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Introduction



This series of publications, Earth Observation: Data, Processing and Applications, comprises 
three volumes. Volume 1 in this series, Data, is presented as three sub-volumes, which together 
outline the basics of Earth Observation (EO) in terms of energy sources, data acquisition, 
sampling characteristics, image availability, data interpretation, and usage. Volume 2, Processing, 
(six sub-volumes) describes the various options involved with image representation, analysis, 
transformation, integration, and modelling, including details of relevant algorithms, with 
emphasis on their underlying mathematical and statistical principles. These volumes provide 
valuable background information for understanding specific applications of EO. They also define 
terminology used in Volume 3, Applications, which currently comprises two sub-volumes: 3A, 
Terrestrial Vegetation, and 3B, Surface Waters. 

Volume 3A details how EO methods can be used to understand and monitor vegetation growing 
on land. The introductory sections in this sub-volume describe background topics that are 
relevant to maximising the value of EO for studies of terrestrial vegetation. Sections 1 to 3 below 
introduce the Australian vegetated environment in terms of topography, climate, ecoregions, land 
use, and vegetation dynamics, and some of the methods that have been developed to map and 
monitor it. Sections 4 to 7 respectively summarise attributes of foliage, plants, communities, and 
ecosystems that are relevant to EO-based studies. Sections 8 to 10 review EO-based methods that 
are relevant to vegetation mapping, monitoring, and modelling, while Sections 11 to 20 introduce 
specific application areas where EO datasets are being used in Australia. Section 21 concludes this 
sub-volume by looking ahead.

Contents
1 � The Vegetated Landscape� 3

2 � The Australian Environment� 21

3 � Mapping Vegetated Landscapes� 57

Background image on previous page: This view of the Australian continent (shown as Mercator projection) was created by merging colour-coded 
topography with relief shading using data acquired by the Shuttle Radar Topography Mission (SRTM; see Volume 1) in February 2002. Northeast slopes 
appear bright and southeast slopes appear dark, with green indicating low elevations, rising through yellow and tan to white for highest elevations
Source: NASA. (Retrieved from https://earthobservatory.nasa.gov/images/5100/australia-shaded-relief-and-colored-height)

https://earthobservatory.nasa.gov/images/5100/australia-shaded-relief-and-colored-height
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Volume 3A: Applications—Terrestrial Vegetation

1  The Vegetated Landscape

Vegetation plays a crucial role in regulating environmental conditions, including weather and climate. The 
amount of water and carbon dioxide in the air and the albedo of our planet are all influenced by vegetation, 
which in turn influences all life on Earth. Soil properties are also strongly influenced by vegetation, through 
biogeochemical cycles and feedback loops (see Volume 1A—Section 4). Vegetated landscapes on Earth 
provide habitat and energy for a rich diversity of animal species, including humans. Vegetation is also a major 
component of the world economy, through the global production of food, fibre, fuel, medicine, and other plant-
based resources for human consumption.

In this section, we introduce vegetation in the context of:

	§ environmental factors and gradients (see Section 1.1);

	§ ecological units (see Section 1.2); and

	§ terrestrial ecosystems (see Section 1.3). 

Life did not take over the globe by combat, 
but by networking.  

(Margulis and Sagan, from 'Microcosmos')

1.1  Environmental Factors and Gradients
All living organisms interact with the environment in 
which they live. The environment largely determines 
where organisms can survive and reproduce and, 
conversely, organisms modify their environment over 
time to enhance their survival and prosperity. 

Any element of the environment that influences 
living organisms is termed an environmental 
factor. While these factors are interrelated, they 
are generally discussed individually to discern the 
many and complex relationships that exist within the 
environment as a whole. These factors are generally 
subdivided into two categories:

	§ biotic—plants (see Excursus 1.1), animals (including 
humans), and microorganisms (see Section 1.1.1); 
and

	§ abiotic—climate, substrate, and disturbances (see 
Section 1.1.2).

Environmental factors can have a wide and diverse 
range of potential influences on vegetation 
establishment and development. Different species 
have varying tolerances to various environmental 
factors, their impact being most critical at the stages 
of reproduction and establishment. While a balance is 
important in any environment, all factors can interact 
and compensate for changes in other factors. For 
example, nutrient requirements for certain plants are 
altered when growing in shade rather than in full sun 
(see Section 4). 

Some environmental factors, such as parent material, 
can change abruptly, but most change gradually 
with boundary conditions being defined along a 
gradient (see Section 1.1.3). Both abrupt and gradual 
environmental changes are generally evidenced 
by corresponding changes in the distributions and 
assemblages of species, although gene flow and 
genetic drift may explain cases where the range of 
species ends abruptly along smooth environmental 
gradients (Polechova and Barton, 2015).

Background image: New England National Park, NSW, photographed on 31 December 2008. Source: Cgoodwin, Wikimedia Commons. (Retrieved from https://
commons.wikimedia.org/wiki/File:NewEnglandNP.jpg)

https://commons.wikimedia.org/wiki/File:NewEnglandNP.jpg
https://commons.wikimedia.org/wiki/File:NewEnglandNP.jpg
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Excursus 1.1�—Classifying Vegetation

Classification of life forms was introduced in 
Volume 1A—Section 3.4. The Plant Kingdom has been 
further sub-divided on the basis of morphology and 
reproductive characteristics. Many classifications 
have been developed for this purpose based on the 
basis of different distinguishing traits. The terms 
referenced in this text are summarised in Table 1.1. 

Vascular plants are those with vascular tissues (xylem 
and phloem) to distribute water and nutrients, such 
as ferns, grasses, shrubs, trees, and other flowering 
plants. Please note that some photosynthesising 
forms of algae, such as blue-green algae, are now 
regarded as bacteria, not plants (see Volume 3B).

Table 1.1  The plant kingdom

Internal transport 
mechanism

Reproductive 
mechanism

Group Sub-group

Non-vascular
Non-flowering and 
non-seeding plants;  
reproduce via spores

Algae and fungi Mostly aquatic algae (see Volume 3B)

Bryophytes 

Liverworts

Hornworts

Mosses

Vascular

Non-flowering and 
non-seeding plants;  
reproduce via spores

Pteidophytes

Psilophytes (two small genera of fern-like plants)

Lycophytes (club mosses; five genera with > 1000 species)

Sphenophytes (horsetails; one genus)

Pterophytes (ferns; ~9,000 species)

seeding plants with 
roots, stems, and 
leaves

Gymnosperms 
(non-flowering;  
seed not enclosed in fruit)

Cycads (one genus: Cycadaceae; < 200 species)

Ginkgo (one genus and species: Ginkgo biloba)

Conifers (two orders: Pinales and Taxale; ~200 species)

Gnetophytes (three genera; ~ 100 species)

Angiosperms 
(flowering plants with enclosed 
seeds)

Monocotyledons (one seed leaf; ~60,000 species)

Dicotyledons (two seed leaves; ~200,000 species)

Adapted from: Campbell et al. (2006) Table 29.1

A number of categorisation schemes have been 
proposed to differentiate plants on the basis 
of defined traits and/or their function within an 
ecosystem, such as: 

	§ life form—based on perennating bud height 
(Raunkiær, 1904): 

	w phanerophytes (> 50 cm above ground);

	w chamaephytes (< 50 cm above ground);

	w hemicryptophytes (at soil surface);

	w crytophtyes (below ground or under water);

	w therophytes (annuals from seed); or

	w epiphytes (in the air, on other plants);

	§ growth form—based on general appearance or 
habit: 

	w woody (trees and shrubs); or 

	w herbaceous (grasses), see Section 5.1);

	§ habitat—based on growing conditions:

	w terrestrial;

	w aquatic;

	w aerial; or

	w lithophytes;

	§ water content—based on moisture requirements:

	w hydrophytes (aquatic); 

	w helophytes (marsh);

	w hygrophytes (moist); or 

	w xerophyte (dry);

	§ leaf loss—based on foliage longevity:

	w evergreen; 

	w semi-deciduous; or 

	w deciduous; and

	§ longevity—based on plant life span:

	w annual; 

	w biennial; or 

	w perennial.
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1.1.1  Biotic factors
Biotic environmental factors include all living and 
dead organisms. These components can be broadly 
divided into three categories on the basis of their 
environmental function:

	§ producers (autotrophs)—plants that convert solar 
energy into food via photosynthesis;

	§ consumers (heterotrophs)—animals and fungi that 
rely on producers (or other consumers) for food; and

	§ decomposers (detritivores)—microorganisms that 
decompose producers and consumers to recycle 
their components.

For an environment to be stable, it is important that 
the size of these groups be balanced with respect 
to the available resources. Producers extract 
basic nutrients from the abiotic environment and 
thereby increase their availability to consumers 
and decomposers. While plant growth assists soil 
formation, plant decomposition enriches the humic 
content of soil. Decomposers play an essential role by 
recycling nutrients within the environment. In excess, 
however, they may threaten the livelihood of both 
consumers and producers. Likewise, an excess of 
consumers would devour all producers and threaten 
their own existence. 

Both within and between these sub-categories, 
various types of interactions can exist between a 
given pair of organisms. As summarised in Table 1.2, 
some interactions benefit one or both organisms, 
while others are detrimental to one organism. The 
dynamics of these interactions, however, continuously 
change with the number of organisms, limitations in 
resources, and variations in abiotic factors.

By virtue of their consumption, heterotrophs use 
the productivity of autotrophs to survive. Animals, 
for example, eat plants (or other animals). These 
dependencies create a unidirectional flow of energy 
within the local environment in the form of food. Most 
environments involve a series of dependent organisms 
that can be represented as a food chain. These may 
be interlinked to form a food web in large ecosystems, 
with simple food webs tending to occur in less stable 
ecosystems (see Section 1.2.3).

Consumers assist producers by spreading 
reproductive material (called propagules: seeds, 
spores or cuttings). Propagules can be either carried 
by animals or eaten then excreted. These processes 
allow species to be introduced into new areas, which 
may offer more appropriate conditions and/or less 
competition. Plant species can also migrate to new 
regions when propagules are dispersed by wind 
or water.

Migration enables organisms to escape an 
unfavourable environment and, over time, can lead 
to large scale environmental changes. Dispersion 
and emigration may occur to avoid a variety of 
undesirable outcomes, such as competition for mates 
or resources, inbreeding, or aggression resulting from 
overcrowding.

Various interactions can also occur between 
producers, which can help or hinder other species. 
Canopy vegetation in a tropical rainforest, for 
example, creates microclimates that allow more 
delicate species to survive. In other environments, 
such as pine forests, dominant species expand to 
use all available resources (space, light, water, and 
nutrients) to the exclusion of less vigorous plants.

Table 1.2  Interactions between biotic components

Interaction Impact Description Example

Mutualism Favourable Mutual interdependence between species for 
growth and survival

Bees pollinating flowers while collecting nectar;

Legumes growing with soil bacteria to fix nitrogen

Commensalism Neutral One species depends on another without cost to 
the host

Epiphytes growing on host plants;

Exocarpus deriving nutrients from eucalypt roots

Co-operation Neutral Both species can live separately but choose to help 
each other

Predator alarm systems between species

Exploitation Unfavourable Host species is harmed by dependent species Parasites and predators

Competition Unfavourable One species is suppressed by the presence of 
another

Often related to restricted resources such as light or food

Amensalism Unfavourable One species is inhibited by another without benefit 
to either

Animal traffic on vegetation
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Vegetative cover also modifies the impact of specific 
abiotic factors. For example, vegetation tends to 
reduce throughfall, that is, the amount of atmospheric 
water reaching the ground. Different forest types 
allow different degrees of throughfall: 50–80% in 
broadleaf evergreen forests compared with 90% in 
eucalypt forests. A reduction in throughfall reduces 
the risk of soil erosion and enables vegetation to 
absorb more moisture. Similarly, vegetative cover 
insulates the soil from solar radiation and reduces soil 
temperature and evaporation. It also offers protection 
from wind and water erosion (see Section 11.5).

Many plants growing in harsh environments 
have adapted to those conditions and developed 
mechanisms to withstand climatic extremes and 
capitalise on favourable conditions. The continued 
survival of all biotic components depends on 
adaptation to changes in abiotic factors. 

Some plant and animal species are opportunistic—
they can exploit the conditions created by disturbance 
and rapidly colonise the modified environment. 
Opportunistic plants are often labelled ‘weeds’ and 
can present significant challenges to land managers 
(see Sections 2.3.2 and 15).

Indicators serve four basic functions: simplification, quantification, standardisation and communication. 
They summarise complex and often disparate sets of data and thereby simplify information.  

They should be based on comparable scientific observations and statistical measures.  
They also need to provide a clear message that can be communicated to,  

and used by, decision makers, stakeholders and the general public. 
(UNEP, 2003)

1.1.2  Abiotic factors
Abiotic factors will be discussed in terms of three 
groups:

	§ climate—precipitation, rainfall, light, and wind (see 
Section 1.1.2.1);

	§ edaphic factors—parent material, soil, and 
topography (see Section 1.1.2.2); and

	§ disturbances—fire, storms, and tectonic activity 
(see Section 1.1.2.3).

1.1.2.1  Climatic factors

Climate is the net result of a delicate balance of 
physical factors, being expressed as the pattern 
in weather over a period of time (see Volume 1A—
Section 4). It is primarily concerned with parameters 
such as light, temperature, precipitation, humidity, 
evaporation, and wind. While these factors largely 
shape global vegetation distribution, their impact on 
the local environment is moderated by vegetative 
cover. Conversely, vegetation has been recognised 
as one of the primary indicators of land condition 
(see Section 7.3) and can affect regional climate and 
weather patterns due to the release of water vapour 
during photosynthesis (Green et al., 2017). 

Although the ‘macroclimate’, or major climate forces, 
is easily discernible, its manifestation can vary 
considerably within short distances and with changes 
in edaphic factors (see Section 1.1.2.2) and the 
blanketing effect of vegetation cover. The principal 
climatic factors impacting terrestrial vegetation are:

	§ Precipitation—while the frequency, abundance, 
and form of precipitation collectively shape biome 
distribution, vegetation cover also influences 
the volume of water that can penetrate the soil 
to recharge the water table (see Volume 3B). 
Furthermore, precipitation responds to vegetation 
changes through land-atmosphere feedbacks (Sheil 
and Murdiyarso, 2009; Li et al., 2018). Precipitation 
is viewed as the major limiting factor in terrestrial 
ecosystems and has been correlated with Gross 
Primary Productivity (GPP; see Section 7.4). 

	§ Humidity—the proportion of atmospheric moisture, 
directly impacts—and is impacted by—biota. 
Relative humidity within dense vegetation, for 
example, is higher than in the air above bare ground 
due to plant transpiration (see Section 5.2.3). Such 
variations create microclimates for a range of 
organisms. 
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	§ Temperature—both affects and is affected 
by vegetation cover. Vegetation distribution 
is directly related to air and soil temperature. 
Evapotranspiration, the release of water vapour into 
the atmosphere from evaporation and transpiration, 
increases with air temperature (see Sections 5.2.3 
and 7.5). Thermal profiles, showing changes in 
temperature with height above ground, reveal that 
the greatest variations in the diurnal temperature 
range occurs near the soil due to absorption 
of solar energy (see Section 7.5). Shading by 
vegetation can also modify thermal profiles (Pianka, 
2011). For example, forest vegetation can reduce 
heat loss by 1–3º over the annual cycle. A suitable 
temperature range for a species generally coincides 
with a particular geographic range but pockets of 
atypical temperature can result from topographic 
variations, or microclimates created by other plants, 
allowing species to exist outside their usual range. 

	§ Light levels—also help to determine species 
distribution. Many plant species are light 
dependent, with seedlings relying on canopy gaps 
to become established beneath overstorey plants. 
Those species occupying the upper stratum of 

vegetation, whose foliage is more exposed to solar 
radiation, generally contain the largest portion 
of total biomass. Diurnal and seasonal cycles 
determine photoperiodism, the length of day or 
night, which is also important for germination and 
flowering. 

	§ Wind—aspect and topography determine the 
degree of exposure, and hence the effect of wind, 
at a given location. Vegetation growing along 
ridgelines is generally smaller and less densely 
spaced as a result of exposure to wind, although 
ridgelines are also generally more eroded, which 
results in shallower and drier soils to support 
growth. Diurnal cycles in wind are also common, 
with greatest velocities being observed shortly 
after solar noon. The interaction of wind and 
vegetation (fuels) is also a key driver in the rate of 
spread for fire (see Section 18). Forest vegetation 
can reduce wind run by 50–75%, and thus mollifies 
the impact of harsh environments on more sensitive 
plants. A similarly protective microclimate can be 
observed in aquatic vegetation, where the presence 
of periphyton (such as algal films) reduces water 
turbulence (see Volume 3B). 

Disturbance by fire, defoliation, or other agents is an intrinsic and necessary part of the function  
of most terrestrial ecosystems—a mechanism for reversing declining rates of nutrient cycling  

or relieving stand stagnation. 
(Aber and Melillo, 1991)

1.1.2.2  Edaphic factors

Edaphic factors include the physical landform, 
geological substratum (or parent material) and soil. 
Although modified by altitude and aspect, the trends 
in vegetation across elevation gradients are quite 
marked, with interacting factors including soil depth, 
temperature, and effective rainfall having the greatest 
influence. 

The effect of soils on vegetation distribution is 
secondary to that of climate. Within a given climate, 
however, much of the variation in soil and vegetation 
is caused by the substratum. Soils characteristics 
impact water availability, nutrient status, and soil 
depth. Topographic factors, such as slope and aspect, 

can create microclimates that suit particular species. 
The major edaphic factors influencing the distribution 
of terrestrial vegetation are:

	§ Parent material—whereas climatic boundaries are 
generally gradational, parent material boundaries 
are often sharp, causing a very marked change in 
species. The substratum can also have pronounced 
effects on vegetation in extreme climates, such as 
the very dry or very cold, where soil development 
tends to be slow. Similarly, there is a marked effect 
on vegetation where the parent material contains 
an excess of particular mineral compounds, such 
as dolomite. In this way, highly distinctive parent 
material can underlie similar soils and vegetation 
even in areas with different climates.
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	§ Soil—results from the interaction of climate and 
vegetation on the substratum, but it is often very 
difficult to separate soil from the substratum. 
Being developed over a period of time, certain 
characteristics of soil will be indicative of past and 
present local environments. Nutrient status tends 
to be reflected in the age of a soil with the older, 
degraded soils generally only supporting poor 
quality vegetation. Nonetheless, there are many 
examples of plant adaptations to relatively poor 
soils. Soils have a very complex physical/biological 
system, being the action site for the decomposers 
in nutrient cycling. Physical properties, such as 
pore size, will affect the infiltration rate of light 
rain. Such soil factors can also potentially limit root 
penetration and thus moisture availability to plants.

	§ Topography—changes in altitude are accompanied 
by evident changes in vegetation. Increasing 
altitude generally parallels decreasing temperature 
and, often, reduced soil depth. In many ways, the 
climatic changes involved with increased altitude 
are similar to those involved with increasing 
latitude. Aspect can enhance or diminish altitudinal 
changes in vegetation. For example, in the Southern 
Hemisphere, the more sheltered eastern and 
southern facing aspects experience a smaller 
diurnal temperature range than the more exposed 
western and northern faces so are generally 
cooler and moister. Soil depth and moisture 
tend to increase with decreasing slope. Lower, 
shallower, and less exposed slopes generally have 
deeper, alluvial deposits with improved fertility 
and moisture, and support a greater variety of 
larger, more productive plants. Topography also 
determines drainage, the ease with which water in 
the landscape flows or percolates into the ground.

The richness and diversity of ecosystems are in large measure the result of the pattern of their 
disturbances: the storms, fires, droughts, frosts and the animals, following occasional major events. .... 
Because the disturbances occur unexpectedly, systems need to be able to cope with them when they 

do occur. Coping capacity is another term for being resilient and it is maintained and enhanced by 
continuous exposure to all the different kinds of disturbances across all locations at different timescales 

under which the systems developed. .… Novel disturbances due to humans often exceed the evolved 
resilience of ecosystems, frequently reaching tipping points into new, mostly unwanted states. 

(Walker, 2019)

1.1.2.3  Disturbances

Disturbances are responsible for the largest 
environmental changes in the shortest time. They 
often result in ‘ecological drift’, a major change in 
the composition and/or structure of an ecosystem 
(Jackson, 1968; Bowman and Wood, 2009; Bowman 
and Haberle, 2010). The primary disturbances shaping 
terrestrial vegetation distribution are:

	§ Fire is a significant ecological factor in many 
locations and its effects can be long lasting. The 
impact of fire on an environment varies with its 
frequency, intensity, and environmental history. 
Various indigenous plant species in Australia have 
developed mechanisms, such as epicormic shoots 
and lignotubers, that accelerate recovery from 
fire. Many species also have hard seed coatings 

that require fire to germinate. Serotiny describes 
the adaptation by some plants in which seed 
release occurs in response to an external trigger 
factor, such as fire (pyriscence), even when the 
parent plant is killed by fire. Fire changes the 
light and moisture environments and acts as a 
nutrient recycling process, which may promote 
germination. This is particularly important in dry 
conditions where decomposition rates are slow. 
The ash bed bequeathed by fire also provides a 
fertile environment for establishment of seedlings. 
Not surprisingly, fire-adapted plant traits tend 
to dominate in areas that experience high fire 
incidence. Given its frequency in some landscapes 
such as Australia, however, Jurkis (2015) questions 
the classification of fire as a disturbance. 
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	§ Storms or wild weather is a form of environmental 
disturbance that involves excessive rain and wind. 
Apart from lightning strikes, the primary impacts of 
storms on vegetation are flooding and windthrow. 
While most plants benefit from additional moisture, 
a massive excess of moisture can overwhelm 
the requirements of many species. Combined 
with loosened soil and strong winds, saturated 
substrates often result in uprooted vegetation 
and consequent damage to other organisms. In 
sloping ground, saturation also accelerates erosion 
and invites landslides. The environmental damage 
resulting from extreme weather is often substantial 
and widespread. While never welcomed, such 
changes allow environments to re-establish, often 
on a more stable underlying landscape. 

	§ Tectonic activity, such as earthquakes and 
volcanoes, are expressions of movement within 
or between tectonic plates (see Volume 1A—
Section 3). Earthquakes release energy from 
strained fault planes along tectonic plate 
boundaries. This energy creates major upheaval on 
the Earth’s crust and generates tsunami when the 
fault lies beneath the ocean. Volcanoes introduce 
new mineral matter into the atmosphere and 
lithosphere from the Earth’s interior. When viewed 
from a sufficiently long timeframe, both types of 
tectonic activity refresh the environment on the 
surface of Earth. When measured in terms of human 
life however, recovery from such massive damage is 
extremely slow.

	§ Anthropogenic disturbances that drive vegetation 
and ecosystem change include land clearing 
for agriculture and urban development, invasive 
species, altered disturbance regimes and altered 
hydrological and biogeochemical cycles. Human-
induced changes in ecosystems have reached all 
corners of the globe and the rates of impact are 
increasing exponentially as human population 
density increases (see Sections 19 and 20).

The precise impact of these factors on any 
environment will depend on the prevailing climatic and 
edaphic conditions. Human activity causes significant 
disturbance to ecosystem function and declines in 
biodiversity, both locally and globally. While some 
plant species are opportunistic, exploiting the 
conditions created by disturbance to rapidly colonise 
the modified environment, others are susceptible 
to local extinction. EO-based time series analyses 
are particularly suited to assessing the impact of 
disturbances on terrestrial landscapes (see Section 9 
and Volume 2D).

Resilient systems are learning systems. …Trying to 
prevent one disturbance completely, in the name of 

keeping a system safe, actually reduces its resilience.  
(Walker, 2020)

1.1.3  Environmental gradients
Environmental factors, both biotic and abiotic, change 
with space and time. In many landscapes, the natural 
distribution of botanical species is closely related to 
the environmental gradients of elevation, latitude, 
soils, and fire (Kessell, 1979, Billings, 1970). While it is 
convenient to draw clear boundaries on maps showing 
vegetation distribution, welldefined transitions rarely 
occur in nature. Changes in species composition 
are often very gradual and can result in a variety of 
mixtures along the way (see Section 1.3). 

A population of organisms with a particular genetic 
form resulting from genetic sorting is called an 
ecotype. This can be considered as a subspecies with 
particular environmental adaptations or preferences 
for survival. Ecotypes of the same species can 
interbreed without detrimental consequences.

A gradual change in ecotypes is called an ecocline 
and is often related to changes in climate (since 
parent material changes tend to occur more abruptly; 
see Section 1.1.2.2). Examples of ecoclines include:

	§ thermocline—a temperature gradient; 

	§ halocline—a salinity gradient; and 

	§ chemocline—a chemistry gradient (see Volume 3B). 

Ecoclines and ecotypes allow a given species to 
increase its geographic range by extending the 
interactions that can occur with its environment. In 
time, a greater geographic range is likely to provide a 
greater chance of survival for that species. 

Hybrid zones, where the ranges of species or 
evolutionarily significant units overlap and result 
in genetic hybridisation, are considered a sensitive 
marker of environmental change (Taylor et al., 2015). 
Changes in hybrid zone extent may shift, expand, or 
originate in new locations in response to changing 
environmental conditions.
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Despite all of our accomplishments we owe our existence to a six-inch layer of topsoil and the fact that it 
rains. (Farm equipment association of Minnesota and South Dakota)2

1.2  Ecological Units

2	  Sourced from NSW Soil Knowledge Network: http://www.nswskn.com/soil-quotes-2/ 

Dynamic vegetated landscapes cover around 80% of 
the terrestrial surfaces of our planet. Vegetation can 
be considered in terms of three broad spatial scales:

	§ single plants (or individuals) and groups of similar 
individuals (or populations; see Section 1.2.1);

	§ gatherings of populations—communities (see 
Section 1.2.2); and

	§ tapestries of communities—ecosystems (see 
Section 1.2.3).

A key concept in ecology is that of habitat, namely 
that region where an organism likes to live. Organism 
habitats are generally defined by both biotic and 
abiotic factors. Biotic factors are important in the 
structure and pattern of vegetation communities (see 
Sections 1.1.1). The term habitat can also be used to 
refer to the locality of a community, in which case 
it is defined by abiotic environmental factors (see 
Sections 1.1.2). A related concept is the ecological 
niche, which describes the habitat characteristics as 
well as the role of the organism in its environment, 
including ecological functions, services, and 
interactions (see Section 1.2.3). For organisms to 
coexist they either become tolerant of each other, 
and sympatric, or they compete until one species 
is eliminated. Successive generations may also 
hybridise. 

The combined impact of vegetative scale on the 
landscape is to create a mosaic of colour and texture. 
This mosaic not only informs about vegetation type 
and condition but also highlights the underlying 
landscape characteristics. With an understanding 
of the dominant environmental factors that shape 
this mosaic, landscapes can be better managed to 
improve productivity and sustainability.

1.2.1  Individuals and populations
Populations comprise collective groups of individuals 
from the same species—that is, genetically related 
plants that can interbreed. Sexual reproduction 
results in more genetically diverse offspring than 
asexual means and generally delivers the benefits of 
greater capacity for seed dispersal, more offspring, 
and higher success rates for germination and 
establishment. While individuals are characterised 
by those traits that are common to their species, 
namely germination, growth habit, and reproduction 
(see Section 5), populations are characterised by 
the way they group, persist, disperse, and survive 
(see Section 6). Thus, measures of size, density, age 
composition, and growth rate are used to compare 
populations and derive management concepts such 
as carrying capacity.

Populations change with the survival rates of 
individuals and the immigration or emigration of 
species. A stable population of plants achieves a 
balance between the initial life cycle phases of seed 
dispersal, germination, and establishment, and the 
final stages of senescence and death. The success or 
failure of a plant largely depends on the impact of the 
environment on the rates of its vital processes.

Disturbance of one kind or another   
plays a crucial role in all ecosystems. 

(Walker, 2020)

http://www.nswskn.com/soil-quotes-2/
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1.2.2  Communities
At any locality, the assemblage of plant species into 
a community results from the cumulative, extended 
impact of all environmental factors on the ambient 
flora (Billings, 1970). Vegetation communities can 
indicate past environmental conditions or events 
(such as forest fires or past climatic cycles), soil 
conditions (physical structure, salts, or available 
nutrients) and the presence of predatory animals. A 
community is characterised by a sense of order in 
that it has an identity over and above the individual 
and population, and functions as a unit via combined 
metabolic processes (Odum, 1971). 

The distribution of organisms in their environment, 
and their interaction with that environment, creates 
a structure that ecologist call ‘pattern’ (Hutchinson, 
1953). Within a vegetation community, pattern 
principally occurs in terms of vertical layering or 
stratification, horizontal segregation or zonation, and 

periodicity of organism life cycles (see Section 6). 
Stratification is obvious in many natural communities, 
for example, as different species and individuals 
adapt to different levels of light and moisture. For 
example, some species, such as acacias, typically 
play a transitory role in Australian forests, with both 
high light requirements and lack of dominance, while 
others are destined to exert dominance but may 
require specific conditions for establishment. Certain 
pathogens can also influence species distribution in 
favourable locations. 

The transition between two communities is called an 
ecotone, that is, the region where they can integrate 
and develop hybrid species. Such transitions may 
be sharp or gradual, as evidenced by changes in 
vegetation colour or height, or represent a change in 
species prevalence. Species diversity may increase 
within ecotones as members of both communities 
co-exist.

Wherever the reign of nature is not disturbed by human interference, the different plant species join 
together in communities, each of which has a characteristic form, and constitutes a feature in the 

landscape of which it is a part. These communities are distributed and grouped together in a great 
variety of ways, and, like the lines on a man’s face, they give a particular impress to the land where they 
grow. The species of which a community is composed may belong to the most widely different natural 
groups of plants. The reason for their living together does not lie in their being of common origin, but in 
the nature of the habitat. They are forced into companionship not by any affinity to one another but by 

the fact that their vital necessities are the same. ....  
A knowledge of the communities which exist within the realm of plants is of great importance in 

many ways. It throws a strong light, not only on the mutual relations of the different species which are 
associated by common or similar needs, but also on the connection of plant-life with local and climatic 

conditions and with the nature of the soil. It may fairly be said that in the various zones and regions of our 
earth no kind of phenomenon so thoroughly gives expression to the climate and the constitution of the 
soil as the presence of particular plant-communities which prevail, and, accordingly, the determination 

and description of such communities constitutes an important part of geography.  
(Anton Kerner Von Marilaun, 1895)

1.2.3  Ecosystems
The total biotic and abiotic factors of an environment 
present in a particular area is called an ecosystem. 
It represents the net result of all interactions of 
biotic and abiotic factors (see Sections 1.1.1 and 1.1.2). 
Ecosystems are self-regulatory and self-sustaining 
systems. Other definitions include:

	§ a symbol of structure and function of nature 
(Tansley, 1935); and 

	§ the smallest structural and functional unit of nature 
or environment (Odum, 1969). 

The concept of an ecosystem has also been referred 
to as biocoenosis (Möbius, 1877) or biogeocoenosis 
(Sukachev, 1944; Puzachenko, 2008), or a biome. More 
recently the term biome has been used to describe a 
group of terrestrial ecosystems (Whittaker, 1962; see 
Section 1.3.2). 

Ecosystem boundaries are often indistinct and 
overlapping. They can be large or small, short term 
or long term, natural or artificial. A stable ecosystem 
achieves and maintains balance between living 
organisms, water, atmosphere, and earth (Patten, 
1991). The process of balancing food webs and chains 
to maintain a stable ecosystem is called homeostasis.
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Table 1.3  Ecosystem processes

Ecosystem 
Process

Function

Balanced Ecosystem Unbalanced EcosystemLandscape/
Community

Organisms

Water Cycle
Maintain healthy 
aquifers, surface water 
flows and soil moisture

Maintain adequate 
moisture for all 
metabolic processes

Precipitation replenishes soil moisture to 
support plant growth and decomposition, 
recharges stores in aquifers, collects in 
reservoirs for consumers to drink, and/
or flows into rivers and oceans to support 
aquatic life

Precipitation insufficient for plant 
growth, and runs off ground surface 
removing soil and propagules

Moisture insufficient for healthy 
nutrient levels

Energy 
Flow

Conserve energy levels 
and maintain stores

Maintain adequate 
energy for all 
metabolic processes

Producers capture sufficient solar 
energy for the needs of consumers and 
decomposers 

Insufficient solar energy captured by 
producers to feed consumers and 
decomposers

Mineral 
Cycle

Maintain nutrient 
availability and 
replenish stores; avoid 
excessive availability

Maintain adequate 
nutrients for all 
metabolic processes

Nutrients from plant and animal wastes are 
recycled by decomposers to enrich the soil

Plant and animal wastes are not 
decomposed but washed away or 
burnt

Excessive nutrients encourage 
dominance

Community 
Dynamics

Balance population 
growth with available 
resources 

Maintain adequate 
diversity in 
communities

High diversity of producers, consumers, 
and decomposers

Size of populations suited to constraints of 
resources

Low diversity of producers, 
consumers, and decomposers

Excessive competition for resources 

Ecosystem services describe ecosystem changes 
in terms of their impact on human populations, that 
is the the services they deliver (see Section 20.3). 
Ecosystems can also be viewed in terms of their 
structure or function, and how these change over 
space and time. Some basic biological, physical and 
chemical processes sustain ecosystems. Four key 
ecosystem processes include: 

	§ the water cycle—how and why water interacts with 
the ecosystem (see Section 7.6 and Volume 3B);

	§ the energy cycle—how energy flows drive 
ecosystems (see Section 7.5, including food 
chains/webs: see Section 1.1.1; productivity: see 
Section 7.4; and the carbon cycle: see Section 17 
and Excursus 1.2); 

	§ the mineral cycle—how biogeochemical nutrients 
are recycled by the ecosystem, including the 
nitrogen cycle (see Volume 1A—Section 4.2); and

	§ community dynamics—how communities develop 
and change within an ecosystem, including 
diversity patterns, succession, and cybernetics (see 
Sections 1.3.3, 6 and 19).

Balanced and unbalanced ecosystems are compared 
in terms of these processes in Table 1.3.

Analysis of energy cycling underlies many modelling 
applications of EO for terrestrial vegetation (see 
Section 10.2). Solar energy is absorbed by vegetation 
during the process of photosynthesis and this stored 
energy can be likened to a battery (see Section 5.2.1). 
Estimates of the proportion of photosynthetically 
active radiation (PAR) that is absorbed by vegetation 
are used to quantify both carbon dioxide usage and 
water loss due to evapotranspiration. Such estimates 
are further discussed in Section 7. Monitoring of 
vegetation productivity is particularly important as an 
indicator of the sustainability of environments, land 
management practices and lifestyles (see Sections 7.4 
and 19).

It is hard for us to accept that the way natural ecosystems work is exemplary: plants synthesise nutrients 
which feed herbivores; these in turn become food for carnivores, which produce significant quantities 

of organic waste which give rise to new generations of plants. But our industrial system, at the end of its 
cycle of production and consumption, has not developed the capacity to absorb and re-use waste and 
by-products. We have not yet managed to adopt a circular model of production capable of preserving 

resources for present and future generations, while limiting as much as possible the use of non-renewal 
resources, moderating their consumption, maximising their efficient use, re-using and recycling them. 

(Pope Francis, 2015)
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1.3  Terrestrial Ecosystems

1.3.1  Biogeography and biodiversity
Biogeography addresses the question of why plants 
grow where they do. This discipline combines 
aspects of biology and geography to determine 
how organisms are distributed in space and time. 
An understanding of the patterns of biogeography 
enables biodiversity to be protected. 

The term ‘biodiversity’ describes the collective 
variety within all forms of life on Earth. The highest 
levels of biodiversity generally occur in warm, 
moist environments. On a global scale, the highest 
levels of biodiversity, in terms of both marine and 
terrestrial plants and animals, occur at the equator, 
then biodiversity declines with latitude. Across the 
landscape, biodiversity is highest near coastlines and 
declines towards the interior of most land masses. 

Biodiversity indicates both the stability and 
productivity of an ecosystem. Stable environments, 
such as large tropical islands, maintain high levels of 
biodiversity, and high species richness enhances the 
efficient use of resources and therefore productivity 
(Fjeldsa and Lovett, 1997). However, the conservation 
of biodiversity may not necessarily be maximised 
by prioritising management efforts in stable 
environments. Ecosystems exposed to more variable 
environmental conditions may contain species with 
greater tolerance of extremes and higher resilience to 
a rapidly changing climate (see Section 1.1.2.3). 

1.3.2  Major habitat zones
Biomes are contiguous areas with similar climate 
and geography and as such they represent major 
habitat types. A variety of schemes have been 
developed to describe ecosystem zones on the 
basis of climatic and topographic factors such 
as latitude and humidity, and sometimes altitude. 
The categories defined by Holdridge (1947) are 
illustrated in Figure 1.1. Temperature gradients are 
strongly related to changes in latitude and altitude, so 
temperature and precipitation alone are often used to 
map the distribution of vegetation as in Whittaker’s 
classification (Whittaker, 1962; see Figure 1.2).

All are but parts of one stupendous whole,  
Whose body Nature is, and God the soul.  

(Alexander Pope, from 'An Essay on Man', 1733)

Figure 1.1  Holdridge life zone classification scheme

Source: Peter Halasz, Wikimedia Commons. (Retrieved from https://commons.wikimedia.org/wiki/File:Lifezones_Pengo.svg)

https://commons.wikimedia.org/wiki/File


Earth Observation: Data, Processing and Applications.  Volume 3: Applications

14

Figure 1.2  Whittaker’s biome classification

Average annual temperature and precipitation needed for different categories of common terrestrial biomes
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Source: Navarras, Wikimedia Commons. (Retrieved from https://commons.wikimedia.org/wiki/File:Climate_influence_on_terrestrial_biome.svg)

The Terrestrial Ecoregions of the World (TEOW) 
project offered a biogeographic regionalisation of 
terrestrial biodiversity on Earth (Olson et al., 2001). 
This World Wildlife Fund (WWF) product defines 14 
major habitat types, or biomes, which were further 
sub-divided into 867 terrestrial ecoregions. The 
major habitat types are listed in Table 1.4. These 
ecoregion categories form the basis of the Interim 
Biogeographical Regionalisation of Australia (IBRA) as 
illustrated in Figure 2.13. Eight of these major habitat 
types exist in Australia.

A biome-based, global land cover map derived from 
MODIS imagery was released by the International 
Geosphere-Biosphere Program (IGBP, 1990; Friedl 
et al., 2010a, 2010b; Channan et al., 2014—see 
Section 1.4). This series of global mosaics use the 
MODIS land cover product (MCD12Q1) in the IGBP 
Land Cover Type classification of 17 terrestrial 
vegetation categories. The Global Environmental 
Stratification (GEnS), a high resolution bioclimate 
stratification based on multivariate statistical 
clustering (Metzger et al., 2013; Metzger, 2018), has 
been proposed as an appropriate framework for 
global monitoring networks (Jongman et al., 2017; see 
Section 19.3). More recently, a global stratification of 
World Ecosystems, derived from the integration of 
temperature, moisture, landform, and vegetation/land 
use datasets, was developed by Sayre et al. (2020) 
and used to assess the representation of ecosystems 
in global protected areas (see Section 19).

https://commons.wikimedia.org/wiki/File:Climate_influence_on_terrestrial_biome.svg
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Table 1.4  Terrestrial biomes

Biome Description

Number Name Latitude Humidity

1 Tropical and subtropical moist broadleaf forest Tropical, Subtropical Humid

2 Tropical and subtropical dry broadleaf forest Tropical, Subtropical Semi-humid

3 Tropical and subtropical coniferous forest Tropical, Subtropical Semi-humid

4 Temperate and broadleaf and mixed forest Temperate Humid

5 Temperate coniferous forest (Northern Hemisphere only) Temperate Humid to semi-humid

6 Boreal Sub-arctic Humid

7 Tropical and subtropical grasslands, savannas and shrublands Tropical, Subtropical Semi-arid

8 Temperate grasslands, savannas and shrublands Temperate Semi-arid

9 Flooded grasslands and shrublands Temperate to Tropical Fresh or brackish water inundated

10 Montane grasslands and shrublands Temperate to Tropical Alpine to Montane

11 Tundra Polar Arid

12 Mediterranean forests, woodlands and scrub or sclerophyll forests Temperate Warm Semi-humid to semi-arid with winter rainfall

13 Deserts and xeric shrublands Temperate to Tropical Arid

14 Mangrove Subtropical, Tropical Saltwater inundated

1.3.3  A dynamic tapestry
Perhaps the most significant characteristic of 
our planet is that it is constantly changing. The 
ceaseless processes of growth and decay, erosion 
and deposition, precipitation and evaporation are 
driven by diurnal, lunar, seasonal, and annual cycles, 
irregularly punctuated by disturbances. Everything 
changes with time; some changes just take more time 
than others.

To cope with the inevitable changes in abiotic 
components of the environment, individual species 
need to adapt to the changes or become vulnerable to 
more competitive species. Mechanisms for adaptation 
for a given species include reordering its existing 
genetic resources to create new gene combinations 
that would be better suited to the changed 
environment or developing new genes via mutations 
in a process known as genetic drift. 

A community or ecosystem can be thought of as 
developing via the gradual, and somewhat theoretical, 
process of ecological succession. As detailed in 
Section 6.6, this process involves a variable series of 
stages:

	§ a pioneer community colonises a new area; then

	§ one or more seral communities replace the previous 
community; until

	§ a climax community reaches a form of homeostasis 
which persists for a relatively long time period. 

	§ The number of seral communities, the lifespan 
of each stage, and the degree of homeostasis 
varies with individual ecosystems. Ecologists also 
distinguish between primary succession (very 
long term development on new landscapes) and 
secondary succession (shorter term development 
on disturbed landscapes).

One part of analysing vegetation dynamics involves 
reconstructing former distributions. Palynology 
analyses pollen and spores found in fossils and 
sediments to track the composition and diversity of 
past landscapes. 

The dynamic nature of the Earth somewhat 
complicates the task of natural resource mapping 
and necessitates regular revision of maps to quantify 
the type and extent of change. Knowledge of where 
and how changes are occurring can contribute to an 
understanding of why they occur and, possibly, how 
the extent of change can be managed. One approach 
that has emerged in recent decades for exploring 
the dynamic nature of Earth is Earth System Science 
(ESS; see Excursus 1.2). This integrated view of our 
planet is particularly valuable when observing large 
scale processes and relates readily to the perspective 
of Earth Observation (EO). 

The only constant in life is change.



Earth Observation: Data, Processing and Applications.  Volume 3: Applications

16

Excursus 1.2�—Earth System Science

Further Information: Xiao et al. (2019)

Earth System Science (ESS) is a multidisciplinary 
approach to understanding the structure and function 
of Earth as an integrated system (Steffen et al., 2020). 
Large scale monitoring of our planet is closely related 
to the concept of Earth being an essentially closed 
system, and comprising four integrated spheres: 

	§ atmosphere—gaseous protective envelope;

	§ hydrosphere—surface water, groundwater and 
atmospheric water;

	§ geosphere—solid components of Earth (land and 
under water); and

	§ biosphere—all forms of life (see Volume 1A—
Section 4.1). 

These spheres exchange energy and matter via 
the ongoing cycling of energy, water, and minerals 
(see Volume 1A—Section 4.2). One conceptual 
framework that links major Earth components 
with the processes that impact them is shown in 
Figure 1.3 (NRC, 1986). Since all processes on Earth 
are interrelated and impacted by human activities, 
updated representations show human activity 
(anthroposphere) as a fully integrated and interacting 
sphere (Steffen et al., 2020).

Of particular relevance to terrestrial vegetation is the 
terrestrial carbon cycle which describes the continual 
exchange of carbon between the biosphere, the 
geosphere, and the atmosphere (see Volume 1A—
Section 4). As detailed in Section 17 below, the typical 
components of this process are usefully described in 
terms of carbon fluxes (flows) and stocks (volume of 
reserves; see Figure 1.4). EO-based analyses can be 
used to estimate the carbon fluxes of gross primary 
production (GPP), ecosystem respiration (ER), net 
primary production (NPP), net ecosystem production 
(NEP), and net biome production (NBP), and the 
carbon stocks of aboveground biomass (AGB) and soil 
organic carbon (SOC; Xiao et al., 2019). The use of EO 
to quantify and monitor the terrestrial carbon cycle is 
detailed in Sections 7.4, 10.2.2, and 17 below.

Figure 1.3  Processes and interactions within Earth System Science

This conceptual framework was proposed by Francis Bretheton and is commonly referenced as the NASA Bretherton diagram.

Adapted from: NASA at http://education.gsfc.nasa.gov/experimental/all98invproject.site/pages/trl/inv4-3.abstract.html

http://education.gsfc.nasa.gov/experimental/all98invproject.site/pages/trl/inv4-3.abstract.html
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Figure 1.4  Terrestrial carbon cycle 

a. Carbon fluxes and stocks

Fluxes: GPP: Gross Primary Productivity; AR: Autotrophic Respiration; NPP: Net Primary Productivity; HR: Heterotrophic Respiration; 
NEP: Net Ecosystem Productivity; NBP: Net Biome Productivity; 

Stocks: AGB: Above Ground Biomass; SOC: Soil Organic Carbon; 

b. Computation of fluxes

Source: a. Xiao et al. (2019) Figure 1 
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1.4  Further Information

Global Climate Map
Global Environmental Stratification: https://datashare.

is.ed.ac.uk/handle/10283/3089

Global Terrestrial Ecosystem Maps
IGBP: IGBP (1990) 

Friedl et al. (2010) 
Global Land Cover Facility: http://glcf.umd.edu/data/lc/

WWF: Olson et al. (2001) 
Terrestrial ecoregion definitions: https://www.
worldwildlife.org/biome-categories/terrestrial-
ecoregions 
Map: https://c402277.ssl.cf1.rackcdn.com/
publications/347/files/original/Ecoregions_Map.
pdf?1345734390

Global ecological zones: http://www.fao.org/
geonetwork/srv/en/main.home?uuid1⁄42fb209d0-
fd34-4e5e-a3d8-a13c241eb61b
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2  The Australian Environment

The Australian mainland is both the largest island and the smallest continent in the world, as well as the lowest 
and flattest land mass (see Section 2.1). In terms of land area, Australia is the sixth largest country after Russia, 
Canada, China, the USA and Brazil, and the only one of these to be encircled by water (GA, 2020a). Some basic 
information about Australia’s location, dimensions, features and population is summarised in Table 2.1 (see also 
Figure 2.1).

