical “task” FC over 

traditional within-session FC analyses. 

 We opted not to regress head motion from subjects’ fMRI signals to avoid potentially 

removing physiologically relevant signals. Although the majority of variation across subjects in 

functional connectivity subjects is not attributable to head motion, there can be significant 

systematic effects on estimates of coupling between different networks, particularly if the amount 

of motion is large (Power et al., 2012; Van Dijk et al., 2012). In general, head motion has been 

shown to increase estimates of FC between local regions, while reducing estimates of FC between 

distant regions or functionally unrelated networks(Van Dijk et al., 2012). A recent study of high 

frequency oscillations in fMRI, which are particularly sensitive to both head motion and the 

regression of related artifacts, found that group-level head motion regression had little effect on 

between-condition high frequency oscillation results when head motion was very small across 

subjects (Yuan et al., 2016). We also tightly restricted head motion allowances for included 

subjects such that subjects with >1 mm of translational motion or >0.035 radians of rotational 

motion were excluded. In addition, the time series of the seeds and parcels also did not show signal 

drift or abrupt changes that typically arise from head motion.  

  Overall, inter-session and inter-subject correlation methods have been understudied in 

neuroimaging, and new studies using these methods provide an additional vantage point from 

which we may learn about the brain. In this work, our focus was on whether the difference between 

the resting-state and the mixed FC observed during the task reflected the task-evoked FC. It did 

not, but we shed light on a suppression of correlations of spontaneous activity that occurs to 

facilitate a task. However, a consensus regarding this phenomenon still needs to be formed for 

additional researchers to fully disentangle its origins and purpose. 
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Figure 2.1. Pipeline Illustration for Seed-based Analysis. After pre-processing, a seed voxel is 

chosen, whose time series is correlated with that of all other voxels within that session to generate 

the session-level FC map for either resting-state or task conditions. The session-level resting-state 

FC maps are subtracted from the session-level task maps to create the FC difference maps for that 

session. To determine task-evoked FC maps, a seed voxel’s time series in one session is correlated 

with all other voxels from the other session for that subject. Finally, group-level maps are 

determined by applying t-tests (one-sample for the resting-state, task, and task-evoked FC; paired 

for the task-rest FC difference) to the session-level data. 

  



40 

 

 

Figure 2.2. Pipeline Illustration for Parcellation-based Analysis. After pre-processing, mean time-

courses for the voxels within each network are cross-correlated with one another to generate 

session-level FC matrices. The session-level resting-state FC matrices are subtracted from the 

session-level task matrices to create the FC difference matrices for that session. To determine task-

evoked FC maps, the networks’ mean time series in one session are correlated with the networks’ 

mean time series from the other session for that subject. Finally, group-level maps are determined 

by applying t-tests (one-sample for the resting-state, task, and task-evoked FC; paired for the task-

rest FC difference) to the session-level data. 
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Figure 2.3. Seed-based functional connectivity (q<0.05, FDR-corrected for all except for within-

session FC differences (right middle), uncorrected at p<0.001) using a seed in A) PCu, B) V1, C) 

V5, and D) M1.  Each panel shows the result for within-session FC during eyes-closed resting-

state (left), within-session FC during the movie task (left middle), the within-session FC difference 

during the movie relative to rest (right middle), and the task-evoked FC computed using inter-

session correlations (right). The seed voxel is shown as a light blue square in each image.  The 

color bar indicates t-values. 
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Figure 2.4. Functional Connectivity Profiles Across Methods. A) Here, we show correlation 

matrices corresponding to the FC profiles during resting-state (top) and the movie task (top middle), 

the FC difference during the movie relative to rest (bottom middle), and the task-evoked FC 

computed using the inter-session approach (bottom).  Profiles were calculated using the Yeo et al. 

17-network parcellation (left), ICA using 24 components corresponding to the canonical RSNs 

(middle), and the Fan et al. Brainnetome Atlas 246-region functional parcellation (right). The color 

bar indicates mean z-transformed cross correlation values; only significant connections (q<0.03) 

are displayed. We have listed mean session-wise correlation coefficients between the resting-state 

and movie tasks for each of the three methods in the white space between the matrices, as well as 

between the task-rest FC difference and the task-evoked FC. B) The mean correlations between 

movie FC and rest FC are plotted on the bar graph. Error bars indicate SD. C) The mean 

correlations between the task-rest FC difference and task-evoked FC are plotted on the bar graph. 

Error bars indicate SD.  
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Figure 2.5. Functional Connectivity Findings- Comparing the Task-Rest FC Difference to the 

Task-Evoked FC.  The circle graphs indicate significant FC findings (p>0.03, FDR-corrected). 

Abbreviations of regions are based on the Brainnetome Atlas. A) Significant Task-Rest Difference 

Connections. Positive connections during the movie relative to rest are noted with red lines; 

negative connections during the movie relative to rest are noted with blue lines.  B) Significant 

Task-Evoked Connections. Positive connections across two repeated viewings of the natural movie 

are denoted with red lines; negative connections across two viewings of the movie are denoted 

with blue lines.   
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Figure 2.6. Maps obtained using group-level spatial ICA. The thresholding for display purposes 

only was determined according to the voxel-wise posterior probability equal to 0.6, per a Gaussian 

Mixture Model; ICA maps used in any calculations were not thresholded.  

Abbreviations from top-to-bottom, left-to-

right are as follows: Visual Network 1 

(Vis1), Visual Network 2 (Vis2), dorsal 

Default Mode Network (dDMN), 

Auditory Network 1, Right Executive 

Control Network (RECN), Left Executive 

Control Network (LECN), Language 

Network (Lang), inferior Frontal Network 

(inFr), Visual-Spatial Network (ViSp), 

Basal Ganglia (BaGa), Cingulate Network 

(Cing), Visual Network 3 (Vis3), Lateral 

Frontal Network (LFro),Visual Network 4 

(Vis4), Precuneus (PrCu), Cerebellum 

Network 1 (Cer1), ventral Default Mode 

Network (vDMN), Auditory Network 2 

(Aud2), Visual Network 5 (Vis5), 

Somatosensory Network (Soma), Motor 

Network (Moto), Executive Control 

Network 1 (ECN1), Executive Control 

Network 2 (ECN2), and Cerebellum 

Network 2 (Cer2). 
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Figure 2.7. Resting-state inter-session correlations. By showing that there are no significant voxels 

correlated to the seed voxel across two sessions of the same stimulus, we demonstrate the efficacy 

of inter-session correlations in isolating task-evoked activity. The seed voxels were the same as in 

Fig. 2.5 and were derived from the precuneal (left), B) primary visual (left middle), C) high visual 

(right middle), and D) motor cortices (right), respectively. The color bar indicates z-transformed 

cross correlation values. 
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Figure 2.8. Visualization of functional connectivity findings- comparing the task-rest FC 

difference to the task-evoked FC.  Significant regions in Fig. 2.5 were visualized using MRICron 

software (http://people.cas.sc.edu/rorden/mricron/index.html). Abbreviations of regions are based 

on the Brainnetome Atlas. A) Significant Task-Rest Difference Connections. B) Significant Task-

Evoked Connections.  

  

http://people.cas.sc.edu/rorden/mricron/index.html
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Figure 2.9. Seed-based FC Findings without Global Signal Regression. Seed-based functional 

connectivity (q<0.05, FDR-corrected for all except for within-session FC differences (right 

middle), uncorrected at p<0.001) using a seed in A) PCu, B) V1, C) V5, and D) M1. The global 

signal regression step was not performed prior to analysis. Each panel shows the result for within-

session FC during eyes-closed resting-state (left), within-session FC during the movie task (left 

middle), the within-session FC difference during the movie relative to rest (right middle), and the 

task-evoked FC computed using inter-session correlations (right). The seed voxel is shown as a 

light blue square in each image.  The color bar indicates t-values. 
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Figure 2.10. Functional Connectivity Profiles Across Methods without Global Signal Regression. 

A) Correlation matrices corresponding to the FC profiles during resting-state (top) and the movie 

task (top middle), the FC difference during the movie relative to rest (bottom middle), and the 

task-evoked FC computed using the inter-session approach (bottom).  The global signal regression 

step was not performed prior to analysis. Profiles were calculated using the Yeo et al. 17-network 

parcellation (left), ICA using 24 components corresponding to the canonical RSNs (middle), and 

the Fan et al. Brainnetome Atlas 246-region functional parcellation (right). The color bar indicates 

mean z-transformed cross correlation values; only significant correlations (q<0.03) are displayed. 

We have listed mean session-wise correlation coefficients between the resting-state and movie 

tasks for each of the three methods in the white space between the matrices, as well as between 

the task-rest FC difference and the task-evoked FC. B) The mean correlations between movie FC 

and rest FC are plotted on the bar graph. Error bars indicate SD. C) The mean correlations between 

the task-rest FC difference and task-evoked FC are plotted on the bar graph. Error bars indicate 

SD. See Fig. 2 caption for Yeo parcellation abbreviations, Fig. 4 for ICA abbreviations, and Fan 

et al. (2016) for Brainnetome atlas abbreviations.  
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Figure 2.11. Functional Connectivity Findings: Comparing the Task-Rest FC Difference to the 

Task-Evoked FC without Global Signal Regression.  The circle graphs indicate significant FC 

findings (q>0.03, FDR-corrected). The global signal regression step was not performed prior to 

analysis. Abbreviations of regions are based on the Brainnetome Atlas. A) Significant Task-Rest 

Difference Functional Connectivity. Positive correlations during the movie relative to rest are 

noted with red lines; negative correlations during the movie relative to rest are noted with blue 

lines. B) Significant Task-Evoked Functional Connectivity. Positive correlations across two 

repeated viewings of the movie are denoted with red lines; negative correlations across two 

viewings of the movie are denoted with blue lines.    
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3. MAPPING WHITE-MATTER FUNCTIONAL ORGANIZATION AT 

REST AND DURING NATURALISTIC VISUAL PERCEPTION 

*Formatted for dissertation from the article published in NeuroImage. (Marussich et al., 2017) 

  Rationale 

  Since its inception, functional magnetic resonance imaging (fMRI) has been focused on 

mapping activations and connections in the cerebral gray matter (GM) (Bandettini et al., 1992; 

Biswal et al., 1995; Fox and Raichle, 2007; Kwong et al., 1992; Ogawa et al., 1992). It has had 

limited use in investigating the functional dynamics and organization of the cerebral white matter 

(WM) (Gawryluk et al., 2014). This paucity of WM-fMRI literature is disproportional considering 

that WM occupies about half of the human brain volume, contains structural pathways for long-

range signaling (Sporns et al., 2005), and has critical implications for numerous neurological 

diseases (Ffytche and Catani, 2005).  

 It has been often assumed that WM lacks the typical hemodynamic changes driven by 

neural activity (Logothetis and Wandell, 2004). Relative to GM, WM has much lower cerebral 

vascular density (Lierse and Horstmann, 1965), blood volume (Jensen et al., 2006), and blood flow 

(Van Osch et al., 2009). Moreover, energy consumption in WM is about one fourth that of GM 

overall (Logothetis and Wandell, 2004), with more energy used on action potentials rather than 

synapses (Harris and Attwell, 2012). While neurometabolic and neurovascular coupling in WM is 

also unclear (Logothetis and Wandell, 2004), previous findings about the relationship between 

neural and hemodynamic activities are all based on signals specific to GM (Logothetis et al., 2001; 

Smith et al., 2002). It is problematic to simply extrapolate such findings either for or against the 

validity of WM-fMRI. Furthermore, artifacts of motion (Johnstone et al., 2006), partial-volume 

(Jo et al., 2010), and physiological origin (Makedonov et al., 2015) are also of concern in WM-

fMRI. Hence, the fMRI signal in WM has an unclear basis and an inherently low signal-to-noise 

ratio (SNR); as such, it has been dismissed from analysis or interpretation in the vast majority of 

fMRI studies. 

