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ABSTRACT 
Increased habitation and global warming is posing growing threats to the coastal zone and 

estuarine settings through direct and indirect environmental and anthropogenic modification 

of sensitive coastal systems and their relevant catchments. It is essential to understand the 

impact of the different stressors on the coastal environment under current conditions and 

within the historical record in order to predict future responses of estuaries and coastal 

wetlands. 

Short-term remote sensing and GIS modelling and field assessment have made a significant 

contribution to our knowledge on estuarine and coastal wetland dynamism within the last few 

decades. This thesis assesses the potential impacts of anthropogenic modifications, climatic 

factors and sea level rise on estuarine eco-geomorphic intertidal sedimentary landforms and 

their associated coastal wetlands in southeastern Australia based on three estuarine systems 

on the south coast of NSW: the estuarine Comerong Island, Wandandian deltaic estuary, and 

Towamba estuary. 

The thesis’ short-term evaluation approach shows that the degradation levels on estuarine 

platforms are dependent on catchment development, sediment characteristics, ecosystem 

stability and sea level rise inundation. During anticipated climate change and rising sea level 

conditions, estuaries depend on their sediment source areas, especially on modifications to 

their river catchment. Catchments with high anthropogenic modification levels, like the dam 

infrastructure in the Shoalhaven River catchment, influence sediment availability and 

transportation with clear impacts on eco-geomorphic coastal platform losses. In contrast, 

mostly unmodified but high-sloped catchments, such as the Towamba example, may have 

other negative effects on the estuary since the sediments are poorly sorted and coarser non-

cohesive quartz-dominated particles cause the geomorphic landforms and associated 

ecosystems to be more vulnerable to erosion and lead to less stable vegetation. Regions with 

small moderately modified catchments, such as the Wandandian site, allow ideal geomorphic 

processes to occur. Here, sediment is weathered slowly and moved downstream naturally to a 

secure inner estuarine deltaic setting where fine sandy/silty particles accumulate and provide 

more geomorphic stability. Associated vegetation assemblages ensure the progradation and 

steady growth of the deltaic eco-geomorphic system. 

The thesis assessment shows the eco-geomorphic-dynamism of the Towamba estuary, which 

has a mostly unmodified catchment surface (only 14% anthropogenic modifications), has 

grown a total of 0.17 km2 since 1949. This growth rate indicates that the Towamba estuary 

future scenarios will mostly be filled at the completion of the 21st Century. In comparison, the 
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partially modified (22.1%) catchment has prograded the Wandandian deltaic shorelines 

resulting in the total growth of 0.24 km2 during the study period (1949-2016). However, results 

on Comerong Island show significant changes in the spatial extent, elevation, and shorelines 

with total net losses of 0.3 km2 over the investigated timespan (1949-2014). Changes included 

northern accretion (0.4 km2), and western, middle and southern erosion (0.7 km2) of the 

island. 

The thesis emphasises the dynamic character of the estuarine eco-geomorphic system, 

particularly using Normalised Difference Vegetation Index (NDVI) as a vegetation canopy 

assessment approach. This approach illustrates the significant correlations between vegetation 

and climatic and geomorphic influences at the study sites, indicating that these factors are the 

main drivers of vegetation canopy disturbance on intertidal sedimentary landforms during the 

21st Century. Locally, map-algebra expression shows the spatial distribution of the NDVI 

identifies areas that need to be managed in relation to the causes and drivers. This modelling 

confirms the LiDAR-DEMs-driven character of the existing situations to their influencing 

factors, which also control the estimated future-scenarios and illustrate clear inundatable 

landform zones at the study sites by 2100. Results indicate that the rise of sea level will have 

tremendous effects on the coastal eco-geomorphic systems, particularly wetlands, throughout 

southeastern Australia and equivalent systems overseas by the end of this century. 

This thesis develops possible mitigation and adaptation strategies and sustainable solutions 

that might be utilized to minimize the indirect devastating consequences of climate change 

and anthropogenic modifications, particularly damming rivers, which cause direct 

sedimentation problems as implied by the Tallowa Dam case study. 

The thesis shows that intertidal sedimentary landforms will have a future negative or positive 

vegetarian response according to their evolving morphological character. Within a short-term 

timescale, the whole eco-geomorphic system will interact with many environmental and 

anthropogenic variables (particularly sedimentation rates) to evolve its own character over a 

longer timescale. Therefore, the long term assessment approach can be directed by having a 

better understanding of the existing situation and accurately identifying the past drivers. 

Future projections indicate that indirect anthropogenic-induced global warming will have a 

great effect on estuaries and coastal wetlands in the 21st Century. This research helps to 

provide an important framework for quantifying the current situation, future stressors and 

vulnerability responses during any intensification of natural and artificial coastal hazards, 

which may be of concern to the general public and environmental scientists who are currently 

focusing their attention on the best way to preserve estuaries and their wetland ecosystems at 

the current stage of global warming and human settlement. 
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1 Chapter I: INTRODUCTION 

1.1 The general introduction and backgroun 
Coastal environments around the globe contain a variety of landforms that have been 

constructed by the dynamic interaction of rivers,waves and tides on the rock nd sediment at 

their disposal (Fischlin et al., 2007). Intertidal estuarine landforms represent one of the most

geomorphically dynamic systems formed through continued sediment movement above and  

below current sea level, as sediment from the catchment is reworked by the river and tidal

interactions and partially stab   ilized by v  egetation communit  ies (Fisch et al., 2007; 

Woodroffe, 2002; Murray-Wallace and Woodroffe, 2014). 

The ecosystems on Earth, particularly in the coastal zones, have       become  balanced  nd 

stabilized since the mid-Holocene sea level stabilization (Troedsonet al., 2004; Murray-Wallace 

& Woodroffe, 2014). Ever since, estuaries form a dynamic, transitional zone between rivers and

the sea and allow people to achieve many economic, social and environmental benefits 

worldwide (Dalrymple et al., 1992; Crossland et al., 2005). Early Sumerians (Mesopotamia 4500 

BC) and most other ancient civilizations were   attracted to th  ese coastal and estuarin  

environments, which provided people with many ecologically valuable services, especially food, 

transport and access within a specific ecosystem (Postgate, 1992). Since then, habitation in the

coastal zone has increased for economic and environmental reasons, impacting estuarine

settings directly and/or iirectly through modifying their relevant catchments (Cherfas, 1990; 

Crossland et al., 2005; Pendleton, 2010; Neumann et al., 2015). Nowadays, 70% of the global 

population and 86% of Australians live in coastal environments (Cherfas, 1990; Leeet al., 2006; 

Australian Bureau of Statistics (ABS), 2011). As a result, coastal ecosystems are threatened b

(i) population concentration and growth stressing th   e ecological and ge omorphological (e -

geomorphic) systems of many estuaries (Deeley & Marine, 1999; Kennish, 2002; Crosset et al., 

2004), (ii) related anthropogenic modification of their catchments (Davenport and Davenport,

2006; Lee et al., 2006; Hopley, 2013; Al-Nasrawi et al., 2016a), and more recently, (iii) global 

warming, its consequential climate chang and sea level rise, which has become another factor 

stressing estuarine intertidal landforms and their a    ssociated habitats (W  oodroffe, 1 990;

Nicholls, 2004; Day et al., 2008; Nielsen & Brock, 2009; Lovelock et al., 2011; Bonettet al., 

2012). 

The formation of an estuary depends on the position of s-level compared to the amount and 

level of fresh water flow from the catchment through the river (Wright, 1970; Woodroffe et al., 

2000). Sloss et al. (2005) have stated that estuarine systems along the southern NSW coast can 
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provide many examples of such eco-geomorphologically disturbed regimes. NSW estuaries 

were partly infilled late Quaternary low-stand incised valley systems (Roy et al., 2001; Sloss et 

al., Sloss et al., 2006b, Sloss et al., 2010). At the time ofthe Last Glacial Maximum (LGM) low-

stand riverine sediment accumulated within the continenta-shelf. Over the subsequent 

transgression, this sediment was moved landward forming the Holocene coastal sandy barrier 

estuaries (Roy & Crawford, 1977; Sloss et al., 2010). The high-stand Holocene sea-level caused 

estuarine systems to simultaneously infill with marine sediment and sediment derived from the 

river catchment (Hopley & Jones, 2006; Carlson et al., 2008). NSW estuaries vary greatly in 

their rate of infilling depending on their sediment supply and the geomorphic ability to keep 

the sediment within the estuary, i.e. a balance between the river and nearshore ocean energies 

(Roy et al., 2001; Sloss et al., 2005, 2006a, 2006b). The southeast Australian coast is influenced 

by two oceanic-water masses; the southern end of the warm Eastern Australian Current and 

the cold waters of the Southern-Ocean (Yassini & Jones, 1995). Additionally to   being wav-

dominated (Woodroffe, 2002; Sloss et al., 2006b; Roper et al., 2011), the NSW south coast is 

also a popular place for many anthropogenic activities, including large boat traffic, commercia

and recreational fishing, personal recreation, mussel farming, whaling,        ber export and 

Australian Navy activities, putting even more pressure on the coastal environments (D& De 

Deckker, 2013). 

Successive erosion and deposition cycles in estuaries of NSW have resulted in ecological and 

morphological (eco-geomorphic) changes over tim (Roy et al., 2001; Roper et al., 2011). 

Furthermore, there has been a clear increase in the possible effects of changes in natural 

environmental aspects, such as the dynamics of coastal sand bodies. This has been caused by: 

i) global warming, such as the rising temperature and mean sea level, as well as increasing 

high-energy event frequencies (e.g. tornados and floods); and ii) anthropogenic influences 

including farming, industrial development and urbanisation within the catch   ent, together 

with the dredging of channels, embankment modification and san-mining in estuaries (Roy et 

al., 2001). These geomorphic changes have also led to ecological responses, particularly within

the estuaries and their associated coastal wetlands, because of their sensitivity and relativel

rapid responses (Roper et al., 2011; Semeniuk & Semeniuk, 2013; Al-Nasrawi et al., 2016b; Al-

Nasrawi et al., 2017a). Responses include the development of shorelines, levees, sandspits and 

vegetation canopy (mainly mangrove,Casuarina and some Juncus spp.) particularly within the

shoreline zones, but also in saltmarsh areas, which offer suitable accommodation and habitat

for other ecological and biological communities to develop 

The focus of this thesis is on monitoring and assessing environmentally sensitive areas, such as

intertidal estuarine landforms and their a     ssociated coastal wetlands, which is an e      ssentia
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factor for government agencies and for the broader research and local communities.

Comprehensive understanding of the dynamic processes in these zones will provide 

considerable help to manage such areas globally. The thesis provides detailed insights about 

the three chosen representative sites on the southeast      Australian coast  focusing on 

geomorphic and resulting vegetation dynamics (as a conservation indicator) for historical a

current eco-geomorphic evaluation and probable future response to environmental changes 

1.1.1 Background 

Riverine estuary studies have mainly focused on sedimentological characteristics, shoreline

responses, the formation processes and subsequent ec-geomorphic responses. They covered 

different estuarine research scopes, including: (i) weathering and transport processes 

(Goodbred, 2003; Wei et al., 2007); (ii) fluvial geomorphic and sediment aspects (Jones et al., 

1993) (iii) characteristics of particle size and load dynamics of river sedimentation (Yaet al., 

2009; Hoque et al., 2013); (iv) hydrological processes (Li and Heap, 2008); (v) mineralogical 

sediment analysis (Sondi et al., 2008); (vi) geochemistry studies (Jones et al., 2003a; Zhou et 

al., 2005); (vii) delta characteristics, such as elevation change (Jone      et al., 2003b; Li et al., 

2004); (viii) general environment dynamics (Harji et al., 2008; Hu et al., 2009); (ix) climatic

record investigations of the late Quaternary (Hudson, 1991; Troedsoet al., 2004; Zhou et al., 

2005); (x) sea level change responses (Fairbanks, 1989; Sloss et al., 2007; Gabler et al., 2017); 

and (xi) annual sediment delivery to the oceans, which is estimated between 15 to 16  × 19 

tons under current climatic conditions (Singet al., 2007). 

The form of estuaries is largely governed by the movement of sediments into and out of the 

accommodation space defined    by the estuary (Roy et al., 2001; Sloss et al., 2006a, 2006b). 

Figure 1.1 shows the general morphology and stratigraphy of estuarine dynamics and a    

sequence of development stages during which the estuary is filled with sediment derived from 

the catchment and/or the continental shelf. The a   ccumulated sediment  offers new shallow 

water space and gradually converts the lagoonal basin to a swamp, allowing the development 

of intertidal/coastal wetland vegetation canopiessaltmarsh species and mangroves and thus 

building its ecosystem habitats (Kelleway et al., 2017). At a more mature stage, the estuary 

starts to build seawards over transgressive sediment accumulations (Fig.1.1c), confirming the 

process of estuary filling as a geologically-inherited river characteristic that  combines with 

stabilisatio of ecosystem habitats.  
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Figure 1-1. The ideal four estuarine infilling stages Illustrate the morphodynamic changes to shorelines and 

vegetation development on a standard barrier estuary: (a) youthful stage, (b) intermediate stage, (c) semi-mature 
estuary, and (d) mature stage, of the estuarine developments (after Roy et al., 2001; Sloss et al., 2006a).  

 
Estuarine morphodynamics have been recognised through chronological changes of shoreline 

positions and elevations, and have been used in coastal evaluation studies (Fir et al., 1996; 

Hopley, 2013; Oliver et al., 2017). Historically, estuarine development was first reconstructed 

morphologically, chronologically and stratigraphically based on drilling and radiocarbon datin

of many Holocene estuaries both locally (Nott and Price, 1   991;  Umitsuet al., 2001; Hopley, 

2004; Hopley & Jones, 2006; Carlson et al., 2008; Oliver et al., 2017b), regionally (Al-Nasrawi et 

al., 2016b; Al-Nasrawi et al., 2017b) and globally (Rohling and Palike, 2005; Zhou et al., 2005). 

These studies established a long-term assessment of permanent sediment accumulationover 

the Holocene period and demonstrated the complexity of coastal evolution, which also 

involves the deposition of lag  oonal or estuarine mud prior to the integrated geomorphic       

growth of the estuarine delta. 
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Short-term assessment commonly incorporates a coastal compartment, including coastal 

sensitivity to dynamic coastal (    Håkanson et al., 2004), and estuarine dynamic approach to 

understand estuarine morphological growth (Wright, 1970; Ball, 1994; Malczewski, 2004). 

Where a surplus of sand is supplied to a compartment or ‘store’, it results in geomorphic 

progradation of the coastal sets causing a dynamic shoreline position over  a short timescal

which fundamentally needs to be addressed (Davies, 1974; Malczewski, 2004). This approach 

guides many examples worldwide using modern remote sensing and GIS assessment (Chen & 

Gong, 1998; Rogers et al., 2017). Several datasets/tools have been utlised in this field including 

shoreline detection and digital shoreline analysis systems       (DSAS) to tra  ck the estuarine 

morphodynamics (Thieler et al., 2009). More recently, an increasing focus has been on 

vegetation assessment of the associated estuarine wetlands as they play important roles in the

estuary development stages (Mitsch & Gosselink, 1993; Cronk & Fennessy, 2001; Gedan et al., 

2011) and on assessing the effects of global warming (Wall, 1998; Nicholls, 2004; Day et al., 

2008). One of the most successful vegetation a ssessment t ools is the normalised difference   

vegetation index (N  DVI) that is used to identify the       egetation dynamics over time Weier & 

Herring, 2000; Pettorelliet al., 2005; Tian et al., 2015). 

In southeastern Australia, stratigraphic reconstruction from radiocarbon and amino aci     

racemisation dating of progra ded estuaries deposits has been used i     numerous sites and a 

cohesive picture of late Holocene sea levels and depositional history was established (Thom,

1967; Thom et al., 1981; Roy & Cowell, 1994; Kench, 1999; Skilbeck et al., 2017). Such work has 

been fundamental in understanding the historic sediment accumulation with sea level  

interactions on the southeastern Australian coastline where estuarine growth has proceeded at

various rates following Holocene sea level rise to be almost equivalent to the contemporary 

level (Carlson et al., 2008). These compartment-scale investigations of estuarine dynami  

deposits in southeastern Australia have resulted in the modelling of long-term sea level 

impacts on this coastline and its associated low-lying landforms/ecosystems (Woodroffe, 1990; 

Siddall et al., 2003; Deconto & Pollard, 2016).  

Short-term impact evaluations have used other models of coastal change to understand coastal

behaviour on the decadal to interdecadal time scale relevant to coastal managers (Cowellet al. 

1999; Li &d Heap, 2008; Deng et al. 2014; Hamylton et al., 2016; Hamylton, 2017; Kassakian et 

al., 2017; Kelleway et al., 2017; Oliver et al., 2017a; Rogers et al., 2017). Such models attempt

to quantify the critical factors for estuarine d      evelopment such as the dynamics of shorelin     

positions, sea level, sediment su    pply and a  ccommodation space, as well as their associate    

vegetation canopies/wetlands 

Another approach to understanding estuarine deposition and prograded landform  
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development considers sediment supply interactions between  he estuary and its catchment 

(Wright, 1970; Davies, 1974; Koltun et al., 1997; Borrell, 2013; Kamwi et al., 2017). Such an 

approach involves the quantification of sediment budgets and catchment land cover dynamic

for various components of the estuarine system in an attempt to understand how interaction

of these components may control estuarine morphodynamics (Anthony 1995; Garrido et al., 

2013; Carvalho & Woodroffe, 2014). 

With the development of remote sensing techniques, including satellite and airborne imagery 

and light detection and ranging (LiDAR) datasets, estuarine morphodynamics and coastal       

wetlands around the world have been subject to spati-temporal evaluations uing geographic 

information system (GIS) investigations (Pijanowset al., 2002; Beluru & Hegde, 2016). These 

remote sensing investigations have been supplemented by fieldwork and laboratory  analysis

sediment sampling, water quality analysis, bathymetric and land surface surveys to determine 

the causes of changes to estuarine conditions (Murrayet al., 2005; Dittmer, 2010;OEH, 2013; 

Al-Nasrawi et al., 2017a). The use of new technologies offers the potential to reinvigorate the

study of estuaries and their associated vegetation cover/coastal wetlands, and provides further

opportunities to continue to unravel the trends of such unique coastal morphodynamic a            

environmental records (Priestas & Fagherazzi, 2010; Tamura, 2012; Kench et al., 2014; Oliver et 

al., 2017a). 

1.1.1.1 Estuarine ecosystems 

Estuarine platforms are ecologica  lly very d  iverse,  but therefore also very vulnerable to    

anthropogenic changes (Hopley, 2013) and climate change/tidal dynamism   Van Den Bergh, 

2004; Day et al., 2008; Rogers et al., 2017). This indicates that coastal eco-geomorphic stability 

is a transitional status that will evolve in response to alteration threats (Dall'osset al., 2014). 

Changes may be neither restorable nor stabilisable in the long term to act as a permanent 

geomorphic platform suitable for wetland habitation (Zedle& Kercher, 2005). 

A wetland ecosystem is an ecological area whose soil is dominated by anoxic conditions caused

by water replacing air in the soil. Associated plants are usually physiologically adapted to an 

excess of water and anaerobic conditions in the soil (Haslam, 200; Keddy, 2010). Wetlands are 

considered important natural resources that define biological diversity in a typical functioning

ecosystem. Mitsch & Gosselink (1993) refer to them as “kidneys of the landscape” because of 

their systematic role in the natural      urification of the hydrological cycle and their natural      

pollutant removal mechanisms, as well as attenuating wave rolesThe USEPA (2001) identified

that “Wetlands occupy are the transitionalsector between the permanently weted area and 

generally dried condition, and between anthropogenic and biodiversity environments” 
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(Shepard, 2011). 

The functional goods and services provided by wetland ecosystems are important and valued

as precious in economic terms (Van Den Bergh, 2004; Fischlin et al., 2007; Pendleton, 2010). 

Regionally and globally, estuarine ecosystems have high estimated economic values (in  

US$/year) per hectare as follows: “lakes/rivers 8,498, mangrove/saltmarsh 9,990, coastal sea 

grass/algae beds = 19,004, swamps/floodplains = 19,580, estuaries = 22,832” (Batzer & Sharitz, 

2014). Hence protecting wetland systems is very important both ecologically and economically 

They contain a diversity of both aquatic and te  rrestrial flora and fauna and form the most     

productive and d  iverse  biological system  on Earth (Zedler & Kercher, 2005; Fischlin et al., 

2007). Wetlands fulfil an important role in maintaining the hydrological stability of a region 

(Bullock & Acreman, 2003) by acting like sponges, storing rainfa    ll, reducing the volume and   

speed of runoff, slowly releasing water through drier periods (Bullock & Acreman, 2003), and 

acting as ‘sinks’ for nutrients and pollutants, and they are also valued for recreational activit

(Zedler & Kercher, 2005; Davenport & Davenport, 2006). In addition, they are s   gnificantly 

important for flood protection (Costanza et al., 2008), erosion control (Carter, 1999), wildlife 

food and habitat (U.S. Fish and Wild Life Service, 2014), water quality (Carter, 1999) and carbon 

sequestration (Twilleyet al., 1992). Moreover, many commercial fishing operations arefound 

within coastal zones (Meynecke et al., 2008). Wetlands could also be used to investigate

evidence of past human settlement, and their activitieHopley, 2004; Lee et al., 2006; Hopley 

& Jones, 2006). Wetland vegetation can modify shorelines bioticand abiotic accumulatio) in 

ways that increase shoreline integrity and thus provide a lasting coastal adaptation measur 

that can protect shorelines against sudden sea level rise and more frequent storm inundatio 

(Fischlin et al., 2007). This represents a shoreline protection paradigm for coastal wetlands that

should be monitored and conserved (Gedan et al., 2011). 

Although there are several ways to classify wetlands, the Ramsar classification proposed   by

UNESCO (1971) is the most accurate and exhaustive one that has     been adopted worldwide,

including Australia (Matthews, 1993). It subd  ivides wetlands into coastal, inland and artificia 

wetlands (Matthews, 1 993; Department of Sustainability and Environment, 2  007). oreover, 

five main types of wetlands can be found in each of these three major classes which are 

swamps, bogs, fens, marshes and mangroves (Haslam, 2004; Keddy, 2010). Coastal wetlands 

are among the most sensitive and productive natural ecosystem(Bullock & Acreman, 2003; Al-

Nasrawi et al., 2016b). They have a longer succession of sequential ec -geomorphological 

stages and could continue forever, compared with inland and artificial wetlands which can b

more rapidly filled (Murray et al., 2013; Phillips, 2017). Coastal wetland ecosystems are found 
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within an elevation gradient that ranges   between su-tidal depths, where light penetrates to

support photosynthesis of benthic plants, and the shoreline where the sea passes its hydrologic 

influence to groundwater and atmospheric processes, and they occur in estuaries and deltas, 

which indicate that they have a high morphodynamic signature (Thom, 1967; Thom et al., 

1975; Perillo et al., 2009; Ganju & Schoellhamer, 2010; Skilbeck et al., 2017; Al-Nasrawi et al., 

2018a, b). 

Changes to the Earth’s surface in coastal areas and estuarine wetlands may lead to complicated 

outcomes (Al-Nasrawi et al., 2017a; Al-Nasrawi et al., 2018c) for the biota that are not intuitive

due to biological interactions  (Day et al., 2008). Feedbacks between the biotic and abioti 

components of ecosystems will affect the response of coastal wetland systems to climate 

change, which is the essence of eco-geomorphic sustainability that should be considered 

(USEPA, 2001). 

Approximately one-third to half of the major coastal environments on Earth have been 

degraded, including eastern Australian estuarine/coastal wetlands, during the past decades 

(Valiela & Fox, 2008; Saintilan& Williams, 2010; BOM, 2017b). Threats are at mult-levels and 

aspects, with most of them being shown in Figures 1.2a and b. 

 

Figure 1-2. Coastal eco-geomorphic change interactions, showing: (a) Coastal wetland eco-geomorphology: a global 
climate change and bio-complexity relationship, (b) Estuarine geomorphology: impacts of processes controlled by 

global climate (directly/indirectly). Source: after Day et al., 2008. 
 

There are four changes to eco-geomorphic reactions of coastal and estuarine wetlands due to 

climate related factors such as elevation, boundary or edge distribution, canopy extent (such 

as shorelines and vegetation cover), and the composition of soil or sediment (Roper et al., 

2011; Skilbeck et al., 2017). Increasing sea level, floods, sediment delivery, and changes to the 

input of fresh water can dominate coastal and estuarine wetlands (Christiansen et al., 2000; 

Kelleway et al., 2017). 

Globally, it has been predicted that the world will lose 6-22 % of its estuarine and coastal 
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wetland areas by 2080 under different natural impact scenarios resulting from global warming 

(Nicholls et al., 1999; Nicholls, 2004). However, direct and indirect anthropogenic 

modifications will probably have more impact than the magnitude surge of sea level  on the 

future of estuaries and their associated wetlands during the current century (Nicholls et al., 

1999). Losses of 36-70% by 2080 are expected by scenarios of combined natural and human 

effects, suggesting that most estuarine habitats/wetlands are likely to have higher levels of 

degradation than other parts of the coastline and that estuarine/coastal wetlands will present 

clear monitoring challenges to the coastal managers to achieve their sustainable conservation 

targets (Michener et al., 1997; Wall, 1998; Nicholls et al., 1999; Morris et al., 2002; Nicholls, 

2004). Within Australia, more than 1000 estuaries are distributed along 34000 kilometres of 

coastline, with about 50% of the population and their infrastructure concentrated within 7 

kilometres of the coast (Geoscience Australia, 2017). This has resulted in increasing pressure 

levels on the coastal environments, particularly estuarine bodies, in response to global climate 

change. Along the southeastern coastline of New South Wales, some of the best 

representative examples of such stressed estuaries have been found and contain the most eco-

geomorphically sensitive and responsive estuarine/coastal wetland systems that need to be 

investigated (Blay, 1944; Wright, 1970; Yassini & Jones, 1995; Kench, 1999; Sloss et al., 2004, 

2006a, 2006b, 2010; Hopley, 2013; OEH, 2013). 

1.2 Gaps in the current knowledge of estuaries and coastal 
wetlands 

Potential impacts of climatic and rising sea level factors on estuarine and a        ssociated coasta  

wetland sensitivity are not yet understood well enough to provide appropriate remediation. 

Therefore, more research is needed on the dynamics of geomorphic and vegetation 

interactions (the eco-geomorphic trends) and on global warming impacts on such dynamic 

intertidal sedimentary landforms. In this regard, and because comprehensive research is rare 

on estuaries in the region, temperate southeastern NSW is a great setting to investigate effects 

on eco-geomorphic facies in estuaries and associated wetlands (Roper et al., 2011). 

Furthermore, short-term potential consequences of climate change (including the rise in sea-

level and temperature and the concurrent precipitation decline) on the catchment area 

require more research using spatial analysis approaches at both local and national levels. This 

research could provide important details for the potential influences, strategies of adaptation 

and extenuation, which can be considered and adopted by the relevant conservation agencies 

in terms of planning and managements to curb the devastating climate change influences. 
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The causes of environmental change in estuarine systems have been strongly debated for 

many years, with sometimes opposing opinions as to whether they result from inherited or 

contemporary stressors (Meng & Liu, 2010; Rose et al., 2012). For a long time researchers have 

considered that the main determining factor is erosion combined with rising sea level (Vail et 

al., 1977; Woodroffe, 1990; Nicholls et al., 1999; Morris et al., 2002), yet anthropogenic 

impacts have also been suggested (Kingsford, 1990; Vörösmarty et al., 2010; Venter et al., 

2016). Coastal residents and tourists congregate within coastal zones for a range of recreation 

reasons and the existence of significant levels of alteration and stress involved within such low-

lying zones has been recognised (Edington & Edington, 1986; Crosset et al., 2004). Unstable 

geomorphic patterns around sandspits, saltmarshes, mangroves and associated unvegetated 

intertidal areas are facing a strong pressure from sediment supply sources and intensive use 

activities worldwide (Thom, 1967; Thom et al., 1975; Hosier & Cleary, 1977; Short & Hesp, 

1982; Rose et al., 2012; Phillips, 2017). 

Most estuarine studies indicate that the 21st Century will see high sea level rise stresses on 

such communities (Nicholls, 2004; Mcivor et al., 2013; IPCC, 2014; Phillips, 2017). However, 

anthropogenic modification of catchments could have a higher impact on estuaries, as it will 

be the main control on the sedimentary process (amount and characteristics of the sediment) 

that in turn control the shorelines and their relevant elevation dynamics, as well as their 

associated habitats. In fact, the sedimentary process can benefit from sea level rise by having 

wider and longer shorelines with low-lying shallow platforms providing stable accommodation 

space (Vail et al., 1977; Walters et al., 2014; Woodroffe et al., 2016). Sediment accumulation 

will provide a more habitable area for vegetation to become established. Thus the estuary may 

develop/grow, keep-pace with, or erode/drown depending on the balance between the 

sediment supply and sea level rise factors (Woodroffe et al., 2016). 

1.3 The research problem 
Preservation and sustainability of estuaries and their coastal wetlands has become the main 

focus of numerous coastal ecosystem management strategies (Aarts & Nienhuis, 1999; Day et 

al., 2008) on: (i) local (Oliver et al., 2012), (ii) regional (Kench, 1999; Department of 

Environment, 2010; Zuo et al., 2013) and (iii) global scales (Morris et al., 2002; Kirkpatrick, 

2012; Gabler et al., 2017; Phillips, 2017), regarding their particular functional ecosystem 

characteristics (Costanza et al., 2008). However, estuaries are situated in sensitive areas where 

climate change, oceanic and anthropogenic stressors are combined (Ehrenfeld, 2000; Morris et 

al., 2002; Lee et al., 2006). Therefore, it is vital to get thorough knowledge about the 
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environmental reactions of estuaries to climatic and anthropogenic influences during the 

recent and past centuries, with a consideration of the geoinformatic dataset limits, that would 

allow a better more efficient future understanding and management of such areas. 

1.4 Research scope, aims and objective 
This thesis is designed to test the susceptibility and adaptability of estuaries to increased 

anthropogenic modification levels, including the impact of sediment load (its character and 

amount) from the catchment and the environmental stresses (change in climate and sea level 

surge). Such changes affect the geomorphic facies distribution, shoreline positions and 

associated wetlands in estuarine environments. The goals of this thesis are to evaluate the 

impact of the anthropogenic and environmental pressures on the intertidal sedimentary 

platforms and their associated vegetation canopies, particularly coastal wetlands (Figure 1.3). 

 
Figure 1-3. Aims and objectives using a geoinformatics and coastal sustainability approach. 

The aims include:  

• determining the spatial ecological and geomorphological (eco-geomorphic) changes in 

estuarine systems within the past few decades, to provide an overview of morphodynamic 

coastal and estuarine platforms and wetlands on the southeastern Australian coast (Fig. 1.4); 

• investigating the direct and indirect interactions between the environmental trends on the 

catchment runoff and sedimentation factors and the anthropogenic modifications; 

• determining some implications of the ecological and geomorphic trends for the future 

estuarine-ecosystem health, including vegetation and geomorphic dynamic assessments; and 

• indicating the possibility of applying these findings to coastal/estuarine wetlands, including 

deltaic systems, around the world. To find and suggest some solutions for management, 
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mitigation and adaptation strategies, which can be used to minimise the influence of global 

warming and the anthropogenic modification on sensitive intertidal platforms and wetlands. 

These aims are achieved through the following objectives: 

• monitoring, mapping, measuring, and comparing changes of estuarine shoreline and 

vegetation extent and trends from  past and present information using RS and GIS analysis 

approaches, with a focus on three riverine estuaries that illustrate such responses – the 

Towamba estuary, Wandandian delta, and Comerong Island (southeastern NSW, Australia; 

see Figure 1.4); 

• modelling and investigating current anthropogenic and environmental influences on the 

study sites and their relevant catchments to detect and observe the reasons for any trends 

and changes. This included field sampling and laboratory analysis of sediment characteristics 

and sedimentation rates, as well as catchment and estuarine land-cover analysis; 

• building a model for future responses and changes by detecting inundated areas using DEMs 

in ArcGIS. This links the response of estuarine morphodynamics (using LiDAR datasets) to 

global warming and its consequence of rising sea level that is stated in the Intergovernmental 

Panel on Climate Change (IPCC)/Fifth Assessment Report (AR5); 

• evaluating the temporal relationship between the coastal wetland vegetation canopies and 

climatic, sea level and geomorphic factors, using the NDVI index in ERDAS IMAGINE and 

RStudio; and 

• examining various models in the context of sustaining eco-geomorphic sets, and devising the 

most suitable modelling approach for different estuaries and coastal wetlands by comparing 

the results from the applying the proposed methods to the study sites that represent 

different estuaries/wetland and disturbance regimes. 
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Figure 1-4. (a) Study site locations along the NSW coast in southeastern Australia. From south to 
north they include the (b) Towamba estuarine ecosystem, (c) Wandandian estuarine delta and 

(d) estuarine portions of Comerong Island.  

1.5 Importance and significance of the proposed research 
This research provides the potential for estuarine and coastal managers to isolate the risks of 

individual stressors on estuaries and their ecosystems, particularly coastal wetlands, to make 

more informed conservation and restoration decisions (Miller et al., 2016). Three key 

measurable and observable parameters (variables) are defined in this research: sedimentation 

rates combined with climatic factors and rising sea interactions; consequent estuarine 

shoreline changes; and land cover and vegetation canopy dynamics. This study establishes a 

continuous potential for remote sensing and GIS assessment of multi-temporal eco-

geomorphic changes to assess alteration threats that are associated with increasing 

(a) 

(b) (c) 

(d) 
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anthropogenic modifications and global warming. It will benefit future studies by investigating 

the impacts of interaction between eco-geomorphic dynamics and particular communities, 

such as species of vegetation and/or birds. 

The relevance of this work to environmental management is that it shows the sensitivity of an 

estuary to shoreline shrinking or expansion, which would result in significant changes to the 

estuarine ecosystem platforms as a function of sediment movement from the catchment and 

its accumulation/erosion downstream. 

1.6 Methods 
This research evaluates the potential eco-geomorphological degradation of three 

representative estuarine platforms. Analysis of estuarine eco-geomorphology is complex since 

individual stressors can interact to cause significant alterations to various aspects of the eco-

geomorphic system. This thesis focuses on the short term assessment of changes to estuarine 

environments that cannot be obtained by more traditional methods like radiocarbon dating or 

stratigraphic studies. Thus, a GIS and RS modelling approach is the most appropriate method 

to monitor such short-term changes in estuarine morphodynamics. 

This thesis focuses on the dynamics of shoreline position, land cover, vegetation changes and 

sedimentation rates on three intertidal sedimentary estuarine platforms, which gives a 

historical coastal perspective that can be used to predict future response to anthropogenic and 

natural stressors on the southeastern Australian coast. 

Utilising remote sensing datasets, including satellite imagery, aerial photography, airborne 

LiDAR and GIS analysis, the characteristics of estuarine shoreline, vegetation dynamics, and the 

associated catchment modification levels are combined with fieldwork sampling/surveys and 

laboratory analysis to determine the most important parameters for this research assessment. 

Morphology, land cover analysis and sedimentology are formative process indicators, the 

estuarine shoreline position is a morphodynamic indicator, whereas, ecologically, the 

vegetation canopy dynamics acts as an ecosystem indicator. 

The thesis establishes a spatio-temporal intertidal landform dynamic evaluation, utilising a 

morphodynamic assessment guided by fieldwork-sampling and the geoinformatic analytic 

tools, to investigate the dynamism of estuaries eco-geomorphically (e.g. vegetation canopy 

dynamic and rates of shoreline accretion-erosion. 

To obtain the best accuracy, the GIS modelling approach uses the Geocentric Datum of 

Australia (GDA94-MGA/Zone 55 and 56; for the local latitude and longitude (x and y) 

distributions), which is the latest coordinate system adopted in Australia, and it is part of the 
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global coordinate reference frame that utilising the  

according to the ellipsoid-GRS80 and the 1994-Australian Map Grid. At the same time, the 

vertical (z) and elevational control on the mapping processes depends on the assigned value 

(0.000 m) of the Australian Height Datum (AHD) for the mean sea level. AHD was adopted by 

the National Mapping Council in 1971 when it was termed the Australian Height Datum. 

Project targets are achieved on several levels. Much of the work is based on the RS and GIS 

analysis, in identifying and classifying the vegetation canopy and shoreline dynamics, at the 

study sites according to existing and inherited imagery and LiDAR datasets. The vegetation 

edge-line on the seaward side of an estuary is a common proxy used to assess the dynamics of 

shoreline position, but using the high water level line on the beach is also a safe approach and 

more accurate for coastal evaluation (Adnan et al., 2016; Hamylton, 2016, 2017; Kelleway et 

al., 2017; Rogers et al., 2017). This identifies deposits within the embayments that can be 

related to human modification of the catchment. For instance, RS data classification for the 

land-cover of the catchments presents the proportion of human activities that control the 

natural processes in this area and have affected many aspects of recent wetlands such as 

sediment deposition/erosion. This is combined with field sampling of soil and sediment to 

assess the architecture of sedimentary deposits along the shorelines, and to identify which 

factors (e.g. sea level rise or anthropogenic modifications) have had the greatest effect on 

sediment availability. The resulting data pool is statistically checked using SPSS and correlation 

coefficients to determine the relationships between the study sites and their parameters, and 

between each pair of parameters. 

Soil and sediment samples were collected for laboratory analysis at the University of 

Wollongong. Samples from study sites were collected from 50 mm below the surface to 

minimise the short-term changes in clay proportions. Grain size, loss on ignition (LOI) and X-ray 

diffraction (XRD) are then used to identify sediment composition and provenance. This allows 

an assessment to be made about the amount and rates of sedimentation or erosion, 

mineralogy and organic matter. 

This research utilises the Normalized Difference Vegetation Index (NDVI) to investigate 

vegetation canopy changes using ERDAS IMAGINE. NDVI grids were obtained from satellite 

imagery. The derived datasets allow observation of the vegetation dynamic status across study 

sites over the study period. NDVIs reflect the vegetation-live-greenness amount which is, for 

example, expressed by declining NDVI trends due to stressor scenarios such as water shortage, 

and plant disease or death (Weier & Herring, 2000; BOM, 2017b). Moreover, this research uses 

ArcGIS mapping methods for classification and shorelines digitising to ensure the results are 

precise. Image classifications are applied, using ERDAS IMAGINE, to validate and monitor the 
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changes of shoreline positions at the study sites. Both supervised and unsupervised 

classifications are used to identify the best method for the study sites to obtain accurate 

results of landcover dynamics (Hegarat-Mascle et al., 1997; Hamylton, 2016, 2017). 

Historical and current satellite imagery (1973-2016) and aerial photos (1949-2014) provide 

evidence of changing wetlands. Using GIS analytic software (ArcGIS) on the images then allows 

the prediction of modification trends to estuaries/wetlands. The results are evaluated and 

compared to establish a classification based on land-use by applying digital super-classification 

and visual classification. Then, combinations of the two classification methods can determine 

the changes, and categorize the risk level. All the changes that have been determined within 

the last 68 years are then considered and checked in combination with field observations, 

sampling, and GPS-surface and bathymetric surveys (Al-Nasrawi et al., 2018a, 2018c). 

Solutions for each category are proposed and comparisons between them are made to identify 

changes. Furthermore, the future shoreline distributions of global warming-affected wetlands 

are examined using Arc Scene software to model the distribution of geomorphological and 

vegetation scenarios of the estuarine eco-geomorphic units. 

1.7 Thesis structure 
This thesis is based on six publications investigating the shoreline, land cover and resulting 

sedimentation characteristics of three intertidal estuarine platforms and their associated eco-

geomorphic sets on the southeastern Australian coast using a combination of GIS analysis and 

remote sensing, as geoinformatic tools along with fieldwork/surveys. 

Chapter 1 provides a general introduction and background on short-term estuarine 

morphodynamics and the associated wetland ecosystems. 

Chapters 2, 4, and 5 apply a comprehensive modelling approach on three different intertidal 

landforms, each with different catchment sizes, extents of catchment modification, 

geomorphic settings (broad versus confined valleys), and tidal influences, to evaluate and 

compare the controlling eco-geomorphic dynamics and predict the likely consequences of 

environmental changes in the 21st Century, by focusing on the shorelines and land cover 

dynamics. 

Chapter 2 applies the modelling approach to the estuarine Comerong Island (southeastern 

NSW, Australia) at the Shoalhaven River mouth. This estuary depends on the sixth largest 

catchment in NSW with high anthropogenic modification levels and provides an example (as a 

case study) to determine the essential of modelling adjustments to environmental 

abilities/efforts. 
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Chapter 3 illustrates that changes observed on Comerong Island are mainly due to 

sedimentation readjustments caused by damming the Shoalhaven River. This detailed 

investigation proposes sustainable solutions for some of the resulting sedimentation changes 

(as a geomorphic problem) on Comerong Island that results from the increased anthropogenic 

modification of the catchment. This is in addition to increasing human activities that limit the 

amount and character of the sediment supply from the Shoalhaven catchment. At the same 

time, declining precipitation caused by global warming affects runoff amounts and transport 

capacities of the rivers which, in turn, reduce sediment transport downstream. Thus, limited 

sediment is available to build or maintain the estuarine platforms and develop and stabilise the 

vegetated ecosystems to benefit the whole estuarine environment. 

Chapter 4 applies the same modelling approach as Chapter 2 to present the historical and 

current situation of eco-geomorphological dynamics on the sensitive estuarine section of the 

Wandandian Creek delta (30 km south of Comerong Island), which has a very small 

intermediately modified catchment and discharges into a large lagoon with limited tidal 

activity. 

Chapter 5 continues to use the same modelling methodology to investigate Towamba estuary 

further south on the NSW coast with a mostly unmodified and high-sloped catchment. 

Chapters 2, 4 and 5 conclude that the main factors controlling the eco-geomorphic bodies at 

these three study sites are the sedimentary character and the consequential dynamics of 

growth rates. This is confirmed in chapter 6. 

Chapter 6 compares vegetation changes (as an ecosystem indicator) over time to climatic and 

geomorphic factors. This results in a significant dependency of vegetation changes on 

sedimentation rates rather than on climatic factors or sea level rise. Chapter 6 captures the 

overall trends of the vegetation canopy dynamics based on a new assessment method using 

NDVI with a focus on the greenness side of the NDVI scale (0.0 to +1.0), and then regressing it 

to the related causative factors. Datasets used include satellite imagery, climatic variables, sea 

level and geomorphic representors from the three study sites, with calculations conducted in 

ERDAS IMAGINE, SPSS, and RStudio. The vegetation extent represents the main ecosystem 

indicator. Analysis of these indicators shows that sediment delivery/deposition is the most 

influential factor controlling intertidal platform dynamics and/or vegetation stability. This 

geomorphological control influences habitable opportunities and allows ecosystem 

developments that reduce the estuary’s vulnerability to erosive action. 

Chapter 7 focuses on geomorphic attributes of the three sedimentary landforms by modelling 

the vulnerability and responses of the study sites to any future environmental stressors 

(mainly surge in sea level) based on the historical/existing situations, by utilising LiDAR-DEMs, 
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and based on the estimated scenarios of sea levels by the Fifth Assessment Report (AR5) of the 

Intergovernmental Panel on Climate Change (IPCC). 