Australia spans 31º of latitude, centred on 27.5º S 
(just below the Tropic of Capricorn, 23.43657º S—
see Volume 2B—Figure 1.14), so experiences a wide 
range of climates, which can vary significantly from 
one year to the next (BoM, 2020a). Drought, floods, 
and cyclones are a natural part of Australia’s climatic 
variation (see Section 2.2). 

The Commonwealth of Australia is governed as a 
federation of six states (see Figure 2.1b; Western 
Australian: WA, South Australia: SA, Tasmania: 
TAS, Victoria: VIC, New South Wales: NSW, and 
Queensland: QLD), each of which is responsible for 
local land management and many public services. 
Territories that are not directly administered by 
specific states are either under federal control or 
granted the right to self-government (as occurs in 
the Northern Territory: NT, and the Australian Capital 
Territory: ACT; AG, 2020). The Commonwealth also 
governs some 12,000 smaller islands within its marine 
jurisdiction (see Volume 3B). Land in Australia is 
either:

	§ owned by the ‘crown’ or government—crown land 
covers almost a quarter of the total land mass 
and is regulated by relevant State government 
legislation; 

	§ leased by the crown to specified users for a defined 
purpose, such as mining or pastoral activities—
leasehold land comprises around half the land area; 
or 

	§ privately owned, including indigenous land tenure—
freehold tenure accounts for nearly 30% of the land 
in Australia (Austrade, 2020).

In the sub-sections below, we introduce aspects of 
Australia’s topography (see Section 2.1), climate (see 
Section 2.2), biota (see Section 2.3), ecoregions and 
fire patterns (see Section 2.4), and land use (see 
Section 2.5). 

… Flood, fire, and cyclone in successive motion 
Complete the work the pioneers began 

Of shifting all the soil into the ocean. 
(James McCauley, from 'The True Discovery of Australia')

Background image: Drone image of TERN Calperum Mallee Supersite, SA. Source: TERN Australia
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Figure 2.1  Australia

a. Next generation Blue Marble Image with topography and bathymetry, August 2004

b. Locational map (see also Volume 2B—Figure 1.14) 
WA: Western Australian; SA: South Australia; TAS: Tasmania; VIC: Victoria; NSW: New South Wales; QLD: Queensland; NT: Northern 
Territory; ACT: Australian Capital Territory (not labelled but surrounds Canberra)

Source: Tony Sparks, Icon Water, using NASA Visible Earth imagery for figure a, and GA (2002) data for roads in figure b
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Table 2.1  Geography and settlement of Australia

Characteristic Details Value

Area (sq. km; GA, 2020a)

Total, including islands 6th largest in world 7,688,287 

States and Territories, including islands

Western Australia (WA) 2,527,013 

Queensland 1,729,742

Northern Territory (NT) 1,347,791

South Australia (SA) 984,321

New South Wales (NSW) 801,150

Victoria 227,444

Tasmania 68,401

Australian Capital Territory (ACT)  
(including Jervis Bay)

2,452

Location

Northern Extremity Cape York (Queensland) 10º 41’ 21” S, 142º 31’ 50” E

Eastern Extremity Cape Byron (NSW) 28º 38’ 15” S, 153º 38’ 14” E

Southern Extremity South East Cape (Tasmania) 43º 38’ 40” S, 146º 49’ 30” E

Western Extremity Steep Point (WA) 26º 09’ 05” S, 113º 09’ 18” E

Altitude
Highest Mount Kosciuszko (NSW) 2,228 m

Lowest Lake Eyre (SA) 15 m below mean sea level

Climate
Annual Rainfall Average 165 mm

Temperature Extremes Maximum recorded range -23ºC to 50.7ºC

Water Features
Longest River River Murray 2508 km

Largest Lake Lake Eyre (salt) 9690 sq. km

Land Cover

Arid and Semi-arid land <  500 mm annual rainfall ~70% 

Arable land Agricultural production ~6%

Native Vegetation Cover Including sparse arid vegetation ~90%

Dominant land cover Hummock Grasslands 23%

Population at 30/9/2019 
(ABS, 2020)

Total Australian Bureau of Statistics (ABS) 25,464,100

States and Territories

New South Wales (NSW) 8,118,000

Victoria (VIC) 6,629,000

Queensland (QLD) 5,115,500

Western Australia (WA) 2,630,600

South Australia (SA) 1,756,500

Tasmania (TAS) 535,500

Australian Capital Territory (ACT) 428,100

Northern Territory (NT) 245,600
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2.1  Topography and Hydrology
A well-known Australian poetess, Dorothea Mackellar, 
aptly describes Australia as a ‘wide brown land’ (see 
Section 15.1). With an average elevation of less than 
300 m, barely 6% of the continent exceeds 600 m. 
The current topography of Australia has been formed 
from ongoing erosion and sedimentation by wind and 
water over hundreds of millennia, resulting in large 
areas of flat, infertile land (see image on page before 
Section 1). The topography of mainland Australia can 
be described in terms of four major landform regions 
(see Figure 2.2):

	§ coastal plains—narrow, sandy fringes along the 
east coast. These plains are relatively fertile and 
well-irrigated.

	§ eastern highlands—adjacent to the coastal plains, 
these run continuously for nearly 4,000 km from 
northern Queensland through NSW and into 
Victoria, and ultimately reappear in Tasmania. On 
the Australian mainland, these highlands are known 
as the Great Dividing Range, which directs rain onto 
the coastal plains and separates east-flowing from 
west-flowing rivers.

	§ central lowlands—stretch from the Gulf of 
Carpentaria in the north to the Great Australian 
Bight in the south, and include large parts of 
western Queensland and NSW, northwest Victoria 
and most of SA. These constitute 25% of the 
mainland, comprise flat, sedimentary material and 
contain large areas of desert. 

	§ western plateau—or peneplain, covering one third 
of the continent and large parts of SA, NT, and WA, 
and composed of igneous and metamorphic rocks. 

The distribution of soils in the Australian landscape 
has been mapped in terms of major soil types using 
the Australian Soil Resource Information System 
(ASRIS; McKenzie et al., 2012; CSIRO, 2014; see 
Figure 2.3 and Section 3.3.1), or as soil attributes in the 
Soil and Landscape Grid of Australia (TERN, 2020). 
The Australian Soil Classification defines a national 
standard for classifying soils (Isbell and NCST, 2021).

National DEM available for Australia are listed in 
Table 2.2. The Australian Hydrological Geospatial 
Fabric (more commonly referred to as ‘the Geofabric’; 
BoM, 2020b; see Section 2.6 and Volume 2D—
Excursus 13.2) defines important hydrological 
features including rivers, waterbodies, catchments, 
and aquifers. By accurately defining the spatial 
locations and dimensions of these features and 
their interconnections, water storage, movement, 
and use through the landscape can be monitored 
and modelled. In particular, by enforcing drainage 
conditions based on an accurate, national Digital 
Elevation Model (DEM) within a hierarchy of drainage 
areas, the boundaries of topographic drainage 
divisions and river regions are reliably mapped at a 
range of scales (see Figure 2.4). Two major drainage 
basins are:

	§ Lake Eyre Basin—Australia’s largest endorheic 
(closed) drainage basin, covering around 
1.2 million km2 in SA, NT, Queensland and NSW 
(DAWE, 2019); and the

	§ Murray-Darling Basin—the largest and most 
permanent river system in southeastern Australia, 
within SA, Queensland, NSW and Victoria (MDBA, 
2013).

Table 2.2  Australian DEM

Name Spatial resolution (m) Based on

GEODATA 9-second DEM and D8 Flow Direction Grid 
2008 (DEM-9S) v3

250 Elevation data at 1:100,000 and 1:250,000 cartographic scales

SRTM 3-second DEM v1.0 90 Shuttle Radar Topographic Mission, 2000

SRTM, 1-second DEM v10 30 Shuttle Radar Topographic Mission, 2000

Lidar 25 m grid 25 236 Lidar surveys between 2001 and 2015

Lidar 5 m grid 5 236 Lidar surveys between 2001 and 2015

Source: GA (2019)
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Figure 2.2  Major landform categories

Note that the blue waterbodies in central Australia are ephemeral salt lakes.

Source: Tony Sparks, Icon Water, using data from GA (2002) for waterbodies

Figure 2.3  Australian Soil Resource Information System (ASRIS)
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Figure 2.4  Major drainage basins

Source: Tony Sparks, Icon Water, using data derived from the Geofabric Hydrology Reporting Catchments product (BoM, 2020c)

Most of Australia’s rivers do not carry a permanent 
supply of water and around half drain inland, often 
terminating in ephemeral salt lakes (see Volume 1A—
Excursus 5.1). The major river system, formed by 
the Murray, Darling, and Murrumbidgee Rivers, is in 
southeast Australia and forms part of the boundary 
between NSW and Victoria (see Figure 2.2). The 
catchment for this river system, the Murray-Darling 
Basin (MDB; see Figure 2.4), serves as Australia’s major 
food production region (see Section 12.1 and 13). The 
MDB covers around one-seventh of the Australian 
landmass, including the whole ACT, most of NSW, half 
of Victoria, and smaller portions of Queensland and SA.

… the eastern coastlands exhibit marked juvenile topography,  
while the rest of Australia is more or less senile throughout  

(Taylor, 1927) 
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The Great Artesian Basin (GAB) is the largest 
groundwater aquifer in Australia, underlying nearly 
one quarter of Australia in SA, NT, Queensland, and 
NSW (Booth and Tubman, 2011; see Figure 2.5). 
It spans 1.7 million km2, contains an estimated 
64,900 million Ml of water, and provides a permanent 
water supply for much of the arid interior (GA, 2020b; 
see Section 15.1.2). Water in the GAB is up to 2 million 
years old. To ensure long term sustainable use of this 
important resource across Australia’s arid interior, 
careful land management is needed to balance 
extraction and replenishment (see Section 15.1.2). 
Accordingly, the Great Artesian Basin Sustainability 
Initiative (GABSI) was funded by federal and state 
government agencies from 1999 to 2017 to improve 
spring pressure and manage water more sustainably 
within the GAB. During its activity, GABSI upgraded 
> 750 bores, decommissioned > 21,000 km of 
bore drains, installed > 31,000 km of new, efficient 
pipe drains and saved > 250Gl of water per year 
(DAWE, 2020a).

Figure 2.5  Great Artesian Basin

Lambert conformal conic projection with standard latitudes 
18ºS and 36ºS, centred on 136ºE and 24ºS, and based on revised 
Great Artesian Basin Jurassic-Cretaceous sequence boundary 
from Ransley and Smerdon (2012)

Source: Wikimedia: https://upload.wikimedia.org/wikipedia/commons/8/8d/
Great_Artesian_Basin.png

2.2  Climate

2.2.1  Weather patterns
The Australian mainland is the driest inhabited 
continent on Earth, with Antarctica being the only 
continent with a lower rainfall (BoM, 2020a). The 
combined impact of temperature and humidity 
creates climate zones that are largely stratified by 
latitude (see Figure 2.6). 70% of the Australian land 
mass receives less than 500 mm of rain annually 
(GA, 2020c), with half of that area being defined 
as arid (< 250 mm annual rain; see Figure 2.7). 
Temperatures can also vary significantly, both 
diurnally and seasonally, especially in the arid central 
region (see Figure 2.8). 

The dry central regions have high levels of 
evaporation (see Figure 2.9a). The combined 
impact of rainfall and temperature on land cover is 
summarised by evapotranspiration (ET), the release 
of water vapour from vegetated and non-vegetated 
land into the atmosphere (see Figure 2.9b). In 
most of Australia, the potential ET is greater than 
precipitation, with only an estimated 10% of actual ET 
contributing to groundwater recharge and surface 
flows (Glenn et al., 2011).

Of all countries the primitive areas of Australia are the safest for mankind. Natural hazards are at a 
minimum. Possible hunger and thirst and the fear of getting lost are the greatest. 

(Charles F. Laseron, 1953)

https://upload.wikimedia.org/wikipedia/commons/8/8d/Great_Artesian_Basin.png
https://upload.wikimedia.org/wikipedia/commons/8/8d/Great_Artesian_Basin.png
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Figure 2.6  Climate zones derived from humidity and temperature

Source: Tony Sparks, Icon Water, using gridded data from BoM (2020a) based on a standard 30-year climatology (1961–1990)

Figure 2.7  Average annual rainfall

Source: Tony Sparks, Icon Water, using gridded data from BoM (2020a) based on a standard 30-year climatology (1961–1990)
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Figure 2.8  Seasonal temperature variations in Australia

a. Summer average daily maximum temperature

b. Winter average daily minimum temperature

Source: Tony Sparks, Icon Water, using gridded data from BoM (2020a) based on a standard 30-year climatology (1961–1990)
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Figure 2.9  Evaporation and evapotranspiration over Australia

a. Average pan evaporation based on at least 10 years of records (1975–2005)

b. Average areal actual evapotranspiration based on a standard 30-year climatology (1961–1990)

Source: Tony Sparks, Icon Water, using gridded data from BoM (2020a)
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2.2.2  Climatic drivers
Australian climatic conditions are driven by the major 
air and water circulation patterns in the Southern 
Hemisphere. There are two main atmospheric 
circulation patterns that influence our climate:

	§ warm, moist equatorial air is drawn towards 
Northern Australia as the continent heats up in 
the warmer months, resulting in monsoonal rains 
in the tropics and a ridge of warm dry air in the 
sub-tropics. Movement of this sub-tropical ridge 
induces Australia’s seasonal rainfall pattern: 
summer rainfall in the north and winter rainfall in 
the south; and

	§ warm air in the Pacific Ocean is moved into eastern 
Australia via southeast trade winds which carry 
moisture during the La Niña phase and drier 
air during the El Niño phase. This is part of the 
Walker circulation, which describes the large scale, 
atmospheric circulation over the Pacific Ocean 
driven by movement of deep, equatorial waters 
in the cooler eastern Pacific towards the warmer 
western Pacific Ocean (Lau and Yang, 2002).

As detailed in Volume 3B, three ocean currents 
significantly impact the Australian climate:

	§ a cold current from the southern Indian Ocean 
moves northward along the WA coast during 
summer;

	§ the warm Leeuwin Current moves towards the 
South Pole along the west and south coasts 
of Australia with significant effects on marine 
ecosystems (Feng et al., 2009); and

	§ a warm Eastern Australian Current moves down the 
east coast (FAO, 2009).

2.2.3  Climate classifications
The Thornthwaite classification system for 
climate was proposed in 1931 and revised in 1948 
(Thornthwaite, 1931, 1948). The final system was 
based on the interplay between local moisture 
and temperature, with the view that temperature 
was a driver for potential evapotranspiration (see 
Section 7.6). This system derived indices for humidity 
and aridity from water balance indicators:

where for annual estimates:

water surplus =  
precipitation – actual evapotranspiration;

water deficit = potential evapotranspiration – 
actual evaporation; and

water need = potential evapotranspiration.

Geographic regions are classified on the basis of their 
Thornthwaite Moisture Index (M):

M = humidity – 0.61 � aridity

or

In Australia, the Thornthwaite Moisture Index has 
been used to define six types of climate that are 
commonly referenced for infrastructure planning 
(Austroads, 2004; Philp and Taylor, 2012; see 
Table 2.3).

Table 2.3  Australian climate types

Climate Types Thornthwaite Moisture Index

i Alpine/coastal > 40

ii Wet temperate 10 to 40

iii Temperate -5 to 10

iv Dry temperate -25 to -5

v Semi-arid -40 to -25

vi Arid < -40

Source: Philp and Taylor (2012)
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Figure 2.10  Modified Köppen climate classification

This classification of Australian climatic regions was derived from 0.025º́ 0.025º resolution mean rainfall, mean maximum 
temperature, and mean minimum temperature gridded data. All means are based on a standard 30-year climatology (1961–1990).

Source: Tony Sparks, Icon Water, using gridded data from BoM (2020a)

Temperature and rainfall data have been used to 
classify Australia into six broad climatic classes 
and 27 sub-divisions (see Figure 2.10). These zones 
are based on a modified Köppen classification 
(Köppen, 1931; Stern et al., 1999) and are strongly 
correlated with topography, land cover, and land use. 

An alternate agroclimatic classification, derived from 
climate and topography, and aligned with bioregion 
data, was developed by Hutchinson et al. (2005). 
These 18 classes are illustrated in Figure 2.11a 
and described in Table 2.4. This classification was 
subsequently modified by Hobbs and McIntyre (2005) 
to 10 classes. More recently, Thackway and 
Freudenberger (2016; see Figure 2.11b) adjusted 
selected bioregion boundaries and merged 
them with the agroecological regions defined by 
Williams et al. (2002) to better reflect recent changes 
in climatic patterns, especially in tropical savanna 
regions. 
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Figure 2.11  Agroclimatic classifications

a. 18 classes

b. 10 classes

Source: a. Tony Sparks, Icon Water, using data from Hutchinson et al. (2005) Figure 3, b. Tony Sparks, Icon Water, using data from Thackway and 
Freudenberger (2016) Figure 1a and Table S2
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Table 2.4  Agroclimatic class descriptions for Figure 2.11

18 class code Agroclimate Location Land use 10 class label

B1
Very cold winters with summers too short 
for crop growth 

Alpine areas of NSW, Victoria and 
Tasmania. Water harvesting, 

hydroelectricity, tourism and 
nature conservation

Cold wet

B2
Less severe winters and longer moist 
summers suitable for some crops 

Tasmanian highlands. 

D5
Moisture availability high in winter-spring, 
moderate in summer, most plant growth 
in spring 

Tasmanian lowlands, southern 
Victoria, southern and northern 
Tablelands of NSW. 

Forestry, cropping, horticulture, 
improved and native pastures

Temperate 
cool season 
wet

E1
Classic “Mediterranean” climate with 
peaks of growth in winter and spring and 
moderate growth in winter 

Southwest WA and southern SA. 
Forestry, horticulture, winter 
cropping, improved pastures

Mediterranean

E2
“Mediterranean” climate, but with drier 
cooler winters and less growth than E1 

Inland of E1 in southwest WA, 
southern SA, northwest Victoria 
and southern NSW. 

Horticulture, winter cropping, 
improved pastures

E3
Most plant growth in summer, although 
summers are moisture limiting.; 
temperature limits growth in winter  

Western slopes of NSW and part 
of the North Western Plains. 

Winter cereals and summer 
crops, grazing

Temperate 
sub-humid

E4
Growth is limited by moisture rather than 
temperature and the winters are mild; 
growth is relatively even through the year 

Unique in the world to sub-tropical 
continental eastern Australia and 
associated with the brigalow belt 
of QLD and NSW. 

Winter cereals (after summer 
fallowing), summer crops 
(including cotton) and sown 
pastures

Sub-tropical to 
sub-humid

E6
Semi-arid climate that is too dry to 
support field crops; soil moisture tends to 
be greatest in winter 

Southern edge of the arid interior 
in WA, SA, NSW and QLD. 

Rangeland Dry

E7
Moisture is the main limit on crop growth; 
growth index lowest in spring 

Maritime sub-tropical areas in 
southern QLD. 

Sugar, crops and cattle grazing
Tropical warm 
season moist

F3
Cooler end of the warm, wet sub-tropical 
climates 

The Sydney Basin and the NSW 
south coast. 

Cooler temperatures slightly 
favour temperate crops and 
sown pastures Sub-tropical 

moist

F4 Warmer and wetter than F3 
NSW north coast, extending to 
southern QLD and the Great 
Sandy province. 

Horticulture, sown pasture and 
tourism. Potential for wheat, 
cotton and maize

G
Desert, supporting very little plant growth 
due to water limitation 

Central Australia. 
Cropping possible only with 
irrigation. Rangeland, wildland

Dry

H
Semi-arid, with some growth in the warm 
season, but too dry for cropping 

Transition between the wet/dry 
tropics and the arid interior in WA, 
NT and QLD. 

Rangeland

Tropical warm 
season wet

I1
Strongly developed wet and dry seasons 
with plant growth determined by moisture 
availability 

NT, northern WA and Cape York 
Peninsula. 

Predominately rangeland. 
Potential for tropical field crops

I2
Temperature and moisture are more 
seasonal than for I1 and the growing 
season is shorter 

Occurs inland of I1 
Some crop potential, but 
predominantly rangeland

I3
This has cooler winters than I1 and I2 
with a growing season lasting at least six 
months 

Occurs in the coastal and 
hinterland areas of northeast QLD, 
south of Cape York Peninsula. 

Sugar, cropping and 
rangelands

Tropical warm 
season moist

J1
Moisture and temperature regime 
supports growth for 8–9 months of the 
year, with a 3–4 month dry season 

Limited areas in the central 
Mackay coast and the Wet Tropics. 

Sugar cane and horticulture

Tropical wet

J2 As for J1 but with a shorter dry season 
Limited areas on the east coast of 
Cape York Peninsula 

Source: Hutchinson et al. (2005) Table 1; Thackway and Freudenberger (2016)



Earth Observation: Data, Processing and Applications.  Volume 3: Applications Volume 3A: Applications—Terrestrial Vegetation

2  The Australian Environment

35

2.3  Biota
Australia supports a diverse and unique range of 
indigenous plants and animals. Being an isolated 
continent, Australia’s terrestrial biota largely evolved 
independently from the rest of the world with over 
80% of its angiosperms, mammals, reptiles, and frogs, 
and over half of its birds, being unique. The remainder 
migrated during prehistoric times, before land bridges 
with then adjacent continents were submerged 
by rising sea levels. Fossil evidence suggests that 
marsupial (but not placental) mammals arrived via 
Antarctica, and placental rats and bats came from 
Asia (Cox, 2000).

In addition to these naturally-occurring species, 
thousands of plants and hundreds of animals have 
been introduced to the Australian landscape in 
recent centuries, some of which now produce most 
of our agricultural income. A significant number of 
species, however, have become invasive and present 
serious threats to natural ecosystems and agricultural 
activities. In 2012, feral animals and invasive weeds 
were identified as the two major threats to sustainable 
natural resource management (NRM) in all NRM 
regions in Australia (NRM, 2019). Changes in land 
management practices since European settlement, 
which started with the arrival of the First Fleet in 1788, 
have also modified the populations and distributions 
of some indigenous biota, resulting in some species 
becoming endangered or extinct and others having a 
greater impact on the environment (Burrows, 2018). 

The following sub-sections introduce aspects of 
Australia’s biota that have direct relevance to EO-
based studies of terrestrial vegetation:

	§ vegetation classification systems (see Section 2.3.1);

	§ weeds (see Section 2.3.2); and

	§ indigenous and feral animals (see Section 2.3.3).

2.3.1  Classifying vegetation
The intricate composition of natural vegetation 
and the gradual transitions that occur between 
different types of vegetation complicate the task 
of defining discrete vegetation classes. While many 
different approaches have been used to classify 
vegetation, three basic attributes of vegetation 
underpin most classification systems, namely 
growth form, foliage cover, and floristic composition. 
Plants can also be grouped into functional groups 
or plant functional types (PFT) on the basis of their 
function in an ecosystem and their resource usage 
(Smith et al., 1997; see Sections 4.1.2, 4.2.1, and 7.4).

Current vegetation classification systems define 
labels on the basis of specific, measurable attributes 
rather than descriptive criteria. The standard methods 
and terminology for field survey of land and soil 
attributes, including vegetation, in Australia are 
detailed in NCST (2009). While this approach cannot 
solve the problems associated with attempts to 
classify the complexities of natural vegetation, it does 
reduce ambiguity in class nomenclature. 

The first systematic floristic classification for 
Australia’s vegetation, including origins, development, 
and composition, was published by Beadle (1981). 
Since 1973, the Australian Biological Resources 
Study (ABRS, 2012) has been compiling the definitive 
reference on taxonomy for Australian flora based 
on the Cronquist system (Cronquist, 1968, 1981). 
Keith (2017) reviews the development of 
nomenclature to map and classify Australian 
vegetation, describes significant ecological processes, 
and provides details of each major vegetation type.

Criteria useful in the description of vegetation include: life form; size; density of individual plants; 
shape, size and texture of leaves; and whether evergreen or deciduous. Each of these criteria 

includes several classes which differ in kind (e.g. life form and leaf attributes) or in degree (e.g. size 
and density), and the possible number of combinations of all these classes is so large as to lead to 

an unworkable system so far as classification is concerned, although any particular plant community 
can be defined with accuracy by such a system. A workable system necessarily must select 

among possible criteria and make arbitrary divisions among characteristics which are continous in 
magnitude; in so far as it does this it cannot define the many combinations met with in nature. 

(Specht, 1970). 
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Table 2.5  Common definitions for Australian vegetation

Specht Land Cover 
Label

Equivalent Label
Rainfall  
(mm)

Species Composition
Height 
(m)

Foliage 
Projective 
Cover (%)

Closed Forest Rainforest > 900 Wide range of rainforest trees and understorey plants 15–40 70–100

Tall Open Forest Wet Sclerophyll > 900 Mostly Eucalyptus plus ferns, and shrubs/small trees with soft 
foliage

> 30 30–70

Low Open Forest Dry Sclerophyll > 900 Mostly Eucalyptus plus grasses/shrubs with hard leaves 5–30 30–70

Woodland Savanna < 900 Mostly Eucalyptus plus Callitrus, Casuarina and Acacia species 5–25 10–30

Open Woodland Open savanna 400–500 Eucalyptus and Corymbia, plus Callitrus, Casuarina and 

Acacia species

< 10 0–10

Shrublands Heath < 400 Mostly Acacia species, e.g. Mulga 2–8 30–100

Shrub Steppe Low Shrubland < 200 Mostly mallee eucalypts < 2 10–30

Closed Grassland Alpine Meadows, 
Herbland

< 400 Poa < 1 30–100

Tussock Grassland Mitchell Grasslands, 
Bluegrass Grasslands

400–700 Perennial grasses, rushes, sedges, Lomandra species < 1 < 70

Hummock Grassland Spinifex Grasslands 200–300 Triodia < 2 10–30

Desert Bare, Exposed < 250 Acacia aneura, Eremophila glabra, Atriplex vesicaria, 
Swainsona formosa

< 2 0–10

Source: Specht (1970); Florence (1985); DEWR (2007)

The descriptive labels commonly used in Australia 
for vegetation were originally defined on the basis 
of rainfall, species composition and biomass density 
(measured as Foliage Projective Cover, FPC), which 
is defined as the “vertically projected percentage 
cover of photosynthetic foliage of all strata of the 
forest stand” (Specht, 1983), that is, the percentage 
of ground area occupied by the vertical projection of 
woody vegetation foliage. As summarised in Table 2.5, 
this approach tended to embrace alternative, and 
sometimes ambiguous, labels and imprecise boundary 
conditions (Gillison and Anderson, 1981). For example, 
one of the earliest national vegetation maps for 
Australia, compiled by Williams (1959) and derived 
from aerial photography and expert knowledge, used 
category labels based on structure and cover. 

A widely used classification system for Australian 
vegetation, attributed to Specht (1970), is based on two 
structural features that are characteristic of most natural 
Australian flora—namely that the largest proportion 
of total biomass is contained in the upper stratum 
of vegetation and that biomass can be reasonably 
estimated from FPC plus height or growth form (see 
Section 3.2.1 and 5.1.1)—to define the 28 categories 
indicated in Table 2.6. This system for classifying 
vegetation is compatible with the ISO standards 
for terrestrial vegetation and has been adopted by 
several Australian land cover mapping projects. 

In more recent decades, however, Australian 
vegetation classification systems explicitly derive 
vegetation class names from the structural formation 
of the vegetation (for example, see Excursus 6.1), in 
addition to the floristic association of the dominant 
species, rather than using labels that imply 
these characteristics (Walker and Hopkins, 1990; 
Thackway et al., 2008; Hnatiuk et al., 2009). In 
this context, a formation is defined as a “synthetic 
structural unit to which are referred all climax 
communities exhibiting the same structural form, 
irrespective of floristic composition” (Beadle and 
Costin, 1952), such as a tropical forest. A sub-unit of 
a formation, with two or more dominant species, is 
called an association (see Section 6.1). The Australian 
Vegetation Attribute Manual (NVIS Technical Working 
Group, 2017) includes the new attribute standard 
for compiling non-native and non-vegetated cover 
types. This new standard enables monitoring and 
reporting of the whole landscape and will complement 
monitoring land cover changes using the FAO Land 
Cover Classification (see Section 3).
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Table 2.6  Structural classification of Australian vegetation

Growth form of tallest 
stratum

Foliage cover of tallest stratum

> 70% 30–70% 10–30% < 10%

Tall trees (> 30 m) Tall closed forest (T4) Tall open forest (T3) Tall Woodland (T2) –

Medium trees  
(10–30 m)

Closed forest (M4) Open forest (M3) Woodland (M2) Open woodland (M1)

Low trees (< 10 m) Low closed forest (L4) Low open forest (L3) Low woodland (L2) Low open woodland (L1)

Tall shrubs (> 2 m) Closed scrub (S4) Open scrub (S3) Tall shrubland (S2) Tall open shrubland (S1)

Low Shrubs (< 2 m) Closed heath (Z4) Open heath (Z3) Low shrubland (Z2) Low open shrubland (Z1)

Hummock grasses – – Hummock grassland (H2) –

Tussocky or Tufted 
grasses or Graminoids 

Closed tussock grassland 
or closed sedgeland (G4)

Tussock grassland or 
sedgeland (G3)

Open tussock grassland 
(G2)

Sparse open tussock 
grassland (G1)

Other herbaceous 
plants

Dense sown pasture (F4) Sown pasture (F3) Open herbfield (F2) Sparse open herbfield (F1)

The National Vegetation Information System (NVIS; 
NVIS Technical Working Group, 2017; DAWE, 2020b) 
is an ongoing collaborative initiative between the 
Australian federal, state, and territory governments 
to manage national vegetation data and has become 
the standard system for all Australian federal, 
state and territory government land management 
agencies. NVIS was developed to improve vegetation 
planning and management within Australia, and 
assist in managing a range of ecosystem services 
and practices (see Section 20.3), such as conserving 
biodiversity, controlling salinity, improving water 
quality, and managing vegetative fuel loads. 

NVIS classifies Australian vegetation types at the 
sub-formation, association and sub-association 
levels using structural and floristic criteria (see 
Table 2.7 and Volume 2D—Excursus 12.1 for details). 
The NVIS Version 5.1 map product defines 33 Major 
Vegetation Groups (MVG; see Figure 2.12) and 85 

sub-groups, which comprehensively describe the 
extent and distribution of vegetation in Australia, for 
both estimated pre-1750 and extant vegetation. A 
complementary national database, the National Forest 
Inventory (NFI), focuses on the productivity and 
sustainability of Australia’s forests (see Section 16.1). 

NVIS has enabled a nationally consistent vegetation 
dataset to be compiled from data collected by various 
state and territory jurisdictions. The recommended 
data collection level is Level 5 or better, with 
Levels 1–4 generated algorithmically for consistency 
(see Table 2.7). All NVIS data—both spatial data and 
the underlying vegetation attribute information—
is open source. The classification systems used 
by relevant Australian federal state and territory 
authorities for mapping native vegetation are 
summarised in Table 2.8. Further information on some 
of these systems is provided in Sections 2.6 and 3.3.

Table 2.7  NVIS information hierarchy

Level 5 (association) is recommended as the minimum level of input for input data to NVIS. Hnatiuk et al. (2009) refer to Level 1 as 
Formation.

Level Category Description

1 Class Dominant growth form for the structurally dominant stratum

2 Structural formation Dominant growth form, cover and height for the structurally dominant stratum

3 Broad floristic formation Dominant genus (or genera) plus growth form, cover and height for the structurally dominant stratum

4 Sub-formation
Dominant genus (or genera) plus growth form, cover and height for each of the three main strata.  
(Upper, Mid, and Ground)

5 Assocation
Dominant growth form, height, cover and species (to a maximum of 3 species) for each of the three main 
strata. (Upper, Mid, and Ground)

6 Sub-association Dominant growth form, height, cover, and species (to a maximum of 5 species) for each of the substrata

Source: NVIS Technical Working Group (2017)
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Figure 2.12  Major Vegetation Groups derived from NVIS Version 3

EPSG:3577 Australian Albers projection with 30 m spatial resolution 

Source: Scarth et al. (2019) Figure 2 (from DEWR, 2007)

Table 2.8  Native vegetation classification systems

Jurisdiction Categories

Federal
33 Major Vegetation Groups (MVG; DAWE, 2020b)

85 Major Vegetation Subgroups (MVS; DAWE, 2020b) 

ACT Ecological Communities (ACT EPSDD, 2020)

NSW

16 Vegetation Formations (Keith, 2004)

99 Vegetation Classes (Keith, 2004)

~1500 NSW Plant Community Types (PCT) in BioNet Vegetation Classification (NSW DPIE, 2020) 

State Vegetation Type Mapping (SVTM; see Excursus 8.2)

NT
Vegetation Associations (NT EPA, 2013; Brocklehurst et al., 2007) 

174 Vegetation Types (Lewis et al., 2008; NTNVIS, 2020) 

Queensland
16 Broad Vegetation Groups (BVG) (Queensland Government, 2020a; Neldner et al., 2019)

1384 Regional Ecosystems (RE) (Queensland Government, 2020b) 

SA NVIS Framework (SA DEWNR, 2019)

Tasmania ~ 158 TASVEG Vegetation Communities (Harris and Kitchener, 2005) 

Victoria
28 Bioregions (DELWP, 2020)

897 Ecological Vegetation Classes (EVC) 

WA 819 Vegetation Associations (Shepherd et al., 2002) 

Source: Richard Thackway, Australian National University
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2.3.2  Weeds
Weeds or invasive plants are defined as “any plant 
that requires some form of action to reduce its effect 
on the economy, the environment, human health and 
amenity” (DEE, 2019a). Many weeds in Australia were 
introduced by European settlers, but natives species 
can also become weeds, either when their native 
habitat changes favourably, or when they wander 
into ‘new’ ecosystems with suitable conditions. The 
introduction of any exotic vegetation has the potential 
to become a weed problem. Ecosystems can be 
permanently changed by the invasion of exotic weeds, 
which can transform faunal habitats, food sources, 
and fire regimes. Further, native vegetation may not 
be equipped to compete with invasive weeds, which 
can form dense, smothering thickets.

Weeds reproduce readily, usually through an 
abundance of seeds, and rapidly colonise disturbed 
sites. They impact urban, rural, and natural 
environments, including surface waters, deserts, and 
alpine regions. Despite active control measures being 
enforced by legislation in all levels of government, 
weeds are still spreading in Australia (DEE, 2019b). 
As such, they are considered to be a serious threat 
to both Australian agriculture and conservation areas 
(DEE, 2019a). 

3,480 of the 28,000 plant species introduced 
into Australia since European settlement are now 
classified as weeds (Lesslie et al., 2011). Of these 
weeds, 32 have been identified as ‘Weeds of National 
Significance’ on the basis of their “invasiveness, 
potential for spread and environmental, social and 
economic impacts” (DEE, 2019c). Specific lists of 
noxious weeds—those posing the greatest threat to 
native species and agricultural productivity—are also 
ranked and administered by each state and territory 
government for areas within its jurisdiction. 

The average cost of weed impact and control 
was estimated as $4,989.2 million for Australian 
agricultural industries in 2018 (McLeod, 2018). In 
order to prevent land degradation in the longer term, 
weed control is viewed by farmers as one of their 
highest priorities (Lesslie et al., 2011). While weed 
management is a significant problem throughout 
Australia, it is most challenging in the arid areas 
(Scott et al., 2018), where both population density and 
productivity are low (see Section 15).

Weeds contaminate crops, displace pasture plants and compete with crop and pasture plants for water 
and nutrients. Weeds also harbour diseases and insect pests, reduce livestock carrying capacity and 

condition and can be toxic to livestock. 
(Lesslie et al., 2011)

2.3.3  Indigenous and feral animals
While Australia’s unique fauna adapted to its 
environment in isolation from the rest of the world, 
human management of the Australian landscape has 
modified the composition and distribution of fauna 
for millennia (Gammage, 2012; Pascoe, 2018). At the 
time of European settlement, the only widespread and 
large carnivorous animal on the Australian mainland 
was the dingo, which may have been introduced 
from Papua New Guinea some 5,000 years ago 
(Ardalan et al., 2012). All other indigenous mammals 
were non-ungulate (non-hoofed) herbivores, and 
their distributions were managed by the culture 
and activities of their indigenous custodians (see 
Section 2.5.1). 

As with indigenous flora, Australia’s native fauna has 
competed with a wide variety of introduced faunal 
species in recent centuries (see Section 2.3.2). While 
these exotic species were initially introduced for the 

purposes of grazing, hunting, fishing, and transport, 
several quickly adapted to their new environment and 
continue to successfully compete with native animals 
for food, shelter and territory. Some introduced 
species also prey on native fauna (Clarke, 2001; 
Denny and Dickman, 2010), destroy their habitats 
(McKenzie et al., 2006), and/or spread diseases 
(Henderson, 2009). Additionally, ungulate (hoofed) 
species, such as horses, sheep, goats, deer, and cattle, 
introduced significant soil compaction and ‘erosion’ 
problems (Lunt et al., 2007), and extensively damage 
riparian zones. This is due, in part, to total grazing 
pressure, that is, competition for limited resources 
between domestic stock and native herbivores.

Feral animals have permanently transformed 
Australia. 

(Norris et al., 2005)
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Environmentalists cannot be animal liberationists. Animal liberationists cannot be environmentalists. The 
environmentalist would sacrifice the lives of individual creatures to preserve the authenticity, integrity 

and complexity of ecological systems. The liberationist—if the reduction of animal misery is taken 
seriously as a goal—must be willing, in principle, to sacrifice the authenticity, integrity and complexity of 

ecosystems to protect the rights, or guard the lives, of individual animals. 
(Mark Sagoff, 1984)

Exotic species typically have a number of competitive 
advantages in new territory and can severely impact 
native biodiversity. In Australia, these advantages 
included few natural predators, few fatal diseases and 
conditions favorable to high rates of reproduction. 
Accordingly their populations increased quickly 
(DEE, 2019d) and wild populations of over 80 species 
of exotic vertebrate animals have now become 
established in Australia (Lesslie et al., 2011). Of these, 
more than 30 are considered pests to agriculture 
and/or the environment. In the 2013–14 financial 
year, the annual economic impact of pest animals in 
Australia was estimated as approaching $600 million 
(McLeod, 2016).

The term ‘feral’ is used for wild animals that have 
descended from domestic animals. The most 
significant impacts of feral animals in Australia 
include:

	§ rabbits, goats, buffalo, donkeys, horses, camels, 
deer, and cattle—grazing and land degradation;

	§ dogs, foxes, pigs, and cats—livestock and native 
fauna predation; and

	§ mice and birds—damage to grain and horticultural 
crops. 

Land management practices also changed rapidly 
after European settlement, which both positively and 
negatively impacted the populations of native fauna. 
As the number of grazing animals (both pastoral 
species and native herbivores) increased, so did 
predation of dingoes, foxes, and feral dogs on stock, 
resulting in a 5,400 km dingo-proof fence being 
erected nearly continuously from the west coast of SA 
to the east coast of northern NSW (PIRSA, 2019). As 
pastures were improved and extended and watering 
points were installed, the numbers of kangaroos, 
wallabies, and feral herbivores also increased, 
especially in southeast Australia where the dingo had 
been fenced out (Eldridge et al., 2016). 

The impact of feral animals in the rangelands of 
Australia is significant in terms of biodiversity and 
productivity, and the geographic range of eight 
feral species is expanding (Norris et al., 2005). As 
well as devouring crops and livestock, feral animals 
have degraded large areas of habitat, resulting in 
the loss of native mammals, irreversible erosion, and 
invasion by weeds, which further threatens rare biota 
(Burrows, 2018). While accurate estimates of feral 
animal distribution and abundance is lacking in this 
sparsely-populated region, potential solutions are 
further confounded by lack of rigorous knowledge 
about regional biodiversity and the impacts of feral 
animals on rangeland ecosystems (Norris et al., 2005). 
These concerns are further considered in Section 15.

2.4  Ecoregions and Fire Patterns
Fire in the Australian landscape is frequent and 
recurrent, especially following drought conditions. 
Fire extent and intensity can vary dramatically with 
differences in vegetation composition and age, 
and ambient weather conditions (see Section 18). 
Recovery from fire also varies with fire intensity and 
vegetation type, with younger vegetation often being 
more susceptible. Severe and extensive fires can 
thus change the age distribution of vegetation and 
potentially increase future fire risk. 

Ecological regions, or ecoregions, are biogeographic 
units that attempt to categorise the natural distribution 
of biodiversity (Olson et al., 2001). Each ecoregion is a 
geographically distinct assemblage of fauna, flora, and 
ecosystems, with similar geology, lithology, landform, 
and climate. Ecoregions are separated by distinct 
geographic features, such as oceans or mountain 
ranges. Associated with their vegetation patterns, 
ecoregions have characteristic fire patterns, in terms of 
both frequency and severity, which significantly impact 
vegetation structure and extent.
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Figure 2.13  Interim Biogeographic Regionalisation of Australia (IBRA) Version 7
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In the whole country I scarcely saw a place without the marks of a fire; whether these  
had been more or less recent—whether the stumps were more or less black, was the  

greatest change which varied the uniformity, so wearisome to the traveller’s eye. 
(Charles Darwin’s description of NSW, from ‘The Voyage of the Beagle’, 1845)

Similarly, the Interim Biogeographic Regionalisation 
for Australia (IBRA; Thackway and Cresswell, 1995; 
see Figure 2.13) classifies landscapes in Australia 
“into 89 large geographically distinct bioregions 
based on common climate, geology, landform, native 
vegetation and species information” (DAWE, 2020c). 
This forms part of a global, hierarchical classification 
of 14 terrestrial habitats or biomes (Olson et al., 2001), 
eight of which occur in Australia (DAWE, 2020d). IBRA 
has been simplified into seven broad habitats by the 
Terrestrial Ecoregions classification (see Figure 2.14; 
note that the eighth habitat, Tundra, only occurs in 
Subantarctic islands). 

IBRA acts as the planning framework for the National 
Reserve System (NRS), and ecoregion descriptions 
in the following sub-sections have been derived from 
the NRS to provide an overview of the Australian 
landscape and its response to fire (Harrison and 
Bradstock, 2010 and Section 18). The following 
descriptions are based on the estimated pre-European 
extents of these ecoregions and do not discuss their 
modification or fragmentation.

2.4.1  Deserts and xeric shrublands
Arid and semi-arid landscapes cover 70% of the 
Australian continent, including over half of WA, SA 
and NT, and smaller portions of western Queensland 
and NSW. This ecoregion varies greatly in the amount 
of annual rainfall received, with evaporation generally 
exceeding rainfall. Temperature extremes characterise 
most deserts, resulting in hot days and cold nights. 
These harsh, but diverse, climatic conditions support 
a rich array of habitats, many of which are ephemeral 
(DAWE, 2020d). Vegetation types include hummock 
grasslands, tussock grasslands, chenopod shrublands, 
and Acacia woodlands.

In arid Australia, rainfall is not only low, but irregular, 
and vegetation has adapted to these conditions. 
Significant, sporadic rainfall events trigger rapid 
growth, resulting in dramatic changes in vegetation 
extent and greenness. The fire distribution trends 
have been observed to follow latitude-based rainfall 
gradients, with most wildfires occurring in spring 
(late dry season), due to higher fuel loads and 
temperatures, coupled with reduced fuel moisture 

(Allan et al., 2003). The fire return interval varies 
regionally between three and 30 or more years 
and is considered to be directly related to fuel 
accumulation following antecedent rainfall (Allan 
and Southgate, 2002; Russell-Smith et al., 2003). 
Patchiness of fires is related to the heterogeneity of 
fire ‘ages’ in a region (Allan and Southgate, 2002), so 
prescribed burning using patchy, early dry season 
fires is encouraged to avoid later conflagrations. In 
this landscape, fire footprints are clearly visible on 
satellite EO imagery and persist for a long time, which 
can result in overlapping fire scars over several years.

2.4.2  Mediterranean forests, woodlands and 
scrub
Mediterranean ecoregions feature hot, dry summers, 
cool, moist winters, and regular periods of drought, 
and generally occur in areas of low topography. These 
conditions only occur in five regions globally and, 
together, they support over 10% of the known species 
of flora. The Fynbos (in South Africa) and shrublands 
in southwest Australia have greater biodiversity than 
the other Mediterranean ecoregions. In southwest WA, 
southeast SA, and western Victoria, Mediterranean 
vegetation has been heavily fragmented by land 
clearing. Some large, intact areas of Mediterranean 
woodlands and scrub still exist in sparsely populated 
areas, such as the Great Western woodlands in WA. 
Vegetation in the Mediterranean ecoregion includes 
heath, mallee, and forest. 

Most plants endemic to this ecoregion are adapted 
to, and dependent on, fire. Heath vegetation, which 
also occurs in tropical and temperate climates, 
is particularly fire prone. Fires are seasonal, 
predominantly occurring in summer with lightning 
being the primary cause, and often follow drought. 
Fire frequency estimates vary from five to 30 
years, with large fires occurring every 20–30 years 
(Bradstock and Cohn, 2002). Since rainfall, and hence 
fuel moisture content, is generally low during summer 
in this climate, fire risk is primarily related to fuel 
load. High severity burns in this ecoregion can be 
accurately delineated in EO imagery.
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Bushfires have a fundamental and irreplaceable role in sustaining many of Australia’s natural ecosystems 
and ecological processes and are a valuable tool for achieving land management objectives. However, if 
they are too frequent or too infrequent, too severe or too mild, or mistimed, they can erode ecosystem 

health and biodiversity and compromise other land management goals. 
(Ellis et al., 2004)

2.4.3  Montane grasslands and shrublands
This ecoregion includes high elevation (montane 
and alpine) grasslands and shrublands. In Australia, 
montane grassland and shrublands are restricted to 
the mountainous regions of southeastern Australia 
above 1300 m, in which trees do not grow. This region 
occupies less than 3% of the Australian landmass and 
straddles the borders of the ACT, Victoria, and NSW 
on the Australian mainland, with a significant element 
occurring in Tasmania (DAWE, 2020d).

Fires are rare in montane grasslands and usually 
follow extreme drought. Fire is limited by fuel load and 
moisture content, with montane shrubland species 
being more flammable than grassland species. These 
areas are believed to burn naturally only once or 
twice a century (Ross Bradstock, pers. comm.). While 
rare, however, fires in this region of Australia can be 
massive and uncontrollable, as occurred in 1938/39, 
2002/03 and 2019/20. 

