1,075 research outputs found

    The ecological roles of golf courses in urban landscapes

    Get PDF
    The proliferation of urban golf courses accounts for a growing proportion of the urban land area in Australia and other countries. While many suggest that golf courses have an environmentally negative impact, others believe they are important nodes in the network of urban green space and can provide refugial habitat for wildlife. However, research on golf course ecology is in its infancy and this limits development of explicit guidelines for ecologically sound development. Therefore, this PhD research used remote sensing technology to investigate the ecological roles of golf courses in maintenance of vegetation at the urban landscape scale. The thesis explores temporal and spatial landscape data as well as the possible cooling effects golf course can provide in the Perth Metropolitan Region. The multifunctional aspects of green spaces in golf courses are highlighted in this study. Firstly, by using moderate resolution satellite imagery (Landsat) time series data for three decades from 1988 to 2018 to assess temporal changes in vegetation cover, the study found that vegetation clearance was significant and vegetation cover has become increasingly fragmented. It was concluded that golf courses contribute to urban conservation through the maintenance of vegetation cover and by increasing habitat connectivity during the long period of urbanisation. Secondly, high resolution satellite imagery (PlanetScope (PS) Level 3B) was then used to compare spatially the characteristics of vegetation within golf courses with other urban land-use. It found that golf courses have less conservation values than conservation land, but their role in preservation of native vegetation, vegetation health and habitat connectivity is more significant than other highly intensive urban land-uses. Thirdly, analysis of multispectral high resolution airborne imagery for assessing the capacity of golf courses in mitigating the urban temperature revealed that urban golf courses can provide cooling effects in the urban environment through the provision of tree coverage and other green areas. Despite limitations of the research being carried out at the landscape scale, the findings of the thesis can enhance the future integration of golf courses into urban biodiversity conservation and ecosystem service improvement

    QUANTIFYING GRASSLAND NON-PHOTOSYNTHETIC VEGETATION BIOMASS USING REMOTE SENSING DATA

    Get PDF
    Non-photosynthetic vegetation (NPV) refers to vegetation that cannot perform a photosynthetic function. NPV, including standing dead vegetation and surface plant litter, plays a vital role in maintaining ecosystem function through controlling carbon, water and nutrient uptake as well as natural fire frequency and intensity in diverse ecosystems such as forest, savannah, wetland, cropland, and grassland. Due to its ecological importance, NPV has been selected as an indicator of grassland ecosystem health by the Alberta Public Lands Administration in Canada. The ecological importance of NPV has driven considerable research on quantifying NPV biomass with remote sensing approaches in various ecosystems. Although remote images, especially hyperspectral images, have demonstrated potential for use in NPV estimation, there has not been a way to quantify NPV biomass in semiarid grasslands where NPV biomass is affected by green vegetation (PV), bare soil and biological soil crust (BSC). The purpose of this research is to find a solution to quantitatively estimate NPV biomass with remote sensing approaches in semiarid mixed grasslands. Research was conducted in Grasslands National Park (GNP), a parcel of semiarid mixed prairie grassland in southern Saskatchewan, Canada. Multispectral images, including newly operational Landsat 8 Operational Land Imager (OLI) and Sentinel-2A Multi-spectral Instrument (MSIs) images and fine Quad-pol Radarsat-2 images were used for estimating NPV biomass in early, middle, and peak growing seasons via a simple linear regression approach. The results indicate that multispectral Landsat 8 OLI and Sentinel-2A MSIs have potential to quantify NPV biomass in peak and early senescence growing seasons. Radarsat-2 can also provide a solution for NPV biomass estimation. However, the performance of Radarsat-2 images is greatly affected by incidence angle of the image acquisition. This research filled a critical gap in applying remote sensing approaches to quantify NPV biomass in grassland ecosystems. NPV biomass estimates and approaches for estimating NPV biomass will contribute to grassland ecosystem health assessment (EHA) and natural resource (i.e. land, soil, water, plant, and animal) management

    The role of integrated information acquisition and management in the analysis of coastal ecosystem change