Chapter 8 draws the main conclusions from this research (Figure 1.5). 

 

 
Figure 1-5. Thesis methodology and linked strictures. 
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2 Chapter II: Vulnerability of coastal wetland 
ecosystems to environmental changes on 
Comerong Island  

2.1 Abstract 
Sustainably managing coastal zones is increasingly complicated. Most human populations live 

along the coast, where their activities, together with a range of environmental changes, alter 

the natural ecosystem processes and caused changes in coastal wetlands. To ensure 

sustainable use of coastal resources, a comprehensive set of modelling tools can help 

managers to make decisions. This study uses Comerong Island (southeastern NSW, Australia) 

as a case study to demonstrate the importance of modelling modifications to environmental 

change. Several data-based modelling approaches are employed to explore how human 

activities have altered this estuarine island setting over the last 60 years (1949–2014). Multi-

temporal changes in land cover, shorelines and sediment delivery are estimated from remote 

sensing data, GIS analysis, and laboratory tests on water and sediment samples (grain size, X-

ray diffraction and loss on ignition and water analysis). Results show there are significant 

changes to the areal extents and elevation of mangroves, saltmarshes and shorelines on 

Comerong Island over the period of analysis, including northern accretion (0.4 km2), eastern, 

middle and southern erosion (0.7 km2) of the island. By implementing modelling using GIS 

tools, water and sediment samples to monitor ecosystem processes, such as sediment 

transport and erosion/deposition, resource managers will be able to make informed decisions 

by evaluating the potential consequences of the existing situation. 

ADDITIONAL INDEX WORDS: eco-geomorphology, sediment transport, erosion, human 

modifications.   

2.2 Introduction 
Coastal wetlands are among the most productive, sensitive and responsive ecosystems in the 

world. However, they are affected by climate change and human influences (DSE, 2007). 

Particularly within New South Wales (NSW), coasts and their hinterlands have been 

substantially modified since European settlement. Thus, human and natural dangers that affect 

coastal wetlands need to be monitored, to catch the direct threats of loss to the wetlands itself 

or to observe indirect loss to its catchment. 

Early civilisations inhabited coastal areas (e.g. Mesopotamia; Postgate, 1992) and nowadays 

70% of the human population and 86% of Australians live along the coasts for ecological and 
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economic reasons (Cherfas, 1990; Neumann et al., 2015). Human-induced stressors have 

increased since last century and caused loss of coastal ecosystems, particularly within coastal 

wetlands (DSE, 2007). Wetland studies across the globe have indicated the negative effects of 

human activities on wetlands (Ehrenfeld, 2000). 

In addition, modifying the catchment and its water usage has caused many problems. For 

example, 60% of fresh water has been diverted from coastal NSW, Australia, since the start of 

European settlement (Saintilan & Imgraben, 2012). Kingsford (1990) revealed that direct and 

indirect human influences could change estuarine habitats, which can then affect the 

conservation of shorebirds. 

2.2.1 Background 

The NSW coastal areas are a great natural asset, making an enormous contribution to the 

economy. Although Australian governments apply conservation rules strictly, many studies 

estimate than human activities have caused significant indirect destruction to Australian 

wetlands. Thus, examining the existing situation and modelling the current modifications to 

natural processes is important for any applicable study site. Comerong Island (Fig. 2.1) 

represents an ideal example of disturbed regimes. 

The island is a nature reserve situated about 170 km south of Sydney and 11 km east of Nowra, 

between the current southern Shoalhaven River mouth (at Greenwell Point and Orient Point) 

and the northern river mouth (the old entrance; see Fig. 2.1). The nature reserve comprises 

many coastal platforms including the island and the dune barrier sands, and has stabilised to 

flourish coastal wetland habitats, including mangroves, salt marshes and Casuarina (Fig. 2.2). 

 
Figure 2-1. Location of the Comerong Island (study site), southeast NSW, Australia. 
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Comerong Island is part of an infilled coastal deltaic estuary and is mostly made of sediments 

derived from the Shoalhaven River catchment associated with its ocean sandy barrier built up 

from marine sand during the Holocene transgression (Woodroffe et al., 2000; Wright, 1970). 

The Shoalhaven River has a 7177 km2 of catchment area, which is the sixth largest catchment 

in NSW (OWA, 2010). This large catchment provides abundant sediment during high flood 

flows which move down to the delta and have infilled the estuary during the last 7000 yrs 

(Umitsu et al., 2001; Woodroffe et al., 2000). In 1822, Alexander Berry built a canal that linked 

the Shoalhaven and Crookhaven Rivers (Fig. 2.1) as an alternative entrance since the 

Shoalhaven Heads. This entrance had become shallow causing higher water levels that 

threatened the estuary and all associated human settlements (Thompson, 2012). The area 

encompassed by the two rivers and the canal became Comerong Island (Umitsu et al., 2001). 

After the construction of the Berry Canal both the Shoalhaven and Crookhaven (5 km south) 

entrances act as discharge points to the sea. Berry Canal was originally only 190 m long and 

5.5 m wide, but erosion pressure on the banks and bed of the canal has increased its width to 

250 m (Thompson, 2012; Umitsu et al., 2001). 

The study site on Comerong Island has been heavily modified since European settlement and 

these changes have caused a series of sediment availability and transport problems and 

negatively affected natural processes. Water flow and sediment transport were further 

modified after the Tallowa Dam was constructed in 1976, shown in Figure 2.2 (SCA, 2015). The 

dam has blocked most of the water and its sediment derived from the upper catchment 

making it effectively inactive (Fig. 2.2). Moreover, 35% of the catchment has been used for 

farming and a further 11% for forestry (OWA, 2010; Fig. 2.2). 

Human activities are placing unprecedented pressure on these coastal resources. Studies 

conducted on the effects of human activities on wetlands indicate the many different 

requirements to use wetlands for multiple objectives, such as human development, recreation, 

tourism, agriculture and conservation (Shahbaz et al., 2009). The Shoalhaven River floodplain, 

which covers approximately 5% of the catchment, has a reputable history of being one of the 

richest dairy areas in NSW (NPWS, 1998). Other significant industries include commercial 

fishing, oyster growing and vegetable farming (Shahbaz et al., 2009). Additionally, the tourism 

industry is one of the main human activities, with recreational fishing, surfing and boating 

(NPWS, 1998). The floodplain is also experiencing considerable urban and industrial growth, 

particularly in and around Comerong Island (OWA, 2010). This has resulted in increasing the 

erosion rates in the estuarine area. This is particularly apparent at Comerong Island where 

strong tidal movements combine with the Shoalhaven River flow and heavy boating and fishing 

activities (Fig. 2.3). 
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Figure 2-2. Shoalhaven Catchment showing; land use classes and Tallowa Dam that separates the upper and lower 
catchments. 

To protect the marine and coastal ecosystems, this exploratory study has investigated the 

human activity influences on the eco-geomorphic systems of Comerong Island. The study is 

based on a literature review combined with fieldwork-sampling and consequent GIS-based-

modelling that will offer a qualitative outcome, which can be utilised to suggest an adaptable 

and sustainable coastal management solution. 

2.3 Methods 
This research is based on continuous assessments of multi-temporal transformation, elevation 

and shoreline stabilities/dynamics at the landscape levels. The reduced or increased areas of 

wetlands have been assessed by measuring the land cover on aerial photographs and satellite 

images over time. Shoreline evaluation has specified the changes in erosion/accretion rates 
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around Comerong Island. Changes to the mangrove and saltmarsh areas (as a land cover 

function) illustrate the shoreline position and elevation stability in the Comerong coastal 

wetlands. This project entails assessing potential threats, such as shoreline erosion and 

sediment delivery problems. In addition, the effects of artificial modification in the catchment 

are the principle element addressed. 

 
Figure 2-3. Chosen photos of Comerong Island showing clear eroding within shorelines and mangroves at western 

and southern sides. 

 

The project targets were achieved at several levels, starting with GIS and RS-based analysis to 

identify and classify the land cover and shoreline changes at specific study sites depending on 

recent and historical records of aerial photography, satellite and LiDAR data. This was 

combined with sampling the water, soil and sediment. 

The prime goals are to monitor and detect the shoreline dynamics, land cover and elevation 

changes/trends of coastal wetlands to simulate possible modifications for the wetland 

rehabilitation. 

To gain accurate results, the most recent GIS analytic modelling tools (including ArcGIS and 

ERDAS IMAGINE) have been used to simulate, monitor and model the environmental changes 

by utilising the available and reliable remote sensing datasets. High resolution remote sensing 

datasets ranged from historical mapped sheets plus aerial photographic records of the chosen 

site (provided by the UOW, SEES-GIS Unit). Meanwhile, broader satellite imagery have been 

obtained from several sources including LPI (Land and Property Information – NSW), Landsat, 

and LiDAR point cloud dataset (from Shoalhaven City Council). 

To achieve these aims, this study divided the methodology into three parts, as seen in Figure 

2.4. 
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Figure 2-4. Methodology; data collection and analysis sequences. 

2.3.1 Data Collectio 

Various data have been collected to achieve the study aims. Remote sensing and GIS data were 

used to classify land use classes. LiDAR (2004 and 2010) and SRTM (2011) data have been used 

in ArcGIS10.2 to create DEMs. LiDAR and SRTM data sets have also been used to extract 

various DEMs using TIN and surface analytic GIS tools for elevation analysis and validations (Al-

Nasrawi et al., 2018a). 

Field work collected 113 sediment/soil samples from Comerong Island. Grain size analyses, X-

ray diffraction (XRD) and loss on ignition (LOI) tests on these samples yielded the grain size and 

proportions of minerals and organic matter. A Yeo-Kal 615 multi-parameter water quality 
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analyser was used in the field to measure water samples in real time to test it for turbidity, 

salinity, conductivity, pH and dissolved oxygen (DO). 

2.4 Results 
Results showed significant coastal wetland degradation and change, causing wetland loss. The 

geoinformatic analysis of remote sensing datasets using GIS indicates that the island and its 

associated ecosystems have suffered from a huge loss of wetlands (approximately 0.3 km2). 

Additionally, it indicated that some of the saltmarsh areas were converted for agricultural use, 

and the mangrove cover lost ground because of shoreline erosion (Fig. 2.5). This study also 

determined the effects of human modification within the wetland’s catchment and assessed 

the extent of the human activities’ impact during sea-level rise stresses. 

 

Figure 2-5. Multi-temporal imagery (1949–2014) showing significant changes of land cover, shorelines and total 
area. 



Chapter 2                                                                                                                            Comerong Island (Site 1) 
.   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   

26 
 

DEMs have shown significant elevation changes over time on Comerong Island as shown in 

Figure 2.6. So far, the western, mid and southern sides of the island have eroded as mapped in 

red on Figure 2.6a and b. Meanwhile, accretion has expanded the northern region with minor 

erosion in the middle of that area. 

 
Figure 2-6. DEMs analysis showing: (a) elevation distribution on Comerong Island, (b) overtime elevation 

comparison show significant change-loss in red and accretion in green while stable areas are shown in yellow (LPI, 
2004 & 2010).  

Soil and sediment samples have been checked for their grain size using a Mastersizer 2000 

laser diffraction particle size analyzer, which generated results shown in Figure 2.7a-c. 

Most of the island is made of sand, especially along the north, east and south sides, where 

wave energy has built those parts of the island (Fig. 2.7). The silt and clay present along the 

western side of Comerong Island have been derived from the Shoalhaven River catchment. The 

rates of sedimentation and types of sedimentary sequences could then be related to high 

energy events such as the flood history records. 
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Figure 2-7. Soil, sediment samples and grain size analysis from Comerong Island; (a) clay proportion, (b) silt 

proportion and (c) sand proportion. 
 

Twenty-four samples tested with X-ray diffraction (XRD) showed that all samples are 

dominated by quartz, especially along the eastern beach and barrier where wave action has 

eliminated most of the softer minerals and clays (Fig. 2.8). Along the western and southern 

sides of Comerong Island and in the active channel areas, feldspar and lithic sand grains form a 

prominent component representing fluvial sands derived from volcanic, volcaniclastic and 

mudstone rocks in the source area. Clay content in the samples is highest in the low-energy 

environments around the island, but also occurs in the fluvial lithic sands through the 

diagenetic alteration of feldspar and lithic sand grains. 
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Figure 2-8. Mineral content of sediment samples of Comerong Island. 

Utilising a loss on ignition (LOI) test, twenty samples chosen from an east-west cross-section 

were analysed for proportion of organic matter (OM %) in the samples. This has checked how 

much the biotic and abiotic components played roles in changing the elevation. LOI data show 

two main areas with the highest proportion of organic matter; one positioned in the very 

muddy section in the middle of the island represented by mangrove area, and the other 

occurring in the area with the highest density of native plants in the eastern part of the island. 

LOI data was also used to evaluate changes in elevation with respect to the water table, see 

Figure 2.9. 

 
Figure 2-9. Loss on ignition of the analysed sediment samples of Comerong Island. 

 

The average discharge of the Shoalhaven River is below five megalitres per day from 1914-

0
5

10
15
20
25
30
35
40
45
50

West 
Comerong 

East 
Comerong 

samples Code 

pe
rc

en
ta

ge
 b

y 
vo

lu
m

e 

Loss Of Ignition for Horizontal Cross-Section for the island Samples % 



Chapter 2                                                                                                                            Comerong Island (Site 1) 
.   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   

29 
 

2014 with the exception of flood-related events. However, since these gauging stations are 

located in the up-stream/riverine-systems, they do not reflect the situation downstream, thus 

eight samples from below Tallowa Dam have been collected and tested. Water samples from 

the Shoalhaven River show very low amounts of suspended sediment downstream from 

Tallowa Dam (Fig. 2.10).  

 
Figure 2-10. Analyses of water samples show significant spatial changes in pH, salinity, temperature, turbidity, 

dissolved oxygen (DO) and conductivity. 

The water samples show a significant increase in turbidity, conductivity and dissolved oxygen 

downstream from the dam reflecting an increase in suspended sediment and salinity. These 
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results clearly prove there is less sediment delivery and high rates of bank erosion in the 

downstream areas, which leads to increasing turbidity and siltation in the adjacent wetlands. 

2.5 Discussion 
This multi-temporal study of the Comerong Island wetland shows a significant loss of coastal 

wetland in southeastern Australia. The main losses were changes in landcover, shoreline and 

elevation that resulted from the negative effects of human activities on the wetland’s 

catchment. This comprehensive monitoring, plus other studies conducted by multiple 

researchers, has revealed the serious negative anthropogenic influences in and around the 

Comerong Island wetlands. A number of spatial and temporal monitoring solutions should be 

considered for effective coastal wetland management. Significant results include: 

a) Mapping processes for monitoring and modelling aerial photographs and RS data (1949-

2014) of the shorelines show the northern part of the island has expanded by 0.41 km2, 

whereas, the western and southern portions have been eroded by 0.73 km2. This situation has 

resulted from the sediment delivery and erosion/deposition processes, that are mostly 

controlled by human infrastructure up stream such as Tallowa Dam, combined with the ocean 

tidal affected by sea level rise. Together these have caused a reduction in sediment delivery, 

which cannot balance the erosion/deposition caused by natural processes. 

b) Grain size tests show most of the island is composed of sand, with clay in the west and 

uniform silt contents. Comerong Island is therefore made of soft materials, which are more 

easily eroded and lost than in other coastal ecosystems and therefore the Comerong may be 

more sensitive to rising sea level. 

c) XRD test shows the minerals make up the sediment in Comerong Island originate from both 

the catchment and the ocean. Northern accretion on the island has been caused by adding 

ocean sediment via the open mouth of the Shoalhaven River. 

d) LOI shows high plant density in the east and middle parts of the island. The high proportion 

of organic matter included biotic components such as leaf litter, mangrove debris and roots. 

This organic matter plays an important role on elevation changes and surface accretion. 

e) Construction of the Berry Canal appears to have dropped water levels and reduced the 

wetland area, especially saltmarshes, on Comerong Island. 

This modelling framework could be applied to study coastal wetlands all over the world. This 

project proved significant, detailed and accurate results of changing coastal wetlands in an 

eco-geomorphological context for risk assessment, using modern modelling methods. Such 

information will be essential for government agencies to issue and revise their policies. It will 
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also be important for the public and scientists who currently focus their attention on the best 

way to preserve wetland ecosystems to achieve conservation targets. 

2.6 Conclusions 

Both natural and anthropogenic processes control the balance between sediment deposition 

and erosion rates. Historically, the Shoalhaven River has provided high sedimentation rates 

and these high sedimentation rates and lower erosion rates have controlled the natural 

accretion processes around Comerong Island. The aerial photographs and RS analysis (1949, 

1961, 1973 and 1982) have shown that the island has grown constantly. After 1982, however, 

the island has eroded and its size has declined as shown in the aerial photographs and RS data 

(1993, 2002 and 2014). The reason behind this change was the building of Tallowa Dam, which 

blocked most of the sediments collected from the catchment. Thus 80.1% of the catchment 

(5750 km2 of 7177.5 km2) was converted to geomorphologically inactive catchment. That 

caused serious sediment transport and availability problems, which changed the positive 

sedimentation rates to negative values, and favoured erosion. 

After the Tallowa Dam was constructed in 1976, the sediment rates initially remained high and 

the island continued to grow. This was due to the new water level within the Shoalhaven River 

that dropped below the dam (for 58.8 km until it reached Comerong Island) that caused 

erosion of the riverbed and edges providing sediment to the Comerong Island area. However, 

this only occurred for a few years, after which the natural processes failed to erode additional 

sediment resulting in less sediment availability and deposition in the lower reaches. This is 

reflected in higher erosion rates that now control the site. This study has shown that the 

shoreline eroded by 0.73 km2 since 1982 (0.02 km2 annually), while the northern part of the 

island grew significantly (about 20% between 1949 and 2014). This can be related to barrier 

deposition by natural tidal processes that have affected the northern area during periods when 

the river mouth was open. 

To restore the coastal wetland ecosystems fully, its extent needs to be monitored carefully. 

One can choose a natural mechanism that will offer a self-sustaining approach or self-

management. By considering the findings from scientific studies, resource managers can 

implement relevant policies need to repair the damage from human activities in such 

wetlands. 
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3 Chapter III: A developed catchment 
assessment for urban-geomorphic 
sustainability: Tallowa Dam 

 

3.1 Abstract 
Damming rivers causes two main problems affecting a river’s geomorphic ecosystem and its 

water quality. The Tallowa Dam on the Shoalhaven River in southeastern NSW, Australia, 

provides a case study to find the best sustainable solutions to avoid these problems. The 

project uses a civil-infrastructure idea to design a grid of collector pipes from the reservoir 

bottom surface. Spatial data analysis using ArcGIS 10.2 is used to determine the best grid 

location for the pipes in the reservoir. Water and sediment samples have been analysed for 

grain size, heavy metal and organic matter contents. The dam has led to a significant decline in 

sediment transport and water discharge to the lower reaches of the river which has resulted in 

greater erosion of sediment and higher salinity rates within the lower reaches and coastal 

streams. Water quality in the reservoir has been affected by increased sediment accumulation, 

particularly mud, which has increased the amount of heavy metal and nutrient pollution that 

could eventually affect the water users. A proposed solution is to use over-storage water to 

remove accumulated sediment from the base of the dam through a net of collector pipes 

controlled by auto-mechanical gates, instead of flowing over the top of the dam. This would 

maximize the volume of upstream sediment and contained pollutants that can be released 

from the reservoir into the downstream river ecosystems as well as providing better water 

quality and a longer water storage time. 

Keywords: Water quality, geomorphology, pollutants, civil-infrastructure, GIS-detection. 

3.2 Introduction 
As urbanisation of the world is growing, an adequate fresh water supply is required. Damming 

and storing river water during seasonally and annually variable rainfall is one of the solutions 

to meet the demand of the growing population in urban areas. (Saeijs & Van Berkel, 1995; 

Newton et al., 1998; Duda, 2002; Nielsen & Brock, 2009). Dam construction for the regulation 

and impounding of river systems has played an important role in human life by regulating 

floods, generating electricity and providing water for commercial, agriculture and domestic use 

(Michener et al., 1997; Newton et al., 1998; Costanza, 1999; Hughes, 2003; Fensham et al., 

2005; Liu, 2012; IPCC, 2013). 
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At the close of the 20th Century, the application of dams and weirs to control fresh water 

bodies had become so extensive that over 850,000 dams had been set up globally, leading to 

the regulation of over 65% of the global freshwater discharges (Lynch et al., 2011). Apart from 

storing water and altering flow regimes, dams also lead to reduced downstream sedimentation 

and nutrient transportation to coastal regions (Growns et al., 2009; Dao, 2011). The 

acceptance that dams have a multitude of direct and indirect impacts on freshwater systems 

implies that their construction in developed and developing nations has become controversial. 

Sediment transport and damaging water quality are some problems caused by dams (Koltun et 

al., 1997), leading to huge erosion and salinity intrusion rates within downstream and coastal 

reaches. Meanwhile, the quality of the water within the dam is impacted by increasing 

sediment deposition, particularly the accumulation of fine and very fine particles. This has 

increased the amount of chemical pollution, such as heavy metals, which could include  

arsenic, copper, nickel, zinc chromium and lead), nutrients and organic matter, which have 

entered the reservoir from the streams through developed catchment areas. In the long term, 

heavy metals and nutrients can be released from the muddy particles into the water by 

changes in pH and the oxidation-reduction potential (Eh), which may eventually affect the 

water quality (Alyazichi et al., 2015). 

Despite there being several integrative reviews of environmental impacts downstream from 

concrete dams (Magilligan et al., 2003; Braatne et al., 2008) there have been few attempts to 

integrate sediment transportation through dammed reservoir systems. This highlights the 

need to conduct prospective research given that, contrary to the wider understanding of 

ecosystem functions, it is apparent that dammed river systems can still be dynamic. As 

Magilligan et al. (2003) indicated, this presents conceptual problems in understanding the 

impacts of human influences that are overlain on regular spatial and sequential river 

attributes. Again, contrary to the typical perception of primary river process, every dam 

represents a critical perturbation to the extent that investigating the physical and biological 

impacts can offer insights into aquatic and riparian ecosystems (Boyes, 2006). However, the 

process of river damming commonly impacts downstream ecosystems over longer river 

reaches compared to the inundated segments (Braatne et al., 2008; State of the Catchments 

[SOC], 2010; Lynch et al., 2011). Downstream ecological effects mostly follow three 

environmental factors: variations in the volume of downstream water flow; constrained 

passage of unconsolidated sedimentary constituents; sometimes coupled with fragmentation 

of the river corridor (Cukic & Venter, 2012). A dam can also cause interruptions in the 

downstream or upstream passage of biota (Lynch et al., 2011). 
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Damming rivers has proved to be an ideal fresh water management approach to meet the 

needs of humanity (Rood & Mahoney, 1993; Postel et al., 1996; Zhang et al., 1999; Gleick, 

2003) by smoothing out the variable seasonal and annual precipitation and runoff (Rood & 

Mahoney, 1993; March et al., 2003), and maximising the benefit from this invaluable fresh 

water before it goes back to the ocean (Duda, 2002). However, some issues have been raised 

concerning the quality of the stored water (Day et al., 2008; Nielsen & Brock, 2009), ecological 

aspects (Ligon et al., 1995; Costanza, 1999; Petts & Gurnell, 2005), geomorphological effects 

(Petts & Gurnell, 2005), problems caused by changing groundwater levels (Kingsford, 2000; 

Petts & Gurnell, 2005) as well as pollution problems of sedimentation and trace element 

accumulation (Alyazichi et al., 2015). Scientists have reported on a range of sustainable 

solutions for most of these issues (Gleick, 2003; Hadadin et al., 2010) however reservoir 

sediment and water storage optimisations have not been reported in an eco-geomorphically 

sustainable manner. 

Ultimately, there arises a necessity to champion robust study proposals for ecological 

assessment of new reservoirs being established, particularly in NSW. Dao (2011) indicated that 

previous dams were mostly commissioned without comprehensive environmental assessment 

and a study such as this will provide a scope for analysing and even mitigating some 

environmental impacts of dammed rivers. 

This cross-discipline research aims to assess the problems associated with current dam design, 

in terms of sediment accumulation in the dam and sediment starvation below the dam, and to 

proposed and designed a specific sustainable solution that could be applied worldwide. 

3.2.1 Study site (specification and background 

A case study has been investigated, using the Tallowa Dam as an example on the Shoalhaven 

River in southeastern Australia (Fig. 3.1a-e). The reservoir behind the dam has formed Lake 

Yarrunga that covers 9.3 km2 with an averaged depth of 15 m and has 7500 ML total operating 

capacity of water supply for the southern Sydney region (Sydney Catchment Authority [SCA], 

2015, 2016). This research has shown that by taking water and sediment flow from the base of 

the reservoir, it is possible to maximize the volume of sediment transported past the dam and 

hence foster sustainability of the coastal ecosystem. Based on this argument, the study 

presents a brief appraisal of the relevant literature as it pertains to dam construction and the 

nurturing of sustainability through modern day dam practices (SCA, 2015, 2016). 
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Figure 3-1. Study site, (a and b) Tallowa Dam in southeastern NSW, Australia, showing the (c) dam wall, (d) reservoir 
and (e) aerial view showing sample locations (images from Google Earth). 

The Shoalhaven River catchment is the sixth largest catchment (7177.5 km2) in NSW 

(OceanWatch Australia [OWA], 2010). This large catchment with its high terrain and complex 

surface (Fig. 3.2a) has impacted the weathering processes resulting in high erosion rates that 

have resulted in variations in soil distribution within the catchment (Fig. 3.2b). The erosion has 

provided abundant sediment which has moved down to the delta during high flood flow 

periods. This resulted in the Shoalhaven River estuary becoming infilled during the past 7000 

years (Umitsu et al., 2001; Woodroffe et al., 2000). 

A ground digital elevation model (GDEM) of the upper catchment (Fig. 3.2a) shows an elevated 

and high-sloped terrain that mostly consists of steep valleys surrounded by hills and plateaus, 

which have played an important role in sediment generation with high erosion and sediment 

transport rates within the Shoalhaven River. In contrast, the northeastern coastal area consists 
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Figure 3-2. The Shoalhaven River catchment; (a) Terrain and DEM of the surface (b) Soil classification (c) Landcover classes (plus area size /km2) of, active/inactive catchment areas and the 

active/inactive streams (Australian Land Use and Management [ALUM], 2010; ASTER GDEM, 2016).
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of a low-lying subhorizontal floodplain. Since the Tallowa Dam was constructed less sediment 

has been delivered from the upper streams causing periodic interruptions or even losses of 

some unique ecosystems, like downstream wetlands. 

The higher/upper slopes, hills and plateaus are covered by shallow Uc1.11 and Uc2.22 soil, that 

are mottled brown-yellow or brown-red with a thin pale subsoil consisting of quartz and/or 

buckshot. In comparison, the lower slopes and valleys in the catchment are mainly 

characterised by duplex soils, including Dy2.41, Dy3.41, Gn2 and Db3.21, with yellow-brown or 

mottled topsoil over red subsoil that has high quartz, buckshot and mud contents (Fig. 3.2b). 

The land-cover patterns reported in Fig. 3.2c show that the catchment area has faced strong 

human modifications since European settlement that have influenced about 64.2% of the 

catchment (4604.9 km2). This land clearing has increased sediment supply leaving only 35.8% 

(2672.6 km2) of the area under natural eco-geomorphic processes. This change has caused a 

series of sediment availability and transport problems and has negatively affected natural 

processes (Al-Nasrawi et al., 2015b, 2016b). Water flow and sediment transport have been 

further modified since the construction of Tallowa Dam in 1976, (Fig. 3.2; SCA, 2016). The dam 

has blocked most of the water and its sediment derived from the upper catchment making it 

effectively inactive (Fig. 3.2c), which may affect the stored water quality as well. Also of 

significance, the landuse patterns have effectively increased the nutrient availability into the 

drainage system (Boto & Wellington, 1984; Koltun et al., 1997). For example, 35% of the 

catchment has been used for farming and a further 11% for forestry (OWA, 2010; Fig. 3.2c). 

Although the nutrient availability is an ecosystem enrichment, the increase in nutrients and 

associated trace elements in the water bodies the later deposition in the reservoirs would 

cause a decrease in the dissolved oxygen and more acidity. The anoxic conditions result in 

black or dark grey sediment that trap more pollution (Essington & Carpenter, 2000; Alyazichi et 

al., 2015).  

Climate factors should also be considered (Aziz & Scott, 1989; Fernandes et al., 2011). The 

climate along the Australian eastern coast includes a wide range of environmental conditions 

across a huge spatial scale, varied topography, local air/ocean currents and coastal 

ecosystems, making generalisations difficult based on the Köppen system. Thus, the Australian 

Bureau of Meteorology (Bureau of Meteorology [BOM], 2016) has modified Köppen 

classification system to meet local specific needs. The BOM (2016) has classified the 

Shoalhaven River catchment to be part of a southeastern temperate climate area, with no dry 

season and a warm summer. However, the northeastern part of the catchment (on and around 
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Comerong Island) has been classified as a temperate climate that has a hot summer but lacks a 

dry season. 

In the elevated parts of the catchment, the two main climatic factors that would influence 

sediment production and transportation rates are increasing temperature and declining 

precipitation. The interaction between regional and global climatic trends plus the local 

conditions cause fluctuations in the records (Fig. 3.3). The catchment has a temperate oceanic 

climate (Cfb) with mean temperatures between 15.33°C - 17.43°C while the northeastern 

floodplain region has a warm oceanic to humid subtropical climate (Cfa). Over the study site, a 

clear increase in air temperature has occurred during the last four decades, with some 

fluctuations (Fig. 3.3a). The average/overall temperature has increased by 0.48°C (from 

16.25°C to 16.73°C; Fig. 3.3a). This increasing temperature would slowly increase sediment 

production and sedimentation rates (Mkpenie et al., 2007). These climatic variations would 

also affect the soil salinity and its nutrients. 

 
 

Figure 3-3. Physical parameter of the Shoalhaven River catchment; (a) precipitation (millimetres/annually) and 
temperature (°C) between 1975 and 2015, (b) the Shoalhaven River water flow discharge (of four upper catchment 

gauging stations) from 1914 to 2015. Sources; (BOM, 2016; KINMI climate explore at https://climexp.knmi.nl/). 

The geomorphological setting of Tallowa Dam has divided the Shoalhaven River catchment 

leaving an essentially inactive catchment (78.3%, 5617.2 km2) above the dam (see Fig. 3.2) and 

https://climexp.knmi.nl/
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an active catchment (21.7%, 1560.3 km2) below the dam. Below the dam the river is divided 

into a bedrock river style, a floodplain river style and a tidal river style (Growns et al., 2009). 

However Growns et al. (2009) posited that the tidal river style covers both the bedrock 

controlled river reach that extends 20 km upstream from Nowra, NSW, coupled with the 

coastal plain river reach downstream from Nowra. This implies that the Tallowa Dam has only 

two distinct reaches below it. The deficiency of adequate sediment cover over the steeply 

sloping continental landscape in the bedrock river reach has led to a relatively low rate of 

sediment supply downstream from the dam, such that Comerong Island is facing clear 

shoreline erosion problems (Boyes, 2006; Al-Nasrawi et al., 2015b, 2016b). 

This research includes a literature review, augmented by sampling and subsequent modelling, 

to provide some qualitative results that can be utilized to offer possible sustainable 

management solutions. The study uses a civil-infrastructure idea to design a method of 

flushing sediment and pollutants from a dam reservoir during periods of excess water flow. 

This could be achieved using a net of collector pipes controlled by auto-mechanical gates in the 

base of the dam whenever over-storage water is present. Spatial data analysis using ArcGIS 

10.2 has been used to determine the best grid location for the pipes in the reservoir. This 

proposal would provide better water quality and a longer water storage time within the 

reservoir as well as increasing sediment supply to the lower reaches of the river which would 

alleviate the greater erosion of sediment and higher salinity rates within the lower river. 

3.3 Methodology 
A proposed method to solve both accumulation of sediment in the reservoir and the shortage 

of sediment supply to the downstream river reaches is to make the over-storage water flow 

through the dam’s base as an alternative of flowing over the top. This would be the best 

sustainable way to maximize the volume of upstream sediment that could be transported and 

released into the downstream river ecosystems. At the same time it would clear sediment and 

pollutants from the bottom surface of the reservoir to get better water quality and a longer 

storage time. 

Organizing a reservoir bottom flow system needs to start by designing a net of collector pipes 

that spread across the sub-surface reservoir area. Discharge channels should be constructed 

through the dam wall to connect to the collector pipes. The collector pipes extend various 

distances back into the reservoir to collect the sediment from areas of maximum deposition 

according to GIS-based surface models (Lim et al., 2005) that can estimate sedimentation grid 

positions. The grid positions would be chosen within the lowest zones that would act as 
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sediment traps and could be defined via echosounding from the surface of the reservoir. In 

order to collect and transport the optimum amount of sediment from the basal surface of the 

reservoir in front of the dam, a specific slope with specific aspect ratio and alignment for both 

the pipes and channels should be designed to achieve sufficient flow velocity for efficient 

transport of water and sediments and to avoid blockages inside the channels and pipes. Pipe 

flows could also be affected by the compatibility of flow of both the transported sediment and 

the transporting water from the catchment area during floods. An excess generated/ 

outstanding payload of sediment during floods or an excessive sediment grain size could cause 

agglomeration and blockage of the pipes and channels. Thus the distance and slope of the pipe 

inlets from the dam would be important, as well as, considering the problem of suspended 

woody debris that would be avoided by placing the pipes on the bottom of the lake. Moreover, 

flow discharge would be controlled by auto-mechanical gates, installed on the exit side of the 

channels, according to the height of the water head. 

The sediment sampling methodology at the study site was limited to the publically accessible 

margin of the reservoir by the Sydney Catchment Authority. Hence the sediment samples were 

collected from the reservoir to the northeast of Tallowa dam (where the public picnic area is 

located). A Yeo-Kal 615 multi-parameter water quality analyzer was used in the field area to 

measure water sample qualities in real time to test for pH, salinity and turbidity. In the 

laboratory each sample is tested for particle size by utilising the laser-diffractions Mastersizer 

2000 particle size analyser. Part of each sample was dried and crushed in an agate mortar and 

pestle and analysed for heavy metal components using X-ray fluorescence (XRF; SPECTRO-

analytical XEPOS instrument energy dispersive spectrometer fitted with a Si-docile detector; 

following the established standard procedure by Norrish & Chappel, 1977). Sediment and 

water sample sites are shown in Fig. 1c. 

3.4 Results and discussion 

3.4.1 Water quality analyses 

Seven water samples were collected from the accessible margin of the reservoir (Fig. 3.1) and 

as the distance from the dam wall increased a gradual decrease occurred in pH, salinity and 

turbidity. This reflects the presence of more suspended sediment within the reservoir adjacent 

to the dam (Fig. 3.4). 
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Figure 3-4. Water quality analyses of the seven water samples have shown an increase in; (a) pH, (b) salinity and (c) 
turbidity towards the dam. 

3.4.2 Sedimentary analyses 

Sediment samples have been collected at the same locations as the water quality tests, and 

they have been checked for their grain size. Figure 3.5 and Table 3.1 show that, the reservoir 

adjacent to Tallowa dam has a highly muddy basal surface. The average mud component is 

58.5 % for all seven sediment samples, whereas, the sand comprises 41.5 % at an average 

depth of 1.30 m. This results in an average grain size of 121 µm (Table 3.1) with a medium-

grained sand mode (400 µm) and a dominant silt mode (40 µm). However, difficulties of 

obtaining permission to access the reservoir site and the depth of the reservoir, has led to 

limited sampling work, so getting more accurate results need more field work and equipment. 
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Figure 3-5. Grain size analyses of the seven sediment samples have shown that the accumulated sediment contains 
a large proportion of mud. The sediment samples have been taken from the northeastern bank near Tallowa Dam. 

Table 3-1. Mean and modal grain size analyses and Loss on Ignition (LOI %) of the seven sediment samples from 
Tallowa dam showing the proportion of sand, silt and clay, and depth of the taken samples in metres. 

Sample 
number 

Water 
depth 

(m) 

Vol. wt. 
mean grain 

size (µm) 

Sand 
mode     
(µm) 

Silt 
mode      
(µm) 

Sand     
(%) 

Silt      
(%) 

Clay     
(%) 

LOI     
(%) 

1 0.83 121.2 225 50.2 53.4 45.1 1.5 8.4 

2 1.41 174.1 356 38.01 54.5 40.2 5.3 15.5 

3 1.80 81.7 - 56.4 35.4 59.1 5.6 9.6 

4 1.36 48.6 281 35.6 18.4 70.5 11.1 12.3 

5 1.27 115.1 502 28.3 37.4 56.5 6.1 24.5 

6 1.31 122 495 15.9 40.2 53.2 6.5 31.9 

7 1.13 186.3 544 51.8 51.4 44.1 4.5 5.0 

Average 1.30 121.3 401 39.5 41.5 52.7 5.8 15.3 

3.4.3 Assessment of trace elements 

High mud components may lead to some water quality considerations for urban supplements, 

thus trace element XRF analysis was done on the seven sediment samples (Fig. 3.1). The 

concentrations of the trace elements Cr, Ni, Cu, Zn, As and Pb are directly related to the mud 

content in the sediment (Table 3.2) with the highest concentrations of these elements found in 

the samples 4, 5 and 6. These sites have the highest percentages of mud and organic matter, 

which are indicated by the proxies rubidium (Rb) and bromine (Br), respectively (Table 3.2). 
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Table 3-2. Comparison of trace elements (mg/kg) in the study area with Interim Sediment Quality Guideline values 

 
 

Both muddy particles and organic matter commonly play significant roles in absorbing and 

accumulating trace elements (Fernandes et al., 2011; Alyazichi et al., 2015). The trace element 

concentrations were compared with the ANZECC & NHMRC (2000) sediment and water quality 

guidelines as shown in Table 3.2. This revealed whether the trace elements were at acceptable 

levels below the low trigger values or whether they exceeded that limit and needed more 

examination according to the national guidelines. Harmful biological effects or trace elements 

are periodically detected between the low and high values in the ANZECC & NHMRC (2008) 

guidelines (Alyazichi, 2015). According to Australian and New Zealand protocols (ANZECC & 

NHMRC), the mean concentrations of the analysed elements are below the LSQG/Low except 

for Cr and Ni where several samples are higher than LSQG/Low but well below LSQG/High. For 

example, sample 1 was taken from the shallow edge (83 cm depth) in a highly vegetated area 

with discharge points as well as recreational activities, which means more biotic and abiotic 

influences at this site that raised the contents of Cr, Ni, Zn and Pb. 

3.4.4 Surface analyses and pipe grid placing 

Analysing the contour map and digital elevation model (DEM) created using ArcGIS10.2 

detected the location of the primary sediment pool areas, which represent the best locations 

for the pipe mouth grid (Fig. 3.6). This result could be confirmed using an echosound technique  
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Figure 3-6. (a) The high slope shown on (a) the study site’ contour lines and DEM, the thalweg line of the lake, 

overlying on the DEM and showing the elevation ranges (29-494 m) and the lowest line in the area, generated using 
data from Geoscience Australia © Commonwealth of Australia (2011), (b) suggested collection points to extract 

sediment and water through the pipes. 
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to get the exact subaqueous reservoir surface topography, and to find more accurate results 

for the locations of the sediment reservoirs. So far, it gives an average slope for the basal 

surface of the reservoir of 3.8°, which was derived from the DEM and contour surface analysis 

(Fig. 3.6). 

A balance needs to be attained between stored water levels for urban consumption, and 

applying this proposed sediment bypass solution to sustain the water quality itself and the 

ecosystem below the dam (coastal section). Thus, these collector pipes need to have specially 

designed discharge channels and gates. 

3.4.5 Designing the pipes and the controlling gates 

The pipes need to have a specific slope designed so that they could be merged into a single 

channel at the dam wall. Then an auto-mechanical gate would control the water and 

outstanding payload released, as follows. 

3.4.5.1 Water storage control gates 

The water storage will be controlled by auto-mechanical gates. The auto-mechanical gate 

operation is illustrated in Fig. 3.7. The operation of these gates depends on the head pressure 

of the water level without the need for human-intervention. The head pressure affects the 

float that, if raised above the 31 m ideal storage level, will cause the gate to open until the 

water level is reduced back to 31 m. The gate is susceptible to the force of the water that 

depends on the density of the water (ρ), gravity (g) and the height of the water level as 

represented in equation 1 (Çengel et al., 2010). A retiring spring could be used to assist the 

gate to return to the closed position. 

F =  ρ. g. A. h                                                         (1) 

Where;  

F= water force on the gate (Newton);  

ρ = water density (1000 kg/m3); A= gate area; and  

h= relative height of water levels. 

In addition, sustainable natural fibre reinforced composite materials could be used for the 

pipes and gates. These materials consist of two or more components, such as natural fibres 

and polymer matrix, in order to fabricate a new material with different characteristics from 

standard pipes. The characteristics and potential of these materials, such as high strength-

weight ratio, renewable, recyclable and resistant to chemical effects (corrosion), make them 

more environmental friendly and an attractive ecological alternate to other materials (Fuqua 

et al., 2012; Uddin, 2013). 
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Figure 3-7. The designed auto mechanical gate operation method is shown with the bypass channel located through 
the base of the dam. The auto-mechanical gate controls water flow; at low water level “A” the gate is closed to save 
the water in the lake, whereas at high water level “B” the gate opens to allow the over-storage water to flow from 

the grid pipes through the gate to sustain ecosystems below the dam. 

3.4.5.2 Effective slope for fluid transport 

It is very important to find an effective and suitable slope and aspect ratio for the pipes and 

channels to allow sediment transportation. It is well known that the natural river catchment 

has variable slopes that influence rates of erosion and deposition. Accordingly, the rate of 

sediment transportation and the effective weight of the transported sediment and attached 

pollutants is one of the problems that could block this suggested system. The quantity and 

grain size of transported sediment is also affected by development in the catchment 

landscape. All this river-borne sediment enters the reservoir where the bedload is deposited as 

deltas and the suspended load can be transported in suspension throughout the reservoir. In 

order to control subsequent sediment transportation within and from the reservoir, and hence 

the effective size and weight of the sediment grains that can be moved, the slope of the 

transportation pipes and channels through the dam and the dimensions (aspect ratio of the 

pipes) should be specified. 

There is a clear relationship between fluid flows and the entrainment and transport of 

sediment (Julien, 1998; Parker, 2007; Frey, 2014). In the past decades, bedload sediment 

movement in open channel flow has been investigated many times but most practical and 

theoretical work has been done under conditions of gentle or even horizontal channel slopes 

(Chien & Wan 1999; Cheng & Chen, 2014). Only limited studies on the calculation of sediment 

transport rates have been achieved (et al.et al.et al.Cheng & Chen, 2014). Fernandez Luque & 
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Van Beek (1976) have investigated the slope effect on the velocity of the sediment particles 

and transport rates. 