2.4.4  Temperate broadleaf and mixed forest
Temperature and precipitation vary widely in 
temperate forests. These forests generally comprise 
four layers of vegetation (upper and lower canopies 
plus shrub and ground layers), with biodiversity being 
highest near the forest floor. Eucalyptus and Acacia 
species typify the composition of the temperate 
broadleaf and mixed forests in Australia. This 
ecoregion also includes areas of temperate rainforest. 
In Australia, these forests stretch along the Great 
Dividing Range and coastal regions from southeast 
Queensland, through NSW and the ACT into Victoria. 
The moderate climate and high rainfall of this 
region support unique Eucalyptus forests and open 
woodlands. The temperate rainforests and mixed 
forests of Tasmania are also extraordinarily complex 
(DAWE, 2020d). 

These forests generally occur in mountainous 
landscapes where topography affects vegetation 
density and composition and, in turn, fuel volume 
and exposure. In this ecoregion, topography and 
fuel load have been identified as the most important 
factors influencing fire propagation and severity 

(Bradstock et al., 2010). Fires in temperate forests are 
linked to irregular drought conditions, with megafires 
following periods of extreme drought (Bartlett et al., 
2007). 

The predominant fuel in these forests is leaf litter so 
most fires occur in hotter, drier seasons. In wetter 
areas, the natural fire frequency is estimated to be 
50–100 years, while drier areas may experience 
fire every 10–20 years. In recent years, there has 
been an increased frequency of large fires in these 
regions with several major fire seasons resulting in 
4 million ha being burned between 2000 and 2010 
(Ross Bradstock, pers. comm.) and more in 2019/20 
(see Section 18.1). Most major towns and cities in 
southeast Australia are situated near temperate 
forests so their populations are directly and indirectly 
affected by wildfires occurring in these regions. 

While the relatively dense canopies in these forests 
obscure understorey vegetation in imagery from 
passive EO sensors, crown fires can be clearly 
discerned in these datasets.

2.4.5  Temperate grasslands, savannas and 
shrublands
This ecoregion has cooler and more varied annual 
temperatures than tropical grasslands. Trees tend to 
only occur along streams and rivers. Located between 
temperate forests and the arid interior of Australia, 
the southeast Australian temperate savannas span 
a broad north-south swath on the drier side of the 
Great Dividing Range through Queensland, NSW 
and Victoria, and into Tasmania. Since European 
settlement, most of this ecoregion has been 
converted to sheep and wheat farms so that only 
small fragments of the original vegetation remains 
(DAWE, 2020d).

Distinct fire seasons occur in this ecoregion, which 
are related to grassland curing. Southern areas with 
winter rainfall experience summer fires and northern 
areas of summer rainfall are most likely to burn in late 
winter and spring. In these relatively flat regions with 
scattered tree cover, fires are clearly delineated in EO 
imagery. 
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2.4.6  Tropical and subtropical grasslands, 
savannas and shrublands
The tropical and subtropical grasslands, savannas, 
and shrublands are characterised by rainfall levels 
between 900–1500 mm per year, following a 
predictable, seasonal pattern of wet summers and 
extended, warm, dry winters. The abrupt onset of 
the dry season, evidenced by a sudden decline in 
atmospheric and surface moisture, signals the start of 
fire weather. 

Tropical savannas occupy 25% of Australia, covering 
about 200 million ha in northern WA, the top half 
of NT, and inland of the Great Dividing Range in 
Queensland. These biologically diverse regions do not 
receive sufficient rainfall to support extensive tree 
cover. Patches of dry rainforest also occur throughout 
this ecoregion.

Fire is extensive and frequent, with both extent and 
frequency varying regionally, and is predominantly 
initiated by human activity. Conversely, population 
and infrastructure are sparse. New fire footprints are 
clearly discernible in EO data in this landscape. Given 
its dynamic nature, the timing of EO data acquisition 
is particularly important for mapping fire effects 
in this ecoregion. The relatively simple and open 
structure of savanna vegetation with predominately 
grassy understoreys, which quickly recover from fire, 
means that the focus for fire mapping is on burned 
area rather than severity. The rate of regrowth of 
grasslands can also result in overlap of fire scars 
within a fire season.

2.4.7  Tropical and subtropical moist 
broadleaf forests
These forests are generally found in large, 
discontinuous patches in tropical latitudes. They are 
characterised by low variability in annual temperature 
and high annual rainfall (> 2000 mm). Forest structure 
comprises five layers (three canopy layers plus 
shrub and ground layers) with greatest biodiversity 
generally occurring in the canopy. Species 
composition in these forests is dominated by semi-
evergreen and evergreen deciduous trees.

In Australia, small and scattered areas of this type 
of forest only occur in Queensland. These forests 
are noted for their southern location and their 
highly endemic fauna and flora. Subtropical moist 
forests with high levels of plant and bird endemism 
also occur on Lord Howe Island and Norfolk Island 
(DAWE, 2020d).

Fire risk is low in rainforest areas due to the high fuel 
moisture content. Some research has noted expansion 
of rainforest vegetation in recent decades, possibly 
due to the absence of fire (Jurskis, 2015). 

Eucalyptus was excellent at extracting and hoarding precious nutrients, but so were most of the 
Australian flora. What made it special was its extraordinary opportunism, a relationship reinforced by fire. 

Eucalypts accepted wretched soils and tolerated drought, but they thrived amid fire. 
(Pyne, 1992). 
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2.5  Land Use 
Today, the vast majority of Australians live in, and 
derive their livelihood from, the coastal fringe. The 
highest population densities occur in southeast 
Australia, spanning from Brisbane to Adelaide, and in 
the southwest of WA around Perth (see Table 2.1 and 
Figure 2.15). 71% of Australians live in major cities, and 
another ~10% live in small towns (ABS, 2020). 

However, this has not always been the case. Below we 
consider traditional indigenous land use patterns (see 
Section 2.5.1), the changes that followed European 
settlement (see Section 2.5.2), and the methods that 
are currently used to map and monitor land use in 
Australia (see Section 2.5.3).

Land use in Australia today is a legacy of patterns of land occupation since European settlement—
from early pastoralism, agriculture and prospecting through to today’s major agricultural, forest and 

mining industries, reserve landscapes and urban communities. For most of the past 200 years, land use 
change has been driven by relatively unrestricted access to land, technological change and growth in 

productivity and population. 
(Lesslie et al., 2011)

Figure 2.15  Australia’s towns by population size groupings, 2016

In this classification, major cities > 100,000 residents, large towns 50,000–100,000 residents, medium towns 10,000–50,000 
residents and small towns < 10,000 (and generally > 200) residents.

Source: Tony Sparks, Icon Water, using gridded data from ABS (2016) 
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2.5.1  Indigenous patterns
For scores of millennia, the Australian landscape 
supported an indigenous population that may have 
numbered more than one million people (ABS, 2008). 
For most of the last two centuries, these people 
of Australia’s first nations were believed to have 
followed a semi-nomadic lifestyle based on hunting 
and gathering. More recently, analysis of reports by 
early settlers and explorers has cast a different light 
on the lifestyles of these indigenous communities 
(Tindale, 1974; Gerritsen, 2008). Gammage (2012) 
summarises the Aboriginal land management ‘law’ in 
terms of three rules:

	§ ensure that all life flourishes;

	§ make plants and animals abundant, convenient and 
predictable; and

	§ think universal, act local.

Early reports of Australian coastal vegetation, such 
as “the whole country or at least a great part of it 
might be cultivated without being obliged to cut down 
a single tree”3 or “the country looked very pleasant 
and fertile; and the trees, quite free from underwood, 
appeared like plantations in a gentleman’s park”,4 
describe a rather different landscape from the one 
that exists today. Numerous other descriptions—
both narratives and artworks—by early settlers and 
explorers support the view that portions of Australia’s 
landscape (particularly higher rainfall areas of open 
woodlands and woodlands, and some drier open 
forests) have changed significantly since European 
settlement, partly by overgrazing and partly by 
underburning (Gammage, 2012).

Traditional land management practices included the 
use of fire to reduce vegetative fuel loads, which 
helped to shape the distribution of native vegetation 
until the time of European settlement: “For more 
than 40,000 years, Aborigines lit mostly mild fires 
that consumed dead wood and dry herbage, killed 
seedlings, reduced some saplings back to ground level 
and scorched the leaves of some small trees and large 
shrubs. These fires allowed annual herbs to germinate 
and perennials to flush with new growth. They recycled 
nutrients from dead and dry into new growth. They 
maintained a diverse, open, safe and productive 
environment. After European settlers disrupted 
Aboriginal burning, dead wood, litter, and dry herbage 
accumulated. Too many seedlings and saplings grew 
into trees or bushes. Delicate herbage was smothered 
and nutrient cyclings was disrupted. Megafires, chronic 
decline of eucalypts, scrub invasion, pestilence, loss of 
biodiversity and socio-economic distress have been 
the result.” (Jurskis, 2015)

3	 James Cook (1770) quoted by Gammage (2012) page 5
4	 Sydney Parkinson (1770) quoted by Gammage (2012) page 5

Figure 2.16  Aboriginal grain harvest map

Grassland areas managed by aborigines as important sources of 
grain food, with names of some tribes overlaid.

Adapted from: Tindale (1974) Figure 31

Tindale (1974) compiled evidence suggesting that, 
prior to European settlement, most of the continent 
was managed to harvest grains, tubers, and fruits, 
including complex systems of aquaculture. For 
example, grassland regions from which Aboriginal 
tribes harvested grains are shown in Figure 2.16. It 
is interesting to compare this area with the extent 
and distribution of the current grain production 
zones shown in Figure 2.17 and Figure 11.1. Except 
in southwest and southeast Australia, the locations 
of grains harvested by indigenous peoples do not 
coincide with current grain production zones.

… it may perhaps be doubted whether any section 
of the human race has exercised a greater influence 
on the physical condition of any large portion of the 

globe than the wandering savages of Australia. 
(Edward Curr, 1883)
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They live in a tranquillity which is not disturbed by the inequality of condition;  
the earth and sea of their own accord furnishes them with all things necessary for life;  

… they live in a warm and fine climate and enjoy a very wholesome air … 
in my opinion … they think themselves provided with all the necessities of life  

and that they have no superfluities 
(James Cook, 1770, from Endeavour Journal)

2.5.2  European settlement patterns
European settlement patterns in Australia have been 
driven, and continue to be limited, by the availability 
of water and pastoral lands. The vast majority of 
the current population, estimated at more than 
25 million (see Table 2.1), live in capital cities within 
the high rainfall zone (see Section 2.2). The advent 
of European culture introduced clearing and thinning 
of vegetation for agriculture, mining, and urban 
development, and modification of waterways for 
townships and irrigation. Since the First Fleet arrived 
in 1788, around one third of the traditionally vegetated 
land has been cleared or thinned for various land use 
purposes (AUSLIG, 1990), predominantly cropping 
and intensive pasture production (see Figure 2.12). 

The agricultural regions, in which different forms 
of agricultural activity are considered to be viable, 
are closely related to topography and climate (see 
Sections 2.1 and 2.2 respectively) and broadly follow 
the coastal plains (see Sections 2.5.3 and 11.1). Within 
these regions, soil type tends to determine the most 
appropriate agricultural approach (FAO, 2009; see 
Figure 2.3). 

In higher rainfall zones in the south and east of 
the continent, land management practices have 
both decreased the extent and density of natural 
vegetation and accelerated soil erosion, land 
degradation, and salinity (McKenzie et al., 2006). In 
recent decades, regulations governing stocking rates, 
land clearing and cultivation practices, with controls 
on feral animals and chemical usage, have reduced 
the rate of soil degradation (see Sections 3.4 and 11.4).

2.5.3  Current land use
Current land use is mapped and monitored nationally 
by the Australian Land Use and Management 
(ALUM) classification system (DAWE, 2020e; see 
Section 3.3.4), based on a scheme proposed by 
Baxter and Russell (1994). This dataset compiles 
relevant federal, state, and territory data to indicate 
the dominant land use in each 50 m by 50 m grid 
cell. The relative proportions of area occupied by the 
major categories of land use in 2010–11 are listed in 
Table 2.9. A simplified map of these classes is shown 
in Figure 2.17. The latest datasets are available from 
DAWE (2020f). Land use mapping and monitoring, 
and details of the ALUM categories, are further 
discussed in Sections 3.3.4 and 3.4.2.

Table 2.9  Land uses in Australia 2010–11

Land use
Area 
(sq.km)

Percent 
(%)

Nature conservation 604,671 7.87%

Other protected areas including Indigenous 
uses

1,163,676 15.14%

Minimal use 1,172,679 15.26%

Grazing natural vegetation 3,448,896 44.87%

Production forestry 103,494 1.35%

Plantation forestry 25,752 0.34%

Grazing modified pastures 710,265 9.24%

Dryland cropping 275,928 3.59%

Dryland horticulture 743 0.01%

Irrigated pastures 6,048 0.08%

Irrigated cropping 9,765 0.13%

Irrigated horticulture 4,552 0.06%

Intensive animal and plant production 1,414 0.02%

Intensive uses (mainly urban) 13,806 0.18%

Rural residential 17,632 0.23%

Waste and mining 1,860 0.02%

Water 125,542 1.63%

No data 401 0.005%

Total 7,687,124 100.00%

Source: ABARES (2020)
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Figure 2.17  Land use in Australia for 2010–11

17 class summary of land use derived using a modelling approach based on agricultural statistics, satellite imagery, and other land 
use information.

AUSTRALIAN COLLABORATIVE LAND USE AND MANAGEMENT PROGRAM (ACLUMP)
www.abares.gov.au/landuse

Australia’s land uses

The national land use picture for Australia described here is drawn from national scale mapping completed for 2010-11
(1:2,500,000). Due to the broad scale of this dataset, actual land areas should be used as a guide. For more accurate 
land use information at the local and regional level, catchment scale land use data can be used.

Figure 2 shows the land use in Australia for the 2010-11 year using a modelling approach based on agricultural statistics, 
satellite imagery and other land use information. Table 1 and Figure 3 show the breakdown of land uses by square 
kilometres and percentage area.

Figure 2. Land Use of Australia 2010-11, Version 5 (ABARES 2016) 

According to this dataset, in 2010-11 the total area of land under primary production (livestock grazing, dryland and 
irrigated agriculture, and intensive agriculture) was nearly 4.5 million square kilometres or 58% of the continent. The 
dominant land use is livestock grazing which makes up 54% (or 4.2 million square kilometres) of land uses.

Source: ABARES (2020)

The Australian is fortunate that close to the main cities there still lie areas of virgin bush where it is possible 
to find direct contact with nature. There are few who have not boiled a billy under the gum-trees. 

(Charles F. Laseron, 1953)
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2.6  Further Information

About Australia
Overview: https://www.australia.gov.au/about-australia/

our-country

Natural Environment: https://www.australia.gov.au/
about-australia/our-country/our-natural-environment

National Location Information: https://www.ga.gov.au/
scientific-topics/national-location-information

ANUDEM: https://fennerschool.anu.edu.au/research/
products/anudem

Geofabric V3.2 products, documentation and tutorials: 
http://www.bom.gov.au/water/geofabric/

Australian Ecosystem and Climate Datasets
TERN Data Discovery Portal: https://portal.tern.org.

au/#/e8fbc61b

Australian Soil Datasets
Australian Soil Resource Information System (ASRIS): 

https://www.asris.csiro.au/

Soil and Landscape Grid of Australia: TERN (2020)

ALUM Datasets
Land use data download: http://www.agriculture.gov.au/

abares/aclump/land-use/data-download

Indigenous Land Use
Tindale (1974)

Gerritsen (2008)

Gammage (2012)

Invasive Species
Invasive Species CRC: https://invasives.com.au/our-

publications

Vegetation Resources

Australia:

Keith (2017)

NVIS: http://www.environment.gov.au/land/native-
vegetation/national-vegetation-information-system

New South Wales:

NSW State Vegetation Type Mapping (SVTM): see 
Excursus 8.2; https://www.environment.nsw.gov.au/
vegetation/state-vegetation-type-map.htm

BioNET vegetation (biodiversity data repository): 
http://www.bionet.nsw.gov.au

Native Vegetation publications: https://
www.environment.nsw.gov.au/vegetation/
OtherPublications.htm

Queensland:

Dept. Science and Environment: https://environment.
des.qld.gov.au/maps-imagery-data/online/

Queensland Herbarium: https://www.qld.gov.au/
environment/plants-animals/plants/herbarium/
mapping-ecosystems

Tasmania:

Barker (2001)

Kitchener and Harris (2013)

TASVEG: https://dpipwe.tas.gov.au/conservation/
development-planning-conservation-assessment/
planning-tools/monitoring-and-mapping-tasmanias-
vegetation-(tasveg)/tasveg-the-digital-vegetation-
map-of-tasmania

Victoria:

Newell et al. (2006)

Sinclair et al. (2012)

Habitat hectares: https://www.ari.vic.gov.au/research/
modelling/mapping-vegetation-extent-and-condition

Western Australia:

Shepherd et al. (2002)

Native Vegetation Extent: https://catalogue.data.
wa.gov.au/dataset/native-vegetation-exten

https://www.australia.gov.au/about-australia/our-country
https://www.australia.gov.au/about-australia/our-country
https://www.australia.gov.au/about-australia/our-country/our-natural-environment
https://www.australia.gov.au/about-australia/our-country/our-natural-environment
https://www.ga.gov.au/scientific-topics/national-location-information
https://www.ga.gov.au/scientific-topics/national-location-information
https://fennerschool.anu.edu.au/research/products/anudem
https://fennerschool.anu.edu.au/research/products/anudem
http://www.bom.gov.au/water/geofabric/
https://portal.tern.org.au/#/e8fbc61b
https://portal.tern.org.au/#/e8fbc61b
https://www.asris.csiro.au/
http://www.agriculture.gov.au/abares/aclump/land-use/data-download
http://www.agriculture.gov.au/abares/aclump/land-use/data-download
https://invasives.com.au/our-publications
https://invasives.com.au/our-publications
http://www.environment.gov.au/land/native-vegetation/national-vegetation-information-system
http://www.environment.gov.au/land/native-vegetation/national-vegetation-information-system
https://www.environment.nsw.gov.au/vegetation/state-vegetation-type-map.htm
https://www.environment.nsw.gov.au/vegetation/state-vegetation-type-map.htm
http://www.bionet.nsw.gov.au
https://www.environment.nsw.gov.au/vegetation/OtherPublications.htm
https://www.environment.nsw.gov.au/vegetation/OtherPublications.htm
https://www.environment.nsw.gov.au/vegetation/OtherPublications.htm
https://environment.des.qld.gov.au/maps-imagery-data/online/
https://environment.des.qld.gov.au/maps-imagery-data/online/
https://www.qld.gov.au/environment/plants-animals/plants/herbarium/mapping-ecosystems
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https://portal.tern.org.au/#/e8fbc61b
https://doi.org/10.3390/land5040040
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Volume 3A: Applications—Terrestrial VegetationEarth Observation: Data, Processing and Applications.  Volume 3: Applications

3  Mapping Vegetated Landscapes

In this section we differentiate between mapping the extent, type, condition, and use of vegetated landscapes. 
Initially we will consider some key concepts that underpin landscape mapping (see Section 3.1) and methods 
used to map land cover (see Section 3.2), before discussing specific approaches used to map (see Section 3.3) 
and monitor (see Section 3.4) terrestrial vegetation in the Australian landscape.

3.1  Key Concepts in Landscape Mapping
The terms ‘vegetation type’, ‘vegetation condition’, ‘land 
cover’, and ‘land use’ are frequently encountered in 
landscape mapping applications. In the following two 
sub-sections we distinguish between these terms in the 
context of mapping the Australian terrestrial landscape.

3.1.1  Vegetation type versus vegetation 
condition
Traditional vegetation maps show the type, or 
variety, of vegetation in a particular location. While 
this information is a useful summary of the diversity 
of terrestrial vegetation in a landscape, it does not 
indicate the condition or ‘quality’ of that vegetation 
against some defined ‘benchmark’ or reference state. 
Information about the extent and condition of each 
vegetation type is critical for monitoring rates of loss 
and gain in different types of vegetation and across 
defined regions (such as IBRA regions or different 
jurisdictions). More recently, several federal, state, 
and territory mapping projects in Australia have 
considered approaches to benchmarking vegetation 
condition as well as defined the vegetation type. As 
a benchmark for assessing the condition of current 
vegetation, these projects infer the likely condition 
of each vegetation type in the year 1750—that is, 
before European settlement (see Figure 2.12 and 
Excursus 8.2). This benchmark is derived from: 

	§ observations of recent changes in vegetation 
patterns; and 

	§ models that consider those changes in conjunction 
with coincident changes in relevant environmental 
variables.

The value of such a benchmark is twofold as it 
provides:

	§ a picture of vegetation distribution and condition 
before European settlement; and

	§ a consistent baseline for measuring future 
vegetation changes.

Vegetation condition mapping has particular 
relevance in the context of monitoring compliance of 
land owners to environmental legislation governing 
land clearing in Australia (see Volume 2D—
Excursus 14.3 and Excursus 19.2 below). Specific 
examples of mapping and monitoring vegetation type 
and condition in Australia are given in Sections 3.3 
and 3.4 respectively. We note here that spatial 
mapping of changes and trends is not the same 
as site-based monitoring of changes and trends, 
although there is close relationship between directly-
measured attributes and indicators and mapping 
these as classes of vegetation condition. 

Land cover is a convenient label for that part of the biosphere that is critical for  
the continued existence of all terrestrial life. 

(Graetz et al., 1992)

Background image: Astronaut photograph of Kangaroo Island, SA, taken from the International Space Station on 21 November 2002. Source: NASA Gateway to 
Astronaut Photography of Earth
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3.1.2  Land cover versus land use
A wide variety of land cover inventories have been 
conducted by human civilisations over several 
millennia. This information has allowed societies to 
understand their environment, and plan and monitor 
their opportunities for development and sustainability. 

Land cover is an excellent indicator of the resilience—
or fragility—of the Earth’s biophysical resources, 
including soils, nutrients, water, plants, and wildlife 
(ANRA, 2009). Mapping and monitoring of existing 
land cover enable the impact of specific land uses 
and management practices to be observed and 
quantified. Land cover assessment may also indicate 
the suitability of potential land uses (such as nature 
conservation, urban development, agriculture, 
or mining) in a particular area. Additionally, long 
term monitoring of land cover is invaluable for 
understanding the impacts of climate variability and 
relating these to patterns of severe climate events 
including wildfire, droughts, floods, and cyclones.

Natural vegetation patterns are largely determined 
by climate (especially rainfall), elevation (plus 
slope and aspect), and soil type, such that, in a 
pristine environment, natural land covers can often 
be modelled from these environmental attributes 
(Nix, 1982; see Section 2). Once these natural patterns 
have been modified by human activities, however, 
land cover cannot necessarily be inferred from such 
models but needs to be surveyed, measured, and/or 
inferred in some way.

Although the terms ‘land cover’ and ‘land use’ are 
sometimes used interchangeably, they do refer to 
different characteristics of land. Land cover is defined 
as the “observed (bio)physical cover on the Earth’s 
surface” (Di Gregorio, 2005). Strictly speaking, while 
this definition only includes vegetation and man-made 
features, the term is generally accepted to embrace 
water surfaces, bare rock, and exposed soil as well. 
Examples of common land covers include grass, 
shrubs, trees, water, bare ground, artificial surfaces, 
and buildings.  

The simplest definition of resilience is the ability to 
cope with shocks and to keep functioning in much 

the same kind of way. It is a measure of how much an 
ecosystem, a business, a society can change before 

it crosses a tipping point into some other kind of 
state that it then tends to stay in. 

(Walker, 2020)

By contrast, land use has been described as the 
“arrangements, activities and inputs people undertake 
in a certain land cover type to produce, change 
or maintain it” (Di Gregorio, 2005). Thus, land use 
describes the impact of human occupation on an 
environment rather than simply its biophysical 
components (Fisher et al., 2005). A single land use 
can involve multiple land cover features, and multiple 
land uses can contain the same single land cover. 
For example, the term ‘rangelands’ describes land 
used to graze livestock, but may comprise different 
land covers, such as trees, shrubs, and grasses 
(see Section 15). Conversely, the land cover type 
‘trees’ may be used for timber production or nature 
conservation. Accordingly, land use is not readily 
discriminated by EO of specific land cover features 
but can often be inferred by combining land cover 
information with data from other sources. 

The importance of land use and land cover (LULC) 
datasets has been recognised by several major 
international research programs (Cihlar, 2000; DeFries 
and Belward, 2000), including the International 
Geosphere–Biosphere Program (IGBP; (IGBP, 1990); 
Lambin and Geist, 2006). Similarly, the Group on Earth 
Observations (GEO) determined land cover to be the 
fifth most important parameter derived from satellite 
datasets (GEO, 2012).

Land use refers to the purpose to which the land cover is committed, including the production of goods 
(such as crops, timber and manufactures) and services (such as defence, recreation, biodiversity and 
natural resources protection). Some uses, such as cropping, have a distinctive land cover pattern, and 
are regular inclusions in land cover classifications. Others, such as nature conservation, are not readily 
identified from a characteristic land cover pattern. For example, where the land cover is forest, land use 
may be timber production or nature conservation. A single land cover class may support multiple uses 

and a single land use may involve several land cover conditions. 
(ABARES, 2010)
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3.2  How Do We Map Land Cover?
A land cover map represents the spatial distribution 
of a selected set of land covers. Creating a land cover 
map involves two fundamental considerations, namely, 
how do we define the:

	§ categories of land cover to map—or the 
classification scheme (see Section 3.2.1); and the

	§ boundaries for these land cover categories—or the 
mapping method (see Section 3.2.2). 

However, these considerations raise several 
difficulties, the first being the inevitable diversity 
and complexity of any natural resource, and the 
unavoidable outcome that no classification can truly 
represent the vast array of ‘classes’ that exist in 
nature. Another difficulty in classifying and mapping 
land cover is that most natural land covers, especially 
vegetation, transition gradually from one type to 
another rather than at readily defined boundaries 
(Kessell, 1979). For example, the transition from 
woodland to open forest is often gradual, such that 
it can be difficult to precisely locate where one land 
cover becomes another. Inevitably, when classifying 
natural resources, the final decisions on class 
boundaries are somewhat arbitrary. The process of 
defining the transition point does, however, provide a 
valuable reference datum for consistent use of each 
class label.

Natural vegetation types do not generally change 
from one type to another at a given location over time. 
What does change are some attributes associated 
with the type such as cover/density, age class, 
height, strata, and to some extent composition (see 
Section 2.3.1). These changes are driven by changes in 
climate patterns, episodic severe climate events, and 
recurring land management regimes.

Another significant difficulty with land cover 
classification is the method used to name classes, 
that is, its nomenclature. In many traditional systems 
for mapping land cover, labels were not defined 
precisely and could easily be assumed to have a 
different meaning in a different context or community. 
For example, early settlers in Australia used the term 
‘scrub’ to describe rainforest in eastern Australia, 
drier Mallee vegetation in southern Australia and 
the more open Mulga vegetation in arid Australia 
(Specht, 1970). Where labels were defined, they 
were not necessarily used consistently in different 
classification systems. As a result, a single land cover 
label could have multiple interpretations and a single 
land cover could have multiple labels—precisely the 
opposite outcome desired of such classifications, 
namely that a single land cover would have a single, 
unambiguous label.

3.2.1  Classification schemes
Although by its nature land cover can be described 
in many different ways, the essential goal of any 
classification of land cover is that the categories 
are unique, so that a single land cover will always be 
represented by a single category. All classification 
methods attempt to identify similar features and 
represent them as a particular group or class (see 
Volume 2E). The number of classes in a classification 
needs to be sufficient to allow discrimination of the 
significant differences between features, but no 
greater than is necessary to enable efficient analysis 
of variations between classes. Efficiency is particularly 
important when dealing with very large datasets, as 
are required for continental or global coverage (see 
Volume 2D).

Many classification systems have been developed to 
categorise land cover. These systems group the major 
similarities and differences in natural land cover types 
by selected attributes, such as:

	§ Vegetation: colour, type, density, structure, and 
condition/health;

	§ Water: depth, colour, quality, and temperature; and

	§ Bare rock and soil: colour, mineralogy, and texture.

Similarly, man-made land cover types can be grouped 
by characteristics such as:

	§ Artificial surfaces: colour and texture; and

	§ Constructions: colour, density, and height.

A wide variety of methods and data sources have 
been used to describe and group land cover features. 
In many cases these have focused on individual 
land cover attributes, such as floral characteristics, 
vegetation density, or indicators of land degradation. 
Some approaches to classifying land cover focus on 
specific attributes that directly relate to a particular 
end use. The datasets resulting from such activities 
are not readily comparable with other land cover 
classifications and may not be useful for other 
purposes. Other classification approaches attempt 
to define a comprehensive set of criteria that could 
be used to define all possible land covers. The latter 
approach allows land cover data collected at different 
times and locations, by different methods, to conform 
to a common set of underlying definitions of land 
cover attributes. As such, the results of these surveys 
can be easily applied to a range of analyses and 
readily compared with other datasets.
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Table 3.1  Structure of FAO Land Cover Classification System

First Level Second Level Third Level Example Land Cover

Primarily vegetated

Terrestrial
Managed/Cultivated Cropping, Forestry

Natural/Semi-natural Native vegetation 

Aquatic or regularly flooded
Managed/Cultivated Aquaculture

Natural/Semi-natural Native aquatic vegetation

Primarily non-vegetated

Terrestrial
Managed/Cultivated Artificial surfaces

Natural/Semi-natural Bare land

Aquatic or regularly flooded
Managed/Cultivated Artificial waterbodies, snow and ice

Natural/Semi-natural Natural waterbodies, snow and ice

The Food and Agriculture Organisation of the United 
Nations (FAO) developed a Land Cover Classification 
System (LCCS; Di Gregorio, 2005) to standardise 
global land cover mapping. It allows scale-
independent classes to be defined using discrete 
diagnostic criteria, which are arranged hierarchically 
in two phases:

	§ primary—defines three classification levels leading 
to eight basic land cover classes as shown in 
Table 3.1; and  

	§ secondary—uses criteria, or ‘classifiers’, specific 
to each of the eight basic classes to further 
differentiate land cover types (see Excursus 3.1 for 
details)

While the biophysical environment cannot be fully 
or accurately represented by any classification 
system, the consistency and stability resulting from 
a standardised system improves communication 
between users and increases the utility of the 
classified data (Yang et al., 2017). Accordingly, a 
standardised land cover system allows classified 
data from different sources to be compared and 
integrated with confidence, especially for national and 
international datasets (see Volume 2D). 

A number of EO-based systems have implemented the 
LCCS taxonomy for land cover classification, including 
the Earth Observation Data for Ecosystem Monitoring 
(EODESM; EcoPotential, 2021; see Section 20.5). In 
Australia, the LCCS has been applied nationally to 
describe land cover categories in the Dynamic Land 
Cover Dataset (DLCD; Lymburner et al., 2011). The 
capacity and conceptual framework of EODESM has 
also been demonstrated within Digital Earth Australia 
(DEA; see Volume 2D—Section 11.2) for two time 
periods across four test sites (Lucas et al., 2019).

Nature is a tireless sculptor, forever fashioning new masterpieces, yet, as if unsatisfied,  
commencing their destruction from the very moment of their completion.  

Something of the old always remains to be built into the new. The shape of a hill, the contour  
of a waterfall, the rocky ledges on the sides of a gully, the meanderings of a river, the alluvium  

of a plain are all links with the past, and within them lies the story of what has gone before. 
(Charles F. Laseron, 1953)
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Excursus 3.1�—FAO Land Cover Classification System

Further Information: Di Gregario (2005, 2016); Di Gregario and Jansen (2000)

The land cover classification system (LCCS) 
developed by the UN Food and Agriculture 
Organisation (FAO) is a hierarchical system 
that classifies land covers in two phases 
(Di Gregorio, 2005):

	§ a primary, dichotomous phase which uses three 
classifiers to define eight major land cover types as 
summarised in Table 3.2; and

	§ a secondary, modular-hierarchical phase which 
refines the eight major land cover types into 
specific land cover classes using pre-defined 
classifiers tailored to each major type. In addition, 
environmental attributes (such as climate, landform, 
or soil type) or specific technical attributes (such as 
floristic characteristics) can also be used to define 
detailed classes in this phase. The pre-defined 
classifiers and attributes for each major land cover 
type are summarised in Table 3.3 and Table 3.4.

In order to define an international standard for land 
cover classification systems, FAO submitted the LCCS 
to the ISO Technical Committee 211 on Geographic 
Information in 2003. Although ISO had previously 
only defined standards for more abstract standards 
with established rules, a general classification 
system (ISO 19144-1 Classification Systems) and a 
land cover classification system (ISO 19144-2 Land 
Cover Meta Language: LCML) were approved in 
2012 as official international ISO standards. The 
LCML characterises geographic features using an 
open, object-oriented system. Fundamentally, LCML 
uses a predefined set of biotic and abiotic elements 
(see Section 1.1) arranged in different ‘patterns’ to 
describe a wide range of land cover ‘situations’. This 
“allows not only an unambiguous description of real 
world features more consistent with the logic and 
structure of modern databases but also enlarges 
the capability of the system to describe phenomena 
related to inputs and activities peoples undertake 
on a certain land cover feature typical of agriculture” 
(Di Gregario, 2016). 

Table 3.2  Dichotomous phase classifiers and land cover types

Classifier Presence of Vegetation Edaphic Condition Artificiality of Cover

Decision

Is vegetative cover > 4% for woody 
and/or herbaceous vegetation,  
or > 25% for lichen/mosses, during 
at least two months each year?

Is the environment significantly 
influenced by the presence of water for 
extensive periods of time?

Is the land cover significantly modified by human 
activity?

Land Cover 
Types

A: Primarily Vegetated Areas 
(see Table 3.3)

A1: Terrestrial Primarily Vegetated Areas
A11: Cultivated and Managed Terrestrial Areas

A12: Natural and Semi-Natural Vegetation

A2: Aquatic or Regularly Flooded 
Primarily Vegetated Areas

A23: Cultivated Aquatic or Regularly Flooded Areas

A24: Natural and Semi-Natural Aquatic or Regularly 
Flooded Vegetation

B: Primarily NonVegetated Areas 
(see Table 3.4)

B1: Terrestrial Primarily Non-Vegetated 
Areas

B15: Artificial Surfaces and Associated Areas

B16: Bare Areas

B2: Aquatic or Regularly Flooded 
Primarily Non-Vegetated Areas

B27: Artificial Waterbodies, Snow and Ice

B28: Natural Waterbodies, Snow and Ice

Source: Di Gregario and Jansen (2000)
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Table 3.3  LCCS classification of primarily vegetated areas

LCCS land cover type Type of classifier Classification level Characteristics used to refine classes

A11: Cultivated and Managed Terrestrial Areas

Natural vegetation has been removed or 
modified and replaced by other vegetation by 
human activity. Such vegetation requires long 
term maintenance and is planted with a view to 
harvesting. Example land covers include crops 
(with seasonal variation in cover), orchards, and 
plantations

'Pure’ land cover classifiers

I Life Form + Spatial Aspects

II Crop Combination

III Cover-related Cultural Practice

Environmental attributes
IV Landform + Lithology/Soils + Climate

V Altitude + Erosion + Cover/Density

Specific technical attributes VI Crop Type

A12:Natural and Semi-natural Vegetation

Natural vegetated areas are defined as areas 
where the vegetative cover is in balance with 
the abiotic and biotic forces of its biotope. Semi-
natural vegetation is defined as vegetation not 
planted by humans but influenced by human 
actions. Example land covers include grazing, 
selective logging, and abandoned or shifting 
cultivation

‘Pure’ land cover classifiers

I
Life Form and Cover + Height + Macro 
Pattern

II Leaf Type and Leaf Phenology

III Stratification

Environmental attributes
IV Landform + Lithology/Soils 

V Climate + Altitude + Erosion 

Specific technical attributes VI Floristic Aspect

A23: Cultivated Aquatic or Regularly Flooded 
Areas

This category includes areas where an aquatic 
crop is purposely planted, cultivated and 
harvested, and which is standing in water over 
extensive periods during its cultivation period 
(such as paddy rice, tidal rice, and deepwater rice, 
but not irrigated cultivation).

‘Pure’ land cover classifiers

I Life Form + Spatial Aspects

II Water Seasonality

III Cover-related Cultural Practice

IV Crop Combination

Environmental attributes
V Landform + Lithology/Soils + Climate

VI Altitude + Erosion + Cover/Density

Specific technical attributes VII Crop Type

A24: Natural and Semi-natural Aquatic or 
Regularly Flooded Areas

Transitional areas between pure terrestrial and 
aquatic systems and where the water table is 
usually at or near the surface, or the land is 
covered by shallow water, are included in this 
class. Examples include mangroves, marshes, 
swamps, and aquatic beds.

‘Pure’ land cover classifiers

I Life Form and Cover + Height

II Water Seasonality

III Leaf Type + Leaf Phenology

IV Stratification

Environmental attributes
V Landform + Lithology/Soils + Climate

VI Altitude + Erosion + Cover/Density

Specific technical attributes VII Floristic Aspect

Source: Di Gregario and Jansen (2000)

LCML acts as a method to bring the LC community together to create a common understanding of LC 
nomenclatures with the aim to produce global, regional and national data sets able to be reconciled 

at different scales, level of detail and geographic location. The LCML provides a general framework of 
rules from which more exclusive conditions can be derived to create specific legends. It is a language 
based on physiognomy and stratification of both biotic and abiotic materials. The system may be used 

to specify any LC feature anywhere in the world, using a set of independent diagnostic criteria that allow 
correlation with existing classifications and legends. 

(Di Gregario, 2016)
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Table 3.4  LCCS classification of primarily non-vegetated areas

LCCS land cover type Type of classifier Classification level Characteristics used to refine classes

B15: Artificial Surfaces and Associated Areas

Areas that have an artificial cover as a result of 
human activities such as construction (cities, 
towns, transportation), extraction (open mines 
and quarries) or waste disposal

‘Pure’ land cover classifiers I Surface Aspect

Environmental attributes II Landform + Climate + Altitude

Specific technical attributes III Built-Up Object

B16: Bare Areas

Areas that do not have an artificial cover as a 
result of human activities (such as bare rock 
areas, sands, and deserts), including areas with 
less than 4% vegetative cover.

‘Pure’ land cover classifiers
I Surface Aspect

II Macro-pattern

Environmental attributes
III Landform + Climate

IV Altitude + Erosion + Water Quality

Specific technical attributes V Soil Type/Lithology

B27: Artificial Waterbodies, Snow and Ice

Areas that are covered by water only as a 
result of the construction of artefacts such as 
reservoirs, canals, or artificial lakes

‘Pure’ land cover classifiers
I Physical Status + Persistence

II Depth + Sedimentation

Environmental attributes III Climate + Altitude + Vegetation

Specific technical attributes IV Salinity

B28: Natural Waterbodies, Snow and Ice

Areas naturally covered by water (such as lakes, 
rivers, snow, or ice)

‘Pure’ land cover classifiers
I Physical Status + Persistence

II Depth + Sedimentation

Environmental attributes III Climate + Altitude + Vegetation

Specific technical attributes IV Salinity

Source: Di Gregario and Jansen (2000)

3.2.2  Mapping methods and accuracy 
assessment
All methods for mapping land cover utilise data from 
at least one of three primary sources:

	§ ground-based survey; 

	§ aerial photography; and/or

	§ satellite imagery, or Earth Observation from Space 
(EOS).

Ground-based surveys require trained teams to 
visit field sites and record the land cover types 
encountered at precise locations (see Volume 2D—
Section 12.1). Surveys generally involve measurements 
of pre-defined attributes for a range of land 

covers (Avery, 1975; TERN Australia, 2018). These 
measurements can involve the use of instrumentation 
and/or rely on the experience and judgement of 
the survey team. Different forms of ground-based 
survey have been used to map various types of 
land cover for thousands of years, and these have 
become increasingly standardised in recent decades. 
For example, the standard Australian methods and 
terminology for surveying land and soil attributes 
in the field are detailed in NCST (2009). In recent 
decades, however, given the labour-intensive and 
time-consuming nature of field data collection, this 
is generally limited to checking the accuracy of more 
synoptic data sources that can be acquired remotely 
(see Figure 3.1).
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Figure 3.1  Multi-level EO

Analysis of low and medium resolution imagery can be more 
easily related to ground data through high resolution imagery. 
Low resolution imagery tends to be acquired more quickly 
and cover a larger extent, so is most appropriate for large area 
surveys. Selected locations within the surveyed area would 
typically be checked using data with higher spatial resolution, 
such as aerial photography. Some of these locations would then 
be visited in the field to verify the image analysis. This scaled 
approach enables the results of expensive and time-consuming 
field work to be extended to a larger area. 

Adapted from: Harrison and Jupp (1989) Figure 39 

It seems inevitable that, with increasing auto-
scanning and data handling, as our knowledge of 

land increases, and as the demands of the land user 
become more specialised, that parametric analysis 

will become general practice  
(Mabbutt, 1968)

Aerial photography interpretation (API) has been used 
internationally to map different types of land cover for 
well over a century (see Volume 1A—Section 11). The 
Australian archive of aerial photography dates from 
1928 and has supported various detailed inventories 
of natural resources with panchromatic, colour, and 
infrared photography. While still used to survey 
land cover in Australia for some applications, aerial 
imagery is now more frequently used to validate 
broader area analyses from space-based data (see 
Figure 3.1). 

As detailed in Volume 1, EO datasets offer a range of 
approaches to observe and measure Earth surface 
properties. Space-based data have been available 
internationally for over five decades and offer a 
unique source of Earth surface data by recording:

	§ accurate geo-locations for contiguous target areas;

	§ objective, consistent measurements of physical 
properties of the land surface that can be 
interpreted to define its features and condition; and

	§ repeated coverage to enable detection of changes 
in features and/or their condition.

As introduced in Volume 1, different land and water 
cover features have varying, and often characteristic, 
reflectance in different wavelengths of the EM 
spectrum (see Figure 3.2). For any land cover to be 
discernible in EO, both the resolution and extent of 
the remote measurements need to be appropriate 
for the measurable properties of that land cover (see 
Volume 1B—Section 1). To separate one land cover 
from others, these measurements must also be able to 
discriminate between the differences in radiation from 
those land covers (Townshend, 1992). 

A wide variety of statistics have been developed 
to exploit the similarities and differences between 
reflectance characteristics of different land covers, 
most of which highlight the high near infrared 
(NIR) reflectance and low red reflectance of 
healthy vegetation. Some of the standard image 
processing options used with EO data are described 
in Volumes 2A and 2C and reviewed in Section 8.1. 
The expanding archive of EO imagery now enables 
sophisticated time series analyses, which are being 
used to further quantify landscape dynamics, 
highlight the environmental drivers in natural 
processes, monitor compliance with resource usage 
regulations, and address issues related to climatic 
variations (Wulder et al., 2018; see Volume 2D and 
Section 9).
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Figure 3.2  Idealised spectral signatures

Reflectance from different Earth surface features varies for different wavelengths. Characteristic spectral reflectance curves can 
be created for different features to indicate a ‘typical’ shape over a particular range of wavelengths. This information can be used to 
differentiate between different surface features on the basis of their observed reflectance characteristics.

Adapted from: Harrison and Jupp (1989) Figure 6 

A complete EO exercise usually involves the 
integration of imagery at several different ‘levels’ 
of resolution with data from other sources, such as 
maps or aerial photography. Within a large region 
represented in a satellite image, certain areas 
are usually selected for comparison with aerial 
photography, some of which would be visited in the 
field, or compared with field data. The concept of a 
multi-level approach is illustrated in Figure 3.1. This 
approach was implemented in the BigFoot Project, in 
which EO and field datasets with a variety of scales 
were analysed to characterise relationships between 
leaf area Index, net primary productivity, and carbon 
allocation within and between biomes, and validate 
relevant, landscape scale, EO-based products 
(NASA, 1999; see Section 7.4). 

Accuracy assessments tend to assume that one 
dataset represents ‘truth’ and, thus, can be used to 
measure the ‘value’ of the other. In any landscape 
scale mapping exercise, few datasets can be viewed 
this way, so discrepancies in cross-comparison 
may show deficiencies in either dataset, or a lack 
of commonality in their intrinsic ‘world views’. 

Thus, when relating EO radiance to a reference 
dataset, correlation will depend on how accurately 
each dataset represents surface features. A lack 
of correlation does not necessarily imply that EO 
imagery cannot be used to map relevant landscape 
attributes but suggests that it may not differentiate 
them in the same way as the reference dataset. Any 
analysis of results must retain an awareness of this 
situation (see Volume 2E). Procedures for validation of 
EO analyses are detailed in TERN Australia (2018) and 
Malthus et al. (2013).

For example, since API largely relies on pattern 
interpretation by trained operators, it tends to 
generate maps that cleanly delineate regions 
characterised by internal heterogeneity. This 
approach contrasts with the pixel-based, spectral 
classification methods used with EO datasets (see 
Volume 2E). However, neither the results of API 
nor EO image analysis actually represent the whole 
‘truth’. When discrepancies between these two 
representations are being compared, the differences 
in their provenances should be considered.
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In recent decades, a number of global and regional 
datasets have been derived from EO imagery 
to monitor land cover. For example, 21 global 
products and 43 regional products are reviewed 
by Grekousis et al. (2015). These freely available 
products cover different spatial and temporal scales, 
depending on the imagery used to generate them. 
Some examples include5:

	§ GlobCover (ESA with JRC, EEA, FAO, UNEP, GOFC-
GOLD and IGBP)—annual global land cover maps 
derived from various satellite image sources at 300 
m from 1992 to 2015 (ENVISAT; http://cci.esa.int/
content/land-cover-annual-global-land-cover-maps-
v207-dataset-release); Bontemps et al. (2011);

	§ Global Land Survey (NASA/USGS Land Cover 
Institute)—based on 30 m Landsat imagery, from 

5	  ESA: European Space Agency; JRC: Joint Research Centre (EC); EEA: European Economic Area; FAO: UN Food and Agriculture Organisation; UNEP: UN 
Environment Program; GOFC-GOLD: Global Observations of Forest Cover and Land Dynamics; IGBP: International Geosphere-Biosphere Programme

2009 to 2011 (https://www.usgs.gov/land-resources/
nli/landsat/global-land-survey-gls?qt-science_
support_page_related_con=0#qt-science_support_
page_related_con);

	§ MODIS Land Cover (University of Maryland)—IGBP 
Land Cover Type classification (16 vegetation 
classes plus water) from 2001 to 2012 reprojected 
to geographic coordinates in WGS 1984 (EPSG: 
4326) in two resolutions: 0.5º and 5’ square pixels 
(http://glcf.umd.edu/data/lc/); and

	§ GLC2000 (EC coordinated consortium of 
researchers)—global and regional classifications 
of land cover derived from SPOT VEGETATION 
imagery (SPOT-4) for the year 2000 (http://forobs.
jrc.ec.europa.eu/products/glc2000/data_access.php; 
Bartholomé and Belward, 2007).