    Get PDF
    This book chapter represents a synthesis of the work which started in my PhD and which has been the conceptual basis for all of my research since 1993. The chapter presents a method for scientists and managers to use for selecting the type of remotely sensed data to use to meet their information needs associated with a mapping, monitoring or modelling application. The work draws on results from several of my ARC projects, CRC Rainforest and Coastal projects and theses of P.Scarth , K.Joyce and C.Roelfsema

    Estuarine geomorphodynamic assessment of environmental change and stressor impacts: a geographic information systems and remote sensing (geoinformatic) modelling approach for sustainable management of southeast Australian coastal ecosystems

    Get PDF
    Increased habitation and global warming is posing growing threats to the coastal zone and estuarine settings through direct and indirect environmental and anthropogenic modification of sensitive coastal systems and their relevant catchments. It is essential to understand the impact of the different stressors on the coastal environment under current conditions and within the historical record in order to predict future responses of estuaries and coastal wetlands. Short-term remote sensing and GIS modelling and field assessment have made a significant contribution to our knowledge on estuarine and coastal wetland dynamism within the last few decades. This thesis assesses the potential impacts of anthropogenic modifications, climatic factors and sea level rise on estuarine eco-geomorphic intertidal sedimentary landforms and their associated coastal wetlands in southeastern Australia based on three estuarine systems on the south coast of NSW: the estuarine Comerong Island, Wandandian deltaic estuary, and Towamba estuary. The thesis’ short-term evaluation approach shows that the degradation levels on estuarine platforms are dependent on catchment development, sediment characteristics, ecosystem stability and sea level rise inundation. During anticipated climate change and rising sea level conditions, estuaries depend on their sediment source areas, especially on modifications to their river catchment. Catchments with high anthropogenic modification levels, like the dam infrastructure in the Shoalhaven River catchment, influence sediment availability and transportation with clear impacts on eco-geomorphic coastal platform losses. In contrast, mostly unmodified but high-sloped catchments, such as the Towamba example, may have other negative effects on the estuary since the sediments are poorly sorted and coarser noncohesive quartz-dominated particles cause the geomorphic landforms and associated ecosystems to be more vulnerable to erosion and lead to less stable vegetation. Regions with small moderately modified catchments, such as the Wandandian site, allow ideal geomorphic processes to occur. Here, sediment is weathered slowly and moved downstream naturally to a secure inner estuarine deltaic setting where fine sandy/silty particles accumulate and provide more geomorphic stability. Associated vegetation assemblages ensure the progradation and steady growth of the deltaic eco-geomorphic system. The thesis assessment shows the eco-geomorphic-dynamism of the Towamba estuary, which has a mostly unmodified catchment surface (only 14% anthropogenic modifications), has grown a total of 0.17 km2 since 1949. This growth rate indicates that the Towamba estuary future scenarios will mostly be filled at the completion of the 21st Century. In comparison, the partially modified (22.1%) catchment has prograded the Wandandian deltaic shorelines resulting in the total growth of 0.24 km2 during the study period (1949-2016). However, results on Comerong Island show significant changes in the spatial extent, elevation, and shorelines with total net losses of 0.3 km2 over the investigated timespan (1949-2014). Changes included northern accretion (0.4 km2), and western, middle and southern erosion (0.7 km2) of the island. The thesis emphasises the dynamic character of the estuarine eco-geomorphic system, particularly using Normalised Difference Vegetation Index (NDVI) as a vegetation canopy assessment approach. This approach illustrates the significant correlations between vegetation and climatic and geomorphic influences at the study sites, indicating that these factors are the main drivers of vegetation canopy disturbance on intertidal sedimentary landforms during the 21st Century. Locally, map-algebra expression shows the spatial distribution of the NDVI identifies areas that need to be managed in relation to the causes and drivers. This modelling confirms the LiDAR-DEMs-driven character of the existing situations to their influencing factors, which also control the estimated future-scenarios and illustrate clear inundatable landform zones at the study sites by 2100. Results indicate that the rise of sea level will have tremendous effects on the coastal eco-geomorphic systems, particularly wetlands, throughout southeastern Australia and equivalent systems overseas by the end of this century. This thesis develops possible mitigation and adaptation strategies and sustainable solutions that might be utilized to minimize the indirect devastating consequences of climate change and anthropogenic modifications, particularly damming rivers, which cause direct sedimentation problems as implied by the Tallowa Dam case study. The thesis shows that intertidal sedimentary landforms will have a future negative or positive vegetarian response according to their evolving morphological character. Within a short-term timescale, the whole eco-geomorphic system will interact with many environmental and anthropogenic variables (particularly sedimentation rates) to evolve its own character over a longer timescale. Therefore, the long term assessment approach can be directed by having a better understanding of the existing situation and accurately identifying the past drivers. Future projections indicate that indirect anthropogenic-induced global warming will have a great effect on estuaries and coastal wetlands in the 21st Century. This research helps to provide an important framework for quantifying the current situation, future stressors and vulnerability responses during any intensification of natural and artificial coastal hazards, which may be of concern to the general public and environmental scientists who are currently focusing their attention on the best way to preserve estuaries and their wetland ecosystems at the current stage of global warming and human settlement