The formula that is used widely for sediment transportation in channels based on experiments 

using sand and gravel was developed by Meyer-Peter & Müller in 1948, as below:  

𝑞𝑏 = 𝑎( 𝜏𝑏
1

�𝜌𝜌 – 𝜌�𝑔𝑔
 − 𝜃𝑐𝑐)3/2    (2) 

Then etymologically "α" is: 

𝑎 = 8�� 𝑝𝑠
𝑝−1

�𝑔𝑔3    (3) 

Where qb is the volumetric transport per unit bed width; d is the grain size of the sediment; r’b 

is the bed shear stress; and θcr = 0.047 represents the dimensionless critical shear stress which 

also represents the Shields parameter. 

Smart (1984) included bed shear stress and sediment sorting elements to derive the slope 

correction that is represented below: 

𝑀 = 𝑐
2√𝑔

 (𝑑90
𝑑30

)0.2  �𝑆0,6�
𝜃

𝜃 − 𝜃𝑐𝑐
� 2    (4) 

Where, C is the Chezy coefficient, d90 and d30 are the diameters of grains for which 90% and 

30% of the sediment sample are finer, S is the channel slope, and θcβ represents the critical 

Shields factor for primary motion of sediment within the horizontal-bed scenario (Cheng & 

Chen, 2014). However, Smart’s equation is valid for downslope flow only. 

Cheng & Chen (2014) reported that, to predict the sediment transport rate, Damgaard et al. 

(1997)  developed the Meyer-Peter & Müller (1984) method by involving the following slope 

correction: 

For β ≥  0𝑀 =  1    (5) 

 𝐹𝐹𝐹   <  0𝑀 =  1 + 0.8(𝜃𝑐0
𝜃𝑐𝑐

)0.2( 1−𝜃𝑐0
𝜃𝑐𝑐

)1.5+𝑥  (6) 

Where;   

θcβ represents the reduced θc0 and x = θcβ/θcβ .  

All the previously used factors of slope correction are empirical, and they include different 

variables (Cheng & Chen, 2014). 

𝜃𝑐𝑐   =  𝑘 𝜃𝑐0     (7) 

𝐾 =  𝑠𝑠𝑠(𝛼−𝛽)
𝑠𝑠𝑠 𝛼

                                           (8) 
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Cheng & Chen (2014) suggested a different procedure for slope correction to find out the slope 

influence on sediment transport using a uniform open channel. Sediment is considered to be 

entrained under both drag forces and lift forces, however, it is believed that the drag force is 

dominant while the lift force can be ignored. After using simple equilibrium equations, as 

shown in Fig. 3.8, the correction factor was:  

𝜂 =  𝑐𝑐𝑐𝛽 𝑡𝑡𝑡 𝛼 –  𝑠𝑠𝑠 𝛼  (9) 

where 𝜂 is a slope correction factor, Δg is the reduced gravity of the submerged particle (i.e. 

effective particle weight/unit mass), tan α = coefficient of friction and 𝛽 is the slope of the 

channel-bed. The force parallel to the surface of the bed FD was written as: 

𝐹𝐷  =  𝜂 𝛥𝛥 𝜌 𝑉𝑠            (10) 

𝛥 = (𝜌𝑠 − 𝜌)
𝜌

                                               (11) 

where 𝑉𝑠 is the volume of the particle; 𝜌s = density of the particle; 𝜌 = fluid density; and Δ is the 

relative density-difference. 

 
Figure 3-8. An open channel flow showing the forces acting on a moving particle: in the derivation, the lift-force has 

been ignored; (after Cheng & Chen, 2014). 

For the proposed slope correction to be validated, experimental data were collected from the 

research of Fernandez Luque & Van Beek (1976), Damgaard et al. (1997) and Recking et al. 

(2008) for both closed and open channels. The experiments are detailed in Cheng & Chen 

(2014) as shown in Fig. 3.8 and could be applicable for the Tallowa Dam as a case study, by 

modifying this design from an open channel to a closed pipe. 
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Finally, this project has made a comparison between Cheng & Chen’s (2014) study with other 

correction factors. In the study done by Cheng & Chen (2014) the proposed corrected slope 

factor was compared with Meyer-Peter & Müller (1948) because Fernandez Luque & Van Beek 

(1976), Damgaard et al. (1997) and Recking et al. (2008) all used the formula of Meyer-Peter & 

Muller (1948) to develop the slope correction formula. Therefore, only this earlier formula was 

employed for comparison purposes. However, the indication based on the formula of Meyer-

Peter & Muller is practicable merely for shear stress more than the critical shear stress (Cheng 

& Chen, 2014). The proposed correction factor showed better agreement with experimental 

results compared to the previous studies. 

Thus, Cheng & Chen’s (2014) method (equation 9) provides the most suitable and applicable 

slope at the suggested take off points in this case study when it is extended for application to 

closed pipes. The water head pressure applies another drag force acting on the moving 

particles. The drag force from water head pressure is assumed to be equal to FD. To determine 

the acting force on the particles from the water head pressure, Bernoulli’s equation is 

adopted. 

According to Bernoulli’s equation, the force that results from the water head pressure that 

acts on the particles is:  

𝐹𝐹 =  ½ 𝜌 𝑔 𝐿 𝑠𝑠𝑠𝑠 𝑣   (12) 

By combining equations 10, 11 and 12, the optimum slope of pipes that reduces particle 

accumulation is: 

½ 𝜌 𝑔 𝐿 𝑠𝑠𝑠𝑠 𝑣 +  𝜌 𝑔 𝑣 𝑠𝑠𝑠𝑠 =  𝑐𝑐𝑐𝑐 𝑡𝑡𝑡𝑡 0.5 𝜌 𝑔 𝑣 

Where tanα = 0.14 since the coefficient of friction is 14% for the proposed use of composite 

material (El-Sayed et al., 1995) and L = pipe length 50 m (applicable to use a different length). 

𝑇ℎ𝑒𝑒,𝛽 =  𝑡𝑡𝑡−1[0.07/ (0.5 × 𝐿 + 1)] 

           𝛽 =  0.15 degrees. 

This means that the parameters (especially using the composite material at a 15 m water head 

pressure) have suggested a slope recommendation of 0.15° to use for the pipe grid. However, 

the reservoir slope is 3.8° allowing a higher pipe slope that could deal with mixed suspended 

and bedload sediment during floods and rain storms. Also, not all the reservoir is at the same 

depth, as the 15 m is an average depth, thus a comprehensive field investigation and equation 

replication is needed to establish the most suitable slope from each of the take-off points. The 

number of take-off points depends on the river twists and turns, thus this project suggests 
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take-off points should be in the middle of the reservoir approximately every 400 m in the 

twisted reaches, and 600 m in the less twisted reaches (Fig. 3.6). The collector pipes should 

have straight design, or arced if necessary, to minimise frictional resistance to the flow and 

prevent any sediment accumulation. Fig. 3.9 shows a diagrammatic view of these results. 

 
Figure 3-9. Showing; (a) sediment reservoir and the take-off points that link from the centre bottom of the 

reservoir, (b) the pipe network that could be combined together using same gate. (c) The gate collection and 
discharge points that are controlled by the gate controller. 

This scheme should be instigated during the construction phase of a dam. It could possibly be 

retro-fitted to the Tallowa Dam, as well as other current dams worldwide. A retro-fit would 

cause more difficulties and cost more than instigating it during the construction phase of a 

dam. 

3.5 Conclusions 
In order to find a better sustainable solution for geomorphic ecosystems and water quality of 

dammed rivers, a case study has been chosen from the Shoalhaven River at Tallowa Dam, 

southeastern NSW, Australia. 

The water discharge and suspended sediment, which have been blocked by the dam, have led 

to high sediment accumulation rates in the reservoir. Meanwhile, supplementary sediment 

problems have caused several eco-geomorphic threats in the downstream section of the river, 
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such as higher erosion rates and salinity intrusion. Analysing the existing situation of the dam’s 

reservoir has proven that the water quality has been influenced by the increasing sediment 

accumulation, particularly with the deposition of mud particles that are more abundant than 

sand components (58.5% and 41.5%, respectively). That has increased the amount of chemical 

pollution, such as heavy metals and nutrients that has accumulated in the mud sequences, 

which may eventually affect the water users. 

Civil-infrastructure design of a grid of collector pipes on the reservoir bottom could play an 

important role to minimise sediment quantity and enhance water quality providing a longer 

storage time in the Tallowa basin. The proposed grid of collector pipes from the reservoir 

should be considered in terms of eco-geomorphic sustainability. Spatial data analysis has been 

used to determine the best location of the pipes in the lowest zones of the reservoir. The 

equations of Cheng & Chen (2014) can be adapted and used to determine the slope and aspect 

ratio of the transportation channels for comparison with the subaqueous topography of the 

reservoir. Using sustainable natural fibre reinforced composite materials would be 

environmental friendly and an attractive ecological alternate material that could be applied 

when considering an integrated sustainable approach. 
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4 Chapter IV: A Spatio-Temporal Assessment 

of Landcover and Coastal Changes at 
Wandandian deltaic System 

 

4.1 Abstract 
Large numbers of people live along and depend upon the world’s coastal resources. Human 

modifications of the coastal zone, in combination with climate induced environmental 

changes, have had a major effect on the natural ecological systems. GIS analysis of remote 

sensed data, combined with fieldwork and laboratory tests, can be used to determine the 

resultant eco-geomorphic changes that need to be managed sustainably on a worldwide scale. 

Modelling the eco-geomorphic dynamics between 1949 and 2016 on the Wandandian Creek 

delta (southeastern NSW, Australia) provides a case study of management options for such 

coastal resources. Results from the Wandandian Creek delta show that sand/silt sediment 

derived from the partially (22%) modified terrestrial catchment has prograded into the wave-

dominated St Georges Basin where it is impacted by nearshore processes. Clear spatio-

temporal growth of the areal extent and elevation of the deltaic levees and sandspits, with 

their associated mangroves and saltmarshes, has occurred over the past 65 years. Although 

the growth rate has fluctuated during the study period, due to flood events in 1974, 1990s and 

2010, the overall subaerial and subaqueous delta area has had an average growth of 4168 m2 

annually with the shoreline extending 1.451 m/year on average. This geomorphic growth has 

stabilised the estuarine deltaic habitats with high proportions of nutrients and organic matter, 

particularly within saltmarsh, mangrove, Casuarina/Juncus and other mixed native plant areas. 

This research shows the importance of analysing morphological changes observed on the delta 

that can be related to both anthropogenic modifications and natural processes to the 

catchment and thus should be used in the development of catchment and coastal 

management plans. 

Keywords: anthropogenic modifications; eco-geomorphology; remote sensing; GIS-modelling; 

sediment progradation. 

4.2 Introduction  
Many coastal ecosystem management strategies have become more focused on the 

conservation and sustainability of coastal wetlands (Aarts & Nienhuis, 1999; Day et al., 2008) 
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locally (Al-Nasrawi et al., 2015b, 2016b, 2017b), regionally (Akumu et al., 2010) and globally 

(Kirkpatrick, 2012) according to their unique ecosystem function roles (Costanza et al., 2008). 

However, they are located in sensitive zones where anthropogenic and climate change 

stressors are concentrated, such as estuaries and deltaic platforms (Ehrenfeld, 2000; Morris et 

al., 2002; Lee et al., 2006). For effective management of such areas it is imperative that 

comprehensive knowledge of their environmental responses to current anthropogenic and 

climatic stressors is known, along with the factors that have driven such responses within the 

last few decades, to enable prediction of their future behaviour.  

One of the most cost effective methods of studying changes in coastal ecosystems is through 

geographic information system (GIS) analysis of aerial photograph and satellite images 

(Kirkpatrick, 2012; Costanza et al., 2008; Ozesmi & Bauer, 2002; Cho et al., 2004). Ozesmi & 

Bauer (2002) provided an overview of the most appropriate satellite data and classification 

methods to use for studying wetlands. They also discussed how complimentary information 

could be obtained from aerial photographs, thus providing the opportunity to extend 

equivalent analyses back before satellite data became available to study longer term changes 

to wetland composition and shoreline positions. Some studies have relied entirely on satellite 

data, such as the study by Cho et al. (2004) who successfully mapped wetland and shoreline 

changes on a broad scale in southeastern India. The same techniques have been applied when 

mapping vegetation and shoreline changes in inland wetland situations, such as study of Haack 

(1996) of the distribution and dynamic nature of small isolated wetlands in the plains and 

highlands of Kenya and Tanzania, and Roshier & Rumbachs’ (2004) mapping of temporary 

wetlands in the arid areas of the Darling River basin in eastern Australia. The success of these 

studies led us to instigate a case study modelling the current and historic coastal ecosystem 

dynamics on the Wandandian delta (St Georges Basin, southeastern Australia) as a method for 

providing data to assist in developing local catchment and coastal management plans. 

The aim of this study is to use the Wandandian delta as a case study to monitor and measure 

sensitive shoreline, land cover and vegetation changes in a deltaic system and its associated 

coastal wetland in order to assess potential options for conserving and managing the wetlands. 

This study (i) employs spatial technologies to determine the ecological and geomorphological 

(eco-geomorphic) growth of the estuarine system within the last few decades, (ii) considers 

the direct and indirect influences of anthropogenic and environmental trends on the 

catchment runoff and sedimentation factors, (iii) assesses the historical eco-geomorphic 

trends to determine the main factors likely to affect the future ecosystem health, and then (iv) 

indicates how these findings could be extended to other estuarine deltaic regimes and 

important coastal wetlands worldwide. This work is relevant to management because it 
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indicates how susceptible the estuary is to shoreline expansion or contraction, which causes 

changes in ecosystem accommodation space as a function of sediment transport and 

deposition from the catchment. 

4.2.1 Background  

The Wandandian deltaic eco-geomorphic system is located on the southeastern coast of New 

South Wales (35°06′23.4″ S 150°33′20.5″ E), about 194 km south of Sydney (Fig. 4.1). The 

coastal eco-geomorphic system of the Wandandian delta is located at the end of Wandandian 

Creek where the channel is actively prograding into St Georges Basin (Fig. 4.1) that is separated 

from the South Pacific Ocean by a sandy barrier (Murray et al., 2005). The shallow St Georges 

Basin has rock outcrops that control where the Wandandian fluvial sediment can accumulate 

and build the deltaic system over time (Hopley, 2004; Hopley & Jones, 2006).  

 
 

Figure 4-1. The study site, of the coastal deltaic section of Wandandian Creek, southeast NSW, Australia, illustrating; 
(a) location of New South Wales (NSW) in eastern Australia, (b) the study site located on the mid-southern NSW 

coast, (c) the regional setting showing the St Georges Basin and the catchment area of Wandandian Creek, and (d) 
illustrates the deltaic border, elevation and the sampling locations (WD1 to WD18).  

The Wandandian eco-geomorphic system has been considered as a sensitive area that includes 

(i) fluvial platforms, and (ii) intensive vegetation cover, such as mangroves and Casuarina 
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(Shoalhaven City Council, 1998; ALUM, 2010). 

Wandandian Creek is 25 km long starting from the eastern cliffs of the Tianjara Range (part of 

east Australian Great Dividing Range) to indirectly discharge to the southern Pacific Ocean via 

St George Basin, a typical wave dominated estuarine platform (Roy et al., 2001; Hopley, 2004). 

The 1.6 m deep Wandandian Creek drains about 46% of St Georges Basin catchment (Windley, 

1986). The deltaic system built by the Wandandian Creek sedimentary processes contains 

small areas of coastal wetlands (including mangrove, saltmarsh and back swamp) and intertidal 

flats on a fluvial bayhead delta (Hopley & Jones, 2006).  

4.2.2 Catchment and land use classes 

Wandandian Creek has a small catchment draining about 202.3 km2 ranging from high to 

irregularly sloped terrain with elevations from 0 to 709 m along the ~25 km long Wandandian 

Creek. This represents an average 3.5% slope along the main creek channel, but the slope is 

much higher in the upper parts of the valleys (Fig. 4.2a; Murray et al., 2005). The Wandandian 

Creek catchment contains the Wandandian, Bewong, Tullarwalla and Jerrawangala villages 

that are neighboured by quite intensive rural activities (Hopley, 2004). This region has a 

population of about 15,000 (Murray et al., 2005; Australian Bureau of Statistics, 2017) but this 

will increase as urban development expands (Murray et al., 2005). St Georges Basin is a 

popular holiday destination known for its recreational activities such as sightseeing, 

bushwalking, fishing, water skiing and sailing. 

Human settlement in the catchment began in 1830 and by 1900 had established grazing, urban 

areas and other modifications over 22% of the catchment (see Fig. 4.2b). These transitions in 

land use were associated with clearing native vegetation, resulting in changes to the drainage 

network hydrology and eco-geomorphologic characteristics of the catchment and its runoff 

and sedimentary processes (Al-Nasrawi et al., 2016a; Al-Nasrawi et al., 2016b). Large areas of 

the catchment are still covered with native vegetation (74.2%) including a state forest and a 

national park along the eastern cliffs of the Tianjara Range (Fig. 4.2). Early land clearing 

affected the eco-geomorphic systems in the lower catchment and its dependent downstream 

areas but during the study period has only included minor additional urban development (Fig. 

4.2). Sand mining operations for construction materials in the late 1960s through to the early 

1970s in the lower deltaic reach of Wandandian Creek increased water depths and affect 

sedimentation rates for over a decade. The dredging also opened the creek to recreational 

users and wake waves enhanced bank erosion. 
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Figure 4-2. Landcover elevation and patterns within Wandandian Creek catchment area, showing; (a) the elevation 
of the catchment illustrating the terrain and high sloped watershed (using Australian height vertical datum at 1.024 
m MSL), the 1-metre digital elevation model (DEM) is derived from C3 LiDAR (Light Detection and Ranging) obtained 

by LPI on 19 September 2016 (LP-DAAC, 2017). (b) Land use classes and areas (km2). Source; (after; Hopley, 2004; 
Shoalhaven City Council, 1998; ALUM, 2010; LP-DAAC, 2017). 

4.2.3 Local climate condition 

The main climate factors that could have major effects on the eco-geomorphic processes are 

precipitation (and the resultant river discharge in the Wandandian watershed area), 

temperature and mean sea level at/around the deltaic system (Figs 4.3 and 4.4). 

 
Figure 4-3. Monthly data for temperature and precipitation for Wandandian area during this study period show that 

the highest seasonal temperature occurs during the south hemisphere summer, particularly in January and 
February. At the same time, February and March are the wettest months in the records (BOM, 2017b; KNMI, 2017). 
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Wandandian catchment has a temperate oceanic climate (Cfb) with no dry season (Bureau of 

Meteorology, 2017b), which promotes weathering and sediment production (Mkpenie et al., 

2007). The average temperatures range from 11.5 °C in winter (July and August) to 21 °C 

during summer (January and February; data from Sussex Inlet Bowling Club gauging station; 

Fig. 4.3; (Hopley, 2004). Rainfall in the Wandandian catchment is highest in late summer and 

autumn, whereas the lowest rainfall occurs in late winter and spring (Bradshaw, 1987; Hopley, 

2004). 

Average rainfall in the Wandandian catchment is 1300 mm/year leading to an estimated 

annual runoff of 400 mm (Hopley & Jones, 2006). Five major flood events between 1985 and 

2015 have been identified within the Wandandian catchment (Fig. 4.4a,b). They occurred in 

March 1959, October 1959, February 1971, June 1991 and August 2015. Nine additional minor 

flood events occurred in May 1953, February 1958, March 1961, March 1975, March 1976, 

October 1976, February 1992, September 1993, April 1994, March 2011, March 2012 and June 

2013 (Fig. 4.4a,b); (BOM, 2017; Webb McKeown & Associates, 2001; BOM-NSW Weather, 

2017). 

In terms of climate change at the study site, temperature and sea level are slowly rising (Fig. 

4.4c,d), which reflects the global warming trend (Day et al.et al., 2008; Hughes, 2003). Air 

temperature shows a clear overall increase during the last five decades, with numerous 

fluctuations. The increasing temperature would affect sedimentological processes and plant 

productivity, which logically would have an effect on the eco-geomorphic system. 

The reported local mean sea level rise (MSLR; Fig. 4.4d) is caused by global warming and 

climate change (Hughes, 2003; Day et al., 2008). It is based on mean water level relative to the 

nearest local tide gauging station at Port Kembla, which is located ~45 km away but has an 

observation record extending from 1957 to recent (BOM-NSW, 2017). 
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Figure 4-4. Climate trends for Wandandian Creek estuary; (a) the total monthly precipitation, (b) annual flow 

discharge in Wandandian Creek, (c) mean annual air temperature, and (d) monthly mean sea level at Port Kembla 

(1957 to 2016; red is the maximum, green is the mean, and blue is the minimum). Sources BOM (2017) and KINMI 

climate explore. 

Analysis of monthly data from this gauging station is based on 60 years’ time-series of sea-level 

measurements from 1957 to 2016. Fig. 4.4d clearly shows that sea level at Port Kembla has 

fluctuated and risen. The monthly average mean sea level at Port Kembla is 0.907 m, and the 

maximum recorded was 2.233 m on 19 August 2001, whereas, the minimum recorded was on 

4 December 1994 at −0.217 m. The overall average trend of SLR at Port Kembla is 0.035 m 

from 0.895 to 0.930 m during last six decades. 

The channel linking St Georges Basin to the open ocean is restricted and the basin has a much 

reduced tidal range and an elevated water level of about 1.23 m AHD (data from Island Point 

Station 216415 in northern St Georges Basin). This means water level fluctuations within St 

Georges Basin have less influence than in other coastal examples since there is very little tidal 

influence coming into this large basin with restricted connection to the Pacific Ocean. Thus, 

water flows from Wandandian Creek will always be attenuated as they enter the basin giving 

rise to more sediment deposition opportunities on the delta that can develop habitat 

accommodation and ecosystem diversity. Sea level rise is still likely to influence the basin and 

can be used to assess the eco-geomorphic changes, such as shoreline dynamics and coastal 

wetland responses. 
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4.3 Material and Methods 
This chapter is based on a GIS mapping, monitoring and modelling has been used to investigate 

the landcover classes dynamics, shoreline movement, sedimentation rates and the general 

deltaic progradation based on local literature, aerial photography, and satellite imagery. The 

GIS analysis was supported by previous investigations of vegetation, sediment sampling, 

particle size, X-ray diffraction (XRD), loss on ignition (LOI) and water quality analyses (Hopley & 

Jones, 2006). This study divided the methodology into three parts, as seen in Fig. 4.5. 

 

Figure 4-5. Methodology; data collection and analysis sequences. 

4.3.1 Data Collectio and processing 

Various data have been collected to achieve the study aims. RS and GIS datasets were used to 

analysis land covers. Light Detection and Ranging (LiDAR; 2004 and 2010) and SRTM (2011) 

data have been used in ArcGIS to create DEMs. These survey data for the Wandandian area 

were provided by the Department of Land and Property Information (LPI) in NSW. These data 

record the surface elevation as heights (Z values) relative to a local zero level datum. The data 

also incorporated the actual local mean sea level at the time of the survey based on the 
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tidal/time dynamics from the local ground base-stations at the Sussex Inlet Bowling Club and 

the Island Point Station in St Georges Basin. The DEM was generated using a TIN and the 

contour spatial analyst tools in ArcGIS. Meanwhile, aerial photography was obtained from the 

LPI and the landsat satellite imagery from the USGS (https://earthexplorer.usgs.gov/). 

Sediment and soil samples were collected as vibracores from the Wandandian delta (Fig. 4.1) 

to represent all the recognized sedimentary facies (Hopley & Jones, 2006). Surface material 

was subsampled and analysed for grain size, mineralogy (using X-ray diffraction; XRD, 

Panalytical, Almelo, Holland) and organic matter (by loss on ignition; LOI, Ceramic Engineering, 

Sydney, Australia) to categorise each facies. The pH, conductivity, dissolved oxygen, salinity 

and turbidity were measured in the field using a Yeo-Kal 615 multi-parameter water quality 

analyser. These data were combined with previous detailed stratigraphic data from the 

vibracores (Hopley & Jones, 2006). 

A collection of remote sensing datasets and GIS analytic tools were utilised in assessing the 

landcover dynamics at the landscape scale from 1949 to 2016. The multitemporal imagery 

classification of Landsat data has enough detail to capture the eco-geomorphic distribution 

and dynamics of deltas and estuaries at the landscape level (Giri et al. 2011). However, small 

patches (< 900–2700 m2) of classes along a small coastal estuary cannot be identified from 

these data (FAO 2003). Thus, Landsat datasets have been combined with high-resolution (50 

cm) satellite remote sensing datasets from LPI and aerial photographs, to assess and monitor 

the Wandandian site. A Digital Elevation Model (DEM) was created by analysing LiDAR (2010) 

point cloud dataset in ArcGis10.2. Kriging, clipping and masking were also used in ArcGis10.2 to 

incorporate the resultant fieldwork/laboratory analyses. Meanwhile, regarding the 

photogrammetry to shoreline digitising, higher resolution historical aerial photogrammetry of 

the Wandandian deltaic eco-geomorphic system was used to model the spatial and temporal 

dynamism. ERDAS IMAGEN v2014 software was used to orthorectify the digitised aerial 

photographs, with at least six to ten points as ground-control distributed around the estuarine 

area on each image to define the estuarine eco-geomorphic systems. If carried out carefully, 

the image-to-image techniques give accurate correlation of spatial features over time (Hughes 

et al. 2006; Hopley & Jones, 2006; Al-Nasrawi et al. 2017b, 2018a). Finally, catchment land 

cover classes were obtained from the Australian Land Use and Management authority (ALUM). 

4.3.2 Data Analysis 

All images were rectified by using 20 training points within an average of 15 to 25 pixels as a 

finger print; this has been done for each class in every single satellite tail. We used the pixel to 
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pixel validation method using an existing vector based classification of this study site provided 

by LPI in 2014. The vector layer was then converted to a raster and the ERDAS IMAGINE 

validation tool was run to test our results, which showed high accuracy. 

Assessment and measurement are based on the land cover derived from aerial photographs 

(1949, 1961, 1972, and 1993) and satellite images (2002 and 2016) over time using the 

standard self-adaptive/minimum distance-adjustment combined with the fuzzy membership 

function. The fuzzy classification method distinguishes the spatial features on the imagery 

according to fuzzy rules about the pixels membership functions to give more reliable and 

realistic outputs. Simultaneously, it will not allow pixels to be incomplete-members of multiple 

classes, which could lead to ambiguous/uncertain assignation of the resultant classes (BOM-

NSW/Tide Gauge Metadata; Hofmann, 2016; Foody & Cox, 1994). Analysis of the shoreline has 

determined the progradation of Wandandian deltaic system. Changes to the levees and 

shorelines and their associated wetlands, including mangrove and saltmarsh areas (as a land 

cover function), illustrate the shoreline position and elevation stability in the area. This project 

entails assessing potential threats, such as shoreline erosion and sediment delivery problems. 

In addition, the effects of artificial modification in the catchment are the principle element 

addressed. 

The project targets are achieved at several levels, starting with GIS and RS-based analysis to 

identify and classify the land cover and shoreline changes at specific study sites depending on 

recent and historical records of aerial photography, satellite and LiDAR data. This was 

combined with sampling the water, soil and sediment. 

Pre-processing of the employed imagery and aerial photographs was done to produce 

radiometrically and geometrically rectified framework parameters, including the local 

coordinate system and datum (GDA-MGA-1994/zone 56), atmospheric issues, and pixel size. 

To analyse datasets with various resolutions and to make the multi-temporal data comparable 

for valid use in research, this research has scaled the pixel sizes to a uniform spacing and 

converted the imagery pixels to the same scale as the resolution of the aerial photographs to 

assure common pixel extents, which resulted in errors of ±0.0125 to ±0.0375 m. As part of the 

standard procedure, statistical weighting was used to cope with rescaling to a common pixel 

spacing and to accommodate images across multiple dates. During this rescaling some 

neighbourhood weighting is needed to make sure that the output values are radiometrically 

equivalent, rather than visually smooth. 

To analyse shoreline changes, the Digital Shoreline Analysis System (DSAS) was used on the 

dynamic shoreline positions of the delta (after dividing them into sections a–f; see Fig. 4.10) 

derived from the employed datasets between 1949 and 2016. The DSAS also quantified the 
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rate of deltaic progradation over a 66-year period (Fig. 4.10). The DSAS analysis used many 

transects sampled along shorelines at 50 m intervals from an offshore baseline around the 

deltaic facies and levees (Fig. 4.10a–f). To calculate the rates of shoreline changes over the 

study period, two statistical methods were used: the net shoreline movement (NSM)/envelope 

to track the changes, and the linear regression rate (LRR) to evaluate the results (Thieler et al., 

2009; Tran Thi et al., 2014). 

4.4 Results 
A spatiotemporal deltaic dynamic evaluation has been established, using a stratigraphic 

description derived from remote sensing datasets, GIS analyses and fieldwork sampling, to 

highlight the deltaic changes including shoreline erosion/accretion rates and landcover change 

(e.g., vegetation canopy). Eco-geomorphic changes to the Wandandian delta were detected 

using ArcGIS, digital shoreline analyses system (DSAS) and geomorphic change detection (GCD) 

based on aerial photography and satellite imagery. These changes were related to most 

effective controlling factors through sedimentology analyses and catchment assessment. Thus, 

a three level simulation approach for evaluation of the Wandandian deltaic system was based 

on geochronological data at the landscape scale. 

The coastal eco-geomorphic changes, caused by deltaic progradation and land use 

development have resulted in expansion of the Wandandian deltaic eco-geomorphic systems, 

including growth and establishment of saltmarsh, mangrove and mudflat shorelines (Figs 4.6 

and 4.7). 

4.4.1 Multitemporal imagery classificatio 

The multitemporal analysis of remote sensing and GIS data (Fig. 4.6) indicates that the river 

channel has actively prograded moving sediment brought down from the catchment to the 

mouth of the delta. This has built an interesting deltaic system at the Wandandian Creek 

mouth, which has grown geomorphologically since at least 1949 to offer suitable ecosystem 

habitats for wetland colonisation. In addition, there is clear evidence of landcover 

development on the main deltaic platform since the 1940s (Fig. 4.6). 

The Wandandian delta is under constant eco-geomorphic growth due to both natural (e.g., 

weathering/erosion, deposition) and indirect anthropogenic forces (including human activities, 

climate change and sea level rise). During the Holocene, the Wandandian delta started to infill 

and prograde into the western part of St Georges Basin (Hopley, 2004; Hopley & Jones, 2006) 

with more accommodation space being generated during the current sea level rise (Fig. 4.6 
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shown in red and pink). 

 
Figure 4-6. Multi-temporal high resolution aerial photograph classifications for 1949, 1961, 1972, 1993, 2002 and 

2016 show progressive changes of Wandandian deltaic landform classes and shorelines. The clearest changes have 
occurred on the levee and backswamp facies where increasing native and mixed vegetation canopy indicates 
progressive eco-geomorphic stability. Prograded sand and silt bars have grown since 1949 and added more 

geomorphic accommodation habitat, thus allowing ecological development to continue.  

Geomorphic development has led to ecosystem expansion onto sensitive deltaic areas as 

shown by the landuse classes (Fig. 4.6). Growth of the Wandandian deltaic eco-geomorphic 

system of vegetation canopy and deltaic facies is due to the protected ecosystem allowing 

sediment accumulation. This has resulted in the active channel levees prograding into St 

Georges Basin (Fig. 4.7) with elevations up to 1.5 m above water level (Hopley, 2004). 

Vegetation canopy growth has played an important role in stabilising and expediting the 

shoreline/levee expansion and vertical accretion (Fig. 4.7). 
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Figure 4-7. Vegetation canopy acting positively to assist the geomorphic growth and to develop the deltaic 
ecosystem; (a) Casuarina has vegetated the outer edge of the subaerial portion of the mouth bar whereas the 

depressed swampy portion in the centre of the bar is dominated by Juncus. (b) Casuarina and Juncus stabilising and 
expediting vertical accretion of the subaerial portions of the Wandandian Creek delta (levees and mouth bars; after, 

Hopley, 2004).  
 
Charcoal in the basal fraction of the palaeoswamp facies suggests that at the time of 

deposition relatively frequent fire events occurred in the area (Hopley, 2004; Hopley & Jones., 

2006). Growth of levees and delta front facies have become suitable habitats for new 

ecosystems, including; mangrove and saltmarsh, as well as the native plants such as Casuarina, 

eucalypts and Juncus, which have continued to stabilise the estuarine deltaic ecosystem (Fig. 

4.7a,b). The biotic detritus has accumulated as organic matter within the sedimentary 

sequences. 

The high-resolution aerial photography analysis (Fig. 4.6) shows Wandandian deltaic facies 

progradation and growth into St Georges Basin in red and graded red. Clear spatial patterns of 

accelerated accumulation of sediment in the Wandandian system are shown in Figs 4.6 and 

4.7. Measurements of deltaic progradation including rates, total and net growth are 

summarised in Table 1 and Fig. 4.8. 
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4.4.1.1 Wandandian deltaic growth (1949-2016)  

Figures 4.6 and 4.8 have derived growth evidence from the Wandandian deltaic eco-

geomorphic system, particularly on the delta front facies and the adjacent shorelines. The area 

of the delta has been calculated for: (i) the subaerial, (ii) subaqueous delta borders and (iii) the 

total area (Table 1) thus providing annual rates of sedimentation during the study period 

(1949–2016), as illustrated in Fig. 4.9. 

Table 1 shows that the delta grew by 14% (242,860 m2) over the study period (1949–2016) at 

an average rate of 4168 m2/year, with highest rates being 5283 and 8554 m2 for 1949–1961 

and 1961–1972, respectively. The reduced delta growth between 1972 and 1993 probably 

reflects sediment trapping in the sand mining area on Wandandian Creek. The subaerial area 

has grown by 29,130 m2, allowing suitable ecological accommodation to be inhabited. The 

intertidal and subaqueous area grew by 213,730 m2 into a protected part of St Georges Basin 

preparing a great opportunity for the subaerial area to expand more positively in the future 

(Fig. 4.8). 
Table 4-1*: Area analyses of Wandandian delta for the overall delta growth, subaqueous area, total sensitive area, and average 
deltaic progradation. 

Aerial Photograph 
Subaerial 

area (km2) 

Subaqueous 

area (km2) 

Total 

sensitive area 

(km2) 

Total growth 

(km2) 

Growth/year 

(km2/year) 

1949 1.7112 0.1679 1.8791 - - 

1961 1.7125 0.23 1.9425 0.063400 0.005283 

1972 1.7134 0.3232 2.0366 0.094100 0.008554 

1993 1.7298 0.3319 2.0617 0.025100 0.001195 

2002 1.7356 0.364 2.0996 0.037900 0.004211 

2016 1.74033 0.38163 2.12196 0.022360 0.001597 

Changes (m2) 29130 213730 242860 0.242860 0.004168 

* Sources: Figures 4.6 and the calculate geometry tool of the data management package in ArcGIS, (after Hopley, 2004; LPI, 2017). 

 
Figure 4-8. Wandandian deltaic growth, illustrating the overall growth of the delta itself and its levees/shorelines 

(blue), as well as the total growth of sensitive subaqueous areas (red). (Sources; Table 4.1, Fig. 4.6). 
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4.4.1.2 Tracing the shoreline temporal movement  

Evidence of shoreline movements in Figs 4.6–4.8, and the more detailed example in Fig. 4.9, is 

a call for more shoreline dynamic analysis. The frictional interaction between the outflowing 

river water and the sediment surface (Carter & Woodroffe, 1997) within the western shallow  

channel resulted in an accumulation of a large triangular midchannel bar, which has resulted in 

the channel becoming bifurcated forming a typical fluvial-dominated birdsfoot delta 

morphology (Hopley, 2004; Hopley &Jones, 2006). The subaqueous portion of the delta 

coarsens upwards whereas the subaerial portion of the interdistributary bar fines upwards 

from relatively clean mouthbar sand to muddy finer sand interbedded with dark carbonaceous 

silt lenses (Hopley, 2004; Hopley & Jones, 2006). 

Most of the fluvial sediments passed into delta mouth via the active tidal channel are eroded 

and redeposited on the margins of St Georges Basin (Fig. 4.9). A more detailed dynamic 

analysis of the deltaic shoreline is shown in Fig. 4.10. 

 
  

Figure 4-9. Subaqueous and subaerially exposed levees associated with the western distributary channel of the 
Wandandian Creek delta. Source: LPI, 50 cm Jervis Bay and Ulladulla surveys of January 2014. 

 
Shoreline movements of Wandandian Creek delta have been captured using the digital 
shoreline analysis system (DSAS). Figure 4.10 shows clear growth (green) in the active 
delta areas. On the other hand, some erosion occurred along the landward side of the 
upper active channel (Fig. 4.10a,b,f) part of its southern bank, as well as small portion 
of the delta-front island (Fig. 4.10e). 
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The overall average shoreline extension was 1.451 m/year (Fig. 4.10) but some zones 
show shoreline erosion rates of up to 0.348 m/year. These changes occurred along 
some parts of the deltaic landform facies and are more concentrated on the southern 
part of the delta at the creek mouth. Accretion was concentrated on the left side of the 
delta (on and around the large island, Fig. 4.10d and levees of sections b and c), with a 
net shoreline movement of 2.87 m over the past 65 years. Most of the sediment 
movement occurs during flood conditions but movement around the delta margins is 
also affected by minor tidal flows and wind-wave action. 

 

Figure 4-10. Digital shoreline analysis system (DSAS) applied to the sensitive Wandandian delta shows shoreline 
erosion in red, accretion in green while yellow represents the stable zones. Attached charts show the net shoreline 
movement envelope between 1949 and 2016: (a) the upper channel; (b) western portion of the delta; (c) the mid 

delta; (d) large interdistributary island; (e) small mouthbar island; and (f) eastern portion of the delta. 
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4.4.2 Fieldwork, sampling and modelling 

4.4.2.1 Soil and sediment samples 

4.4.2.1.1 Particle Size Analysis 

The soil and sediment sample locations (Figs 4.1 and 4.12) and analyses have linked the 

detected shoreline changes to a better understanding of the Holocene facies distribution and 

sedimentation patterns. A detailed description of the stratigraphy of the Wandandian delta 

and its substrate has been presented in (Hopley, 2004; Hopley & Jones, 2006). Initial 

deposition of fluvial sands and overbank deposits progressively filled the Pleistocene low stand 

palaeochannel before reaching St Georges Basin. Progradation of the Wandandian delta into 

the broader embayment on the western margin of St Georges Basin began approximately 3.5–

4 ka (Hopley & Jones, 2006) with the prodelta/lagoonal mud facies being overlain successively 

by the delta-front sandy silt facies and the prograded sand facies (Fig. 4.11b). However, in the 

inner part of this embayment the latter two facies are mainly separated by 1–2 m thick 

organic-rich accumulations representing a palaeoswamp environment (Fig. 4.11a). The 

prograded sand facies includes mouth bar, subaqueous channel and levee, and wave-reworked 

delta-front deposits. In the innermost protected part of the embayment the prodelta sand 

facies is overlain by a younger prodelta/lagoonal mud facies recorded in WD7. 

 

Figure 4-11. Cross-sections showing the distribution of prograded sand and organic-rich silty sequences in the 
Wandandian deltaic facies, which provide suitable bases for eco-geomorphic growth. (a) Progradation of the 

western distributary into the embayment in St Georges Basin along vibracores: WD8 (west), WD7, WD9, WD6 and 
WD16 (east). (b) Eastern distributary through drill-holes WD15 (southwest), WD14 and WD13 (northeast). Its 

eastern extent is controlled by an outcropping to shallow subsurface basement high (after Hopley, 2004; Hopley, & 
Jones, 2006). 
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The sandy facies are prograded into St Georges Basin and covering the delta front sandy/silt 

(Fig. 4.11b). The sediment is characterised by prograded sand facies and more varied than the 

front sandy/silt facies of the delta (Table 4.2). Characterising the basal prograded sand facies 

from the sandy/silt facies of the delta front was complex, yet analysis of sedimentation particle 

size visibly distinguish the two facies. Comparing to the front-delta, the prograded sand facies 

within the basal sediments are silty-sands. The prograded sand facies are having quartz 

contents that marginally greater comparing to the delta-front sandy silt facies (88.1 ± 2.1 % 

comparing with 82.4 ± 1.8%), which is shown that the mineralogical composition also aids in 

differentiating these facies. These growing sandy facies are including a range of wave-

reworked delta-front deposits, subaqueous channel and levee, mouth bars (Hopley & Jones, 

2006). 

Table 4-2. Sediment and mineral analysis of samples taken from the Wandandian Creek* 

 
*Source; after, (Hopley, 2004; Hopley & Jones, 2006).  

The rate of progradation of sandy facies in the Wandandian Creek delta is difficult to establish 

in the dynamic fluvial and delta mouth areas. Very few macrofossils live within these facies and 

most of the recorded shells are reworked or broken making them unsuitable for accurate 

dating since they are not in situ (Hopley, 2004; Hopley & Jones, 2006; LPI, 2017). Thus, gaining 



Chapter 4                                                                                                         Wandandian delta (Site 2) 
.   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   

70 
 

knowledge about accumulation rates through remote sensing datasets and the GIS analytic 

system would create a better framework for assessing deltaic systems here and worldwide. 

4.4.2.1.2 X-ray diffraction 

The mineralogy and grain size of the deltaic facies shows a clear relationship to the 

depositional energy reflected in the relative proportions of quartz in the sand facies and clay in 

the fine facies (Table 2).  

Table 4-3. X-ray diffraction analyses of sediment samples from the Wandandian delta showing mineral 
proportions*. 

Facies Quartz % Albite 
% 

Illite-
Muscovite 

% 

Mixed Layer 
Illite-Smectite 

% 
Kaolinite % Calcite % Pyrite % 

Prograded Sand 
85.7 4.3 8.8 0.3 0.8 0.1 0 
86.6 2.5 0.5 7.9 2.4 0 0.1 
92.1 0.2 3.2 4.2 0.3 0 0 

Palaeoswamp 51.1 0.2 27.0 14.4 1.6 0 5.7 
59.1 1.4 26.5 4.2 2.7 0 6.1 

Delta sandy Silt 86.1 0.7 9.7 2.8 0.6 0 0.1 
78.5 0.4 7.3 10.8 2.9 0 0.1 

Prodelta/ 
Lagoonal Mud 

51.5 0.1 31.6 6.2 3.9 0.2 6.5 
56.3 0.1 28.8 3.8 5.2 0.1 5.7 
58.3 1.3 23.3 7.8 3.1 0 6.2 

Channel Fill 
Fluvial Sand 

87.2 0 0.6 9.3 2.9 0 0 
84.7 2.4 6.4 3.6 2.9 0 0 

*after; Hopley (2004). 

Clay content in the samples is highest in the low energy environments in sheltered reaches, 

but also occurs in the fluvial lithic sands through the diagenetic alteration of feldspar and rock 

fragments (Fig. 4.12). Pyrite indicates reducing conditions in the organic-rich palaeoswamp and 

prodelta/lagoonal mud facies. 
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Figure 4-12. Soil and sediment samples from the Wandandian deltaic landform, illustrating: (a) mineral contents in 
each sediment sample and represented facies, with a clear dominance of quartz, (b) the overall mineral proportions 

in the sediment samples. (The background is from a Jervis Bay 50 cm Orthorectified Image obtained from LPI for 
January 2014; Chakravarty et al.et al., 2017). 