3.3  Mapping Approaches
Classifying landscapes in terms of their biophysical 
characteristics allows geographers, land managers, 
and decision makers to focus on the similarities 
and differences between different regions. This 
information provides insight into the processes 
that determine these characteristics and allows the 
impact of land management practices to be evaluated 
objectively. Such data and classifications are used for 
a range of activities, including conservation planning, 
resource assessment, and agricultural management. 

The interrelationship between land cover and 
environmental factors, such as climate, topography, 
and soil substrate, is well-established for the 
Australian environment (Graetz et al., 1992). As 
outlined in Section 2, the distribution of natural 
vegetation in Australia is strongly dependent on 
rainfall, aspect, and soil type. Since World War II, 
numerous classifications of landscape biodiversity 
have been developed for both research and 
operational use in Australia. These have involved 
varying methods, scales, products, and coverage. 
Some of these systems are summarised in Table 3.5. 
While these efforts have substantially contributed 
to the current knowledge of Australia’s biophysical 
resources and have each delivered iterative 
improvements in terms of reliability and accessibility, 
none currently offers consistent land cover 
information over the Australian landmass that can be 
updated readily. 

Below, we will consider the existing landscape 
classifications in terms of four categories:

	§ land evaluation based on mapping units (see 
Section 3.3.1);

	§ actual distribution of current vegetation (see 
Section 3.3.2); 

	§ probable distribution of natural vegetation (see 
Section 3.3.3); and

	§ actual distribution of current land use (see 
Section 3.3.4).

3.3.1  Land evaluation based on mapping 
units
The CSIRO Land Systems project (Christian and 
Stewart, 1953, 1968) developed the first landscape 
classification system to be based on ‘mapping units’. 
Reconnaissance surveys were conducted in northern 
and central Australia and Papua New Guinea from 
1946 to 1977, to identify and map land resources and 
the potential for regional development. To integrate 
the various types of landscape data, a new system 
of land evaluation was required. Each area or group 
of areas characterised by a recurring pattern of 
topography, soils, and vegetation was identified as a 
discrete mapping unit or ‘land system’. Initial mapping 
of land systems was generally based on patterns 
identified from aerial photography, in conjunction with 
supporting information available from topographic 
and thematic maps, reports and other documents, 
and expert knowledge. Successive surveys used more 
advanced classifications of soils, vegetation, and 
terrain as these became available. The results of these 
surveys are still used as a reference data source in 
other mapping exercises.

http://cci.esa.int/content/land-cover-annual-global-land-cover-maps-v207-dataset-release
http://cci.esa.int/content/land-cover-annual-global-land-cover-maps-v207-dataset-release
http://cci.esa.int/content/land-cover-annual-global-land-cover-maps-v207-dataset-release
https://www.usgs.gov/land-resources/nli/landsat/global-land-survey-gls?qt-science_support_page_related_con=0#qt-science_support_page_related_con
https://www.usgs.gov/land-resources/nli/landsat/global-land-survey-gls?qt-science_support_page_related_con=0#qt-science_support_page_related_con
https://www.usgs.gov/land-resources/nli/landsat/global-land-survey-gls?qt-science_support_page_related_con=0#qt-science_support_page_related_con
https://www.usgs.gov/land-resources/nli/landsat/global-land-survey-gls?qt-science_support_page_related_con=0#qt-science_support_page_related_con
http://glcf.umd.edu/data/lc/
http://forobs.jrc.ec.europa.eu/products/glc2000/data_access.php
http://forobs.jrc.ec.europa.eu/products/glc2000/data_access.php
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A similar approach to land evaluation was used to 
develop the Interim Biogeographic Regionalisation 
for Australia (IBRA; DAWE, 2020a; see Figure 2.13), 
part of a nested series of bioregionalisations used to 
define global terrestrial habitats and world ecoregions 
by the World Wildlife Fund (WWF; Olson et al., 2001; 
see Section 1.3.2). This classification was developed 
for conservation planning and represents Australia’s 
landscapes as geographically distinct bioregions on 
the basis of climate, geology, landform, and native 
flora (see Section 2.4). Each bioregion has been 
subdivided into more homogeneous geomorphological 
units or subregions. In IBRA7, 89 bioregions and 
419 subregions collectively describe the Australian 
landmass and selected marine areas. 

A hierarchy of mapping units was also used to 
compile the Australian Soil Resource Information 
System (ASRIS; CSIRO, 2014; see Figure 2.3). This 
provides online access to consistent soil and land 
resource information across Australia in a seven-
tiered hierarchy. Different attributes are used to map 
each level in the hierarchy, as deemed appropriate 
to each mapping scale, based on the most recent 
publicly available data. This system can be used to 
summarise the soil and landscape properties for other 
classifications, such as IBRA.

Land, then, is not merely soil; it is a fountain of energy 
flowing through a circuit of soils, plants, and animals.  

(Aldo Leopold)

Table 3.5  Australian landscape mapping approaches

Name Description Coverage Further Information

CSIRO Land Systems

First systematic approach to land evaluation in 
Australia, conducted from 1946–1977, based on 
evolving classifications of soils, vegetation and 
terrain 

Primarily northern and central 
Australia, approximately 50% of 
continental Australia

Christian and Stewart 
(1953, 1968); www.publish.
csiro.au/nid/289.htm

Vegetation Map of 
Australia

Probable distribution of major natural vegetation 
groups

16 categories across the Australian 
landmass

Williams (1959)

Major Vegetation 
Types in Australia

Probable distribution of major vegetation groups 
prior to European settlement based on Specht 
structural types and Beard and Webb (1974) notation

1977—1:12,000,000 
1988—1:5,000,000

Carnahan (1976, 1988)

Present Vegetation 
(Atlas of Australian 
Resources, 3rd 
Edition)

First continental map of actual vegetation based 
on Landsat MSS satellite imagery with input from 
existing maps, reports, and expert knowledge.

24 broad structural categories with 
supplementary codes Australian 
landmass; 1:5,000,000

AUSLIG (1990)

Interim 
Biogeographic 
Regionalisation of 
Australia (IBRA)

Divides Australia into geographically distinct areas 
with common characteristics (such as geology, 
landform patterns, climate, and ecology) as a broad 
framework for conservation planning

Digital data for 89 bioregions and 419 
sub-regions across Australian land 
mass and selected marine areas

Thackway and Cresswell 
(1995); https://www.
environment.gov.au/land/
nrs/science/ibra

Australian Soil 
Resource Information 
System (ASRIS)

Online access to best available soil and land 
resources information using a seven-tiered hierarchy 
of mapping units

Digital data for Australian landmass
McKenzie et al. (2012); 
www.asris.csiro.au

National Vegetation 
Information System 
(NVIS)

National collaboration of state and federal datasets 
that combines floristic and structural parameters to 
describe all layers of native vegetation, both current 
and pre-1750.

National hierarchical framework 
for inventory and monitoring of 
vegetation type and extent. Dataset 
covers the Australian landmass 
and contains over 9,000 distinct 
vegetation types

https://www.environment.
gov.au/land/native-
vegetation/national-
vegetation-information-
system

Major Vegetation 
Groups (MVG)

Aggregations of NVIS 4.1 vegetation types to 
estimate major groups of vegetation in Australia, 
both current and pre-1750.

33 Major Vegetation Groups and  
85 sub-groups over Australian 
landmass

DE (2012) https://
data.gov.au/data/
dataset/57c8ee5c-43e5-
4e9c-9e41-fd5012536374

Australian Land Use 
and Management 
Classification 
(ALUM) 

National scale land use classification using modelling 
approach to integrate agricultural commodity data, 
satellite data, and other land use data 

1:2,500,000 
http://www.agriculture.gov.
au/abares/aclump/land-
use/alum-classification

Catchment Scale 
Land Use of Australia 
(CLUM)

A seamless raster dataset that combines land use 
data for all state and territory jurisdictions, at a 
resolution of 50 m, by combining state cadastre, 
public land databases, fine scale satellite data, other 
land cover and use data, and information collected 
in the field

1:5,000 to 1:25,000 for irrigated and 
peri-urban; 1:100,000 for broadacre 
cropping; 1:250,000 for semi-arid and 
arid pastoral zone.

http://data.daff.gov.au/
anrdl/metadata_files/pb_
luausg9abll20171114_11a.
xml

http://www.publish.csiro.au/nid/289.htm
http://www.publish.csiro.au/nid/289.htm
https://www.environment.gov.au/land/nrs/science/ibra
https://www.environment.gov.au/land/nrs/science/ibra
https://www.environment.gov.au/land/nrs/science/ibra
http://www.asris.csiro.au
https://www.environment.gov.au/land/native-vegetation/national-vegetation-information-system
https://www.environment.gov.au/land/native-vegetation/national-vegetation-information-system
https://www.environment.gov.au/land/native-vegetation/national-vegetation-information-system
https://www.environment.gov.au/land/native-vegetation/national-vegetation-information-system
https://www.environment.gov.au/land/native-vegetation/national-vegetation-information-system
https://data.gov.au/data/dataset/57c8ee5c-43e5-4e9c-9e41-fd5012536374
https://data.gov.au/data/dataset/57c8ee5c-43e5-4e9c-9e41-fd5012536374
https://data.gov.au/data/dataset/57c8ee5c-43e5-4e9c-9e41-fd5012536374
https://data.gov.au/data/dataset/57c8ee5c-43e5-4e9c-9e41-fd5012536374
http://www.agriculture.gov.au/abares/aclump/land-use/alum-classification
http://www.agriculture.gov.au/abares/aclump/land-use/alum-classification
http://www.agriculture.gov.au/abares/aclump/land-use/alum-classification
http://data.daff.gov.au/anrdl/metadata_files/pb_luausg9abll20171114_11a.xml
http://data.daff.gov.au/anrdl/metadata_files/pb_luausg9abll20171114_11a.xml
http://data.daff.gov.au/anrdl/metadata_files/pb_luausg9abll20171114_11a.xml
http://data.daff.gov.au/anrdl/metadata_files/pb_luausg9abll20171114_11a.xml
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3.3.2  Actual distribution of current 
vegetation
The first national scale map of actual vegetation in 
Australia based on satellite imagery was produced 
by Carnahan (1988) for the Australian Surveying and 
Land Information Group (AUSLIG) publication series 
Atlas of Australian Resources (AUSLIG, 1990). This 
two-part dataset mapped both natural (pre-European 
settlement; see Section 3.3.3) and present (current) 
vegetation at 1:1 million scale. The ‘present vegetation’ 
map, which showed both native and exotic vegetation, 
was based on visual interpretation of Landsat 
MSS satellite imagery with reference to existing 
maps, reports and expert knowledge (especially for 
crop and pasture classes). Land cover labels were 
based on eight growth forms and four categories of 
foliage cover for the tallest stratum, resulting in 22 
broad categories for terrestrial vegetation with two 
additional classes for wetland vegetation and bare 
areas. Supplementary mapping detail describing 
floristic type and vegetation in the lower stratum 
was added using alphanumeric codes and shading 
patterns. Each major vegetation type was also 
detailed and mapped in AUSLIG (1990). 

The National Land and Water Resources Audit 
(NLWRA) was founded in 1997 to collate information 
relating to Australia’s natural resources and finished 
operation in 2008 (Land and Water Australia, 2009). 
One of its collaborative projects with state agencies 
was the Australian Native Vegetation Assessment 
2001 (NLWRA, 2001), the first Australia-wide, 
regional level, assessment of type, extent, and 
change in Australia’s native vegetation cover since 
European settlement. Included in this project 
was the development of a consistent national 
classification framework, based on Walker and 
Hopkins (1990) Figure 8, which became known as the 
National Vegetation Information System (NVIS; see 
Section 2.3.1 and Volume 2D—Excursus 12.1). Over 
10,000 distinct vegetation types are contained in the 
NVIS database (NVIS Technical Working Group, 2017). 
In NVIS Version 5.1, these detailed data records are 
aggregated into 33 Major Vegetation Groups (MVG) 
and 85 Major Vegetation Subgroups (MVS) for 
Australia on the basis of similarity in structure and 
floristic composition in the dominant stratum (see 
Section 2.3.1). These datasets have been used to 
map both current (extant) and pre-1750 vegetation in 
Australia (see Figure 2.12 and Section 3.3.3). 

3.3.3  Probable distribution of natural 
vegetation 
Since the spatial distribution of natural vegetation 
is largely determined by climate (principally 
precipitation and temperature) and moderated by 
factors relating to soils and topography (especially 
aspect and slope) (Graetz et al., 1992), the probable 
distribution of vegetation prior to European 
settlement in Australia has been modelled on 
the basis of these variables (Nix, 1982). Current 
vegetation, however, has been modified by 
anthropogenic influences and can only be determined 
using surveying and modelling methods. Several 
maps showing the likely distribution of Australian 
vegetation before European settlement have been 
produced using expert knowledge (from field surveys, 
existing maps, and reports). Natural vegetation maps 
showing the probable state of Australia’s vegetation 
around 1788 (Carnahan, 1976, 1988) were produced 
for AUSLIG (1990). The earliest of these maps was 
based on API and other data sources, while the 
latter map was compiled from visual interpretation 
of Landsat MSS imagery and all relevant information 
(see Table 3.5). Such maps have allowed the impact 
of land cover change since European settlement to be 
identified and quantified.

It should be noted that, at the state level, numerous 
maps of potential natural vegetation have been also 
produced, including for WA, SA, Tasmania, NSW, and 
Queensland. These maps are generally produced at 
a coarser scale than maps of present or actual native 
vegetation.

Using assumptions about undisturbed land condition 
and the environmental drivers for landscape change, 
the probable distribution of natural vegetation can 
also be inferred from the distribution of current 
vegetation. This type of mapping has been applied 
to NVIS (NVIS Technical Working Group, 2017; see 
Figure 2.12) and several state-based vegetation 
maps (see Section 19.5). For such approaches to 
operate reliably, however, it is essential that the back-
engineering models (which simulate vegetation type 
and condition in the pre-European landscape from 
those existing in the present landscape) be based on 
accurate benchmarks for all ecosystems within the 
study area, for each jurisdiction.
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3.3.4  Actual distribution of current land use 
The distinction between ‘land cover’ and ‘land use’ 
was discussed in Section 3.1.2 above. Identification 
of land use is critical for planning and managing 
land resources, both for productive industries and 
environmental protection.

Australian Land Use and Management (ALUM; see 
Section 2.5.3) is a land use classification system that 
comprises a three-tiered hierarchy of classes, broadly 
structured by their potential for disturbance. The 
primary level in this hierarchy includes six classes, 
with classes 1 to 5 being ordered by increasing 
modification to the natural landscape:

1.	 Conservation and natural environments—land that 
has a relatively low level of human intervention. 
The land may be formally reserved by government 
for conservation purposes, or conserved through 
other legal or administrative arrangements. Areas 
may have multiple uses, but nature conservation 
is the prime use. Some land may be unused as a 
result of a deliberate decision of government or 
landowner, or due to circumstance. 

2.	 Production from relatively natural environments—
land that is subject to relatively low levels of 
intervention. The land may not be used more 
intensively because of its limited capability. The 
structure of the native vegetation generally 
remains intact despite deliberate use, although 
the floristics of the vegetation may have changed 
markedly. Where the native vegetation structure is, 
for example, open woodland or grassland, the land 
may be grazed.

3.	 Production from dryland agriculture and 
plantations—land that is used principally for 
primary production, based on dryland farming 
systems. Native vegetation has largely been 
replaced by introduced species through clearing, 
the sowing of new species, the application of 
fertilisers or the dominance of volunteer species. 
The range of activities in this category includes 
plantation forests, pasture production for stock, 
cropping and fodder production, and a wide range 
of horticultural production. 

4.	 Production from irrigated agriculture and 
plantations—agricultural land uses where water 
is applied to promote additional growth over 
normally dry periods, depending on the season, 
water availability and commodity prices.

5.	 Intensive uses—land uses that involve high levels 
of interference with natural processes, generally 
in association with closer residential settlement, 
commercial or industrial uses. 

6.	 Water—water features are regarded as an 
essential aspect of the ALUM classification, 
primarily as a cover type (ABARES, 2016). 

The three levels in this hierarchical classification 
system are summarised in Table 3.6. The range of 
secondary and tertiary classes indicates the diversity 
of land uses in Australia. In this system, agricultural 
activities are further differentiated by their 
dependence on irrigation, extent of land disturbance, 
and current status of activity. Two scales of land use 
map are generated from ALUM:

	§ national scale (1:2,500,000)—integrates agricultural 
commodity data, satellite imagery, and other land 
use information using a modelling approach; and

	§ catchment scale (1:5,000–1:25,000 for irrigated and 
peri-urban, 1:100,000 for broadacre cropping and 
1:250,000 for semi-arid and arid pastoral zone)—
combines state cadastre, public land databases, 
high spatial resolution satellite data, other land 
cover and use data, and field data (Figure 2.17). 
Overall attribute accuracy of catchment scale maps 
is assessed as greater than 80% (ABARES, 2011).

While national scale land use maps (1:2,500,000) have 
been available biennially since 1992/93, continental 
coverage at catchment scale was first completed 
in 2008. The ALUM dataset is updated periodically 
to reflect changes in land use and serves as a 
valuable national and regional monitoring tool (see 
Section 3.4.2). The current national map, updated in 
December 2018 from CLUM data, features 18 broad 
land use classes and 33 ALUM secondary classes 
(DAWE, 2020b), with interactive viewing of recent 
maps being available via the National Map tool (see 
Volume 2D—Excursus 13.1). 

ALUM is managed by the Australian Collaborative 
Land Use and Management Program (ACLUMP), 
which is overseen by the National Committee for 
Land Use and Management Information (NCLUMI—a 
consortium of federal, state and territory government 
partners seeking to develop nationally consistent land 
use and land management information for Australia; 
DAWE, 2020c). In addition to compiling land use maps, 
ACLUMP produces guidelines for land use mapping 
and handbooks for field measurement (see Section 3.5).

The way in which land is used has a profound 
effect on Australia’s unique climate, soil, water, 

vegetation and biodiversity resources (Thackway 
and Freudenberger, 2016). There is a strong link 

between spatial and temporal patterns of land use 
and prevailing environmental, economic and social 
conditions. Therefore, information on land use and 
management is fundamental to the development 

and implementation of land use policy and planning. 
(Thackway, 2018)
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Table 3.6  ALUM classification

Notes: Classes 1.1.1–1.1.6 are based on the Collaborative Australian Protected Areas Database (CAPAD) classification (Cresswell and 
Thomas, 1997) and can be translated to IUCN (2008) categories I to V. Class 1.1.7 covers additional forms of nature conservation 
protection, including heritage agreements, voluntary conservation arrangements, registered property agreements, and recreation 
areas with primarily native cover. Classes 1.2.1–1.2.4 are based on the CAPAD classification (IUCN, 2008 Category VI).

Primary class Secondary class Tertiary class
Area (%) 
2010–11 

Area (%) 
2010–11

1. Conservation and 
natural environments

1.1 Nature conservation

1.1.1 Strict nature reserve 
1.1.2 Wilderness area 
1.1.3 National park 
1.1.4 Natural feature protection 
1.1.5 Habitat/species management area 
1.1.6 Protected landscapes 
1.1.7 Other conserved area

7.86

38.26

1.2 Managed resource protection

1.2.1 Biodiversity 
1.2.2 Surface water supply 
1.2.3 Groundwater 
1.2.4 Landscape 
1.2.5 Traditional indigenous land uses

15.14

1.3 Other minimal use

1.3.1 Defence land—natural areas 
1.3.2 Stock route 
1.3.3 Residual native cover 
1.3.4 Rehabilitation

15.26

2. Production from 
relatively natural 
environments

2.1 Grazing native vegetation 44.87

46.22
2.2 Production native forests

2.2.1 Wood production forestry 
2.2.2 Other forest production

1.35

3. Production from 
dryland agriculture and 
plantations

3.1 Plantation forests

3.1.1 Hardwood plantation forestry 
3.1.2 Softwood plantation forestry 
3.1.3 Other forest plantation 
3.1.4 Environmental forest plantation

0.34

13.18

3.2 Grazing modified pastures

3.2.1 Native/exotic pasture mosaic 
3.2.2 Woody fodder plants 
3.2.3 Pasture legumes 
3.2.4 Pasture legume/grass mixtures 
3.2.5 Sown grasses

9.24

3.3 Cropping

3.3.1 Cereals 
3.3.2 Beverage and spice crops 
3.3.3 Hay and silage 
3.3.4 Oilseeds 
3.3.5 Sugar 
3.3.6 Cotton 
3.3.7 Alkaloid poppies 
3.3.8 Pulses

3.59

3.4 Perennial Horticulture

3.4.1 Tree fruits 
3.4.2 Olives 
3.4.3 Tree nuts 
3.4.4 Vine fruits 
3.4.5 Shrub berries and fruits 
3.4.6 Perennial flowers and bulbs 
3.4.7 Perennial vegetables and herbs 
3.4.8 Citrus 
3.4.9 Grapes

0.01

3.5 Seasonal horticulture
3.5.1 Seasonal fruit 
3.5.2 Seasonal flowers and bulbs 
3.5.3 Seasonal vegetables and herbs

3.6 Land in transition

3.6.1 Degraded land 
3.6.2 Abandoned land 
3.6.3 Land under rehabilitation 
3.6.4 No defined use 
3.6.5 Abandoned perennial horticulture

0.00 13.18
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Primary class Secondary class Tertiary class
Area (%) 
2010–11 

Area (%) 
2010–11

4. Production from 
irrigated agriculture 
and plantations

4.1 Irrigated plantation forests

4.1.1 Irrigated hardwood plantation forestry 
4.1.2 Irrigated softwood plantation forestry 
4.1.3 Irrigated other forest plantation 
4.1.4 Irrigated environmental forest plantation

0.00

0.27

4.2 Grazing irrigated modified 
pastures

4.2.1 Irrigated woody fodder plants 
4.2.2 Irrigated pasture legumes 
4.2.3 Irrigated legume/grass mixtures 
4.2.4 Irrigated sown grasses

0.08

4.3 Irrigated cropping

4.3.1 Irrigated cereals 
4.3.2 Irrigated beverage and spice crops 
4.3.3 Irrigated hay and silage 
4.3.4 Irrigated oilseeds 
4.3.5 Irrigated sugar 
4.3.6 Irrigated cotton 
4.3.7 Irrigated alkaloid poppies 
4.3.8 Irrigated pulses 
4.3.9 Irrigated rice

0.12

4.4 Irrigated perennial horticulture

4.4.1 Irrigated tree fruits 
4.4.2 Irrigated olives 
4.4.3 Irrigated tree nuts 
4.4.4 Irrigated vine fruits 
4.4.5 Irrigated shrub berries and fruits 
4.4.6 Irrigated perennial flowers and bulbs 
4.4 7 Irrigated perennial vegetables and herbs  
4.4.8 Irrigated citrus 
4.4.9 Irrigated grapes

0.03

4.5 Irrigated seasonal horticulture

4.5.1 Irrigated seasonal fruits 
4.5.2 Irrigated seasonal flowers and bulbs 
4.5.2 Irrigated seasonal vegetables and herbs 
4.5.4 Irrigated turf farming

0.02

4.6 Irrigated land in transition

4.6.1 Degraded irrigated land 
4.6.2 Abandoned irrigated land 
4.6.3 Irrigated land under rehabilitation 
4.6.4 No defined use—irrigation 
4.6.5 Abandoned irrigated perennial horticulture

0.00

5. Intensive uses

5.1 Intensive horticulture

5.1.1 Production nurseries 
5.1.2 Shadehouses 
5.1.3 Glasshouses 
5.1.4 Glasshouses—hydroponic 
5.1.5 Abandoned intensive horticulture

0.00

0.41

5.2 Intensive animal production

5.2.1 Dairy sheds and yards 
5.2.2 Feedlots 
5.2.3 Poultry farms 
5.2.4 Piggeries 
5.2.5 Aquaculture 
5.2.6 Horse studs 
5.2.7 Saleyards/stockyards 
5.2.8 Abandoned intensive animal production

0.01

5.3 Manufacturing and industrial

5.3.1 General purpose factory 
5.3.2 Food processing factory 
5.3.3 Major industrial complex 
5.3.4 Bulk grain storage 
5.3.5 Abattoirs 
5.3.6 Oil refinery 
5.3.7 Sawmill 
5.3.8 Abandoned manufacturing and industrial

0.01

5.4 Residential and farm 
infrastructure

5.4.1 Urban residential 
5.4.2 Rural residential with agriculture 
5.4.3 Rural residential without agriculture 
5.4.4 Remote communities 
5.4.5 Farm buildings/infrastructure

0.33

5.5 Services

5.5.1 Commercial services 
5.5.2 Public services 
5.5.3 Recreation and culture 
5.5.4 Defence facilities—urban 
5.5.5 Research facilities

0.04
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Primary class Secondary class Tertiary class
Area (%) 
2010–11 

Area (%) 
2010–11

5. Intensive uses (cont.)

5.6 Utilities

5.6.1 Fuel powered electricity generation 
5.6.2 Hydro electricity generation 
5.6.3 Wind electricity generation 
5.6.4 Solar electricity generation 
5.6.5 Electricity substations and transmission 
5.6.6 Gas treatment, storage and transmission 
5.6.7 Water extraction and transmission

0.00

0.41

5.7 Transport and communication

5.7.1 Airports/aerodromes 
5.7.2 Roads 
5.7.3 Railways 
5.7.4 Ports and water transport 
5.7.5 Navigation and communication

0.00

5.8 Mining

5.8.1 Mines 
5.8.2 Quarries 
5.8.3 Tailings 
5.8.4 Extractive industry not in use

0.02

5.9 Waste treament and disposal

5.9.1 Effluent pond 
5.9.2 Landfill 
5.9.3 Solid garbage 
5.9.4 Incinerators 
5.9.5 Sewage/sewerage

0.00

6. Water

6.1 Lake

6.1.1 Lake–conservation 
6.1.2 Lake–production 
6.1.3 Lake–intensive use 
6.1.4 Lake–saline

1.13

1.63

6.2 Reservoir/dam
6.2.1 Reservoir 
6.2.2 Water storage—intensive use/farm dams 
6.2.3 Evaporation basin

0.07

6.3 River
6.3.1 River-conservation 
6.3.2 River-production 
6.3.3 River-intensive use

0.06

6.4 Channel/aqueduct
6.4.1 Supply channel/aqueduct 
6.4.2 Drainage channel/aqueduct 
6.4.3 Stormwater

0.00

6.5 Marsh/wetland

6.5.1 Marsh/wetland–conservation 
6.5.2 Marsh/wetland–production 
6.5.3 Marsh/wetland–intensive use 
6.5.4 Marsh/wetland–saline

0.12

1.63

6.6 Estuary/coastal waters
6.6.1 Estuary/coastal waters–conservation 
6.6.2 Estuary/coastal waters–production 
6.6.3 Estuary/coatal waters–intensive use

0.25

Source: ABARES (2016)

Landscapes have been transformed by harvesting native food and fibre, removing vegetation  
and regolith to extract minerals, removing vegetation to provide housing and urban  

infrastructure, draining floodplains to create productive agricultural soils, [and] irrigating  
previously dryland native vegetated areas. Landscapes have also been transformed  

inadvertently through the combined effects of feral animals, weeds and changed fire regimes.  
(Thackway et al., 2015)
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3.4  Monitoring Landscape Change
Any landscape mapping exercise needs to consider 
the fact that landscapes change. Variations in 
landscape features may occur as part of natural 
cycles or may result from disturbances in the natural 
balance. In this section we will consider those factors 
in a landscape that can change land cover condition 
(see Section 3.4.1) and/or land use (see Section 3.4.2). 

Biotic and abiotic factors in the environment are 
introduced in Section 1.1. Changes in these factors can 
modify the vegetated landscape of any environment. 
In the Australian context, critical factors include fire 
(see Sections 2.4 and 18), weeds (see Section 2.3.2), 
and feral animals (see Section 2.3.3). Changes 
in climate patterns (see Section 2.2) also impact 
vegetation directly by varying temperatures, wind 
exposure, and rainfall as well as indirectly by altering 
the distribution of predators. Land use activities can 
accelerate natural erosion patterns, reduce runoff, 
and alter drainage systems (see Sections 2.1 and 11.4). 
Finally tectonic activity can have a dramatic effect 
on topography and any vegetation it supports (see 
Volume 1A—Section 3.2). 

In the last two centuries, the condition of native 
vegetation in the Australian landscape has changed 
significantly (Gammage, 2012), creating fragmentation 
of ecosystems in many regions. In Central Australia, 
where population pressure is much lower than 

along the coastal fringe, changes in grazing and fire 
management practices have also transformed native 
vegetation (Thackway et al., 2015). 

Now that various forms of environmental legislation 
govern land clearing in Australia, it is important that 
changes in land cover can be assessed accurately 
and consistently. Understanding change patterns 
in the landscape helps to predict future distribution 
and condition of plants and animals, and also enables 
modelling of the likely distribution of biodiversity in 
the past. 

The National Landcare Program (and its numerous 
predecessors) has federally funded natural resource 
management in Australia for several decades to 
protect and rehabilitate our environment (NLP, 2017), 
with the specific goal of improving soil, water, and 
biodiversity (see Table 3.7). This program involves 
collaboration between landowners, researchers, local 
communities, and the 56 regional natural resource 
management (NRM) groups (NRM, 2019a, 2019b) 
to ensure that Australia satisfies both national and 
international obligations that are relevant to the 
environment (NLP, 2019). As part of this program, 
a number of online tools, based on EO and other 
spatial datasets, have been developed to assist 
landowners towards sustainable land management 
(see Sections 3.5 and 19).

Table 3.7  National Landcare Program 

Phase One (2014/15–2017/18) of the National Landcare Program defines the four strategic objectives listed below.

Objective Outcome Contribution to obligations

Communities are managing 
landscapes to sustain long term 
economic and social benefits from 
their environment.

Maintain and improve ecosystem services 
through sustainable management of local and 
regional landscapes

Protection and restoration of ecosystem function, resilience 
and biodiversity

Appropriate management of invasive species which 
threaten ecosystems, habitats or native species

Farmers and fishers are increasing 
their long term returns through 
better management of the natural 
resource base.

Increase in the number of farmers and fishers 
adopting practices that improve the quality of 
the natural resource base, and the area of land 
over which those practices are applied

Sustainable management of agriculture and aquaculture 
to conserve and protect biological diversity and reduce 
greenhouse gas emissions and increase carbon stored in 
soil

Communities are involved in 
caring for their environment.

Increase engagement and participation of 
the community, including landcare, farmers, 
and Indigenous people, in sustainable natural 
resource management

Build community awareness of biodiversity values, skills, 
participation and knowledge, including Indigenous 
knowledge and participation, to promote conservation and 
sustainable use of biological diversity

Communities are protecting 
species and natural assets.

Increase restoration and rehabilitation of the 
natural environment, including protecting 
and conserving nationally and internationally 
significant species, ecosystems, ecological 
communities, places, and values

Reduce the loss of natural habitats, degradation and 
fragmentation

Protect or conserve 'Matters of National Environmental 
Significance' including management of World Heritage 
Areas, Ramsar wetlands, national heritage, etc 

Reduce the number of nationally threatened species and 
improve their conservation status

Source: NLP (2017) Table 1
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3.4.1  Changes in land condition 
While the type of vegetation in an area may 
essentially stay the same over time, the condition 
of that vegetation may change (see Section 3.1.1). 
Methods to objectively and consistently assess 
vegetation condition—as well as vegetation type—
have been developed for Australia in recent years. For 
example, Thackway et al. (2015) propose a seven step 
process based on Sbrocchi (2013) to account for the 
condition of native vegetation as an example of an 
environmental ‘asset’:

1.	 Document the environmental assets;

2.	 Select environmental indicators;

3.	 Determine reference benchmarks;

4.	 Collect data;

5.	 Calculate indicator condition scores;

6.	 Calculate environmental condition index; then

7.	 Submit for accreditation.

To streamline the accounting process for native 
vegetation at the property and regional levels, this 
seven step process was refined by Butler et al. (2020) 
to four steps:

1.	 Defining the accounting area;

2.	 Compile existing published standardised data for 
native vegetation types;

3.	 Stratifying accounting area into assessment units; 
and

4.	 Measure indicators.

The environmental condition index (EcondTM; 
see Section 20.5) is derived to allow comparison 
of the relative condition of different assets. This 
index ranges from pre-industrial condition (100) to 
absent (0). Indicators of change need to efficiently 
reflect ecological productivity and resilience, and 
involve measures of both the quality (condition) and 
quantity (extent) of native vegetation, as well as its 
composition (the functional and structural integrity 
and landscape complexity). 

One system that has been developed to monitor 
changes in the condition of vegetated landscapes 
is the Vegetation Assets, States and Transitions 
(VAST; see Excursus 3.2). The VAST system offers 
“a structured way to record observed, measured 
responses of native plant communities against 
historic and contemporary land use and land 
management practices relative to a reference state” 
(Thackway et al., 2015). The key indicators and key 
functional, structural, and composition criteria that are 
identified by VAST Version 2 (VAST-2) are summarised 
in Table 3.8.

The national VAST-2 dataset is shown in Figure 3.3,  
which emphasises characteristic patterns of 
vegetation condition in different jurisdictions:

	§ very large areas of residual and modified vegetation 
in the rangelands of central and northern Australia;

	§ large areas of residual and modified vegetation 
in temperate regions that are less suited to 
agriculture;

	§ replaced vegetation occurs in fertile, moist regions, 
principally being used for cropping and improved 
pasture;

	§ extensive modified and transformed vegetation in 
arid and semi-arid rangelands due to grazing; and

	§ small areas of removed vegetation in 
coastal margins due to human settlement 
(Lessie et al., 2010).

This approach to mapping the condition of vegetated 
landscapes offers “a simple communication and 
reporting metric that can assist in describing, valuing, 
and evaluating anthropogenic modification of native 
vegetation” (Lessie et al., 2010). Such datasets 
can closely track the way vegetation responds to 
land management practices, quantify changes in 
vegetation type and extent, and monitor progress 
towards defined vegetation targets. 
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Table 3.8  VAST-2 diagnostic components, criteria and indicators

Diagnostic components Key criteria Key indicators

Regenerative capacity

1. Fire regime
1. Area/size of fire footprints

2. Interval between fire starts

2. Soil hydrology
3. Plant available water holding capacity

4. Groundwater dynamics

3. Soil physical 
state

5. Effective rooting depth of soil profile

6. Bulk density of soil through changes to soil structure or soil removal

4. Soil nutrient 
state

7. Nutrient stress—rundown (deficiency) relative to reference soil fertility

8. Nutrient stress—excess (toxicity) relative to reference soil fertility

5. Soil biological 
state

9. Organisms responsible for maintaining soil porosity and nutrient recycling

10. Surface organic matter, soil crusts

6. Reproductive 
potential

11. Reproductive potential of overstorey structuring species

12. Reproductive potential of understorey structuring species

Vegetation structure

7. Overstorey 
structure

13. Overstorey top height (mean) of plant community

14. Overstorey Foliage Projective Cover (mean) of the plant community

15. Overstorey structural diversity (i.e. a diversity of age classes) of the stand

8. Understorey 
structure

16. Understorey top height (mean) of plant community

17. Understorey ground cover (mean) of the plant community

18. Understorey structural diversity (i.e. a diversity of age classes) of the stand 

Species composition

9. Overstorey 
composition

19. Densities of overstorey species functional groups

20. Richness—number of indigenous overstorey species relative to the number of exotic species

10. Understorey 
composition

21. Densities of understory species functional groups

22. Richness—number of indigenous understorey species relative to the number of exotic species

Source: Thackway (2014)

Condition information is needed to inform regional priorities, to establish policies, and to design and 
evaluate natural resource management programs for maintaining, restoring and rehabilitating native 

vegetation assets to improve the health of rivers, wetlands and estuaries, protect degraded landscapes 
against soil erosion, mitigate against dryland salinity, and improve habitat for Australia’s unique native 

plants and animals.  
(Thackway et al., 2015)
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Figure 3.3  National VAST-2 dataset

Source: ABARES (2008)

Excursus 3.2�—Vegetation Assets, States and Transitions (VAST)

Source: �Lesslie et al. (2010); Thackway and Lesslie (2006, 2008); Thackway (2014);  
Thackway and Freudenberger (2016)

VAST classifies vegetation condition by assessing 
the degree of anthropogenic modification from a 
benchmark reference state (I) through five states of 
increasing human modification, where states I, II, and 
III represent native vegetation cover and states IV, V, 
and VI represent non-native vegetation cover. The 
VAST framework includes reporting the condition 
of native vegetation at regional and national scales, 
accounting for changes in the status and condition of 
vegetation, and describing the consequences of land 
management on vegetation condition (Thackway and 
Lesslie, 2006). VAST-2 (VAST Version 2) vegetation 
condition classes were developed from national 
spatial datasets (1995 to 2006) on a 1 km by 1 km grid, 
in conjunction with an expert model comparing 

land management effects relative to a benchmark 
of pristine vegetation condition (assumed pre-1750; 
Lesslie et al., 2010). Primary datasets used were:

	§ biophysical naturalness disturbance information 
forming part of the Australian Land Disturbance 
Database (ALDD; previously known as the National 
Wilderness Inventory, NWI; Lesslie and Maslen, 
1995); updated in temperate forested environments 
in the Comprehensive Regional Assessment and 
Regional Forest Agreement (CRA–RFA) process 
(JANIS, 1997) ;

	§ land use datasets developed by the Australian 
Collaborative Land Use Mapping Program (BRS, 
2006; Lesslie et al., 2006);
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	§ bare ground cover derived from MODIS satellite 
imagery (2004); and

	§ native vegetation extent baseline (2004) compiled 
from datasets collected by the states and territories 
(Thackway et al., 2010). 

For example, a study by Thackway and Freudenberger 
(2016) selected ten sites that are representative of 
Australia’s agroclimatic regions (see Section 2.2.3), 
to systematically examine the response of plant 
communties to land management regimes over the 
past 250 years. The VAST framework was used to 
track changes in regenerative capacity, vegetation 
structure, species composition, and overall vegetation 
status. To demonstrate the information that can be 
derived from such analyses, Table 3.9 summarises 
relevant information for three of these sites. The 
impact of fragmentation and the extent of site 
modification for all ten sites are summarised in 
Figure 3.4. 

All sites observed in this study occurred in intact 
landscapes during the early stages of rural 
development. While site 1 currently represents an 
intact landscape (> 90% vegetation retained and 
mostly unmodified), site 7 occurs in a variegated 
landscape (60–90% native vegetation retained, but 
mostly modified), and site 3 occurs in a relictual 
landscape (< 10% native vegetation retained). These 
condition assessments can be translated to estimates 
of the resilience of each site, from highest for site 1, 
to medium for site 7, to lowest for site 3. This type 
of landscape model is valuable for monitoring 
and reporting vegetation changes with a view to 
better understanding ecosystem resilience. Such 
understanding will allow appropriate management 
interventions to be prioritised for sites with low 
resilience and thus avoid further degradation into the 
future.

Table 3.9  Selected site attributes

Vegetation condition dynamics indicate status score of change relative to reference state.

Attribute

Site Reference Number

1. Rocky Valley, Bogong High Plains 2. Wirilda, Harrogate
3. Conkerberry Paddock, Victoria River 
Research Station

Agroclimatic 
region 

Cold-wet Mediterranean Tropical warm season wet

Bioregion Victorian Alps (Victoria) Kanmantoo (SA) Ord Victoria Plain (NT)

Plant 
community

Poa tussock grassland Callitris, eucalypt low mallee woodland Eucalypt open woodland

Vegetation 
condition 
dynamics

10% loss due to livestock grazing 
then recovery to near reference 
conditions

70% loss due to clearing, then significant 
recovery by active restoration 

50% loss due to livestock and feral 
herbivore grazing with modest recovery 
due to improved grazing management and 
increasing woody cover due to climate 
change 

Government 
policies

State government reduction, then 
prohibition of livestock grazing, then 
creation of a national park 

Various regulations that required clearing, 
then fertiliser subsidies to increase 
intensification

More recently, agri-environmental 
schemes support farmers to restore 
native vegetation 

Government-managed livestock reserve, 
and subsidies for artificial watering points 
and fencing, then research into improved 
range management 

Markets
Rapid development of national and 
international markets for meat and 
wool 

Domestic and international demand for 
grains, meat and wool 

Domestic and particularly international 
demand, including live cattle exports 

Technological 
changes

Domestic livestock 

Broadscale cropping and exotic pasture 
systems, domestic livestock, fencing, and 
feral rabbits

No till cropping into dormant native 
pasture with cell-based sheep grazing 

Artificial watering points (bores), then 
fencing to improve grazing management, 
improved roads and transport, introduction 
of Bos indicus breeds of cattle 

Climate 
variation

Periods of drought that increased 
livestock grazing pressure on alpine 
grassland 

Drought and wildfire were a stimulus for 
land management change coupled with 
localised rising groundwater that was 
saline. 

Large seasonal fluctuations in rainfall 
affecting livestock and feral herbivore 
numbers, but overall increasing rainfall over 
a longer season 

Cultural
Total indigenous displacement by 
Western European values and land 
management practices 

Total indigenous displacement by 
Western European values and land 
management practices

Total indigenous displacement by Western 
European values and land management 
practices; a conditional land claim was 
granted in 1990, enabling continued use of 
the area as a research station 

Source: Thackway and Freudenberger (2016) Tables 3 and S1
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Figure 3.4  Landscape change summary

Both the landscape alteration levels and VAST classes are shown for ten sites.

Source: Thackway and Freudenberger (2016) Figure 12

3.4.2  Changes in land use 
The diversity of land use activities being undertaken 
in Australia is introduced in Sections 2.5.3 and 3.3.4. 
Information about land use change is needed to 
determine trends in agricultural activities and 
assess the management of natural resources, both 
in terms of regional and national changes (Lesslie 
and Mewett, 2013). Land use changes can have long 
term impacts on agricultural sustainability, food 
security, water availability, air quality, and biodiversity, 
all of which need to be monitored in terms of their 
social, economic and environmental consequences 
(Lesslie et al., 2011). Thoughtful reviews of various 
aspects of land use practices and policies in Australia 
are presented in Thackway (2018). 

Some of the drivers for changing land uses have been 
summarised as:

	§ resource scarcity leading to an increase in the 
pressure of production on resources; 

	§ changing opportunities created by markets (such 
as production, infrastructure and transport costs);

	§ outside policy intervention (such as subsidies, 
taxes, property rights, infrastructure, governance);

	§ loss of adaptive capacity and increased 
vulnerability (such as exposure to natural hazards); 
and

	§ change in social organisation, attitudes, and access 
to resources (Lambin et al., 2003).

Specific examples of events and conditions in each of 
these driver categories are listed in Table 3.10.

Land use and land use change are central to our understanding of human impacts on the environment 
(Clancy et al., 2018)
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Table 3.10  Drivers of land use change

Driver
Example events and conditions determining rate of change

Slow Fast

Resource 
scarity

Natural population growth

Inappropriate land uses reduce land productivity

Degraded environmental resources

Forced population displacement (e.g. refugees)

Allocation of previously productive land to other land uses

Market 
changes

Increased commercialisation and agro-industrialisation

Improved access to land (e.g. new roads)

Changes in prices of inputs/outputs

Alternative employment opportunites

Capital investment in new land use(s)

Price changes due to macro economics or trade conditions

New technologies for intensification of resource use

New commodities and land use activities

Government 
intervention

Economic development programs

Inappropriate subsidies, taxes, price distortions, incentives

Poor governance and corruption

Insecurity of land tenure

Rapid policy changes (e.g. devaluation)

Government instability

War

Increased 
vulnerability

Impoverishment; Increased dependence on welfare

Social discrimination 

Internal conflicts

Epidemics

Natural hazards

Social 
changes

Institutional changes in resource management

Increased urbanisation

Extended family breakdown

Increased materialism

Reduced public awareness of environmental degradation

Expropriation of communal resources and/or private property

Ecological marginalisation of the poor

Adapted from: Lambin et al. (2003) Table 4 and Thackway (2018)

Specific approaches to land use monitoring will 
vary with the intended end use and the spatial and 
temporal resolutions of available data. Most land use 
change reporting by ABARES, for example, relies on 
the ALUM time series (see Sections 2.5.3 and 3.3.4) 
and agricultural statistics from the Australian 
Bureau of Statistics (ABS; Mewett et al., 2013). While 
ACLUMP aims for 80% accuracy in overall spatial and 
thematic attributes when a land use map is released 
(ABARES, 2015), this accuracy will inevitably reduce 
with time as land uses change.

Approaches that may be used to maintain the 
accuracy of land use maps include:

	§ update all areas at appropriate intervals (such as 
every five years for intensive agriculture regions 
and every ten years for pastoral and rangelands 
areas);

	§ use authoritative ancillary datasets to update 
specific land uses and/or regions as needed; or

	§ prioritise areas to update based on assessed 
likelihood of land use changes (see Figure 3.5; 
ABARES, 2015).

EO datasets are being used by some Australian 
state land use mapping agencies (e.g. QLUMP, 2017; 
Lawrence et al., 2018) to identify areas of change in 
land use and land cover annually. Only those areas 
identified as changed are then updated in the relevant 
land use maps (ABARES, 2015; Hicks, 2018).

Land use planning has never been widely popular in democracies, as it is seen to impinge on the rights of 
the individual. However, a shift from rights to responsibilities is long overdue.  

(Henry Nix, 2018) 
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Figure 3.5  Likelihood of ALUM land use change

These likelihoods are based on a national assessment, and will vary by region.

Addendum to the Guidelines for land use mapping in Australia: principles, procedures and definitions, 4th edition

13

Figure 4 Likelihood of a particular land use changing to another ALUM code

Note: Figure based on national assessment and will vary by region.

The relative likelihood of change is a function of two factors (for any given scale and 
currency):

• likelihood of change
• period since re-mapping

For example, a national park mapped 10 years ago is still likely to be a national park and 
there is a high level of confidence in the mapping. We would be much less confident that 
an area mapped two years ago as irrigated rice is still irrigated rice.

Ancillary datasets and expert knowledge can also be used to give an indication of the 
confidence/reliability of a land use product. If an authoritative source is suggesting that 
the land use is different to the land use mapped, then the confidence in the mapping for 
that area would be low. Conversely, if ancillary datasets and/or expert opinion agree 
with the land use product then the confidence in the mapping is high, even if the area 
was last mapped some time ago.