  However, increasing evidence has shed light on the feasibility of using fMRI to map WM 

activation and connectivity. See Gawryluk et al. (2014) for a review. Previous studies showed that 
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inter-hemispheric transfer tasks could induce fMRI activations in the corpus callosum (Fabri et al., 

2011; Gawryluk et al., 2011a; Tettamanti et al., 2002), through which activated cortical regions 

were structurally connected across hemispheres (Mazerolle et al., 2010). Such callosal activations 

may have a metabolic basis, since local cerebral metabolic rate for glucose was found to depend 

on neural activity in the corpus callosum given graded intra-cortical electrical stimuli (Weber et 

al., 2002). Beyond the corpus callosum, WM activations have rarely been reported in fMRI studies 

(Mazerolle et al., 2013; Mosier et al., 1999). Astafiev et al. (2015; 2016) have demonstrated that 

symptomatic chronic mTBI subjects show abnormal neural activation during visual tracking tasks 

in a common set of subcortical and white matter regions using BOLD fMRI acquisitions. Moreover, 

Ding et al. reported that resting-state fMRI signals in WM were correlated over long distances, as 

well as locally in a similar anisotropic manner as observed with diffusion tensor imaging (DTI). 

Although all prior studies that reported WM- fMRI activations were based on T2
*-weighted MRI 

sequences, the WM-fMRI signal and its correlational structure were recently shown to be blood 

oxygenation level dependent (BOLD) (Ding et al., 2016). This finding is important since T2
*-

weighted signal fluctuation may arise from both BOLD and non-BOLD origins: the former reflects 

changes in R2
*, the latter may reflect changes in initial signal intensity (S0) likely due to nuisance 

effects, e.g. motion artifacts and physiological noise (Kundu et al., 2012). Collectively, these 

studies suggest that there is no fundamental barrier for which fMRI is doomed to fail for functional 

imaging in WM, paving the way for an emerging domain of fMRI methodologies and applications. 

  Perhaps the most critical and practical challenge is the much lower dynamic range in WM 

(i.e. versus that in GM). When univariate or multivariate time-series analyses are applied to GM 

and WM voxels together, signal variance and structure are dominated by voxels in GM, whereas 

activity and connectivity patterns in WM are likely under-detected or mistaken as noise. One 

potential way to deal with this issue is to separate WM from GM and use data-driven analysis, e.g. 

independent component analysis (ICA), to characterize the spatiotemporal patterns of signal versus 

noise exclusively in the WM. This is helpful especially for the resting state, since the absence of 

any overt task makes it more difficult to discriminate signal from noise without any presumed 

temporal characteristics. A plausible criterion to distinguish signal from noise is based on their 

expected difference in reproducibility within and across subjects. The brain's structural and 

functional organization is generalizable and stable, serving as the underlying constraint for the 

signal characteristics; this is not so for noise. Once signal and noise are separated, a new stage may 
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be formed to further assess the network patterns of WM activity, as well as their relationships with 

cortical networks. This may also allow for the conjoint evaluation of the roles of WM and GM 

networks in perceptual, behavioral, and cognitive tasks. 

  Taking this strategy, we set out to characterize WM-fMRI signals in the resting state and 

also during free viewing of a natural movie. The natural-vision paradigm provides a dynamic and 

realistic behavioral context. As in the resting state, brain activity in this task state is seemingly 

complex and unpredictable, yet it exhibits coordinated cortical network patterns that support visual 

perception (Hasson et al., 2004). Here, we further asked whether the patterns of functional 

connectivity in the white matter would differ between the resting state and the natural-vision state. 

The answer to this question was expected to shed light on the functional relevance of white-matter 

fMRI. Briefly, high-dimensional ICA was used to decompose and de-noise WM-fMRI signals in 

the resting state and during a natural-vision task. From the de-noised data, we found that WM-

fMRI signals were patterned into clusters and hierarchically organized in the resting state, whereas 

naturalistic visual stimuli drove more coherent signal fluctuations within the optic radiations, as 

well as the coupling between the WM pathways and the GM networks engaged in visual processing 

and perception. 

 Methods and Materials 

3.2.1 Subjects 

  Thirteen healthy volunteers (25 ± 3 years old, 6 females, 10 right-handed, normal or 

corrected to normal vision) participated in this study in accordance with a protocol approved by 

the Institutional Review Board at Purdue University. Two subjects were excluded because they 

were self-reported to fall asleep during the sessions. 

3.2.2 Experimental Design 

  Each subject underwent four fMRI sessions with two conditions. Two sessions were in the 

eyes-closed resting state, and the other two were during free-viewing of an identical movie clip 

(The Good, the Bad, and the Ugly, 1966). We chose this movie because it was previously used to 

obtain interesting findings on cortical gray-matter activity during natural vision (Hasson et al., 

2004). Every movie-stimulation session began with a blank gray screen presented for 42 s, 

followed by the movie presented for 5 min and 37 s (from 162:54 to 168:33 min. in the film), and 
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ended with the blank screen again for 30 s. No sound was played during the movie. The resting-

state sessions had the same duration as the movie-stimulation sessions. The session order was 

randomized and counterbalanced across subjects. The scanner environment was darkened to 

minimize external light exposure. Hereafter, we also refer to the movie stimulation condition as 

the task state, in contrast to the resting state. 

3.2.3 Data Acquisition 

  Whole-brain structural and functional MRI images were acquired using a 3-Tesla Signa 

HDx MRI system (General Electric Health Care, Milwaukee, USA). A 16-channel receive-only 

phase array coil (NOVA Medical, Wilmington, USA) was used during all acquisitions. The fMRI 

data were acquired using a single-shot, gradient-recalled (GRE) echo- planar imaging (EPI) 

sequence (38 interleaved axial slices with 3.5mm thickness and 3.5 × 3.5 mm2 in-plane resolution, 

TR=2000 ms, TE=35 ms, flip angle=78°, field of view=22×22 cm2). T1-weighted anatomical 

images covering the whole head were acquired with a spoiled gradient recalled acquisition (SPGR) 

sequence (1×1×1mm3 nominal resolution, TR/TE=5.7/2 ms, flip angle=12°). 

3.2.4 Pre-Processing 

  Pre-processing of the fMRI images was carried out with a combination of AFNI (Cox, 

1996), FSL (Smith et al., 2004), and MATLAB (Mathworks, Natick, MA). In brief, T1-weighted 

anatomical images were non-linearly registered to the Montreal Neurological Institute (MNI) brain 

template, using a combination of flirt and fnirt in FSL. T2
*-weighted functional image time series 

were corrected for slicetiming (using slicetimer in FSL), co-registered to the first volume within 

each series to account for head motion (using mcflirt in FSL), had non-brain tissues masked out 

(using 3dAutomask in AFNI), aligned to the T1-weighted structural MRI (using align_epi_anat.py 

in AFNI), and registered to the MNI space with 3-mm isotropic voxels (using applywarp in FSL, 

and 3dresample in AFNI).  

  The first six volumes in the fMRI data were discarded to avoid any pre-steady-state 

longitudinal magnetization. Each session's data was subjected to third-order de-trending and low-

pass filtering (< 0.1 Hz) using the regression and filtering toolboxes in MATLAB. For the movie 

sessions, we excluded data acquired during the blank gray screen presentation and further removed 



54 

 

the first 6 volumes and the last 7 volumes of the movie to avoid any transient fMRI response during 

the movie stimulation.  

  Following the pre-processing steps, data analysis for the fMRI data was twofold: analysis 

within the WM-only and analysis within the GM- only. This was achieved by creating and applying 

a WM mask to the normalized fMRI images to isolate WM-only voxels. The WM mask was 

created from the LONI Probabilistic White Matter template in the MNI space (Shattuck et al., 

2008) by setting a probabilistic threshold to a level of 0.85. This threshold was chosen to be very 

conservative to avoid possible partial volume effects close to GM/WM junctions; hence, the mask 

covered most but not all WM voxels. The thalamus was not included in the WM mask. The GM 

mask was derived by finding the intersection of the complement of the WM mask and the brain 

mask in the MNI template. Both the WM and GM masks were restricted to voxels within axial 

slices from z=−15mm to z=51 mm. Linear spatial smoothing (FWHM=6 mm) was then performed 

separately within the WM or GM voxels to avoid partial volume effects between them. Effectively, 

the voxels outside the mask were set to null, and thus did not contribute to the smoothed voxel 

intensity, while the spatially smoothed voxel time series was demeaned and variance normalized 

before any subsequent analysis. 

3.2.5 De-Noising via Independent Component Analysis (ICA) 

  For each condition (i.e. the resting state and the task state), the fMRI data were separated 

into two sets for each of the two sessions from every subject. In a total of four sets of fMRI data, 

two were from resting state and the other two were from the task state with naturalistic visual 

stimuli. The fMRI data were then temporally concatenated across subjects for each of the sets. The 

four concatenated fMRI time-series data allowed us to evaluate the test-retest reproducibility of 

the group-level ICA maps in the resting state and the task state. Group spatial ICA using the 

Infomax algorithm (Bell and Sejnowski, 1995) was applied to each set of the concatenated data. 

This gave rise to 70 spatially independent components (ICs) with distinct temporal basis functions 

that yielded a sparse representation of the data; as such, voxels were considered to be synchronized 

(i.e. functionally related) within each component. To evaluate the test-retest reproducibility of each 

of the 70 ICs, we calculated the spatial cross correlations between the two sets of ICs for each 

condition. An IC in one set was assumed to be reproducible if there was a corresponding IC in the 

other set that was spatially correlated with this IC. We calculated the absolute values of the 
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correlation coefficients and found the optimal pairing by maximizing the sum of the pair-wise 

absolute cross-correlation values. Here, the absolute cross-correlation value was used because 

spatially consistent ICA components might appear 180° out of phase from one another. Upon 

visual inspection, non-reproducible components were regarded as noise and discarded, whereas 

the remaining components were re-assembled to generate the de-noised fMRI data for every 

session and every subject. For each condition, the de-noised fMRI data were further concatenated 

across the two sessions for each of the eleven subjects, giving rise to 22 sessions in total. Then, 

group ICA was applied again to the de-noised and concatenated data, generating about 30 ICs that 

characterized the WM-fMRI signals in the resting state or during the natural visual stimulation.

 Following group ICA, we used dual regression (Filippini et al., 2009) against each subject's 

fMRI data to extract subject-specific ICA maps in order to capture inter-subject differences (Tavor 

et al., 2016). Briefly, the first (multiple) regression was applied to the spatial domain, using the 

group-level ICA maps as regressors to get individual time series for each subject and each 

component; the second regression was applied to the time domain, using the obtained individual 

time series as regressors to get individual-level ICA maps. 

3.2.6 Hierarchical Clustering Based on Temporal Correlations 

  In both the resting state and the task state, the ICs of WM-fMRI signals were progressively 

grouped into clusters based on the cross-correlations of their corresponding time series and a 

complete-linkage hierarchical clustering algorithm (Dasgupta and Long, 2005). At the beginning 

of the algorithm, each component was in a cluster of its own. These clusters were then 

progressively combined into larger clusters until all components ended up in the same cluster. At 

each step, the clusters separated by the ‘shortest distance' (i.e. the largest temporal cross 

correlation) were combined. Such hierarchical clustering was visualized as a dendrogram, which 

showed the sequence of clusters merging and the distance at which each fusion took place (Cordes 

et al., 2002; Dasgupta and Long, 2005; Wang and Li, 2013). 

3.2.7 Comparison Between the Resting and Task States 

  We also compared the reproducibility of WM-fMRI ICA components in the resting state 

versus the task state. For this purpose, the test-retest reproducibility (i.e. spatial cross correlations 

between repeated sessions of the same condition) was compared between the resting state and the 
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task state. Specifically, after pairing the ICA components between session 1 and session 2 of either 

the resting state or the task state as mentioned previously, the pairwise correlation coefficients 

were transformed into z-scores. The z-scores were compared between the two states, and the 

significance of their differences was evaluated by using a two-sample independent t-test with a 

significance level of 0.05.  