4.4.2.1.3 Organic matter 

Organic matter plays an important role in the ecosystem development and growth on 

intertidal sedimentary deltaic landforms. The amount of organic matter in the sediment is 

controlled by the rate of organic decomposition in the sediment (Murray et al.et al., 2005). In 

general, high rates of total carbon dioxide (TCO2), ammonium (NH4
+), and silicate (SiO4

4−) 

production, and oxygen (O2) consumption indicate high respiration rates and correspond to 

high organic contents in the sediment (Murray et al.et al., 2005). As the organic matter 

degrades nutrients are released into the water column and become available for plant growth 

and ecosystem development. Organic matter components (%OM) are concentrated (Fig. 4.13) 

in the downstream part of the delta, where the wetlands are distributed. 
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Figure 4-13. Average (n=3) organic matter (benthic nutrient), TCO2, O2, NH4
+, and SiO4

4- in Wandandian delta. Note 
that NH4

+, SiO4
4-, and TCO2 were fluxing out of the sediment, whereas O2 was fluxing into the sediment. TCO2 was 

determined by alkalinity and conductivity titrations for this study site (after; Murray et al., 2005). 

While the Wandandian delta had low TCO2, O2, NH4
+, and SiO4

4- fluxes, the SiO4
4- and TCO2 

“fluxes exceeded the NH4
+ flux indicating that denitrification, carbonate dissolution or 

decoupled decomposition of organic matter were more important than respiration” (Murray et 

al.et al., 2005). Aerobic respiration in coastal and estuarine sediments generally shows a flux 

ratio of 1TCO2: 1.3O2 but the TCO2 flux in the Wandandian delta exceeded this ratio indicating 

the importance of anaerobic degradation in these deposits. This was confirmed by the large 

amount of gas, including H2S, released during vibracoring (Hopley, 2004; Murray et al., 2005; 

Hopley & Jones, 2006). 

4.4.2.2 Water quality analysis  
Water quality was assessed under average flow conditions to indicate downstream changes in 

the main water quality parameters. Figure 4.14 shows increases in conductivity, dissolved 

oxygen and salinity towards the mouth of the delta while the temperature and pH show a very 

slight increase, due to shallower water that was easier to heat (Table 3). In contrast, turbidity 

has shown a decline in the downstream direction because suspended sediment has flocculated 

and accumulated along the delta channels as salinity increases. At the same time, the active 

channel flows more slowly towards the coastal end of the delta especially during rising basin 

water levels (due to floods, tides or seiches), which makes the river less able to transport both 

bedload and suspended sediments. These results clearly indicate that abundant sediment is 

transported to the delta leading to high rates of deposition and bank accretion in these 

downstream areas. Thus, the sediment is basically spread across the entire estuary and the 

suspended sediment becomes less and finer during its movement along the Wandandian delta 

due to flocculation. 
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Table 4-4. Table 3. Profile depth and analysis of water temperature, salinity, dissolved oxygen (DO), conductivity 
and turbidity. 
Sample 

No. 
Depth 

(m) 
Temperature 

(°C) 
Salinity 

(±0.05 ‰) 
DO 
(%) 

Conductivity 
(±0.05 mS/cm) 

Turbidity 
(NTUs) 

WD8 −0.6 19.8 28.8 89.4 14.5 20.54 
WD9 −1.1 21.2 29.1 82.6 16.8 19.1 
WD17 −1.5 21.1 30.3 80.9 17.12 19.1 
WD16 −2.4 21.3 29.6 79.8 18.9 19.1 
WD11 −1.96 21.4 30.7 79.55 20.4 21.9 

Average 1.5 21.0 29.7 82.5 17.5 19.9 

 

 

Figure 4-14. Water sample analyses show spatial changes in; conductivity, salinity, dissolved oxygen and turbidity, 
(sample locations have presented on Fig. 4.1). 
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4.5 Discussion 
The knowledge gained by assessing accumulation rates through remote sensing datasets and 

the GIS analytic system creates a better framework for assessing deltaic systems here and 

worldwide. The multi-temporal changes analysis approach was able to quantify the eco-

geomorphic changes on the Wandandian delta case study, and shows a qualitative picture of 

changes in the pattern of land cover, banks and broad changes in the delta area since the start 

of suitable historical photographic data in 1949 (Figs 4.7–4.9 and Table 4.1). The main features 

shown by the multitemporal deltaic changes between 1949, 1961 and 1972 are in the delta 

front facies, which involved growth of the levees, deltaic shoreline facies, a reduction in the 

width of the active channel, and changes to the areas of mangrove, saltmarsh and some native 

plant canopy (Figs 4.6–4.8). The subaqueous zone and the active delta channel, as well as 

some of the internal shorelines, experienced net accretion in all five analysed time intervals 

between 1949 and 2016 but especially from the 1940s to 1970s. Consequently, most of the 

extended areas have increased land covers by expansion of mangroves and saltmarshes. 

The active channel of Wandandian Creek has bifurcated with the eastern distributary 

prograding onto the shallow rocky bed on the western side of the St Georges Basin producing 

an elongate delta. In contrast, the western distributary extends into the middle of the bay 

forming a small birdsfoot delta. These delta extensions have resulted in expanded geomorphic 

units including levees, floodplain, sandspits and their associated land covers (Figs 4.6 and 4.10; 

(Hopley, 2004). Both distributaries are characterised by well-defined subaqueous and subaerial 

levees up to 1.5 m above water level. These levees consist of coarse fluvial sand that fine 

upwards to silty sands with interbedded dark organic-rich silt lenses. The subaerial levees are 

rapidly stabilized mainly by Casuarina and Juncus (Fig. 4.7b). Additionally, most of the native 

plants and the new saltmarsh areas (seen in 1949) were growing on the stable sensitive areas 

and started mixing with mangroves in the tidal zones as an effect of sea level and the 

consequent table water rise (Figs 4.4d and 4.6). The mangrove cover has gained ground as a 

result of the shoreline expansion (Figs 4.6 and 4.8). 

The minimal wind-wave reworking in the western embayment of St Georges Basin means that 

it represents an ideal environment for silt and organic matter accumulation as Wandandian 

Creek discharges load through the delta. A reduced sediment carrying capacity through the 

delta may reflect a lower river discharge (lower rainfall) or more probably represents gradual 

filling and abandonment of previously active channels (Coleman & Wright, 1975). The large 

woody detritus and abundant organic material present in the palaeoswamp and 

prodelta/lagoonal mud facies were mainly transported as rafted plant debris into these quiet 
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water environments. Two distinct sand sheets in the upper part of the palaeoswamp facies 

(Fig. 4.11a) probably represent large flood events. The palaeoswamp deposits typically have a 

distinctive hydrogen sulphide smell caused by anaerobic decomposition of organic matter in 

the presence of sulphate ions. 

Suspended sediment fluxes from the catchment and the progradation of geomorphic units are 

the major influences controlling this delta growth in an inner estuary, like St Georges Basin 

(Hopley, 2004; Hopley & Jones, 2006). The results of this study reveal some important aspects 

of human and natural effects influencing the sedimentary facies, shoreline growth and water 

quality of Wandandian Creek and its deltaic zone (Figs 4.6–4.10). 

Water quality analysis (Table 3 and Fig. 4.14) has shown that sedimentation increases towards 

the delta head providing continued accumulation processes. The salinity shows a gradual 

increase downstream towards the marine influenced St Georges Basin. The water temperature 

also increases due to the stagnated water and limited ocean water exchange in the inner parts 

of St Georges Basin (Hopley, 2004; Murray et al., 2005). Meanwhile, the conductivity and 

turbidity have fluctuated but show a slight increase towards the delta mouth reflecting the 

influence of salinity and suspended sediment transport and accumulation along the creek. In 

contrast, dissolved oxygen shows a declining trend seaward, indicating that O2 consumption in 

the water column exceeded any replenishment from photosynthesis or the atmosphere. 

The deltaic progradation evidence comes from the geomorphic growth of 242,860 m2 over the 

study period (4168 m2 annually, Table 1). Growth has resulted from the sediment delivered to 

the coastal zone through the Wandandian Creek drainage system from intermediate 

moderately modified catchment. This growth has provided good ecosystem accommodation 

for plant colonisation, with common organic matter accumulating within the sediment along 

the shorelines and in the interdistributary bays. 

This study has illustrated how careful analysis of remote sensing data using a GIS platform can 

lead to a detailed understanding of the growth and evolution of deltaic and estuarine systems 

and is similar to the results presented for other Australian coastal systems (Kench, 1999; 

Hopley& Jones, 2007; Sloss et al.et al., 2007; Akumu et al.et al., 2010; ALUM, 2010; Al-Nasrawi 

et al.et al., 2016b). This implies that the methodology can be broadly applied to study 

morphological changes over relatively short timeframes in other coastal lagoon systems both 

in eastern Australia and more generally to any similar systems around the world. 
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4.6 Conclusions 
This investigation has effectively used remote sensing and GIS analysis to quantify historical 

and existing eco-geomorphic situations in deltas and use these to predict their future 

responses to related environmental stressors. Proven deltaic progradation has shown how 

estuaries can keep up with sea level rise through continuous sand/silt sediment accumulation 

derived from a partially modified catchment. 

The morphology of the Wandandian Creek delta has been influenced by both the shape of the 

shallow bedrock and Pleistocene outcrops and by recent anthropogenic modifications within 

the catchment. Delta growth into the western arm of St Georges Basin began at 3.5–4 ka with 

the delta-front sandy silt facies overlying a very thin prodelta mud facies. Seaward extension of 

the overlying prograded sand facies formed a coarsening-upward sequence that was probably 

facilitated by the lowering of regional sea-level by about 1.5 m after 4 ka (Sloss et al., 2007). 

The fall in sea-level reduced the available accommodation space farther up Wandandian Creek 

releasing more sediment for delta growth. As the delta prograded into a broader and deeper 

part of St Georges Basin its form became less restricted, and the western distributary has 

formed a typical classic birds-foot delta [37–39, 42, 44]. The large amount of organic matter in 

the fine-grained delta facies indicates subaqueous deposition in a low energy environment at 

water depths similar to or slightly higher than at present (Hopley & Jones, 2006). The upper 

delta floodplains, levees and backswamps partly overlie the lower delta plain subaqueous units 

described above but elsewhere they directly overlie fluvial sands. These fluvial-dominated 

areas show a typical fining-upwards sequence, and hosted an extensive vegetation canopy, 

such as mangrove vegetated shorelines and backswamps with saltmarsh habitats. 

European modification of the Wandandian Creek catchment (22.1%) has had a limited impact 

on sedimentation and progradation rates of the delta [15, 16]. However, dredging in the 

Wandandian river channel in the 1970s reduced the amount of bedload transport into St 

Georges Basin restricting delta progradation. The effects of modifications such as this means 

that short term intensive investigations based on remote sensing and GIS analysis are highly 

recommended in all such areas worldwide. 

The eco-geomorphic interpretation from this study could assist the Shoalhaven City Council 

and local landowners on the lower Wandandian Creek floodplains to make informed decisions 

about the future environmental management of the delta. The findings from this study can be 

extended locally and globally when considering the Holocene development of coastal lagoons. 

For example, the widespread occurrence of pyrite- and organic-rich delta-front deposits at 

relatively shallow depths could lead to the formation of acid sulphate soils if they were drained 
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and oxidized. This would have a large impact on the surrounding environment. 

This thesis has established that remote sensing datasets and GIS analysis, in combination with 

sedimentological and morphological data, can clearly document the evolution of the 

Wandandian deltaic eco-geomorphic system as it progrades into St Georges Basin, 

southeastern NSW, Australia. The understanding of how the deltaic landforms have evolved in 

the past can then be used to help establish their probable vulnerability/adaptability into the 

future. Equivalent analytical methods can be extended to and replicated in similar lagoonal 

estuaries worldwide. 
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5 Chapter V: An assessment of anthropogenic 
and climate stressors on estuaries using a 
spatio-temporal GIS-modelling approach for 
sustainability: Towamba estuary 

 

5.1 ABSTRACT 

Monitoring estuarine eco-geomorphic dynamics has become a very important aspect of 

coastal studies in relation to current climate change and worldwide infrastructure 

development in coastal zones. Together these factors have altered the natural eco-geomorphic 

processes, and caused changes in estuarine regimes, especially coastal wetlands. To ensure the 

sustainable use of coastal resources, comprehensive modelling can help managers make 

appropriate decisions. This study uses Towamba estuary (southeastern NSW, Australia) as a 

case study to demonstrate the importance of modelling estuarine dynamism to investigate the 

rates of eco-geomorphic change and the consequences of these changes. This research 

employs several data-based modelling approaches over time to explore and assess how 

climate change and human activities have altered this estuarine eco-geomorphic setting. 

Multi-temporal trend/change analysis of land cover, shorelines and sediment delivery, 

estimated from remote sensing data, GIS analysis and fieldwork, show significant spatio-

temporal changes to the areal extent and elevation of estuarine facies (for instance; 

mangroves, saltmarshes and sandspits) in the Towamba estuary over the past 65 years. Overall 

land and wetland area has grown by 169608 m2 (2609 m2 annually), but some erosion has 

occurred in the tidal channel and on the landward side of the coastal barrier. Geomorphic 

growth has resulted in stability of the estuarine habitats, particularly within saltmarsh, 

mangrove and mixed native plant areas. Geomorphic changes have occurred due to a 

combination of sediment runoff from the mostly unmodified terrestrial catchment, nearshore 

processes (ocean dynamics) and human activities. The construction of GIS models, in 

conjunction with water and sediment samples to characterise physical processes within the 

ecosystem (for instance; sediment transport and erosion/deposition) quantifies changes within 

the ecosystem. Such robust models will allow resource managers to make more informed 

decisions and evaluate potential consequences of changes to the existing ecosystems. 

ADDITIONAL INDEX WORDS: Anthropogenic modifications, eco-geomorphology, ecosystem 

management, GIS-modelling, sediment transport.  
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5.2 Introduction and Background 
The ecosystems on Earth, particularly in the coastal zones, have become a balanced and 

stabilised since the mid Holocene (Troedson et al., 2004; Murray-Wallace & Woodroffe, 2014). 

Early Sumerians (Mesopotamia 4500 BC – southern Iraq nowadays) and most ancient 

civilisations inhabited coastal and estuarine environments, which have provided people with 

many ecologically valuable services, including food, transport and access within a specific 

ecosystem (Postgate, 1992). Since then, habitation attractions have increased for economic 

and environmental reasons, impacted directly on the estuarine areas and/or indirectly through 

their relevant catchments (Cherfas, 1990; Pendleton, 2010; Neumann et al., 2015). Coastal 

ecosystems are threatened as a result of the rapid population growth that concentrates 

anthropogenic stressors on coastlines around the world (Neumann et al., 2015). 

Anthropogenic pressure include deforesting, farming, urbanisation and related industrial and 

recreational activities, which influence the current ecological and geomorphological (eco-

geomorphic) processes and potentially add adverse pressures on the environment (Baban, 

1997; Lee et al., 2006; DSE, 2007; Hardisty, 2008; Al-Nasrawi et al., 2016b). More recently, 

environmental stressors have risen, including increasing severe storms/flood events, climate 

change, rising sea level and habitat alteration, which threaten the eco-geomorphic functions 

that have supported coastal habitats historically (Michener et al., 1997; Nicholls, 2004). Human 

and natural processes/hazards that influence coastal eco-geomorphology should therefore be 

monitored, whether for the direct threats of loss to the estuary eco-geomorphic system itself 

or indirect adverse impacts from land use practices within the catchment. Kingsford (1990) 

revealed that direct and indirect human impacts can change estuarine habitats, which can then 

affect the conservation management plans and policies. Indirect negative effects include 

modifying land covers in the catchment and its water usage (Saintilan & Imgraben, 2012; Al-

Nasrawi et al., 2016a, 2016b, 2018a). That has reflected several eco-geomorphic losses, 

including estuarine saltmarshes decline in southeastern NSW (Saintilan & Williams, 2010). The 

Towamba River estuary (southeastern NSW, Australia) represents an example of an infilled and 

prograding river-dominated estuary within a near-pristine catchment area where natural 

processes have controlled downstream runoff and sediment supply to the estuary zone to 

establish the modern geomorphological landforms and the associated habitat as a coastal 

ecosystem. 

Morphological changes to estuaries and associated changes to their accompanying wetland 

may produce complex results for the biota that are not intuitive because of biological 

interactions (Day et al., 2008). Unfortunately, numerous coastal ecosystems, including 



Chapter 5                                                                                         Towamba Estuarine system (Site 3) 
.   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   

80 
 

wetlands, have been degraded and a lot of artificial-wetlands have been unsuccessful to 

reproduce the varied ecosystems within such wetlands, such as some of the Louisiana coastal 

wetlands (Penland et al., 2005). 

Comprehending the causes that have influenced the current geomorphology and process 

regime of the estuary is vital in terms of erosion, transport and deposition process of 

terrigenous clastic sediments, that are basically controlled by river, human activities on Earth 

and climate factors (Blott et al., 2006). Clastic sediments are delivered to the estuarine 

environments by rivers from the catchments recording the effects of tectonic, climatic and sea-

level changes and anthropogenic land-use that act as major factors controlling temporal and 

spatial changes in coastal estuarine ecosystems (Zhu et al., 2010). 

There are vitally needed to monitor, evaluate and quantify changes in an estuary’s 

geomorphology, sedimentary characteristics, water quality and impacts of human settlement 

on estuarine ecosystems at all development stages. This study quantifies threats to a coastal 

estuarine regime, such as shoreline erosion and sediment delivery problems, through 

continuous monitoring methods at a landscape scale. Methods include; remote sensing, GIS 

analysis and fieldwork investigations at a chosen estuarine site as a case study, to model 

potential modifications that can be used for rehabilitation of the associated coastal wetlands. 

Additionally, the effects of artificial modifications (for example, the grazing and farming growth 

as a dynamic land cover function) in the catchment are another principle element addressed. 

In order to monitor and evaluate the estuary’s current eco-geomorphic status and the possible 

future changes that will occur, modelling and understanding the existing situation is an 

essential role for eco-geomorphic system managers (Al-Nasrawi et al., 2015a, 2016b, 2018c). 

Modelling estuarine eco-geomorphology, however, is restricted by a relative shortage of 

measuring data, computational expense and uncertainty. Many recent researches have 

established the groundwork for developing strong calibration and simulation methods for 

estuarine geomorphic change (Thom et al., 1975; Ball, 1994; Carter, 1999; Roy et al., 2001; 

Blott et al., 2006; Bianchi & Allison, 2009; Batzer & Sharitz, 2014; Venter et al., 2016). 

Approximately 15-16×109 tons of sediments are estimated to be delivered every year to the 

oceans under current climatic conditions (Zhu et al., 2010). Riverine estuary studies have 

focused on many eco-geomorphic aspects including: (i) fluvial geomorphology and 

sedimentology (Jones et al., 1993); (ii) hydrology (Zhu et al., 2010); (iii) sediment transport - 

including erosion and weathering (Wei et al., 2007; Zhu et al., 2010); (iv) the 

characteristics/dynamics of the riverine sediment transport regarding their particle size (Yang 
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et al., 2009); (v) the mineralogical properties of the sediment (Sondi et al., 2008; Zhu et al., 

2010); (vi) the geochemistry aspect (Jones et al., 2003a); (vii) the characteristic 

assessment/evolution of a delta (Jones et al., 2003b; Zhu et al., 2010); (viii) general 

environmental research (Hu et al., 2009); (ix) climate change studies of the late Quaternary 

(Hudson, 1991; Zhou et al., 2005) (Zhu et al., 2010); and (x) sea level change (Sloss et al., 2007; 

Al-Nasrawi et al., 2015a, 2018c). 

The object of this research is to (1) determining the estuarine system spatial eco-geomorphic 

growth within the last few decades, (2) investigating the direct and indirect interactions 

between the anthropogenic and environmental trends on the catchment’s sedimentation and 

runoff factors, and then (3) determine the implications of the eco-geomorphic assessment 

trends for the future health of estuarine deltaic ecosystems that would be applicable to coastal 

wetlands worldwide. The importance of this work to management is that it gives an idea of the 

sensitivity of the estuary to sand flat and shoreline extension, which allows more ecosystem 

expansion as the sediment accumulates. 

Previous spatio-temporal evaluations have used RS datasets, GIS analyses, and fieldwork 

sampling to highlight the estuarine changes, including shoreline change rates and associated 

landcover change. 

GIS simulation and RS data analysis combined with field work sampling provides a quantifiable 

approach to developing accurate models of spatial and temporal changes in estuarine systems. 

GIS analysis of aerial photographs, satellite images, LiDAR data and fieldwork (water analysis, 

sediment sampling, bathymetry and GPS surveys) overcome difficulties in extracting 

geomorphic changes, such as shoreline position and detection of shoreline changes, as well as 

identifying sediment sources and determining sedimentation rates. 

5.2.1 Study site specification 

The formation of an estuary depends on the position of sea-level compared to the level of 

fresh water flow from the river (Wright, 1970; Woodroffe et al., 2000). Estuarine systems 

within southern NSW coast provide examples of disturbed geomorphological regimes. NSW 

estuaries infilled late Quaternary low-stand incised valley systems (Roy et al., 2001; Sloss et al., 

2006b, 2010). The landward sediment movement  from the continental shelf after the Last 

Glacial Maximum (LGM) low-stand accumulated in the river mouths and formed Holocene 

coastal estuarine sand barriers (Sloss et al., 2006b, 2010, Roy & Crawford 2011). Over the 

Holocene highstand of sea levels, estuarine systems started to simultaneously infill with 
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marine sediment and with sediment derived from the river catchment. NSW estuaries vary 

greatly in their rate of infilling depending on their sediment supply and the geomorphic ability 

to keep the sediment within the estuary, depending on the balance between the river and 

nearshore ocean energies. Towamba River drains into Twofold Bay which is affected by two 

opposing oceanic water masses: a cold current from the Southern Ocean and the warmer East 

Australian Current (Yassini & Jones 1995) that both have a major effect on the microfossil 

ecology of the bay (Dean & De Deckker 2013).. Twofold Bay is the largest commercial fishing 

port in New South Wales and has been an important place for many anthropogenic activities, 

ranging from large boat traffic, Australian Navy activities, timber export, recreational fishing 

and whaling to mussel farming (Dean & De Deckker, 2013). 

Successive erosion and deposition cycles in NSW estuaries have resulted in ecological and 

morphological changes over time (Roy et al., 2001). Furthermore, there has been a clear 

increase in the possible effects of changes in natural environmental aspects, such as dynamics 

of the sand bodies. This have resulted from, i) climate change, including rising mean sea-level 

and the frequency of high energy storms; and ii) anthropogenic influences including farming, 

industrial development and urbanisation within the catchment, dredging of the channel, 

embankment modification within estuarine ecosystems (Roy et al., 2001). These geomorphic 

changes have also led to ecological responses, particularly within estuarine/coastal wetlands, 

because of their sensitivity and relatively rapid responses (Al-Nasrawi et al., 2016b, 2017a). 

Responses include developing vegetation canopy (mainly mangrove, Casuarina and some 

Juncus sp.) particularly within shoreline zone, as well as saltmarsh areas, that offer suitable 

accommodation and habitat for other ecological and biological communities to develop. 

The Towamba estuary is located on the southeast coast of New South Wales near Eden (Fig. 

5.1). The main coastal ecosystem of the Towamba estuary is located at the end of the 

Towamba River delta where it enters Twofold Bay. The active tidal channel has an average 

depth of 1.15 m. and is constrained by rock outcrops, resulting in restricted estuarine shape 

(Fig. 5.1). Towamba is mostly a fluvial sandy estuary, with sediment derived from volcanic, 

volcaniclastic and mudstone rocks in the source area; muddy components only accumulated in 

low energy areas resulting in a Quaternary alluvium with little structural strength. 

According to Roy et al.’s (2001) classification, Towamba is a mature wave-dominated barrier 

estuary that has infilled and is now dominated by fluvial processes and sediment bypass to the 

estuary mouth. It has an open estuary mouth into Twofold Bay, with the water and sediment 

mainly derived from Nullica State Forest and the other mostly untouched forests in the 
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catchment area (Blay 1944). The source of the perennial Towamba River is at Mount Marshall 

in the South Coast Range that forms part of Great Dividing Range (SOC 2010).  

 
Figure 5-1. The study site in the coastal estuary section of Towamba River, southeast NSW, Australia (a and b), 

showing; (c) the study site region and the river catchment, (d) the downstream river and estuary, and (e) the wave-
dominated estuarine barrier that secures the estuarine eco-geomorphic system. 

The river flows generally southeast and then northeast, joined by 12 tributaries, before flowing 

into Twofold Bay southeast of Eden near East Boyd (Hudson 1991). The river descends 533 m 

over its 86-km course (Roy et al. 2001; DPI/OW 2017) passing through part of the South East 

Forest National Park in its upper reaches. Farther downstream the river forms the northern 

boundary of Mount Imlay National Park. Towamba River is also known as Kiah River since the 

Princes Highway crosses the river at Kiah (Fig. 5.1) which is about 6 km up from the estuary 

(SOC 2010). 
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The estuary area is 2.7 km2 and includes interesting coastal wetlands, native plants, a dynamic 

barrier island, sandspits, tidal banks, tidal/active channel and other sandflats with palaeo-delta 

facies underlying them. The estuarine barrier hinders direct sediment discharge, leading to 

more deposition within the estuary, supporting the rapid growth of eco-geomorphic features 

over time. It protects a large area of seagrasses, saltmarshes and mangroves that are 

important for biodiversity and ecosystem service roles. Towamba River transports weathered 

sediments downstream from a mostly untouched catchment area of 1034 km2. The river was 

deeply incised during the last low stand of sea level while the post-glacial sea level rise 

submerged the section of the river adjacent to the coast, forming an estuarine inlet. The 

estuary is partly enclosed by a sand flat/spit formed at the river mouth by coastal processes. 

Deposition has occurred gradually over thousands of years, filling the estuary with sediments 

from the river, and it is now dominated by sediment bypass in a mature estuarine system 

prograding into Twofold Bay (Roy et al., 2001; Jones & Byrne 2014, p.203; DPI/OW 2017).  The 

Towamba River has a series of interconnected channels forming a braided network. The slope 

of the river was critical in the formation of the estuary. Deposition can occur either at the 

bayhead delta, in the estuary or in Twofold Bay in front of the river mouth (Roy et al., 2001; 

Young, 2011; DPI/OW, 2017). 

Historically a few sections of the river near Kiah village (Fig. 5.1) became unstable and resulted 

in high erosion rates on both sides of the river where the bank consisted of alluvial sediment. 

This erosion was enhanced by undercutting, bank slumps, tree falls and the uncontrolled 

access to the banks by livestock. The erosion was localized along the river and only occurred 

where alluvial fill rather than bedrock occurred in the banks (Ian, 2013). This increased the 

volume of sediment moving downstream into the estuary and resulted in rapid expansion of 

the bayhead delta into the southwestern Twofold Bay. That may explaining why very little 

mudflat occurs along the margins of the estuary, which are mostly covered by saltmarsh and 

mangrove wetlands, including Grey Mangrove (Avicennia marina; fieldwork observation; 

DPI/OW, 2017). Fieldwork observations indicate dynamic changes to the wetlands caused by 

interactions between the sedimentary characteristics and rising sea level. 

5.2.2 Related Local climatic conditio 

Climate factors (precipitation and the resultant river discharge, temperature and mean sea 

level) have significant effects on the eco-geomorphic processes and runoff amount around 

Towamba estuary. Although the Towamba site is also affected by coastal weather systems, a 

clear decline in precipitation has occurred over last forty years (Fig. 5.2a). The Towamba River 
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catchment has experienced a fluctuating decline (2.4 mm/a) in annual rainfall from 974 to 879 

mm during study period (Fig. 5.2a). However, it is still providing adequate flow rates (average 

of 387.4 ML/day since 1970s) in the main Towamba River channel (Fig. 5.2b) that transports 

the weathered sediments and associated nutrient elements into the estuarine eco-geomorphic 

system where they have accumulated. However, there has been a clear decline in average of 

Towamba River discharges over the last forty years (see Fig. 5.2b; BOM, 2017b; DPI/OW, 

2017). 

 
Figure 5-2. Climate trends affecting the Towamba River estuary; (a) the annual precipitation, (b) flow discharge, (c) 

mean air temperature, and (d) monthly mean sea level (at Australian height datum). (BOM, 2017b, and KINMI 
climate explore).  

Air temperature has increased over the past 55 years since 1960, with some fluctuations (Fig. 

5.2c). This reflects the global warming trend. Towamba estuary has a temperate oceanic 

climate (Cfb) with an average temperature of 15.38°C - 16.78°C (BOM, 2017b). 

Global warming and climate change are also responsible for the recorded local mean sea level 

rise (Fig. 5.2d) from the tide gauging station at Eden. Monthly analysed data from 1970 to 2015 

from the Eden gauging station yielded a positive trend with sea level rising by 0.036 m over the 

last 45 years. The average monthly mean sea level is now at 0.836 m; the maximum recorded 

sea level was 2.187 m on 14th June 1999, whereas the minimum record was -0.380 m on 2nd 

December 1986 (BOM, 2017b). 
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5.3 Methods 
Changes in the areas of the eco-geomorphic estuarine units, like wetlands and sandspits, have 

been assessed by measuring the landcover on RS datasets over time using a GIS analysis 

approach supported by fieldwork investigations and related laboratory analysis. Analyses of 

the shoreline have determined the changes in erosion/accretion rates at the study site 

whereas changes of mangrove and saltmarsh areas (as a landcover function) illustrate the 

shoreline and vegetation canopy stability in the Towamba estuary. 

This project was implemented using a multifaceted methodology. It started with GIS and RS 

based analysis to identify and classify the landcover, shoreline and vegetation changes at this 

specific study site depending on recent and historical records of aerial photography, satellite 

imagery and LiDAR data. This was combined with fieldwork – sampling the water, 

soil/sediment, a GPS barrier survey, and the bathymetry of the active channel. Laboratory 

analysis of the samples was involved as well. 

This research quantifies and divides the methodology into three main parts (Fig. 5.3). 

 
Figure 5-3. The spatiotemporal eco-geomorphic changes modelling approach, database collection and analysis sequences. 



Chapter 5                                                                                         Towamba Estuarine system (Site 3) 
.   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   

87 
 

5.3.1 Remote sensing data collection and GIS analysi 

Remote sensing and GIS datasets, which have optimum relevance according to the current 

literature (Calzadilla et al., 2002; Hughes et al., 2006; Giri et al., 2011; Al-Nasrawi et al., 2017a, 

2017b), were used to classify landcover classes from 1949 to 2015 using fuzzy membership 

function. LiDAR (2004 and 2010) and SRTM (2011) data have been analysed in ArcGIS10.2 to 

create the DEMs. LiDAR and SRTM data sets have been used to extract various DEMs using TIN 

and surface analytic GIS tools for elevation analysis and validations. Kriging, clipping, and 

masking have also been used in ArcGIS10.2 to incorporate the resultant fieldwork analyses. 

5.3.1.1 Photogrammetry; shoreline digitizing 

Historical aerial photogrammetry of the Towamba estuary was used to model the 

spatiotemporal estuary dynamics. The whole estuary has been captured at; May 1949, June 

1972, June 1998, and April 2014. ScanMaker 9800XL Plus (A3 Colour Scanner) having a 

resolution of 600 dpi was used to digitalize the selected photographs. The sources for these 

images include Land and Property Information (LPI, 2014), Land and Property Management 

Authority (LPMA, 1998), Department of Lands (1972) and Army Survey Core (1949). ERDAS 

IMAGEN v2014 software was used to orthorectify the digitised aerial photographs, with at 

least six points as ground-control distributed around the estuarine area on each image to 

defining the estuarine eco-geomorphic systems.. For increased accuracy of the orthorectified 

images, the chosen points were digitised with a maximum root mean square error of 0.05. In 

addition to the ground-control points, a digital elevation model was used for 

orthorectification. The most accurate digital elevation model (derived from LiDAR data; Land 

and Property Information, NSW (LPI)) available for the Towamba estuary area, was accurate to 

1 m in the horizontal plane. If carried out carefully, the image-to-image techniques give 

accurate correlation of spatial features over time (Hughes et al,. 2006; Hopley & Jones, 2006; 

Al-Nasrawi et al., 2017b). 

5.3.1.2 Multitemporal imagery classification 

Landsat-resolution data has enough detail to capture the eco-geomorphic distribution and 

dynamics of estuaries (Giri et al. 2011). However, small patches (< 900–2700 m2) of classes 

along a small coastal estuary cannot be identified from these data (FAO 2003). Thus, Landsat 

datasets have been combined with high-resolution (50 cm) satellite RS data from LPI (Fig. 

5.4a), and aerial photographs, to assess and monitor the study site, as shown in Fig. 5.4b. 

Imagery classification helps monitor the estuary and is the first step in checking the historical 

records for eco-geomorphic changes. Landsat images of MSS, TM, ETM+ and LPI supervised 



Chapter 5                                                                                         Towamba Estuarine system (Site 3) 
.   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   

88 
 

classification were used to identify, group and label features in an image according to their 

spectral fingerprint. In supervised classification, pixels are clustered together based on spectral 

homogeneity and spectral distance using an identified fingerprint from each class. ERDAS 

IMAGEN software has been used to provide supervised classification, using eight classes and 

ignoring the zero values. Figure 5.5 shows the results and traces the general multitemporal 

dynamics over the last 43 years (1972, 1984, 1993, 2004, 2010 and 2015). 

5.3.1.3 Future estuarine scenario 

Another modelling exercise/implementation has generated the future scenario of the estuary, 

by using the resulted shapefiles of the Towamba estuary and its growing rates. Simulating 

future growth scenario technically is as in the following steps to estimate and detecting the 

areas that will be gaining ground in 21st Century; using Animation manager tool of the 

ArcScene 10.4, by converting the resulted shapefile above to a raster grid format, which would 

generate a gradient pixel values for each specific class type that considering the neighbouring 

class relationships. Now, these pixel values will be considered as a Z values in the simulation 

processes. Then, creating a polygon (to be blued second layer representing water bodies) 

covering the area to and to be zero levelled. After that, from the Display menu of the raster 

properties, Cubic convolution (for continuous data) need to be used to choose the; Base 

Heights, floating on a custom surface, and change the custom default elevation (to 300 or 

whatever will make a logical 3D shape), after that Calculate from extent tool, from the 

ScenLayers properties, will generate the 3D shape. Finally, create Animation Key frame (for the 

polygon) from the Animation manager tool, add number of these keys and change their “Z” 

value to the historical rates of landcover and shorelines of the existing situation to generate 

the future scenario, however, the growth rates need to be revised oppositely (for example 

positive values to negative values) to allow the eco-geomorphic sets to inundate the water 

bodies (the zero levelled polygon), and then simply run and save the scenarios using animation 

controls panel. 

5.3.1.4 Shoreline change tracing using DSAS analysis 

"The Digital Shoreline Analysis System (DSAS) is a freely available software application that 

works within the Environmental Systems Research Institute (ESRI) Geographic Information 

System (ArcGIS) software. DSAS computes rate-of-change statistics for a time series of 

shoreline vector data. The last version is 4.0, which was released in May 2009 and is 

compatible with most of ArcGISs. It is supported on both Windows XP and Vista operating 

systems" (Thieler et al., 2009). 
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DSAS has been utilised to track the shoreline position on the most dynamic part of the estuary 

(the estuarine barrier) utilising RS data from 1949, 1972, 1998 and 2015 and the DSAS was 

used to quantify the rate of barrier changes over a 65 year period (Fig. 5.12). The DSAS analysis 

has used 274 transects sampled along the front and back (137 each) at 50 m intervals along the 

barrier shorelines using a centred baseline (offshore) on the middle of the barrier (Fig. 5.12a). 

To calculate the rate of shoreline changes over the study period, two statistical methods have 

been used: the net shoreline movement/envelope and the linear regression rate (Thieler et al., 

2009; Tran Thi et al., 2014). 

5.3.2 Fieldwork sampling, laboratory and modelling methods 

GIS and RS changes monitoring the evolution of the Towamba estuary eco-geomorphic 

changes during the past 65 years were combined with fieldwork in November 2015 consisting 

of 35 sediment samples, 16 water quality sample analyses, and 11.13 km of bathymetric and 

barrier elevation surveys. The downstream river portion located just upstream from the 

estuary was included in the fieldwork investigations to allow more understanding of the 

existing situation. 

5.3.2.1 Soil and sediment samples 

35 sediment and soil samples from the estuary were analysed for grain size and loss on 

ignition, and the mineralogy was assessed using X-ray diffraction. Samples of sediment were 

obtained in November-2015, ranging from a 500 m/point grid at the estuary mouth to 1 km 

spacing at the lower-river section (see Fig. 5.8 for sample distribution). 

(a) Particle Size Analysis 

Grainsize, sorting, skewness and kurtosis were determined to evaluate the transport distances, 

source and depositional conditions of each sample. Coarse fractions of the samples were 

washed with fresh water, sub-sampled to ~100 g aliquots and dried at 60°C. The Blott (2010) 

GRADSTAT TM v8.0 method was used for grain-size analysis. Using Krumbein and Pettijohn’s 

(1938) approach, the phi scale was used to calculate the logarithmic particle parameters. A 

Mastersizer 2000 laser diffraction particle size analyser was used to measure fractions finer 

than 2 mm. 

A kriging interpolation tool was employed in ArcGIS, to produce a gridded map with 10 m 

spatial resolution over the Towamba estuary based on the 35 sampled locations. The sediment 

grain characteristics, including percentage of sand, gravel, silt/clay (mud), skewness and 

sorting was then visualised for spatial pattern assessment. 
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(b) Loss on ignition (LOI) 

The 35 soil and sediment samples were analysed for organic matter components (% OM) using 

LOI to evaluate its involvement in changes in elevation with respect to the water table, as well 

as, it helps to develop the ecosystem abilities such as soil stage/ability. The sediment samples 

were dried at 60°C, crushed and five grams was placed in the ignition oven at 450°C/24 hours, 

as it is the best temperature can be applied to fluvial bed sediments according to Sutherland’s 

(1998) approach. Samples were weighed again after organic matter had been burned to 

evaluate the LOI. 

(c) X-ray diffraction (XRD) 

XRD analysis was conducted on 35 representative samples to determined primary mineral 

composition within the various facies (Table 5.4). The samples were dried at 60°C and then 

crushed. The XRD utilised a PW1130 copper tube, a Spellman DF3 generator and SIE 112 

software. The samples were analysed from 4° to 70° 2θ and the diffraction traces were 

assessed using Traces, UPDSM and SIROQUANT software to identify the minerals present.  

5.3.2.2 Water quality analysis 

Water quality of 16 samples was determined in the field using a Yeo-Kal 615 water quality 

analyser to assess the health of the eco-geomorphic system. This system is influenced river by 

water quality and flow, including the quantity of suspended sediment and salinity levels. The 

water quality analyser provided real-time readings of turbidity, salinity, conductivity, pH, and 

dissolved oxygen between Kiah (Fig. 5.1) to the seaward end of the estuary as shown in Fig. 

5.10. 

5.3.2.3 Bathymetric survey 

Bathymetric data was collected using a UOW-boat-mounted Ceeducer echo-sounder. Sounder 

accuracy was checked and confirmed using a hand held high resolution-GPS (10 cm) and a 3 m 

measuring stick. The initial bathymetric survey was conducted over a two day period in 

November 2015. A bathymetric survey was conducted along the active channel of the estuary 

and adjacent river using an echosounding Ceeducer in combination with an RTK-antenna-GPS 

linked to the nearest ground-control stations and 4G mobile phone. This achieved an accurate 

bathymetric survey with true time and location accuracy according to the local height datum 

(zero level) to avoid any tidal-dynamic effects. 

Collected data, in the form of an X, Y, Z point cloud, recorded every one second from the 

estuary entrance to 11.13 km upstream. A total of 10726 bathymetric points were collected. 

The data were downloaded from the echo sounder, using ‘Ceeducer download utility’ 
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software, prior to being filtered using ‘echo sounder data reader’ software, which analyses the 

data and removes any obvious errors in it. In addition to the software filtering, manual data 

filtering was used to identify and remove inaccurate bathymetric depth data points. The 

filtered data was imported into ArcGIS where the data were further assessed and remaining 

inaccurate data points deleted. The remaining corrected data points were then interpolated 

and projected in ‘ArcGIS 3D analyst’ to produce a draft bathymetric model. The bathymetric 

data were converted to a suitable format that can be acceptable in ArcGIS processing 

environments using Microsoft Excel. After that, they were imported in ArcGIS 10.2 as a table 

data-base by choosing the ‘Display x, y, z data tool’ that identified the easting, northing and 

the Z value (choosing the suitable coordinate system is part of this step), and then 

interpolating the surface by using ‘Radial Basis Functions’ (Geostatistical analyst tool) and 

using the Completely Regularized Spline to get the gridded surface. Finally, some of the 

masking and extracting tools were used to produce a suitable shape for the layout results (Fig. 

5.11). 

Visual assessment of the draft model indicated that some areas lacked sufficient data 

coverage. To rectify this, additional bathymetric survey data points were collected using the 

same methodology as outlined above. Webb, McKeown & Associates (1993) noted that the 

tidal range within the central portion of the basin is only 0.037 m. Due to the limited tidal 

range it was deemed unnecessary to account for it as it would have a negligible effect on the 

data collected. 

5.3.2.4 Coastal barrier elevation survey and profile analysis 

A high resolution-GPS surface survey of the Towamba estuary and coastal barrier was carried 

out using the high accuracy Trimble® Geo GPS (10 cm) during fieldwork (Fig. 5.12a) for: (i) the 

site investigations and for (ii) the remote sensing data geo-referencing (orthorectification). This 

equipment was connected to a mobile phone’s 4G (internet access) for position correction to 

achieve the true time and position. The system is connected to the nearest ground-GPS-control 

station (Eden station) to get the elevation relative to the local height datum (zero level) to 

avoid the tidal-dynamic effects. The analysis generated a gridded DEM for the barrier island 

(Fig. 5.12b), and a raster elevated according to this DEM (Fig. 5.12c). The barrier profile was 

checked for accuracy along three sections as shown in Fig. 5.12c, d. 

5.4 Results 
The results show significant coastal eco-geomorphological change, caused by estuary 

geomorphic growth and land use development. This has resulted in expanding the coastal 
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estuary ecosystems, such as growing and establishing saltmarsh, mangrove and mudflat zones. 

5.4.1 Catchment and land use classes 

Both the existing situation and historical records have been utilized. Most of this study of the 

Towamba River catchment was conducted through imagery. Land use classification has 

determined the proportion of human modification within the Towamba basin and assessed the 

extent that these human activities have impacted on sediment availability, transport and 

deposition (Fig. 5.4; Table 5.1). 

Figure 5.4a is a DEM of the catchment surface that shows a high-sloped terrain and complex 

surface with elevations from 0 to 1368 m along the Towamba River for ~58.6 km representing 

an average 2.3% slope. In fact the slope is much higher in the upper parts of the valleys, while 

limited human clearing (12%) occurs in the middle catchment (Fig. 5.4b). The more detailed 

supervised classification map (Fig. 5.4c) proves that this area actually has about 14% 

modification, and 86% remains as untouched area. 