It is recommended that jurisdictions conduct an assessment of the reliability and 
confidence of existing land use products every 3-4 years. Assessments can be based on 
land use codes most likely to change as per Figure 4 and ancillary data sets or expert 
knowledge. Results can be used to prioritise remapping by catchment and land use. 
ABARES is currently conducting a reliability assessment of the catchment scale land use 
mapping at the national level based on the likelihood of an ALUM class changing, the 
currency and scale of the mapping.
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Source: ABARES (2015) Figure 4

The patterns of land use change can be variously 
described in terms of:

	§ area—spatial extent; 

	§ productivity—efficiency associated with converting 
inputs to outputs; 

	§ intensification—increased consumption of inputs 
(such as nutrients, water, and energy); and 

	§ innovation—improvements aimed at ‘better’ 
outcomes such as greater productivity, more 
efficient use of inputs, or reduced degradation of 
landscape (Lesslie et al., 2011). 

For example, the intensification of agricultural land use, 
expressed in terms of the cost of production per unit 
area during the two decades from 1985/86 to 2005/06, 
was mapped by Leslie et al. (2011; see map 4).

Monitoring of land use change is closely coupled 
to monitoring of land cover (see Section 3.1.2) and 
increasingly relies on the use of EO datasets in 
combination with cadastre and ancillary spatial 
datasets. For example, ABARES coordinated a 
national Ground Cover Monitoring project that 
developed the Fractional Cover Product (see 
Excursus 8.3) to monitor soil erosion, and ultimately 
management practices, in cropped areas of Australia. 

In combination with historical land use patterns, 
and datasets tracking climatic variables, such 
products may eventually enable the development 
of methods for forecasting land use changes, and 
thereby improve our understanding of resource 
utilisation across Australia. Spatial Decision Support 
Systems (DSS), such as the Multi-Criteria Analysis 
Shell for Spatial Decision Support (MCAS-S, 2018; 
Lesslie, 2013; Lesslie et al., 2008), will assist this 
process by manipulating vast quantities of spatial 
data and highlighting the relevance of their patterns 
and interactions. To maximise the capabilities of 
available resources and best serve the interests of 
relevant stakeholders in Australia, an organising 
framework has been proposed to integrate land use 
and land resources information within a virtual centre 
(Clancy and Lesslie, 2013; Clancy et al., 2018). Such 
an integrated framework would greatly simplify the 
process of monitoring land use changes in Australia.
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3.5  Further Information

Australian Land Use
Land use data downloads: https://www.agriculture.gov.

au/abares/aclump/land-use/data-download

ALUM (Australian Land Use and Management 
Classification system): http://www.agriculture.gov.au/
abares/aclump/land-use/alum-classification

CLUM (Catchment scale Land Use for Australia): 
https://www.agriculture.gov.au/abares/aclump/land-
use/catchment-scale-land-use-of-australia-update-
december-2018

Australian Vegetation
NVIS: https://www.environment.gov.au/land/native-

vegetation/national-vegetation-information-system

Major Vegetation Groups (based on NVIS): https://
data.gov.au/data/dataset/57c8ee5c-43e5-4e9c-
9e41-fd5012536374

New South Wales Vegetation/Land Cover
Bionet: http://www.bionet.nsw.gov.au/

SEED (NSW): https://www.seed.nsw.gov.au

SVTM: https://www.environment.nsw.gov.au/vegetation/
state-vegetation-type-map.htm

Victoria Vegetation/Land Cover
Habitat Hectares: Parkes et al. (2003); McCarthy et al. 

(2004);  

https://www.environment.vic.gov.au/native-vegetation/
native-vegetation/biodiversity-information-and-site-
assessment

https://www.ari.vic.gov.au/research/modelling/mapping-
vegetation-extent-and-condition

EO-based Study of Land Cover Change
Graetz, D., Fisher, R., and Wilson, M. (1992). Looking 

Back: The Changing Face of The Australian 
Continent, 1972–1992. CSIRO Division of Wildlife and 
Ecology, Canberra.

Interactive Maps for Australian Resources
National Map: https://nationalmap.gov.au/

NEII (National Environmental Information 
Infrastructure): http://neii.gov.au/data-viewer

AURIN (Australian Urban Research Infrastructure 
Network): https://map.aurin.org.au

AREMI (Australian Renewable Energy Agency): https://
nationalmap.gov.au/renewables/

Investor Map (locates opportunities for mining, 
tourism and agriculture): https://nationalmap.gov.au/
investormap/

State of Environment maps: https://soe.terria.io

NRM Tools
FarmMap4D Spatial Hub (formerly NRM Spatial 

Hub; see Volume 1B—Excursus 10.4): https://www.
farmmap4d.com.au/

VegMachine: https://vegmachine.net/ (see 
Excursus 15.1 below)

Earth Observation Data for EcoSystem 
Monitoring (EODESM)
EODESM classifies land cover and change by 

combining essential environmental descriptors 
using the FAO LCCS taxonomy: https://www.
ecopotential-project.eu/products/eodesm.html

Global Land Cover and Ecosystem Products
NASA Land Cover/Land Use Change Program 

(LCLUC): https://lcluc.umd.edu/

GLC2000: Global Land Cover 2000 database. 
European Commission, Joint Research Centre, 
2003. http://forobs.jrc.ec.europa.eu/products/
glc2000/data_access.php

GlobCover: http://due.esrin.esa.int/page_globcover.php 

MODIS Land Cover: http://glcf.umd.edu/data/lc/

Sayre et al. (2020)

IUCN Red List of Ecosystems (RLE) Global 
Ecosystems Typology: https://iucnrle.org/about-rle/
ongoing-initiatives/global-ecosystem-typology/

https://www.agriculture.gov.au/abares/aclump/land-use/data-download
https://www.agriculture.gov.au/abares/aclump/land-use/data-download
http://www.agriculture.gov.au/abares/aclump/land-use/alum-classification
http://www.agriculture.gov.au/abares/aclump/land-use/alum-classification
https://www.agriculture.gov.au/abares/aclump/land-use/catchment-scale-land-use-of-australia-update-december-2018
https://www.agriculture.gov.au/abares/aclump/land-use/catchment-scale-land-use-of-australia-update-december-2018
https://www.agriculture.gov.au/abares/aclump/land-use/catchment-scale-land-use-of-australia-update-december-2018
https://www.environment.gov.au/land/native-vegetation/national-vegetation-information-system
https://www.environment.gov.au/land/native-vegetation/national-vegetation-information-system
https://data.gov.au/data/dataset/57c8ee5c-43e5-4e9c-9e41-fd5012536374
https://data.gov.au/data/dataset/57c8ee5c-43e5-4e9c-9e41-fd5012536374
https://data.gov.au/data/dataset/57c8ee5c-43e5-4e9c-9e41-fd5012536374
http://www.bionet.nsw.gov.au/
https://www.seed.nsw.gov.au
https://www.environment.nsw.gov.au/vegetation/state-vegetation-type-map.htm
https://www.environment.nsw.gov.au/vegetation/state-vegetation-type-map.htm
https://www.environment.vic.gov.au/native-vegetation/native-vegetation/biodiversity-information-and-site-assessment
https://www.environment.vic.gov.au/native-vegetation/native-vegetation/biodiversity-information-and-site-assessment
https://www.environment.vic.gov.au/native-vegetation/native-vegetation/biodiversity-information-and-site-assessment
https://www.ari.vic.gov.au/research/modelling/mapping-vegetation-extent-and-condition
https://www.ari.vic.gov.au/research/modelling/mapping-vegetation-extent-and-condition
https://nationalmap.gov.au/
http://neii.gov.au/data-viewer
https://map.aurin.org.au
https://nationalmap.gov.au/renewables/
https://nationalmap.gov.au/renewables/
https://nationalmap.gov.au/investormap/
https://nationalmap.gov.au/investormap/
https://soe.terria.io
https://www.farmmap4d.com.au/
https://www.farmmap4d.com.au/
https://vegmachine.net/
https://www.ecopotential-project.eu/products/eodesm.html
https://www.ecopotential-project.eu/products/eodesm.html
https://lcluc.umd.edu/
http://forobs.jrc.ec.europa.eu/products/glc2000/data_access.php
http://forobs.jrc.ec.europa.eu/products/glc2000/data_access.php
http://due.esrin.esa.int/page_globcover.php
http://glcf.umd.edu/data/lc/
https://iucnrle.org/about-rle/ongoing-initiatives/global-ecosystem-typology/
https://iucnrle.org/about-rle/ongoing-initiatives/global-ecosystem-typology/
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Most of the terrestrial surfaces on Earth are covered by vegetation of some description. Given that 
waterbodies cover over 70% of the Earth’s surface (see Volume 3B), vegetation has been estimated 
to cover some 20% of the total surface of our planet. 

An enormous diversity of vegetation exists on Earth, exhibiting major differences in appearance, 
life cycle, and growth requirements (see Section 1.3.2). Different plants are best suited to particular 
climates and landscapes and most tend to flourish in association with ‘friends’ and ‘healthy 
competition’, forming unique communities of species that are mutually supportive (see Section 1.2). 
This synergy contributes to recovery from external changes and enriches the environment for 
other organisms.

Our planet is dynamic at a variety of scales (see Section 1.3.3). The characteristics of vegetation 
cover on Earth vary not only over space but also with the passage of time. Change can occur in 
cycles, resulting from natural rhythms related to the movement of the Earth and the Moon relative 
to the Sun, or as a consequence of ‘irregular’ events such as natural disasters or anthropogenic 
activities. Natural changes are fundamental to the Earth’s stability and resilience, and enable 
natural resources to be recycled and sustained. Anthropogenic changes, however, can outstrip the 
intrinsic timeframes of landscape recovery, so require prudent monitoring and management.

Botany is concerned with classifying and understanding plants (see Excursus 1.1). The 
characteristics of vegetation that botanists use to identify plants, however, are not necessarily 
directly related to EO image interpretation. The following sections discuss particular characteristics 
of individual plants and groups of plants that are relevant to categorising vegetation using EO 
datasets:

	§ attributes of foliage (Section 4);
	§ attributes of individual plants (Section 5);
	§ attributes of communities (Section 6); and
	§ attributes of ecosystems (Section 7).

Contents
4 � Attributes of Foliage� 89

5 � Attributes of Individual Plants� 107

6 � Attributes of Plant Communities� 125

7 � Attributes of Ecosystems� 141

Background image on previous page: Sentinel 2A image over Liverpool Plains, NSW, covering Mt Kaputar. This image was acquired on 15 November 2020 
and is displayed using SWIR, NIR and green bands as red, green and blue respectively.
Source: Norman Mueller, Geoscience Australia
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4  Attributes of Foliage

Plant leaves are collectively called foliage. Leaves are the primary site for photosynthesis, and occur in a wide 
variety of colours, sizes, shapes, and textures. Foliage is one of the principal characteristics of vegetation that 
is used to identify individual species. Several aspects of foliage that are relevant to analysing EO images are 
discussed in the following sub-sections: 

	§ structure and shape (see Section 4.1);

	§ chemical composition (see Section 4.2);

	§ spectral reflectance properties (see Section 4.3); 
and

	§ aerodynamic forces (see Section 4.4).

4.1  Structure and Shape
Leaf structure and shape are discussed below in 
terms of: 

	§ anatomy—internal structure (see Section 4.1.1); 

	§ morphology—external shape and orientation 
(Section 4.1.2);

	§ texture—external surfaces (Section 4.1.3); and

	§ strength—vulnerability to external forces 
(Section 4.1.4).

4.1.1  Anatomy
A ‘typical’ plant leaf comprises multiple layers with 
characteristic functions. As illustrated in Figure 4.1, 
when traversed from the top surface to the bottom 
surface, specialised cell types can be distinguished:

	§ upper epidermis (and often cuticle)—top outer 
layer with waxy, waterproof coating; 

	§ mesophyll—containing chloroplast and comprising:

	w palisade parenchyma—elongated cells adjacent 
to epidermis; and

	w spongy mesophyll parenchyma—looser 
irregular cells bordered by palisade 
parenchyma; and

	§ lower epidermis (and often cuticle)—bottom 
surface with guard cells that open and close 
stomata (pores) to control transpiration and carbon 
dioxide (CO2) exchange (Esau, 1965).

In many plants, the epidermis secretes a waxy coating 
called the cuticle, which protects the leaf from pests 
and predators, such as insects and bacteria, and 
water loss (Yeats and Rose, 2013). The cuticle surface 
diffuses light and has low reflectivity. Most of the 
sunlight reaching the cuticle is transmitted through 
the epidermis to the palisade cells, with shaded leaves 
having thinner cuticles and shorter palisade cells 
than leaves in direct sunlight (see Section 4.1.2). The 
epidermis can contain trichomes (hair cells), which 
offer further protection against predators and reduce 
the intensity of sunlight on the leaf (Esau, 1965; see 
Section 4.1.3). 

The palisade mesophyll cells have a high 
concentration of chloroplasts and act as ‘pipes’ that 
direct light towards their pigment molecules for 
photosynthesis (Croft and Chen, 2017). These cells 
are generally arranged in rows, with plants growing 
in full sun having more layers than those growing in 
shade. In some plants whose leaves hang vertically, 
such as adult eucalypts, palisade cells are adjacent 
to both the upper and lower epidermis and thus form 
a sandwich around the spongy mesophyll cell layer 
(Evans and Vogelmann, 2006). 

Background image: Tropical rainforest foliage. Source: © Shutterstock image ID 24807769
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Figure 4.1  Typical leaf cell structure

The fine scale structure of an angiosperm leaf featuring the major tissues: the upper and lower epithelia (and associated cuticles); 
the palisade and spongy mesophyll; and the guard cells of the stoma. Vascular tissue (veins) is not shown. Key plant cell organelles 
(the cell wall, nucleus, chloroplasts, vacuole, and cytoplasm) are also shown.

Source: Richard Wheeler, Zephyris, Wikimedia Commons. (Retrieved from https://en.wikipedia.org/wiki/Leaf#/media/File:Leaf_Tissue_Structure.svg)

Air spaces between the smaller spongy mesophyll 
cells allow gas exchange of water vapour, CO2, and 
oxygen with the atmosphere via stomata. The guard 
cells control stomatal opening to conserve water 
and heat within the leaf. In most plants, stomata are 
often more numerous on the lower than the upper 
leaf surface and also in plants from cooler climes 
(Harrison et al., 2020).

A network of veins throughout the leaf transport food, 
water, and minerals to and from the rest of the plant. 
The vein pattern, or venation, of a leaf is characteristic 
of its species. Veins comprise vascular tissue located 
within the spongy mesophyll layer. A vein includes two 
types of conducting cells: xylem, which transports 
water and minerals from the roots to the leaf; and 
phloem, which moves photosynthetic products from 
the leaf to the rest of the plant. These conducting 
structures are surrounded by a sheath of lignin, which 
increases leaf rigidity.

The three mechanisms for photosynthesis, namely 
C3, C4, and CAM are introduced in Section 5.2.1. Most 
plants use C3 carbon fixation for photosynthesis. 
Those that use the C4 or CAM metabolic pathways 
have slightly different leaf anatomy (Edwards, 2019). 

4.1.2  Morphology
Most leaves are flat, but some are folding or bulbous; 
most are photosynthetic, but in some plants this 
function has been adopted by other structures, such 
as cladodes in Casuarina species. Leaf allometry 
considers the impact of the size characteristics of 
leaves on their anatomy and physiology (Niklas, 1994; 
John et al., 2013). Some of the major foliage 
differences that occur between and within plant 
species include the size of the leaf blade, the overall 
leaf shape, the extent of dissection into leaflets, 
the shape on leaf/leaflets margins, the pattern of 
veins (venation), the size of the leaf stem (petiole), 
the arrangement and orientation of leaves along a 
branching stem, and/or the arrangement of leaves on 
the petiole. The composite impact of leaf shape, size, 
arrangement, and orientation is particularly relevant 
to water and light availability (see Section 4.2.2). 

A number of plant classification systems rely on plant 
functional traits (PFT)—”morphological, biochemical, 
physiological, structural, phenological, or behavioural 
characteristics that are expressed in phenotypes 
of individual organisms” (Violle et al., 2007)—
rather than their taxonomic characteristics (see 

https://en.wikipedia.org/wiki/Leaf#/media/File:Leaf_Tissue_Structure.svg
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Section 1.1). These traits define the ecological role 
of species—their interaction with the environment 
and other species. An understanding of the costs 
and benefits of these traits also provides insight 
into vegetation changes along physical geography 
gradients (Westoby and Wright, 2006). Several PFT 
have been nominated for this purpose, with simplicity 
of measurement being an advantage. Below we will 
consider leaf size, area, shape, and orientation.

Leaf size, measured as the one-sided projected 
surface area of a fresh leaf (as mm2), impacts leaf 
energy production, carbon assimilation, and water 
balance. Variations in leaf size between species have 
been related to climatic variation, geology, altitude, 
and latitude, with environments involving the stresses 
of heat, cold, drought, and fire showing a preference 
towards smaller leaves. Plants with larger leaves tend 
to live in warmer, sunnier, and moister climates, with 
small leaves offering more control over the loss of 
heat and water. For a given species, however, shaded 
leaves tend to become both larger and thinner than 
their sunlit counterparts, presumably endeavouring 
to capture more sunlight with a larger surface area 
(Larcher, 1980). Compound leaves may enable 
better air exchange over the leaf surface and thus 
improve the efficiency of heat transfer within a plant 
(Xu et al., 2009). Larger and thicker leaf types are 
more ‘expensive’ for the plant to make and maintain, 
that is they require a greater investment in non-
productive infrastructure, so they need to be more 
durable to justify their production (Milla et al., 2008). 
Similarly, leaf temperature and evaporative 
demand both increase with leaf size (Gates, 1980; 
Givnish, 1979). 

Specific Leaf Area (SLA) is computed as the ratio 
of the leaf size to its oven-dry mass (leaf dry matter 
content) in m2/kg. It indicates the leaf area available 
for photosynthesis per unit of biomass and appears 
to be indicative of the potential relative growth 
rate of a plant. It is also used to estimate stomatal 
density. SLA can be expressed as a function of leaf 
dry matter content (LDMC; see Section 4.2.1) and leaf 
thickness (Perez-Harguindeguy et al., 2013). Lower 
values of SLA tend to correspond to plants with 
structural leaf defence mechanisms and high leaf 
longevity, although SLA is typically lower in evergreen 
than in deciduous species (Reich et al., 1997; 
Ackerly et al., 2002) and in sun leaves compared with 
shade leaves (Lichtenthaler, 2009). Higher SLA values 
occur in permanently or temporarily resource-rich 
environments and also in selected shade-tolerant 
understorey species. Larger leaves, with a smaller 
proportion of photosynthetically active material per 
unit mass, generally have lower SLA than smaller 
leaves, although variations in this relationship can 

occur when leaf thickness changes are unrelated to 
leaf cell density (Milla et al., 2008). SLA is considered 
to be more indicative of resource usage by plants than 
LDMC in sand dune environments (Li et al., 2005) 
and may be indicative of climate response, CO2 
response, nutrient response, competitive strength, 
plant defence, and biogeochemical cycles, and related 
to flammability (Cornelissen et al., 2003; Perez-
Harguindeguy et al., 2013). When CO2 levels increase, 
SLA and stomatal density decrease (Juneau and 
Tarasoff, 2012). 

Leaf shape can be considered in terms of the degree 
of dissection (number of leaflets per leaf) and lobation 
(number of lobes or segments). One measure of leaf 
shape and complexity is the Dissection Index (DI), 
which is standardised to a value of one for a circle 
(McLellan and Endler, 1998):

Leaf shape characteristics have been related to 
hydraulic resistance in plants (Sisó et al., 2001), 
photosynthetic rates and optimal temperature range 
(Nicotra et al., 2008), and also climatic distribution 
(Royer et al., 2005). Lobation effectively reduces 
the active leaf area and offers plants particular 
advantages in terms of controlling water and 
temperature balance (Williams et al., 2004). For 
example, lobed leaves demonstrate greater efficiency 
in thermal control in calm weather (Vogel, 1970). 

Leaf orientation also differs between species and 
can vary with plant age. For example, eucalypt 
seedlings start life with juvenile leaves, which 
can intercept maximum sunlight for rapid growth. 
Such leaves are often round and grow horizontally 
from the plant structure. As the tree matures (at 
around seven years old) the leaves of most species 
change form and orientation, becoming long, thin, 
and pendulous (Jacobs, 1955). With this shape and 
orientation, adult leaves intercept less solar radiation 
but conserve moisture, which is essential for survival 
in many regions of Australia (James and Bell, 2000). 
Orientation, size, and density of leaves determine their 
shading value to understorey species and, hence, the 
extent of cast shadows for a given Sun position. The 
degree of shading projected by leaves (and stems) 
can be used to indicate leaf volume as detailed in 
Section 5.1.2.



Earth Observation: Data, Processing and Applications.  Volume 3: Applications

92

4.1.3  Texture
Leaf texture can significantly impact the way light 
interacts with foliage, and hence its appearance. 
The surface of a leaf can include a range of textural 
features, including hairs, spikes, coatings, patterns, 
and bumps, which modify light reflection properties 
(Esau, 1965). The flatness of a leaf also affects the 
way light will reflect and refract from its surface. The 
texture of the uppermost (adaxial) leaf surface often 
differs from that of the underside (abaxial). All these 
factors contribute to the intensity and wavelengths 
of light reflected by a leaf and also influence 
the radiation that is allowed to reach underlying 
vegetation (see Section 4.3). 

The texture of a leaf also affects its function in 
terms of heat transfer, ultraviolet (UV) protection, 
photosynthetic efficiency, moisture loss, and 
susceptibility to both biotic and abiotic factors (see 
Section 1.1). Frost damage can be reduced by leaf 
coatings and hairs, while some predators can be 
discouraged by rough and prickly textures. While 
the propensity of a species towards a particular leaf 
texture is related to genetic traits, its manifestation 
in individual plants can be significantly varied by 
environmental factors (Roy et al., 1999). 

The cuticle layer on the epidermis protects the 
leaf from gaining or losing too much water and 
from invasion by a range of potential pathogens, 
such as fungi. This microcrystalline structure 
mostly comprises waterproof waxes (lipids), 
but also contains a much smaller proportion of 
polysaccharide compounds, such as cellulose and 
pectin, that attract water (hydrophilic). Microfibrils 
into the leaf selectively transport water and mineral 
salts between the leaf surface and internal tissues 
(Popp et al., 2005), thus avoiding excessive leaching 
of plant metabolites in damp environments. This 
structure also allows the leaf to release volatile 
solutions to deter pests or attract insects. Natural 
leaf coatings can vary in thickness and appear shiny, 
glaucous, rough, or smooth. Various leaf coatings for 
crop protection are based on disguising or enhancing 
the natural leaf surface (Walters, 2006).

Hairs on plant leaves can vary in terms of number, 
density, width, length, colour, and orientation. Plants 
with leaf hairs are termed pubescent; those without 
are called glabrous. The presence of leaf hairs varies 
with plant species, location, and function. Pubescent 
leaves are generally less palatable to predators and 
less susceptible to frost damage. Most leaf hairs allow 
solar radiation to be transmitted through the cuticle 
layer to the photosynthetic cells. A dense covering 
of hairs, however, protects underlying cells from 
intense solar radiation, and thus effectively insulates 

the leaf from burning (Karabourniotis et al., 1995). 
By reducing leaf absorptance (the effectiveness 
with which it absorbs radiant energy), pubescence 
tends to lower both the leaf temperature (relative to 
ambient air temperature) and transpiration, which is 
advantageous in windy locations. Not surprisingly, 
pubescence is particularly common among leaves of 
desert and drought-tolerant plants (Ehleringer, 1984; 
Grammatikopoulous and Manetas, 1994). A negative 
correlation has been observed between leaf size and 
leaf hair density, with smaller leaves having a higher 
density of hair (Roy et al., 1999). This relationship 
may result from cumulative stresses, such that both 
smaller leaf size and increased pubescence offer 
greater protection to the plant. The cost of this 
protection, however, is reduced absorption of light for 
photosynthesis (Ehleringer and Mooney, 1978). 

Other potential leaf protuberances include spinose 
structures, such as thorns (modified stems), 
spines (modified leaves and stipules), and prickles 
(modified hairs). Spinosity deters herbivores and 
other predators. A range of leaf bumps or irregular 
thickenings can also result from interactions with 
pathogens. These features change the air flow around 
(see Section 4.4) and reflectance properties (see 
Section 4.3) of foliage and, in some instances, shade 
the leaf.

Another leaf variant that can impact texture is the 
scale and symmetry of internal patterns, largely 
resulting from venation (see Section 4.1.1). Variations 
in size, density, and topology of veins influence plant 
performance, ultimately favouring certain plants in 
particular environments (Sack and Scoffoni, 2013). 
Leaves with more complex outlines tend to have more 
primary veins and experience less shrinkage when 
dried, whereas simpler leaves tend to show more 
secondary veins and greater shrinkage potential 
(Holbrook and Zwieniecki, 2005). Venation also 
determines leaf flatness, which directly affects leaf 
reflectance and scattering properties.

4.1.4  Strength
Leaves endure various forms of mechanical stress, 
including gravity, rubbing, wind, rain, and predators 
(Niklas, 1992). Stronger leaves are more resistant 
to such stresses, which may reduce leaf loss and 
increase the leaf lifespan (Reich et al., 1991). Leaves 
growing in shaded positions are typically less dense 
to allow better light transmission and absorption (see 
Section 4.1.1). Plants with an ample supply of nutrients 
generally grow larger, more nitrogen-rich leaves with 
a shorter lifespan, and more photosynthetic proteins 
(Evans, 1989). 
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The mechanical resistance of a leaf affects not only 
its lifespan but also its rate of decomposition, and its 
interactions with both the abiotic environment and 
potential consumers. Leaf fracture properties can 
be measured by shearing, punching, or tearing tests 
and expressed in terms of leaf lamina strength (the 
maximum force per unit area required to fracture 
the leaf), toughness (the work required to fracture 
the leaf), and stiffness (the resistance against 
deformation; Onoda, 2017). All leaf strength properties 

have been observed to increase with the availability of 
light, such that leaves in full sun were more resistant 
to fracture than those growing in shaded positions. 
Sun leaves demonstrated greater Leaf Mass per Area 
(LMA), while shade leaves showed greater punch 
strength per leaf mass. Since cell walls provide most 
of the mechanical strength in leaves, containing 60% 
of the total leaf carbon, this characteristic of shade 
leaves is attributed to the more reinforced structure of 
their cell walls (Onoda et al., 2008). 

4.2  Chemical Composition
The chemical composition of foliage is determined 
by both environmental factors, such as soil fertility, 
and plant genetic traits. The foliar concentration 
of various biochemicals is directly related to 
essential biochemical processes in plants, including 
photosynthesis, respiration, evapotranspiration, and 
decomposition (Curran, 1989; Curran et al., 2001; 
see Section 5.2). Foliar chemistry is particularly 
relevant to herbivore survival, with variations in forage 
quality directly impacting the distribution, diversity, 
and abundance of animal species. Plant chemical 
composition can thus be indicative of soil nutrient 
availability, habitat quality, and ecosystem processes 
(Youngentob et al., 2012). 

Analytical techniques such as atomic absorption 
spectrophotometry or chromatography can be used 
to identify and quantify the chemical components 
in foliage. While the specific chemical composition 
of plants varies between species and locations, the 
major constituent by weight in green leaves is water 
(Weisz and Fuller, 1962). Below we further discuss the 
chemical composition of leaves in terms of their most 
significant components:

	§ water—the heaviest component in green foliage 
(see Section 4.2.1);

	§ inorganic components—minerals (see 
Section 4.2.2); and

	§ organic components (see Section 4.2.3):

	w carbohydrates—energy storage and structural 
elements ;

	w lipids—waterproofing and structure;

	w proteins and nucleoproteins—structure and 
genetic codes; and

	w pigments—colour.

4.2.1  Water
Water is the major constituent of plant tissue, 
comprising over 75% of most green foliage and 
governing most plant processes (Weisz and 
Fuller, 1962). The internal moisture content of leaves 
varies enormously both between and within species 
with variations in ambient climatic and edaphic 
factors, especially water availability, and significant 
variations in leaf moisture content can occur during 
diurnal, seasonal, and phenological cycles. Water 
also acts as a solvent to transfer gases, minerals, 
and other solutes between plant cells and organs, as 
a reactant in photosynthesis, and as a substrate in 
hydrolytic processes. It maintains the turgor of living 
plants, controls cell growth and stomatal opening, 
and directly supports the form of herbaceous plants. 
As water content decreases, leaves wilt—they reduce 
photosynthesis rates, close stomata, and stop cell 
enlargement—until a critical threshold is reached 
when cells begin to die (Kramer and Boyer, 1995). 

Leaf moisture content is indicative of plant stress, 
productivity, and evapotranspiration, as well as the 
availability of moisture in the soil and atmosphere. 
As such, leaf water content has been used as an 
indicator for scheduling irrigation and assessing the 
risk of drought and fire (Peñuelas et al., 1993, 1996; 
see Sections 13 and 18). Plants adapt to water stress 
by either using water more efficiently or reducing 
water loss (Dudley, 1996). Both these adaptations can 
be achieved by reducing leaf size, as smaller leaves 
typically have fewer stomata and higher hair density 
(see Section 4.1.3). Water stress is increased in saline 
environments since the presence of salt reduces 
water potential in the plant root zone, resulting in loss 
of turgidity in plant tissue (Pasternak, 1987). 

…. many biochemical processes, such as photosynthesis, respiration,  
evapotranspiration and decomposition are related to the foliar concentration  

of biochemicals such as chlorophyll, water, nitrogen, lignin and cellulose.  
(Curran, 2001).
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Water does not occur in its pure form in plants, but as 
a solution, which modifies some of its basic properties 
(Salisbury and Ross, 1969). It moves within plants 
primarily via osmosis, that is, diffusion through a 
permeable membrane (such as a cell wall) from a less 
concentrated (hypotonic) to a more concentrated 
(hypertonic) solution. Since this movement represents 
a form of energy, solutions can be viewed in terms 
of their osmotic potential. It is a characteristic of 
water that it moves to achieve equilibrium across a 
permeable membrane such that the water potentials 
on both sides are equivalent (isotonic). By contrast, 
osmotic pressure is the pressure required on a 
solution to stop water diffusing across a semi-
permeable membrane, that is, to act against osmosis 
(Kramer and Boyer, 1995). 

The concentration of fluids determines their chemical 
potential—the force they can exert. In plants, the cell 
water potential derives from the cumulative potentials 
of solutes, porous solids, pressure, and gravity. 
As a cell dehydrates, its contents become more 
concentrated and its water volume decreases, so its 
cell water potential decreases—it is less likely to force 
water out of the cell. The extent of cell shrinkage 
during dehydration, however, is also determined by 
the cell wall elasticity, with greater changes in cell 
water potential being observed in cells with more 
rigid walls. Leaf water potential is correlated with its 
net CO2 assimilation rate and stomatal conductance 
to water vapour. Plant and soil water potentials are 
expected to be in equilibrium before dawn for non-
transpiring plants, enabling plant water potential 
at that time to be used as a surrogate for soil water 
availability (Ehlers and Goss, 2003).

A leaf begins to lose moisture when it is removed 
from a plant, resulting in reduced turgidity in cells and 
generalised shrinking. Leaves with high initial water 
content are more likely to shrink in storage than those 
with low water content. Complex leaves generally 
have more structural support against shrinkage than 
simple leaves. Leaf cell structure determines the 
impact of water loss on leaf appearance, with those 
plants containing elastic cell walls withstanding up 
to 40% of water loss before contracting, while those 
with inelastic cell walls wilting after losing only 1–3% 
(Weatherley, 1965). Most crop species wilt when 
leaf water content is around 60–70%. This is an 
important consideration for leaf sample collection 
and measurement during field work (Juneau and 
Tarasoff, 2012; TERN Australia, 2018). 

The water status of a plant can be described in terms 
of physical characteristics, such as its chemical 
potential within the plant cells, or in terms of its water 
content, that is, the proportion of water relative to 
plant tissue. Both approaches require destructive 
sampling of individual leaves. Since chemical 
potential and pressure are related, a thermocouple 
psychrometer, which detects vapour pressure, can 
be used to measure cell water potential in leaves. 
Other methods for measuring water potential involve 
using a pressure chamber (which determines the 
tension on water in the xylem) and a pressure probe 
(which quantifies the turgor pressure of single cells; 
Boyer, 1995). Water potential is directly related to the 
energy status of plant water but does not account for 
osmotic adjustment, which conserves cell moisture in 
drought conditions. Accordingly measures of water 
content are considered more appropriate in this 
context.

Water content is expressed either as a mass or a 
volume. Both are determined by drying a leaf sample 
and comparing the dried and fresh quantities. This 
approach underlies a number of EO-based indices, 
including Water Content (WC), Live Foliar Moisture 
Content (LFMC), Relative Water Content (RWC), and 
Equivalent Water Thickness (EWT; see Sections 8.1.5 
and 9.5). WC (also called Gravimetric Water Content, 
GWC) actually determines the ratio of leaf water to 
leaf dry weight, where leaf water is computed as the 
difference between fresh and dry weights:

where

FW is fresh leaf weight (g); and
DW is oven dried leaf weight (g).

Live Foliar Moisture Content (LFMC) computes the 
same ratio as a percentage. A similar measure is 
succulence, which compares the water mass with leaf 
area:

A related metric is the Leaf Dry Matter Content 
(LDMC, in mg/g):

LDMC is currently in favour as a PFT to differentiate 
plants on the basis of their ecological behaviour. 
LDMC and SLA (specific leaf area, see Section 4.1.2) 
together represent the balance achieved by plants 
between rapid biomass production and efficient 
nutrient management (Garnier et al., 2001).
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RWC or ‘relative turgidity’ (Barr and Weatherley, 1962) 
compares the difference between the water mass of a 
sample leaf with its fully hydrated water content:

RWC is a preferred measure of leaf water content as 
it is invariant within a leaf and changes in proportion 
to leaf turgor. EWT represents the volume of water 
per unit area of leaf (g/cm2). This measure has been 
most closely approximated by analysis of spectral 
properties of leaves in the short wave infrared (SWIR) 
and near infrared (NIR) wavelengths (see Section 4.3). 

Various studies have observed differences in both 
the leaf water content and leaf dry matter content 
(LDMC) of species that are enabled with strategies 
to regenerate after fire (Trabaud, 1987, 1991; 
Keeley, 1995). Common fire survival strategies include 
the capacity to resprout from adventitious shoots 
(resprouters) and/or produce abundant fire-hardy 
seed (seeders). Resprouting species were found to 
have consistently higher measurements of LDMC 
throughout the year compared with seeders, while 
seeders were observed to be more drought tolerant 
(Saura-Mas and Lloret, 2007).

Leaf wetness is a measure of meteorological 
precipitation (water from clouds) and dew (water from 
condensation near the ground) on the leaf surface. 
It is difficult to quantify directly, but a number of 
sensors rely on measuring the dielectric constant 
of the adaxial surface (Magarey et al., 2005). Leaf 
wetness is also estimated by artificial leaf surface 
sensors, which electronically log the moisture that 
accumulates on a prepared surface. In conjunction 
with air temperature, leaf wetness duration (LWD) 
is important for control of fungal diseases in 
agriculture (Yarwood, 1978; Huber and Gillespie, 1992; 
Rowlandson et al., 2015). 

The water status of foliage is not only indicative of the 
physiological status and productivity of a plant, but at 
a landscape scale it is also informative for assessing 
drought conditions, scheduling irrigation, and rating 
fire risk. Net Primary Productivity (NPP; above ground) 
correlates directly with actual evapotranspiration 
(AET) for a range of biomes (see Section 7.6), with 
both estimates being indicative of the availability of 
water and solar energy (Rosenzweig, 1968). 

While it is possible to scale up from leaf porometer 
measurements to canopy estimates of water content, 
most studies have found this approach to be 
problematic (Jarvis, 1985; Rollin and Milton, 1998). 
Leaf optical properties contribute to canopy 
reflectance, but so too do structural characteristics, 
background strata and viewing configuration factors 
(Jacquemoud and Ustin, 2003). EO-based techniques 
for mapping and monitoring water content of 
vegetation are further discussed in Sections 8 and 9. 

4.2.2  Inorganic components
Mineral solids generally comprise 1–2% of living 
foliage (Weisz and Fuller, 1962). Most plant minerals 
exist in solution, but some can also occur as crystals. 
Minerals can occur freely or as part of organic 
compounds. For an individual species, low foliar 
nutrient content generally indicates low site mineral 
availability. 

Terrestrial vegetation requires a range of inorganic 
minerals, which are absorbed from the growing 
medium. At least 14 minerals are considered essential 
for plant nutrition: six macronutrients (nitrogen, 
phosphorus, potassium, calcium, magnesium, and 
sulphur), which are required in large amounts, 
and eight micronutrients (chlorine, boron, iron, 
manganese, copper, zinc, nickel, and molybdenum). 
These and other minerals, when present in high 
concentrations in the growing medium, can be toxic to 
plant growth, including sodium, chlorine, boron, iron, 
manganese, and aluminium (White and Brown, 2010). 

The most limiting nutrient for growing crops in 
many agricultural areas is nitrogen. This mineral is 
important for herbivores but exists in relatively low 
concentrations in some genera such as Eucalyptus. 
Nitrogen Use Efficiency (NUE) indicates the efficiency 
of nitrogen usage by plants for food production (see 
Section 5.3.5).

All mineral nutrients and trace elements—both 
essential and non-essential—detected in an organism 
define its ‘ionome’ (Salt et al., 2008). Since the leaf 
ionome indicates the interactions between the plant 
and its environment, especially soil composition, 
ionomic characteristics are being analysed to 
understand phenotypic variation within species 
(Stein et al., 2017). 
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4.2.3  Organic components
With the exception of compounds from mineral 
origins, such as CO2 and carbonic acid, compounds 
containing carbon are collectively considered as 
organic. Some organic components support plant 
structure while others are dissolved or suspended in 
water in plant cells. The actual proportions of different 
organic compounds vary between species and 
locations. The major categories of organic compounds 
that occur in foliage with relevance to EO studies are 
carbohydrates, proteins, fats, and pigments:

	§ Carbohydrates account for around 20% of the mass 
of living plants (Weisz and Fuller, 1962) or 50–80% 
of the total dry weight of most plants (Salisbury 
and Ross, 1969). These compounds occur as 
sugars, polysaccharides, and the more complex 
configurations of the elements carbon, hydrogen, 
and oxygen. A simple sugar molecule is based on a 
6-carbon structure resulting from photosynthesis. 
Two of these sugars can combine into a double 
sugar (12-carbon or disaccharide), and multiple 
sugars can combine to form a polysaccharide, such 
as cellulose, glycogen, or starch. The carbohydrates 
primarily function as energy reserves but also 
contribute to the structure of organelles. Structural 
carbohydrate derivatives include pectin, lignin, 
hemicellulose, and chitin. Cellulose and lignin, the 
most abundant renewable carbon resources on 
Earth, work together to strengthen cell walls and 
water transportation networks in vascular plants, 
thereby providing mechanical support for stems 
and leaves. 

	§ Proteins are formed from long chains of amino 
acids. They occur in greater variety than any 
other organic components (with every type 
of living organism developing a different, and 
characteristic, type of protein) but only comprise 
a small proportion of living plant matter by weight 
(< 2%; Weisz and Fuller, 1962). Protein chains can be 
broken (denatured) by heat, pressure, electricity, 
and radiation. They provide the main structural 
material in plants, supply enzymes in cells, and 
help to form other organic compounds such as 
nucleoproteins that are built from nucleic acid and 
proteins. The two major nucleic acids are ribose 
nucleic acid (RNA) and deoxyribose nucleic acid 
(DNA). RNA exists throughout cells while DNA 
only occurs within the cell nucleus as a structural 
component of genes.

	§ Lipids include fats, fatty acids, glycerine, waxes, 
and sterols that do not dissolve in water. These 
compounds are formed from varying combinations 
and configurations of the elements of carbon, 
hydrogen, and oxygen and are generally insoluble in 
water. They form the framework for cell membranes 
and release energy when decomposed. Fat 
derivatives, such as cutin, act as a waterproofing 
agent in the leaf cuticle and are believed to reduce 
transpiration (see Section 4.1). Lipids occur in small 
quantities (< 2% of dry weight) in plant leaves, 
stems and roots (Salisbury and Ross, 1969). 

	§ Pigments are molecules that absorb light, and 
the colour of a leaf is determined by its pigment 
composition. These compounds selectively 
absorb some wavelengths of electromagnetic 
radiation (EMR) and reflect others, such that those 
wavelengths that are reflected determine the 
apparent colour of a pigment (see Volume 1B—
Section 6). While chlorophyll a is the primary 
photosynthetic pigment in all photosynthetic plants, 
most organisms contain multiple pigments to 
absorb energy across a wider range of wavelengths 
(see Excursus 4.1). This is particularly important 
to vegetation that does not have direct access 
to sunlight, such as understorey or submersed 
plants. The precise pigment composition within 
an individual leaf results from its generic heritage, 
its age, and its vigour, as well as its location with 
respect to intercepting direct sunlight. The latter 
will be impacted by latitude and aspect for all 
plants, and either horizontal layering for terrestrial 
plants or depth below water surface for aquatic 
plants. 
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Excursus 4.1�—Plant Pigments

Further information: Salisbury and Ross (1969), Croft and Chen (2017)

The EMR wavelengths that are absorbed by some 
major leaf pigments are illustrated in Figure 4.2. 
The precise absorption characteristics of pigments 
can be determined by various biochemical and 
photochemical analyses (Lichtenthaler, 1987; 
Lichtenthaler and Buschmann, 2001; Croft and 
Chen, 2017). Leaf absorption characteristics can 
also be approximated by field instruments, such as 
spectrophotometers, and by hyperspectral remote 
sensing (Curran, 1989; Blackburn, 2007). Relevant 
characteristics of photosynthetic pigments are listed 
in Table 4.1. These pigments are contained in plastids, 
the major organelles in plants and algae. In addition, 
non-photosynthetic plant pigments occur in the cell 
vacuole (see Figure 4.1), or sap.

Chlorophyll pigments are produced by chloroplasts 
(green plastids; see Figure 4.1) and are responsible 
for photosynthesis. They absorb blue and red light 
and reflect green wavelengths, so appear green. 
Chlorophyll molecules are large, stable, nutrient-rich, 
and repel water. All forms of chlorophyll have the 
same basic molecular structure based on a chlorin 
(tetrapyrrole) ring with a central magnesium ion 
(Croft and Chen, 2017). Being the primary pigment 

for photosynthesis, chlorophyll a is the most 
abundant, with 2.5 to 4.0 times more chlorophyll a 
than chlorophyll b in photosynthetic plants. The 
other forms of chlorophyll are accessory pigments 
which collaborate with chlorophyll a by capturing 
a wider range of wavelengths. Chlorophyll c, 
chlorophyll d, and chlorophyll e only occur in aquatic 
algae and chlorophyll d primarily exists in organisms 
living in deeper waters. Photosynthetic bacteria 
contain a modified form of chlorophyll known as 
bacteriochlorophylls, which exists as a range of 
compounds (see Volume 3B).

Phycobilins are attached to water-soluble proteins 
(phycobiliproteins) and absorb a wider range of 
wavelengths than chlorophyll. This is particularly 
useful for organisms growing in water. These 
molecules comprise a chain of pyrrole rings. 
Phycoerythrin is the main phycobilin in red algae 
which can photosynthesise using dim blue-green 
light, and the proportion of this phycobilin relative 
to chlorophyll increases with water depth. Blue-
green algae that grows in surface waters, and some 
terrestrial algae, contain a greater proportion of 
Phycocyanin.

Figure 4.2  Absorption spectra of leaf pigments

Adapted from: Goodwin and Mercer (1990) by Qiaoyun Xie, University of Technology Sydney. (Original retrieved from http://biologywiki.apps01.yorku.ca/
index.php?title=File:Pigment_spectra.png)

http://biologywiki.apps01.yorku.ca/index.php?title=File:Pigment_spectra.png
http://biologywiki.apps01.yorku.ca/index.php?title=File:Pigment_spectra.png
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Carotenoids are long molecules created in 
chromoplasts (pigmented plastids). They mostly 
absorb blue wavelengths, so generally appear as 
yellow-orange colours in petals, fruits, and leaves. 
These carbon-based compounds do not dissolve in 
water. While carotenoids help to capture a greater 
range of solar wavelengths than chlorophyll, 
they are considered to be accessory pigments 
for photosynthesis since this energy needs to be 
transferred to chlorophyll for photosynthesis to occur. 
Carotenes are hydrocarbons, with the three common 
forms being stereoisomers of the same molecular 
formula. Xanthophylls (or carotenols) also contain 
oxygen as a hydroxyl, carbonyl, or carboxyl group.

Anthocyanins are a type of water-soluble flavonoid 
that vary in colour from red to purple and blue 
depending on pH. They absorb blue-green 
wavelengths and are predominantly found in petals 
and fruit, where they attract pollinators, but are also 
responsible for red juvenile and autumn leaves. Red 
anthocyanins are believed to offer pharmacological 
benefit as antioxidants. The production of 
anthocyanins uses carbohydrate reserves in a plant. 
They are produced in the leaf as it dies, possibly as 

a defence against pests which would be attracted to 
the declining chlorophyll levels, or to enable efficient 
resorption of foliar nutrients (see Section 5.3.3). This 
group of pigments also act as a natural sunscreen 
for plants by trapping excessive solar radiation, with 
production increasing in response to ultraviolet (UV) 
light, and provide photostability during leaf expansion 
(Close and Beadle, 2003; Liakopoulos et al., 2006). 
Another group of vacuole pigments (see Figure 4.1) 
includes tannins, which occur in leaf, bud, seed, 
root, and stem tissues. Tannins are water soluble 
and coloured brown. When leached from nearby 
vegetation (such as eucalypts), they contribute to 
the dark water colour of many inland waterbodies in 
Australia. Tannins are astringent to taste and play a 
defensive role against plant predators. 

Higher concentrations of chlorophyll a generally mask 
the presence of other pigments in leaves. As light 
levels fall with the approach of winter, the volume of 
chlorophyll a decreases in deciduous plants, allowing 
other pigments to become more visible. A similar 
process occurs as plants senesce. The precise colours 
of autumn leaves depend on the pigment composition 
in the leaves of different plant species.

Table 4.1  Photosynthetic pigments

Absorption peaks (in nm) are approximate values only. 