  We further compared the WM-fMRI ICA maps in the resting state with those in the task 

state. Specifically, we calculated the spatial cross correlations between every component in the 

resting state and every component in the task state. Then, individual components in the resting 

state were optimally paired to those in the task state to maximize the sum of cross correlations 

between all paired components. After pairing, the pair-wise cross correlations were further tested 

for statistical significance. To calculate the p-value from the correlation coefficient, we used an 

approximate estimate of the spatial degree of freedom (DF), as previously described elsewhere 

(Smith et al., 2009). The voxels were not independent samples due to spatial smoothing. For a 

conservative approximation, we considered independent samples as larger (than a voxel) cubes 

that included five voxels in each direction, given that the voxel size is 3mm and the smoothing 

filter has FWHM=6 mm. For a total of 7990 voxels in WM, this approximation yielded an 

estimated DF of 64. To be even more conservative, we used a DF of 50 to account for other 

potential spatial dependency in data acquisition or processing. Although seemingly arbitrary, the 

above procedure yielded a reasonable approximate of the spatial degree of the freedom. 

3.2.8 Functional Relationship Between GM and WM Networks 

  Furthermore, we assessed the functional relationships between WM and GM networks at 

rest or during task. For this purpose, we first identified a number of functional networks within the 

cortical gray matter during the resting or task state. Specifically, GM-fMRI data were concatenated 

across all sessions from all subjects in the resting or task state. For either state, ICA was applied 

to the concatenated data to produce 70 spatially independent components, among which ~45 

cortical networks were recognizable as previously reported resting state networks (Shirer et al., 

2012), and retained for subsequent analyses. We evaluated the temporal cross correlations between 

ICA components in WM and those in GM. The activity time series of every WM and GM 

component was extracted from each of the 22 sessions separately for the resting state and the task 

state. For every session of the resting or task state, temporal cross correlations were calculated 
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between every GM component and every WM component, and then transformed to z-scores. To 

test the significance of the cross correlation, the average z-score was compared against zero by 

performing one- sample t-test to every pair of GM and WM components (p < 0.05, DF=21). 

3.2.9 Comparison with Diffusion MRI 

  For both resting-state and task conditions, we thresholded the spatial ICA maps to delineate 

the shapes of WM structures revealed in individual components using the method described in 

Beckmann and Smith (2004). Briefly, we first calculated the z-statistic for each voxel and each 

ICA map by dividing the ICA maps by the estimated standard deviations of the voxel-wise 

residuals. We further modeled the null distribution of each z-statistic map with a mixture of two 

Gaussian distributions (i.e. Gaussian Mixture Model (GMM)), and then calculated the voxel-wise 

posterior probability based on the estimated GMM. We then thresholded the ICA maps according 

to the voxel-wise posterior probability, which was set to 0.6. For each condition, we then used the 

thresholded ICA maps to create a set of WM structures. Such structures, obtained with WM- fMRI 

in the resting or task state, were visualized in the open-source 3D Slicer toolkit 

(http://www.slicer.org) (Fedorov et al., 2012), and were compared with a diffusion tensor imaging 

atlas, the ICBM-DTI-81 white-matter labels atlas (Mori et al., 2008; Oishi et al., 2008). 

 Results 

3.3.1 Spatially Independent Components of WM-fMRI Signals 

  We explored the spatiotemporal patterns of WM-fMRI data in the resting state by using 

ICA. 70 spatially independent components were extracted from all WM voxel time series, after 

data were temporally standardized and concatenated across all subjects and separately for the two 

repeated resting-state sessions (referred to as session 1 and session 2). Components from the two 

sessions were optimally matched into distinct pairs based on the spatial cross correlation between 

each component from session 1 and its corresponding component from session 2. This pair-wise 

cross-correlation provided the measure of intra-subject reproducibility for each component. 

Twenty-eight out of the 70 components were found to exhibit relatively high intra-subject 

reproducibility (r =0.4028 ± 0.0276) and were paired between the two repeated sessions. Fig. 3.1 

shows the spatial patterns of five example components that were found to be reproducible between 

session 1 (Fig. 3.1, left) and session 2 (Fig. 3.1, middle). Many of the reproducible components 

http://www.slicer.org/
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appeared to be cluster-like (or non-fiber-like), showing spatial distributions confined to focal 

regions in WM (e.g. Fig. 3.1 IC 1 and IC 6). In contrast, some components were readily observed 

as a fiber-like distribution over a long distance, as in the optic radiations (e.g. Fig. 3.1, IC 2 and 

IC 13) and the corpus callosum (e.g. Fig. 3.1 IC 8).  

 We discarded components as “noise” that were spatially inconsistent between the two 

repeated sessions in order to improve the SNR of WM-fMRI data. The discarded components had 

either relatively lower reproducibility (r =0.1879 ± 0.0147), or spatially non-specific distribution 

most likely due to artifacts. Thus, we attributed the 28 reproducible components to the “signals” 

likely of neural origin, and attributed the 42 non-reproducible components to “noise”. Such “signal” 

vs. “noise” components accounted for 33.98% and 66.02% of the variance in WM-fMRI, 

respectively.  

  After excluding all noise/artifact components, the signal components were reassembled to 

give rise to presumably de-noised WM- fMRI data. The de-noised data were then concatenated 

across the two resting-state sessions, and further decomposed into 31 spatially independent 

components for subsequent analyses. Here, a buffer (+3 ICs) was provided to account for the 

variation between the two sessions. Among the 31 components, two components were not 

consistent to the spatial maps produced by ICA in either session 1 or session 2; they were further 

discarded, leaving a total of 29 components for subsequent analyses. Some example components 

extracted from the de-noised data are shown in Fig. 3.1 (right). All of the 29 components in the 

resting-state are shown in Fig. 3.2A. 

3.3.2 Hierarchical Organization of WM-fMRI Components 

  We assessed the temporal relationships between different components of the de-noised 

WM-fMRI data. These components, although spatially independent, were temporally correlated 

with each other to a varying degree, with the absolute correlation coefficients ranging from 0 to 

0.27 (Fig. 3.2B, bottom). These temporal cross-correlations were used to progressively merge the 

individual components into a hierarchical organization based on hierarchical clustering (Fig. 3.2B, 

top). For example, bilateral optic radiations emerged from progressively merging multiple ICs: 

two adjacent ICs were first grouped into a unilateral fiber bundle connecting LGN to V1, which 

were then paired with the homologous fiber bundle from the opposite hemisphere (Fig. 3.2C). 

Similarly, adjacent segments in the corona radiata (Fig. 3.2A – IC 17 and IC 28) were clustered to 
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construct the overall fiber bundle (Fig. 3.2B). For comparison, we also applied the same 

hierarchical clustering analysis to cortical networks. Results showed that cortical networks were 

more tightly correlated and clustered than the white-matter components (Fig. 3.8). 

3.3.3 Spatiotemporal Structure of WM-fMRI During Natural Vision 

  Following this result, we asked whether the above intrinsic patterns and the hierarchical 

structure of WM-fMRI signals were preserved during complex, dynamic, and realistic visual 

experiences. To address this question, we analyzed the WM-fMRI data during naturalistic visual 

stimulation using the same method applied in the resting state. Similar to the test-retest 

reproducibility evaluated for the resting-state components (Fig. 3.3A, left), some ICA components 

were reproducible across the two repeated movie stimulation sessions (Fig. 3.3A, middle). 

Twenty- seven components were reproducible (r =0.5867 ± 0.0323) and were kept as signals, while 

other components were attributed to noise or artifacts and thus removed. The signal and 

noise/artifact components accounted for 34.69% and 65.31% of the variance in WM-fMRI, 

respectively, which was comparable to that of those in the resting state. Overall, the components 

during the visual task were more reproducible than those in the resting state (Fig. 3.3A, right) (p < 

0.0001, two-sample t-test). As done for the resting state, we also concatenated the de-noised WM-

fMRI data across the two movie sessions, and decomposed the concatenated data into 30 spatially 

independent components. Two components were not consistent with any of the components 

produced by ICA in either session 1 or session 2; the other 28 components were kept for subsequent 

analyses. 

  The task-state WM ICs mostly resembled those in the resting state (Fig. 3.3B). Twenty-

one out of the 28 components observed during the visual task were also observed in the resting 

state, giving rise to one-to- one matched pairs with significantly correlated spatial patterns (|r| 

=0.5306 ± 0.0298, p < 10−5 to p=0.0207, uncorrected). For example, IC 3, IC 10, IC 27 were three 

ICA maps in the task state that were matched to IC 8, IC 14, IC 6 in the resting state (Fig. 3.3B). 

Four components were not matched (|r|=0.0868± 0.0182, p=0.3208 to p=0.8611, uncorrected) in a 

one-to-one manner. For an example, see Fig. 3B, IC 1 (task) versus IC 13 (rest).  

  To further characterize the consistency (and inconsistency) between the resting and task 

states, we compared the hierarchical relationships between spatially independent components in 

these two states. See Fig. 3.4A for all 28 components in the task state. The independent components 



60 

 

that were matched between the task and resting states were also found to bear a similar hierarchical 

organization in both states (Fig. 3.4D). For example, the corona radiata began to emerge from 

clustering its three segments (IC 8, IC 23, and IC 17) through two hierarchical steps (Fig. 3.4B). 

Among the components that were not matched between the task and resting states, a single 

component (IC 1) in the task state was found to encompass the bilateral optic radiations connecting 

LGN and V1 (Fig. 3.4C). This observation, that the bilateral optic radiations manifested 

themselves as a single component, suggests that activity fluctuations within the optic radiations 

were more coherent during visual stimulation than in the resting state, during which the optic 

radiations were segregated into multiple pieces (Fig. 3.2C). Also note that during the task, the optic 

radiations (IC 1) were further clustered with a component corresponding to an anterior segment in 

the right inferior longitudinal fascicular (ILF) (IC 13), which is located near and posterior to the 

optic radiations (see Fig. 3.4A and D) and contains connections between associative visual areas 

and anterior temporal structures (Catani et al., 2003).  

  While the above results were obtained with group ICA, we also used dual regression to 

obtain the corresponding ICA maps from individual subjects. For both the resting state and the 

task state, the individual- level ICA maps were generally consistent with the group-level ICA maps 

(Fig. 3.5). 

3.3.4 Interactions Between WM and GM Networks 

  To further explore the functional role of the coherent signal within the optic radiations, we 

evaluated its coupling with cortical visual networks in GM by computing their temporal cross 

correlations. For this purpose, 70 spatially independent components were extracted from all GM 

voxel time series after concatenating every session and every subject for the visual task; among 

those, 47 components were recognizable as established intrinsic functional networks (Shirer et al., 

2012). We identified four cortical networks that had the highest (and significant) positive cross-

correlations with the optic radiations (p=0.01–0.047, one-sample t-test, uncorrected). As shown in 

Fig. 3.6A, all of these four networks were parts of the visual system: namely, the primary visual 

area (IC 4), higher order visual networks (IC 1 and IC 3), and a medial visual network (IC 2). 

These areas are involved in natural visual processing, as shown in previous studies (Hasson et al., 

2004). 
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  We performed this analysis on the resting-state data to assess the temporal relationships 

between the optic radiations and intrinsic cortical visual networks in the absence of the visual task. 

In Fig. 3.9, we identified four cortical networks in the resting state as the counterparts to those 

vision-related components shown in Fig. 3.6A. The optic radiations resting-state component was 

formed from a sum of the three optic radiations components (IC 11, IC 13, and IC 2) shown in Fig. 