Figure 5.4d is based on high spatial resolution datasets from Australian Land Use and 

Management (ALUM, 2010), that shows a mostly unmodified catchment (86%) in dark and 

light green. 

Human settlement has established grazing, urban areas and other modifications (see Fig. 5.4). 

These transitions in land use are associated with clearing native vegetation, resulting in 

changes to the drainage network hydrology and eco-geomorphologic characteristics of 

catchments and their runoff. These landuses around the catchment are changing the amount 

of the sediment availability in the long term, as well as affecting water quality by 

contaminants, such as organic matter, entering the waterways. Together these modifications 

can alter the eco-geomorphic characteristics and in some cases cause serious degradation. This 

results in a series of sedimentation problems in the estuary that could increase the shoreline 

erosion rates and cause ecosystem losses, such as wetland communities. 

The Towamba River catchment contains small towns: Kiah, Towamba, Pericoe, Burragate, New 

Buildings, Coolangubra, Wyndham and Rocky Hall. Very low populations live in these towns, 

for example, the highest population is in Towamba town with just over 360 people (ABOS, 

2007). Thus most of the catchment is uninhabited (86%) with natural processes controlling the 

eco-geomorphological systems in the catchment. Figure 5.4 and Table 5.1 show large areas of 

the catchment (63%) covered with native vegetation, such as the national parks at Mount 

Imlay, Towamba State Forest and Nullica State Forest, plus 21.9% of tree and sub-canopy cover 

along the river/drainage system and the downstream wetlands. Only 14% of the land cover has 



Chapter 5                                                                                         Towamba Estuarine system (Site 3) 
.   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   

93 
 

been modified or controlled by human settlement for rural and urban land uses (Fig. 5.4; Table 

5.1). 

 
Figure 5-4. (a) Elevation of the catchment showing the terrain and high-sloped watershed. (b-d) Towamba River 

catchment showing; land use classes and area (km2) from (b) major categories supervised classification, (c) detailed 
supervised classification, and (d) detailed categories using ALUM (2010). Sources; (ALUM, 2010;USGS-LANDSAT, 

2016; LP-DAAC, 2017). 

All of the catchment analysis methods have proven that the catchment has a small proportion 
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of human activities and modification (rare worldwide) representing a mostly untouched 

catchment, whereas the DEM has shown a high-sloped basin area which allows natural 

geomorphic processes and high runoff velocity to dominate. 

Table 5-1. Landuse classes in Towamba River catchment showing area, percentage of each category and type of 
major category process 

Landuse Classes Area (km2) Each category (%) Major Category (%) 
River and drainage system 8.77 0.8  

 
Natural processes 

controlled area 
 

86% 

Conservation area 651 63 
Tree and shrub cover 226 21.9 
Special category 1.68 0.2 
Wetland 0.79 0.1 
Urban 5.53 0.5  

 
Human modified area 

 
14% 

Grazing 136 13 
Transport and other 
corridors 

3.62 0.4 

Power transmission 0.36 0.03 
Horticulture 0.24 0.02 
Mining and quarrying 0.014 0.001 

Total 1034 100 100 
Source: Attributes and metadata are from land classes generated using ArcGIS 10.2 in Fig. 4d. Classes have been 

derived from ALUM (2010) 

5.4.2 Multitemporal imagery classification  the estuary 

Supervised classification (Fig. 5.5) obtained using ERDAS IMAGINE employing the ‘Maximum 

Likelihood Classification tool’ with the ‘Training Sample Manager’ (8-10 chosen training-area of 

each class as a finger print to identify each landform distribution, to achieve the maximum 

accuracy). Maximum likelihood (ML) has been used as it can give the best results, as 

Woodward et al, (1984) have stated: “those ML techniques are normally superior to other 

methods for imagery component distributions” (Woodward et al., 1984). The classification 

process has resulted in four major classes represented in raster gridded distribution (Fig. 5.5). 

Later the ‘Zonal Geometry As Table’ (a spatial analyst tool in ArcGIS) was used to calculate the 

landcover area changes (excluding the statistic attributed areas of these rasters) for each year 

(Table 5.2 and Fig. 5.6). 

Figure 5.5 shows the multi-temporal analysis of RS data using GIS tools, which indicates that 

the Towamba estuary and its eco-geomorphic systems have achieved a significant growth of 

deltaic facies (approximately 0.8 km2) due to sediment accumulation. This has resulted in the 

tidal channel being restricted and a seaward movement of the barrier. Additionally, it indicates 

that most of the vegetation canopies (like Casuarina and Juncus) and the new saltmarsh areas 

(seen in 1949) were growing on the stable sandspit areas and started mixing with mangroves 

in the tidal zones as a result of sea-level rise. The mangrove cover (grey mangrove - Avicennia 
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Figure 5-5. Supervised classification (raster gridded) of the Landsat imagery (MSS-1972, TM-1984, TM-1993, ETM+2004, ETM+2010 and ETM+2016) shows a clear increase in all coastal 

landform covers (classes) associated with a decline in water bodies. Sources: (LPI, 2010 & 2014; USGS-Landsat, 2016).  
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marina) has gained ground because of the prograding shoreline. New geomorphic areas have 

become suitable habitats for ecosystem growth, such as mangrove and saltmarsh, as well as 

the native plants such as Casuarina and Eucalyptus, which have continued to stabilise the 

estuarine delta. 

Table 5-2. The total and rates of growth of the Towamba estuarine eco-geomorphic landform system*. 

Platform 
class 

1972 1984 
Rate of 
change 

(%) 
1993 

Rate of 
change 

(%) 
2004 

Rate of 
change 

(%) 
2010 

Rate of 
change 

(%) 
2016 

Rate of 
change 

(%) 
Vegetation 

canopy 
225232 268434 1.59 367475 3.65 393926 0.98 409206 0.56 532897 4.56 

Water 
bodies 

231848
5 

224407
4 

-2.74 
200214

3 
-8.92 

192661
6 

-2.78 
178631

1 
-5.17 

144387
8 

-12.63 

Wetlands 111010 135656 0.91 216142 2.97 241906 0.95 432957 7.04 519023 3.17 

Sandspit 57328 63891 0.24 126294 2.30 149607 0.86 83581 -2.43 216257 4.89 

*Note; for more accuracy, all the imagery has been georeferenced and converted to the local Australian Datum 
GDA-MGA-1994/zone 55, and the root mean square error (RMSE) was ±5.32 metres. 

Qualitative changes in the pattern of land cover, river banks, channels and broad changes in 

the inter-tidal area since 1949 have been determined (Figs 5.5, 5.6a, b, 5.7a-c and Table 5.2). 

The main features shown by the multitemporal estuary changes between 1949, 1972, 1998 

and 2014 involve growth of the barrier, the land cover of native plants, mangroves and 

saltmarsh, and a reduction of the tidal channel. Spatial patterns of accelerated accumulation of 

sediment in the Towamba estuary are shown in Fig. 5.5b. Net accretion and erosion in 

different areas/classes are summarized in Fig. 5.5c. The sub-tidal zone and the estuary tidal 

channel experienced net accretion (and size reduction) in all four time intervals, as well as the 

barrier, but especially from the 1990s to recent time. At the same time, the tidal channel and 

the rocky edges around the estuary have been restricted and lost area by sediment 

accumulation during the whole period of this study with only a slight reversal between 1998 

and 2014. The narrowed and shallowed channel forced the Towamba River entrance to 

discharge farther eastward mainly due to the barrier/island growth, as shown in Fig. 5.7. 
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Figure 5-6. (a) Growth of Towamba estuarine eco-geomorphic landform areas (green, red and yellow) and a decline 
in water bodies (blue). (b) Rate of change percentages between 1972 and 2016. (Uncertainty bars based on 

standard deviation error of average 5%).  

The shallow/active channel of the Towamba River has divided the estuary into two sides with 

floodplain, sandspits and the associated land covers, and continues building on both sides. It 

was also a prominent feature which had evidently extended the land classes between 1949 

and 2014 (Fig. 5.7a,c) by the following amounts: sandy banks (82377 m2), barrier (57989 m2), 

native plants (97372 m2), mangrove (17891 m2) and saltmarsh (163774 m2). Simultaneously, 

there was a clear decrease of tidal channel (-149584 m2) and rocky bed (-100211 m2) area 

during same study period. 
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Figure 5-7. (a) Multitemporal (vector characterised) high-resolution imagery classification (aerial photographs; 1949, 1972, 1998 and 2016) showing a clear distribution changes of Towamba 
estuary classes and shorelines. (b) Total estuarine changes since 1949. (c) Total changes that occurred in each class. (d) The future scenario of the Towamba estuary resulting from continued 

vectored classes growth (resulted from sediment accumulation) estimated by GIS simulation tools using the historical change rates (1949-2014). 
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Finally, Fig. 5.7b shows a clear positive total growth, except for the 1975 decline. The total of 

growth was 169608 m2 over the study period at an average of 2609 m2/yr. Figure 5.5b shows a 

series of scenarios for sediment accumulation over time during the study period and, by 

applying GIS simulation tools, it has resulted in a predicted future situation that is presented in 

Fig. 5.7d. According to the rates of accretion and extension of the estuarine plains and habitats 

over the study period (1949-2014), the whole estuary will be filled by 2100 and the remaining 

tidal discharge channel will be very narrow with an infilled swamp on the western bank due to 

easier discharge flow out on the eastern side of the estuary (Fig. 5.7d). 

5.4.3 Tracing the temporal-barrier changes 

Towamba barrier is attenuating the waves to secure the ecosystem habitats behind it. The 

barrier and its vegetation cover have been clearly affected by erosion on its landward side (Fig. 

5.8a, b). This has resulted in a loss of the seagrass beds and Juncus and Casuarina on the 

elevated island. In contrast accretion has occurred on the seaward side (Fig. 5.8c). In the 

meantime, the far south tail of the barrier is still active and too unstable to be vegetated (Fig. 

5.8d). 

 
 

Figure 5-8. The geomorphic changes on the Towamba estuarine barrier, showing; (a) location of the photos on the 
barrier, (b and c) erosion effects on the inside of the barrier (landward, middle and south respectively), (d) high 

accretion rates at the front of the barrier (seaward), (e) geomorphic-instability of the southern tail of the barrier.  

Some of the eroded fluvial and barrier sediments pass into Twofold Bay via the active tidal 
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channel and are redeposited on the seaward side (Fig. 5.8c,d). A more detailed shoreline 

dynamic analysis of the barrier is shown in Fig. 5.9. 

Figure 5.9a-c shows erosion along the landward side of the Towamba barrier, which has a 

shoreline maximum movement of about -84 m during last 65 years at a mean erosion rate of -

1.294 m/yr. These changes occurred all along the landward side, except far north and south 

parts, with erosion more concentrated on the southern part. Significant accretion occurred on 

the seaward side of the barrier, with a maximum shoreline movement of 119 m within last 65 

years at an averages accretion rate of 1.831 m/yr. 

 

Figure 5-9. Digital shoreline analysis system (DSAS) has used to  investigate the changes on the front and back sides 
of the barrier, showing; (a) the coastal barrier shorelines overtime and the DSAS transect/base lines, (b) the net 

shoreline movement (NSM) between the 1949 and 2014 shorelines:  (c) c/1, 2, 3 and 4 show net shoreline 
maximum movements and the linear regression rate for the front and back sides of the barrier, respectively (red is 

erosion and green is accretion). 
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5.4.4 Samples analysis and modelling 

5.4.4.1 Soil and sediment samples 

(a) Particle Size Analysis 

The soil and sediment sample analysis has generated the results shown in Figs 5.10 and 5.11. 

Most of the estuary is made of sand (up to 98% sand), especially along both sides of the barrier 

and in the active tidal channel, where wave and tidal energy has a significant effect on the 

construction of these parts of the estuary (Fig. 5.11a). Figure 5.11a also shows high sand 

proportions in the upper part of the estuary and lower part of the river. Clay and silt constitute 

more than 20% of the samples along the middle part of the Towamba estuary (Fig. 5.11b), 

especially on the left and right banks where sediment was derived from the river catchment 

and deposited by flocculation in the higher salinity wave attenuation zone. 

The mean particle size of the samples ranged from 166-1013 µm (Fig. 5.11c). The coarser 

samples are limited to the upper river samples, whereas medium to coarse sand with minor 

gravel component (0.3 to 5%; Table 5.3 - Towamba 7 and 30) are concentrated in the lower 

estuarine parts, especially along the barrier (Fig. 5.11a). Contrariwise, the mud component (0.0 

to 53.3%; Table 5.3 - Towamba 2 and 3) is mainly distributed along the middle of the Towamba 

estuary (Fig. 5.11b). 

 
Figure 5-10. Particle size analyses of the 35 sediment samples (multi-coloured) have shown that the accumulated 
sediment in Towamba estuary mostly contains a large proportion of sand. The sediment samples have been taken 

from the estuary and the lower Towamba River, from the river mouth to Kiah village. 
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Many of the 35 sediment samples have a range of particle sizes from clay to silt and sand, with 

samples such as Towamba 2 being dominated by mud (Fig. 5.10 and Table 5.3). Other samples 

have high fine sand components (e.g. Towamba 3) while samples from the sandspit consist 

entirely of sand (e.g. Towamba 7; Fig. 5.10 and Table 5.2). 

Table 5-3. Representative particle size analyses of the sediment samples from Towamba estuary, showing the 
proportion of sand and mud (silt plus clay). 

Sample No. 
Sand           

% 
Silt            
% 

Clay  
% 

Mean 
grain size 

(µm) 

Mode 1 
(µm) 

Mode 2 
(µm) 

Sorting 
(phi) 

Skewness 

Towamba 2 46.0 48.3 5.7 166 54 372 2.48 -0.01 

Towamba 3 86.0 12.8 1.2 281 306 35 1.38 0.43 

Towamba 7 100.0 0 0 1013 976 0 0.49 0.02 

Towamba 30 93.6 6.2 0.2 632 626 68 1.11 0.33 

all sample averages 88. 4 10.7 0.9 649 701 73 1.26 0.24 

The sediment in the middle of the estuary (the central mud basin) contains silty clay and clayey 

silt, representing the suspended load that flocculated in the higher salinity zone. These 

deposits are represented in the saltmarsh, mangrove and associated habitats as a developed 

ecosystem. 

Particle analysis shows that the sediment samples are typically poorly-sorted along the 

estuary, with well- to moderately-sorted sands concentrated on the sandspit (Fig. 5.11d). 

Figure 5.11e shows the sandy samples in the northwestern part of the estuary have a normal 

(symmetrical) grain size distribution whereas most of the estuarine and river samples are fine 

to strongly fine skewed (0.1 to 0.67) indicating a higher proportion of fines compared to a 

normal grain size distribution. This corresponds to the higher mud contents through most of 

the estuary. 
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Figure 5-11. Soil, sediment samples and grain size analysis from Towamba River estuary; (a) sand proportion (including very small amount of gravel in some samples), (b) mud proportion (clay 

and silt), (c) sediment mean grain size, (d) sediment sorting (including the approximate sediment transport direction represented by the black arrows), and (e) Towamba estuary skewness. 
Note: the legend scales of (a) to (e) show different percentages across the colours. 
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 (b) X-ray diffraction (XRD) 

XRD results show a clear relationship between the estuary and the catchment sedimentary 

sources (Fig. 5.12a). All 35 sediment samples are dominated by quartz (average ~59%), while 

some parts of the estuary have more than 70% quartz (for example; sample Towamba 3, Table 

5.4), especially those along the estuary channel and barrier/island where wave action has 

eliminated most of the softer minerals and clays (Fig. 5.12a). In the middle of Towamba 

estuary, both left and right banks and the active channel areas extending 6 km upstream, K-

feldspar, albite and lithic sand grains form prominent components representing fluvial sands 

derived from volcanic, volcaniclastic and mudstone rocks in the catchment source area (for 

instance; Table 5.4 samples 3, 19 and 30). Clay content in the samples is highest in the low 

energy environments in sheltered reaches, but also occurs in the fluvial lithic sands through 

the diagenetic alteration of feldspars. 

Table 5.4. Representative XRD analyses of the sediment samples from Towamba estuary showing the mineral 
proportions. 

Sample 
Quartz 

K-feldspar 
Albite 

Labradorite 
Illite 

Chlorite 
Illite-smectite 

Kaolinite 
Towamba 3 78.1 6.6 3.4 2.2 3.2 5.8 0.4 0.3 
Towamba 19 61.3 17.7 13.2 4.9 0.9 1.6 0.2 0.2 
Towamba 30 52.5 25.8 17.8 1.2 0.8 1.4 0.3 0.2 

all samples average 59.1 17.0 12.8 4.3 4.1 1.1 1.0 0.6 

(c) Loss on Ignition (LOI)  

LOI data show three main areas have the highest proportion of organic matter (OM; Fig. 5.12b 

and Table 5.5). One area on the barrier has up to a maximum of 11% OM (for instance; sample 

Towamba 34), which represents the native plants that have grown on the barrier. The second 

area is near the eastern bank (Fig. 5.12b) in the muddy middle portion of the estuary that has 

up to 24% OM (for example; sample Towamba 4) represented by saltmarsh and mangrove 

areas. The third section occurs near the western bank (Fig. 5.12b) in the very muddy area with 

the highest density of native plants mixed with saltmarsh and mangrove cover that contains up 

to 46% OM (for example; sample Towamba 2) in the northwestern part of the estuary. In 

contrast, some sandspit samples have the lowest OM% (e.g. 0.2, 0.4 and 0.6 in samples 24, 7 

and 19, respectively). This reflects how much the OM is involved in the surface accretion and 

estuarine wetland elevation dynamics. 
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Figure 5-12. Soil and sediment samples from Towamba River estuary; (a) XRD results showing the mineral contents 
in the sediment samples at Towamba estuary, with a clear dominance of the quartz component, (b) organic matter 
components (%OM) based on loss on ignition, that clearly shows organic matter concentrated in the downstream 

part of the estuary, particularly on the wetlands sites. 

Table 5.5. Representative loss on ignition (LOI %) analyses of the sediment samples from Towamba estuary showing 
the proportion of the organic matter. 

5.4.4.2 Water quality analysis 

Figure 5.13 shows a significant increase in conductivity, dissolved oxygen and salinity towards 

the mouth of the estuary while the temperature and pH show a very slight increase, due to 

shallower water that was easier to heat. In contrast, turbidity has shown a clear decline in the 

downstream direction, representing less suspended sediment that has flocculated and 

accumulated along the estuary as salinity increases. At the same time, the active channel flows 

more slowly towards the coastal end of the estuary especially during rising tides, which makes 

the river less able to transport both bedload and suspended sediments. These results clearly 

prove that abundant sediment is transported to the estuary leading to high rates of deposition 

Sample  
no. 

LOI  
(OM%) 

Sample  
no. 

LOI  
(OM%) 

Sample  
no. 

LOI 
(OM%) 

Towamba 2 46.71 Towamba 7 0.36 Towamba 30 1.21 
Towamba 3 15.6 Towamba 19 0.58 Towamba 34 11.03 
Towamba 4 24.27 Towamba 24 0.21 All samples average 4.36 
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and bank accretion in these downstream areas. Thus the sediment is basically spread across 

the entire estuary and the suspended sediment becomes less and finer during its movement 

along the Towamba estuary due to flocculation. 

 

Figure 5-13. Water sample analyses show significant spatial changes in; conductivity, salinity, dissolved oxygen and 
turbidity. 

5.4.4.3 Bathymetric survey  

A bathymetric survey was conducted along the active and adjacent channels of the estuary 

showing that 1.15 m is the averaged depth and 2.99 m is the maximum (Fig. 5.14. 

Figure 5.14 shows variations in water depth along the Towamba estuary and the adjacent 

river. It is clear that the deepest zones are at the ocean end of the estuary, where the narrow 

channel is discharging the runoff with its suspended sedimentary material. However, most of 

the river and estuary bottom has shallow water represented in the light green colour (Fig. 

5.14) except for scour hollows on tight meander bends. 
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Figure 5-14. Bathymetric survey data and ArcGIS analysis are showing water depths along the Towamba estuary and 

adjacent river. 

5.4.4.4 Barrier elevation survey and profile analysis 

The collected datasets of the GPS survey were utilised to generate the island’s Digital Elevation 

Model (DEM), and a raster elevation model according to this DEM (Fig. 5.15). The island profile 

was checked for accuracy along three surveyed sections as shown in Figure 5.15d. The barrier 

is 135 m wide in the north, 134 m in the middle and 51 m in the south (representing the 

youngest geomorphic stage) with an island length of 1913 m. 
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Figure 5-15. GPS elevation survey and barrier profile analysis of the Towamba barrier that has accrued at the end of 
the estuary. (a) GPS survey path tracker, (b) DEM generated, (c) 3D raster elevation, d/1, d/2 and d/3 are cross-
sections through the north, middle and south of the island respectively. 

Towamba barrier has the structure of a standard coastal sand barrier where, open water, 
beach, dune, mud flat, saltmarsh and mangrove sections are present in the standard order 
with appropriate vegetation cover (Fig. 5.16). 

 
Figure 5-16. Towamba River estuary and coastal barrier is structured in a standard estuarine and barrier format. It 

has the five standard profile sections of open water, beach, dune (associated with mixed native plants, such as 
Casuarina), mud flat (associated with some plants such as Juncus species and saltmarsh/mangrove (associated with 

sea grasses). 
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5.5 Discussion 

During the last century increased population and rural, urban and industries activities have 

been concentrated on coastal areas and have stressed and even overloaded these coastal 

ecosystems, threating the ecosystem’s balance and even its loss globally (Parmesan & Yohe, 

2003; Neumann et al., 2015; Al-Nasrawi et al., 2016a, 2016b, 2017b, 2108a, 2018b, 2018c). On 

the other hand, temperature increases during the 21st Century are causing climate change and 

mean sea-level rise (IPCC, 2014), significantly threatening many ecosystems, particularly within 

low-lying estuarine landforms/wetlands (Michener et al., 1997; IPCC, 2014). Regionally and 

globally, estuarine ecosystems have high estimated economic values (in US$/year) per hectare 

as follows: lakes/rivers 8,498, tidal marsh/mangrove 9,990 coastal sea grass/algae beds 

19,004, swamps/floodplains 19,580 and estuaries 22,832 (Batzer & Sharitz, 2014). Hence 

protecting wetland systems is very important both ecologically and economically. 

5.5.1 Eco-geomorphic dynamics 

The multitemporal analysis of RS and GIS data indicates that the Towamba tidal channel has 

clearly filled up as sediment was transported downstream from the catchment to the mouth of 

the estuary. This has added to the barrier at the end of the estuary, which has grown since 

1972 (the oldest satellite data observations) to secure the eco-geomorphological system 

behind it and allow it to expand and develop its habitats. There is clear evidence of sediment 

deposition in front of the barrier on the embayment side since the 1990’s (Figs 5.5-5.7). 

Towamba estuary is under constant eco-geomorphic growth due to both natural 

(weathering/erosion and deposition) and indirect anthropogenic forces (e.g. climate change 

and sea level rise). In the last few decades, Towamba estuary has mostly filled but the current 

sea level rise has produced additional accommodation space (Fig. 5.5a). The used data have 

consisted uncertainties errors, the reported changes are actually gained from different spatial 

resolution of satellite imagery and aerial photography, this limitation have been considered as 

a standard error within average of 0.5. 

The multi-temporal change analysis approach (Fig. 5.3) has shown a steady eco-geomorphic 

growth and development at Towamba estuary in both sand flats and vegetation canopies (Figs 

5.5, 5.6a/b and 5.7a-c). Results indicate that the Towamba estuary and its eco-geomorphic 

systems have achieved a growth of deltaic facies by approximately 0.8 km2 due to sediment 

accumulation. However, erosion in some parts of the estuary (Figs 5.5-5.7) due to some big 

flood event, including in 1974 (Fig. 5.2b), restricted the net total growth to 169608 m2 over the 
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study period at an average of 2609 m2/yr. Results from this study predicted that the whole 

estuary will become filled by 2100 and the remaining tidal discharge channel will be very 

narrow with an infilled swamp on the western bank due to easier discharge flow out on the 

eastern side of the estuary (Fig. 5.7). The mud flats have a mixed zonation of sea grass, 

saltmarsh and mangroves while the barrier vegetation mainly consists of mixed native plants 

covering the northern and mid parts of the barrier and the southern area is grass covered 

except for the very south end that is too unstable for vegetation.  

Figure 5.4a shows the characteristically high-sloped catchment surface and its river network 

with an average slope of 2.3% that has reduced the human impact to 14% (Fig. 5.3c, d; and 

Table 5.1) and has allowed natural-geomorphic processes to control 86% of the catchment 

area. Together these features provide a large runoff after rainfall events with sufficient 

discharge and velocity (Fig. 5.2a, b) to move sediment, through a shallow channel (averaged 

1.15 m; Fig. 5.14), into the coastal estuarine area. Lower velocities caused by embayment 

attenuation, especially during rising and high tides and the slowly rising sea level (Fig. 5.2d), 

forces the accumulation of bedload and suspended sediment in the mouth of the estuarine 

zone. The mixing with saline water causes flocculation of the finer components (silt and clay) 

that are mainly accommodated in lower velocity areas away from the main channel. This has 

resulted in high deposition rates near the mouth of the estuary and into the embayment and 

fast ecosystem development, particularly in the muddy middle part of the estuary where more 

eco-geomorphic sequences such as saltmarshes and mangroves are forming. Coarser sediment 

is being added to both the inside and outside of the coastal barrier. In some cases the 

sedimentation styles and sequences can be related to events such as the flood history records 

and rising sea level. 

The river basin consists of an elevated and sloped watershed surrounded by mountains and 

unmodified uplands that result in a highly variable discharge patterns. This determines the rate 

of transport and erosion. Within the downstream part the bank of the river is mostly 

composed of sandy unconsolidated Quaternary alluvium with little structural strength. 

Therefore, they are vulnerable to erosion through frequent slumping especially in areas with 

steep banks. Lastly, while riparian vegetation binds the banks preventing erosion, some areas 

have been cleared with no vegetation along the river bank which triggers slumping and the 

sediment is readily entrained by the flow and carried towards the river mouth. 

5.5.2 Sediment characteristic impact 

LOI, XRD and grain size analyses of the sediment samples yielded the proportions of organic 
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matter, minerals and grain size (Fig. 5.11a-d). LOI (mainly due to organic matter) was use to 

evaluate its involvement in changes in elevation with respect to the water table. Also, XRD and 

grain size analyses of samples were used to assess their particle size, sources, depositional 

conditions and whether they represent ocean or river sediments. The rates of sedimentation 

and types of sedimentary sequences would then be related to events such as the flood history 

records and sea level rise. The modelled transport directions (black arrows; Fig. 5.11d) specify 

that the sediments were generally moving seaward through the estuary with local movement 

towards the main channel. The sediment has accumulated along the estuary sandspit with the 

excess discharged to Twofold Bay to be redistributed along the seaward side of the barrier by 

wave energy (Fig. 5.11d). 

The sediment accumulations that form the eco-geomorphic habitats in the Towamba estuary 

are mostly characterized by sand (Fig. 5.11a, b) except in mid-parts of the estuary that have 

higher mud and organic matter components (Figs 5.11b and 5.12b). This muddy sediment was 

derived from the catchment (Fig. 5.12a) and the estuary development represents an eco-

geomorphic system that is dependent on its catchment sedimentary sources. 

Although the rate of geomorphic growth is high, the wetlands are expanding more slowly 

because the sediment reaching the estuary is mostly quartz (~59%; Fig. 5.12a and Table 5.4) 

and lithic sand (averaged of 88.5%; Figs 5.10, 5.11a and Table 5.3). A limited component of 

mud (max. 54% within a very limited area but averaging ~12%; Fig. 5.11b and Table 5.3) is 

present aiding the development of wetlands and their associated habitats. More habitable 

areas will help with soil accumulation and surface accretion due to their biotic and abiotic roles 

(Aarts & Nienhuis, 1999; Cronk & Fennessy, 2001). The poorly sorted organic-rich sediment in 

the wetlands (Fig. 5.11d) accumulates more slowly than the higher geomorphic growth rates of 

sand facies. This situation is reflecting the estuary catchment that has characterized by a high-

sloped terrain with mostly unmodified natural geomorphic processes (Fig. 5.3) driving a large 

amount of such poorly sorted sediment downstream to accumulate in the estuary. 

Instability of some of the sandy geomorphic units in the estuary has resulted in unsuitable 

platforms for wetlands to develop on, particularly on the inside of the sandspit. The elevated 

estuarine barrier (Fig. 5.15) presents an example of the unstable pattern in the Towamba 

estuary; it has an average seaward movement of 1.831 m/yr (Fig. 5.9) and has a narrowing 

vegetation development, especially on the unstable southern end of the barrier, even though 

the temperature average allows a long warm growth season (Fig. 5.2c). 

Bathometric analyses (Fig. 5.14) shown that Towamba narrow channel is mostly shallowed and 
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has flatted bottom surface, allowing smooth runoff and suspended sediment material to be 

discharged. That would allow more sediment to be transferred downstream to continue to 

build the estuarine eco-geomorphic system and keep it moving seaward. 

5.5.3 Water quality roles 

Measuring the water clarity through turbidity will show that increasing the suspended 

sediment including silt, clay, plankton and detritus, would resulted in declining water clarity to 

be more muddy appearance. That have indicated how much suspended sediment entering the 

estuary to be accumulated (Herben et al., 2012). Salinity (and resultant conductivity) is another 

important factor in the development of ecosystem habitats such as wetlands, since it controls 

the borders between the mangroves, saltmarshes and Casuarina zones. The acidity of the 

water reflects the amount of organic matter and nutrients entering the water body from the 

catchment, and is related to natural and anthropogenic processes. pH and dissolved oxygen 

play important roles in the development of benthic biotic and abiotic components in the 

middle estuary, and act as ecological development accelerators. 

Figure 5.13 shows a slight increase in pH and temperature that is linked with the higher salinity 

downstream through the estuary. The equivalent increase in dissolved oxygen reflects mixing 

with more oxygenated marine water and better developed ecosystem communities, such as 

sea grasses. In contrast, turbidity decreases within the estuary reflecting flocculation and 

accumulation of the suspended sediment along its way to the ocean discharge point in the 

tide-dynamic controlled area (Fig. 5.13). However, the remaining bedload sediment that 

reaches the ocean reforms as part of the dynamic coastal sandy barrier (Fig. 5.9). 

5.5.4 Climatic factors and sea level effect 

Although Towamba River has quite a small catchment (1034 km2), it receives an average 

rainfall of 926.5 mm annually (Fig. 5.2a) giving a high average discharge flow of 379.3 (ML/d), 

with some flood event recorded during the 1970s, 1990s and 2010 (Fig. 5.2b). The high surface 

slopes in the catchment and its drainages result in high runoff volumes and velocities, 

particularly upstream that transport sediment downstream to build and develop the estuarine 

eco-geomorphic systems. 

The increasing temperature affects plant productivity and the growing season length, which 

logically would have an effect on the estuarine ecosystem directly, while in the elevated parts 

of the catchment, the increasing temperature and declining precipitation would influence 

sediment production and transportation rates (Al-Nasrawi et al., 2016a, 2016b, 2018a). This 
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increasing temperature would also affect the soil salinity and its nutrients (Mkpenie et al., 

2007). 

Climate changes including rising sea-level have clearly affected the local Towamba weather. 

Local sea level rise affects the estuarine eco-geomorphic units directly providing impetus for 

slow vertical accretion. The temperature and rainfall affect plant growth in the estuarine 

section directly, as well as indirectly through discharge from the catchment that is controlled 

by both natural and anthropogenic factors. 

Locally and regionally, this research is contributing to part of the New South Wales 

Government natural resources evaluation and reporting program to monitor estuarine habitat 

availability and condition/health indicators for mangrove, saltmarsh and seagrass together 

with water clarity (OEH, 2013). For the future sustainability and conservation management, 

eco-geomorphology and climate change influences have to be considered. Thus to successfully 

secure and manage such areas, a comprehensive understanding and clear evaluation of the 

existing situation has to be provided to allow prediction of the future vulnerability of estuarine 

systems. Increasing this understanding of such sensitive ecosystems, will assist land managers 

to better forecast the implications of management decisions and the potential impacts of 

climate change and human influences. 

5.6 Conclusions 

This research has established that imagery processing of remotely sensed data and GIS 

analysis, in combination with sedimentological and morphological data, can document the 

evolution of the Towamba estuary landcover dynamics as it progrades into Twofold Bay, 

southeastern NSW, Australia. An understanding of how the estuary has evolved in the past can 

then be used to help establish the probable vulnerability/adaptability of the estuary into the 

future, and can be used to assess similar estuaries worldwide. 

The GIS-based morphodynamic modelling and assessment of the estuarine eco-geomorphic 

system and shoreline changes at Towamba River between 1949 and 2016 have shown a 

significant erosion/accretion around this estuary. The main Towamba estuary’s changes were 

at the geomorphic features (such as sandspit extension and barrier growth) and its associated 

habitats (such as saltmarshes, mangroves and the mixed native plants, for instance; Casuarina 

and Juncus). The total area of growth was 169608 m2 over the study period at an average rate 

of 2609 m2/yr. The barrier island also provides proof of these changes, with an average 

landward erosion rate of -1.29 m/yr, and a seaward accretion rate of 1.83 m/yr indicating that 



Chapter 5                                                                                         Towamba Estuarine system (Site 3) 
.   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   

114 
 

more accretion is occurring than erosion. The scenario for the future has estimated that, even 

with the predicted sea level rise, the whole estuary will be filled by 2100 and the remaining 

active tidal discharge channel will be very narrow with some remaining infilled swamps and 

lagoons. 

The unmodified (mostly) and high-sloped catchment has a large sediment load available for 

discharge downstream to fill the estuarine area. This has three main influences: (i) positively, it 

would result in high sediment accumulation rates in the estuarine zone, allowing faster 

geomorphic growth; (ii) negatively, the high deposition rates have built poorly sorted and 

coarse-grained geomorphic features in the estuary (for example the sandspit) with very limited 

muddy areas; and (iii) this has limited the growth of ecological patterns of coastal wetlands 

and its associated saltmarsh and mangrove habitats. 

The results of this research will assist scientists in forecasting areas that are  at risk of erosion 

and/or accretion in the future. The method applied in this study can be directly applied to the 

many similar estuaries and lagoons along the east coast of Australia, South Africa and 

elsewhere in the world. Results obtained from this study, and future equivalent studies 

elsewhere, will aid scientists to predict areas with the highest risk of erosion or accretion over 

the next hundred years. It will also help decision makers and managers to propose appropriate 

measures for incorporating coastal/wetland management plans into both local and national 

conservation strategies. The results will contribute towards forming effective, catchment-wide 

coastal zonation management plans to respond to climate change and sea level rise, and also 

current and possible future human modification, preservation and restoration plans. 

Quantifying historic estuarine eco-geomorphic change can be used to predict future responses 

to related environmental stressors. Results show that a spatiotemporal and statistically 

accurate approach to the development of GIS-based models can be used to upscale local field-

datasets to provide a quantifiable spatiotemporal analysis. The incorporation of unmodified 

estuarine intertidal sedimentary landforms in eco-geomorphic models would be relevant to 

similar modelling activities, both regionally and globally. 

The broad-scale methodology in this study is applicable worldwide for evaluating eco-

geomorphic changes to estuaries and helps provide more understanding of the factors 

responsible for the changes. These factors can then be considered when estimating responses 

to future climate change in such coastal ecosystems and be used as sustainable and effective 

management tools. Valuable information on current and future climate changes scenarios of 

rainfall and river discharge can be predicted and these trends will change the amount of 
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sediment driven from the catchment. Also future human modification might increase 

significantly in the catchment area, which would impact the runoff and all the relatively natural 

processes. These will all have different levels of negative influences depending on the change 

proportions. Thus, future research should consider these factors in the preparation of 

applicable preservation and restoration plans. 
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6 Chapter VI: Geoinformatic analysis of 
Vegetation and climate change on intertidal 
sedimentary landforms in: use of NDVI from 
1975–2015 

6.1 Abstract: 
Vegetation canopies can be used to represent the main ecosystems on intertidal landforms 

and they clearly reflect any responses to changes in the coastal environment such as global 

warming. Climate change, such as temperature, precipitation, and rise in sea level, are 

affecting the health and distribution of coastal vegetation, as well as the runoff and 

sedimentation rates that can impact on coastal areas. This study has used the normalized 

difference vegetation index (NDVI) to investigate vegetation canopy dynamics on three 

different coastal sites (south-eastern Australia) over the past 47 years (1975-2015). Satellite 

imagery derived from Landsat 1-8 has been analysed in ERDAS IMAGINE, building the NDVIs 

temporal-datasets, and then regressed to the climatic and geomorphic variables in RStudio 

software, with a focus on the NDVI-greenness scale. The results have shown clear increases in 

NDVI on Towamba and Wandandian sites but a declined at Comerong Island. Sedimentation 

rate has the most significant positive impact on the NDVI since it has a potential to provide 

additional space for vegetation. Temperature and sea level rise have positive effects, except 

on Comerong Island, but rainfall has no significant effect on the NDVI at any site. Different 

NDVI reflection trends have been recorded at these three coastal sites reflecting different 

correlations between the vegetation, climatic and geomorphic (as independent) variables. 

The geomorphological characteristics of the highly dynamic intertidal estuarine landforms, 

that are subject to active erosion and deposition processes, have the largest/highest impact 

on vegetation cover, and hence on NDVI. Assessing the vegetation canopy using NDVI as an 

evaluation tool has provided temporal-dynamic datasets that can be correlated to the main 

individual environmental controls. Such knowledge will allow resource managers to make 

more informed decisions for sustainable conservation plans following evaluation the 

potential consequences of any environmental changes. 

Keywords: ecosystems; climate changes; vegetation response; NDVI; GIS-Analyses; remote 

sensing. 
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6.2 Introduction 
There is much concern about climate change impacts as demonstration in various scenarios, 

such as on the ecosystems of the Earth (Costanza, 1999; Pittock, 2003; Zinnert et al., 2011; 

IPCC, 2014). The clearest and widest ecosystem responses to climate change are represented 

in the vegetation canopy dynamics of such ecosystems (Goward & Prince, 1995; Donohue et 

al., 2009). At global, regional to local landscape levels, the responses of the vegetation canopy 

are influenced by whichever climatic elements characterise the principal plant growth’s control 

factors (Donohue et al., 2009). Within coastal-dynamic setting, vegetation condition dynamics 

could be categorised as these affected by the main atmospheric energies of temperature and 

precipitation that impact growth and productivity, as well as those that affect the landform 

stabilities, including sea level and sedimentation dynamics (Woodroffe, 1990; Meyssignac & 

Cazenave, 2012). 

Coastal ecosystems and specifically wetland habitats are highly productive natural ecosystems 

(Matthews, 1993; Mitsch & Gosselink, 1993; North Central C.M.A., 1998; Ehrenfeld, 2000; 

Perillo et al., 2009). Coastal wetlands are also the most sensitive and responsive coastal 

ecosystems to environmental pressures than others, such as climate change, the rising sea 

level and the current stage of human settlements that control most of the coastal processes 

(Al-Nasrawi et al., 2015b, 2016a). Coastal ecosystems may be affected by a local surge in 

surface temperature, precipitation decline and sea level rise (SLR) under current climate 

scenarios. On top of that, human activities have been shown to have a substantial effect on 

coastal systems, including as clear a biodiversity reduction and habitat destruction (Al-Nasrawi 

et al., 2016b), which implies that there is a great need to find out and forecast changes in 

ecosystem functioning. 

Coastal environmental studies have become more focused on the applications of climate 

change scenarios within the coastal zones to assess the vulnerability of its ecosystems and/or 

landforms (Goward & Prince, 1995; Costanza, 1999; Watson, 1999; Nicholls, 2004; Semeniuk & 

Semeniuk, 2013; Al-Nasrawi et al., 2015b, 2016b, 2018a). So far, these studies have indicated 

an important climate – eco-geomorphic correlation. However, limited discussion has focused 

on examining the vegetation trends associated with climate related factors at specific 

geomorphic-estuarine sites in coastal wetlands. This case study from the southeastern 

Australian coast shows the relationships between different environmental conditions, 

geomorphic and human pressures, and demonstrate success in this case that recommends the 

use of these methods in other ecosystems worldwide. 
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The aims of this exploratory study are to:  

i) quantify the temporal change-trends of coastal vegetation canopies, 

ii) quantify the spatial change-distribution within sensitive wetted landforms. 

These aims were achieved by analysing the vegetation trends over time and establishing 

correlations between change stressors and the vegetation response, which can be used to 

predict future response scenarios of such landscapes along the southeastern Australian coast. 

The research objectives have been based on a literature review augmented by imagery 

modelling, including the pre-processing, clipping-sub-setting, re-scaling-classifying and all the 

followed geospatial analysis (using RS and GIS) and subsequent correlation statistical analysis 

that can offer a  qualitative outcome, which could be based on for informal conservation 

solutions with potential worldwide applications. 

6.2.1 Use of satellite remote sensing  for monitoring changes in coastal 

wetlands vegetatio 

Earth observations through multiple satellite imagery sources have provided important 

monitoring and classification approaches, which have led to a significant method for landform-

dynamic observations to check the historical records of any eco-geomorphic change (Borre et 

al., 2011; Franke et al., 2012). Thus, imagery classification has been widely adopted in several 

fields, including ecology, geomorphology, and climate change assessment (Kerr & Ostrovsky, 

2003; Jeong et al., 2016). Classification of satellite images is a sorting pixels process (with 

values scaled from 0-255) to a narrower individual classes/categories according to their pixel-

values. For instance, pixels will be assigned to a particular class/category that corresponds to 

their criteria If the each pixel has satisfied the certain criteria of that class (Nguy-Robertson & 

Gitelson, 2015; Peng et al., 2017). Many classification approaches have been used as methods 

of diagnosticating, and specifying features within the satellite image as per their spectral 

values (Fernández et al., 1997; Kerr & Ostrovsky, 2003). For example, within Normalised 

Difference Vegetation Index (NDVI) classifications, pixels are converted and clustered together 

(from -1 to +1) based on spectral homogeneity and spectral distance (Turner et al., 2003). 

The most commonly publicly available imagery, Landsat, has a spatial resolution ranging from 

15 m (panchromatic bands on Landsat 7 and 8) through the dominant 30 m (spectral bands on 

Landsat 4-7) to 80 m of Landsat 1-3. Any of these pixel sizes are adequate to give multiple 

pixels within a patch of the classes of interest in this study, namely intertidal sedimentary 

landforms of estuaries, and their ecological and geomorphological (eco-geomorphic) 

distribution and dynamics, which could be linked to provide better eco-geomorphic 
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understanding and monitoring tools at the landscape scale (Giri et al., 2011; Hamylton et al., 

2016, 2017). At the same time, temporal resolution of various earth observation satellite 

datasets can be used to track dynamic vegetation trends (see Table 6.1). The many different 

spatiotemporal satellite datasets can generate varied NDVIs over land-patch/time (Pettorelli et 

al., 2005). The limitations of data derived from different satellite sensors mean that a high 

temporal resolution (rapid repeat time) requires a wide swath and coarser pixels, whereas 

finer spatial detail limits the time interval between equivalent images (Pettorelli et al., 2005). 