Pigment Group Pigment
Colour/ 
spectral region

Characteristic 
Absorption Peaks 

Occurrence

Chlorophyll

Chlorophyll a Blue-green 435, 675 All photosynthetic organisms except bacteria

Chlorophyll b Yellow-green 480, 650 All green plants, green algae and some prokaryotes

Chlorophyll c Golden-brown ~645 Chromista, dinoflagellates, brown algae

Chlorophyll d Far red ~740 Red algae, blue-green algae

Chlorophyll e Golden-yellow 415, 654 Golden-yellow algae

Bacterioviridin Chlorobium chlorophyll Far red 750/770 Green bacteria

Bacteriochlorophyll
Bacteriochlorophyll a Far red, NIR 800, 850, 890 Purple and green bacteria

Bacteriochlorophyll b NIR 1,017 Rhodopseudomonas (purple bacteria)

Phycobilin

Allophycocyanin Blue-red 654

Red algae, blue-green algae,
Phycoerythrin Red 490, 546, 576

Phycocyanin Blue-green 618

Phycourobilin Orange ~495

Carotene

a-carotene Yellow-orange 420, 440, 470 Green leaves and some bacteria and fungi

b-carotene Yellow-orange 425, 450, 480 Main carotene in most plants

g-carotene Brown 440, 460, 495 Green sulphur bacteria; some amounts in other plants

Xanthophyll

Luteol Pale yellow 425, 445, 475 Green leaves, green algae and red algae

Violaxanthol Brown 425, 450, 475 Main carotenol in green leaves, green algae and red algae

Fucoxanthol Brown 425, 450, 475 Brown algae, diatoms

Spirilloxanthol 464, 490, 524 Purple bacteria

Sources: Rabinowitch and Govindjee (1969) and Lichtenthaler and Buschmann (2001) 
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4.3  Spectral Properties
Electromagnetic radiation (EMR), originating from the 
Sun or an artificial light source, is either absorbed, 
reflected, or transmitted by foliage, where 

incident energy = reflected energy  
+ transmitted energy + absorbed energy

For convenience, names are assigned to the various 
regions of the electromagnetic spectrum, but there are 
no precise divisions between these regions—they are 
generally defined by the sensing method by which they 
are detected (see Volume 1A—Section 5). Commonly 
accepted ranges for the EMR spectral regions that are 
most relevant to EO are:

	§ visible: 0.38–0.7 mm (380–700 nm);

	§ infrared (IR): 0.7–1,000 mm;

	§ microwave: > 1 mm–1 m.

Infrared wavelengths are often sub-divided into the 
regions:

	§ near infrared (NIR): 0.7–1.3 mm;

	§ short wave infrared (SWIR): 1.3–3 mm;

	§ middle infrared (MIR) or mid-wavelength (or 
medium wave) infrared (MWIR): 3–8 mm;

	§ thermal infrared (TIR) or long wavelength infrared 
(LWIR): 8–15 mm; and

	§ far infrared (FIR): 15–1,000 mm.

Reflectance of an object is defined as the proportion 
of incident energy it reflects:

with similar definitions for transmittance and 
absorptance, so that:

reflectance + transmittance + absorptance = 1

A typical reflectance curve for green vegetation is 
shown in Figure 4.3a. Absorption of visible and NIR 
wavelengths of EMR results from energy transfer 
to molecules, atoms, or electrons whereas SWIR 
and TIR wavelengths produce molecular vibrations 
in leaves, largely due to the presence of water (see 
Volume 1). However, the precise interaction for an 
individual leaf with a radiation source will depend 
on the wavelength(s) of radiation and the physical 
structure (morphology) and chemical composition of 
the leaf, as well as its orientation and surface features. 
Accordingly, reflectance spectra can vary for different 
species in a genus (see Figure 4.3b) and different 
leaves on the one plant.

UV to visible wavelengths excite electrons and 
determine the apparent colour of foliage, that is, those 
wavelengths that it reflects rather than absorbs. 
Chlorophyll molecules, for example, absorb blue 

and red wavelengths and reflect green, resulting 
in the characteristic colour of vegetation, while 
other photosynthetic pigments absorb different 
wavelengths. In terrestrial vegetation, the range of 
wavelengths that can be absorbed for photosynthesis 
approximately spans from 400–700 nm and is called 
Photosynthetically Active Radiation (PAR). The major 
groups of pigments associated with photosynthesis 
can be grouped in terms of their chemical structure:

	§ Tetrapyrrols:

	w Chlorophylls—enable photosynthesis in plants 
and algae;

	w Bacteriochlorophylls—enable photosynthesis in 
bacteria;

	w Phycobilins—accessory pigment for 
photosynthesis in aquatic algae; and

	§ Carotenoids—carotenes and xanthophylls—
accessory pigment for photosynthesis in plants, 
algae, and bacteria (see Excursus 4.1).

While leaf optical properties have been researched 
for well over a century, there are still a number 
of unknowns. We know that reflectance and 
transmittance characteristics result from both the 
concentration of compounds that absorb light and the 
internal scattering of the light that is not absorbed. A 
healthy leaf absorbs:

	§ violet and blue wavelengths—due to the presence 
of chlorophyll, carotenoid, and xanthophyll 
pigments;

	§ red wavelengths—due to the presence of 
chlorophyll pigment(s); and

	§ SWIR—due to the presence of water with 
characteristic absorption peaks near 1450 nm and 
1900 nm (see Figure 4.3).

These characteristics produce reflectance peaks for 
those wavelengths that are not absorbed, namely 
green and NIR, with two ‘bumps’ in SWIR wavelengths 
that are not absorbed by water, and reflectance 
troughs for those wavelengths that are absorbed 
(namely blue, red, and SWIR wavelengths). The NIR 
reflectance plateau (700–1100 nm) results from 
structural biochemicals and multiple scattering 
from structures and air spaces within the leaf (see 
Figure 4.1). Water absorption in the SWIR region 
produces primary reflectance dips at 1450 nm, 
1940 nm, and 2500 nm, and secondary dips at 
980 nm and 1240 nm (Carter, 1991). In addition, 
various aspects of the physical morphology of leaves 
will impact reflectance properties (see Section 4.1.2). 
In particular, the leaf surface shape, size, orientation, 
and texture all affect the way it intercepts and 
reflects light.
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Figure 4.3  Reflectance of green foliage

a. Reflectance properties of green vegetation primarily derive from leaf pigments in visible wavelengths, cell structure in NIR 
wavelengths and water content in SWIR wavelengths. Characteristic absorption features occur in visible wavelengths (due to 
chlorophyll) and SWIR wavelengths (due to water content).

b. Reflectance spectra varies for different species. Below is shown the mean reflectance spectra for four species of Eucalyptus and 
one species of Angophora. 

Source: a. Based on Harrison and Jupp (1989) Figure 30; b. Laurie Chisholm, University of Wollongong

Spectral properties of leaves are also known to 
vary with various forms of plant stress, including 
dehydration, flooding, freezing, herbicides, 
competition, disease, predators, and deficiencies. 
As foliage dries, the spectral absorption features 
in SWIR and TIR wavelengths are less dominated 
by water and those resulting from its biochemical 
components become more evident. Stressed plants 

have increased transmittance and decreased 
absorptance of wavelengths near 700 nm, resulting 
from changes in leaf chlorophyll concentration (Carter 
and Knapp, 2001). As the chlorophyll concentration 
reduces in a leaf, either from abscission or stress, 
the leaf colour also changes (Jacquemoud and 
Ustin, 2014; see Section 5.3.3). 
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Figure 4.4  Leaf reflectance changes with stress

a. In the initial stages of disease, NIR reflectance is reduced. As 
disease progresses, NIR reflectance continues to decrease and 
the colour of foliage changes markedly.

b. Increasing plant stress shifts the ‘red edge’ towards shorter 
wavelengths

	
Adapted from: a. Barrett and Curtis (1976) Figure 15.1b; b. Cho et al. (2012)  

The onset of stress, senescence, or disease in 
plants reduces reflectance in both green and NIR 
wavelengths and shifts the transition between red 
absorption and NIR reflectance (see Figure 4.4a). In 
green leaves, the transition from low red reflectance 
to high NIR reflectance corresponding to the spectral 
range 680–780 nm is referred to as the ‘red edge’. 
Changes in vegetation vigour affect the precise 
position and slope of the red edge (see Figure 4.4b). 

Many spectral indices developed for EO datasets 
focus on changes in these spectral regions (see 
Section 8.1) and are used to determine the chlorophyll 
content of foliage (Croft and Chen, 2017). Physical 
and mathematical models that simulate the spectral 
consequences of variations in leaf biochemical and 
physical composition are introduced in Sections 9 
and 10. 

4.4  Boundary layer
A boundary layer results from aerodynamic forces 
between a fluid and an object. This can occur when 
either an object moves through a fluid or a fluid 
moves past an object. The speed and shape of 
the object together with the mass, viscosity, and 
compressibility of the fluid determine the magnitude 
of the aerodynamic forces. The net effect of these 
forces is a layer at the boundary of the fluid that is 
most strongly affected by its viscosity, that is the 
resistance of the fluid to its flow. Boundary layers 
occur on the surfaces of many moving vehicles 
and in the transition zone between fluid layers. 
Some commonplace examples of boundary layers 
include the air zone around aerofoils, such as aircraft 
wings, the water zone around aerofoils, such as ship 
hulls, and the interface between the Earth and its 
atmosphere. They also surround leaf surfaces and can 
impact essential physiological processes.

Within the boundary layer, the velocity of the fluid is 
reduced as some of the fluid attaches to the surface 
of the object, creating shearing stresses within the 
fluid. Movement within the boundary layer can be 
either laminar (flowing in layers), or turbulent (mixing 

across layers), or a transition between the two. Mixing 
across layers involves non-laminar currents called 
eddies. These typically create swirling movement 
within fluids, and often result from diversion around 
some obstacle. Eddies occur at various scales 
between and within fluid layers in the ocean and in the 
atmosphere (see Volume 3B).

Between a fluid and an object’s surface, turbulence 
can result from surface roughness, uneven fluid flow, 
and/or increased distance from the object’s leading 
edge. In fluid dynamics, the degree of turbulence is 
quantified by the dimensionless Reynolds Number 
(RN):

where

RN < 100,000 indicates laminar flow;
RN > 1,000,000 indicate turbulent flow; and
100,000 < RN < 1,000,000 indicates a transition 

between laminar and turbulent flow.
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Figure 4.5  Impact of vegetation density on wind flow

This aerial photograph of the dingo-proof fence in the Strzelecki Desert, Australia, shows increased woody shrub density where 
dingoes have been removed. The diagram below demonstrates predicted wind flow regimes—‘isolated roughness’ and ‘wake 
interference’ at low to medium shrub density; ‘skimming flow’ at high shrub density—and increased root structure and canopy shade 
at high shrub density.

Source: Lyons et al. (2018)

A boundary layer surrounds any leaf surface, 
providing a thin interface of relatively stationary air 
between the leaf and the atmosphere. Within the 
boundary layer, turbulence is effectively reduced by 
friction and the thickness of this layer is modified by a 
number of factors, including:

	§ leaf texture—dense hairs effectively create a 
windbreak, which increases the thickness of the 
boundary layer and reduces transpiration rates, 
while sparse hairs may increase turbulence (Jones, 
1992);

	§ stomatal structure—recessed stomata increase the 
boundary layer thickness; 

	§ leaf size—the boundary layer increases with leaf 
size and distance from the leading edge of the leaf 
(Grace and Wilson, 1976) and with variations in leaf 
shape that effectively reduce leaf size (for example 
leaf lobes and serration also reduce the thickness 
of the boundary layer; Schuepp, 1993); and

	§ atmospheric turbulence—wind will reduce the 
thickness of the boundary layer. 

The boundary layer between leaves and the 
atmosphere directly impacts the rate of plant 
water loss via transpiration (see Section 5.2.3) 
and the transfer of heat into the atmosphere (see 
Section 5.2.4). The density of foliage and plants also 
impacts wind flow regimes (see Figure 4.5). This 
effect is particularly relevant in dryland regions with 
patchy vegetation, where higher plant densities 
reduce wind erosion and sediment transport 
(Mayaud et al., 2016) and encourage more stable dune 
formations (Lyons et al., 2018).
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4.5  Further Information

Physiology
Taiz et al. (2015): www.plantphys.net 

Pigments
Light and photosynthetic pigments: https://www.

khanacademy.org/science/biology/photosynthesis-
in-plants/the-light-dependent-reactions-of-
photosynthesis/a/light-and-photosynthetic-pigments
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Plants supply food, oxygen, medicines, clothing, shelter, and fuel for human populations. They also modulate 
local atmospheric conditions, recharge groundwater, and stabilise and enrich soils. The following sub-sections 
describe specific attributes of plants that are relevant to the interpretation of EO datasets:

	§ structure (see Section 5.1)—shape, size and volume;

	§ physiological processes (see Section 5.2)—
photosynthesis, respiration, transpiration, and 
thermal stability; and

	§ growth (see Section 5.3)—life cycle, phenology, 
abscision, photomorphogenesis, and nutrient use 
efficiency.

5.1  Structure
Within any organism, groups of similar cells form 
tissue, which become specialised for particular 
functions. For example, xylem tissues transport fluids 
within a plant. Likewise, groups of tissues with a 
common function form organs, such as roots, stems, 
leaves, or flowers. The plant organs determine its 
internal and external structure. The stems or trunks 
of plants not only provide their structural scaffolding, 
but also enclose the vascular pipeline, which 
distributes water and nutrients from the roots to 
plant leaves, flowers, and fruit, and circulates energy 
resources from leaves to other parts of the plant. 
Below we consider two structural attributes of plants 
that are relevant to EO: growth form (see Section 5.1.1) 
and biomass (see Section 5.1.2).

5.1.1  Growth form
Growth form, or habit, describes the overall dimensions 
and branching, or structural characteristics, of plants, 
and results from both hereditary and environmental 
factors. Some plant classification systems refer to 
growth form as life form (see Section 1.1), while others 
use that term to differentiate between woody and non-
woody vegetation (Hnatiuk et al., 2009). The broadest 
categories for growth form are:

	§ trees—large, woody plants supported on a main 
stem or trunk with secondary branches;

	§ shrub (or bush)—smaller woody plant with multiple 
stems;

	§ vine—woody or herbaceous plant with climbing or 
twining stem; and

	§ ground covers:

	w forbs—herbaceous, broad-leaved plant, often 
with conspicous flowers; and

	w grass—herbaceous plant with slender leaves 
(blades) and inconspicous flowers.

These categories are often further sub-divided 
into height classes and/or described in terms of 
their vertical position in the canopy relative to their 
neighbouring plants, that is, overstorey, midstorey, or 
understorey (see Figure 5.1).

Background image: Aerial view of a mangrove canopy. Source: © Shutterstock image ID 440199721
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Figure 5.1  Vegetation cover classes

18

Field measurement of fractional ground cover

Transect measurements

Definitions of vegetation categories
Fractional cover measurements are recorded in three vegetation categories: non-woody or ground cover; woody less 
than 2 metres; and woody greater than 2 metres (figure 10). The ground layer is observed by looking downwards, while 
woody vegetation is observed by looking upwards, or downwards where vegetation is less than observer’s height.

Ground cover
Ground cover includes non-woody vegetation (such as grasses, forbs and herbs), litter, cryptogams, soil and rock. There 
is no height restriction for non-woody vegetation. Grasses taller than 2 metres, as in some parts of northern Australia, 
are included in the ground cover category. Observations in this category are recorded as:

•	 Crust—the hard surface layer of soil.

•	 Disturbed soil—cracks in a soil crust, ant nests or other disturbances in the natural surface, such as by animal 
hoof prints. In ploughed agricultural sites most soil recordings will be disturbed.

•	 Rock/lag—rock includes all stones and rock material greater than 20 mm. Lag includes all single grains that can 
be differentiated by the naked eye, approximately 2 mm to 20 mm.

•	 Cryptogam—a biological crust composed of non-vascular plants, such as algae, liverworts and mosses.

•	 Green leaf—a leaf with green pigmentation (one that is actively photosynthesising) attached to the plant. 
Sometimes the leaf in this state may appear more yellow than green. In this case make a judgement call as to 
whether to place it in the green or dry category.

•	 Dry leaf—a leaf with non-green pigmentation (one that is not actively photosynthesising). This can include 
senescent (alive) vegetation as well as dead vegetation. It must be attached to the ground or plant.  

•	 Litter—dead plant material that is not attached to the ground. Includes branches, leaves or fallen tree trunks.

Woody vegetation less than 2 metres
All vegetation with a woody component and a height of less than 2 metres are generally shrubs, including chenopods, 
and small trees. Observations in this category are recorded as:

•	 Green leaf—a green leaf attached to a plant.

•	 Dry leaf—a dead or dry leaf attached to a plant.

•	 Branch—woody component of the plant (branch or trunk).

The vegetation categories measured10
tree crown 

woody vegetation >2m   

woody vegetation <2m   densitometer ground cover   
2m 

laser pointer 

Source: Muir et al. (2011) Figure 10

Taller and heavier plants generally require the 
support of a woody structure, either as part of its 
own habit or provided by a host plant. Woody plants 
are characterised by thickened xylem tissue, such 
as occurs in trees, shrubs, palms, and some cycads, 
ferns, and vines. The standard Australian system for 
describing growth forms in vegetation is detailed 
in Hnatiuk et al. (2009). This system has been used 
extensively for national classifications of vegetation, 
such as NVIS (see Section 2.3.1). 

Plant height can be measured in absolute or 
relative terms (see Section 5.1.2). Actual plant 
height can be estimated from trigonometry using a 
clinometer or sensed remotely using lidar equipment 
(see Excursus 5.1 and Section 16.5). The vertical 
distribution of vegetation can also be represented as 
foliage profile diagrams for either individual plants 
or groups of plants (see Figure 5.2). This provides 
more information than just the maximum height as 
it shows where most foliage will intercept incoming 
radiation and has been related to various aspects of 
plant ecology (Yokozawa and Hara, 1995). Vegetation 
profiles can vary with species and development 
stages and are indicative of wildlife habitat.

Figure 5.2  Foliage profile

Foliage profile for a multi-layer canopy

Source: Jupp and Lovell (2007) Figure 2.4 
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Excursus 5.1�—Lidar

Source: Nicholas Coops, University of British Colombia, and Glenn Newnham, CSIRO

Lidar (Light Detection and Ranging) imaging 
systems can operate on a range of EO platforms 
(see Volume 1A—Section 15.1). These active remote 
sensing systems emit pulses of light to determine the 
distance (or range) to a target. Transmission of each 
emitted pulse is precisely timed, as is the time when 
its return (or echo) from the target is detected. Using 
the speed of light and the elapsed time between 
transmission and return of the pulse, the distance 
between the sensor and the target can be calculated. 
Based on the known trajectory of the laser beam, a 
three-dimensional point cloud can also be computed 
(Lim et al., 2003; see Volume 1A—Excursus 15.1).

Figure 5.3  Lidar operation

A continuous waveform sensor would record the continuous 
height profile shown on the left of tree in the diagram below. 
Multiple discrete return sensors record the heights of discrete 
targets intercepted by the laser pulse. A first-return sensor 
would only record the height of the first target encountered, 
which in this example is the height of the first intercepted 
branch. A last-return sensor would only record the distance to 
the last object encountered by the laser beam, so is useful for 
terrain mapping.

A lidar system comprises three major components: 
a laser device, an inertial navigational measurement 
unit (IMU), and a Global Positioning System (GPS) 
unit. Lidar systems can be classified as either small 
footprint or large footprint systems, and sample with 
either:

	§ discrete return—recording up to five returns per 
laser footprint (Lim et al., 2003) and optimised 
to derive terrain surface heights with sub-metre 
accuracy (Blair et al., 1999, Schenk et al., 2001); or 

	§ full waveform—acquiring a fully digitised, returned 
pulse for continuous, sub-metre, vertical profiles 
(see Figure 5.3).

Small footprint lidar systems for both discrete return 
and full waveform sampling are widely available and, 
as the number of returns recorded per emitted pulse 
increases with new sensor developments, these 
systems provide increasingly detailed structural 
information. For a given species, small footprint lidar 
measurement error has been demonstrated to be:

	§ < 1.0 m for individual tree heights (Persson et al., 
2002);

	§ < 0.5 m for plot-based estimates of maximum 
and mean canopy height with full canopy closure 
(Magnussen and Boudewyn, 1998; Magnussen et al., 
1999; Næsset, 2002); and

	§ more precise than manual, field-based 
measurements (Næsset and Økland, 2002). 

Large footprint, full waveform systems are less 
common but systems such as the Scanning Lidar 
Imager of Canopies by Echo Recovery (SLICER) 
and Laser Vegetation Imaging Sensor (LVIS) 
instruments (Harding et al., 2001; Blair et al., 1999) 
have been proven for mapping forest structure 
(Lefsky et al., 2005). 
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Airborne
Airborne platforms used for Earth Observation (EO) 
include manned and unmanned aeroplanes and 
helicopters (see Volume 1A—Section 11 for details). 
Airborne Laser Scanning (ALS) systems can be 
carried on any of these platforms. Unmanned Aerial 
Vehicles (UAV) potentially offer greater flexibility, 
increased spatial resolution, and more rapid 
assessment of vegetated landscapes than manned 
aircraft (although current systems are restricted both 
by weight and flying time and, to some extent, aviation 
restrictions). For example, Wallace et al. (2012a, 2012b) 
describe the development of a low-cost UAV lidar 
system that includes a discrete return lidar and high 
definition video camera. This system was capable 
of acquiring extremely dense lidar point clouds 
(62 points per m2), from which detailed measurements 
of tree locations, heights and crown dimensions 
could be derived. Point cloud density also varies with 
flying height and speed, so for a given lidar system, 
there is a trade-off between data density and extent 
of coverage. An increasing range of portable lidar 
scanning units are becoming available, often including 
smart interfaces to avoid potential collisions and 
providing localisation, navigation, and flight control 
when GPS is not available.

Satellite
Satellite laser sensors such as the Geoscience Laser 
Altimeter System (GLAS), which was onboard the 
Ice, Cloud and land Elevation Satellite (ICESat), 
acquired global waveform data over forests from 
2003 to 2009 with a large footprint spanning over 
90 m (see Excursus 6.1). Two additional spaceborne 
lidar systems have been launched and are acquiring 
lidar data in 2020. Specifically, both the full waveform 
Global Ecosystem Dynamics Investigation (GEDI) on 
the International Space Station (ISS) and single photon 
lidar system on ICESAT2 are beginning to provide 
valuable space-based data for vegetation assessments 
(Hancock et al. 2019; Markus et al., 2017).

Terrestrial
While ALS systems are relatively cost-effective for 
large areas (Næsset and Nelson, 2007; Wulder et al., 
2008), the structure of understorey components is 
often obscured by taller vegetation from an overhead 
perspective (Lovell et al., 2003), and information 
about tree trunks is not directly visible to the 
scanner. Accordingly, to complement airborne lidar 
data, a number of studies have used ground-based 
lidar (or Terrestrial Laser Scanning, TLS) systems, 
which observe the canopy structure from below 
(Henning and Radtke, 2006; Hilker et al., 2010; Jupp 
et al., 2009). These systems can be mounted on 
tripods or moving vehicles to acquire data for all or 
selected portions of the hemispherical field of view 
(Hyyppa et al., 2012). TLS instruments mounted 
on a tripod can scan forest stands out to radial 
distances of hundreds of metres (Calders et al., 2020) 
depending on vegetation density, and have been 
installed on a permanent basis at selected locations 
to monitor growth following disturbances. 

TLS allows extremely dense point clouds to be 
acquired (see Figure 5.4) which can be used 
to generated very detailed, three-dimensional 
models of vegetation structure for individual trees 
(see Section 16.5.2). Established methods exist 
to derive tree height, diameter at breast height 
(DBH), and above ground biomass (AGB) from TLS 
(Calders et al., 2015a, 2015b; see Section 16.5). Thus, 
TLS already delivers information on forest structure 
that cannot be derived from plot-based forest surveys 
(Newnham et al., 2015) and promises to enable full, 
three-dimensional mapping of ecosystem structure 
(Calders et al., 2020).

Figure 5.4  TLS-based three-dimensional complexity of forest

Grey shades in image below indicate distance from RIEGL VZ-400 TLS instrument to vegetation elements in a simple notophyll 
vine forest at Robson Creek, Queensland. The graph shows derived plant area volume density as a function of canopy height using 
method outlined by Calders et al. (2015b).

Source: Calders et al. (2020) Figure 1



Earth Observation: Data, Processing and Applications.  Volume 3: Applications Volume 3A: Applications—Terrestrial Vegetation

5  Attributes of Individual Plants

111

5.1.2  Biomass
Any biological matter from organisms that are alive 
or decomposing is called biomass (see Section 7.4 for 
related productivity terms). Biomass predominantly 
comprises carbon, hydrogen, and oxygen, with lesser 
amounts of nitrogen and other elements. It represents 
the solar energy stored in organic matter and, as such, 
can be used for fuel. In ecological terms, biomass 
estimates express the mass of biological organisms 
per unit area and can be referenced for individual 
species or communities (see Section 7.4). 

Depending on the location and state of decomposition 
of biomass, it can be differentiated into four 
categories:

	§ above ground biomass—all living plant matter 
above the soil surface, including foliage, stems, 
branches, bark, flowers, and seeds;

	§ below ground biomass—all living roots below the 
soil surface, including:

	w fine roots (< 2 mm diameter);

	w small roots (2–10 mm diameter); and

	w large roots (> 10 mm diameter);

	§ litter—all dead plant material on the soil surface 
that is less than some specified diameter6, usually 
decomposing; and

	§ dead mass—all other dead woody biomass both 
above and below the soil surface.

Plant biomass is an indicator of plant vigour (see 
Section 9.6), site productivity (see Sections 7.4 
and 10.2.2), carbon stocks (see Section 17), and fire 
risk (see Section 18). It is traditionally measured 
by destructive sampling of selected plants and 
expressed in terms of fresh and/or dry weight. 
Biomass measurements are reported in terms of Fresh 
Biomass (FBM), Oven-dried Biomass (DBM), or Dry 
Matter Content (DMC). Litter traps are commonly 

6	 For example 10 cm—specified by individual countries (Schaefer, 2018)

used to non-destructively measure falling plant parts, 
such as fruit, leaves, flowers, and petioles. Other 
non-destructive methods for measuring biomass 
include visual obstruction sampling, vertical and 
horizontal image analysis, radiation reflectance 
measurement, allometric relationships, scaled digital 
image of plant silhouettes, aerial and terrestrial 
laser scanning (see Excursus 5.1), and analysis of 
EO imagery (Tanaka et al., 1998; Montes et al., 2000; 
Holzgang, 2001; Tomasel et al., 2001; Vermeire and 
Gillen, 2001; Thursby et al., 2002; Tackenberg, 2007; 
Zehm et al., 2003). Detailed reviews of biomass 
sampling methods are provided by Catchpole and 
Wheeler (1992) and Schaefer (2018).

Biomass monitoring is used to derive estimates of 
net primary production (NPP; see Section 7.4) and 
analyse plant growth (Cornelissen et al., 2003; Perez-
Harguindeguy et al., 2013). The vertical biomass 
distribution can be derived from sampling at defined 
cutting heights (Tackenberg, 2007). While this profile 
is indicative of the competitive vigour of particular 
species (Schwinning and Weiner, 1998), it is not 
commonly measured (Tackenberg, 2007). 

EO measures of biomass offer an efficient mechanism 
to generate landscape scale estimates of biomass. 
Optical reflectance data have been reliably related 
to foliage biomass (see Section 8) and SAR data has 
been used to infer woody biomass for forest carbon 
tracking (Mitchell et al., 2010, 2012; Lehmann et al., 
2012) and pasture biomass (Schmidt et al., 2016; see 
Sections 13 and 15). Lidar instruments, by effectively 
constructing a three-dimensional model of a target 
(see Excursus 5.1), furnish valuable information 
on vegetation structure, and both terrestrial laser 
scanning (TLS) and airborne laser scanning (ALS) 
are gaining popularity for estimating woody biomass 
in forestry and environmental surveys (Jupp and 
Lovell, 2007; Schaefer, 2018; see Section 16). 

5.2  Physiological Processes
Plants function via a number of physiological 
processes. The following processes have direct 
relevance to EO-based studies: photosynthesis 
(see Section 5.2.1); respiration (see Section 5.2.2); 
transpiration (see Section 5.2.3); and thermal stability 
(see Section 5.2.4).

5.2.1  Photosynthesis
Photosynthesis is the primary energy capture 
mechanism in the biosphere. This process transforms 
light energy into chemical energy. Photosynthetic 
organelles, principally chloroplasts in leaves (see 
Figure 4.1), convert light and carbon dioxide (CO2) and 
water into glucose and oxygen:

light energy + carbon dioxide + water  
= glucose + oxygen
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Figure 5.5  Reflectance characteristics of typical green leaf structure

Chloroplasts reflect green wavelengths but absorb blue and red wavelengths for use in photosynthesis. Spongy mesophyll cells 
strongly reflect infrared wavelengths. 

Source: Harrison and Jupp (1989) Figure 5 

Principally blue and red wavelengths from the Sun’s 
energy are absorbed by plant pigments during 
this process (see Section 4.3), with green and NIR 
wavelengths being reflected (hence the green 
colour of most living vegetation; see Figure 4.3 and 
Figure 5.5). As introduced in Section 4.1.1 above, 
gaseous exchange of water and CO2 between the leaf 
surface and the atmosphere occurs via the stomata, 
whose opening and closing are controlled by guard 
cells. The plant sugars resulting from photosynthesis 
form an energy store, which is either consumed by 
the plant (to fuel internal metabolic processes and 
growth) or by external heterotrophs. 

In simplistic terms, the rate of photosynthesis 
determines plant growth and vigour and, below 
species-specific thresholds, increased levels of CO2, 
sunlight and heat can increase photosynthetic activity. 
As the name implies, photosynthesis is a photochemical 
reaction, that is, one that is initiated by the absorption 
of light energy (Rabinowitch and Govindjee, 1965). The 
speed of this process is limited by the:

	§ intensity of light—low intensities reduce the speed 
of photosynthesis;

	§ concentration of CO2—low concentrations limit 
photosynthetic activity; and

	§ ambient temperature—extreme conditions, too hot 
or too cold, limit photosynthesis. 
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Table 5.1  Photosynthetic pathways

Characteristic
Photosynthetic Pathway

C3 C4 CAM

Name First stable product from CO2 
is a 3-carbon compound

First stable product from CO2 is a 4-carbon 
compound

Process discovered in Crassulaceae family

CO2 initially stored as 4-carbon acid

Carbon Fixation In single chloroplast using 
RuBiCO enzyme

In chloroplast of thin-walled mesophyll cell using 
phosphoenol pyruvate (PEP) enzyme

In chloroplast at night using PEP enzyme 
then stored in cell vacuole as malate 

Calvin Cycle In same chloroplast In chloroplast of thick-walled bundle sheath cell In same chloroplast during daytime

Stomata Open during day and 
generally close at night

Open during day and generally close at night Open during the night and generally closed 
during the day

Advantages Better performance with 
ample water and sunshine

Better performance when CO2 levels are low

Highest growth rates, comprising 25% of 
terrestrial photosynthesis

Withstand higher light levels plus salinity and 
dryness

No photorespiration

Stomata open for shorter periods for CO2 intake 
so less transpiration

Use less water than C3 or C4 plants

Better recovery from drought stress

Can assimilate CO2 during day with 
abundant moisture

Disadvantage Photorespiration Energy used to move intermediate products to 
different cell locations

Low rates of photosynthesis; slow growth 
and low yield

Location Throughout leaf (and some 
stems)

Inner leaf cells with Kranz anatomy Thick, fleshy leaves and stems

Occurrence ~85% plants;

Mostly in cooler temperate 
regions

> 19 families including sugar cane, saltbush, corn, 
summer annuals, and many grasses

Mostly in tropical and subtropical grasslands and 
savannas

~10% plants: cacti, agaves, some orchids, 
ferns, and bromeliads

Mostly in arid environments

Photosynthesis involves two fundamental biochemical 
processes:

	§ carbon fixation—CO2 is converted into a stable 
intermediate product; then the

	§ Calvin Cycle—sugar is produced from the 
intermediate product. 

Three metabolic pathways for photosynthesis have 
been identified: C3, C4, and CAM (Crassulacean Acid 
Metabolism). While most plants use the C3 process, 
both the C4 and CAM processes offer efficiency 
advantages to plants growing in arid environments. 
C4 plants compartmentalise the intermediate 
processing steps to photosynthesise at a faster rate 
than C3 plants and thus avoid photorespiration (see 
Section 5.2.2 below), while CAM plants can delay the 
Calvin Cycle to conserve energy. C4 plants are very 
productive, comprising only 3% of vascular plants 
but conducting 25% of terrestrial photosynthesis 
(Sage, 2004), and have been observed to be more 
dominant geographically as temperature increases 
and rainfall decreases (Hattersley, 1983). Since 
photosynthesis in C4 plants requires less nitrogen, 
these plants can also thrive in less fertile soils. 
Relevant characteristics of these three photosynthetic 
pathways are summarised in Table 5.1.

5.2.2  Respiration
The opposite process to photosynthesis is respiration, 
that is, the energy stored in the sugar product is 
released in the presence of oxygen, to produce CO2 
and water:

Glucose + oxygen =  
energy + carbon dioxide + water

By consuming oxygen, this can be viewed as an 
oxidation reaction. Unlike photosynthesis, respiration 
occurs in most plant cells and is not dependent on 
light. 

Respiration fuels plant metabolic processes and 
permits growth. In most plants, the rates of both 
photosynthesis and respiration increase with 
temperature up to a species-dependent threshold, 
at which point respiration occurs more rapidly than 
photosynthesis. In bright, hot conditions, stomata 
close and the ambient CO2 levels in a plant can drop. If 
photosynthesis continues when the concentration of 
CO2 levels drop below 50 ppm, oxygen is fixed instead 
of CO2. This process is called photorespiration and 
is less efficient in terms of energy production for the 
plant. 
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5.2.3  Transpiration
Transpiration releases water from plants via stomata, 
the leaf pores that permit water vapour from the leaf 
to transfer into the atmosphere and CO2 from the 
atmosphere to enter the leaf. Guard cells surround 
each stomate to control its opening and closing, and 
hence are an important factor in determining the 
rate of transpiration (see Section 4.1.1). In hot and dry 
conditions plants generally close their stomata to 
avoid excessive moisture loss. Most water loss from 
plants results from transpiration, but there is also 
a small volume of water lost via evaporation from 
leaf surfaces. Water stress restricts transpiration, 
reduces photosynthetic efficiency, and limits plant 
productivity (Salisbury and Ross, 1969).

The transpiration process achieves three essential 
functions in plants:

	§ water provides both the solvent and the vehicle to 
transport:

	w minerals from the roots to plant stems and 
leaves via xylem cells; and 

	w sugars from the leaves to the rest of the plant 
via phloem cells;

	§ turgor pressure in plant cells is maintained by 
water, providing both structural support and 
controlling the operation of guard cells (see 
Section 4.2.1); and

	§ evaporative cooling from transpiration delivers 
most of the cooling provided by a shade tree (with 
an increase in vegetative cover of 10% in urban 
areas reducing the land surface temperature by 
1.2ºC; Coutts et al., 2016).

The rate of transpiration is determined by the balance 
between two primary forces:

	§ water potential differential between the soil 
and atmosphere around the plant—dry air will 
encourage more water to leave the plant and hence 
increase transpiration; and

	§ resistance of leaf cuticle, stomata, and the leaf 
boundary layer to water movement—leaves slow 
down water loss from transpiration by closing 
stomata and increasing cuticle thickness. The 
boundary layer comprises a thin, stationary layer 
of air surrounding the leaf surface through which 
leaf water must diffuse to enter moving air (see 
Section 4.4). 

Thus, transpiration rates increase in response to 
several environmental conditions:

	§ light—stomata open in bright light to allow CO2 into 
the leaf for photosynthesis;

	§ temperature—due to evaporation and diffusion of 
water at higher temperatures;

	§ wind—windy conditions quickly remove water 
vapour and speed up diffusion; 

	§ soil moisture—plants with access to adequate soil 
moisture will transpire more than those in dry soil; 

and decreases with

	§ humidity—humid conditions slow diffusion of water 
vapour from the leaf. 

The rate of transpiration (in mols of water/cm2/sec) 
can be expressed as the equation:

where TR is transpiration rate, LW is leaf water, and 
AW is atmospheric water.

Leaf transpiration is either measured directly using 
a leaf porometer or indirectly via leaf temperature 
(Leinonen et al., 2006). Models of transpiration rates 
at the level of individual leaves have been developed 
from detailed measurements of conductance 
characteristics, including CO2 capture (involving a 
porometer or infrared gas analyser; Jones, 1992) 
and boundary layer properties (Brenner and Jarvis, 
1995). Whole plant transpiration can also be measured 
via thermal sensors that monitor xylem sap fluxes 
from the root system to the canopy (Granier, 1987; 
Bush et al., 2010). The Bowen ratio (ratio of sensible to 
latent heat flux; see Section 5.2.4) is used to estimate 
whole ecosystem evapotranspiration (see Sections4.4 
and 7.6). Optical spectroscopy has also been used in 
conjunction with chemometric methods to determine 
leaf water content (Zhang et al., 2012).

5.2.4  Thermal stability
The temperature of a material is indicative of its 
energy content. Thermal energy is exchanged 
between plants and their environment by:

	§ conduction and convection;

	§ absorption and emission; and

	§ evaporation of moisture.

Only a small proportion (3–6%) of the solar energy 
intercepted for photosynthesis is actually converted 
into chemical energy (FAO, 1997). The harvested 
energy that is not converted into biomass is 
dissipated as heat or chlorophyll fluorescence. 
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Within any biological system, the net (or stored) 
energy is the difference between the energy input 
and energy output. At equilibrium, the energy balance 
sums to zero, that is, energy input equals energy 
output, so that no energy is stored. The energy 
produced and/or consumed in metabolic processes 
within a leaf is relatively insignificant in comparison 
with other heat exchange processes in leaves. While 
convective heat transfer is encouraged by windy 
conditions or when the air temperature is higher than 
the leaf temperature, little heat is lost by conduction. 
Evaporation provides a generous mechanism for heat 
dissipation, especially in hot, dry conditions. 

The boundary layer surrounding a leaf resists 
heat transfer from the leaf to the surrounding air 
(see Section 4.4), so impacts leaf temperature. If 
the adjacent air is cooler than the leaf surface, air 
circulates around the leaf and removes some heat by 
convection, but high boundary layer conductances 
resist this transfer of heat and water vapour 
(Martin et al., 1999). Leaf temperature depends on 
the leaf energy balance and can be expressed as a 
function of the temperature, humidity, density, water 
vapour pressure, and specific heat capacity of the 
ambient air, and the isothermal radiation absorption, 
boundary layer resistance, and stomatal resistance of 
the leaf (Jones, 1992).

The metabolic processes that enable plants to 
survive only operate within a restricted range of 
temperatures, with different plants being suited to 
different temperature ranges. Leaf temperatures 
generally track within 2ºC of the diurnal cycle of air 
temperatures but may be much higher in full sunlight 
with little air movement, especially when water 
stressed (Nelson and Bugbee, 2015). Both within a 
single plant, and between plants of the same species 
in different locations, however, individual leaves are 
exposed to differing amounts of sunlight and wind. To 
enable all leaves within a plant to maintain comparable 
temperatures, sunlit foliage in the upper canopy of 
trees and shrubs intercepts light less efficiently than 
shaded foliage. Variations can occur in leaf shape and 
orientation, as well as transpiration rates, with the 
result that more exposed leaves are generally smaller 
and have a greater perimeter than less exposed ones 
(see Section 4.1.2). Nonetheless, being composed 
largely of water, leaves exposed to full sunlight carry a 
high heat load. Much of this load is dissipated by:

	§ sensible (meaning perceptible) heat loss as thermal 
EMR (or emitted energy: ER); and 

	§ evaporative (or latent energy: EL) heat loss, or 
evaporation. 

The ratio of sensible and evaporative heat losses is 
called the Bowen Ratio (BR; Lewis, 1995):

This ratio is high when the supply of water is limited 
(low evaporation) and low for well-watered plants. 
Accordingly, BR is typically higher for dry ecosystems 
such as deserts and lower for tropical vegetation. 
Some plants, such as cactii, have adapted to dry 
climates by minimising transpiration and enduring 
high leaf temperatures. Such adaptations are usually 
associated with slow growth rates. When air and leaf 
temperatures are very similar, as occur for irrigated 
grass in calm conditions, BR values are close to zero. 
Canopy measurements of evapotranspiration can be 
derived from BR, net incident radiation, soil heat loss, 
and gradients in temperature and water vapour above 
the canopy (Taiz et al., 2015; see Section 7.6).

Leaf temperature is important as an indicator of 
transpiration rate and is frequently monitored for 
irrigation scheduling (see Sections 9.4 and 9.5). Studies 
employing suites of proximal sensors to quantify plant 
water status have demonstrated that leaf temperature 
is strongly correlated with stem water potential, air 
temperature, relative humidity, photosynthetically 
active radiation, and wind speed, especially for shaded 
leaves (Udompetaikul et al., 2011). 

The temperature of a leaf can be measured using a 
thermocouple (generally attached to shaded side; 
Tarnopolsky and Seginer, 1999), infrared thermometer 
(Blad and Rosenberg, 1976), or thermal imaging 
(Hartz et al., 2006; Leuzinger et al., 2010). For 
example, WaterWise is a smart irrigation tool that 
uses proximal infrared thermometers to detect when 
a plant is approaching stress (CSIRO, 2019). Such 
monitoring is being integrated with weather forecasts, 
soil moisture status, and other crop data to optimise 
the water use efficiency and yield of high-value crops 
(see also Section 9.5). Thermal imagery (8–14 mm; 
Volume 1B—Section 7) can also be used to monitor 
evapotranspiration and water deficit stress (see 
Section 9.4). 

Certain metabolic processes associated with heat 
dissipation in plants, including xanthophyll pigment 
interconversion, have been related to variations in leaf 
absorption characteristics near wavelength 531 nm 
(Demmig-Adams, 1990). EO-based spectral indices such 
as the Photochemical Reflectance Index (PRI) have been 
proposed to assess the efficiency of photosynthetically 
active radiation usage when plants are water stressed 
(Peñuelas et al., 1997; see Section 8.1.4).
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5.3  Growth
Most fundamental characteristics of plant species 
are determined by their genetic inheritance, but 
environmental factors such as the availability of 
nutrients, sunlight, moisture, and CO2 can accelerate 
and enhance plant growth. Likewise, the presence 
of predators and adverse environmental conditions 
(excess moisture, wind, heat, or cold) can impede 
growth. Table 5.2 summarises the principal factors 
that are responsible for the quantity and quality of 
plant growth. These primary factors are related by the 
sequence (Kramer and Boyer, 1995):

Hereditary Potential + Environmental Factors —>  
	 Plant Processes and Conditions —> 
		  Quantity and Quality of Growth

The following sub-sections consider plant growth 
in the context of plant life cycle (see Section 5.3.1), 
phenology (see Section 5.3.2), abscision (see 
Section 5.3.3), photomorphogenetic (light-dependent) 
processes (see Section 5.3.4), and nutrient use 
efficiency (see Section 5.3.5). 

Table 5.2  Plant growth factors

Primary Factor Components

Hereditary 
Potential

Root system—depth, extent

Leaves—size, shape, area, thickness

Stomata—number, location, behaviour

Environmental 
Factors

Soil—texture, structure, depth, chemical 
composition, pH, aeration, temperature, water 
holding capacity, water conductivity

Atmospheric—precipitation (amount and 
seasonal distribution), evaporation, CO2 
concentration, radiant energy, temperature, wind, 
vapour pressure

Biotic—competing plants, pathogens, predators

Plant Processes 
and Conditions

Water absorption, distribution, transpiration

Internal water balance—water potential, turgidity, 
stomatal opening, cell enlargement

Chemical composition—pigments, growth 
regulators, nutrients

Metabolic processes—photosynthesis, 
respiration, nutrient cycling

Quantity and 
Quality of Growth

Size of cells, organs, plant

Dry weight, succulence, chemical composition

Root to shoot ratio

Vegetative versus reproductive growth

Adapted from: Kramer and Boyer (1995) Figure 1.1

5.3.1  Life cycle
The life cycle of all plants spans from germination 
to death, with a wide range of variations between 
species in terms of modes of reproduction and 
stages of maturation. Annual plants complete their 
life cycle within a single year and generally expend 
more energy on seed production than establishment. 
Biennial plants grow and die within two years, using 
the first growing season for growth and the second 
for reproduction. Perennial plants live for more than 
two years and generally become stronger and larger 
plants that produce seed over many years.

Different plants use different mechanisms to create 
their next generation. Reproduction can occur 
asexually, creating genetically identical offspring, 
via cuttings, runners, stolons, or suckers, or division 
of rhizomes, bulbs, and corms. Alternatively, sexual 
reproduction combines genes from both male and 
female parent plants to produce genetically different 
offspring. This mechanism is used by most seed and 
spore producing plants and enables greater biological 
diversity.

The life cycle of a typical angiosperm, for example, 
can be summarised in terms of several consecutive 
stages. For a tree, a seed germinates, grows through 
the seedling stage into a sapling or young tree, 
develops into a mature tree, then produces seed-
bearing fruit of some form. During these stages of 
growth, the size, shape, and structure of the tree 
changes. At senescence the tree dies, shedding limbs 
and leaves to create compost for future generations. 
Growth stages of groups of plants is further discussed 
in Section 6.5.

5.3.2  Phenology
Phenology studies the relationships between life cycle 
stages in biota (plants and animals) and weather and 
climate (Schwartz, 2013). Plant phenology considers 
plant life cycles and their interactions with seasonal, 
climatic, and other rhythms. Seasons are largely 
driven by variations in the amount of solar radiation 
that reaches the Earth’s surface at different locations 
(see Volume 1A—Section 3). Recurring events 
within plant life cycles are triggered by periodic 
environmental changes, particularly those related to 
seasonal changes in ambient temperature and light 
levels. In order to better understand and manage 
plant growth, phenology attempts to identify these 
trigger factors and relies heavily on chronology, that 
is, the analysis of historical records relating to the 
dates of key events. Indeed, indigenous communities 
have traditionally used phenological indicators as a 
climatic almanac. 
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For annual plants, the stages of growth are clearly 
delineated within an annual cycle by the extent of 
green plant cover (see Sections 5.1.2 and 9.1). Four key 
event dates can be identified in the growth of annual 
plants:

	§ greening—green leaves become visible as 
photosynthesis begins;

	§ maturity—growing leaves attain maximum green 
leaf area;

	§ senescence—brown leaves appear as 
photosynthesis rapidly decreases; and

	§ dormancy—end of cycle when photosynthesis 
ceases.