3.2C; the time series was formed from the mean of those of the three components. However, unlike 

the task state (Fig. 3.6B, left), the resting state did not exhibit any significant temporal cross 

correlations between the optic radiations and cortical visual networks (p=0.1003– 0.9526, 

uncorrected) (Fig. 3.6B, right). 

 However, head motion was a potential confounding factor to the above findings. We found 

that the head motion parameters (translations and rotations) exhibited, on average, 2.3 and 3.5 

times greater standard deviations in the resting state than in the task state, respectively. This 

difference was significant (p < 0.00001, Wilcoxon rank sum test). Despite the significantly 

different head motion between the two states, this difference was less likely to account for the 

spatially and functionally specific findings about WM components and their interactions with GM 

networks. We noted that the time courses of the WM and GM components of interest did not show 

the slow drift or abrupt changes that characterized the head motion. In addition, we addressed the 

concern that head movements in the task condition might be task related; i.e. that common 

movements between sessions would occur at particular moments in the movie at particularly 

suspenseful or surprising points. To effectively capture sudden movements while ignoring slow 

drifts, we evaluated the time derivative of every motion-correction parameter and calculated its 

correlation between the repeated movie sessions within each subject. Only margin- al correlations 

were found (r < 0.08) for all six motion parameters. Therefore, head motion was not a confound 

of major concern. 

3.3.5 Relationships with White-Matter Structure 

 Finally, we asked whether the ICA maps obtained with WM-fMRI in the resting state and 

the task state were distributed along the axonal fiber tracts. For this purpose, we compared the 

thresholded ICA maps with white-matter tracts based on diffusion MRI using the ICBM-DTI- 81 

white-matter labels atlas (Mori et al., 2008; Oishi et al., 2008) (Fig. 3.7). Qualitatively, for both 

the resting and task states, most of the ICA components of WM-fMRI data covered only segments 
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of individual fiber tracts, without extending the full tract length. However, some components 

appeared to align well with major fiber bundles (e.g. the optic radiations, the corpus callosum, and 

the internal capsule). It suggests a complex structure-function relationship in the white matter 

when observed with white-matter diffusion and functional MRI. 

 Discussion 

  Using data-driven analysis methods, we examined the spatiotemporal characteristics of 

fMRI time series in the cerebral white matter both in the resting state and during naturalistic visual 

perception. The results led to the following findings: 1) spatially independent components of 

resting-state fMRI signals in WM revealed reproducible either cluster-like or fiber-like structures 

with synchronized spontaneous fluctuations within each structure; 2) different components were 

temporally correlated in a hierarchical manner, leading us to report the intrinsic hierarchical 

functional organization of WM fiber tracts; 3) such intrinsic structures and their hierarchical 

organization were mostly preserved during naturalistic visual stimulation; 4) however, a subset of 

these structures that were engaged in visual processing showed stronger synchronization within 

themselves and significant interactions with cortical visual networks. Therefore, fMRI signals in 

WM, like those in GM, may be utilized to uncover the intrinsic functional organization of WM, 

and to map axonal pathways that support neural signaling between cortical networks during 

complex tasks. The WM-fMRI methods as reported here and elsewhere (Ding et al., 2016; 

Gawryluk et al., 2014), as well as functional DTI methods (Mandl et al., 2008; Spees et al., 2013), 

may begin to uncover WM functionality in health and disease. 

3.4.1 Spontaneous WM-fMRI Signals Reflect the Hierarchical Organization of Axonal 

Fibers 

  Spatial ICA has been widely used to map large-scale resting state networks (RSN) 

(Beckmann and Smith, 2004; Calhoun et al., 2008), especially when one seeks a relatively lower 

number of components. For a large-scale RSN that typically includes multiple discrete GM regions 

(e.g. the default-mode network), those regions are temporally correlated (Van Dijk et al., 2010) 

and structurally inter-connected through axonal fibers (Greicius et al., 2009). In other words, such 

large-scale RSNs have corresponding structural substrates to support neural signaling between 

different GM regions in the RSN (van den Heuvel and Sporns, 2013). It is thus tempting to 
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hypothesize that the WM substrate underlying a GM network carries synchronized activity within 

itself, whereas the WM substrates underlying different GM networks are temporally distinct in 

order to support their different functions. If this hypothesis were true, one would expect to be able 

to use ICA to decompose resting-state WM-fMRI signals into spatially independent and 

temporally distinct WM sub-systems that consist of axonal fibers connecting regions comprising 

individual GM networks.  

  However, spatially independent components of resting-state WM-fMRI signals did not 

appear as long-range fiber tracts; instead, they were mostly shown as cluster-like (or non-fiber-

like) patterns, appearing as local segments of fiber tracts with a varying length. Nevertheless, these 

seemingly fragmented components were not isolated from each other, but instead exhibited 

varying levels of temporal cross correlations. These fragments tended to be more correlated if they 

were parts of the same fiber tract; combining these correlated components gave rise to the entire 

fiber tract; the combined fiber tract in one hemisphere tended to be correlated with the homologous 

fiber tract in the opposite hemisphere. As such, functional networks of WM fiber tracts did not 

readily result from a single-level decomposition of the WM-fMRI signals; instead, they emerged 

progressively as short segments of fiber tracts were combined into a hierarchical organization 

based on their temporal relations. The cluster-like appearance and hierarchical organization of the 

WM-fMRI ICA components might be counter-intuitive given what is known about neuronal 

structure. While the dendrites and the soma of a neuron occupy a tiny volume in GM, its axon runs 

a long distance in WM for relaying neuronal spikes. Different locations along the axon carry the 

same functional information, and thus are expected to be temporally synchronized along a long 

and continuous pathway in the fMRI time scale. However, the spatial resolution of fMRI is 

insufficient to resolve axons. An fMRI voxel samples a cubic piece of a large axonal bundle, 

containing a mixture of neuronal activity along every axon in the bundle. The fact that axons are 

routed and bundled differently at different voxels is expected to cause discontinuity in the spatial 

patterns of temporal synchronization in the fMRI signal. We speculate that this discontinuity is a 

major reason why ICA applied to coarsely sampled WM-fMRI data tend to reveal segments of 

fiber tracts as opposed to the intact long-range fiber tracts. 

  Also contributing to the discontinuity and segregation of the WM-fMRI signal is the 

orientation-dependence of T2
*-sensitive MRI in WM. Magnetic susceptibility contrast in WM is 

anisotropic due to the highly oriented water compartments of the axonal bundles (Duyn, 2013; Lee 
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et al., 2011). This may in part explain why regions with higher densities of parallel axons, such as 

the corpus callosum, are more reliably detected in previous WM-fMRI activation studies. 

Interestingly, Ding et al. showed that the tensor of local temporal correlations in WM-fMRI signals 

demonstrated similar orientations as those observed with diffusion MRI (Ding et al., 2013), and 

could be specifically altered by tasks (Ding et al., 2016). Combining local and global correlation 

structures of WM-fMRI is a potentially promising direction for future studies. 

3.4.2 Natural-Vision Task Reshapes the WM Functional Organization 

  It has been increasingly recognized that spontaneously emerging network patterns are 

functionally relevant since such activity patterns are well preserved from the resting state to various 

task states (Kenet et al., 2003; Smith et al., 2009; Wilf et al., 2017). Findings from the present 

study further extend this conclusion from the gray matter to the white matter. During naturalistic 

visual stimulation, the WM-fMRI signals exhibited reproducible independent components with 

similar spatial distributions as those observed in the resting state. Therefore, like those in the 

cortex, resting-state fMRI patterns within WM also reflect intrinsic functional units that are 

recruited to perform complex tasks. Although intrinsic functional structures in WM were preserved 

during the naturalistic visual task, the task enhanced the temporal synchronization within the task-

related WM structures, as well as between the task-related WM structures and GM networks. The 

former is supported by the finding that bilateral visual pathways emerge as a single component, as 

opposed to the multiple hierarchical components found during the resting state; this implies that a 

stronger level of synchronization between the left and right optic radiations occur along with the 

tract emanating from LGN. The latter is supported by the finding that the WM component showing 

optic radiations is significantly correlated with several cortical visual networks during the task, but 

not during resting-state (also discussed later). Previous studies have shown that natural vision 

evokes reliable cortical fMRI responses (Hasson et al., 2004; Jääskeläinen et al., 2008) and spiking 

activity (Belitski et al., 2008; McMahon et al., 2015) within and across subjects. Interestingly, 

Mukamel et al. (2005) have shown significant correlations between spiking activity and fMRI 

response between different subjects watching the same movie. Furthermore, Astafiev et al. (2016) 

have demonstrated a link between BOLD fMRI in the MT+/LO and FA (measured through DTI) 

in the left optic radiation in mTBI patients. Extrapolating these studies and the findings from this 

study, we speculate that natural visual perception induces reliable and synchronized WM activity, 
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which gives rise to spiking activity as the direct effect, and the fMRI signal as the secondary 

indirect effect. While this speculation is reasonable, it remains to be confirmed, ideally with 

simultaneous white-matter neural recording and fMRI imaging. 

3.4.3 Biophysical and Physiological Origins of WM-fMRI 

  Here, the so-called “fMRI” signal refers to the temporal variation of voxel intensity in 

gradient-echo echo-planar imaging (GE-EPI) images that primarily carry the T2
*-weighted 

contrast. Multiple sources con tribute to this signal, but those sources may or may not bear any 

relationship to underlying neural activity (Bianciardi et al., 2009b). For the signals from gray-

matter voxels, the source related to neural activity is blood oxygenation level dependent (BOLD) 

(Ogawa et al., 1990). The BOLD fluctuation reflects the combined effects of cerebral blood flow 

(CBF), blood volume (CBV), and the metabolic rate of oxygen (CMRO2) (Buxton et al., 1998). 

Such hemodynamic and metabolic changes are coupled to neural activity in terms of both synaptic 

input and spiking output (Logothetis et al., 2001; Smith et al., 2002). While the basis of fMRI is 

complex, as it is a topic of active research and debate (Leopold and Maier, 2012), extra caution 

should be exercised when interpreting WM-fMRI. 

  Is the WM-fMRI signal BOLD? Despite a lower density of vasculature, the white matter 

has the vascular capacity for MRI-detectable hemodynamic changes (Gawryluk et al., 2014). Two 

defining features of the BOLD mechanism, cerebrovascular reactivity (Ogawa et al., 1990) and 

echo-time dependence (Kundu et al., 2012), have been both demonstrated for the WM-fMRI 

signal. The WM vasculature dilates in response to hypercapnia, showing detectable CBF and 

BOLD responses in the white matter, although the responses have a lower magnitude than in the 

gray matter (Rostrup et al., 2000; Thomas et al., 2014). The fluctuation and correlation of WM-

fMRI signals at rest vary with different echo times, reaching their maxima at a similar echo time 

as the T2
* in the gray matter (Ding et al., 2016). In addition, metabolic changes to neuromodulation 

are observable in the white matter (Weber et al., 2002). Astrocytes, which mediate neurovascular 

coupling in gray matter (Petzold and Murthy, 2011), are also present in white matter (Rash, 2010; 

Waxman and Ritchie, 1993). Therefore, all of the necessary machinery for neurometabolic and 

neurovascular coupling are generally in place in the white matter to give rise to detectable BOLD 

signals. 
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  If it is BOLD, does the WM-fMRI signal report neural activity? WM-fMRI signals show 

task-dependent activations as reviewed in (Gawryluk et al., 2014). Their correlational structures 

are reorganized from the resting state to the task state, as shown in this study, as well as in (Ding 

et al., 2016). Therefore, the WM-fMRI signals are functionally relevant, and hence report, at least 

in part, neural activity in the white matter. However, it is not trivial and largely speculative to posit 

the specific type of neural activity that is coupled with the WM-fMRI signal. The BOLD signal is 

an indirect measure of neural activity (Logothetis and Wandell, 2004). In the gray matter, the 

neuronal origin of the BOLD signal may be synaptic activity observed with local field potential 

(Logothetis et al., 2001; Viswanathan and Freeman, 2007), or spiking activity observed with single 

or multi-unit activity (Mukamel et al., 2005; Smith et al., 2002). Synaptic activity (neuronal input) 

and spiking activity (neuronal output) are inherently linked with one another most of the time; 

their individual couplings with the BOLD signal are in fact comparable (Logothetis et al., 2001). 