Thus, the spatial detail needed to define the landforms must be balanced against the time 

interval needed to document changes. For example, the very-high-accurate radiometer and 

advanced-Level three (time series dataset) is derived from the National Ocean and 

Atmospheric Administration (NOAA-AVHRR/PAL, GVI, and GIMMS; see Table 6.1) provides 

pixels either 8 or 16 km on a side resolution, and records are available from 1981 to present. 

Meanwhile, Level two NDVIs-datasets, with a resolution of 250-1000 m, can be obtained from 

the Moderate accuracy of the Spectroradiometer imagery (TERRA satellite (EOS AMI) with 

MODIS instrument; see Table 6.1) datasets, which offers a medium-scale but shorter term 

data-series going back to 2000 only (Pettorelli et al., 2005). Meanwhile, a freely-available high 

resolution (Level one) datasets can be obtained from Landsat 1-8 missions (sensors: MSS, TM, 

ETM+ and OLI with 30 to 79 m resolution and extending from July 1972 to present;  

Table 6-1. Main satellite imagery sources of earth observations* 

 

*Sources: (Pettorelli et al., 2005; Parcher, 2012; Nguy-Robertson & Gitelson, 2015; USGS-Landsat, 2017; 
USGS, 2017b). 

see Table 6.1) represent scale data with the best satellite imagery-series that could be utilised 

for NDVI indexing (Horn & Woodham, 1979; Baban, 1997; Nguy-Robertson & Gitelson, 2015; 

Peng et al., 2017; USGS, 2017a). Thus, related to the current study sites’ specifications that 

average 3-4 km2 in area, the Landsat datasets would provide the best data that could be used 



Chapter 6                                        Vegetation and climate dynamism (NDVI analysis-sites; 1, 2 & 3) 
.   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   

120 
 

to achieve this study’s targets in terms of sensor resolution (MSS = 60-79 m, TM, ETM+ and 

OLI=30 m; see Table 6.1) and longer archive recorded that goes back to 1972. 

6.2.2 Vegetation indicator 

Vegetation changes can be monitored over time using the Normalised Difference Vegetation 

Index (NDVI) from satellite imagery (Fuller, 1998; Donohue et al., 2009). It is possible to 

empirically correlate changes in NDVI with direct and indirect environmental changes, which 

has been an important consideration in recent ecological studies and analysis methods (Fuller, 

1998; Weier & Herring, 2000; Pettorelli et al., 2005). Over last decade numerous 

environmental studies have obtained new knowledge regarding the immediate and 

consequential impacts of ecological change through using the NDVI (Fuller, 1998; Weier & 

Herring, 2000; Pettorelli et al., 2005; Nguy-Robertson & Gitelson, 2015). 

The red with near-infrared reflected lights have defined the NDVI ratio (Huete et al., 2002) 

NDVI = λ NIR−λ RED
λ NIR+λ RED

                               (1) 

Where:  RED/NIR are exhibiting the red-light and near infrared quantities, and are sensed, 

using the satellite’s sensor, the vegetation light reflections (Weier & Herring, 2000). Since 

mesophyll leaf structure will reflect NIR yielding a high NIR-band pixel value whereas RED 

would be absorbed by chlorophyll yielding a low RED pixel value for the same pixel, the NDVI is 

normalized to produce a continuous variable with a potential a range of -1 to +1, where 

negative values represent the non-existence of vegetation (Weier & Herring, 2000; Pettorelli et 

al., 2005). 

Initially in their history NDVI images were used visually to allow experts to manually interpret 

the patterns on the landscape. Only later were quantitative methods applied to defining the 

patterns thus perceived (Tucker et al., 1985; Pettorelli et al., 2005; Nguy-Robertson & Gitelson, 

2015). 

Vegetation biomass and dynamics have been linked to NDVI, and could easily be regressed 

with the related controlling and resultant variables, such as climatic factors, across many 

ecosystems worldwide; Table 6.2 has included most of the commonly used applications of 

NDVI. 
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Table 6-2. Some of the NDVI applications, examples and references that have successfully applied in 
relating to vegetation canopy aspects locally, regionally and worldwide. 

NDVI applications  Implied example and/or case studies References 

Correlation between the 
vegetation and its 
productivity 

Capturing absorbed photosynthetically active radiation 
Asrar et al., 1984; Sellers et al., 1992; 
Fuller, 1998; Weier and Herring, 2000; 
Pettorelli et al., 2005 

Vegetation and influential 
environmental 
parameters 

Climate and ecosystem habitat distributions and performances 
at coarse spatiotemporal scale, including coastal ecosystems 

Reed et al., 1994; Vourlitis et al., 2003 

NDVI with climatic 
variables and 
atmospheric patterns of 
change 

Effect of climate influences on vegetation biomass by defining 
vegetation classes through their phenological patterns. 

Fuller, 1998; Donohue et al., 2009; 
Pettorelli et al., 2005; Donohue et al., 
2009 

  

Local ecosystem 
monitoring 

Local ecosystem monitoring that could be affected by the 
influence of recreational impacts, to assess the anthropogenic 
interactions of parkland covers - whether they are forested or 
grassed. 

Justice et al., 1985; Goward and 
Prince, 1995; Weier and Herring, 2000; 
Pettorelli et al., 2005 

In variegated ecosystem conditions, so, it has applied not only 
in dry to semi-arid regions in Australia but also in a thick shade, 
e.g. Congo Forest. 

Huete et al., 2002; Pettorelli et al., 
2005 

Risk and hazard 
assessments relating the 
vegetation canopies 
(RHAVC) and drought  

Dynamic fire risk in Mediterranean areas, and  forest fires in 
Spain 

Maselli et al., 2003; Fernández et al., 
1997 

Assess vegetation changes related to dry seasons, fires, and 
surges of drought land covers depends on the index to 
vegetation aridity, a noteworthy component for fire incidence 

Maselli et al., 2003; Tait and Zheng, 
2003; Wang et al., 2003 

Biophysical studies (BS) Biophysical performance for vegetation indices Myneni et al., 1995; Huete et al., 2002 

Analysing vegetation 
dynamic (AVD) 

Vegetation trend analysis Tian et al., 2015 

The net ecosystem 
exchange (NEE) of carbon 
flux 

CO2 fluxes within a steppe & sagebrush's ecosystem Wylie et al., 2003 

Agriculture investigations  Cotton yield and crop production in Senegal Fuller, 1998; Dalezios et al., 2001 

  

Ecological applications 

Vegetation biomass and elements in different environmental 
communities  

Fuller, 1998; Weier and Herring, 2000; 
Pettorelli et al., 2005 

Assess ecological responses to environmental change 
Sellers et al., 1992; Kerr and 
Ostrovsky, 2003; Pettorelli et al., 2005 

Ecosystems predictions  

Correlation between the NDVI and climatic variables enable it 
to be used for monitoring and predictions of the ecosystems. 
Atmosphere, vegetation, and ecosystem habitats are forming 
dynamics over coarse spatio-temporal scale 

Asrar et al., 1984; Sellers et al., 1992; 
Pettorelli et al., 2005; Donohue et al., 
2009 
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The Enhanced-Vegetation-Index (EVI) is another popular index, which has used the MODIS 

datasets for vegetation analysis after 2000 (Peng et al., 2017). Along these lines, in bare lands, 

SAVI (soil-adjusted-vegetation-index) has been suggested rather than NVDIs (Huete, 1988; 

Despland et al., 2004). 

The correlation between the NDVI index and vegetation is more accurate than indices such as 

EVI and SAVI for coastal ecosystem assessment, and it can be correlated to other factors (e.g. 

climatic factors) comprehensively (Goward & Prince, 1995; Costanza, 1999; Zheng et al., 2012; 

Raynolds et al., 2015). 

The NVDI is affected sometimes by the soil radiation reflectance within scantily vegetated 

regions that have a leaf area index (LAI) of <3. However, within LAI >4 (such as a territories 

with thickly vegetation canopy) the correlation between the NIR & NVDI becomes saturated 

(Asrar et al., 1984; Huete, 1988; Nguy-Robertson & Gitelson, 2015; Peng et al., 2017). 

The ecosystem related measures that can be acquired from an NDVI dataset can be 

confounded/confused or reliable according to the ecosystem consideration issues. Using data 

on a yearly scale; within areas where a variable rainy season is present, the analysis should 

concentrate on the more stable and less vegetation dynamic season (summer) to determine 

the NDVI as part of the practical sensed data (Weier & Herring, 2000; Pettorelli et al., 2005; 

Kumar, 2011; Peng et al., 2017). However, for easier explanation to be understood (from this 

point and on), the summer dates that were processed of a year, will be recalled of that chosen 

year, for example, the summer-data of 1985 will be called 1985-NDVIs. 

6.2.3 Climate indicators 

The Earth has encountered some rapid climatic changes in the past a few decades (Pachauri et 

al., 2014). It has been recorded that after 1980 the climate has experienced the warmest mean 

temperatures in modern records ever (within past century), and considerable change has been 

recorded in terms of intense storm events, and declining precipitation (Michener et al., 1997). 

There have been major changes along the Australian coast areas in cloudiness and monsoon 

dynamics (Steffen et al., 2009). Knowledge of these progressions is imperative since they are 

directly linked with the climatic system, specifically in terms of the energy, water and 

biogeochemical cycles on the Earth’s surface due to respiration, photosynthesis, transpiration 

and surface albedo (Scavia et al., 2002; Bianchi & Allison, 2009; Wookey et al., 2009; Zinnert et 

al., 2011; Semeniuk & Semeniuk, 2013). 
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Ecosystem processes are related to many controller variables including: temperature, season 

of growth, precipitation, flooding, storminess, erosion, accretion, tidal levels, salinity and 

hydrodynamics are factors to be adapted within a time frame. Therefore, all these factors need 

to be understood in terms of recent climate change (Al-Nasrawi et al., 2015a, 2016b, 2018c). 

Then there is a need to quantify whether these factors are going to impact these ecosystem 

future and by how much (Costanza, 1999; Nicholls et al., 1999; Gedan et al., 2011). The major 

factors that may affect coastal wetlands, as shown in other cited studies, will likely be 

temperature, precipitation, sea level rise, sedimentation (erosion and accretion) and human 

settlement within coastal ecosystems (Fuller, 1998; Weier & Herring, 2000; Kumar, 2011). In 

reality, they also represent factors that we can now gather reliable data to test, largely 

satellite-image derived (Tian et al., 2015). Intensities of long-term changes (in average) of 

these factors will drive vegetation and habitat distribution in the future (Newton et al., 1998; 

Christiansen et al., 2000; Zedler & Kercher, 2005). 

Sea level rise (SLR) has become the main issue of many scientific studies, which threatens 

coastal ecosystems including wetlands. However, human modifications on: catchment and 

upper stream (including sediment characteristics/runoff)also affect coastal ecosystems by 

changing the sediment budget that can keeps coastal wetlands and estuaries in a kept-pace 

synchronous with SLR (Al-Fadhli, 2013; Al-Nasrawi et al., 2015a, 2018c). Also, natural processes 

in coastal wetlands can be altered by high-energy events such as riverine floods, storms and 

tsunamis (Nicholls, 2004). On the other hand, early civilizations inhabited estuarine and coastal 

areas (e.g. Mesopotamia; Postgate, 1992) and nowadays 70% of the human population and 

86% of Australians live along the coasts for ecological and economic reasons (Cherfas, 1990; 

Pendleton, 2010). Thus, SLR plus human-induced stressors that resulted in challenges of 

degradation have increased since the last century and caused losses of estuarine and coastal 

ecosystems, particularly within coastal wetlands (DSE, 2007; Al-Nasrawi et al., 2016b). The 

productivity of wetlands as natural ecosystems is essential for sustaining the conversation 

within such areas. 

The pattern, in general, and the span of the seasons in the southern hemisphere have become 

longer due to the environmental changes interlinked with the recorded warming trends, which 

should have amplified the vegetation productivity, structure and arrangement. Since the 

1960s, this should have resulted in an increase in the amount of the persistent O2 cycle 

(Vourlitis et al., 2003), though in dry regions like Australia, radiative forces (climate forces) 

have led to soil dryness and a decrease in vegetation (Boto & Wellington, 1984; Tongway & 

Ludwig, 1990; Qi et al., 1994; Hughes, 2003; Notaro et al., 2007). These vegetation variations 
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might have changed the sediment, nutrient and hydrological cycles, trophic associations as 

well as the entire coastal environment (Costanza, 1999; Zinnert et al., 2011; Davies & Stewart, 

2013). Another significant climatic variable apart from air temperatures is precipitation, which 

has more impact in semiarid and arid areas, like Australia, and has distinctly decreased in the 

past few decades (Watson, 1999; Nemani et al., 2003; Fensholt et al., 2013). Along with 

climate, other elements that influence vegetation growth should also be characterized, like 

morphodynamics (e.g. shoreline movement and sedimentation rates), varieties of vegetation 

(e.g. mangrove and saltmarsh), nutrient availability (e.g. the organic matter in the sediment) 

and anthropogenic modification levels in estuarine and coastal ecosystem areas and there 

relevant catchment (Davies, 1974; Tongway & Ludwig, 1990; Chapin et al., 2005; Goetz et al., 

2005). 

Various studies have recorded that natural inter-decadal (e.g. El Niño) irregularity and 

anthropogenic forcing, particularly at the local (continental/basin) scale, leads to inter-decadal 

environmental change (Hughes, 2003; Davenport & Davenport, 2006; Lee et al., 2006; Kumar, 

2011; Liu, 2012; Pachauri et al., 2014). Eastern Australian coastal environments are under the 

climate dominant influence of the Pacific Ocean. The inter-decadal irregularities in atmosphere 

over various areas of the Pacific Ocean, including Australia, are significantly affected by the El 

Niño/Southern Oscillation (ENSO) (Henley et al., 2015) that has been shown to cause more 

drought and warmer weather, as shown for example by the 1997 and 2010 El Niño events 

(Michener et al., 1997; Hughes, 2003; BOM, 2017b). 

The wave-dominated Australian east coast has been subject to hotter and more intense 

atmospheric events than in the past, particularly showing effects in the eastern coastal 

ecosystems (Michener et al., 1997; Hughes, 2003; Day et al., 2008; USAID, 2016). Therefore 

vegetation in this region may also be particularly vulnerable to climate change (Preston & 

Schmidt, 2006; Notaro et al., 2007). 

The above correlations can be applied to have a comprehensive practical view. Thus, this 

research has focused on three estuaries, as ideal case studies, along the Australian 

southeastern coast. Australian southeastern coastal ecosystems in the temperate zone have 

experienced considerable vegetation dynamicity during the last few decades of climate 

change, particularly after the 1980s. A comparative investigation of the relationships between 

vegetation dynamics and climate change is urgently required, with empirical case studies to 

prove the theoretical statement of this framework research to be useful and applicable 

worldwide. Satellite imagery series allow us to perform this for the past four decades, since the 

maximum imagery availability, using GIS. Then, we utilized RStudio liner regression, correlation 
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analysis to deal with the correlations between these three vegetation dynamic study sites and 

the atmosphere related indicators: temperature, precipitation and sea level rise, as well as 

with the human impact (mainly) on erosion dynamic represented by the sedimentation rates. 

Anthropogenic impacts have a geomorphic interaction that has included the dynamics of the 

loaded sediment from the catchments that have been impacted by human activities, as well as 

the direct anthropogenic modification within the coastal environment. 

This study has focused on the NDVI data from 1975 to 2015. This exploratory study 

investigates the response of ecosystem dynamics, represented by its vegetation, to the climate 

change trends along the southeastern Australian coast. The study has been based on Landsat 

empirical imagery, GIS-modelling and subsequent statistical analysis (for both the NDVI, 

climatic and geomorphic indicators) that can provide a numerical outcome, which would be 

able to offer  a future informal and adaptable ecosystem’ solution. This methodology tests this 

research’s hypothesis that the ecosystem dynamics respond directly to environmental changes 

at these study sites. Such findings reflect local ecosystem responses to such global changes and 

thus serve as an applicable worldwide approach for use by environmental scientists, 

government agencies, bio-ecologists, geomorphologists, meteorologists, GIS/remote sensing 

users, ecosystem managers and conservation policy makers. 

Examining the existing situation of vegetation trends to provide a comprehensive view at the 

current stage of climate change is an important approach; locally (community benefit, e.g. 

local lifestyle convenience and property prices), regionally (government and state benefits, e.g. 

management plans), and globally (gathering the international legislation efforts, e.g. UN-UNEP, 

2016-DELC/environmental laws). 

6.2.4 Study sites general setti 

This study has selected three sensitive coastal ecosystems on the Australian southeastern 

coast (Fig. 6.1) that are not safe against the effects of changes in climate and they can 

represent the worldwide ecological responses (Blay, 1944; Wright, 1970; Yassini & Jones, 1995; 

Kench, 1999; Sloss et al., 2006b; Hopley, 2013; OEH, 2013). 
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Figure 6-1. (a) Study site locations along the NSW coast in southeastern Australia. From south 
to north they include the (b) Towamba estuarine ecosystem, (c) Wandandian estuarine delta 

and (d) estuarine portions of Comerong Island.  

The southeastern Australian coastline includes protected lagoonal and wave-dominated beach 

natural assets that make an enormous contribution to the economy (Roy et al., 2001; 

Pendleton, 2010; Kirkpatrick, 2012). Estuarine ecosystems at Towamba, Wandandian delta and 

Comerong Island provide representative applicable case studies of ecosystem responses (Fig. 

6.1). 

6.2.4.1 Towamba estuary 

The estuary is located on the south NSW coast, 486 km southern of Sydney, on the border with 

Victoria (NSW; 37°06'38.0"S 149°54'10.7"E, Fig. 6.1a,b) with a temperate oceanic climate (Cfb), 

the Towamba catchment has a no distinct dry season with temperature that ranging between 

11°C and 20°C in winter and summer respectively, and an average precipitation of 882 mm 

annually (BOM, 2017a). Towamba River has built its specific estuarine eco-geomorphic system 

at the meeting point between the high-elevation and steep mountains/catchment area and 

the Pacific Ocean (Hudson, 1991; Dean & De Deckker, 2013; Al-Nasrawi et al., 2018a; DPI/OW, 

2017). Although this estuary ecosystem is only 2 km2 it receives a huge amount of sediment 
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annually from the steep terrain and mostly untouched catchment of 1034 km2 (Roy et al., 

2001; DPI/OW, 2017). The estuary is mostly surrounded by rocky outcrops that have limited 

estuary growth. This has resulted in forcing the sediment accumulation and growth to occur in 

the middle and open water sides of the estuary, leading to a narrow main active channel and 

forcing the barrier island to grow seawards (Hudson, 1991; Dean & De Deckker, 2013; Al-

Nasrawi et al., 2018a; DPI/OW, 2017). 

According to the Roy et al. (2001) classification, it is a wave-dominated barrier estuary in the 

mature stage of ecosystem development. It has an open estuary mouth into Twofold Bay in 

the Tasman Sea discharging water and sediment mainly derived from the Nullica State Forest 

(national park) and other untouched forests in the catchment area. The source of the perennial 

Towamba River is at Mount Marshall within the Great Dividing Range - South Coast Range (Roy 

et al., 2001; DPI/OW, 2017). The river normally runs/discharging southeast to be turned 

northeast just north Kiah Village. twelve reaches are joining the main Towamba River including 

Wog-Wog river & Mataganah Creek to be discharged into Twofold Bay just southeast of Eden 

near East Boyd. The river descends 533 m over its 86 km course (Roy et al., 2001; DPI/OW, 

2017). 

6.2.4.2 The Wandandian estuarine delta 

Located about 200 km south of Sydney, on the St Georges Basin (west-corner)(35°06'23.9"S 

150°33'21.8"E, Fig. 6.1a,c). It has a temperate oceanic climate (Cfb) with no dry season and 

average temperatures ranging from 11.5°C in winter (July and August) to 21°C during summer 

(January and February, data from ‘Sussex Inlet Bowling Club’ gauging station; BOM, 2017a), 

average precipitation is 1264 mm annually, with 400 mm estimated runoff (Hopley & Jones, 

2006; BOM, 2017a). The delta area is about 3.1 km2 while its catchment is approximately 152 

km2 (DPI/OW, 2017). The Wandandian delta has built out during the Holocene and consists of 

fluvial sediments (gravel, sand, silt and clay) and it is still growing nowadays (Hopley & Jones, 

2006). Wandandian Creek is the main water and sediment supplier to the delta, being 125 km 

long extending from the Tianjara Range (part of the Australian Great Dividing Range) before 

discharging into the St Georges Basin (Windley, 1986; Hopley & Jones, 2006; Al-Nasrawi et al., 

2017b, 2018b). 

6.2.4.3 Comerong Island 

Located about 30 km north of the Wandandian site on the mid-NSW coast (34°53'08.2"S 

150°44'14.3"E, Fig. 6.1a,d), Comerong Island has a warm oceanic to and humid subtropical 

climate (Cfa), with no dry season and a hot-warm summer (BOM, 2017a). The average 
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temperature ranges from 16°C in winter (July and August) to 25°C during summer (January and 

February, data from ‘Greenwell Point Bowling Club’ gauging station; (BOM, 2017a) and the 

average precipitation is 1127 mm annually, with 350 mm estimated runoff (Nott et al., 2002; 

ASCPSS, 2009; BOM, 2017a). Comerong Island is about 4.5 km2 in area, and is located at the 

end of the Shoalhaven River-Crookhaven Heads forming a barrier-deltaic island on the NSW 

coast. Comerong Island has been internationally recognized as habitat for a range of waders 

and shorebirds, and it has an amazing wetland distribution consisting of mangroves and 

saltmarshes (Kingsford, 1990; Al-Nasrawi et al., 2016a, 2016b). At the same time, it represents 

a clear example of an ecosystem affected by human influences (associated with a developed 

catchment) accompanied by sea-level rise resulting in changing shorelines and vegetation 

extent (Wright, 1970; Kingsford, 1990; Nott & Price, 1991; Daly, 1996; Christiansen et al., 2000; 

Christian & Hill, 2002). Geomorphically the island has been built as a small estuarine barrier at 

the Shoalhaven River mouth by fluvial sedimentation behind the marine sand barrier during 

mid of Holocene (Umitsu et al., 2001). The delta migrated northwards and the entrance was 

frequently blocked so in 1822 Alexander Berry constructed a canal that linked the Shoalhaven 

and Crookhaven Rivers (~4 km south of the old river entrance) to alleviate the high river water 

levels that threated the estuary and all associated human settlements (Thompson, 2012). This 

resulted in the final shape of Comerong Island, but the lower water levels threated some island 

ecosystems, such as saltmarsh areas (Al-Nasrawi et al., 2016b, 2018c). 

6.2.4.4 Climatic conditions along the south east Australian coast 

The Australian east coast is subject to varying climate conditions over a substantial land scale, 

variable geology, air/sea currents and different coastal environmental systems, making 

speculations troublesome in light of the Köppen climatic framework (Hughes, 2003; Dee, 2006; 

Ward & Butler, 2006; BOM, 2017b). Thus, the Australian Bureau of Meteorology (BOM) has 

modified the Köppen classification system to meet the local specifications (BOM, 2017a). 

The eastern coast of Australia has north-south stretched climate zones, affected by the coastal 

wave-dominated air/ocean currents, especially the warm East Australian Current. Thus the 

tropical and subtropical weather conditions are stretched farther south than normal. This 

could also be enhanced by global warming that causes similar shifts in different parts of the 

globe. This has caused a range of unstable weather event, such as cyclones, floods, droughts 

and other sporadic natural disasters at the study sites or in their catchments, that have caused 

damage costing millions of dollars annually(Hughes, 2003; Fensham et al., 2005; Semeniuk & 

Semeniuk, 2013; BOM, 2017a). 
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Interestingly, while the eastern Australian coast is prone to such climate changes, their 

recurrence intervals are liable to become more frequent and intense. Present and future 

vegetative changes and present rate of ocean level rise and the accompanied immersion of 

eastern Australian low-lying waterfront habitats (e.g. estuaries and coastal wetlands) are 

affected differently at present, and are anticipated to change due to global warming 

(Semeniuk & Semeniuk, 2013; BOM, 2017a). 

6.2.4.5 Precipitation variation along the east Australian coast 

Precipitation records have a tendency to fluctuate along the east Australian coast, especially 

on the southern NSW coast, where all three study sites are located (Fensham et al., 2005; 

BOM, 2017a). However, the Australian general climate indicators, including those on the 

southeastern coast, show a clear trend of declining precipitation over the last few decades, 

which is part of the global climate trend (Fig. 6.2; BOM, 2017b). 

 
 

Figure 6-2. Annual precipitation records (1975-2015) at the study sites: (a) Towamba 
precipitation, (b) Wandandian precipitation and (c) Comerong precipitation. The overall trends 

show a decline in precipitation over the study sites during the past forty years, (BOM, 2017b; 
KNMI, 2017). *Note, the overall trend is presenting by the grey line on a-c. 

The Towamba estuarine ecosystem receives an average precipitation of 882 mm annually (Fig. 

6.2a; BOM, 2017a; data from the ‘Marine Rescue Eden’ gauging station, located 1.4 km away 

from the estuary). The overall average Towamba precipitation trend shows a slight decline 

during the last forty years (Fig. 6.2a), from 974 to 879 mm (2.38 mm/a). In contrast, the 

Wandandian deltaic ecosystem receives annual average precipitations of 1264 mm (Fig. 6.2b; 
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BOM, 2017a; data from ‘Sussex Inlet Bowling Club’ gauging station, located 11.2 km away from 

the delta). The overall average Wandandian precipitation trend shows a significant declined 

over the last forty years (Fig. 6.2b) from 1350 to 952 mm (9.95 mm/a). Whereas, Comerong 

Island estuary receives an average precipitation of 1127 mm annually (Fig. 6.2c; BOM, 2017b; 

data from ‘Greenwell Point Bowling Club’ gauging station, located 0.4 km away from the 

island). The overall average Comerong precipitation trend has also declined during the last 

forty years (Fig. 6.2c) from 1203 to 1026 mm (4.43 mm/a).There is also a clear decrease in 

precipitation along the coast from north to south that could be related to the regional and 

global precipitation distributions, which usually decrease towards higher latitudes. However, 

the case study sites, which are located at different latitudes and receive different amounts of 

precipitation, all show a similar decline in the overall records from 1975 to 2015 (Fig. 6.2). 

6.2.4.6 Temperature 

Increasing the overall temperature will affect the season’s length and average temperature, 

which would affect plant productivity and the growing season length, and these effects should 

be clearly indicated in the NDVI records. The mean annual temperature data for the last five 

decades (1966-2016) at the case study sites have been analysed (Fig. 6.3). At these sites air 

temperature has clearly increased (Fig. 6.3), representing the combined effects of local and 

regional global warming trends, and would have a positive impact on vegetation growth 

especially in coastal ecosystems with enough water resources, like wetlands (Raynolds et al., 

2015). Figure 6.3 shows that the average air surface temperature has fluctuated but shows a 

rising trend within last a few decades over all three case studies. The Towamba estuarine 

ecosystem (with Cfb weather conditions) is the highest latitude site that records higher global 

warming impacts, and as Figure 6.3a shows the mean temperature is 16°C, but the overall 

trend has significant increased by 0.4°C, from 15.8 to 16.2°C. Whereas, Wandandian estuarine 

delta (with Cfb weather conditions) has a temperature average of 16.5°C with a slightly 

increase of 0.2 from 16.4 to 16.6°C (Fig. 6.3b), and Comerong Island estuary (with Cfa weather 

conditions) has a slightly increased temperature trend by 0.2°C as well, ranging between 16.5-

16.7°C with an of average of 16.6°C (Fig. 6.3c). 
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Figure 6-3. Mean annual air Celsius temperature (1968-2015) at the study sites: (a) Towamba, (b) 
Wandandian and (c) Comerong. The temperature trends at the three study sites have increased 

during the past 49 recorded years (BOM, 2017b; KNMI, 2017). 

The results of monthly (mean) temperature and precipitation data for all three study 

sites have been analysed and are shown in Fig. 6.4. They indicate that January and 

February (south hemisphere summer) are the warmest months while February and 

March are the wettest months in the records (Fig. 6.4). The monthly precipitation 

records show that these sites have no dry season but precipitation declines slightly 

during winter, especially from July to September (Fig. 6.4). 

 
Figure 6-4. The temperature and precipitation (monthly data) for all study sites (together) 

during 1966-2015, which have shown the highest seasonal temperature occurs during the south 
hemisphere summer, particularly in January and February. At the same time, February and 

March are the wettest months in the records (BOM, 2017b; KNMI, 2017). 
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The best vegetation growing months are January and February at such coastal ecosystems, 

which is combined with a stability of tidal stage at this time of the year. These two months 

would have the highest NDVI values recorded during the long warm growing season. This 

summer period is associated with enough water resources: (i) brackish water in the intertidal 

habitats (e.g. mangrove and saltmarsh); and (ii) precipitation for the elevated vegetation on 

the estuarine barrier (Towamba and Comerong, about 4 and 6 m above AHD), as well as the 

high deltaic zone (Wandandian, about 1.5-3 m above AHD) where some mixed native plants 

like eucalypts are present and are rainfall dependent (Jones et al., 1999; Weier & Herring, 

2000; Al-Nasrawi et al., 2016b, 2018b). 

6.2.4.7 Mean sea level 

Coastal ecosystems, particularly coastal wetlands (e.g. mangrove, salt marsh and associated 

habitats) would be strongly influenced by sea level rise (SLR) in terms of their zonation, 

position, and elevation characteristics (Barnett, 1983; Woodroffe, 1990; Gedan et al., 2011; 

Church et al., 2013). These habitats can be subjected to losses of area, extent and distribution, 

as well as the wellbeing of productivity (Costanza et al., 2008). Coastal ecosystems are the 

most sensitive, responsive and vulnerable ecosystems on Earth to SLR (Nicholls et al., 1999). 

Coastal wetland ecosystems are well developed and conserved along the extensive Australian 

coasts and shorelines, including southeastern NSW (Roy et al., 2001; Zedler & Kercher, 2005; 

DSE, 2007; Department of Environment, 2010). However, changes are not exclusively 

restricted to SLR since, nowadays, direct and indirect climate change and human development 

have had significant impacts on such ecosystems worldwide (Michener et al., 1997). 

Stratigraphic and sedimentological literature of the sediments underlying coastal wetlands and 

their unique associated habitats (e.g. mangrove and salt marsh) indicate that there have been 

considerable changes in the extent of these wetlands as a direct result of historical sea level 

fluctuations (Thom, 1967; Woodroffe, 1990; Michener et al., 1997; Deconto & Pollard, 2016). 

In addition, the indirect human settlement effects of modifying the catchments have led to a 

series of sedimentary problems, which would leave the coastal wetlands less able to keep up 

with SLR (Davenport & Davenport, 2006; Lee et al., 2006; Al-Nasrawi et al., 2016b, 2017b, 

2018a, 2018c). 

In general, as observed from prior studies, stressors would, in either a direct or indirect way (or 

both), lead to losses of coastal wetland vegetation extent, surface canopies and land classes. 

Hence, the response of coastal ecosystems, especially coastal wetland ecosystems, to SLR 

would depend on the existing coastal topography, rates and sources of sedimentation, and the 

SLR rate itself (Michener et al., 1997; Costanza, 1999; Nicholls, 2004). 
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The reported mean sea-level rise (MSLR) locally, which is relevant to the study sites, forms part 

of the global rise of mean sea-level that has resulted from the global climate changes (Church 

et al., 2013; Pachauri et al., 2014). It is based on mean sea level relative to the local or nearest 

tide gauging stations to the case study sites as follows. Towamba site has used the Eden tidal 

gauge station (1.4 km away) and the observation period has been extended from 1986 to 

present time (it has some unavailable observations in 1957-1958, 1960-1972, 1983-1984). Sea 

level data for both the Wandandian and Comerong sites was derived from the Port Kembla 

tidal gauge, located ~45 km away but it has a longer observation record extending from 1957 

to recent time (BOM-NSW, 2017), as shown in Figure 6.5. 

  
Statistics;  
           Mean sea level = 0.838 (Average monthly means = 0.836) 
           Maximum recorded level of 2.187 metres at 1100 hours 14/06/1999. 
           Minimum recorded level of -0.380 metres at 0500 hours 02/12/1986. 
           Standard deviation of the observations = 0.4009 metres. 
           Skewness = 0.1321. 

 
  Statistics; 
           Mean sea level = 0.907 (Average monthly means = 0.906). 
           Maximum recorded level of 2.233 metres at 1000 hours 19/08/2001. 
           Minimum recorded level of -0.217 metres at 0500 hours 04/12/1994. 
           Standard deviation of the observations = 0.4055 metres. 
           Skewness = 0.1702. 

 

Figure 6-5. Monthly sea levels records (the tidal range in m) for; Towamba estuarine ecosystem 
(Eden - 1986 to 2015), Wandandian estuarine delta and Comerong Island estuary (Port Kembla - 

1957 to 2016). Red is the maximum, green is the mean, and blue is the minimum (BOM-NSW, 
2017). 

Primary analysis of these monthly data from the above gauging stations, based on the 59 year 

time-series of sea-level measurements from 1957 to 2016 (in general), conceded a statistically 

notable SLR trend during the past few decades. The standard deviation of data observations is 
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equal to 0.4 at both gauging stations (BOM, 2017a). Figure 6.5 clearly shows that sea level at 

both gauging stations has fluctuated and risen as follows. 

Towamba site; the average mean sea level is 0.84 m, and the maximum recorded sea level was 

2.19 m on 14th June 1999, whereas the minimum recorded was on 2nd December 1986 at -

0.380 m. The overall average trend of SLR at Towamba is a rise of 4.5 cm from 0.815 to 0.860 

m during the last three decades. 

Wandandian and Comerong sites: monthly average mean sea level is 0.907 m, and the 

maximum recorded was 2.233 m on 19th August 2001, whereas, the minimum recorded was 

on 4th December 1994 at -0.217 m. The overall average trend of SLR at Wandandian and 

Comerong is 3.5 cm from 0.895 to 0.930 m during the past six decades. Thus, the average of 

five years used as trend of a chosen year for the sea level in the regression model to assess 

their correlation with the NDVI trend reflections. 

6.3 Methodology and datasets collection 
The main methods used in this study are GIS modelling and statistical analyses, which have 

been applied to the three case studies for the period from 1975-2015 at 5 year intervals, as 

follows (see Fig. 6.6): 

• The GIS analysis was based on imagery analyses for NDVI, including imagery 

spatial/radiometric enhancements, classification indices; clipping/expression, temporal 

trend analysis and raster attribute analysis (collecting the pixel values for the statistical 

analysis). 

• The statistical analysis using RStudio included analysing the climatic indicator trends for 

precipitation, temperature and mean sea level, as well as regression analysis to determine 

the liner correlation between these climatic factor trends and the NDVI trends (pixel 

values) spatiotemporally. 

6.3.1 Landsat Imagery Data (1975-2015) 

Landsat 1-8 imagery at five-year intervals from 1975 to 2015 (Table 6.3) was utilised to create 

the NDVIs to determine vegetation trends for each case study site. The analysis was based on a 

Landsat MSS, TM sensor summer dataset with a resolution of 79 m or 30 m from a single 

satellite image covering each-site/each-year. The imagery was chosen from southern 

hemisphere summer images since they have the best weather conditions that may affect the 

surface/canopy radiation wave reflections recorded by the satellite, particularly within such 

coastal ecosystems at the case study sites. 
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Figure 6-6. Methodology of the modelling approach steps used in the study. It has been applied to the Landsat 
satellite imagery and climatology datasets, using ERDAS IMAGINE 2014, ArcGIS 10.2 and R-RStudio (RStudio). 

The Landsat images have been radiometrically and geometrically rectified to meet the 

framework parameters including coordinate systems, atmospheric issues, and pixel size, as 

well as clipping the Landsat datasets for all three case study sites every five years from 1975 to 

2015 according to each site boundary separately to be presented, but the whole data of pre-

chosen year (data in intermediate years) will be included in the processes to get the average 
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NDVIs for that chosen year (Fuller, 1998; Pettorelli et al., 2005; Nguy-Robertson & Gitelson, 

2015; Tian et al., 2015; Peng et al., 2017). 

Table 6-3. Landsat satellite sensors utilized for the case studies*. 

Sensor Satellite Overpass/orbit 
Frequency 

Data Record 
(years) 

Spatial 
Resolution 

MSS Landsat 1-3 18 days Jan, Feb 1975, & 1980 79 m 

TM Landsat 4-5 16 days Jan, Feb 1985, 1990, & 1995 30 m 

ETM+, OLI Landsat 7-8 16 days Jan, Feb 2000, 2005 , 2010, & 2015 30 m 

*(USGS-Landsat, 2017; USGS, 2017b) 

Meanwhile, to make the multi-date data are comparable for valid use in research, This thesis is 

using the assuring geometric accuracy, including scaling of pixel sizes to a uniform spacing and 

converting the imagery pixels (30 and 79 m) to be equally scaled from 0 to 100, especially 

needed when using both MSS and TM and OLI, with different native bit depths, assuring 

common pixels extent. Some of the standard procedure, statistical weighting, is used to cope 

with rescaling to a common pixel spacing to accomplishes with the multiple date images. Using 

the standard procedure for coming to a uniform spatial scale would be to use some kind of 

neighbourhood weighting, where the respacing comes before the analysis, which usually used 

to make sure that the output values are radiometrically equivalent, rather than visually 

smooth. That determines the weighting used. That resulting of analysing the various 

resolutions of the Landsat datasets (Table 6.3), guided this study to develop a specific equation 

to give an equal opportunity for the NDVI pixel values to be presented, and the 79 m 

resolution is equity-compared with the 30 m resolution datasets statistically, as shown in 

equation (2) 

𝐃𝐃 =  𝝀 𝑫𝑫
∑𝑫𝑫𝑫

 ×  (𝟏𝟏𝟏)                    (2) 

Where; DE is the dataset equality, λ DN is the digital number of the pixel value (NDVI value) of 

each pixel in the single satellite image, and the ∑DNs is the pixels total value (sum of NDVI of 

that image) in the same satellite image. 

Negative values of NDVI (values nearer to -1) relate to not vegetated surface including barren 

rocky territories, snowy or sandy surfaces. Values from zero to one (0 to 0.1), for the most part 

relate to vegetation canopies. It will depend on the relative NIR and RED reflectance of the 

particular rock and sand in particular image, rests on testing the cutoff values for the chosen 

images and areas (Weier & Herring, 2000; Pettorelli et al., 2005). Apparently at the local 

coastal ecosystem, low positive values relate to bush and meadows of saltmarsh (roughly 0.02 

to 0.04), whereas higher values determine mild/tropical mangroves and blended plants, for 
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example, Casuarina (values drawing closer 1). The typical reach is between about -0.1 (for a 

not exceptionally green territory) to 0.6 (for an extremely green zone; Goward & Prince, 1995). 

Values under zero commonly do not have any ecological significance, thus, this research is 

considering the whole range -1.0 to 1.0, but it gives more attention to 0.0 to +1.0 ranges. 

Higher values result from a clear difference from the Near-Infrared to RED radiation received 

by the satellite sensor that can be equated with the very photosynthetically-dynamic green 

canopy. Meanwhile, a small distinction between the NIR and RED signals will reflect low NDVIs. 

This occurs when there is minimum photosynthetic activity and no reflectance of NIR light such 

as reflections from water bodies (Goward & Prince, 1995; Pettorelli et al., 2005; Donohue et 

al., 2009). 

6.3.1.1 Creating a NDVI using ERDAS IMAGINE 

The major focus of this chapter is to find out and assess the ecosystem dynamics by classifying 

the satellite images with NDVI over time focusing on vegetation radiometric reflection trends 

in each satellite image from the study site/time. NDVI modelling tool from ERDAS IMAGINE 

2014 has been used and multispectral Landsat datasets, because they have RED and NIR, as 

well as other bands (USGS-Landsat, 2017). After that, the NDVI series converted to colour-

ramped (visualised-able) maps and their pixels attribute converted to a CSV format to be 

analysed and plotted to their influences factors. 

6.3.1.2 Pixels distribution and length management  

The image surface (Fig. 6.7a) is actually a digital background representing a digital surface (Fig. 

6.7b,c); this surface has been divided into rows and columns producing pixels. Each pixel has 

its own value that represents a specific phenomenon of the captured area, within the 

resolution allowance, and its position on the digital surface is represented by its unique 

latitude and longitude. However, many continuance phenomena would have the same pixel 

values, which could be reorganised, as in Fig. 6.7c, and be statically analysed by regression. 

Consequently, the pixel values have been plotted (as a scale) according to their time of 

appearance (as frequency). 

Figure 6.7c illustrates this idea; the chosen (example) value of 0.241 (in yellow) has appeared 

five times on the digital surface (Fig. 6.7b); it is then simply reorganised to appear as one value 

(Fig. 6.7c) plotted based on its frequency which is 5 (note the actual repetition of the pixel 

value of 0.241 for this whole Landsat tail was 1986). This process has been repeated for all 

other Landsat tails, and the resultant NDVI pixel values have been plotted according to their 

supposed influence by independent variables using the database in Fig. 7d and equation 7e. 

This resulted in the linear correlations shown in Fig. 6.7f. 
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Figure 6-7. An example of preparing/interpolating the Landsat datasets and pixels distribution management in 

ERDAS IMAGINE and RStudio. 

This method allows the data values to be dealt with statistically and ignores their specific 

locations (as in Fig. 6.7c,d); thus the pixel values pretend to act as a data scale and the 

frequency is shown as a data histogram. Figure 6.7a also shows a profile section and surface of 

the southern part of Comerong Island, as illustrated on the right hand side. It shows a clear 

vegetation concentration in the middle of the channel shoreline indicating that the shoreline 

dynamics will essentially impact the vegetation canopies and the resultant NDVIs. Figure 6.7b 

shows the NDVI histogram scaled from -1 to +1 and representing both brownness and 

greenness sides on the visualised NDVI figure. The statistical analysis has considered the -1.0 to 

1.0 range, but later analysis is more focused on the greenness side, as Figs 6.7b and c show. 

Using images with different resolutions would affect the total number of rows and columns 

and hence the resultant pixels on the digital surface. The equivalent attribute table for the 

image would be either shorter or longer depending on the resolution, which will also affect the 

statistical analysis. Thus, an equation needs to be developed to give equal weight comparison 

to the all the used data. 
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A separate trend analysis of vegetation change in the NDVI datasets, based on an 

algorithm developed by Fuller (1998), has produced regression coefficients in an imagery 

format. The approach developed by Los (1993) has been adopted to minimize sensor-related 

trends, and radiometric errors, which are corrected for sensor degradation effects and 

different pre-launch calibration coefficients. Then, the NDVI trends are calculated from the 

mean annual NDVIs over 40 years, and each was examined for statistical significance. Landsat 

imagery-tails were also inspected for their association with land-cover as matched by Hopley & 

Jones (2006), ALUM (2010), Thompson (2012) and Al-Nasrawi et al. (2016b, 2017b, 2018a). 

6.3.2 Climate related indicators 

Climate datasets of the monthly temperature, precipitation and mean sea level were 

obtained from the historical records of the local gauging stations at the study sites. With a 

specific end goal to evaluate the this study has additionally utilised other air temperature, 

precipitation and sea level datasets from KNMI-Climate-Explorer, and has examined the 

missing information from nearby stations too (KNMI, 2017; BOM, 2017a). This study has 

utilized the local gauging station to demonstrate whether the local impacts (weather 

conditions) at the study sites belong to regional and global systems that are affecting all the 

sites, such as El Nino and La Nina (BOM, 2017b). 