Broad scale phenological changes are most obvious 
during leaf emergence and senescence. Plants 
respond to both diurnal variations in light levels, 
temperature and precipitation, and seasonal changes 
in day length, or photoperiodism. The latter often 
operates in conjunction with a chilling threshold for 
many temperate species. Similarly, the developmental 
responses of some plants are affected by the ratio of 
red to far red light in different seasons, whereas the 
growing cycles of crops are more closely related to 
changes in temperature and precipitation. 

While the dates of key phenological events can vary 
from season to season and from year to year, they 
provide valuable insight into longer term vegetation 
responses to climatic variations. Inter-seasonal and 
interannual variations in phenology affect different 
parts of the biosphere in different ways, so an 
understanding of phenological trigger factors is 
fundamental to understanding the spatiotemporal 
dynamics of carbon, water, and thermal cycles of 
Earth (Schwartz, 2013). Thus, phenology is relevant 
to studies of vegetation distribution (Chuine, 2010), 
agricultural management (Chmielewski, 2003; 
Keatinge et al., 1998), food web interactions 
(Straile, 2002), ecosystem productivity dynamics 
(Myneni et al., 1997, 2007), land surface modelling 
(Richardson et al., 2012), biosphere-atmosphere 
interactions (Flanagan, 2009), and epidemiology 
(Luvall et al., 2011; Malone et al., 2019).

5.3.3  Abscission
For efficiency reasons, plants shed, or abscise, any 
part of their structure that is no longer required. 
Deciduous plants produce leaves that only last 
one seasonal cycle, whereas evergreen leaves are 
designed to function for many years. These two types 
of leaves offer distinct advantages and disadvantages 
in particular environments. The key factors that 
appear to determine whether deciduous or evergreen 
species dominate or intermix in a geographic region 
are photosynthetic capacity, nutrient availability, and 
winter desiccation (Smith, 1993). 

To replace their photosynthetic system each year, 
deciduous plants expend more nutrient resources 
than evergreen plants, whose leaves are replaced 
gradually. Deciduous plants typically have greater 
capacity for both photosynthesis and transpiration. 
They accumulate food reserves in warm weather, 
which are stored in roots and stems to enable survival 
through winter. The productivity of such plants 
is driven by seasonal or climatic changes. In cold 
environments, it is easier for plants to abscise their 
leaves than to protect them from the drying impact 
of freezing in winter. Abscision usually involves 
significant resorption of soluble nutrients, such as 
phosphorus, nitrogen, and potassium, from senescing 
tissue. Routine abscision also discourages parasites, 
pathogens, and predators.

Rather than shed their leaves, evergreen species have 
developed various mechanisms to protect their leaves 
from winter temperatures, such as converting free 
water in cells into a gel which will not freeze. However, 
evergreen plants lose more water during winter and 
are more susceptible to predators. 

In temperate regions, deciduous plants abscise leaves 
in response to seasonal temperature changes, so are 
dormant during winter. In subtropical areas, leaf drop 
is triggered by non-seasonal rainfall patterns with 
foliage being shed to reduce water loss. The longevity 
of leaves in woody plants has obvious relevance to 
measuring foliage attributes in different seasons 
and localities. Plants that maintain green leaves 
throughout the year are categorised as Persistent 
Green Vegetation (see Section 9.1), that is, evergreen 
perennials such as vascular plants with deep 
roots and slow rates of biomass growth and decay 
(Donohue et al., 2009).
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5.3.4  Photomorphogenesis
In addition to pigments, plants contain a number 
of photoreceptors that are sensitive to particular 
wavelengths of EMR, such as phytochrome 
(red and far red), cryptochrome (blue and UVa), 
and phototropin (blue; Casal, 2000; Briggs and 
Olney, 2001). While the concentrations of these 
photoreceptors are much lower than those of the 
major plant pigments (see Section 4.3), they have 
distinct absorption spectra and impact the reflectance 
spectra of leaves (Blackburn, 2007). 

Apart from photosynthesis, many processes involved 
with plant growth and development are dependent 
on the presence or absence of light (Sullivan and 
Deng, 2003). Photomorphogenetic processes include:

	§ germination of seeds in response to red light;

	§ leaf development in dicotyledon seedlings in red 
light;

	§ photoperiodism in older plants triggers seasonal 
changes, such as flowering after extended periods 
of long nights;

	§ phototropism—bending plant organs towards (blue) 
light source due to rapid cell growth on shaded side 
of plant; and

	§ nyctinastic movements (diurnal changes controlled 
by circadian rhythms and light reception) in higher 
plants in low, ‘far red’ (700–750 nm) light levels 
(such as folding leaves or flower petals at night).

5.3.5  Nutrient use efficiency
One measure of the efficiency of nutrient usage in 
plants is the proportion of organic matter produced 
per unit of absorbed nutrient. For short-lived plants, 
this has been observed to be inversely correlated with 
the nutrient concentration in plant tissue, with plants 
growing on less fertile soils having higher nutrient 
concentrations than the same plants grown on more 
fertile sites (Chapin, 1980). Long-lived perennials, 
however, are more likely to recycle nutrients as leaves 
senesce, so for these plants nutrient use efficiency is 
inversely related to the concentration of nutrients in 
above ground litterfall, root turnover, and live organic 
matter (Vitousek, 1982).

The minerals nitrogen, phosphorus, and calcium are 
more likely to be removed from forest trees in the 
fine litter fraction (comprising leaves, twigs, small 
branches, flowers, fruit, and seeds), while potassium 
tends to be leached by rain as throughfall. Nitrogen 
Use Efficiency (NUE), the ratio of nitrogen output to 
nitrogen input, is used as an indicator of the efficiency 
of nutrient usage in food production (EU Nitrogen 
Expert Panel, 2015). NUE varies between different 
types of plants, with plants growing on less fertile 
soils typically using nitrogen more efficiently in active 
leaves and/or resorbing more nitrogen from senescing 
leaves, and as stem wood transitions to heartwood. 
The rate of nitrogen release from decomposing plant 
matter is highly correlated with its C:N ratio, such 
that slower rates of litter decomposition are observed 
when N levels are low (Vitousek, 1982).
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5.4  Further Information

Photosynthesis
Rabinowitch and Govindjee (1965, 1969)

Bowen Ratio
Lewis (1995): ftp://195.37.229.5/pub/outgoing/jwinder/

BowenRatioLiterature/Lewis_BullAmeri​MeteoSoc​
_1995.pdf

Plant Physiology Protocols
Prometheus Wiki, CSIRO: http://prometheuswiki.

publish.csiro.au/tiki-custom_home.php
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6  Attributes of Plant Communities

Plants tend to grow with friends, and individual species are frequently found in association with a predictable 
range of friends, through both facilitative and competitive mechanisms. Groups of plants can be characterised 
by a number of attributes such as their species composition, their spacing, their foliage volume, their canopy 
texture and colour, and their dynamics (see Section 2.3.1).

Often in vegetation science there is a need to 
more formally define plant communities into a 
classification scheme, so that the classification can 
serve as a surrogate for biodiversity (Margules and 
Pressey, 2000). Typically, the primary goal is to 
arrange a set of observations into groups based on 
various floristic and environmental attributes, many 
of which are discussed in this section. The groups 
have several purposes, but a common purpose in 
this context is to serve as a mapping classification 
scheme (see Section 2.3.1). The methods for creating 
the groups in the classification scheme can be 
directed by expert knowledge, numerical analysis, 
or some combination of both (De Caceres and 
Wiser, 2012). Expert knowledge employs a priori 
subjective knowledge to manually devise the groups 
and allocate observations to those groups. Numerical 
methods typically employ some form of supervised 
or unsupervised clustering approach, which group 
observations by analysing pattern and structure in 
the community attribute data (usually floristics and/or 
environmental information; see Volume 2E for details 
of classification methods).

Various methods have been devised to sample 
vegetation communities. Such methods are often 
based on quadrats, predefined areas within which 
vegetation attributes of a small number of plants are 
measured to infer traits that are representative of 
the larger population (see Volume 2D—Section 12). 
Quadrats are sometimes located along a sampling 
transect. Detailed guidelines for vegetation surveys 
in Australia are provided in Hnatiuk et al. (2009) and 
Muir et al. (2011). 

The following sub-sections describe attributes of 
plant communities that are relevant to EO analyses:

	§ formations—combinations and permutations of 
different plants (see Section 6.1);

	§ horizontal spacing and pattern—layout of plants 
(see Section 6.2);

	§ density and cover—number and spread of plants 
(see Section 6.3); 

	§ canopy colour and texture—how plant canopies 
blend (see Section 6.4); 

	§ growth stages and phenology—how plants age and 
interact with seasonal variations (see Section 6.5); 
and

	§ succession—how associations change with time 
(see Section 6.6).

If we concentrate on any one particular species our impression will be one of flux and hazard,  
but if we concentrate on total community properties (such as biomass in a given trophic level)  

our impression will be of pattern and steadiness.  
(May, 1974)

Background image: Textural variation within eucalypt forest canopy. Source: © Shutterstock image ID 186362276



Earth Observation: Data, Processing and Applications.  Volume 3: Applications

126

6.1  Formations
Floristic composition, or association, indicates the 
variety of botanical species within a particular 
community. While botanical classification of individual 
plants involves visual comparison with standardised 
descriptive keys, which rely on both structural and 
floristic characteristics (see Section 5.1), structural 
classification of groups of plants is largely based on 
their growth form, vertical stratification, and spacing. 

Any vegetation grouping can contain multiple 
growth forms, such as trees and ground covers, 
which tend to coexist as discrete layers or strata, 
with the tallest, or upper, stratum often typifying 
the group (see Figure 5.1). A hierarchical Australian 
system of classifying vegetation type on the basis 
of structural and floristic attributes was presented 
by Hnatiuk et al., (2009) and is summarised in 
Table 6.1. In this system, the broad floristic formation 
is defined by, and named after, the major species 
or genera that characterise the dominant stratum. 
In the nomenclature of NVIS (see Section 2.3.1), an 
association expands on the broad floristic formation 
to nominate three dominant or co-dominant species in 
each stratum (see Table 2.7). 

Many vegetation classification systems stratify the 
vertical distribution of plants into height classes, 
where vegetation layers, or strata, are defined to 
differentiate between and within growth forms (see 
Table 6.2 and Figure 6.1). Such categories are relative 
to each association rather than corresponding to 
predefined heights. 

Vegetation height is often correlated with biome, 
being an indication of both climatic extremes and 
edaphic resources. Since the diverse range of 
biomes in Australia complicates the task of defining 
absolute height classes, relative classes, which can 
be consistent within regional assessment areas, 
are recommended (NCST, 2009). An Australian 
implementation of relative height classes is given in 
Table 6.3. An integrated, structural classification that 
has been developed using optical and microwave 
datasets to map biomass across Australia is described 
in Excursus 6.1.

Figure 6.1  Height strata

A

E

B

C

Upper (U)

Mid-stratum 1 (M1)

Mid-stratum 2 (M2)
Ground (G)D

Emergent (E)

Source: Hnatiuk et al. (2009) Figure 8



Earth Observation: Data, Processing and Applications.  Volume 3: Applications Volume 3A: Applications—Terrestrial Vegetation

6  Attributes of Plant Communities

127

Table 6.1  Vegetation formations

Vegetation Attributes
Vegetation Category

Formation Structural Formation Broad Floristic Formation

Life form (woody/non-woody) ✓ ✓ ✓

Crown separation ✓ ✓ ✓

Crown type ✓ ✓

Growth forms in each stratum ✓ ✓

Height of each stratum ✓ ✓

Foliage cover of lower stratum ✓ ✓

Cover and height of emergents ✓ ✓

Characteristic species of dominant stratum ✓

Example Dense woody plants Very tall, dense trees Very tall, dense Eucalyptus 
trees

Source: Hnatiuk et al. (2009)

Table 6.2  Height strata

Stratum Description Example

Emergent 
Tallest plants above canopy, which may be 
dominant layer in sparse vegetation

E

Upper or 
Dominant 

Vegetation forming canopy layer that has 
greatest ecological impact is generally the 
tallest stratum

U

Middle 
Vegetation between canopy and ground 
layer when present

M1

M2

Ground 
Vegetation close to ground and is usually 
< 2 m (may be the dominant layer, as in 
grasslands).

G

Adapted from Hnatiuk et al. (2009) 

Table 6.3  Height classes

Height (m) Life Form

Min Max Woody Non-Woody

50 – Giant –

35 50 Extremely tall –

20 35 Very tall –

10 20 Tall –

5 10 Medium Giant

2 5 Low Extremely tall

1 2 Dwarf Very tall

0.5 1 Miniature Tall

0.25 0.5 Micro Medium

0.05 0.25 Nano Low

– 0.05 – Dwarf

Source: Hnatiuk et al. (2009) 

Excursus 6.1�—Vegetation Height and Structure Map

Source: Scarth et al. (2019) 
National structure map: http://auscover.org.au/purl/icesat-vegetation-structure 
Biomass library: http://www.auscover.org.au/purl/biomass-plot-library 
Further information: https://www.tern.org.au/satellite-eye-on-australias-vegetation/

A detailed national map of vegetation structure 
(height and cover) has been developed for Australia 
based on EO datasets (see Table 6.4). This 30 m 
resolution structure map of Australian forest and 
woodland structure was derived from:

	§ Landsat TM/ETM+ imagery (30 m resolution; dry 
season 1987–2010) processed to Foliage Projective 
Cover (FPC); 

	§ ALOS (Advanced Land Observing System) PALSAR 
(Phased Arrayed L-band Synthetic Aperture Radar) 
L-band Fine Beam Dual (HH and HV) mosaic 
product (25 m resolution) for 2010; and

	§ ICESat (Ice, Cloud and land Elevation satellite) 
GLAS (Geoscience Laser Altimeter System) L2 
GLA14 (Global Land Surface Altimetry), acquired 
2003–2009.

http://auscover.org.au/purl/icesat-vegetation-structure
http://www.auscover.org.au/purl/biomass-plot-library
https://www.tern.org.au/satellite-eye-on-australias-vegetation/
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Table 6.4  Summary of structural classes

Structural formations used in the national structure map are adapted from NVIS (DEWR, 2007), Specht (1970), and Specht and 
Specht (1999)—see Section 2.3.1 and Table 2.6.

Lifeform and 
height of tallest 
stratum

Foliage Projective Cover (FPC) or Crown Cover (CC) of the tallest plant layer

Dense   
(70–100% FPC; > 80% CC)

Mid-dense  
(30–70% FPC;  50–80% CC)

Sparse  
(10–30% FPC; 20–50% CC)

Very Sparse/Isolated 
(< 10% FPC; 0.25–20% CC)

Trees > 30 m Tall closed forest Tall open forest Tall woodland Tall open woodland

Trees 10–30 m Closed forest Open forest Woodland Open woodland

Trees 5–10 m Low closed forest Low open forest Low woodland Low open woodland

Shrubs 2–8 m Closed scrub Open scrub Tall shrubland Tall open shrubland

Shrubs 0–2 m Closed heath Open heath Low shrubland Low open shrubland

Source: Scarth et al. (2019)

Figure 6.2  Processing overview 

Source: Scarth et al. (2019) Figure 3
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ALOS PALSAR data were integrated with Landsat-
derived FPC data to produce a unique segmentation 
of the landscape into regions with similar vegetation 
structure. These regions were classified and 
associated with vertical plant profiles derived from 
ICESat GLAS waveforms to characterise vegetation 
height. Airborne lidar data was used to validate a 
range of forest structural types. The processing steps 
are summarised in Figure 6.2, with the resulting map 
being shown in Figure 6.3. 

The Biomass library was constructed by methodically 
collating tree level data from over 15,000 plots 
located in all states, comprising over 1 million diameter 
measurements of individual trees. The biomass of 
each tree was estimated using a suite of allometric 
equations (Paul et al., 2016, 2019) and biomass 
estimates for each plot were scaled to a per hectare 
metric. Both the structure map and the National 
Biomass Library are available online from TERN 
Australia (see Section 6.7). 

Figure 6.3  Vegetation height and structure

Vertical plant profiles for the Australian continent, including height, cover, age class, and L-band backscatter characteristics based 
on the ICESat and Landsat time series and ALOS PALSAR datasets.

Source: Scarth et al. (2019) Figure 11
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6.2  Horizontal Spacing and Pattern
Spacing of plants depends on their frequency and 
arrangement. Frequency indicates the likelihood of 
locating a particular species at a specific location and 
is indicative of its abundance. Estimates of species 
frequency are determined using field sampling of 
presence/absence counts within quadrats. Since 
frequency is often related to vegetation pattern and 
density, it can be misrepresented by quadrat methods 
when the quadrat size is inappropriate. The horizontal 
pattern formed by plants can be generalised into 
three types:

	§ random—unpredictable spacing, often resulting 
from wind dispersal of seed;

	§ regular—uniform distribution, usually resulting from 
controlled planting by Homo sapiens; or

	§ clumped—common for seedlings growing near a 
seed plant (see Figure 6.4).

Most natural vegetation associations create 
random or clumped patterns, such as uneven-
aged forests, resulting from a continuous cycle 
of plant establishment and senescence. After a 
mayor disturbance however, such as a fire, natural 
regeneration can be arranged in random clumps of 
uniform age. By contrast, man-made forests are often 
planted in a regular pattern at one time, forming an 
even-aged forest, in which the range of tree ages 
is generally within 20% of the rotation age. The 
underlying pattern of plants directly influences the 
canopy texture (see Section 6.4). 

Figure 6.4  Population distribution patterns

a. Regular distribution	 b. Random distribution	 c. Clumped distribution

	 	
Source: Yerpo, Wikimedia Commons. (Retrieved from http://en.wikipedia.org/wiki/Species_distribution#mediaviewer/File:Population_distribution.svg)

6.3  Density and Cover
Vegetation density indicates the number of individual 
plants per unit area. Cover is the proportion of ground 
occupied by vegetation. Given the overlapping nature 
of vegetation, the combined cover for all plants in a 
given area can exceed 100%. Vegetation cover can be 
estimated from field sampling, aerial photography, or 
satellite imagery. Traditional measures of vegetation 
cover include foliage cover (see Section 6.3.1), 
cover-abundance (see Section 6.3.2), leaf area 
index (LAI—see Section 6.3.3), fraction of absorbed 
photosynthetically active radiation (fAPAR—see 
Section 6.3.4), basal area (BA—see Section 6.3.5), and 
fractional cover (see Section 6.3.6).

6.3.1  Foliage cover
Foliage cover, or leaf density, represents the amount 
of photosynthetic material, or biomass, of green 
vegetation within a given area. This has been 
measured in various ways, some of which include 
both foliage and branches, rather than just foliage. 
The term foliage cover is often reserved for estimates 
of foliage (and branch) material in ground layer 
vegetation (Hnatiuk et al., 2009).

Some traditionally used measures attempt to estimate 
cover on the basis of vertical projection, that is, the 
proportion of ground beneath plants that would be 
shaded when the Sun is directly overhead: 

	§ Foliage Cover %—the percentage of a sample site 
covered by the vertical projection of foliage (and 
branches for woody vegetation; Carnahan, 1977)

	§ Foliage Projective Cover (FPC)—the proportion of 
ground covered by the vertical projection of foliage 
only (Specht et al., 1974). 

http://en.wikipedia.org/wiki/Species_distribution#mediaviewer/File:Population_distribution.svg
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These measures involve estimation of the extent of 
ground shadowing resulting from overhead foliage 
and have proved to be variable between estimators. 
More recent measures of vegetation density 
have attempted to reduce the subjectivity of field 
measurements by focusing on crown extent, rather 
than the foliage density. Within a defined sample 
area, % crown cover records the percentage of area 
covered by a vertical projection of the crown and is 
the recommended measure for plants higher than 
1.5 m (Hnatiuk et al., 2009). The Crown Separation 
Ratio (CSR; Walker et al., 1988; Penridge and 
Walker, 1988) is computed as:

This is best measured separately for each vegetation 
stratum and assumes approximately circular crowns. 
When measured in accordance with guidelines, CSR is 
directly related to crown cover %. Estimates of foliage 
density can subsequently be incorporated to convert 
crown projection estimates to foliage projection 
estimates. This process typically involves matching 
the actual tree crowns to photos of crown openness 
(Hnatiuk et al., 2009):

% foliage cover = % crown cover � crown type

The term foliage cover is often reserved for estimates 
of foliage (and branch) volume in ground layer 
vegetation (Hnatiuk et al., 2009). For a measured 
distance, % foliage cover is the percentage covered by 
the vertical projection of plant material.

6.3.2  Cover-abundance
Cover-abundance estimates the quantity of individual 
species in a given sample area. The Braun-Blanquet 
Cover-Abundance Scale (Mueller-Dombois and 
Ellenberg, 1974) is commonly used to record 
vegetation cover-abundance on the basis of either:

	§ cover estimate—where vegetation covers more 
than 5% of the sample area; or 

	§ plant count—when vegetation cover is less than 5%. 

This method has been shown to be more efficient 
than density sampling methods, especially for 
baseline studies such as environmental impact 
analyses (Wikum and Shanholtzer (1978). 

6.3.3  Leaf area index (LAI)
Leaf Area Index (LAI) attempts to quantify the 
extent of leaf overlap so varies with plant growth. 
It represents the total area of leaves (one-sided) 
projecting into a given vertical column and is 
computed as:

This dimensionless parameter is considered to 
characterise the interface between canopy and 
atmosphere. Since the area of foliage that can 
intercept solar radiation essentially drives the 
microclimates within and beneath canopies, LAI is 
also indicative of canopy energy exchange processes, 
water interception and transpiration rates, and stand 
productivity (Bréda, 2003; see Section 7). 

LAI estimates have traditionally required destructive, 
time-consuming sampling of leaves (see Section 5.1.2). 
Direct and semi-direct methods of measuring leaf 
area are reviewed by Bréda (2003). Indirect methods 
include the use of optical instruments that measure 
radiation transmission through the canopy, which 
can be subsequently converted to Plant Area Index 
(PAI) or Surface Area Index (SAI). Both of these 
measures implicitly include both foliage and woody 
elements of the canopy. Where multiple optical 
instruments are available, the canopy gap fraction 
(“the fraction of view that is unobstructed by canopy 
in any particular direction”; Welles and Cohen, 1996) 
can be computed (Schaefer et al., 2018). PAI/LAI 
estimates can also be derived using terrestrial laser 
scanning (Jupp et al., 2009; Strahler et al., 2008; see 
Excursus 5.1). 

LAI is used to model the growth and yield of crops 
and forests (see Sections 12, 14, and 16). Many 
methods for deriving LAI assume that leaves are 
randomly distributed, so do not consider clumping 
or overlapping arrangements that commonly occur 
in nature. LAI models also need to consider the 
impact of leaf size (relative to the canopy extent) 
and leaf orientation, since these factors vary in 
different types of vegetation and modify how 
much radiation is transmitted through the canopy 
(Hill et al., 2006a, 2006b). Various adjustments 
have been proposed for these factors (such as 
Chen et al., 1997), but many authors recommend 
use of direct LAI measurements to calibrate any 
indirect estimates of canopy LAI in Australian 
ecosystems (Coops et al., 2004; Schaefer et al., 2018). 
Further, given the vertical leaf inclination of most 
Eucalyptus species, projective foliage cover has 
demonstrated closer correlation with some satellite-
based LAI products than indirect LAI estimates 
(Hill et al., 2006a).

Given the functional link between LAI and the spectral 
reflectance of plant canopies, numerous techniques 
have been developed to derive LAI estimates from EO 
data (see Section 8.1). Procedures for validating LAI 
products derived from satellite imagery are detailed in 
Schaefer et al. (2018). 
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6.3.4  Fraction of absorbed 
photosynthetically active radiation (fAPAR)
Photosynthetically Active Radiation (PAR) is defined 
as EMR with wavelengths in the range 400–700 nm 
and includes both direct and diffuse light. Incident PAR 
represents the amount of PAR that reaches the top of a 
vegetation canopy. As detailed in Volume 1A, this varies 
with geographic location, season and atmospheric 
conditions. The Intercepted PAR (IPAR) is the amount 
of PAR reaching layers within the canopy as the light 
penetrates through the top layer. The amount of 
light that is actually absorbed by vegetation is called 
Absorbed PAR (APAR). The fraction of APAR (fAPAR) 
indicates the proportion of PAR that is absorbed by 
all vegetation layers within a canopy and is commonly 
estimated from transmittance measurements using the 
generalised relationship:

fAPAR includes:

	§ photosynthetically active vegetation components 
(PAV)—mostly chloroplasts;

	§ non-photosynthetically active vegetation 
components (NPV)—mostly senescent foliage, 
branches, and stems; and

	§ non-photosynthetic components in leaves—veins 
and cell walls (Xiao et al., 2004).

Thus, fAPAR is the proportion of PAR absorbed by 
both photosynthetic (PAV) and non-photosynthetic 
(NPV) components of vegetation:

fAPAR = fAPARPAV + fAPARNPV

It should be noted that the proportion of fAPAR 
deriving from PAR varies in different ecosystems. For 
example, in communities with sparse canopies, such 
as savannas and shrublands, fAPARNPV can increase 
fAPAR by 10% to 40% (Asner et al., 1998). Accordingly, 
transmittance measurements may need to be taken 
at different heights within different ecosystems 
(Restrepo-Coupe et al., 2018). fAPAR can be viewed 
as representing the energy absorption capacity 
of a vegetation community (Fensholt et al., 2004) 
and is frequently expressed as a function of LAI 
(Baret and Guyot, 1991; Myneni and Williams, 1994; 
Ruimy et al., 1994, 1999). fAPAR can also be derived 
using quantum sensors, directional measurements, 
or three-dimensional models of canopy optics. 
fAPAR estimates can be impacted by solar zenith 
angle, diffuse radiation levels, canopy architecture, 
and variations in soil albedo (Gower et al., 1999). 
Methods for validating fAPAR products derived from 
EO imagery are reviewed by Baret et al. (2013) and 
Schaefer et al. (2018). An example of an EO-based 
fAPAR map of Australia is shown in Figure 6.5.

Figure 6.5  Fraction of Absorbed Photosynthetically Active Radiation (fAPAR)

fAPAR derived from MODIS/Terra imagery (LPDAAC MOD15A2 mosaic) acquired between 1 and 8 January 2016 (inclusive). This 
gridded 8-day composite shows fAPAR on a scale from 0 to 1.

Source: TERN AusCover. (Retrieved from http://www.auscover.org.au/purl/lpdaac-mosaic-mod15a2-v5)  
AusCover is the remote sensing data products facility of the Terrestrial Ecosystem Research Network (TERN; http://www.tern.org.au)

http://www.auscover.org.au/purl/lpdaac-mosaic-mod15a2-v5
http://www.tern.org.au
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6.3.5  Basal area (BA)
Forest development can be characterised by its 
canopy, the combined leaves, twigs, and branches 
of all tree crowns in a stand, or the stand structure, 
the size and frequency of stems within a given area. 
Measurement of the latter is readily achievable 
and directly related to timber production (see 
Section 16.5). Tree volume is also indicative of carbon 
stores and woody biomass (see Section 17). 

Basal area (BA), or cross-sectional area, indicates the 
proportion of area occupied by the base of a plant, 
such as a tree trunk, and is computed as:

Basal area has been traditionally computed from 
manual measurements of individual trees using a 
calibrated tape measure or caliper at a trunk height 
of 1.3 m (or 1.4 m in some countries7). Estimates of 
basal area can also be derived using lidar instruments 
(see Excursus 5.1 and Volume 1A—Section 15.1). 
When combined with laser altimetry, surface lidar 
instruments enable accurate canopy structure 
measurements to be derived for forests (see 
Excursus 6.1 and Section 16).

7	 Breast height is fixed at 1.3 m in Australia, UK, Canada and continental Europe, and at 1.4 m in the USA, New Zealand, Burma, India, Malaysia and South Africa. 

6.3.6  Fractional cover
Functionally, all vegetative material can be described 
as either photosynthetic—green, photosynthesising 
leaves—or non-photosynthetic—dead plant 
material (above ground), woody material, and litter 
(Guerschman et al., 2009). Many sparsely vegetated 
landscapes, such as savanna and grassland 
ecosystems, can simplistically be classified in terms of 
three ground components:

	§ photosynthetic vegetation;

	§ non-photosynthetic vegetation; and

	§ bare ground (soil, gravel, rock).

Fractional cover represents the ground area covered 
by each of these components as a percentage of a 
given area. Since the structure and scale of vegetation 
is closely tied to water and energy balance in these 
landscapes, estimates of fractional cover are valuable 
for a range of analyses relating to carbon and nutrient 
uptake, water and energy cycling, and fire and erosion 
potential (see Sections 7 and 9.1). 

Traditionally, fractional cover estimates have been 
derived from ground-based measurements “using 
a variety of qualitative and quantitative approaches 
centred on plots or transects, where the locations 
have been chosen to be representative of vegetation 
communities, ecosystem types or management 
practices” (Scarth et al., 2018). However, more 
recently, accurate estimates of fractional cover can 
be determined from EO imagery, where individual 
image pixels form the area unit for which vegetation 
fractions are estimated (see Excursus 8.3). 

6.4  Canopy Colour and Texture
Both the colour and texture of a vegetation canopy 
are indicative of plant type(s), density, age, and 
condition. The composite ‘colour’ of a canopy 
is readily summarised in EO imagery, with each 
reflectance measurement being integrated over 
the area of an optical pixel (see Volume 1B—
Section 1.2). As detailed in Section 4 above, the 
canopy reflectance in particular wavelengths can be 
indicative of the vegetation composition, condition, 
density, structure, and/or age. For example, when 
the spectral characteristics of surface features are 
plotted on a crossplot of red versus NIR reflectance, 
green vegetation forms a characteristic triangular 
shape (Kauth and Thomas, 1976; see Section 8.1.1). 
Bare soil typically plots in a line along the base of the 
vegetation triangle while vegetation plots above the 
soil line, with its greenness and cover determining 
distance from the line (see Figure 6.6).

Monitoring the changes in canopy colour through time 
can differentiate between vegetation with varying 
phenological cycles and allow vegetation types to 
be identified more accurately (see Section 9.2). For 
example, vegetation that stays green throughout the 
year is characterised by smaller annual variations 
in colour than deciduous or annual vegetation (see 
Section 9.1).

The imaged texture within a canopy is directly 
dependent on image scale relative to the plant 
crown diameter (see Volumes 1 and 2). Textural 
variations within a canopy can be indicative of 
changes to vegetation condition or structure (see 
Volume 2C—Section 6.1). Textural characteristics 
within an EO image can also be exploited to delineate 
individual tree crowns and estimate biomass 
(Cabello-Leblic, 2018).
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Figure 6.6  Vegetation cover triangle

Source: Harrison and Jupp (1990) Figure 92

When a vegetation canopy is not continuous, the 
‘colour’ measured by a remote sensor will result 
from a blend of the vegetation colour and the 
background colour (see Volume 1B—Section 6.6). 
As such, different densities of vegetation cover will 
appear as different ‘colours’ when grown on different 
coloured soils. One example of the impact of soil 
colour on the reflectance from a grassy ground 
cover is provided by McVicar et al. (2002) based on 
work by Roderick et al. (2000). Using an unshaded, 
Lambertian surface, the variations in albedo were 
modelled as grass cover (with 10% albedo) increased 
on both light and dark soils. As illustrated in Figure 6.7, 
while full grass cover produces the same canopy 
reflectance on both soil colours, the gradations from 
full cover to bare soil resulted in markedly different 
reflectances, both in terms of the overall reflectance 
values for equivalent partial grass coverage and the 
rate of reflectance change between gradations. In this 
simulation, a 20% increase in green grass cover raised 
the overall albedo by 1% on dark soil, but the same 
increase in grass cover resulted in a 4% decrease in 
total albedo on bright soil. 

Figure 6.7  Simulated reflectance for increasing grass cover

Adapted from: McVicar et al. (2002)

While this model simplifies many aspects of 
imaging a real canopy, it demonstrates the reality 
of composite reflectance interactions within an EO 
pixel. The relative reflectance range corresponding 
to increased grass cover on dark soil is effectively 
narrower than the corresponding range on bright 
soil. This situation is particularly relevant to selecting 
the radiometric resolution required to detect a given 
gradation of change in canopy density. As detailed 
in Table 6.5, an 8% variation in grass cover on dark 
soil would vary the imaged reflectance by 1 digital 
number in 8-bit data, whereas only 2% variation in 
grass cover on bright soil would result in the same 
difference in imaged reflectance values. Again, while 
these simulated figures do not account for many of 
the complexities involved with imaging with remote 
sensors, they rightly indicate the discriminatory 
advantages of sensors with increased radiometric 
resolution (see Volume 1B—Section 1).

Table 6.5  Effect of sensor quantisation on radiometric sensitivity

Quantisation Number of grey levels Precision (1/level)
Change in green grass cover (%)

On dark soil On bright soil

7 bit 128 0.007813 15.63 3.91

8 bit 256 0.003906 7.812 1.953

10 bit 1024 0.000977 1.954 0.489

12 bit 4096 0.000244 0.488 0.122

Source: McVicar et al. (2002)
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The transfer of EMR through a vegetative canopy 
has been simulated by radiative transfer modelling, 
which uses information about the shape, size, and 
density of plants to determine how incoming radiation 

is reflected, absorbed, or transmitted by the canopy 
(see Volume 1B—Section 5). Analyses of sub-pixel 
components to derive fractional cover estimates are 
described in Sections 8.3.

6.5  Growth Stages 
Within a group of plants, a growth stage describes 
the prevalent life cycle development phase. Various 
growth stages have been defined for different types 
of plants. For example, the following five stages are 
commonly used to describe the growth of Australian 
native vegetation (Hnatiuk et al., 2009):

	§ early regeneration—small juvenile plants of variable 
density, possibly associated with occasional older, 
emergent plants;

	§ advanced regeneration—well-developed 
immature plants of variable density, generally not 
reproducing;

	§ uneven age—reproducing plants of mixed size and 
age, often forming two or more vertical strata;

	§ mature—reproducing plants at maximum height 
with full, healthy crowns; and

	§ senescent—over-mature plants showing signs of 
aging.

These stages are typically sampled for the dominant 
vegetation type and condition at each sample site. 
For forests, leaf area and twig volume tend to stabilise 
during early growth stages, so that wood growth is 
the major component of increased biomass for older 
forests (see Section 16). Environmental disturbances, 
such as fire or windthrow, often trigger the demise 
of an aging generation of plants and assist the 
establishment of the next generation. For example, 
the timing of growth stages for a eucalypt forest 
could be described as:

	§ disturbance, germination and early growth: 
0–5 years;

	§ saplings and regrowth: 5–100 years;

	§ mature: 100–250 years; and

	§ senescent: > 250 years (Jacobs, 1955).

Other factors driving the cyclic nature of vegetation 
succession are detailed in Section 6.6.

6.6  Succession
Previous sections have introduced the concepts of the 
life cycle for individual plants (see Section 5.3) and 
growth stage assessment for groups of plants (see 
Section 6.5). Like all forms of life, plants age, and their 
form and interactions with the environment change 
as they age. Ecological succession considers how 
plants establish, thrive, and reproduce at particular 
locations through time and attempts to identify those 
factors that determine both their survival and their 
successors. 

The term ‘primary succession’ is used to describe 
the process of succession on pristine, bare earth, 
possibly resulting from lava flows, whereas ‘secondary 
succession’ follows a disturbance to a previously 
vegetated site, as might occur after fire, flood, or 
landslide. Secondary succession is more common 
than primary succession, and also more rapid due 
to the presence of seed and organic matter, taking 
decades for grasslands or centuries for forests, rather 
than millennia. 

The general mechanism of succession was described 
by Clements (1916) in terms of six transitional phases:

1.	 nudation—starting point is a bare site resulting 
from disturbance or natural history;

2.	 migration—propagules arrive to enable plant 
establishment;

3.	 ecesis—vegetation establishes and grows;

4.	 competition—between growing and reproducing 
plants for space, light, and nutrients;

5.	 reaction—environmental changes resulting from 
presence of plants; and 

6.	 stabilisation—climax community when plant 
interactions are in equilibrium with environment.

This process typically involves a wide range of 
species, some of which are best suited to rapidly 
colonising new areas with low nutrient levels (pioneer 
species), followed by a series of transitional species 
with increasingly more complex structures and 
requirements (seral species), until finally a stable, but 
not static, community is formed (climax species). For 
example, the factors involved with forest succession 
are illustrated in Figure 6.8.
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Figure 6.8  Forest succession

An abstract diagram showing forest succession over time. Increase in biomass, biodiversity and soil thickness are also shown, as well 
as the fluctuation of different plant communities over the process of succession.

Source: Lucas Martin Frey, Wikimedia Commons. (Retrieved from http://upload.wikimedia.org/wikipedia/commons/4/41/Forest_succession_depicted_over_
time.png)

Ecological theory implies that the climax community is 
balanced, independent, and resilient. This phase could 
theoretically continue indefinitely without external 
disturbance and is characterised by stability in terms 
of energy input and output, nutrient uptake and 
recycling, and species composition (Clements, 1916; 
Tansley, 1935; Whittaker, 1953). Nature, however, 
does not always comply with theories so, while 
succession is continuous in any situation, the neatly 
defined phases may not always be apparent or 
spatially coherent at a given location or instance in 
time (Connell and Slatyer, 1977). A mature forest, for 
example, can comprise a patchwork of communities 
at varying stages of succession. In concert with 
increasing vegetation cover and height through 
primary succession, richer and deeper soils are slowly 

formed until climax communities occur on ‘mature’ 
soils. The interrelationships between temperature 
and moisture in the processes of vegetation and soil 
succession can be seen to underlie many climatic 
classification systems (see Sections 1 and 2.2.3).

An understanding of succession underlies ecosystem 
dynamics and is important for assessing and 
managing any vegetation resource (see Section 7). 
As the structural complexity of successive stages 
increases, the capacity of a vegetation community to 
provide a greater range of habitats and food sources 
for fauna also increases. The successional stage of 
a vegetation community can thus be indicative of 
faunal composition and diversity, and provide valuable 
information for managing a range of terrestrial resources.

An understanding of ecological succession provides a basis for resolving man’s conflict with nature.  
(Odum, 1969)

http://upload.wikimedia.org/wikipedia/commons/4/41/Forest_succession_depicted_over_time.png
http://upload.wikimedia.org/wikipedia/commons/4/41/Forest_succession_depicted_over_time.png
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6.7  Further Information

Field Guides
NCST (2009)

TERN Australia (2018)

Guerschman et al. (2018)

Ecology
Pianka, E.R. (2011). Evolutionary Ecology. 7th Edn. Eric 

R. Pianka. 

Miller, G.T.Jr, and Spoolman, S.E. (2009). Essentials of 
Ecology, 5th edn. Brooks/Cole Cengage Learning. 
ISBN-13: 978-0-495-55795-1 https://www.academia.
edu/40164243/Essentials_of_Ecology

Vegetation Height and Structure Map 
of Australia
National structure map: http://auscover.org.au/purl/

icesat-vegetation-structure

Biomass library: http://www.auscover.org.au/purl/
biomass-plot-library

6.8  References
Asner, G.P., Wessman, C.A., and Archer, S. 

(1998). Scale Dependence of Absorption of 
Photosynthetically Active Radiation in Terrestrial 
Ecosystems. Ecological Applications, 8, 1003–1021. 
doi:10.1890/1051-0761(1998)008[1003:SDOAOP]2.0
.CO;2

Baret, F., and Guyot, G. (1991). Potentials and limits of 
vegetation indices for LAI and APAR assessment. 
Remote Sensing of Environment, 35, 161–173. https://
doi.org/10.1016/0034-4257(91)90009-U

Baret, F., Weiss, M., Lacaze, R., Camacho, F., 
Makhmara, H., Pacholcyzk, P., and Smets, B. (2013). 
GEOV1: LAI and FAPAR essential climate variables 
and FCOVER global time series capitalizing over 
existing products. Part 1: Principles of development 
and production. Remote Sensing of Environment, 
137, 299–309.

Bréda, N.J.J. (2003). Ground-based measurements of 
leaf area index: a review of methods, instruments 
and current controversies. Journal of Experimental 
Botany, 54 (392), 2403–2417.

Cabello-Leblic, A. (2018). Tree crown delineation. 
Ch 11 in Effective Field Calibration and Validation 
Practices: A practical handbook for calibration 
and validation satellite and model-derived 
terrestrial environmental variables for research 
and management. A TERN Landscape Assessment 
Initiative, NCRIS. ISBN 978-0-646-94137-0.

Carnahan, J.A. (1977). ‘Natural Vegetation’ map with 
commentary. Atlas of Australian Resources, Second 
Series. Department of Natural Resources, Canberra.

Chen, J.M., Rich, P.M., Gower, S.T., Norman, J.M., and 
Plummer S. (1997). Leaf area index of boreal forests: 
theory, techniques and measurements, Journal of 
Geophysical Research, 102(D24), 29429–29443.

Clements, F.E. (1916). Plant Succession: Analysis of the 
Development of Vegetation. Carnegie Institution 
of Washington Publication Sciences. http://dx.doi.
org/10.5962/bhl.title.56234

Connell, J.H., and Slatyer, R.O. (1977). Mechanisms 
of Succession in Natural Communities and Their 
Role in Community Stability and Organization. The 
American Naturalist, 111(982), 1119–1144. 

Coops, N.C., Smith, M.L., Jacobsen, K.L., Martin M., 
and Ollinger, S. (2004). Estimation of plant and 
leaf area index using three techniques in a mature 
eucalypt canopy, Austral Ecology, 29, 332–341.

De Caceres, M., and Wiser, S.K. (2012). Towards 
consistency in vegetation classification. Journal of 
Vegetation Science, 23, 387–393.

Fensholt, R., Sandholt, I., and Rasmussen, M.S. 
(2004). Evaluation of MODIS LAI, fAPAR and the 
relation between fAPAR and NDVI in a semi-arid 
environment using in situ measurements. Remote 
Sensing of Environment, 91(3–4), 490–507.

Gower, S.T., Kucharik, C.J., and Norman, J.M. (1999). 
Direct and Indirect Estimation of Leaf Area Index, 
fapar and Net Primary Production of Terrestrial 
Ecosystems, Remote Sensing of Environment, 70, 
29–51.

Guerschman, J.P., Hill, M.J., Renzullo, L.J., Barrett, 
D.J., Marks, A.S., and Botha, E.J. (2009). Estimating 
fractional cover of photosynthetic vegetation, 
non photosynthetic vegetation and bare soil in 
the Australian tropical savannah region upscaling 
Hyperion and MODIS sensors. Remote Sensing of 
Environment, 113, 928–945.

https://www.academia.edu/40164243/Essentials_of_Ecology
https://www.academia.edu/40164243/Essentials_of_Ecology
http://auscover.org.au/purl/icesat-vegetation-structure
http://auscover.org.au/purl/icesat-vegetation-structure
http://www.auscover.org.au/purl/biomass-plot-library
http://www.auscover.org.au/purl/biomass-plot-library
https://doi.org/10.1890/1051-0761(1998)008[1003:SDOAOP]2.0.CO;2
https://doi.org/10.1890/1051-0761(1998)008[1003:SDOAOP]2.0.CO;2
https://doi.org/10.1016/0034-4257(91)90009-U
https://doi.org/10.1016/0034-4257(91)90009-U
http://dx.doi.org/10.5962/bhl.title.56234
http://dx.doi.org/10.5962/bhl.title.56234


Earth Observation: Data, Processing and Applications.  Volume 3: Applications

138

Guerschman, J., Leys, J., Rozas Larraondo, P., 
Henrikson, M., Paget, M., and Barson, M. (2018). 
Monitoring groundcover: an online tool for 
Australian regions. CSIRO, Canberra. https://doi.
org/10.25919/5bf84026e556d

Harrison, B.A., and Jupp, D.L.B. (1990) Introduction 
to Image Processing: Part TWO of the microBRIAN 
Resource Manual. CSIRO, Melbourne. 256 p. 

Hill, M.J., Senarath, U., Lee, A., Zeppel, M., 
Nightingale, J.M., Williams, R., and McVicar, T.R. 
(2006a). Assessment of the MODIS LAI product 
for Australian ecosystems, Remote Sensing of 
Environment, 101, 495–518.

Hill, M.J., Held, A.A., Leuning, R., Coops, N.C., Hughes, 
D., and Cleugh, H.A. (2006b). MODIS spectral 
signals at a flux tower site: Relationships with 
high-resolution data, and CO2 flux and light use 
efficiency measurements. Remote Sensing of 
Environment, 103, 351–368.

Hnatiuk R.J., Thackway R., and Walker J. (2009). 
Vegetation. In: Australian Soil and Land Survey: 
Field Handbook (3rd edn). (Ed: National Committee 
on Soil and Terrain) pp. 73–125. CSIRO Publishing, 
Melbourne.

Jacobs, M. (1955). Growth Habit of the Eucalypts. 
CSIRO, Canberra. (Reprinted in 1986 by IFA). 

Jupp, D.L.B., Culvenor, D.S., Lovell, J.L., Newnham, 
G.J., Strahler, A.H., and Woodcock, C.E. (2009). 
Estimating forest LAI profiles and structural 
parameters using a ground-based laser called 
‘Echidna®’. Tree Physiology, 29, 171–181.

Kauth, R.J., and Thomas, G.S. (1976). The Tasselled 
Cap—a graphic description of the spectral-
temporal development of agricultural crops as seen 
by Landsat. Proceedings of Symposium on Machine 
Processing of Remotely Sensed Data. Purdue 
University, West Lafayette, Indiana, 4B41-4B51. 
http://docs.lib.purdue.edu/lars_symp/159

McVicar, T.R., Davies, P.J., Qinke, Y., and Zhang, G. 
(2002). An Introduction to Temporal-Geographic 
Information Systems (TGIS) for Assessing, 
Monitoring and Modelling Regional Water and Soil 
Processes. In Regional Water and Soil Assessment 
for Managing Sustainable Agriculture in China and 
Australia (Eds: T.R. McVicar, Li Rui, J. Walker, R.W. 
Fitzpatrick, and Liu Changming) ACIAR Monograph 
No. 84, 205–223.

Margules, C.R., and Pressey, R.L. (2000). Systematic 
conservation planning. Nature, 405, 243–253.

May, R.M. (1974). Stability and Complexity in Model 
Ecosystems. 2nd edn. Princeton University Press, 
Princeton, New Jersey.