When they have been dissociated under special experimental conditions, the BOLD signal has 

been found to be more coupled with synaptic activity (Rauch et al., 2008; Viswanathan and 

Freeman, 2007), although counter-examples have also been demonstrated (Pelled et al., 2009). As 

such, it is still not quantitatively understood which specific types of neuronal activity drive BOLD-

fMRI. It is at least plausible that spiking activity is partly coupled with the BOLD signal, even in 

the gray matter. In the white matter, neuronal activity is mostly spiking activity propagating along 

the axon, with little synaptic activity (Gawryluk et al., 2014). This leads us to hypothesize that the 

WM-fMRI signal is BOLD and indirectly coupled to spiking activity. Nevertheless, this hypothesis 

is speculative and remains to be tested, while the signaling pathway that potentially links spiking 

activity to vasodilation also needs to be elucidated. To the best of our knowledge, there is no study 

directly addressing the relationship between spiking and fMRI signals in the white matter. 

3.4.4 Methodological Considerations 

  We did not observe significant interactions between WM and GM at rest, but during task 

(Fig. 3.6B). A possible explanation for this observation was that the task might drive greater WM 

activity fluctuations, and thus a higher SNR. We did not expect the difference in SNR as a major 

contributor, because the fraction of the data variance explained by the signal versus noise 

components was comparable for the task state and the resting-state. Given future improvement in 
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the SNR of WM-fMRI, we anticipate that significant WM-GM correlations may also be observable 

even at rest, while tasks would further strengthen such correlations.  

  As mentioned in Introduction, the separation of the WM voxels from the GM voxels is an 

essential pre-processing step in this work in order to deal with the different dynamic range and 

correlational structure in WM and GM. When we performed a whole-brain ICA analysis on 

resting-state fMRI data without WM-GM separation (the number of components was 70), most of 

the components were gray- matter networks, as previously shown in numerous resting-state fMRI 

studies. There were a few components for which the spatial distributions were predominantly in 

the white matter, as opposed to the gray matter, as shown in Fig. 3.11. Given the very small number 

of white- matter-like components, the components tended to capture the patterns with the strongest 

degree of coherence (e.g. the global white- matter pattern, the optic radiations, and the corpus 

callosum). The whole-brain analysis did not allow for finer-grained pattern analysis and 

hierarchical clustering in the white matter, as enabled by only looking at the white-matter voxels.  

  Spatial smoothing was also helpful to improve the SNR of WM-fMRI. When we performed 

the white-matter ICA analysis on data without spatial smoothing, some of the general features 

were still observed (Fig. 3.10). However, without spatial smoothing, the overall reproducibility of 

the ICA maps was lower (Fig. 3.10A). Given the same criteria of selecting signal versus noise ICA 

components, we were only able to identify less than 10 “signal” components in the white matter, 

making the de-noising process more challenging. However, when we retained an identical number 

of components, we found qualitatively similar results; for example, components showing optic 

tracts appeared unilateral in the resting-state (Fig. 3.10B), but bilateral in the task state (Fig. 

3.10C). Thus, the spatial smoothing is a helpful pre-processing step, but is not as essential as the 

WM-GM separation. 

  Head motion is generally a concern in fMRI (Van Dijk et al., 2012) and is likely a 

confounding factor in our WM-fMRI findings. In this study, we found that the resting-state 

sessions had significantly more head motion than the task state, likely because the engagement in 

the natural movie helped the subjects restrain their heads. Although we could not rule out the 

potential effects of head motion, we considered it as a minor confound to the WM-fMRI signals 

for the following reasons. First, the effects of head motion usually occur at the borders of different 

tissues (e.g. GM versus WM). As mentioned before, we used a conservative WM mask so as to 

avoid voxels around the GM-WM borders. Second, most of the head motion parameters varied in 
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time as slow drifts, which were discounted as the WM-fMRI signals were detrended (by removing 

up to 3rd order polynomial functions). Furthermore, the ICs kept in the ICA-based de-noising 

procedure were consistent across sessions and subjects, unlikely to be attributable to head motions. 

The time courses of the “signal” components also did not show either any signal drift or any abrupt 

change, which typically arise from head motion. Finally, it is worth noting that, overall, our results 

demonstrate that head movements occurring during the task are unlikely to be task-related.  
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Figure 3.1. Reproducibility. A sample of reproducible resting-state components from Session 1 to 

Session 2, along with the corresponding de-noised components that consisted of information from 

both sessions. The z-coordinate (mm) of the position of each axial image is shown in the lower 

right corner. IC #8 corresponds to the posterior corpus callosum (splenium). IC #1 corresponds to 

the right forceps minor. IC #6 corresponds to part of the cingulum. IC #2 corresponds to a part of 

the optic radiations. IC #13 also corresponds to a part of the optic radiations. 
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Figure 3.2. Hierarchical clustering of WM ICs in the resting state. A. 29 resting-state components 

were obtained after de-noising. B. The dendrogram used in the hierarchical clustering (top) with 

the corresponding temporal correlation values between WM ICs. C. Two portions of the left optic 

radiation were first clustered together, followed by clustering with a portion of the right optic 

radiation. For all axial slices in A and C, the z-coordinate (mm) is shown in the lower right corner. 
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Figure 3.3. Reproducibility of ICA components. A. Reproducibility within the resting state or the 

task state. The spatial maps between session 1 and session 2 were optimally matched into pairs 

sorted in descending order of their spatial cross correlations. The matrices show the spatial 

correlations of one session's 70 components to the other session's 70 components, for either the 

resting state (left) or the movie task state (middle). The diagonal elements are the spatial 

correlations between individually ‘paired’ components. The ‘paired’ components generated by the 

movie task demonstrated stronger spatial correlations with one another than in the resting state 

(right). B. Rest and task comparison of WM components. Four example pairs of components 

obtained from resting-state (right) and task-state (left) are shown. While the first row shows 

notably different maps, the other three rows show similar patterns. The z-coordinate (mm) of the 

position of each axial image is shown in the lower right corner. 
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Figure 3.4. Task-state WM activity patterns. A. 28 task components were obtained after de-noising. 

The component number is shown in the top left corner. B. The dendrogram used in hierarchical 

clustering (top) with the corresponding temporal correlation values between WM ICs during the 

naturalistic visual task. C. Hierarchical clustering of task-unrelated components – (right anterior 

corona radiata). Two portions of a single tract were paired together, which were then paired with 

a more dorsal portion in the opposite hemisphere. D. Task-related component. One component 

shows the optic radiations emanating from the LGN. For all axial slices in A, C, and D, the z-

coordinate (mm) is shown in the lower right corner. 
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Figure 3.5. ICA maps from individual subjects obtained through dual regression in the resting-

state (A) and during the task (B). For each state, the left-most column shows the group level map; 

the right columns show the maps obtained from individual subjects using this method. The z-

coordinate (mm) is shown in the lower right corner. 
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Figure 3.6. Functional relationships between WM and GM networks. A. During natural visual 

perception, the optic radiations (OR) in WM were temporally correlated with four cortical visual 

networks in GM (ICs #1, #2, #3, and #4). Shown below each connection is the average z-

transformed cross correlation between the corresponding WM and GM regions. The z- coordinate 

(mm) is shown in the lower right corner. B. Such temporal correlations were statistically 

significant in the task state (left), but not in the resting state (right). These functional connectivity 

relationships are presented as OR-1 (i.e. optic radiations cross-correlation with cortical visual IC 

#1), OR-2, OR-3, and OR-4. The bar height indicates the average z- transformed cross correlation. 

The error bar indicates the standard error of the mean. 
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Figure 3.7. Structural vs. functional parcellation of the white matter. The first row shows the white-

matter parcellation based on diffusion MRI (JHU ICBM-DTI-81 atlas). The second and third rows 

show the white-matter structures delineated from the thresholded ICA maps obtained from resting 

state fMRI or natural-vision task fMRI data, respectively. 
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Figure 3.8. Hierarchical clustering of whole-brain (gray-matter) cortical networks during the 

resting state (A) and the natural vision task (B). For both A) and B), the top shows the dendrogram 

obtained from hierarchical clustering of spatially independent components; the middle shows the 

correlation matrix between independent components; the bottom shows the examples of visual 

cortical networks merging in a hierarchical manner.   
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Figure 3.9. White-matter (the first row) and gray-matter (the second through forth row) 

components derived from the fMRI data in the natural-vision state (left) and the resting state (right). 
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Figure 3.10. WM ICA without smoothing.  A. Components are less reproducible without 

smoothing.  The spatial maps between session 1 and session 2 were optimally matched into pairs 

sorted in descending order of their spatial cross correlations. The matrices show the spatial 

correlations of one session’s 70 components to the other session’s 70 components for the resting 

state, with (left) and without smoothing (right). The diagonal elements are the spatial correlations 

between individually ‘paired’ components. The blue box represents the extent of the paired 

components that were reproducible; the ‘paired’ components generated with spatial smoothing 

demonstrated stronger spatial correlations with one another than without smoothing (right).  B.  

Using the best matched 29 ‘paired’ components for consistency, the un-smoothed optic radiations 

components obtained during resting-state remained unilateral and were clustered together to form 

a bilateral tract. The components that formed part of this branch on the dendrogram are shown. 

The z-value (mm) of the position of each axial image is shown in the lower right corner.  C. Using 

the best matched 28 ‘paired’ components for consistency, the un-smoothed optic radiations 

components obtained during the task remained bilateral.  Interestingly, the components were split 

into superior and inferior components, and those were clustered together. The components that 

formed part of this branch on the dendrogram are shown. The z-value (mm) of the position of each 

axial image is shown in the lower right corner.  
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Figure 3.11. Three ICA maps with activity in white matter regions that were obtained with the 

whole brain (i.e. without masking out white matter) are shown.  The z-value (mm) of the position 

of each axial image is shown in the lower right corner. 
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4. ALTERATIONS IN THE BRAIN’S FUNCTIONAL ORGANIZATION 

IN PRECLINICAL ALZHEIMER’S DISEASE 

 Rationale 

  Memory complaints are a key feature of mild cognitive impairment (MCI) (Petersen, 2016; 

Petersen et al., 2001), which has increasingly been considered a prodromal state for Alzheimer’s 

Disease (AD) (Albert et al., 2011; Apostolova et al., 2006; Hodges, 2006; Small, 2007; Villemagne 

et al., 2013). In addition, there is growing evidence that older individuals with cognitive complaints, 

despite normal performance on cognitive tests, also have an increased risk for future cognitive 

decline and AD dementia (see Jessen et al. (2014); Reisberg et al. (2008) for review). Thus, 

cognitive complaints, or subjective cognitive decline (SCD), may in fact indicate the very first 

effects of AD pathology on cognitive function, between completely intact functioning and first 

detectable decline (Chao et al., 2010; Glodzik-Sobanska et al., 2007). This model would thereby 

suggest a continuum of Alzheimer’s disease pathologies rather than a simple dichotomy of health 

and disease. 

     Consistent with this theory, several studies have demonstrated intermediate morphometric 

(Jessen et al., 2006; Saykin et al., 2006; Tepest et al., 2008; Van Norden et al., 2008; Wang et al., 

2012), serological (Mosconi et al., 2008; Rami et al., 2011; Visser et al., 2009), and functional 

(Mosconi et al., 2008; Risacher et al., 2013; Wang et al., 2013) profiles of this patient group 

compared to MCI and cognitively normal control (CN) cohorts. This continuity makes intuitive 

sense; the pathologic features (e.g. neurofibrillary tangles (NFTs)) of the disease only insidiously 

build up in the hippocampus after amassing in neighboring regions (e.g. transentorhinal cortex) 

(Braak and Braak, 1995; Morrison and Hof, 1997). Using appropriately sensitive instrumentation 

and analysis methods, changes in neuronal wiring should be therefore perceptible before clinically 

detectable memory impairments and have been demonstrated in susceptible populations (Filbey et 

al., 2006; Filippini et al., 2009). 