6.3.3 Regression Model 

Statistical regression was used to explore the relationship between NDVIs as an indicator of 

wetland vegetation and a range of potential climate drivers for corresponding years. The liner 

regression-models (multiple linear) were employed by exporting the remote sensing datasets 

into RStudio (at each study site) were combined, with consideration to their time scale order, 

in the dataset to maximize variability across the variables explored.  

For each data case (the three case studies) there was an RS measure of NDVI vegetation 

(dependent variable) and regressed against the values of three climatic indicators; 

temperature, precipitation and sea level rise as well as sediment rates (independent variables). 

The sedimentation data for the Towamba, Wandandian, and Comerong sites were obtained 

from previous research (chapters 2,4,5) that concentrated on the geomorphic dynamism of 

these sites (Al-Nasrawi et al., 2015b; Al-Nasrawi et al., 2016b; Al-Nasrawi et al., 2017b; Al-

Nasrawi et al., 2018a). Data preprocessing has been applied to the whole datasets. Because 

this research is focused on the permanent vegetation statue that resulted from the 

environmental conditions over years, we used the five-year-average technique of calculating 
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the NDVIs, climatic and sedimentation rate and then run the regression model. For example, 

the NDVI values of 1980 are gained by averaging pixels over a spatial area of pre-1980 five 

years (1976 to 1980), which has been applied to all NDVI series (except 1975 that is based on 

the previous 3 years only). That has been done, also, for all other variable datasets to gain the 

averages of climate and sedimentation conditions. Then the regression model plotted the 

average (mean) pixel values for each year of the NDVIs, climatic and sediment rate factors at 

each location to determine the coefficients of variation β0 to β4, and the variation proportions 

accounted for by each regression model. For the regression procedure, this was achieved by 

inputting data cases into the following equation (3). 

 

         (3) 

where: 

μ = NDVI pixel value average for the year (dependent variable), 

T1 (temperature), R2 (rain), SLR3 (sea level rising), and geo4 (sedimentation rates as 

geomorphic factor) are the independent variables, 

e(i) is the independent, normally distributed error term,  

n is the number of pixels each year at each study site, and  

β0, … , β4 are coefficients estimated.  

Separate regressions were run for each of the case study sites on the southern NSW coast. 

6.3.4 Pixel value subtraction of NDVI change map 

The spatial distribution of NDVI change maps was calculated from the raster calculator 

expressions, which allows the power of basic algebraic expression to be achieved on raster 

maps (Cordeiro et al., 2005; ESRI, 2017). An expression was written in which the NDVI rasters 

of, for example, earlier (1975) were subtracted from the later (2015) NDVI sets to generate a 

raster representing spatial-NDVI changes over the study period, and so on for all the input 

images, to detect and demonstrate any trends. Which is simply subtracting the pixels from 

each other within the same latitude and longitude to create new pixels at the same locations, 

but with remaining values of NDVIs, whether positive or negative values, they will indicate 

spatial vegetation growth or decline respectively. 

To limit the errors that are often introduced by choice of start and finish time, we have chosen 

different start and finish times in the datasets. Also, for more accuracy and validation, there is 

a considerable literature in the remote sensing change detection and analysis field that looks 
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at many ways to deal easier with multiple date datasets. Thus, we used a change vector (a 

visual method), which shows for a pixel or collection of pixels the trajectory of change 

throughout your period. 

6.4 Results 

6.4.1 Ecosystem dynamics; (Vegetation/NDVI trends and statistic

regression model) 

Visualizing and analysing the vegetation dynamics of the three study sites has been 

accomplished using NDVI derived from Landsat data over the last 40 years (1975-2015; Figs 

6.8-6.14). NDVI has rearranged the pixel values from the Landsat data from a multispectral 

scale of 0-255 to the NDVI form -1 to +1. Visually, the NDVIs have resulted in Figs 6.8a, 6.10a, 

and 6.12a that show a clear trend of dynamic ‘brownness and greenness (-1 to +1)’ land-cover 

changes at the study sites over time. This can determine the whole land ecological and 

geomorphological cover dynamics. Statistically, however, this study has more focused on the 

ecological side, as presented by vegetation dynamics (greenness), so only the positive values 

have been interpolated statistically (0 to +1), which represent greenness canopies (Figs 6.8b, 

6.10b, and 6.12b). 

In general, the NDVI analyses have shown noticeable overall NDVI value increases at the 

Towamba estuary and Wandandian delta (Figs 6.8 and 6.10), whereas at Comerong Island a 

decline in the overall NDVI values occurred over the study period (Fig. 6.12). 

6.4.1.1 Towamba estuarine ecosystem 

The Towamba ecosystem has been analysed for its vegetation canopy dynamics using the NDVI 

and Landsat data from 1975 to 2015 (Fig. 6.8). 

In general, Figure 6.8 shows significant estuarine ecosystem growth and changes within the 

last forty years in all eco-geomorphic land-covers, including vegetation canopy in graded 

green, sandspit patterns in yellow, and water bodies in red (see Fig. 6.8a). More accurately, a 

concentrated statistical vegetation analysis (see Fig. 6.8b) has shown a clear growth of the 

greenness of the land-covers. 

Figure 6.8a,b shows the spatial distribution of the NDVI values at Towamba estuary, which has gradually 
increased overall during the last four decades, with some fluctuations (e.g. 1990-2000). Relating these 
changes over time to the relevant climatic trends can be examined by regressing them with the NDVI 
trends. Linear regression model analysis has been done using RStudio software, and Fig. 6.9 and Table 
6.4 details the relationship of averaged climatic and geomorphic factors (temperature, precipitation, sea 
level and sedimentation rates) as independent variables that could affect the averaged NDVI trends (as 
the dependent variable) at the Towamba site. 
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 Figure 6-8. Ecosystem dynamics at a landscape level for the Towamba estuary investigations from 1975 to 2015 represented by the NDVI values. (a) Maps are showing a clear 
vegetation growth trend in all estuary classes (-1 to +1 of the NDVI values), and (b) histograms of the statistical analysis of the greenness side only (0 to +1 values of the NDVI scale) 
that show a significant trend of vegetation growth over the study period.  
[* Note: on the y axis, all NDVI positive values have rescaled from (0 – 1) to (0 – 100) using equation (2) to make whole numbers. On the x axis, the original range of the NDVI (pixel 
scales 0 to +1) is displayed, which has recorded at each year and separated by the green vertical line.]   
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From the scatter plot (Fig. 6.9a) and Table 6.4 we can see a significant positive linear 

relationship between the dependent variable (NDVI) and the explanatory variable (time in 

years). NDVI has a weak positive linear relationship with temperature that is not significant at 

the 95% level (Fig. 6.9b). Rainfall is also not significant at the 95% level and it shows a very 

weak negative linear relationship with NDVI (Fig. 6.9c). However there is a moderate positive 

linear relationship between the sea level and the NDVI (Fig. 6.9d) that is statistically significant. 

Finally, plotting NDVI vs sedimentation rates (Fig. 6.9e) illustrates a significant strongly positive 

linear relationship between the variables. 

 
Figure 6-9. Results of Towamba site of the linear regression model are showing a positive relationships between 
NDVI and (a) time, (b) temperature, (d) rising sea level and (e) the sedimentation rates, but a negative relationship 
with (c) rainfall records. The grey area is the standard deviation of the data.  

Table 6-4. Correlation summery of the regressed variables for the Towamba site, shows the R-squared, p-value and 
the impact level. 

Variables  R-squared p-value Effects 
Year 0.9499 5.206e-06 P 
Temperature 0.2791 0.08261 P* 
Rain -0.1078 0.652 N* 
Sea levels 0.686 0.003571 P 
Sediment rates 0.8408 0.0003113 P 

* Means not significant, P is positive and N is negative. 

6.4.1.2 Wandandian estuarine delta 

Analysis of the Wandandian ecosystem dynamics at a landscape level is represented by its 

vegetation canopy changes, which have been monitored using the NDVI calculated from the 

past four decades of Landsat data (Fig. 6.10).   
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Figure 6-10. Ecosystem dynamics at a landscape level for the Towamba estuary investigations from 1975 to 2015 represented by the NDVI values. (a) Maps are showing a clear 
vegetation growth trend in all estuary classes (-1 to +1 of the NDVI values), and (b) histograms of the statistical analysis of the greenness side only (0 to +1 values of the NDVI scale) 
that show a significant trend of vegetation growth over the study period.  
[* Note: on the y axis, all NDVI positive values have rescaled from (0 – 1) to (0 – 100) using equation (2) to make whole numbers. On the x axis, the original range of the NDVI (pixel 
scales 0 to +1) is displayed, which has recorded at each year and separated by the green vertical line.]   
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Figure 6.10a,b shows significant estuarine deltaic ecosystem growth during the study period 

(1975-2015) in all eco-geomorphic land-cover classes, including vegetation canopies shown in 

graded green, sandspit patterns in yellow, along with a decrease in water bodies in red (Fig. 

6.10a). Objectively, a concentrated statistical vegetation analysis has shown a significant 

growth of the greenness of the canopies (Fig. 6.10b) 

Figure 6.10 is supporting the literature finding of deltaic growth (Hopley & Jones, 2006) in 

shorter-term variability though, and shows a clear vegetation growth over time both visually 

and statistically for the whole eco-geomorphic platform (Fig. 6.10). The NDVI spatial and 

statistical distribution trend shows a significant overall increased brownness and greenness 

during the last four decades (Fig. 6.10). This has documented the overall ecosystem growth, 

with a clear smoothing of the spatial distribution. A slight fluctuation occurred during 1990 to 

2000 (Fig. 6.10a). 

Results from the linear regression analysis model provide details of the climate-related factors 

plus the sedimentary processes that could affect the NDVI trends at the Wandandian site (Fig. 

6.11 and Table 6.5). 

 

Figure 6-11. Wandandian site’ results of the linear regression model with different significant p-values, 
showing a positive relationship between NDVI and (a) time, (b) temperature, (d) rising sea level and (e) 
sedimentation rates, but a negative relationship with (c) rainfall records. The grey area is the standard 

deviation of the data. 
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A strong positive linear relationship illustrated between the dependent variable (NDVI) and the 

explanatory variable (time in years; Fig. 6.11a, Table 6.5). Secondly, the relationship between 

the NDVI and temperature (Fig. 6.11b) is significant at the 95% level (p-value = 0.0486) 

indicating that temperature has a moderate positive linear relationship with NDVI. Rainfall 

does not have a significant effect on NDVI (Fig. 6.11c). In contrast, strong and positive linear 

correlation accruing between NDVI / SLR (Fig. 6.11d) and between NDVI and sedimentation 

rate. 

Table 6-5. Correlation summery of Wandandian site, shows the R-squared, p-value and the effects value 
 

* Means not significant, P is positive and N is negative. 

6.4.1.3 Comerong Island Estuary 

Figure 6.12 shows the ecosystem dynamics, at a landscape scale, of Comerong Island as 

represented by the vegetation canopy based on the NDVI reclassification of the Landsat data 

from 1975 to 2015. 

Eco-geomorphic land-cover classes on Comerong Island show a slight decline in all ecosystem 

land-covers over the last forty years (Fig. 6.12a). Statistically, Figure 6.12b shows a clear 

decrease in the land-cover greenness by concentrating statistical analysis on the vegetation 

side only (0 to +1). 

Figure 6.12 confirms the literature finding on Comerong Island of high southern shoreline 

erosion rates (Thompson, 2012) and northern slight sandspit growth (Carvalho and Woodroffe, 

2013). The greenness trend shows a slight decline on Comerong Island during the past 40 

years, with a clear spatial heterogeneity of fluctuations over the island and its shorelines. The 

NDVI spatial distribution on the island (Fig. 6.12) has gradually decreased during the last four 

decades, with some fluctuations with higher greenness being recorded (e.g. 1975 and 2010), 

and declining after that in 2015. 

Hence, a statistical regression model can be used to examine and estimate which climate 

factors or sedimentary features have the most effect on the NDVI trends (Fig. 6.13 and Table 

6.6). 

Variables  R-squared p-value Effects 
Year 0.8937 7.407e-05  P 
Temperature 0.3694 0.04856 P 
Rain -0.005211 0.3414 N* 
Sea levels 0.633 0.006316 P 
Sediment rates 0.7674 0.001207 P 
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Figure 6-12. Ecosystem dynamics of the Comerong site investigation from 1975 to 2015 presented as NDVI values. (a) Shows a fluctuated visual declining trend of the island classes 
overtime (-1 to +1 of the NDVI values), and (b) histogram of the statistical analysis of the greenness side only (0 to +1 of the NDVI values), that shows a slight statistical decline in 
the overall trend of vegetation dynamics over the study period. 
[* Note: on the y axis, all NDVI positive values have rescaled from (0 – 1) to (0 – 100) using equation (2) to make whole numbers. On the x axis, the original range of the NDVI (pixel scales 0 to +1) is 
displayed, which has recorded at each year and separated by the green line.] 
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Figure 6-13. Results of the Comerong’ linear regression model, is showing a negative relationship 

between NDVI and (a) time, (b) temperature, and (d) rising sea level, but positive with (c) rainfall records 
and (e) the sediment rates. The grey area is the standard deviation of the data. 

The scatter plot (Fig. 6.13a) of the NDVI over time demonstrates a strong negative linear 

relationship that is statistically significant at the 95% level (Table 6.6). There are also significant 

strong negative linear relationships between temperature and NDVI (Fig. 6.13b) and between 

NDVI and sea level (Fig. 6.13d). In contrast a very weak positive linear relationship can be seen 

between NDVI and rainfall (Fig. 6.13c). It can be concluded that NDVI may not be impacted by 

rainfall at the Comerong site. The scatter plot between sedimentation rate and NDVI (Fig. 

6.13e) suggesting a significant strong and positive linear correlation between those factors. 

Table 6-6. Comerong site’ summery of the linear model correlation, shown R-squared, p-value and the effect 
relationship levels. 

Variables  R-squared p-value Effects 
Year 0.7991 0.000714 N 
Temperature 0.8646 0.0001749 N 
Rain -0.1176 0.7028 P* 
Sea levels 0.7333 0.001977 N 
Sediment rates 0.8083 0.0006031 P 

* Means not significant, P is positive and N is negative. 

6.4.2 Spatial distribution of NDVI change maps (using Raster Calculato 

High values of the NDVI index equate to the presence of more vegetation, thus simple 

comparisons has been drawn between values of the index on different dates to assess 

vegetation reflection. For example, to subtract an index calculated for one (earlier) date from 

an index calculated for another (later) date have yield positive values for vegetation gain (in 

green) and negative values for vegetation loss (in red). In this way, a map of the spatial 
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distribution of vegetation change has been established for these coastal wetland cases in 

southeastern Australia, the NDVI canopy changes, including some geomorphic bases/sets, 

overtime identified using the map-algebra expression (using more than one start and end 

point), as well as the change vectors method (Fig. 6.14). 

 
Figure 6-14. Raster calculator analyses (NDVI differences) are showing; the spatial distribution of NDVIs 
changes at the study sites over time, using the map-algebra expression. The maps are based on the 
differences between the NDVI pixel values between 2015 and 1975. 

Figure 6.14a,b shows clear increases in the NDVI values within the Towamba (ignoring the 

discharge channel in orange) and Wandandian sites, which reflect high vegetation growth rates 

at both sites. However, decreases in emergent estuarine wetland vegetation canopy were 

detected on Comerong Island (Fig. 6.14c) showing the decline has scaled from orange to red on 

the island landform itself. 

6.5 Discussion 

6.5.1 Towamba vegetation dynamic 

6.5.1.1 Towamba NDVI trend  

The Towamba ecosystem, (at a landscape scale) and its habitat growth evidence, shows a clear 

spatial heterogeneity. The spatial distribution of the NDVI values in the Towamba estuary (Fig. 

6.8) has gradually increased overall during the last four decades, with some fluctuations (e.g. 

1995-2000) that may relate to a flood event that occurred in late 1990 and eroded the active 

channel and low-lying sandspits. However, Figure 6.8 shows that erosion has affected the 

active channel bed more than the greenness cover over the estuary, and then the eco-

geomorphic system started growing again. The overall growth represented by the mean NDVI 
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(-1.0 to +1.0) over the study period increased by 9.5%, from 29.1% to 38.6% of the total wave 

reflections of Towamba area (i.e. Fig. 6.8b), whereas the greenness portion (0.0 to +1.0) 

average increased as well by 5.9% from 5.1% to 11%. This indicates that the Towamba estuary 

is growing both ecologically and geomorphologically. Interestingly, the bare geomorphic units 

(brownness; -1.0 to 0.0) have increased from 24% to 28.6% at the Towamba site and are 

significantly larger than the greenness cover. Over 4 decades this might be due to the 

sedimentary characteristics of the estuary, whereby sediment infills the estuary providing 

ground on which vegetation can later become established. 

6.5.1.2 Towamba regression model  

The reason the linear regression test (Fig. 6.9 and Table 6.4) shows an important 

interrelationship between NDVI and all climate and sediment factors may be because the 

positive correlation with increasing sea level and sediment rate as well as temperature allows a 

longer growing season and higher photosynthetic productivity in addition to gaining ground 

geomorphologically in this coastal system where water resources are available. Consequently, 

rainfall has not impacted the vegetation growth temporally since water dependent plants 

mostly consist of mixed native plants on the elevated barrier island, which represents a very 

small area (~0.14 km2, or 7% of the estuary). Sea level rise provides a significant positive affect 

in this correlation, at the current rising rates, which may allow more accommodation for 

accumulating sediment and increasing ground-wetted areas, which would help develop 

ecosystem stability of habitable wetlands as well as the other communities at Towamba 

estuary. It might also reflect severe erosion during the 1974 floods on the east coast causing 

extensive scouring before this analysis started. 

The Towamba site is really interesting since the increasing annual temperature trend shows an 

insignificant positive correlation (at 95% level) with increases in the NDVI values, while it has a 

significant positive correlation at the other two study sites. These differences may relate to the 

Towamba higher latitude being located about 500 km south of Sydney. That has even resulted 

in different weather conditions, whereby the temperate oceanic climate (Cfb) has a slightly 

shorter growing season than other sites that have a warm oceanic to humid subtropical 

climate (Cfa). Thus, it seems that an increasing temperature trend during climate change 

would lead to a longer growing season in this estuarine system since suitable water and 

sediment resources are available to support a growth in vegetation canopy. 
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6.5.2 Wandandian vegetationdynamics 

6.5.2.1 Wandandian NDVI trend 

Extension of the delta during the Holocene by continuous accumulation of sediments via 

Wandandian Creek from its partially developed catchment, has led to large areas in St Georges 

Basin bring infilled providing a good habitable estuarine area for a range of coastal ecosystems, 

such as wetland vegetation and associated communities. The NDVI spatial and statistical 

distribution trend shows a significant overall increase (brownness to greenness) during the last 

four decades (Fig. 6.10). This has documented the overall ecosystem growth, with a clear 

smoothing of the spatial distribution. A slight fluctuation during 1990 to 2000 (Fig. 6.10) may 

be related to the drought and low rainfall recorded from 1993-1995, as well as the flood 

events that hit the area from 1998 to 2000 (Fig. 6.4) and may have caused some shoreline 

erosion, and the El Niño influences after 2010 (BOM, 2017a). 

The overall ecosystem growth represented by the mean total NDVI over the study period 

increased by 10.7% from 8.4% to 19.1%, whereas, the greenness portion (0.0 to +1.0) has 

increased by 7.3% from 6.9% to 14.2%. This indicates that the Wandandian site eco-

geomorphic system is also growing ecologically and geomorphologically, but the ecological 

rate of growth is higher (7.3%) compared to the geomorphic growth of only 3.4% (from 1.5% to 

4.9%). This could be because the low lying wetlands have been well preserved and growing 

over the last few decades. However, it could also be related to the availability of sediment 

from the partially developed catchment, and because the Wandandian delta is slowly 

accumulating under low wave energy conditions in the inner St Georges Basin (Hopley, 2004) 

providing ideal habitat conditions for vegetation. 

6.5.2.2 Wandandian regression model 

Regression model analyses have shown clear vegetation growth over time for the whole 

ecosystem and statistically represent a preponderance of control by the three regressed 

climatic plus geomorphic factors on the NDVI values. The NDVI growth trend evidenced on 

Wandandian delta can be interpreted from the linear regression test (Fig. 6.11 and Table 6.5) 

that shows an insignificant negative relationship with rainfall, but a positive relationship with 

temperature, sea level rise and sedimentation rates. This indicates that increases in sea level 

have a significant positive correlation with the NDVI trend due to the long shorelines with low 

slope, as well as the large area of low lying wetlands that include large mangrove and 

saltmarsh areas. The latter have a direct connection with St Georges Basin whereby rising sea 

level would influence the estuarine inundated areas in conjunction with the increasing 
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sedimentation rates. Meanwhile, rainfall has a slight negative influence (-0.080 only) on 

vegetation radiation, especially on the elevated parts (~3-4 m) of the delta that are controlled 

by a shortage of water resources. Temperature has a significant positive affect on vegetation 

health as it provides a longer growing season. 

6.5.3 Comerong Island vegetation dynamic 

6.5.3.1 Comerong NDVI trend 

Comerong Island has been generated by the Shoalhaven River as part of a wave-dominated 

delta, which also built the estuary and the associated ecosystems and habitats (e.g. unique 

wetlands) on the landward margin of the delta. Nowadays, however, although the Shoalhaven 

River has a huge catchment area of about 7200 km2, which is the sixth largest catchment in 

NSW, the construction of Tallowa dam restricted the amount of sediment delivered 

downstream to balance the erosion/deposition rates along the island’s shorelines. This has 

caused higher erosion rates along the western and southern sides of the island and resulted in 

loss of area at some eco-geomorphic sites (e.g. shorelines and associated intidal habitats like 

mangrove; (Thompson, 2012; Al-Nasrawi et al., 2016a, 2016b). This loss of vegetated area 

would effectively influence the vegetation radiation and hence the NDVI values. In contrast, a 

small part of the northern end of the island has been growing (Carvalho & Woodroffe, 2013) at 

the same time because the original river mouth has been closed allowing sedimentation to 

occur in this inactive region. 

Comerong Island has been analysed for its ecosystem vegetation canopy dynamics using the 

NDVI and the Landsat datasets from 1975 to 2015. The greenness trend shows a slight decline 

on Comerong Island during the past 40 years, with a clear spatial heterogeneity of fluctuations 

over the island and its shorelines. This could be related to specific climate events, such the El 

Niño that hit eastern Australia between 2010 and 2012, which resulted in higher temperatures 

and flood events at this site (BOM, 2017a). Specifically, the middle and southern parts of 

Comerong Island have been more influenced than the other sides (Fig. 6.12a). 

The overall decrease represented by the mean total NDVI over the study period fell by 

1.4% from 24.6% to 23.2% (Fig. 6.12a,b), whereas the greenness average decreased by 3.2% 

from 18.3% to 15.2% Fig. 6.12b). This indicates that Comerong Island is deteriorating 

ecologically and geomorphologically. But the rate of ecologic decline is higher, which may be 

due to: (i) geomorphic decline (caused by less sedimentation supplements plus sea-level 

rising); (ii) leading to a decline within the vegetation growth trend, plus (iii) the rising 

temperature and falling precipitation that influences the more rain dependent elevated 
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habitats and mixed plant communities on the elevated 4-6 m sandy barrier. Altogether, 

sedimentological and climatic factors have negatively affected Comerong Island with lost 

shoreline area leading to vegetation/habitat losses as well. 

6.5.3.2 Comerong regression 

The linear model for Comerong Island (Fig. 6.13 and Table 6.6) shows: (i) a significant negative 

correlation between the NDVI trend over time with temperature, rainfall and sea level factors, 

which means a warmer climate with higher sea levels would result in a declining trend of 

vegetation greenness (NDVI values); and (ii) higher temperature would increase drought 

conditions particularly on the elevated barrier side, whereas, rainfall could play another role 

(insignificantly though) by affecting the river discharge and sediment transport/erosion that 

directly/indirectly effects the shorelines. However, (iii) a significant positive sedimentation rate 

influence has been shown by the NDVIs on Comerong Island’s low-lying platforms. This positive 

relationship occurred because they have a similar declining trend in sediments and NDVIs. 

6.5.4 Spatial distribution of NDVI change maps (using Raster Calculato 

Changes in vegetation distribution on these estuarine intertidal ecosystems have been 

explored over the study period (Fig. 6.14) as follows. (i) The Towamba estuary ecosystem 

shows a slight increase in the NDVI green distribution, with some steady areas and losses 

on/around the main channel shorelines in yellow and orange, respectively. (ii) Wandandian 

delta shows a clear NDVI increase in the northwestern parts with a mainly steady trend on the 

other parts of the delta (Hopley, 2004). These features are related to the availability of 

multiple water resources at these two study sites and the high sediment accumulation rates 

that result in geomorphic growth at both Towamba estuary and Wandandian delta, which has 

provided a more suitable habitat for ecological developments (Hopley, 2004). (iii) Comerong 

Island, in contrast, has a clear NDVI increase on the northern portion  with a slight increase on 

the middle and barrier sides, which are both extending geomorphically (Carvalho & 

Woodroffe, 2013). Some areas show steady records in yellow. However, there has been a 

significant decline in NDVI values in the middle, west and southern parts of the island as shown 

in orange to red. These arose because of increased salinity introduced by the decline in 

Shoalhaven River discharge since dam constructed in 1976 (Al-Nasrawi et al., 2016a), and 

shoreline erosion (Thompson, 2012; Al-Nasrawi et al., 2016b), as well as, storm surge and 

regional drought conditions following cyclones in the 1990s and El Niño conditions since 2010 

(BOM, 2017a). 
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6.6 Conclusions 
Although the climatic and sea level factors have slightly different values at each study site, all 

sites have tended to show a SLR and temperature increases with clear  rainfall declined. This 

reflects the homogeneous coastal conditions that simulate the global trends with the small 

differences being related to the latitude at each site. However, a clear variation of vegetation 

reaction has occurred at these three coastal sites, resulting in different NDVI trends and 

different correlations with the climatic and sea level factors. Consequently, the NDVI may have 

been affected by another independent variable, which has been identified as the 

sedimentation rates since it impacts on the area of vegetation reflection. Hence the 

geomorphological characteristics underlying the vegetation cover have a significant impact in 

such highly dynamic intertidal estuarine landforms subject to active erosion and deposition 

processes. 

Another finding of this research is that by using the maximum available RS datasets, which 

exhibit a variety of spatial resolutions through the study period, fixable and fairly comparable 

though. A specific dataset equality equation has been designed for NDVI-imagery and allows 

the 79 m and 30 m resolution data to be compared statistically over time. 

The NDVI was used to assess the sensitivity of coastal wetland vegetation at the study sites to 

the main climatic variables. Values of this index were calculated from Landsat 1-8 imagery 

across a range of wetland vegetation types growing on various geomorphic landforms. 

6.6.1 NDVI surface analyses and trend 

The Towamba estuary is growing ecologically and geomorphologically, with the rate of 

geomorphic growth being faster and wider than the plant communities. Over the last 4 

decades this reflects the sedimentary characteristics of the estuary, whereby sediment infills 

the estuary providing ground on which vegetation can become established. 

The Wandandian site eco-geomorphic system is also growing ecologically and 

geomorphologically, but the ecological rate of growth is higher (7.3%) than the geomorphic 

growth of only 3.4%. 

In contrast, the NDVI spatial distribution on Comerong Island (Fig. 6.12) has gradually 

decreased during the last four decades, with some fluctuations showing higher greenness (e.g. 

1975 and 2010). This indicates that Comerong Island is deteriorating ecologically and 

geomorphologically but the rate of ecological decline is higher. These changes can be 

attributes to sediment erosion and rising sea level. 
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6.6.2 Regression model 

The reactions of the dependent variable (NDVI) to the regressed independent factors (time, 

temperature, rainfall, sea level and sedimentation rates) are provided in Table 6.8. 

Table 6.7. Effect of five variables in three areas on NDVI at 95% significance level 

 
* Means not significant, P is positive and N is negative. 

 († at Towamba site, temperature is significant at the 90% confident level). 

The variables time (year), rising sea level and sedimentation rate have significant effects on 

NDVI trends whereas temperature and rainfall have insignificant effects on increasing the 

NDVIs on the Towamba intertidal estuarine eco-geomorphic landforms. At Wandandian delta 

all the variables have significant positive effects on the Wandandian NDVI index, except 

rainfall. In contrast, at the Comerong site time, temperature and sea level rise have significant 

negative impacts on the NDVI, whereas rainfall has an insignificant effect on NDVI and 

sedimentation rate has a positive influence. 

From all three study sites, at 95% confident level (which is the target of this research), it can be 

concluded that: 

• Rainfall does not have a major impact on NDVI at any of these areas. 
• The sedimentation rate effect is positive and significant on the NDVIs at all of the study 

sites. 

• Temperature effect is significant in the Wandandian and Comerong sites, whereas it is 

insignificant at the Towamba site. 

• At Comerong Island, year, temperature and SLR have a significant negative effect on NDVI 

but, they have a positive effect in the other regions. 

Generally, the correlation between NDVI and the climatic and geomorphic factors is very 

significant at Towamba, Wandandian and Comerong indicating that these factors (except the 

remaining R square of other non-regressed factors) are the main controllers that will disturb 

the NDVI at such intertidal landforms during the 21st Century. 

6.6.3 NDVI change maps 

The spatial distribution of NDVI change maps were important to show, easily and clearly, the 

change in vegetation distribution at each study site, which may be informative about the 

causes and/or drivers of change at the local scale. NDVI change maps have effectively 
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employed the map-algebra expression (raster calculator tool) to Landsat datasets, to show a 

clear pattern of changes at particular areas over time (Cordeiro et al., 2005; WRC, 2012). 

The zoned changes, that have been detected, have smoothly interpolated and mapped the 

dynamic changes of NDVI distributions over the study sites/period. This has allowed these 

zoned changes to be related to the responsible factors, such as water shortage on some 

elevated parts of Wandandian delta and erosion of shorelines around Comerong Island. 

Modelling the relationship between NDVI and the environmental conditions across 40 years, 

for each site on the southeastern Australian coast, has been based on: (i) NDVI trend surface 

analysis, (ii) a correlation regression model, and (iii) NDVI change map distributions. This study 

has used the NDVI index to assess spatial and temporal changes of vegetation radiation at 

chosen coastal sites. Then it regressed these vegetation multispectral wave reflections with 

the related climatic and geomorphic trend factors (temperature, rainfall, sea level rise and 

sedimentation rates). Visually, the resultant NDVI maps have shown clear vegetation changes 

over time, as well as other land cover attributes (water bodies, sandspit). Furthermore, more 

accurate results can be gained by understanding and statistically comparing these greenness 

(vegetation) changes with climate related factors, especially when using the positive NDVI 

values (0.0 to 1.0) that represent the vegetation canopy, and ignoring the negative values (-1.0 

to 0.0) that represent the bare-lands and water. The regression model has shown the 

significant impact that the environmental changes have on the NDVIs (Towamba Fig. 6.9, 

Wandandian Fig. 6.11 and Comerong Fig. 6.13), and indicates that some non-regressed factors 

(accounting for the remaining R square) are affecting the vegetation of these areas. Moreover, 

mapped NDVI distribution dynamics over the study sites/period has clearly indicated the 

change zones, which need more investigation to determine the responsible causes within 

these sections. 

The unique wetlands habitats of coastal ecosystems are among the most productive and 

sensitive natural ecosystems on the Earth. They are highly responsive to environmental 

pressures both ecologically and geomorphologically. Climate change (particularly; 

temperature, rainfall and sea level rise) and coastal geomorphic processes (sedimentology) 

have clearly impacted most ecosystems worldwide. The vegetation canopy indicator has 

notably represented the coastal ecosystem dynamics at a landscape scale. This exploratory 

study has investigated the response of coastal vegetation to climate changes and sediment 

rates along the three sensitive coastal ecosystems on the southeastern Australian coast. 

Published literature has argued “that the ‘Normalised Difference Vegetation Index (NDVI)’ is 

the” best vegetation dynamic representative. Landsat imagery modelling and subsequent 
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statistical analyses have provided a qualitatively significant outcome that can be used to offer 

possible sustainable management solutions with worldwide applications. 
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7 Chapter VII: Geoinformatic
vulnerability predictionsof coastal 
ecosystems to sea level rise  

7.1 Abstract 
Geomorphic changes, such as increased shoreline erosion rates, are clearly affecting coastal 

eco-geomorphic systems worldwide, which have resulted from global warming, particularly 

rising sea levels (SLR). The existing situation for coastal ecosystems in southeastern NSW, 

Australia, has been affected by both global SLR and anthropogenic modifications. These 

impacts have mainly resulted in the loss of coastal wetland ecosystems. Coastal environments 

and ecosystems are sea level dependant and they are controlled by tidal stressors in estuaries 

and deltas where there is a complex interaction between eco-geomorphic and hydrologic 

processes. 

This project applied future IPCC-SLR scenarios to assess its impact on the eco-geomorphic 

aspects of coastal ecosystems in terms of risk assessment and sustainability. Comerong Island 

is used as a case study and is compared with other ocean influenced (Towamba) and lagoonal 

deltas (Lake Illawarra and Wandandian) to evaluate the regional influences of SLR. Applying 

IPCC (2013, 2014) hydro-scenarios to the chosen geomorphological coastal datasets resulted in 

a hydro-geomorphic model that shows the Comerong Island study site was already under 

pressure in 2015, about 18% of the island will be covered by sea water by 2050, and using the 

maximum sea level rise scenario approximately 43% of the island will lost by 2100. Similar 

losses of wetlands are also expected to occur at the other study sites and can be extended to 

the remaining estuaries in southeastern Australia. Applying this broad scale application of 

simulation and classification using LiDAR data, topographic layers, remote sensing data and 

local sea level records in ArcGIS together with the various IPCC (2013, 2014) sea level rise 

scenarios will be necessary to assess future ecosystem sustainability management plans for 

coastal zones worldwide. 

 

Keywords: Ecosystems Vulnerability, climate changes, remote sensing, GIS modelling, 

conservation.  
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7.2 Introduction 
The Earth as a planet has had balanced and sustainable Holocene ecosystems (eco-

sustainability) for thousands of years (Siddall et al., 2003; Carlson et al., 2008). Although it has 

faced fluctuating Quaternary weather conditions (Fairbanks, 1989), like glaciations followed by 

warm periods (Siddall et al., 2003), its coastal ecosystems have become balanced and 

stabilised during the mid of Holocene, especially within last 4000 years in Australia (Carlson et 

al., 2008; Steffen et al., 2009). However, during the last century the increased population and 

rural, urban and industrial pollution has stressed these coastal ecosystems, and even 

overloaded them, threating the ecosystem’s balance and even its loss (Parmesan & Yohe, 

2003; Neumann et al., 2015; Al-Nasrawi et al., 2016a, 2016b). For example temperature 

increases during the 21st Century as a result of CO2 emissions are causing climate change and 

mean sea level rise (IPCC, 2014), significantly threatening many ecosystems, especially coastal 

environments such as wetlands (Watson et al., 1998; Michener et al., 1997; IPCC, 2014). 

Mean sea level started to rise globally in the 19th Century, but significant rises have occurred 

since the 1950s and it has been estimated that sea level will continuously rise throughout this 

21st Century (Watson et al., 1998; IPCC, 2013, 2014; Nicholls et al., 1999; Hughes, 2003; 

Meyssignac & Cazenave, 2012; Deconto & Pollard, 2016). Sea levels are expected to keep 

rising, according to range of scenarios of CO2 emission, by 26-55 cm by 2100 AD under low 

emission estimates, whereas high estimates suggest a rise of 52-82 cm according to IPCC 

(2013). Moreover, under the most popular projections, rate of SLR is probable to increase and 

will exceed the records from 1971-2010 based on the current global warming rates and gas 

emissions that will lead to increased ice sheet melting. In fact, the post-1990 SLR rate is 

already faster than in the preceding 20 years (IPCC, 2013, 2014; Cazenave et al., 2017). 

During the last few decades, the United Nations Intergovernmental Panel on Climate Change 

(IPCC) and many scientists have outlined a range of future emissions scenarios to explain the 

existing and forecast future geomorphological strategies to cope with SLR. Many of these 

methods depend on digitizing and analysing remote sensing data. Several methods have been 

developed to simulate geomorphological surfaces to create digital elevation models (DEMs; 

Arun, 2013). Examples of models include elevation changes within coastal ecosystems that 

have led to the invention of several methods and devices, such as Sediment Erosion Tables 

(SETs) designed by Boumans & Day (1993), and its subsequent modification to Surface 

Elevation Tables (SETs) allowing very accurate surface dynamic measurements (Whelan et al., 

2005). However, SETs are generally costly, have a limited areal coverage, and take a long time 

to obtain accurate trend results. SETs may need up to 20 years on average to get accurate 
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results (McIvor et al., 2013; Cahoon, 2015). Thus, since higher resolution and more accurate 

remote sensing data has become available to represent geomorphological surface patterns 

(Patel et al., 2016), like Light Detection and Ranging (LiDAR) clouded datasets (Gillin et al., 

2015), environmental scientists have been using the DEMs as a surface dynamic analyser. It is 

accurate enough, cheaper and faster than using SETs and can be based on several modelling 

methods (White & Wang, 2003; Gillin et al., 2015). DEM analyses may be utilised as 

ecosystems management, modelling and decision support tools (National Parks and Wildlife 

Service, 1998; Haq et al., 2012; Arun, 2013). 

DEM analyses are used to measure characteristic geomorphological aspects of the surface 

(Wood, 1996). Several software tools can be used to create DEMs (Omran, 2016; Al-Nasrawi et 

al., 2017a). However, a geographic information system (GIS) provides the most advanced and 

accurate results that can be achieved at present (White & Wang, 2003). A number of datasets, 

like SRTM and LiDAR datasets, can be used to suit the purpose of making the DEMs (White & 

Wang, 2003). A GIS format can be developed to characterize three specific objectives, namely 

to identify spatial patterns, to identify scale dependency in form and to allow visualization of 

results (Wood, 1996). 

Approximately one third to half of the major coastal environments on Earth have been 

degraded, including eastern Australian coastal wetlands, during the past decades (Watson et 

al., 1998; Valiela & Fox, 2008; Saintilan & Williams, 2010; Al-Nasrawi et al., 2016a, 2017b, 

2018a). An additional 6-22 % of sensitive coastal ecosystems (such as coastal wetlands) are 

expected to be lost by 2080, with little anthropogenic contribution, by applying different 

natural climate change scenarios (Nicholls et al., 1999). However, anthropogenic modifications 

are expected to have more impact than the magnitude of SLR within wetlands during the 21st 

Century (IPCC, 2013, 2014). Losses of 36-70 % by 2080 are expected when considering 

combined natural and human change scenarios (Michener et al., 1997; Wall, 1998; Nicholls et 

al., 1999; Morris et al., 2002; Nicholls, 2004). 

7.2.1 Case study and setti 

Comerong Island, 120 km south of Sydney in southeastern NSW, Australia (Fig. 7.1a), is used as 

a main case study to show the influence of mean sea level changes on changing the island’s 

elevation and ecosystems. Comerong Island is located at the end of the Shoalhaven and 

Crookhaven Rivers, and represents an example of large scale biodiversity habitats like 

saltmarsh and mangrove (and their associated oysters, fish, animals and birds) where the 

shorelines and vegetation extent are being influenced by climate change (Kingsford, 1990; 
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Thompson, 2012; Al-Nasrawi et al., 2016b). Comparative study sites with different geographic 

settings include Wandandian Creek delta (Fig.1b), Towamba estuary near Eden (Fig. 7.1c) and 

the Macquarie Rivulet and Mullet/Hooka Creek deltas in Lake Illawarra (Fig. 7.1d). 

 

Figure 7-1. New South Wales location in Australia showing: (a) the study site, Comerong Island, in southeastern 
NSW, with a complicated mostly intertidal eco-geomorphic wetlands system created by tidal and river interactions, 
and the comparative examples on the southern NSW coast as follows; (b) Wandandian delta, (c) Towamba estuary, 

and (d) Macquarie Rivulet and Mullet/Hooka Creek deltas in Lake Illawarra. 

Comerong Island is mostly made of sand, and it has important coastal wetlands that were 

escaped any degradations for many centuries. Situated on the eastern coast to the Southern 

Highlands, the riverine and coastal area is now degraded in its ability to adjust ecologically and 
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geomorphologically as a result of human settlement, landscape modification and sea level rise 

(Al-Nasrawi et al., 2016a, 2018b, 2018c). This has culminated in a series of changes in the 

coastal wetlands and the distribution of habitats like saltmarshes and mangroves (Thompson, 

2012; Al-Nasrawi et al., 2016b). 

The major natural processes affecting coastal wetlands into the future are likely to be Global 

Mean Sea Level Rise (GMSLR), erosion, sedimentation and altered rainfall patterns. These 

processes will initiate changes to the long-term average wetlands distribution and drive 

habitat changes in the future. Other factors such as salinity, rainfall and flooding are also 

expected to have effects on the coastal environment’s characteristics. The processes currently 

affecting Comerong Island, and the level of influence that each process has on the coastal 

wetland growth/persistence, need to be understood. Previous studies on Comerong Island 

have shown clear shoreline erosion and wetland losses on the western side, adjacent to Berry 

Canal (southwestern), and the southern and middle portions of the island (Fig. 7.2; Thompson, 

2012; Al-Nasrawi et al., 2016b). 

This research has focused on southeastern NSW to investigate the possible future responses to 

environmental changes caused by GMSLR. Several parameters of the coastal ecosystems need 

to be addressed in order to estimate and apply a suitable modelling approach. Such 

parameters include historical shoreline responses, grain size distributions and their 

vulnerability to the tidal dynamic stressors. Meanwhile, it should be understood that tidal 

planes (levels) up an estuary will change depending on the estuarine type and shape. The study 

site is recognised as having a significant ecological value and the island is mostly classified as a 

conservation area under NSW biodiversity legislation (State SEPP-14), which aims to ensure 

preservation and protection of the wetlands both environmentally and economically. For these 

reasons, future sustainability of the coastal ecosystems needs to build on the previous 

investigation by Al-Nasrawi et al. (2016b) that assessed the existing situation on Comerong 

Island and its past temporal and spatial changes. 

The historical and current situation on the island have been checked and mapped by Al-

Nasrawi et al. (2016b) using remotely sensed data including aerial photographs for 1949, 1961, 

1970, 1981, 1993, 2002 and 2014 (fig. 4 in Al-Nasrawi et al. 2016b). These analyses have shown 

significant shoreline changes around Comerong Island; the northern part of the island has 

expanded by 0.41 km2, whereas, the western, southwestern and southern parts have been 

eroded by 0.73 km2 (Fig. 7.2; Thompson, 2012; Al-Nasrawi et al., 2016b). This situation has 

resulted from interrupting the natural sediment delivery and erosion/deposition cycles (Al-

Nasrawi et al., 2016a, b). The eco-geomorphic processes around Comerong Island have been 

significantly influenced by human infrastructure upstream, such as the Tallowa Dam, and the 
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increased fine sediment runoff from agricultural land. These changes, combined with the rising 

ocean tidal prism, have caused a reduction in sediment delivery that cannot balance the 

erosion/deposition around the island caused by natural processes (Thompson, 2012; Al-

Nasrawi et al., 2016a, 2016b). 