    Landscape Ecology

    Get PDF
    This book has been written to present major and efficient applications in landscape ecology, as well as to propose a solid action for this category of topics. The book aims to illustrate various treatment methods of the land-use models impact on landscape ecology creation. The book is divided into three parts: Part I: Ecological interpretation of land-use act - in this part, ecosystem and land use turn out to be a significant factor in the process of creating an ecological landscape. Part II: Landscape district in applied ecological analysis - this part attempts to illustrate the best possible model of analysis integrated with landscape in practical case studies. Part III: The anthropogenic impacts on landscape creation - this part discusses the human impact on landscape creation

    Multispectral Indices for Wildfire Management

    Full text link
    This paper highlights and summarizes the most important multispectral indices and associated methodologies for fire management. Various fields of study are examined where multispectral indices align with wildfire prevention and management, including vegetation and soil attribute extraction, water feature mapping, artificial structure identification, and post-fire burnt area estimation. The versatility and effectiveness of multispectral indices in addressing specific issues in wildfire management are emphasized. Fundamental insights for optimizing data extraction are presented. Concrete indices for each task, including the NDVI and the NDWI, are suggested. Moreover, to enhance accuracy and address inherent limitations of individual index applications, the integration of complementary processing solutions and additional data sources like high-resolution imagery and ground-based measurements is recommended. This paper aims to be an immediate and comprehensive reference for researchers and stakeholders working on multispectral indices related to the prevention and management of fires

    Fire

    Get PDF
    Vegetation plays a crucial role in regulating environmental conditions, including weather and climate. The amount of water and carbon dioxide in the air and the albedo of our planet are all influenced by vegetation, which in turn influences all life on Earth. Soil properties are also strongly influenced by vegetation, through biogeochemical cycles and feedback loops (see Volume 1A—Section 4). Vegetated landscapes on Earth provide habitat and energy for a rich diversity of animal species, including humans. Vegetation is also a major component of the world economy, through the global production of food, fibre, fuel, medicine, and other plantbased resources for human consumptio

    Remote sensing technologies for the assessment of marine and coastal ecosystems

    Get PDF
    Abstract This chapter reviews the Remote Sensing (RS) technologies that are particularly appropriate for marine and coastal ecosystem research and management. RS techniques are used to perform analysis of water quality in coastal water bodies; to identify, characterize and analyze river plumes; to extract estuarine/coastal sandy bodies; to identify beach features/patterns; and to evaluate the changes and integrity (health) of the coastal lagoon habitats. For effective management of these ecosystems, it is essential to have satellite data available and complementary accurate information about the current state of the coastal regions, in addition to well-informed forecasts about its future state. In recent years, the use of space, air and ground-based RS strategies has allowed for the rapid data collection, Image processing (Pixel-Based and Object-Based Image Analysis (OBIA) classification) and dissemination of such information to reduce vulnerability to natural hazards, anthropic pressures, and to monitoring essential ecological processes, life support systems and biological diversityinfo:eu-repo/semantics/submittedVersio
    • …
    corecore