  Despite the evidence and rationale, there is a paucity of functional neuroimaging 

(specifically fMRI) findings on SCD patients in the literature. Wang et al. (2013) demonstrated 
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that among MCI, SCD, and CN patient groups, significantly different functional connectivity (FC) 

of the DMN was localized to the hippocampus in MCI and SCD groups; further, the number of 

significantly different voxels appeared to have a direct relationship with disease progression. 

Contreras et al. (2016) included SCD patients in a conn-ICA analysis to identify three FC-related 

components related to cognitive change. Moreover, Lopez-Sanz et al. (2017) showed that a 

common pattern of FC alterations occurs between CN and SCD and CN and MCI patients, with 

the MCI group showing slightly more FC differences than the MCI group. To the best of our 

knowledge, these are the only three studies using fMRI to characterize changes in this potentially 

important patient population. 

  In the present study, we used complex scene encoding task and resting-state fMRI data to 

characterize activations and connectivity in CN, SCD, and MCI patients. In doing so, we sought 

to compare the similarity and extent of activation and FC changes in SCD and MCI patients. We 

hypothesized that MCI patients would show reduced activations and connectivity in the 

hippocampus and areas of the ventral visual pathway, and that SCD findings would be intermediate 

to that of CN and MCI groups.  

 Methods and Materials 

4.2.1 Subjects 

  Participants were older adults selected from a larger cohort recruited for a longitudinal 

study of brain aging and memory (Indiana Memory and Aging Study). The participants completed 

this study in accordance with a protocol approved by the Institutional Review Board at Indiana 

University in which written informed consent was obtained. The present sample included 12 

subjects with mild cognitive impairment (MCI), 12 subjects with significant cognitive complains 

despite cognitive test performance within the normal range (SCD group), and 12 cognitively 

normal, healthy controls (CN) with minimal cognitive complaints. Two subjects in the MCI group 

were excluded because their MRI images showed extensive neurodegeneration or an alternate 

pathology (temporal lobe infarct). 

4.2.2 Experimental Design 

  Each subject underwent one fMRI session in each of two conditions. One session was 

obtained in the eyes-closed resting state, and the other session occurred during a block-design 
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scene-encoding task (Detre et al., 1998). Resting-state sessions were 10 minutes in length, and 

subjects were instructed to lay still with their eyes closed and keep their minds clear. In the task 

paradigm, following an initial 12-second period in which no stimuli were presented (i.e. a blank 

screen), complex visual scene encoding was compared with a control condition using alternating 

36-second epochs. In the scene-encoding blocks, subjects were presented with a new scene every 

4 seconds. Each scene was shown for 3.5 seconds, followed by 0.5 seconds of a blank screen. In 

total, eight 36-second epochs were used (288 seconds) were used, with 8.4 seconds of blank screen 

following the end of the alternating epochs. Pictures from a commercial library of digitized images 

(Photodisc, Seattle, WA) were used. Scenes containing diverse elements were selected to eliminate 

simple verbal encoding of the content. In the control condition, subjects viewed a single image 

containing the same luminosity and color content of one of the photographs but degraded using a 

scrambling algorithm. The repeated presentation of a single control image was repeated every 4 

seconds, with presentations lasting 3.5 seconds, in order to match the frequency and duration of 

scene presentations. Prior to the scan, subjects were instructed to attempt memorization of the 

photographs but not of the control image and were informed that their performance would be later 

tested.  

4.2.3 Data Acquisition 

  Whole-brain structural and functional MRI images were acquired using a 3-Tesla Prisma 

MRI system (Siemens, Erlangen, Germany). The fMRI data were acquired using a multi-band 

(MB) echo- planar imaging (EPI) sequence (gradient echo, 54 interleaved axial slices with 2.5mm 

thickness and 2.5 × 2.5 mm2 in-plane resolution, TR=1200 ms, TE=29 ms, flip angle=65°, field of 

view=22×22 cm2, MB factor = 3). T1-weighted anatomical images covering the whole head were 

acquired with a high-resolution magnetization-prepared rapid gradient echo (MPRAGE) sequence 

(1.05×1.05×1.2mm3 voxel size). A 64-channel receive-only head and neck coil was used for all 

image acquisitions. 

4.2.4 Pre-processing 

  Pre-processing of the fMRI images was carried out with a combination of AFNI (Cox, 

1996), FSL (Smith et al., 2004), and MATLAB (Mathworks, Natick, MA). T1-weighted 

anatomical images were non-linearly registered to the Montreal Neurological Institute (MNI) brain 
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template using a combination of flirt and fnirt in FSL (Smith et al., 2004). T2*-weighted functional 

image time series were corrected for slice time variations using slicetimer in FSL, co-registered to 

the first volume within each series to account for head motion using mcflirt in FSL, restricted to 

within-brain tissues using 3dcalc in AFNI (Cox, 1996), aligned to the T1-weighted structural MRI 

using FSL’s Boundary Based-Registration (BBR) function (Greve and Fischl, 2009), and 

registered to the MNI space with 3-mm isotropic voxels using applywarp in FSL. The first six 

volumes in the fMRI data were discarded to avoid any pre-steady-state longitudinal magnetization. 

Spatial smoothing was applied by using a Gaussian kernel (FWHM=6 mm). For each session and 

each voxel, the voxel time series was detrended by regressing out a third-order polynomial function 

that modeled the slow trend; the detrended signal was bandpass filtered (0.0001 - 0.1 Hz). Finally, 

the voxel time series were demeaned and normalized to unit variance. 

4.2.5 Assessing Group-Level Task Activations 

 We first explored group-level task-activation differences using the task data. The stimulus 

effects at each voxel were estimated by fitting the amplitude of a boxcar function corresponding 

to the scene encoding epochs convolved with an estimate of the hemodynamic response function 

based on two gamma functions (http://www.fil.ion.ucl.ac.uk/spm/). This covariate was also 

filtered, de-meaned, and variance normalized in an identical manner to the data, and a global signal 

covariate was also included in the model. For each session and each voxel, a map of standardized 

estimated activation parameters was then obtained. For each patient group (CN, SCD, MCI), one 

sample t-tests (df = 11 for CN and SCD, 9 for MCI) were applied to these activation parameters 

to obtain group-level activation maps, and the number of significant voxels for each group was 

quantified. Activation maps were corrected for multiple comparisons using the false discovery rate 

(FDR) q<0.05. 

4.2.6 Evaluating Group-Level Functional Connectivity 

  We then explored seed-based functional connectivity differences in relevant areas in the 

resting-state data. Seed voxels were selected by taking the intersection of voxels that were 

significantly activated in the CN group with voxels contained within three small, but aggregate, 

regions, “Perirhinal”, “Posterior Parahippocampal Gyrus” (“PPhG”), and “Hippocampus”, defined 

using the Brainnetome Atlas (Fan et al., 2016).  Specifically, the perirhinal region consisted of 
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rostral area 35/36 bilaterally and caudal area 35/36 bilaterally (labels 109-112), the PPhG included 

area TL bilaterally (lateral PPhG) and area TH bilaterally (medial PPhG) (labels 113-114, 119-

120), and the hippocampus was composed of the rostral hippocampus and caudal hippocampus 

areas bilaterally (labels 215-218). These seed locations were chosen because they are known to 

have early involvement in AD pathology (Braak and Braak, 1995); the “transentorhinal” region 

first implicated in NFT formation is actually located within the medial portion of the perirhinal 

cortex (Taylor and Probst, 2008). Included voxels were significant at the q<0.05 level for 

Perirhinal and PPhG regions and at the p<0.001 level for the Hippocampus. 

  Within each resting-state session, the correlation between the mean time series of the 

voxels contained within the seed and every other voxel’s time series was calculated (after global 

signal regression), and the correlation coefficient was converted to a z-score using the Fisher’s 

transform. The significance of the mean z-score (against zero) was evaluated by using one-sample 

t-tests (df = 11 for CN and SCD groups, df = 9 for MCI) with the threshold for significance at p < 

0.001 (uncorrected).  

4.2.7 Relating Connectivity and Activation Data 

  Finally, we sought to relate the activation and connectivity data at the individual subject 

level to uncover trends in the data that may not be immediately obvious by categorical groupings. 

Therefore, each subject’s mean task data activation parameters in selected voxels were compared 

against each subject’s mean resting-state connectivity values in a separate set of voxels. The voxels 

used for the task activation data were selected by conducting a two-sample t-test comparing the 

activation parameters in the MCI group to those of the CN group (q<0.05, FDR corrected). 

Similarly, the voxels used for the resting-state connectivity data were selected by conducting a 

two-sample t-test comparing the activation parameters in the MCI group to those of the CN group 

(q<0.05, FDR corrected) for each of the three seeds.  

  In doing so, there were some voxels that were more de-activated during the scene-encoding 

task than the control condition in the CN group compared to the MCI group, giving rise to more 

positive t-scores, whereas other voxels were more activated in the CN group than the MCI group. 

Because we were interested in mean values, we wanted to avoid artificially reducing the magnitude 

of these effects because of sign differences; therefore, we opted to segregate voxels based on the 

sign of the effect. Likewise, the same issue arose in the connectivity data in that some voxels were 
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more positively connected in the MCI condition than the control condition, and vice-versa. 

Therefore, the analysis for this section was four-fold for each of the three seeds: 1) each subject’s 

mean activation parameter among voxels giving a positive t-score in the task data plotted against 

each subject’s mean connectivity value in voxels giving a positive t-score; 2) each subject’s mean 

activation parameter among voxels giving a positive t-score in the task data plotted against each 

subject’s mean connectivity value in voxels giving a negative t-score; 3) each subject’s mean 

activation parameter among voxels giving a negative t-score in the task data plotted against each 

subject’s mean connectivity value in voxels giving a positive t-score; and 4) each subject’s mean 

activation parameter among voxels giving a negative t-score in the task data plotted against each 

subject’s mean connectivity value in voxels giving a negative t-score. Then, a linear regression 

model was fit to the data in each plot. 

 Results 

4.3.1 Differences in Group-Level Task Activations 

  The scene-encoding task elicited clear activations along the ventral visual pathway toward 

mesial temporal regions in all patient groups (Fig. 4.1). A clear, progressive reduction in scene-

encoding-related activations by phenotypic severity was made evident (Fig. 4.1). Quantitatively, 

In the CN group, 6454 voxels were significant, 3666 voxels were significant in the SCD group, 

and 201 voxels were significant in the MCI group (Fig. 4.1B). Small numbers of voxels within the 

hippocampus, as defined by the Brainnetome Atlas (Fan et al., 2016) (labels 215-218), were 

activated at the FDR-corrected threshold (q < 0.05) in some groups (CN – 1 voxel, SCD – 8 voxels, 

MCI – 0 voxels); after relaxing this multiple-comparisons corrected threshold somewhat to 

p<0.001, more activations were revealed (CN – 22 voxels, SCD – 52 voxels, MCI – 25 voxels 

voxels). Similar findings were obtained in other mesial temporal regions, including the perirhinal 

cortex (labels 109-112) (CN – 14 voxels, SCD – 83 voxels, MCI – 18 voxels, p<0.001, uncorrected) 

and the PPhG (CN – 4 voxels, SCD – 24 voxels, MCI – 0 voxels, p<0.001 uncorrected). 