 
Figure 7-2. Study site at Comerong Island in southeastern NSW, Australia, showing the complicated mostly 
intertidal eco-geomorphic wetlands system created by tidal and river interactions (after Al-Nasrawi et al., 

2016b). 

Grain size analysis of 113 sediment samples (Fig. 7.3) has shown the vulnerability of Comerong 

Island, which mostly consists of sand (96.4%; Al-Nasrawi et al., 2016b). This sandy non-

cohesive sediment means that tidal currents associated with GMSLR will have a greater effect 

on Comerong Island and its ecosystems than if there was a rocky foreshore. Although, most 

coastal wetlands in NSW have ecosystems developed on unconsolidated sediments, Comerong 

Island has an additional sediment delivery problem caused by the construction Tallowa Dam 

on the main Shoalhaven River, which has limited the amount of sediment derived from the 

sixth largest catchment in NSW (7177 km2). Altogether, these factors are likely to increase 

erosion rates and decrease the amount of deposition at the same time. 

Four other study sites have been investigated to examine the proposed methods, geomorphic 

settings and to prove the study findings. They are Wandandian delta, Towamba estuary, 

Macquarie Rivulet delta and Mullet/Hooka Creek delta (see Fig 7.1). 
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The delta of Wandandian Creek is actively prograding into St Georges Basin (western side), and 

it is located about 155 km south of Sydney (Fig. 7.1b). The length of the delta is about 25 km 

with average of 1.5-3 m elevation.(Hopley & Jones, 2006). 

 
Figure 7-3. Sand content in sediment samples from grain size analysis, Comerong Island (after Al-Nasrawi et al., 

2016b). 

The Towamba estuary is located on the southeast NSW coast to the south of Sydney by ~385 

km near Victoria border, Australia (Fig. 7.1c). Main coastal ecosystem of Towamba estuary is 

located at the end of the Towamba River delta where the active tidal channel has an average 

depth of 1.14 metres. Towamba estuary is mostly surrounded by rock outcrops, resulting in 

restricted estuarine shape (Fig. 7.1c). According to the Roy et al. (2001) classification, it is a 

wave dominated estuary and estuarine barrier in mature stage of ecosystem development. 

The Macquarie Rivulet delta and Mullet/Hooka Creek delta are part of Lake Illawarra system. 

They are river and wave-dominated deltas, respectively, located south of Sydney (~80 km; Fig. 

7.1d). Lake Illawarra has about 35 km2 total surface area but it is relatively shallow (~3.5 m 

maximum depth). Morphologically, it depends on approximately 235 km2 of a catchment area 

with twelve waterways draining five sub-catchments, including Macquarie Rivulet (96.35 km2) 

and Mullet Creek (75.2 km2). The Macquarie Rivulet and Mullet/Hooka Creek deltas are 

actively prograding from the western margin of Lake Illawarra (Hopley et al., 2007; Hopley, 

2013). 
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7.3 Methodology 
The geomorphic-hydrodynamic numerical model combines the geomorphological land 

datasets with the local sea level hydrodynamic data. The proposed method is based on LiDAR 

data point clouds that reflect the island surface elevation (ground level as a geomorphological 

landscape datasets) and incorporate the IPCC (2013, 2014) hydrodynamic variable scenarios 

that estimate the future position of sea level around the island. According to the IPCC (2013, 

2014) sea level is estimated to rise by 26-82 cm by 2100 (Fig. 7.4 and Table 7.1), and this needs 

to be taken into account when assessing future sustainable approaches to wetland 

conservation that may be applicable to the eastern Australian coast and similar ecosystems 

worldwide. 

 
Figure 7-4. The scenarios of the sea level rises (the Global mean) from 2006 to 2100, which hve been 

generated according to a time-series dataset that been multi-modelled from 1986-2005. The red and blue 
lines are the mean estimates, and the red and blue bands are the estimated uncertainties of the scenarios 
that have a likely range of ~ ±7 cm for 2050 and ~±15 cm for 2100 (IPCC/2014-AR5/SYR/SPM; Table 7.1). 
Table 7.1. Projected change of “Global Mean Sea Level Rise” (GMSLR) during this century (mid “2050” 

and end “2100” scenarios), by simulating the time series dataset from the 1986-2005 period (IPCC, 
2014). 

 

a= “Calculated from projections of 5 to 95% model ranges. These ranges are then assessed to be likely ranges after 

accounting for additional uncertainties or different levels of confidence in the models. For projections of 

global mean sea level rise confidence is medium for both time horizons” (IPCC, 2014). 
b= “Based on 21 CMIP5 models; changes are calculated with respect to the 1986-2005 period. Based on current 

understanding (from observations, physical understanding and modelling), only the collapse of marine-based 

sectors of the Antarctic ice sheet, if initiated, could cause global mean sea level to rise substantially above this 

likely range during the 21st Century. There is medium confidence that this additional contribution would not 

exceed several tenths of a metre of sea level rise during the 21st Century” (IPCC, 2014). 
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However, the mean and medium confidence scenarios (Table 7.1) show that, by 2050, the 

mean SLR will range from 24 cm to 30 cm above current SL and by 2100 will be increased to 40 

cm to 63 cm. Whereas, the likely maximum estimates show up to 38 cm and 82 cm of GMSLR, 

respectively. 

Based on IPCC (2013, 2014) projections, this study quantifies the local GMSLR (as a 

hydrological function), the island elevation and erosion rates (as geomorphological variables), 

and then applies these using GIS analysis tools. A detailed geomorphic assessment of erosion 

within the coastal zone of the study site has been done (Al-Nasrawi et al., 2016b). It started by 

looking at historical mapping and aerial photographs to determine how the local 

area/shoreline has changed over time to see which areas are eroding and by how much per 

year, and then applying these rates to future long term scenarios. 

The GIS analysis was accomplished by using ArcScene10.2 and its animation manager tools as 

follows. Firstly, use the generated DEM (as a raster) and add a simple polygon covering the 

study site (as the second layer), and then converting the area to ‘ScenLayers’. Secondly, from 

the raster properties choose Display, Cubic Convolution (for continuous data) and then choose 

Base Heights, floating on a custom surface, change the custom default elevation (to 300 or 

whatever would make a logical 3D shape). After that go to the ScenLayers properties, and 

choose Calculate from Extent. Finally, open the Animation manager tool and create an 

Animation Key frame (for the polygon), then add a number of these keys and change their ‘Z’ 

value to the IPCC (2013, 2014) future scenarios, as decided above (24 cm, 62 cm and 82 cm). 

Then simply run and save the scenarios via the Animation control panel. 

The available geomorphic data from Comerong Island are sufficiently accurate to model a 

range of scenarios covering the IPCC (2013, 2014) GMSLR predictions. This research has tested 

the extreme projections as well the predicted average GMSLR. Models have been produced to 

test the current distribution (2015) and the predictions for 2050 and 2100 for sea level rises of 

26 cm, the 62 cm average value, and 82 cm, which is a reasonable approach within the 

Comerong Island area. Thus, this study has quantified the range of predictions for mean 

estimated levels for the 21st Century. Furthermore, the geomorphological datasets for the 

island and the hydrological dynamic factors affecting the shoreline changes and erosion rates 

have been applied independently to the existing wetland mapped for another study based on 

the historical and existing situation at the same study site (Al-Nasrawi et al., 2016b). 

Sedimentation rates play an important component that depends on a number of external 

factors including catchment contributions. Therefore, addressing all relevant factors using 

empirical data is the safest approach to gain results that reflect the existing situation and any future 

predictions. 
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GIS and RS datasets (e.g. LiDAR data-cloud) have contributed important roles in 

representing and digitising the geomorphological surface covers to assess the influences of 

natural disasters and climate change patterns like GMSLR (Haq et al., 2012; Arun, 2013; 

Mohamed et al., 2013). This study is based on manipulation of the LiDAR data set (point cloud 

elevations and Digital Elevation Model – DEM; as Fig. 7.5 is showing) and comparison with 

measured tidal planes at the tidal monitoring station closest to the most affected parts of the 

island –the Greenwell Point station (Fig. 7.2) located at the middle of Crookhaven River on the 

southern side of Comerong Island.  

 
Figure 7-5. Methods applied to the LiDAR data of the southern part of Comerong Island. Starting with the 

point cloud data on the left side, it was converted to two data sets, the contours and TIN in the middle, and 
then the generated DEM is shown on the right side. 

 
Figure 7.5 shows a new modelling method based on RS data and GIS has been used for the 

study site. It used a standard airborne LiDAR survey carried out by the NSW Government in 

2010 using a Leica ALS50-II that was integrated with a RCD105 digital camera. The accuracy of 

these data are a minimum density of 1 point cloud per square metre (representing a minimum 
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1 m2) for spatial resolution, and less than 30 cm for vertical accuracy to create a DEM with 95% 

confidence (LPI, 2010). This research focuses on the hydrodynamic and geomorphic processes, 

which can be influenced by SLR and cause considerable modification of the mean levels of the 

tides. These elevated tidal levels were then applied as the model boundaries and were related 

to the Comerong Island surface elevations. Such models are commonly used for modelling 

rivers, estuaries, coasts and flooding, using various aspects of the ArcGIS toolbox. They create 

contours that converted to the triangulated irregular networks (TINs) which can be built on to 

generate the digital elevation models (DEMs), as shown in Figure 7.6 below, using an example 

applied from the southern part of the study site. 

7.4 Results and discussion 
The Department of Land and Property Information (LPI) in NSW provided LiDAR survey data 

that covered Comerong Island. These data record the surface elevation as heights (Z values) 

relative to a local zero level datum. The data also incorporate the actual local mean sea level at 

the time of the survey according to the local ground base-stations for tidal/time dynamics, 

including the Crookhaven Heads, Shoalhaven Heads and Greenwell Point stations. The 

recorded surface elevations at Comerong Island ranged from -0.17 m to 9.75 m and a DEM was 

generated using a TIN and the contour spatial analyst tools in ArcGIS. 

After creating the DEM a hydrodynamic numerical model has been used to simulate the future 

GMSLR influences. So, by increasing the water level by 26 cm to 82 cm, the island will show its 

new boundaries and shape. In other words, Z value manipulation of the LiDAR dataset has 

defined the increasing areas of inundation affected by a continuously rising sea level up to the 

maximum 0.82 m according to the IPCC (2013, 2014) scenarios. 

The geomorphic-hydrodynamic numerical model, which combines the geomorphological land 

datasets with the local sea level hydrodynamic data, has simulated the future GMSLR scenarios 

technically to estimate and detect the areas that will be inundated during the 21st Century. 

Such assessments can be used to determine the sustainability of the ecosystems and for risk 

management studies. 

Applying this methodology has resulted in the production of clear and significant future 

vulnerability maps that delineate the changes expected to affect Comerong Island starting with 

the current stage based on 2010 LiDAR data, and subsequent changes within the next 50 and 

100 years. Results show that Comerong Island is currently under pressure in 2015 (as showing 

in red in b) compared with the LiDAR data obtained in 2010 (a), and about 18% of the island 

will be covered by sea water by 2050 (c). Greater influences become apparent at the study site 
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in 2100 when approximately 43% of the island will be lost if the 82 cm maximum average sea 

level rise scenarios is used (Fig.  7.6d). Ground losses will occur particularly within the low 

elevations of the island surface, which are currently covered by sensitive mangrove and 

saltmarsh habitats. 

Figure 7.6d presents the IPCC-2100 scenario on Comerong Island but because of the ongoing 

hydraulic activity, especially wave action and tidal currents, this whole area will be more open 

to erosion and the entire southern portion (sandy substrates; see Fig. 7.3) would be reworked 

and rounded with most of the remaining beach ridges and sandspits, also being reworked and 

truncated. The mapped changes in Fig. 7.6d also illustrate that the only remaining areas are 

elevated beach ridges that may support Casuarina, but not saltmarsh or mangroves, resulting 

in an almost total loss of the coastal wetland habitat on the island. 

 

Figure 7-6. Applying the future GMSLR scenarios (IPCC-AR5/RCP8.5) to the study site: (a) = Comerong Island 
in 2010; (b) = the existing situation (2015 with threated shorelines in red highlighted); (c) = Comerong Island 

in 2050; and (d) = Comerong Island in 2100. 

Similar losses of wetland habitat would also occur on most other southeastern Australian 
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lagoons and inlets as the sediment supply and lateral migration of wetlands is unlikely to be 

able to keep pace with the predicted GMSLR. To establish the degree of applicability of this 

modelling approach examples, from different locations along the southeastern Australian 

coast have been investigated using appropriate datasets/tools to yield similar results of future 

inundation estimates. 

Wandandian Creek delta is located on the NSW south coast, about 30 km southwest of 

Comerong Island (Hopley & Jones, 2006; Fig. 7.1b). It drains a moderately altered catchment 

and extends out eastern toward to the west side of the basin of St Georges, a large lagoon that 

is subjected to moderate wave action during some weather events. Using equivalent LiDAR 

datasets from Wandandian Creek delta modelled with Arc Hydro 10.2 tools (an ESRI extension 

tool) the majority of the subaerial portions of the delta will be inundated by 2100 (Fig. 7.7). 

Again wave reworking of the thin levee sequences would occur as inundation proceeds 

removing still more of the protruding delta. Figure 7.7d, again, shows significant losses of the 

low-lying landforms at Wandandian delta, which would result in almost total loss of these 

coastal wetlands by the end of 2100 AD. 

 
Figure 7-7. Applying the future GMSLR scenarios (IPCC-AR5/RCP8.5) to the Wandandian Creek delta site: (a) = 

current Wandandian delta (LiDAR data, 2016); (b) = the existing situation under stressors (2017 with threatened 
shorelines in red highlighted); (c) = Wandandian delta in 2050; and (d) = Wandandian delta in 2100. 
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The Towamba estuary is situated at the southern end of the NSW coast, ~255 km south of 

Comerong Island (Fig. 7.1c), and draining a predominantly forested catchment. This bedrock-

enclosed estuary lies within Twofold Bay and is open to northeastern wave and wind activity. 

Like Comerong Island this estuary is protected by a coastal sand spit which, in this case, is 

much narrower than the equivalent geomorphic units at Comerong Island. The analysis used 

an equivalent LiDAR dataset but with ‘Hydrologic Engineering Centre-River Analysis System 

tools’ (HEC-RAS v5.0.3) including the Steady Flow Analysis and Sediment Analysis Tools (HEC, 

2017), which represent totally different forecasting analysis tools. After modifying and 

presenting the results in the ArcGIS 10.2 format, it resulted in similar future predictions of 

inundation in the Towamba estuary (Fig. 7.8). Figure 7.8d shows clear losses of the low-lying 

geomorphological features in the Towamba estuary. However, in contrast to Wandandian 

Creek delta, the coastal spit at Towamba estuary remains intact with only a small estuary 

entrance even at 2100 AD. Therefore the flooded estuary would not be subjected to wave 

action but increased tidal flows may scour some of the partially flooded sandbanks. The net 

effect is the Towamba coastal wetlands may be lost completely by the end of this century. 

 
Figure 7-8. Applying the future GMSLR scenarios (IPCC-AR5/RCP8.5) to the Towamba estuary site: (a) = 

current Towamba estuary (LiDAR data 2016); (b) = the existing situation (2017 with threated shorelines in 
red highlighted); (c) = Towamba estuary in 2050; and (d) = Towamba estuary in 2100. 
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Hopley (2013) and Hopley & Jones (2017) have predicted the potential inundation extent, 

attributable to sea level rise, for the Macquarie Rivulet and Mullet Creek deltas, Lake Illawarra 

(35 km north of Comerong Island; see Fig. 7.1d). The predicted inundation extents were 

determined using a high resolution LiDAR dataset overlain with the NSW-Policy Statement of 

SLR (DECCW 2009) of 2050 (+0.4 m) and 2100 (+0.9 m) projected SLR scenarios as well as 

current water elevations relative to mean sea level. To illustrate the inundation extent, Hopley 

(2013) and Hopley & Jones (2017) adopted a simple approach where they modified the DEM 

scales and colour ramps to align with the nominated scenarios. Despite this simpler approach, 

Hopley’s results show future estimates of inundation and wetland loss at the Macquarie 

Rivulet delta (Fig. 7.9a) and Mullet/Hooka Creek delta (Fig. 7.9b) similar to those identified in 

this study. 

Although GMSLR has a greater effect on the Macquarie Rivulet delta than Mullet/Hooka Creek 

delta, due to the rapid progradation of Macquarie Rivulet delta limiting vertical accretion as 

mapped by Hopley et al. (2007). Irrespective, the models indicate that the existing coastal 

wetlands are likely to be lost by the end of 2100 AD. This is also supported by Hopley (2013) 

who noted that subsidence of the Macquarie Rivulet delta is already resulting in the loss of 

wetlands. 

These examples are typical of most of the estuarine systems in southeastern Australia, and 

globally, where sediment supply is graded to current sea level and wetland ecosystems have 

become well established through the mid to late Holocene. The rate of infilling of these 

estuarine systems is dependent on the catchment’s sediment supply rates. Comerong Island 

lies at the mouth of the extensively infilled Shoalhaven estuary (Umitsu et al., 2001) where 

abundant sediment was supplied from a very large catchment. In contrast Wandandian Creek 

delta has only prograded a short distance into St Georges Basin since it is fed from a much 

smaller catchment. Human influence has also affected sediment supply whereby essentially 

natural catchments such as Towamba estuary have seen very little change in sediment supply 

whereas the Lake Illawarra catchment has experienced moderately significant changes in 

sediment supply caused by agricultural and urban development (Hopley et al., 2007) and the 

Shoalhaven catchment has had both agricultural and urban development and has 

subsequently had a large reduction in sediment supply caused by the construction of Tallowa 

dam (Al-Nasrawi et al., 2016a). 
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Figure 7-9. Potential inundation map of; (a) Macquarie Rivulet delta (Hopley, 2013; Hopley & Jones, 2018) 
and (b) Mullet/Hooka Creek delta (Hopley, 2013). Maps show 2050 and 2100 inundation extents plus the 

2050 and 2100 inundation extents with an additional 0.25 m overlain to reflect the current elevated water 
level within the lagoon. 
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Thus SLR is going to show a significant impact on the coastal eco-geomorphic systems 

throughout southeastern Australia and equivalent systems overseas by the end of this century. 

This will particularly have huge influences on coastal wetland ecosystems as they are the most 

sensitive and responsive coastal ecosystems as clearly seen by the results from Comerong 

Island and other southeast Australian examples. These examples show predicted extensive to 

total losses of coastal wetlands locally, which can be extrapolated regionally and globally, 

unless they have a high enough sediment supply to maintain shallow subaqueous platforms 

suitable for wetland development. However, inland wetlands might also have the opportunity 

to grow and develop as the rising sea level may inundate low-lying coastal plains. That could 

occur where suitable low-sloped estuaries and catchments occur, such as west of Comerong 

Island where the Shoalhaven alluvial plain is not far above current sea level. To a lesser extent 

the floodplains behind the Macquarie Rivulet and Mullet/Hooka Creek deltas could be partly 

inundated to form wetlands. However, this would not be the case for higher sloped estuaries, 

including the Towamba estuary catchment, where low-lying floodplains are not present. 

7.5 Conclusions 
This research provides significant results from case studies about the future vulnerability of 

eastern Australian coastal ecosystems, in a geomorphological context, to IPCC (2013, 2014) 

GMSLR scenarios. 

Assessing eco-geomorphic coastal systems for the future GMSLR predictions, using IPCC (2013, 

2014) hydro-scenarios and the chosen geomorphological coastal datasets, has provided 

significant results that show the Comerong Island study site will lose about 18% of its wetlands 

and associated habitats by 2050, and approximately 43% of the island will lost by 2100, which 

represents an almost total wetland loss by the end of 21st Century. This study approach has 

resulted in similar outcomes for the other four chosen study sites on the southeastern coast of 

Australia, indicating that similar effects would accrue on the whole east Australian coastline 

and worldwide. 

Greenhouse gas emissions is causing climate changes such as global warming, are likely to 

increase in the near future or even if it stays the same, will have a very negative effect on the 

Earth’s ecosystems. It is clear that Comerong Island has already been affected by GMSLR 

leading to: (i) its low-lying wetlands becoming inundated by the rising sea level; (ii) increased 

erosion rates caused by higher sea level impacting on the vulnerable sandy sediments around 

the island; and (iii) a decrease in sediment delivery following catchment modifications and dam 

construction. The vulnerability of coastal ecosystems has also been affected by increased 
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human settlement and modification of the landscape that controls sediment resources in the 

catchment area. This has interrupted the balance of the natural eco-geomorphic processes of 

sediment weathering, transporting and even accumulation over thousands of years that 

established the equilibrium between SLR dynamics in conjunction with the coastal 

environments. Coastal eco-geomorphic systems loss, especially wetlands, has been confirmed 

by other examples on the NSW south coast in a variety of geomorphic settings. To assess the 

problems associated with rising sea level the use of advanced and suitable data and modern 

software in conjunction with recognised climate change scenarios is highly recommended. This 

will help us to understand well the impacts of the influences of GMSLR on coastal ecosystems. 

GMSLR is virtually certain to continue after 2100 for hundreds years according to the current 

and likely future gas emissions. Highly confidant scenarios produced by the IPCC (2013) have 

estimated that sea level will rise by up to ~82 cm by 2100 (within upper end maximum 

scenario) of about 70% of the world, including southeastern Australia (Church et al., 2013). 

However, based on the findings of AR5, sea level rise may be less than 82 cm by 2100. 

The southeastern Australian coastal zone will face strong challenges from ecosystem stressors 

during the 21st Century. Most of the Earth’s oceans will be very likely to rise, which means that 

we will have new shorelines leading to changes in the shape of the exposed continents as well. 

Moreover, depending on the future amount of gas emissions, the coming centuries could have 

continued sea level rise after 2100 AD. 

LiDAR and other similar modern RS data incorporated with GIS software analysis will prove to 

be very effective tools to obtain accurate predictions that could be available to help manage 

the environmental conservation targets for ecosystem sustainability. This approach was shown 

to be very suitable for study sites. In addition, ecological responses to relative stressors could 

be evaluated using geoinformatics to classify any temporal-vegetation changes indicated by 

the normalised difference vegetation index (NDVI) and their effect on ecological successions. 
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8 Chapter VIII: CONCLUSIONS 

8.1 General Conclusions 
This study assesses the potential impacts of upstream anthropogenic modifications, climatic 

factors and sea level rise on the estuarine eco-geomorphic intertidal sedimentary landforms 

and their associated coastal wetlands in southeastern Australia. These case studies show that 

RS imagery and GIS analysis, in combination with sedimentological and morphological data, 

make a useful methodological framework for documenting the evolution of prograding 

estuarine land-cover dynamics. Understanding how an estuary has evolved in the past can be 

used to help establish the probable vulnerability and adaptability of the estuary into the 

future. This has potential application to assess similar estuaries worldwide. 

This thesis presents an overview of estuarine formation, development stages and their 

inclusion in the classification schemes advanced by Roy et al. (2001) and Sloss et al. (2006). 

Case studies including mapped and monitored the chosen estuaries/coastal wetlands in 

southeastern NSW with their geomorphic features, using: satellite imagery and airborne LiDAR 

combined with fieldwork investigations and sampling. GIS modelling predicted the potential 

spatial distribution of future influences on intertidal sedimentary landforms under various 

environmental stressors, including the global warming scenarios, such as rising sea level and 

declining sediment yield, leading to higher erosion rates on Comerong Island, particularly 

within mangroves and saltmarsh areas. This thesis has modelled the possible effect of rising 

sea level on an eco-geomorphic estuarine regime and its coastal ecosystems by the end of this 

century, using IPCC-AR5 (2014) scenarios in ArcScene (ArcGIS) inundating simulation tools. A 

process-based modelling technique was used to estimate the shoreline position and rate of 

land-classes growth for the selected sites using an observed land cover using fuzzy 

membership function and vegetation dynamics. Furthermore, this thesis develops the possible 

mitigation and adaptation strategies and sustainable solutions, which can be utilized to curtail 

the indirect adverse effects of climatic and anthropogenic dynamisms, in general, with more 

attention focused and suggested on damming rivers, which cause direct sediment problems as 

implied by the Tallowa Dam case study. 

This thesis has mapped, monitored and modelled the following intertidal sedimentary 

landform types: barrier-estuary, deltaic-estuary and an open estuary with a large island at its 

entrance (Comerong Island). All of these studies have included diverse coastal wetland 

including mangroves, saltmarshes, Casuarina, Juncus, as well as downstream water bodies, 

dense-vegetation-covered wetlands, dune wetlands and coastal swamps. It revealed significant 



Chapter 8                                                                                                                                   Conclusions 
.   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   

177 
 

changes to the distribution of shorelines and land classes, estuarine extent and wetland 

vegetation dynamics. 

The thesis combines the GIS analytic tools with RS data, climatic data and fieldwork 

sampling/surveys to show that degradation levels on estuarine platforms are dependent on 

catchment development, sediment characteristics, ecosystem stability and sea level rise 

inundations. During anticipated climate change and rising sea level conditions, estuaries 

depend on their sediment source areas, especially any modifications to the catchment basin. 

Catchments with high anthropogenic modification levels, like the dam infrastructure in the 

Shoalhaven River catchment, influence sediment availability, and transportation with clear 

impacts on eco-geomorphic coastal platform losses. 

In contrast, mostly unmodified but high-sloped catchments, such as the Towamba example, 

may have other negative effects on the estuary since the sediments are poorly sorted coarser 

non-cohesive quartz-dominated particles that cause the geomorphic landforms and associated 

ecosystems to be more vulnerable to erosion. Whereas, regions with small moderately 

modified catchments, such as the Wandandian area, allow ideal geomorphic processes to 

occur whereby sediment is weathered slowly and moved downstream naturally to a secure 

inner estuarine deltaic setting where fine sandy/silty particles can accumulate providing more 

geomorphic stability to be inhabited and to build the prograding and steady growing deltaic 

eco-geomorphic system. 

The thesis assessment shows the eco-geomorphic-dynamism of the Towamba estuary, which 

has a mostly unmodified catchment surface (only 14% anthropogenic modifications), has been 

growing by 2609 m2/yr at a total of 0.17 km2 since 1949 as well as its barrier island that has 

moved seaward by 0.52 m/yr (on average). These growing indicators have driven the 

estimated Towamba estuary future scenarios to be mostly filled by 2100. In comparison, the 

partially modified catchment (with only 22.1%) has prograded the Wandandian deltaic 

shorelines into a wave-dominated zone but with low impact from nearshore processes. This 

has resulted in the total area growth of 0.24 km2 at an overall rate of 4168 m2/yr, with an 

average of 1.451 m/yr shoreline movement during the study period (1949-2016). Whereas, 

results on Comerong Island show there are significant changes to the areal extents, elevation 

and shorelines in the wetlands on Comerong Island over the time period of analysis (1949-

2014). Changes include northern accretion (0.4 km2), and western, middle and southern 

erosion (-0.7 km2) of the island, which resulted in the overall erosion of -0.3 km2 and net 

erosion rated of -4615m2/yr. 
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This thesis emphasises the dynamic character of the estuarine eco-geomorphic system, 

particularly using NDVI as a vegetation canopy assessment approach. This illustrates the 

relationship between the vegetation-NDVI and factors such as time, temperature, rainfall, sea 

level and sedimentation rates. This analysis shows that; (i) Towamba estuary has grown 

ecologically and geomorphologically since 1975, with the rate of geomorphic growth 

(sedimentary surfaces) being faster and wider than the plant communities. This confirms the 

eco-geomorphic assessment findings (chapter2), which suggested that the growth on 

Towamba estuary is a sedimentary characteristic, whereby mostly unmodified-high sloped 

catchment drove high sediment rates, poorly sorted sediment (which caused more and longer 

stabilisation of platform-dynamics), to infills the estuary providing a ground on which 

vegetation could become established. (ii) The eco-geomorphic system on the Wandandian site 

is growing ecologically and geomorphologically, but the ecological rate of growth is higher 

(7.3%) than the geomorphic growth of only 3.4%. This reflects the well stabilised and 

vegetated platform with less geodynamics modification resulting from the small related 

catchment with limited modifications and sea dynamic impacts. (iii) In comparison, the 

temporal NDVI trends of Comerong Island have slowly declined, which indicates that 

Comerong Island is deteriorating ecologically and geomorphologically but the rate of ecological 

decline is higher. 

A linear regression model was used to tracks these changes and has attributed and linked them 

over time (year) to temperature, precipitation, rising sea level and sediment rates (erosion). 

For the Towamba vegetation canopy, the variables time (year), rising sea level and 

sedimentation rate have significant effects on NDVI values whereas temperature and rainfall 

have insignificant effects on increasing the NDVI values. At Wandandian delta all the variables 

have significant positive effects on the NDVI index, except rainfall. In contrast, at Comerong 

Island time, temperature and sea level rise have significant negative impacts on the NDVI, 

whereas rainfall has an insignificant effect on NDVI and sedimentation rate has a positive 

influence. Thus it can be concluded that the correlation between NDVI and climatic and 

geomorphic factors is very significant at Towamba, Wandandian and Comerong indicating that 

these factors (except the remaining R square of other non-regressed factors) are the main 

controllers that will disturb the NDVI at such intertidal sedimentary landforms during the 21st 

Century worldwide. 

NDVI change-distribution maps (using the map-algebra expression) show the zonation and 

spatial distribution of NDVI changes. These, reflect the vegetation distribution dynamics at 

each study site, identifying the areas that need to be managed in relation to the causes and/or 
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drivers of change at the local scale. NDVI change maps have effectively analysed the NDVI 

datasets, to show a clear pattern of changes at particular areas over the study period. The 

zoning changes, that have been detected, have smoothly interpolated and mapped the 

dynamic changes of NDVI distributions over-time/study-sites. This has allowed these zoning 

changes to be related to the responsible factors, which included mainly high sedimentation 

rates and shoreline dynamics on the Towamba estuary, water shortage on some elevated parts 

of Wandandian delta, as well as such shoreline erosion rates around Comerong Island. 

The LiDAR-DEMs-driven character of the existing situations and the influencing factors are 

controlling the estimated future-scenarios, and have illustrate clear inundatable landform 

zonations at all study sites by 2100, as well as the Lake Illawarra validation examples. However, 

there are variations in the future vulnerability since responses to rising sea level at the study 

sites depends on their elevation and sedimentary processes/character. Thus a huge eco-

geomorphic loss (43%) on Comerong Island is predicted that represents an almost total 

wetland loss by 2100 since the island has mostly formed as low-lying platforms, which would 

be inundated due to surge of sea level, as well as the negative sedimentation rates. Loss at the 

Wandandian and Towamba sites is also estimated to occur causing total wetland loss by 2100, 

but it will affect less geomorphic area since they have higher elevated platforms and some 

rocky margins. Thus, sea level rise will have a significant influence on the coastal eco-

geomorphic systems throughout southeastern Australia and equivalent systems overseas by 

2100. This will particularly affect estuarine/coastal wetlands as they are the most sensitive and 

responsive coastal ecosystems as clearly seen by the results from Comerong Island and other 

southeast Australian examples. 

8.2 Importance and significance 
The thesis shows estuarine evolution is strongly reliant on human impacts which have negative 

effects on the sensitive ecosystems of such coastal wetlands. The thesis develops existing 

methods to investigate coastal landforms with GIS and remote sensing, which contribute to 

understanding their development. An understanding of the historical evolution of these 

landscapes can, in turn, contribute to the conservation of these sensitive ecosystems. 

The thesis characterises the impact that rising sea levels will have on estuaries in the case 

study sites employed. As erosion rates will be increased as the SLR affects new shoreline levels. 

At the same time, anthropogenic impact levels are also predicted to increase, as the 

population is growing and is concentrated on the coastal zones. Together, the thesis 

establishes at specific locations that these factors will put a tremendous effect to coastal eco-
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geomorphic systems and result in serious loss scenarios of its shorelines and associated 

wetlands habitats. I was able to show that relatively unmodified catchments will act 

differently, since higher sedimentation rates will continue to be transported downstream and 

accumulate in their respective estuaries, which may be able to grow or at least keep-pace up 

with SLR. 

The thesis shows that intertidal sedimentary landforms will have a future negative or positive 

vegetarian response according to their evolving morphological character. Then, it was 

confirmed that, within a short-term timescale, the whole eco-geomorphic system will interact 

according to many environmental and anthropogenic variables (particularly the sedimentation 

rates) to evolve its own character in the long-term timescale. 

The intertidal eco-geomorphic bodies of riverine estuaries have formed as unstable systems 

adjusting to environmental disturbances in the form of a dynamicity in shorelines, land cover 

and the associated habitat conditions, instigated post-1950 as a result of increased trends of 

global warming. This is particularly noticeable within high anthropogenic modification areas, 

which have affected the sedimentary process rates that have transported material from the 

catchments. Subsequently, the integration of these environmental together with human 

stressors has caused a significant control of the erosion/deposition processes on the estuarine 

banks due to increased fluvial and tidal influences. The riverine estuaries on the southeastern 

Australian coast are, therefore, still adjusting to a disturbance that was instigated and 

concentrated within the past a few decades when higher global warming and human 

settlement affected estuaries worldwide, including Australia. This adjustment has meant that 

the three investigated sites form part of a system experiencing dynamic equilibrium with 

erratic trends related to the gradual decrease in rates of sediment transported to the coastal 

area. This results from continued climatic and anthropogenic interactions, which control a 

decline in sediment sources from the catchments and result in increased erosion dynamics in 

the coastal zones. However, the decrease in sedimentation rates over the past 67 years at 

some sites has reacted differently where they still have a slight shoreline and vegetation 

growth, reflecting that such systems are approaching a new equilibrium state. Such riverine 

estuaries will, therefore, continue to grow at an erratic but declining rate focusing on where 

the inner secure geomorphic forms meet the stablising vegetation canopies and the associated 

habitats, as they have a significant eco-geomorphic reciprocal relationship. Erosion evidence 

presented on Comerong Island shorelines is focussed on the outer bend of the west, south and 

middle sides, and has involved eroding Comerong Island banks and mangrove areas. At the 

same time, eco-geomorphic growth is evidence format the Towamba and Wandandian sites, 
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but it occurs at a declining rate due to SLR that limits sediment deposition efficiently. 

It is clear that these intertidal sedimentary landforms are adjusting their eco-geomorphic 

regimes to the whole eco-geomorphic controlling dynamics. Adjustment levels and character 

depend on the environmental/anthropogenic stressors on one side and the 

formation/vulnerability and characteristics of such transitional landforms on the other side. 

Past examples have shown the size of such eco-geomorphic regimes depends on the length of 

the adjustment period of the estuarine system (68 years in the studied cases), but it could be 

impacted by seasonal to millennial scale systems which will require continued adjustment for 

the next few decades or it may even take centuries to come. 

Through understanding the driving forces and resistance variables influencing the 

geomorphology (and the ecological consequences) of such estuarine landforms, sedimentation 

factors, most likely due to anthropogenic modifications in the catchment with declined 

precipitation, are responsible for the general pattern of erosion along the estuarine shorelines. 

Variations in the rates of erosion reflect differential sediment characteristics (amount and 

sorting) that depend on the sources and the deposition conditions in conjunction with the 

hydraulic forces, tidal, high flow events and sea level dynamics that adjusting such systems. 

Thus, this short-term assessment would suggest that shoreline adjustment is a function of 

estuarine vulnerability and sediment characterisation and is most likely to correlate with 

greater anthropogenic impacts, especially global warming. 

This project provides significant, detailed results of estuarine morphodynamics and their 

associated coastal wetland responses in an eco-geomorphic context for risk assessment, using 

modern modelling approaches. The results are very informative for government agencies to 

issue and revise their policies. The findings are also important for the general public and 

environmental scientists who are currently focusing their attention on the best way to 

preserve wetland ecosystems. For instance, accurate estimates of environmental change can 

help to manage the environmental conservation targets. 

The goals of this research are novel. While much research has previously been conducted on 

coastal wetlands (including; Nicholls, 2004; Valiela & Fox, 2008; Saintilan & Williams, 2010; 

Oliver et al., 2012), none of these studies have reported detailed changes of estuaries and 

their associated coastal wetlands in terms of shoreline, vegetation and sediment 

characteristics for the study sites investigated here. Neither has previous work focused on the 

relationships between different estuarine landforms (as natural processes) and development 

levels (as human-modifications). 

Future projections indicate the importance of indirect anthropogenic-induced global warming 
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that is changing climates and leading to SLR and more extreme weather events like storms and 

floods (Michener et al., 1997; Watson, 1999; Hofmeister et al., 2010; Nguyen et al., 2016). 

Additionally, direct human impacts on the estuaries and their catchments will have a greater 

effect on estuaries and coastal wetlands in the 21st Century (Oscar et al., 2016). It is essential 

of get more understanding of how southeastern Australian estuarine/coastal wetlands behave 

in response to current global and local stressors through the available historical records 

(Hofmeister et al., 2010). This research will also help to provide an important framework for 

quantifying the current and future stressors/responses during any intensification of natural 

and artificial coastal hazards. This approach is very important at the current stage of human 

settlements which control most of the eco-geomorphic processes. 

Human activities have had the greatest impact on the destruction of the existing coastal 

wetlands in many regions around the world (Nicholls, 2004). Due to the importance of 

wetlands to the ecosystem in terms of the resources they provide, it remains crucial to ensure 

that human activities are controlled to prevent any devastating impacts. The alteration of 

hydrology through modification of landcover and associated dynamism  could be minimised by 

assessing the land’s suitability around various coastal wetlands using GIS technology 

(Malczewski, 2004). While the wetlands cannot be recreated, the loss can be restored through 

undertaking a hydrological analysis of an environment whose hydrology has been altered by 

human activity (Zedler, 2000). A wetland could be created that is self-sustaining when such 

considerations are made. 

The growing population in many urban centres has necessitated the damming of many rivers 

to ensure water supply to the citizens. Damming, however, has significant effects on the 

geomorphic ecosystems downstream, especially within the wetlands in the coastal regions 

(e.g. Al-Nasrawi et al., 2016a). While undertaking these developments to provide water 

resources for urban dwellers, it is critical to consider the impacts of the developments on the 

coastal wetlands as a way of ensuring their sustainability (Masselink & Heteren, 2014). 

According to Beluru & Hegde (2016), such constructions commonly make coastal wetlands 

highly vulnerable to the effects of natural phenomena like storms, as well as sea level rise (Al-

Nasrawi et al., 2018c). The sustainability of the ecosystems should be ensured through 

controlled development upstream to prevent negative effects like the loss of coastal wetlands. 

In seeking to accurately assess coastal wetlands to determine their vulnerability and to 

develop sustainable solutions, a model needs to consider the most important elements, which 

are (mainly) shorelines and vegetation dynamics. Adoption of a broad-scale modelling of 

coastal environments presents the involved managers with the capability to assess a wide 

range of mechanisms that affect the behaviours of wetland ecosystems (McFadden et al., 
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2007) in order to devise effective plans for ecosystem sustainability. This requires the 

application of a variety of modelling methods to overcome any weaknesses. A variety of 

methods can be applied in seeking to develop a sustainable ecosystem within the estuarine 

regimes and prevent the loss of the wetlands. 

In conclusion, coastal wetlands play an important role in estuarine ecosystem dynamics. An 

assessment of the literature on the impacts of changes on coastal wetlands describes a range 

of elements that could have adverse environmental impacts. These need to be considered in 

the modelling process, including methods for measuring and monitoring changes, the effects 

of the change, and modelling the factors that develop sustainable coastal wetland ecosystems. 

A wide range of methods can be utilized in the measurement of the shoreline extent and 

vegetation dynamics but it remains critical to consider the timing, frequency and the aspects of 

assessment for the results to be meaningful. The degradation of wetlands through human and 

natural activities has led to a need to adopt modelling methods which seek to ensure 

sustainability of the wetland ecosystems. 

8.3 Future research directions 
The short-term GIS-modelling and assessment approach suggests that the short-term-

estuarine dynamics is driving the long term existence and situation produced by the complex 

interactions between the variables. This should be used to direct the long term assessment 

approaches by having a better understanding of the existing situation and identifying the past 

drivers accurately. However, more tools and datasets need to be made publically available 

over time, such as more temporal-LiDAR data needed for better comparison of surface 

elevations over time. At the same time, the GIS modelling approach can provide a greater 

benefit and more accurate results by adopting the next-update of the Geocentric Datum of 

Australia (GDA2020). GDA2020 will express the new-dynamic Australian datum that 

incorporates the Australian continental movement of 2 cm/yr, which could influence the 

reference-point coordinates and the GIS and RS-short-term assessments, such as the 

orthorectification processes, and the use of drones to capture imagery for the short term 

dynamics that have better control over timing of surveys for monitoring dynamics. 

At the landscape level, maybe more geoinformatics (GIS/RS) investigations need to be 

undertaken on the catchment surface and its runoff interactions, both spatially and 

temporally, with respect to the availability and reliability of remote sensing datasets.
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Appendices 

A.1 Appendix A 
These appendixes attach copies of all the published and submitted papers that are included in 

this thesis.  

*Note: all the additional RS, GIS and fieldwork datasets and most of the analysed details behind the 

resultant data in the chapters, which might be useful for any future work; are stored on SEES (UOW) 

drive system due to the data format and size.  

Peer-reviewed publications listed below in order of their appearance in the thesis, except paper 

no. 4 for license requirements of the publisher that should be downloaded directory from their system):  

1. GIS-based modelling of vulnerability of coastal wetland ecosystems to environmental 
changes: Comerong Island, southeastern Australia.  

2. Civil-GIS incorporated approach for water resource management in a developed catchment 
for urban-geomorphic sustainability: Tallowa Dam, southeastern Australia. 

3. A Spatio-Temporal Assessment of Landcover and Coastal Changes at Wandandian Delta 
System, Southeastern Australia. 

4. An assessment of anthropogenic and climate stressors on estuaries using a spatio-temporal 
GIS-modelling approach for sustainability: Towamba estuary, southeastern Australia. DOI: 
10.1007/s10661-018-6720-5. 

5. Geoinformatic analysis of vegetation and climate change on intertidal sedimentary landforms 
in southeastern Australian estuaries from 1975–2015. 

6. Geoinformatics vulnerability predictions of coastal ecosystems to sea level rise in 
southeastern Australia.  

Conference proceedings, papers, and abstracts 

1. Modelling changes of coastal wetlands responding to disturbance regimes (Eastern Australia) 
Using GIS. 

2. Surface Elevation Dynamics Assessment Using Digital Elevation Models, Light Detection and 
Ranging, GPS and Geospatial Information Science Analysis: Ecosystem Modelling 
Approach. (Peer-reviewed though). 

3. Using GIS-modelling to determine the hydrological factors that affect a catchment area: a 
practical experiment.  

4. Risk assessment of trace element pollution in Gymea Bay, NSW, Australia. 
5. Modelling the future eco-geomorphological change scenarios of coastal ecosystems in 

southeastern Australia for sustainability assessment using GIS. 
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