  Elements of the default mode network (Raichle et al., 2001), including the precuneus, 

lateral parietal cortices, and medial prefrontal cortex, also appeared to be de-activated, in contrast 

with the voxels in the ventral visual pathway (Fig. 4.1A). This de-activation also appeared to 
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include the most DMN voxels in the CN group, contained less voxels in the SCD group, and 

encompassed the fewest voxels in the MCI group, much like the activation findings. 

4.3.2 Altered FC Across Groups 

  As in the activation data, a progressive reduction in the connectivity was again apparent 

using all three seeds (Fig. 4.2). Using the perirhinal seed, 845 voxels were significantly correlated 

in the CN group, 182 voxels were significantly correlated in the SCD group, and 24 voxels were 

significantly correlated in the MCI group. Using the PPhG seed, 3687 voxels were significantly 

correlated in the CN group, 755 voxels were significantly correlated in the SCD group, and 126 

voxels were significantly correlated in the MCI group (Fig. 4.1B). Finally, using the hippocampus 

seed, 102 voxels were significantly correlated in the CN group, 241 voxels were significantly 

correlated in the SCD group, and 31 voxels were significantly correlated in the MCI group (Fig. 

4.1B). In this case, there was a relatively uniform, if not increased, FC of the hippocampus between 

SCD and CN groups, with a reduction in FC in the MCI group. 

  Each seed elicited connected in broader inferotemporal regions; the perirhinal cortex, 

PPhG, and hippocampus seeds exhibited FC across one another, as well as with the entorhinal 

cortex (defined using Brainnetome Atlas labels 115-116). Again, smaller scale connectivity 

revealed a similar reduction in FC across disease severity. The perirhinal cortex seed was most 

correlated with the PPhG, hippocampus, and entorhinal cortex in CN (PPhG – 109 voxels, 

hippocampus – 84 voxels, entorhinal cortex – 2 voxels) and least correlated with these regions in 

MCI (PPhG – 8 voxels, hippocampus – 0 voxels, entorhinal cortex – 0 voxels). The SCD group 

had an intermediate effect (PPhG – 23 voxels, hippocampus – 21 voxels, entorhinal cortex – 0 

voxels). The PPhG seed was also most correlated with the perirhinal cortex, hippocampus, and 

entorhinal cortex in CN (perirhinal cortex – 35 voxels, hippocampus – 171 voxels, entorhinal 

cortex – 15 voxels) and least correlated with these regions in MCI (perirhinal cortex – 11 voxels, 

hippocampus – 3 voxels, entorhinal cortex – 0 voxels). Here too the SCD group had an 

intermediate effect (perirhinal cortex– 27 voxels, hippocampus – 126 voxels, entorhinal cortex – 

4 voxels). Finally, the hippocampus seed was also better correlated with the other inferior temporal 

regions (PPhG, perirhinal cortex, and entorhinal cortex) in CN (PPhG – 2 voxels, perirhinal cortex 

– 0 voxels, entorhinal cortex – 8 voxels) than in MCI (PPhG – 0 voxels, perirhinal cortex – 0 

voxels, entorhinal cortex – 0 voxels). In this case, however, the SCD group actually had slightly 
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enhanced FC between these regions (PPhG – 25 voxels, perirhinal cortex – 1 voxel, entorhinal 

cortex – 3 voxels). 

4.3.3 Relationship Between Task-Activations and Resting-State Functional Connectivity 

  Using two-sample t-tests, voxels that exhibited significantly stronger activation in MCI 

relative to CN were considered to be “positive activation contrasts” (Fig. 4.3, left column, 

“Activation, MCI>CN”), and voxels that exhibited significantly weaker and/or more negative 

activation values in MCI relative controls were considered “negative activation contrasts (Fig. 4.3, 

right column, “Activation, CN<MCI”). Positive activation contrast areas included small regions 

of voxels in the middle frontal gyrus (inferior frontal junction (IFJ)), superior frontal gyrus 

(Brodmann area 8), and lateral temporal cortex (Brodmann area 21). Negative activation contrast 

areas included parts of the ventral visual pathway in the inferior occipital gyrus, the middle 

temporal visual area (V5/MT+), the cuneal gyrus (medially), the fusiform gyrus, the hippocampus, 

and the precuneus. Likewise, for each FC seed, we also used two-sample t-tests to determine 

positive and negative FC contrasts. These were defined as voxels with significantly stronger FC in 

MCI compared to CN (Fig. 4.3, bottom rows for each seed, “MCI>CN”) and voxels with 

significantly weaker and/or more negative FC in MCI compared to CN (Fig. 4.3, top rows for each 

seed, “MCI<CN”), respectively. Using the perirhinal cortex seed, areas with a positive FC contrast 

included the thalamus, the cingulate cortex, and the middle temporal gyrus. Areas with a negative 

FC contrast included medial visual regions (cuneal and lingual regions near the parieto-occipital 

sulcus), inferior temporal regions (i.e. ventral visual pathway), and a very small area in the inferor 

frontal gyrus (Brodmann 45, likely Broca’s area). Using the PPhG seed, areas with a positive FC 

contrast included the thalamus, the cingulate cortex, and very sparsely in lateral visual areas. Areas 

with a negative FC contrast with this seed included the inferior occipital gyrus, V5/MT+, several 

medial visual regions (cuneal and lingual regions near the parieto-occipital sulcus), and near the 

occipital poles. Finally, using the hippocampus seed, positive FC contrast regions were 

concentrated in the cingulate cortex. Negative FC contrast regions included the middle occipital 

gyrus, V5/MT+, and the inferior frontal gyrus. 

  For all seeds used, there was a clear relationship between task activation data and 

connectivity data based on disease severity. The results of the linear regression parameters for each 

of the plots is shown in Table 1. Overall, there was a fairly linear trend between the FC and 
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activation data, showing the relatedness of these two measures. The relationship between voxels 

in which MCI patients had reduced task activations and resting-state FC were relatively clear cut. 

Interestingly, voxels in which the mean activation parameters were more negative in CN were 

actually negative in terms of their sign; MCI patients tended to have values closer to zero (in many 

cases, slightly positive). We observed a similar effect with connectivity. Voxels in which the mean 

connectivity values were more negative in CN were also negative in terms of their sign, with MCI 

patients having values closer to zero (also in many cases slightly positive). 

  The distances of the data points for each subject demonstrated that the subjects were fairly 

well clustered around their group centroids (Fig 4.4), with few instances for which a subject’s data 

point was actually closer to another group’s centroid. The results of each plot’s analysis are 

summarized in Table 2 and presented in Fig. 4.5. For the CN group, the perirhinal cortex seed had 

the most tightly clustered data (mean distance to centroid = 1.9779±0.8909), and the greatest 

accuracy in that the fewest number of subjects were actually closer to centroid from SCD or MCI 

groups. Conversely, the Hippocampus seed had the broadest spread of data (mean distance to 

centroid = 2.4068±1.0142) and the poorest accuracy in that the most number of subjects were 

actually closer to centroid from SCD or MCI groups. For the SCD group, the perirhinal cortex 

seed again gave the most tightly clustered data (mean distance to centroid = 1.7996±0.9048) and 

had the greatest accuracy. Here, the broadest spread of data was actually found using the PPhG 

seed (mean distance to centroid = 2.6483±1.2988), which had the worst discrimination between 

SCD and MCI or CN, with the SCD-MCI separability being the poorer of the two. Finally, for the 

MCI patients, the hippocampus in fact gave rise to the most tightly clustered data (mean distance 

to centroid = 1.5625±0.7949) that also had the greatest accuracy in terms of the spread of the MCI 

subjects being closest to the correct centroid. Here again, the broadest spread of data occurred 

using the PPhG seed (mean distance to centroid = 2.0811±1.0892), which had the worst 

discrimination between SCD and MCI or CN, with the SCD-MCI separability being the poorer of 

the two. 
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Table 1. Linear regression parameters for FC versus activation plots. 
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Table 2. Discriminability Measures Among CN, SCD, and MCI groups. 
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 Discussion 

  We have shown that fMRI-based measurements relate to severity of patient diagnoses – 

from relative neurocognitive health, to initial subjective cognitive decline below clinically-

detectable thresholds, to mild cognitive impairment. The results lead to the following findings: 1) 

a progressive reduction in the extent of significantly activated voxels occurred using a scene 

encoding task among CN, SCD, and MCI patient groups; 2) a progressive reduction in connectivity 

using seeds in the inferior temporal cortex (perirhinal cortex, PPhG, and hippocampus) was 

observed during the resting-state among CN, SCD, and MCI patient groups; 3) a linear relationship 

existed between the connectivity and activation data, enabling a two-dimensional representation 

each subject’s (and group’s) fMRI-based measurements. Therefore, the results further support that 

SCD is an intermediate stage between relative a cognitively normal status and mild cognitive 

impairment, a precursor stage of Alzheimer’s disease.  

4.4.1 Explaining Heterogeneity of Findings via Alzheimer’s Disease Pathogenesis 

  It is difficult to pinpoint the underlying pathophysiology of Alzheimer’s Disease at the 

earliest stages because many of the histologic hallmarks of Alzheimer’s Disease, such as NFT 

aggregation in the medial temporal lobe and amyloid deposition, also occur in normal aging 

(Dubois et al., 2016; Morrison and Hof, 1997). However, we do know that that there is a 

progression of regional involvement. Even in the earliest stages, some parts of the inferior temporal 

cortex are affected earlier than others; namely, the transentorhinal cortex (actually located within 

the medial perirhinal cortex (Taylor and Probst, 2008)) precedes the entorhinal cortex in 

involvement, which in turn is affected before the hippocampus. 

 This pattern of development may explain some of our findings. Seed-based connectivity 

differences were marked among all three groups using the Perirhinal and PPhG seeds. However, 

using the Hippocampus seed, a reduction in connectivity between CN and SCD conditions was not 

observed (Fig. 4.2). Additionally, we found the fact that different seed locations elicited better 

clustering of data points and greater diagnostic accuracy (as measured by determining whether 

Euclidean distances from each subject’s data point to the centroid of the assigned group or other 

groups were closer) using the 2-dimensional plots very interesting and also likely related to disease 

pathogenesis. For the CN and SCD groups, this was the case with the perirhinal cortex seed, but 

for the MCI group, the hippocampus, the worst seed location for the CN group for these measures, 
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was optimal.  The greater degree of overlap between the CN and SCD groups using the 

hippocampus seed was noticeable on the plots (Fig. 4.3). This similarity may result from AD-like 

pathology not yet significantly affecting the hippocampus in SCD patients. Early, subclinical 

memory deficits may instead be observed from the loss of projection cells in the transentorhinal 

and entorhinal cortices to parts of the hippocampus (Braak and Braak, 1995; Morrison and Hof, 

1997), which could explain why the perirhinal cortex seed provided the best separation between 

groups in MCI and SCD groups. The fact that this process may have already occurred in both SCD 

and MCI groups may explain why this seed did not elicit the same degree of diagnostic separability. 

4.4.2 Task Activation and FC Data are Related and Informative 

  It is difficult to pinpoint the underlying pathophysiology of Alzheimer’s Disease at the 

earliest stages because many of the histologic hallmarks of Alzheimer’s Disease, such as NFT 

aggregation in the medial temporal lobe and amyloid deposition, also occur in normal aging 

(Dubois et al., 2016; Morrison and Hof, 1997). However, we do know that that there is a 

progression of regional involvement. Even in the earliest stages, some parts of the inferior temporal 

cortex are affected earlier than others; namely, the transentorhinal cortex (actually located within 

the medial perirhinal cortex (Taylor and Probst, 2008)) precedes the entorhinal cortex in 

involvement, which in turn is affected before the hippocampus. 

 This pattern of development may explain some of our findings. Seed-based connectivity 

differences were marked among all three groups using the Perirhinal and PPhG seeds. However, 

using the Hippocampus seed, a reduction in connectivity between CN and SCD conditions was not 

observed (Fig. 4.2). Additionally, we found the fact that different seed locations elicited better 

clustering of data points and greater diagnostic accuracy (as measured by determining whether 

Euclidean distances from each subject’s data point to the centroid of the assigned group or other 

groups were closer) using the 2-dimensional plots very interesting and also likely related to disease 

pathogenesis. For the CN and SCD groups, this was the case with the perirhinal cortex seed, but 

for the MCI group, the hippocampus, the worst seed location for the CN group for these measures, 

was optimal.  The greater degree of overlap between the CN and SCD groups using the 

hippocampus seed was noticeable on the plots (Fig. 4.3). This similarity may result from AD-like 

pathology not yet significantly affecting the hippocampus in SCD patients. Early, subclinical 

memory deficits may instead be observed from the loss of projection cells in the transentorhinal 
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and entorhinal cortices to parts of the hippocampus (Braak and Braak, 1995; Morrison and Hof, 

1997), which could explain why the perirhinal cortex seed provided the best separation between 

groups in MCI and SCD populations. The fact that this process may have already occurred in both 

SCD and MCI groups may explain why this seed did not elicit the same degree of diagnostic 

separability. 

4.4.3 Relationship to MCI and AD findings 

  AD patients have demonstrated alterations in both task activations and resting-state 

connectivity. Many task activation studies have revealed reduced activations in medial temporal 

lobe structures in AD patients compared to controls (Golby et al., 2005; Kato et al., 2001; 

Machulda et al., 2003; Rombouts et al., 2000; Sperling et al., 2003), with some reports of 

compensatory hyperactivations in the prefrontal cortex (Grady et al., 2003). FC studies have shown 

decreased DMN connectivity (Damoiseaux et al., 2012; Greicius et al., 2004; Jones et al., 2011), 

increased prefrontal connectivity (Agosta et al., 2012), and increased salience network 

connectivity (Zhou et al., 2010) in AD patients.  

  However, research in MCI patients has generated conflicting results. Some groups have 

shown that MCI patients mostly mirror the medial temporal lobe hypo-activations and reduced 

connectivity found in AD populations (Machulda et al., 2003; Petrella et al., 2007; Rombouts et 

al., 2005; Sorg et al., 2007), whereas others have encountered paradoxical hyper-activations and 

hyper-connectivity of these same regions (Bai et al., 2011; Dickerson et al., 2005; Kircher et al., 

2007). To disentangle this difference, Celone et al. (2006) posited that there may be a nonlinear 

trajectory of changes.  

 Here, we that the dominant effect, particularly in the ventral visual pathway, appeared to 

be reduced activations in MCI and SCD patients, with the MCI patients showing a greater 

reduction. However, within the structures of the inferior temporal lobe, we found a mixture of 

more positive and more negative activations in MCI patients versus controls. In terms of FC, we 

found that MCI patients and SCD patients exhibited reduced FC to inferior temporal seeds, with 

the MCI patients again showing a greater reduction. However, there were also some voxels that 

were more strongly connected to the seeds in MCI than in CN conditions. Perhaps instead of a 

spatially-uniform, purely temporal heterogeneity in affected areas (Celone et al., 2006), a spatial 
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heterogeneity of differences may occur as the brain attempts to compensate for the impaired 

signaling in these early stages.  

  SCD patients exhibiting similar differences to CN patients as MCI patients, though slightly 

reduced in magnitude, provides strong imaging-based evidence that clinically, SCD likely 

precedes MCI in AD pathology. Further, we were able to delineate differences among the three 

different groups, giving promise to the notion that non-invasive, imaging-based measures can be 

used in early-stage diagnosis of this extremely pervasive disease. 
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Figure 4.1. Group-level Activations. Group level activation maps by patient group and number of 

significant voxels. Activation data was evaluated for significance using one-sample t-tests (df = 

11 for CN and SCD groups, 9 for MCI). Z-values of MNI coordinates for slices are shown in the 

lower right corner of each image. 
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Figure 4.2. Group level connectivity maps using seeds in the Perirhinal Cortex, Posterior 

Parahippocampal Gyrus, and Hippocampus. FC data were evaluated for significance using one-

sample t-tests (df = 11 for CN and SCD groups, 9 for MCI group). Z-values of MNI coordinates 

are displayed in the lower right corner of each image. 
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Figure 4.3. Relationship Between Task Activation and Resting-State Connectivity Data. Voxels 

with significantly different activation parameters across CN and MCI groups were determined 

using a two-sample t-test; likewise, voxels with significantly different correlations to the seed 

across CN and MCI groups were also determined using a two-sample t-test. Voxels with activation 

parameters that were more negative in MCI were then separated from voxels that were more 

positive in MCI, and voxels that were strongly correlated with the seed in MCI were separated 

from voxels that were more weakly correlated with the seed in MCI, creating 4 subplots. Then, 

each subject’s mean activation and correlation values over these voxels were plotted. Z-values of 

MNI coordinates for slices of seeds are shown in the lower right corner of images, and the FC 

contrasts were shown projected onto the cortical surface. 
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Figure 4.4. Mean Distance to Centroid by Patient Group and FC Seed Location. The distance of 

each subject to its diagnostic group’s centroid was calculated for each of the four plots in Fig. 4.3. 

Then, the mean distance values for each seed and each diagnostic group were calculated and 

included in the bar graph. Different patient groups were better clustered by different seeds. The 

perirhinal cortex seed had optimal clustering (as measured by distance to centroid) of HC and SCD 

groups, whereas the hippocampus seed had the shortest distance to centroid in MCI. 
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Figure 4.5. Mean Distance to Other Diagnostic Groups’ Centroids by Patient Group and FC Seed 

Location. The distance of each subject to each diagnostic group’s centroid was calculated for each 

of the four plots in Fig. 4.3. Then, the number of subjects closer to other diagnostic groups’ 

centroids was calculated for each seed and included in the bar graph as an indirect measure of 

diagnostic discrimination. Different patient groups had better discriminability using different seeds. 

The perirhinal cortex seed had the best separation HC and SCD groups, whereas the hippocampus 

had the best separation of SCD and MCI. 
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5. CONCLUSIONS AND RECOMMENDATIONS 

 Conclusions 

  The work presented in this dissertation has shed light on how and why FC may change in 

brain states, including tasks and disease. It is my hope that the work conducted during my doctoral 

training may enable others to think about the applications of FC in fMRI somewhat differently, 

toward uncovering novel information about how the brain functions in everyday life. 

Notwithstanding, neuroimaging-based tools will likely continue to elucidate the underpinnings of 

the interaction between physical form and cognitive function (i.e. the “mind-body” problem, 

presented early in Chapter 1), with the goal of improving our fundamental understanding of the 

brain and of health and disease. 

  In Chapter 2, we showed that the difference between FC at rest and during a naturalistic 

visual task, which contains an unknown mixture of task-evoked and spontaneous signals, cannot 

be explained by separating the task-evoked FC from the connectivity profile. Further, we observed 

that FC between resting-state and task states is mostly conserved. Moreover, during the resting-

state, non-visual sensory-related functional networks (e.g. somatomotor, auditory) were more 

coupled to visual networks than during the natural movie; the task-evoked FC was predominantly 

characterized by positive and restricted correlations among regions within the visual system. 

Finally, the task-evoked FC accounted for only 3-15% of the FC difference between task and rest 

conditions. Ultimately, our results suggested that task-evoked FC and spontaneous FC are neither 

linear nor additive, which we found somewhat surprising.  

  In Chapter 3, we were able to show subtle task-related differences in the white matter using 

fMRI, which has only rarely been used to study functions in this tissue type. Using data-driven 

analysis methods, we investigated the spatiotemporal characteristics of white-matter fMRI time 

series in the cerebral white matter in the resting state and during naturalistic visual perception. We 

found that spatially independent components (ICs) of resting-state fMRI signals in the white-

matter revealed reproducible fiber-like structures. Further, the ICs were temporally correlated in 

an intrinsically hierarchical manner. The intrinsic WM structures and their hierarchical 

organization were mostly preserved during naturalistic visual stimulation. However, a subset of 

these structures (e.g. the optic radiations) involved with visual processing showed stronger within-
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component synchronization and even exhibited significant interactions with cortical visual 

networks. Considering this evidence, we conclude that fMRI signals in WM may be used to 

elucidate the intrinsic functional organization of WM; further, they may even be used to map 

axonal pathways that support neural signaling between cortical networks during complex tasks.  

 In Chapter 4, we examined the utility of combining resting-state FC with task-activation 

studies in uncovering changes in brain activity during preclinical Alzheimer's Disease (mild 

cognitive impairment (MCI) and subjective cognitive decline (SCD) populations), based on data 

collected at the Indiana University School of Medicine. We showed a progressive reduction in the 

extent of significantly activated voxels occurred using a scene encoding task among CN, SCD, 

and MCI patient groups, as well as a progressive reduction in connectivity using seeds in the 

inferior temporal cortex (perirhinal cortex, PPhG, and hippocampus) in these patient groups. We 

also observed a linear relationship between the connectivity and activation data, enabling a two-

dimensional representation each subject’s (and group’s) fMRI-based measurements. Overall, the 

results further support that SCD is an intermediate stage between a cognitively normal status and 

mild cognitive impairment, a precursor stage of Alzheimer’s disease.  

 Future Work 

  The methods, analyses, and findings of this dissertation present several opportunities for 

future investigations. Recommended future areas of inquiry for each chapter are presented below. 

  With respect to the rest-task interaction and the contributions of task-evoked FC, it may be 

beneficial to include different types of tasks (active vs. passive) and/or anesthesia states to 

determine if the negative interaction exhibits a task-dependence or state-dependence. We also 

observed regional heterogeneity in the suppression of spontaneous FC (occipital/visual regions 

exhibited stronger suppression) during the task, so using a task targeted toward a different sensory 

system (e.g. auditory) would be beneficial in revealing this interplay. Further, if we attempted to 

classify the brain’s task state, would the task-evoked FC lead to better classification performance 

than the apparent task FC? Finally, although many studies have used electrophysiological 

recordings or fMRI to reveal this phenomenon (Churchland et al., 2010; He, 2013; Ponce-Alvarez 

et al., 2013), to the best of my knowledge, there are no existing studies that combine the two. 

Integrating neural recordings with fMRI may provide complementary mechanistic information and 
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insights about which signal types (action potentials, LFPs, fMRI) exhibit these effects most 

strongly. 

 Concerning white-matter fMRI, investigations that combine neural recordings with fMRI 

measurements, such as Logothetis et al. (2001), in the WM may elucidate the neurophysiological 

origins of the T2
* signal. The relationships between action potentials or LFPs and fMRI signal may 

be different in white matter versus gray matter. Further, multi-echo fMRI protocols (Kundu et al., 

2012) can also clarify whether the signal is in fact BOLD due to TE dependence (see also Ding et 

al. (2016)). Moreover, the usefulness of the WM fMRI signal can be explored by investigating 

whether the WM signal can be used to classify brain states (either different tasks or health/disease 

status); some studies of this nature have recently been published (Chen et al., 2017; Zhang et al., 

2017). Additional analysis methods to further improve the SNR in white matter may be necessary 

for this work, and may include additional ICA-based de-noising or usage of task-evoked signals 

(Simony et al., 2016; see also Chapter 2). 

  Finally, the Alzheimer’s Disease data, though promising, was somewhat under-powered 

and would benefit from increased sample sizes. Using a naturalistic task or beta-series correlations 

(Rissman et al., 2004) would enable us to better understand how changes in FC during tasks 

translate to diagnostic group. In addition, such analysis methods would allow us to determine 

whether the suppression of spontaneous correlations we found in Chapter 2 has a relationship to 

disease status. Importantly, we also would be interested in the utility of neuroimaging measures in 

explicitly classifying diagnostic groups. By establishing an imaging biomarker for earliest 

detectable changes, it may be possible to uncover an optimal time at which future therapeutic 

interventions may halt the progression of disease. 
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