Mueller-Dombois, D., and Ellenberg, H. (1974). Aims 
and methods of vegetation ecology. John Wiley and 
Sons, New York.

Muir, J., Schmidt, M., Tindall, D., Trevithick, R., 
Scarth, P., and Stewart, J., (2011). Guidelines for 
Field measurement of fractional ground cover: 
a technical handbook supporting the Australian 
collaborative land use and management 
program. Tech. rep., Queensland Department of 
Environment and Resource Management for the 
Australian Bureau of Agricultural and Resource 
Economics and Sciences, Canberra. http://data.
daff.gov.au/data/warehouse/pe_hbgcm9abll07701/
HndbkGrndCovMontring2011_1.0.0_HR.pdf 

Myneni, R.B., and Williams, D.L. (1994). On the 
relationship between FAPAR and NDVI. Remote 
Sensing of Environment, 49, 200–211. https://doi.
org/10.1016/0034-4257(94)90016-7

NCST (2009). Australian Soil and Land Survey Field 
Handbook. 3rd edn. National Committee on Soil and 
Terrain, CSIRO, Canberra. 264 p.

Odum, E.P. (1969). The Strategy of Ecosystem 
Development. Science, 164(3877), 262–270.

Paul, K. I., Roxburgh, S. H., Chave, J., England, J. R., 
Zerihun, A., Specht, A., Lewis, T., Bennett, L. T., 
Baker, T. G., Adams, M. A., Huxtable, D., Montagu, 
K. D., Falster, D. S., Feller, M., Sochacki, S., Ritson, P., 
Bastin, G., Bartle, J., Wildy, D., Hobbs, T., Larmour, J., 
Waterworth, R., Stewart, H. T., Jonson, J., Forrester, 
D. I., Applegate, G., Mendham, D., Bradford, M., 
O’Grady, A., Green, D., Sudmeyer, R., Rance, S. J., 
Turner, J., Barton, C., Wenk, E. H., Grove, T., Attiwill, 
P. M., Pinkard, E., Butler, D., Brooksbank, K., Spencer, 
B., Snowdon, P., O’Brien, N., Battaglia, M., Cameron, 
D. M., Hamilton, S., McAuthur, G., and Sinclair, J. 
(2016). Testing the generality of above-ground 
biomass allometry across plant functional types at 
the continent scale. Global Change Biology, 22 (6), 
2106–2124. doi:10.1111/gcb.13201

Paul, K., Larmour, J., Specht, A., Zerihun, A., Ritson, P., 
Roxburgh, S., Sochacki, S., Lewis, T., Barton, C.V.M., 
England, J.R., Battaglia, M., O’Grady, A.P., Pinkard, 
E.A., Applegate, G., Jonson, J., Brooksbank, K., 
Sudmeyer, R., Wildy, D.T., Montagu, K., Bradford, 
M.G., Butler, D.W., and Hobbs, T. (2019). Testing 
the generality of below-ground biomass allometry 
across plant functional types. Forest Ecology 
and Management, 432, 102–114. doi:10.1016/j.
foreco.2018.08.043

Penridge, L., and Walker, J. (1988). The crown-gap 
ratio and crown cover: derivation and simulation 
study. Australian Journal of Ecology, 13, 1090–1120.

https://doi.org/10.25919/5bf84026e556d
https://doi.org/10.25919/5bf84026e556d
http://docs.lib.purdue.edu/lars_symp/159
http://data.daff.gov.au/data/warehouse/pe_hbgcm9abll07701/HndbkGrndCovMontring2011_1.0.0_HR.pdf
http://data.daff.gov.au/data/warehouse/pe_hbgcm9abll07701/HndbkGrndCovMontring2011_1.0.0_HR.pdf
http://data.daff.gov.au/data/warehouse/pe_hbgcm9abll07701/HndbkGrndCovMontring2011_1.0.0_HR.pdf
https://doi.org/10.1016/0034-4257(94)90016-7
https://doi.org/10.1016/0034-4257(94)90016-7
https://doi.org/10.1111/gcb.13201
https://doi.org/10.1016/j.foreco.2018.08.043
https://doi.org/10.1016/j.foreco.2018.08.043


Earth Observation: Data, Processing and Applications.  Volume 3: Applications Volume 3A: Applications—Terrestrial Vegetation

6  Attributes of Plant Communities

139

Restrepo-Coupe, N., Huete, A., and Davies, K. 
(2018). Satellite Phenology Validation. Ch 9 
in Effective Field Calibration and Validation 
Practices: A practical handbook for calibration 
and validation satellite and model-derived 
terrestrial environmental variables for research 
and management. A TERN Landscape Assessment 
Initiative, NCRIS. ISBN 978-0-646-94137-0.

Roderick, M.L., Chewings, V., and Smith, R.C.G. (2000). 
Remote sensing in vegetation and animal studies. 
In Field and Laboratory Methods for Grassland and 
Animal Production Research. (Eds: L. Mennetje and 
R.M. Jones) Wallingford UK, CABI, pp. 205–225.

Ruimy, A., Saugier, B., and Dedieu, G. (1994). 
Methodology for estimation of terrestrial net 
primary production from remotely sensed data. 
Journal of Geophysical Research, 99, 5263–5283. 
https://doi.org/10.1029/93JD03221

Ruimy, A., Kergoat, L., Bondeau, A., and Potsdam 
NPP Model Intercomparison Participants. (1999). 
Comparing global models of terrestrial net primary 
productivity (NPP): analysis of differences in light 
absorption and light-use efficiency. Global Change 
Biology, 5 (Suppl. 1), 56–64. doi:10.1046/j.1365-
2486.1999.00007.x

Scarth, P., Guerschman, J.P., Clarke, K., and Phinn, 
S. (2018). Validation of Australian Fractional 
Cover Products form MODIS and Landsat Data. 
Ch 7 in Effective Field Calibration and Validation 
Practices: A practical handbook for calibration 
and validation satellite and model-derived 
terrestrial environmental variables for research 
and management. A TERN Landscape Assessment 
Initiative, NCRIS. ISBN: ISBN 978-0-646-94137-0. 
https://www.tern.org.au/NEW-CalVal-handbook-for-
remote-sensing-bgp4370.html

Scarth, P., Armston, J., Lucas, R., and Bunting, P. 
(2019). A Structural Classification of Australian 
Vegetation Using ICESat/GLAS, ALOS PALSAR, and 
Landsat Sensor Data. Remote Sensing, 11(2), 147. 
https://doi.org/10.3390/rs11020147

Schaefer, M.T., Farmer, E., Soto-Berelov, M., Woodgate, 
W., and Jones, S. (2018). Overview of ground 
based techniques for estimating LAI. Ch 6 in 
AusCover Good Practice Guidelines: Effective Field 
Calibration and Validation Practices: A practical 
handbook for calibration and validation satellite and 
model-derived terrestrial environmental variables 
for research and management. A TERN Landscape 
Assessment Initiative, NCRIS. ISBN 978-0-646-
94137-0.

Specht, R.L., and Specht, A. (1999). Australian plant 
communities : dynamics of structure, growth and 
biodiversity. Oxford University Press, Melbourne. 
ISBN 019553705X

Specht, L., Roe, E., and Boughton, V. (eds) (1974). 
Conservation of major plant communities in 
Australia and Papua New Guinea. Australian 
Journal of Botany Supplement, 7.

Strahler, A.H., Jupp, D.L.B., Woodcock, C.E., Schaaf, 
C.B., Yau, T., Zhau, F., Yang, X., Lovell, J., Culvenor, 
D., Newnham, G., Ni-Miester, W., and Boykin-Morris, 
W. (2008) Retrieval of forest structural parameters 
using a ground-based lidar instrument (Echidna®). 
Canadian Journal of Remote Sensing, 34(2), S426–
S440. 

Tansley, A.G. (1935). The use and abuse of 
vegetational concepts and terms. Ecology, 16, 
284–307.

TERN Australia (2018). Effective Field Calibration 
and Validation Practices: A practical handbook 
for calibration and validation satellite and model-
derived terrestrial environmental variables for 
research and management. A TERN Landscape 
Assessment Initiative, NCRIS. ISBN 978-0-646-
94137-0. https://www.tern.org.au/NEW-CalVal-
handbook-for-remote-sensing-bgp4370.html

Walker, J., Crapper, P., and Penridge, L. (1988). The 
crown-gap ratio I and crown cover: the field study. 
Australian Journal of Ecology, 13, 101–108.

Welles, J.M., and Cohen, S. (1996). Canopy 
structure measurement by gap fraction analysis 
using commercial instrumentation. Journal of 
Experimental Botany, 47(9), 1335–1342. https://doi.
org/10.1093/jxb/47.9.1335

Whittaker, R.H. (1953). A consideration of climax 
theory: the climax as a population and pattern. 
Ecological Monographs, 23(1), 41–78. https://doi.
org/10.2307/1943519

Wikum, D.A., and Shanholtzer, G.F. (1978). Application 
of the Braun-Blanquet Cover-Abundance Scale for 
Vegetation Analysis in Land Development Studies. 
Environmental Management, 2(4), 323–329.

Xiao, X., Zhang, Q., Braswell, B., Urbanski, S., Boles, 
S., Wofsy, S., Moore III, B., and Ojima, D. (2004). 
Modeling gross primary production of temperate 
deciduous broadleaf forest using satellite images 
and climate data. Remote Sensing of Environment, 
91, 256–270. doi:10.1016/j.rse.2004.03.010

https://doi.org/10.1029/93JD03221
https://doi.org/10.1046/j.1365-2486.1999.00007.x
https://doi.org/10.1046/j.1365-2486.1999.00007.x
https://www.tern.org.au/NEW-CalVal-handbook-for-remote-sensing-bgp4370.html
https://www.tern.org.au/NEW-CalVal-handbook-for-remote-sensing-bgp4370.html
https://doi.org/10.3390/rs11020147
https://www.tern.org.au/NEW-CalVal-handbook-for-remote-sensing-bgp4370.html
https://www.tern.org.au/NEW-CalVal-handbook-for-remote-sensing-bgp4370.html
https://doi.org/10.1093/jxb/47.9.1335
https://doi.org/10.1093/jxb/47.9.1335
https://doi.org/10.2307/1943519
https://doi.org/10.2307/1943519
https://doi.org/10.1016/j.rse.2004.03.010


Earth Observation: Data, Processing and Applications.  Volume 3: ApplicationsEarth Observation: Data, Processing and Applications.  Volume 3: Applications

140



Earth Observation: Data, Processing and Applications.  Volume 3: Applications

141

Volume 3A: Applications—Terrestrial VegetationEarth Observation: Data, Processing and Applications.  Volume 3: Applications

7  Attributes of Ecosystems

The concept of an ecosystem—comprising all biotic and abiotic factors in an environment—is introduced in 
Section 1.2.3. The distribution of a species and the productivity of an ecosystem both depend on the success 
or failure of individual plants, while the success or failure of each plant largely results from the influence of 
the environment on the rates of its vital processes (see Section 5). Vegetation is thus a delicate integrator of 
environmental conditions and can be viewed as indicative of those conditions (Billings, 1970). 

The interactions that exist between an organism and 
its environment are both complex and interrelated—
or ‘holocoenotic’. The various environmental factors 
described in Section 1.1 not only interact with the 
organism but also among themselves. As such, it 
is difficult to isolate and change one part of the 
environment without affecting the other parts; should 
the normal pattern of one factor be altered, the 
others will also change until a comparable balance is 
achieved. Conversely, while vegetation establishment 
needs certain environmental prerequisites, once this 
has happened further modification to the environment 
may then occur as the vegetation exerts its influence 
on the locality.

Given the gradual changes that often occur between 
ecosystems, it can be difficult to precisely define 
their boundaries and extent (Kessell, 1979). Gradual 
changes in soil moisture, elevation, humidity, and soil 

fertility typically result in corresponding changes in 
vegetation height, density, and species composition. 
For example, a major factor driving woody vegetation 
change in Australia is soil fertility, with poor soils 
typically supporting open (dry sclerophyll) forest, 
better soils supporting tall open (wet sclerophyll) 
forests, and high fertility soils supporting rainforests 
(IFA, 1985). 

The following sub-sections consider measureable 
properties of ecosystems in terms of:

	§ biodiversity (see Section 7.1);

	§ stability and equilibrium (see Section 7.2); 

	§ function and condition (see Section 7.3); 

	§ productivity (see Section 7.4);

	§ energy balance (see Section 7.5); and

	§ water balance (see Section 7.6)

The unique features that define individual ecosystem types are scale-dependent. The four key elements 
of an ecosystem type may be organised on spatial, temporal and thematic scales. Spatially, ecosystems 

vary in extent and grain size from water droplets to oceans, with boundaries delimited physically or 
functionally. Temporally, ecosystems may develop, persist and change over time frames that vary from 

hours to millennia. They appear stable at some temporal scales, while undergoing trends or fluctuations 
at others. Thematic scale refers to similarity of features within and between ecosystems, their degree of 

uniqueness in composition and processes, which may be depicted hierarchically. 
(Keith et al., 2013)

Background image: This panoramic view of Corobinnie Hill, northern Eyre Peninsula, SA, features a spread of vegetation types, including shrubs, mallee and 
wheatfields. Source: Matthew Bolton 
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7.1  Biodiversity
Section 1 above introduced the integrated nature of 
ecology. The interactions between environmental 
factors and plant genetics result in a diverse range 
of combinations and permutations of species within 
plant associations and communities in nature. The 
extent of heterogeneity may not always be apparent, 
with variations still occurring in the chemical 
composition of foliage when species composition and 
density appear to be homogeneous. Such variations 
are particularly relevant to herbivores whose 
distribution and abundance is directly related to 
forage quality (Youngentob et al., 2012). 

Terrestrial biodiversity tends to be greatest near the 
equator and decreases towards the polar regions, 
forming latitudinal gradients (see Section 1.3). While 
a wide range of indicators of biodiversity have been 
proposed (see Section 3.4.1), species diversity is a 
commonly used measure. A greater range of species 
in a community results in a greater range of resources 
for consumers. Many environmental factors, such 
as climatic stability, predation, and competition, 
contribute to species diversity, and can interact in 
complex ways (Pianka, 1971; see Figure 7.1). 

Species richness (or species density) refers to the 
number of species present in a given area. The 
relative importance of individual species, however, is 
not always based on abundance, and can vary both 
within and between communities and ecosystems. 
Species diversity encapsulates the concepts 
of species density and relative importance and 
represents the likelihood of predicting the species 
of a randomly selected individual. In a monoculture, 
for example, species diversity is low since it would be 
easy to predict the species for any individual.

Figure 7.1  Biodiversity factors

Adapted from: Pianka (1971)

While increased ecosystem diversity has traditionally 
been considered to coincide with greater ecological 
stability and resilience (MacArthur, 1955), recent 
studies have suggested that relatively simple 
ecosystems are more likely to be stable than complex 
ones. In some ecosystem models, the likelihood 
of achieving a stable equilibrium point actually 
decreased with increases in the number of species, 
the strength of interaction between species, and the 
frequency of that interaction (May, 1973). Empirical 
studies both support and reject this hypothesis. 
Studies based on vegetation diversity suggest that 
more complex communities stabilised ecosystem 
processes and were more resilient after perturbations, 
such as drought, but did not stabilise population 
processes, with reduced interannual biomass 
variability for higher biodiversity (Tilman, 1996; 
Tilman et al., 1998). In contrast, herbivore populations 
appeared to be more stable when feeding on a 
restricted range of species (Watt, 1968). It should 
be noted that the concept of equilibrium also varies 
with spatial scale (see Section 7.2). The use of EO 
datasets to monitor global and Australian biodiversity 
is detailed in Section 19.

Resilience and transformation are not opposites. They can be complementary. Maintaining resilience at 
one scale can require transformational changes at other scales. … Resilience includes knowing when an 
unwanted transformation is inevitable and instead deliberately transforming all or parts of the system 

such that the new system delivers what is valued and wanted. … It’s about learning where not to go rather 
than perfectly controlling where to go. 

(Walker, 2020)
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7.2  Stability and Equilibrium 
Ecosystems and landscapes constantly change. As 
part of the natural cycle of our environment, plants 
grow, water courses change, soil moves and air 
circulates—the environment keeps changing. Natural 
disasters, such as fire, flood, drought, and tectonic 
activity can impose massive and sudden changes 
on landscapes and ecosystems (see Section 1.1.2.3). 
Earth’s inhabitants, who are all part of the ecosystem, 
superimpose other changes, such as land clearing, 
cropping or afforestation, urban developments, 
mining, dam building, and other engineering works. 
The sum total of all these changes is a very dynamic 
planet (see Section 1.3.3).

Landscape disturbances can result from natural 
and anthropogenic causes (see Section 3.4.1). When 
changes occur suddenly, both the cause and impact 
are clearly evident. However, when changes are 
gradual, the driving factors can be more difficult 
to identify. One of the challenges for observing 
landscape dynamics is the lack of a clear baseline 
which defines ‘stability’ or ‘balance’. Indeed, both the 
rate and extent of ‘normal’ landscape changes differ in 
different ecosystems, with some ecosystems rapidly 
recovering from major disturbances, and others 
showing scars for extended periods. 

Separating the effects of ‘natural’ disturbance from 
anthropogenic changes presents a further challenge 
in many landscapes (see Section 15). More recently, 
ecosystem changes have been described by their 
impact on human populations. This perspective 
considers ecosystems in terms of the services they 
deliver and encourages sustainable management 
of resources in order to maintain those ecosystem 
services (see Section 20.3). 

An ecosystem is a dynamic complex of plant, animal, 
and microorganism communities and the nonliving 

environment interacting as a functional unit.  
(MEA, 2005)

Coupled with landscape stability is the concept of 
equilibrium. As introduced in Section 6.6, ecological 
succession assumes that plant communities 
progressively establish themselves on a given site 
until a state of equilibrium is achieved between 
competing components. This view of the landscape 
was accepted for most of the twentieth century, with 
agricultural management regimes aiming to maintain 
equilibrium by defining appropriate capacities for 
grazing animals and/or crop rotations. While the linear 
succession model can be observed to apply to some 
vegetated landscapes, it has been found wanting 
in resource-limited environments such as drylands, 
where plant growth is controlled by abiotic factors 
(see Section 15). 

Excursus 7.1 introduces some equilibrium and non-
equilibrium models that have been developed to 
simulate ecosystem dynamics in grazed landscapes.

An ecosystem functions by continually cycling energy and materials through living organisms that grow, 
reproduce and then die. This cycling of energy and materials through living organisms has evolved in 

response to a mix of disturbances (e.g. fires or floods), stresses (e.g. droughts or diseases) and ecological 
interactions (e.g. competition or predation) over millions of years. Recent changes in the frequency and 

intensity of these disturbances and stresses raises important issues about the ability of species and 
ecosystems to survive and adapt. 

(DEWHA, 2010)
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Excursus 7.1�—Modelling Grazed Landscapes

The grazing system in grasslands and rangelands 
can be represented as the interaction of multiple 
environmental factors as illustrated in Figure 7.2. The 
traditional view of ecosystem dynamics assumes 
an equilibrium state as the endpoint of succession, 
which is maintained by the interactions between its 
components (see Section 7.3). This situation applies 
where plant growth is mostly constant over time, with 
continuous consumption by herbivores. 

However, drylands, which occupy most of the 
Australian continent, are landscapes with complex 
environmental interactions, where plant growth 
rate is strongly controlled by rainfall, which is highly 
variable in both space and time. In these landscapes 
the equilibrium theory has proven to be inadequate 
for predicting the likely outcomes of natural or 

anthrogenic disturbances (Stringham et al., 2003). 
As an alternative, a non-equilibrium framework has 
been used to conceptualise vegetation dynamics 
in terms of multiple successional pathways and 
steady states, change thresholds, and discontinuous 
and irreversible transitions (Westoby et al., 1989; 
Stringham et al., 2003). 

Characteristics of equilibrium and non-equilibrium 
modelling frameworks are summarised in Table 7.1. 
In a non-equilibrium system the carrying capacity of 
the system is too dynamic for close tracking between 
the climate and populations, since rather than cycles 
being limit-driven, they are controlled by abiotic 
factors. Most rangeland ecosystems occupy an 
intermediate position somewhere between equilibrium 
and non-equilibrium behaviour.

Figure 7.2  The grazing system

1 AussieGRASS: An Operational National Pasture 
Model

G. McKeon and J. Carter 

1.1 General Background
AussieGRASS Environmental Calculator is a national simulation framework for Australian 
grasslands and rangelands (Figure 1.1).  We refer to it as the AussieGRASS modelling framework 
(Carter et al. 2000), because it includes not only the engine room model GRASP (Rickert et al.
2000) but also the input parameter layers of soils, pasture types, tree cover and stock numbers 
and the data layers of climate information (Jeffrey et al. 2001) including rainfall, temperature, 
radiation, humidity, evaporation and vapour pressure deficit (Figure 1.2).  The modelling framework 
also includes data sources such as NDVI from NOAA and extensive ground truthing across the 
continent (Carter et al. 2003).

The engine room model, GRASP, is a soil water and pasture growth model designed mainly to 
concentrate on effects of drought on pasture and rangeland vegetation.  The soil water balance is 
based on four soil layers and includes sub-models of tree transpiration, pasture transpiration, soil 
evaporation, run-off and through-drainage.  The hydrological components, runoff and through-
drainage, are also used to provide an output of “flow to stream” which can be compared to natural 
stream flow in relative terms.  

Thus GRASP provides a range of outputs including components of the hydrological cycle as well 
as the flow of pasture dry matter in the grazing system.  The development of GRASP over the last 
26 years has concentrated on drought effects on pastures and how to adequately simulate them.  
GRASP is also used in industry-funded (MLA, LWW) projects for application at a property scale.

Figure 1.1: The Grazing System

Source: McKeon and Carter (2015) Figure 1.1
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For example, over the past century, a series of 
ecological models have been applied to rangeland 
environments around the world (see Table 7.2). For 
most of the twentieth century, “the rangelands were 
viewed as equilibrium systems potentially disturbed 
by grazing” (Pickup et al., 1994), with the corollary 
that equilibrium could be restored by adjusting 
carrying capacity (Illius and O’Connor, 1999). Range 
models assume that the species composition 
of plant communities results from the opposing 
forces of plant succession and grazing intensity. 
In this modelling context, grazing is viewed 
as slowing, stopping, or reversing secondary 
succession, such that plant communities are 
produced that differ in species composition from 
the historical climax plant community, which would 
represent the single reference (equilibrium) point 
(Briske et al., 2005, 2017). However, the expansion of 
woody weeds could not be reversed by the removal of 
grazing (Westoby et al., 1989) and during prolonged 
droughts plant production and livestock numbers 
were rarely balanced. These observations led to the 
adoption of a non-equilibrium approach for modelling 
rangelands. Indeed, recent evidence suggests that 
grazing and other disturbances can disrupt the 
natural state for decades after grazing is removed 
(Sims et al., 2019).

Humans interact with nature through the use 
of simplified and incomplete perceptions of its 

structure, interrelationships, and dynamics. 
(Briske et al., 2017)

Table 7.1  Equilibrium versus nonequilibrium systems

Characteristic Equilibrium system
Nonequilibrium 
system

Ecological 
metaphor

‘Balance of nature’ ‘Flux of nature’

Abiotic patterns Relatively constant Stochastic/variable

Plant-herbivore 
interactions

Tight coupling Weak coupling

Biotic regulation Abiotic drivers

Population 
patterns

Density dependence Density independence

Populations track 
carrying capacity

Dynamic carrying 
capacity limits 
population tracking

Community/ 
ecosystem

Competitive structuring
Competition not 
expressed

Internally regulated External drivers

Adapted from: Briske et al. (2017) Table 6.1

By comparison, the State-and-Transition Modelling 
(STM) approach to managing natural resources 
considers the complexities of vegetation dynamics 
under a variable climate with changing stressors, such 
as grazing and fire (see Table 7.3 for terminology). 
Although originally introduced as ‘management 
language’ rather than ecological theory, STM 
models are now widely used to understand 
ecosystem response to disturbances in rangeland 
environments and can represent all known or 
anticipated stable states that may occupy a given site 
(Briske et al., 2017). While STM theory accommodates 
discontinuous and non-reversible vegetation change 
and is relevant to many grazed savanna land types, 
it may be inadequate for the more arid and semi-arid 
regions experiencing highly variable, often episodic, 
rainfall with consequent unpredictable vegetation 
responses under grazing. Moreover, its conceptual 
nature means that the framework often fails to 
adequately deal with the spatial realities of paddock 
heterogeneity and uneven grazing distribution 
(Ash et al., 1994). Nonetheless, STM models are 
useful both in terms of organising data and portraying 
landscape function. 

Table 7.2  Rangeland management models

Name Description Metric References

Range model Envisioned vegetation dynamics to occur 
along a single axis on which grazing intensity 
linearly counteracts secondary succession

Range condition rating derived from 
comparison of species composition with 
a reference site, which is used to infer 
production goals and ecological assessments

Dyksterhuis (1949)

Joyce (1993)

Non-equilibrium 
persistent model

Livestock maintain equilibrium with forage in 
key resource areas but may not do so when 
forage is abundant in the wet season

Rainfall variability metric defined the non-
equilibrium point

Ellis and Swift (1988)

Illius and O’Conner (1999)

State-and-
Transition model

Organised as a collection of all recognised 
or anticipated stable states that individual 
ecological sites may support

Change direction of ecological indicators used 
to modify state resilience

Westoby et al. (1989)

Bestelmeyer et al. (2017)

Stringham et al. (2003)

Source: Briske (2017)
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Table 7.3  State-and-Transition model terms

Term Definition

State A state is a recognisable, resistant, and resilient complex of two components, the soil base and the vegetation structure. The 
vegetation and soil components are necessarily connected through integrated ecological processes which interact to produce a 
sustained equilibrium that is expressed by a specific suite of vegetative communities.

Ecological 
indicators

Characteristics or attributes of phenomena that are being monitored, that is, inventoried over time.

Trend Overall temporal or spatial trajectory of an indicator, statistically measured in terms of direction, strength, and rate.

Benchmark A benchmark reference, or standard, is a baseline value of a measurement indicator by which an indicator can be compared and judged.

Disturbance Discrete event in time, such as drought or fire, that significantly reduces the abundance of a natural resource and can be 
characterised in terms of the magnitude of its impact.

Transitions A trajectory of system change away from the current stable state that is triggered by natural events, management actions, or both. 
The primary difference between the reversible and irreversible property of a transition is defined by the ability or inability of the 
system to repair itself.

Threshold Boundary in space and time between any and all states, or along irreversible transitions, such that one or more of the primary 
ecological processes has been irreversibly changed and must be actively restored before return to a previous state is possible.

Resilience Capacity of a system to return to a former configuration following a disturbance, that is, how far a system can be displaced from 
equilibrium before return to equilibrium is precluded. Ecological resilience is the degree, manner and pace of recovery of indicators 
after a disturbance.

Resistance Capacity of a system to remain unchanged by a disturbance, that is, it indicates the ability of a system to remain at or near its 
equilibrium condition by maintaining control of its ecological processes.

Feedback 
mechanisms

Ecological processes that influence the rate of change among system variables.

Source: Stringham et al. (2003); Briske et al. (2017); Washington-Allen and Ravi (2012)

A good example of the practical application of STM 
to rangeland management in Australia, including 
monitoring, is the Grazing Land Management (GLM) 
package (DAFF, 2013). GLM provides guidelines to 
assist northern beef producers in understanding and 
better managing their grazing practices. ‘Grazing land 
condition’ is defined as “the capacity of land to respond 
to rain and produce useful forage, and is a measure 
of how well the grazing ecosystem is functioning” 
(MLA, 2006). One or more defined vegetation and 
soil characteristics are used to relate land condition 
to a particular state or condition class (see Table 7.4). 
These characteristics are expected to remain relatively 
stable within a range of climatic variations, grazing 
pressures and other forms of disturbance, such as 
fire. An increase in grazing pressure for the same 
set of seasonal conditions (or maintaining the same 
stocking rate in a drought) may cause the landscape 
to transition to a more degraded state, depending on 
its inherent stability and/or resilience, where the latter 
is characterised by the ability of vegetation to recover 
when more favourable conditions return.

Resilience-based management, which specifically 
“acknowledges both the dependence and impact 
human populations have on natural resources 
and ecosystem services” (Briske, 2017), is 
gaining popularity in a variety of natural resource 
management fields and reflects our philosophical shift 
from being consumers of natural resources to being 
their stewards (see Sections 19 and 21.4).

Table 7.4  Grazing land condition classes

The ABCD framework in the Grazing Land Management (GLM) 
defines four condition classes based on the listed features.  
3P: perennial, productive, and palatable).

Class Features

A

High density and good cover of perennial grasses dominated 
by 3P species for a particular land type

Little bare ground (usually < 30%)

Few or no weeds

Good soil condition—no erosion and good surface condition;  
High organic matter

Little woody thickening.

B

Some decline in the health and/or density of 3P grasses

An increase in other less favoured or weed species

Some decline in soil condition

Some signs of previous erosion and/or increased bare 
ground (usually > 30% but < 60%).

C

Moderate to low density of preferred grasses or moderate 
density of intermediate grasses

Mainly annual grasses and forbs

Many weeds

Some erosion

Often poor ground cover (< 60%)

Some woody thickening.

D

General lack of any perennial grasses or palatable forbs

Severe erosion or scalding, resulting in restricted plant growth;

Ground cover mainly comprises weeds and annuals

Thickets of woody plants or weeds cover most of the area

Restoration to a better condition is reliant on high inputs of 
time, energy and money and land in this condition will not 
recover in the short term by excluding grazing.

Source: MLA (2011) Table 1
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7.3  Function and Condition
Traditionally, ecosystems have been assessed in 
terms of their biological composition and structure. 
Landscapes can also be usefully described, however, 
in terms of their function, that is, their ecosystem 
processes, such as the transport, usage, and 
cycling of resources in space and time (Ludwig and 
Tongway, 1997). 

One conceptual framework for landscape functionality 
is the Trigger-Transfer-Reserve-Pulse (TTRP) 
ecosystem model, which defines a sequence of 
processes that ‘maintain’ a landscape. In this 
framework, resource ‘losses’ from the landscape are 
offset by resource inputs and feedback mechanisms 
(see Figure 7.3). An example input, or trigger, would be 
rainfall, which may become runoff that is either lost 
or absorbed into the soil as reserve to support future 
plant growth. That plant growth may then be removed 
by consumption, recycled back into the reserve, or 
act as a physical obstruction to modify subsequent 
transfer processes (Tongway and Hindley, 2004). This 
whole framework has also been depicted as resting on 
a fulcrum to emphasise the need for balance between 
internal feedback processes and resource extraction 
(Tongway and Ludwig, 2006).

Landscape function describes how well the 
landscape’s biophysical system operates. This can be 
represented as a continuum of regulated resources, 
which is an objective assessment, independent 
of social and economic values. When a landscape 
loses function, it can be viewed as ‘leaking’ out of 
‘boundaries’; conversely, when control over resource 
loss is increased, landscape function is boosted 
(Tongway and Hindley, 2004). However, once we start 
to consider how well a landscape might be suited to 
a particular purpose or land use, the emphasis has 
moved from its objective function to its subjective 
‘condition’ (see Figure 7.5). The ‘condition’ of 
something can be equated to its ‘state of being’ or 
‘health’. Clearly, such relative terms will vary with the 
purpose of the assessment. For example, a landscape 
condition that is acceptable for pastoral activities may 
be less acceptable for carbon sequestration goals and 
unacceptable for biodiversity conservation. One of 
the advantages of monitoring ecological condition is 
to be able to project future condition states based on 
defined states relating to management practices and/
or climatic variations, such as potential trajectories of 
change for a grazed landscape based on the current 
land condition and differing future management 
strategies (Lunt et al., 2007). 

Figure 7.3  Ecosystem processes and feedback loops

This conceptual framework for the Trigger-Transfer-Reserve-Pulse (TTRP) ecosystem model represents sequences of ecosystem 
processes and feedback loops within a landscape. 

Adapted from: Tongway and Hindley (2004) Figure 5 and Tongway and Ludwig (2006) Figure 1
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Figure 7.4  Landscape function examples

On the left of these photographs, where the ground is covered by vegetation and litter, the soil is protected from rain and wind. In 
contrast on the right, unfenced side, the unprotected soil surface allows sediments to ‘leak’ from the landscape. 

8	 Pasture grasses are classified as 2P (perennial and palatable) or 3P (perennial, productive and palatable). 

a. Upper Burdekin Catchment, Queensland, 22 May 2003 b. Near boundary of Herbert and Burdekin shires, Queensland, 3 
December 2003

	
Source: John Ludwig, CSIRO

An example of landscape function being lost at a 
grazing site is shown in Figure 7.4. On the left of 
these photographs, where grazing animals have 
been excluded, dense vegetation and litter cover 
over the soil surface, retain rainwater, and prevent 
wind erosion. By contrast, on the grazed side of 
the fencelines, the soil has been bared and shows 
surface damage from animal movements. Such 
unprotected soil surfaces allow soil sediments to 
‘leak’ from the landscape. A healthy—or functional—
landscape conserves its water and soil resources 
while a ‘leaky’—or dysfunctional—one loses these 
resources (Tongway and Ludwig, 1997a, 1997b). Since 
vegetation cover and its spatial patterns strongly 
impact landscape function, metrics that represent the 
patchiness of vegetation cover and/or the condition 
and undulations of the soil surface can then be used 
as indicators of landscape function both for ecological 
and hydrological purposes (Wilcox et al., 2003; 
Ludwig et al., 2005). 

An indicator is a convenient or useful substitute for 
something that is difficult to measure, such as land 
condition. In Australian rangelands, for example, 
useful indicators are related to soil losses via eco-
hydrological processes (Ludwig et al., 2007), which 
are directly impacted by management practices 
(Pickup and Chewings, 1994). Other indicators of land 
condition from a pastoral perspective include:

	§ ground cover, and particularly basal cover—that 
part of the herbage layer rooted in the ground, 
which protects the soil surface against erosion from 
overland flow of water in heavy or intense rainfall;

	§ pasture biomass—particularly available forage;

	§ herbage composition—including the proportion of 
palatable, perennial grasses8;

	§ woody-layer dynamics—any long term change in 
tree and shrub density;

	§ accelerated soil erosion; and the

	§ presence of weeds.

For example, ground cover is a useful indicator of the 
state of grazed rangelands because it protects the soil 
surface against erosion, provides some information 
about landscape ‘leakiness’, approximates pasture 
biomass (available forage) in some vegetation types, 
infers carbon dynamics (particularly the effectiveness 
with which organic matter is being returned to the 
soil through litter), and indicates habitat quality where 
entirely native species are present, which may be of 
value for inferring biodiversity condition (Fisher and 
Kutt, 2006). In this environment, when information 
is known about the composition and palatability 
of pasture species and appropriate cover-mass 
relationships, ground cover estimates can be used to 
infer pasture biomass (see Sections 14 and 15). 
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Figure 7.5  Landscape function versus landscape condition

This diagram clarifies the differences between landscape (or 
ecosystem) functionality, that is its ‘state’, from its suitability for 
a particular purpose, that is its ‘condition’. While functionality is 
an objective description, condition is fundamentally based on 
value judgements, which will vary for different purposes. For 
example, the land use goals of pastoral productivity, biodiversity, 
or carbon sequestration may apply different value judgements 
to a given landscape state and, as a consequence, derive 
different assessments of its condition.

Source: Ludwig et al. (1997) 

In some environments, landscape function could be 
envisaged as a continuum between a ‘conserving’ 
landscape and a ‘leaky’ landscape (see Figure 7.5). For 
example, this ‘leakiness’ indicator has been used to 
monitor the health of arid and semi-arid landscapes 
in Australia (Ludwig et al., 2007; see Section 8.1.6). 
It also provides an axis along which the potential 
consequences of alternative land uses can be 
evaluated (see Sections 8.1.6 and 15). The framework 
illustrated in Figure 7.5 shows how an indicator of the 
functional state of a landscape, currently positioned 
midway along a continuum, may lead, through a 
‘values prism’ (Gibbons and Freudenberger, 2006), 
to different assessments of its condition, depending 
on how different stakeholders value this level of 
functionality relative to their specific land use goals 
(Ludwig and Bastin, 2008). 

For example, in Australian rangelands (see Section 15), 
environmental stakeholders who are predominantly 
interested in either pastoral production or biodiversity 
as land use goals would assess landscape condition 
using different criteria. In this context, contrasting 
expressions for indicators that singularly, or in 
combination, suggest better or poorer land condition 
are listed in Table 7.5 below. Using appropriate 
indicators, the question of ‘what is the condition of 
the landscape?’ (interpreted as ‘how healthy is it?’) 
becomes two questions: 

	§ how functional is it for the intended/desired 
purpose? and 

	§ how do its relevant indicators compare or 
interrelate?

Such criteria rely on the selection of appropriate 
indicators, that is, convenient, quantifiable aspects 
of land condition. As noted above, one indicator 
of landscape function is leakiness—its capacity to 
capture and retain rainwater, soils, and their nutrients 
on site, rather than lose them to the surrounding 
landscape(s) (see Figure 7.3 and Figure 7.5). These 
resources are not only vital for plant and animal 
growth, but provide food and shelter for the providers 
of numerous ecosystem ‘services’, such as pollination 
(see Section 20.3). 

The degree to which the comparative terms in 
Table 7.5 apply at a particular location can only really 
be judged by comparison with appropriate reference 
or benchmark sites. To monitor land condition in 
grazed landscapes, for example, it may be possible to 
physically locate useful reference areas, such as water-
remote locations, exclosures, or other small paddocks 
protected from continuous grazing. However, suitable 
reference areas may not be available where land 
types are highly preferred for grazing and/or are well 
watered. It is also necessary to account for any spatial 
differences in the amount and timing of rainfall when 
using information from reference areas.

Table 7.5  Examples of land condition indicators

Pastoral assessment Biodiversity assessment

Better condition Poorer condition Better condition Poorer condition

More feed for livestock Less or no feed for livestock More feed for native fauna Less or no feed for native fauna

More palatable perennials Few or no perennials
Wide range of ‘desirable’ 
perennials

Few or no ‘desirable’ perennials

More ground cover and litter Low ground cover or no litter
Wide range of ground covers 
and litter

Low ground cover or no litter

Lower utilisation—less grazing 
pressure

Higher utilisation—more grazing 
pressure

Plant growth � grazing Plant growth < grazing

No or few feral herbivores Presence of feral herbivores Wide range of herbivores
Small range of herbivores, mostly 
feral

Appropriate balance between 
trees and grasses

Too many or too few trees and 
shrubs

Diversity of trees and shrubs for 
faunal habitats

Small range of trees and shrubs

Source: Ludwig et al. (1997) 
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7.4  Productivity
The rate at which energy is stored by photosynthesis 
can be used as an indication of the productivity of 
an ecosystem, or its rate of biomass production (see 
Section 5.1.2). This process can be considered as a 
sequence of four energy flows within the terrestrial 
carbon cycle (see Excursus 1.2 and Figure 1.4):

	§ Gross Primary Productivity (GPP)—total amount of 
energy fixed in an ecosystem in unit time (including 
energy used in respiration). This equals the 
biomass produced per unit area in a given time.

	§ Net Primary Productivity (NPP)—amount of stored 
organic matter in plant tissue, after respiration, that 
is necessary for its production. This equals GPP 
minus autotrophic respiration, that is, the biomass 
available to consumers.

	§ Net Ecosystem Productivity (NEP)—amount of 
stored organic matter that is not consumed by 
heterotrophs (namely, NPP minus heterotrophic 
respiration).

	§ Secondary Productivities (such as Net Biome 
Productivity, NBP)—equals NEP minus 
consumption, that is, the energy stored at the 
consumer level (Odum, 1971). 

GPP equates with the carbon removed from 
the atmosphere by plants, while NPP is defined 
as the difference between carbon gained by 
photosynthesis and the carbon lost by respiration 
(McCallum et al., 2009; see Section 5.2). Since 
NPP effectively quantifies the conversion of 
atmospheric carbon (CO2) into plant biomass, 
it can be viewed as the first step in carbon 
accumulation (Running et al., 2004). Alarmingly, 
the human appropriation of net primary production 
(HANPP), which quantifies the human impact on 
the biosphere, is estimated to have doubled from 
13% to 25% of global NPP between 1910 and 2005 
(Krausman et al., 2013; see Sections 20 and 21.2).

Figure 7.6  GPP over Australia

Mean monthly GPP was derived from MODIS imagery from January 2001 to December 2019 using methods detailed in 
Donohue et al. (2014).

a. Tree cover	 b. Grass cover

	

c. GPP time series 

Source: Randall Donohue, CSIRO
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As light levels, temperature, water availability, and 
nutrient supply fluctuate with diurnal and seasonal 
cycles, GPP also varies (see Figure 7.6). Annual GPP 
differences between ecosystems largely result from 
differences in canopy coverage and the duration 
of photosynthetic activity. Daily measurements (or 
estimates) of absorbed photosynthetic radiation 
(APAR; see Section 6.3.4) can be integrated over 
longer time periods, such as a growing season, to 
summarise the radiation available to a given plant 
canopy (Donohue et al., 2014). Estimates of annual 
APAR effectively integrate diurnal and seasonal 
variations in solar radiation through changing 
atmospheric conditions to determine the amount of 
radiation absorbed by a vegetated canopy and, by 
inference, quantify the area of leaf cover that absorbs 
that radiation (see Sections 6.3 and 8.1). 

Monteith (1972, 1977) observed the relationship 
between the rate of vegetative productivity and 
the rate of canopy light absorption, and proposed a 
straightforward modelling approach to estimate GPP 
and NPP from measurements of canopy reflective 
properties:

GPP = PAR � fAPAR � (LUE � carbondry)  
� environmental constraints

NPP = GPP – autotrophic respiration

where fAPAR is the fraction of absorbed 
photosynthetically active radiation (see Section 6.3.4). 
The efficiency with which plants utilise light to store 
carbon via photosynthesis varies as they grow. 
This characteristic, called photosynthetic Light Use 
Efficiency (LUE), can be computed as:

As such, LUE effectively estimates the amount of 
carbon fixed via photosynthesis for each unit of APAR. 
LUE underlies the many production efficiency models 
(PEM) that have been developed in recent decades. 
Such models initially assumed that photosynthetic 
carbon uptake by plants is proportional to the 
radiation absorbed by canopies, but recent studies 
have questioned this relationship, with variations 
being observed between plant functional types (PFT; 
see Sections 4.1.2 and 4.2.1) and photosynthetic 
pathways (see Section 5.2.1). LUE has also been 
observed to vary with species composition, nutrient 
availability, water stress, temperature, frost, and 
phenological stage (McCallum et al., 2009), and 
increase with a greater proportion of diffuse to direct 
radiation (Gu et al., 2002). 

In global estimates of productivity, conversion 
efficiency parameters are determined for each 
type of biome and can be varied to account 
for changes in vegetation type and/or climatic 
conditions (see Section 17). Conversion efficiency 
parameters are used to convert estimates of APAR 
(as units of energy) to NPP (as units of biomass; 
Running et al., 2004). PEM rely heavily on satellite 
observations for estimates of LUE, and meteorological 
data and fAPAR to estimate daily to yearly 
productivity at a range of spatial scales. For example, 
the BigFoot modelling approach (Running et al., 1999; 
Cohen et al., 2003) applies a biogeochemistry model 
to each cell of coregistered spatial datasets to derive 
NPP. In this model, the drivers are solar radiation and 
precipitation/temperature etc, with LAI and land cover 
being used for model initialisation. Other metrics 
related to productivity include:

	§ standing crop—a measure of the total amount of 
living organic matter, or biomass, in a given area at a 
given time, generally expressed as calories or g/m2;

	§ turnover—the ratio of standing crop to production; 
and

	§ maintenance: structure ratio—indicative of turnover 
or energy flow rate =  R/B

where

R is the total community respiration; and
B is the total community biomass.

Sellers (1985, 1987) explored the relationships 
between canopy reflectance and the leaf processes 
of photosynthesis and transpiration. This work 
integrated leaf models to estimate canopy 
photosynthetic activity and observed a near 
linear relationship between the ratio of NIR and 
red reflectances, as measured by remote sensors, 
and APAR, for high canopy covers. As the canopy 
cover decreases and the soil surface is visible to 
the remote sensor, this relationship becomes non-
linear, especially for bright soils (see Section 6.4). 
Given that the canopy biophysical characteristics of 
photosynthetic capacity and bulk stomatal resistance 
are similarly related to the passage of PAR through 
the canopy, these characteristics also share a linear 
relationship with canopy reflectance in NIR and red 
wavelengths (see Sections 8.1.4 and 10.2.2). 



Earth Observation: Data, Processing and Applications.  Volume 3: Applications

152

7.5  Energy Balance
Plants and ecosystems can be viewed as 
thermodynamic engines whose energy source is the 
Sun (see Section 1). The First Law of Thermodynamics 
applies when the input energy equals the output 
energy, that is, the system is at equilibrium (see 
Volume 1A—Section 2.10.3). The Second Law of 
Thermodynamics, which observes that we don’t live 
in a perfect world and that some energy is ‘wasted’ 
whenever useful energy is produced, also applies to 
plants and ecosystems (Monteith, 1972). The energy 
balance of ecosystems can be modelled to determine 
their stability in successional terms and their 
productivity in both ecological and economic terms. 

Land surface temperature (LST) is commonly derived 
using EO datasets (see Volume 1B—Section 7.6). 
Canopy temperature is sometimes used as a 
surrogate for transpiration, but its relationship with air 
temperature and transpiration rate involves complex 
interactions of atmospheric, soil, and plant properties 
(see Section 5.2.4). Canopy temperature has also 
been useful as an indicator of drought resistance 
since those genotypes that maintain transpiration 
rates with lower canopy temperatures are more likely 
to withstand drought conditions (Blum, 2017; see 
Section 5.2.3). At the canopy or ecosystem level, 
a combination of instruments is used to estimate 
thermal energy balance, including:

	§ radiometers—measure upwelling and downwelling 
longwave and shortwave radiation (e.g. thermal 
sensors; see Volume 1B—Sections 7 and 8);

	§ heat flux sensors—measure heat transfer into 
the ground (e.g. ground heat flux plates and soil 
temperature probes); and 

	§ eddy-covariance estimates of latent heat 
exchanges (evaporative flux) from anemometer 
and water vapour gas analyser measurements. 
Measurement of atmospheric factors using flux 
towers, as coordinated by the global consortium 
FLUXNET, is described in Excursus 7.2.

A range of models has been proposed to represent 
the fluxes of energy, water, and carbon between the 
biosphere, atmosphere, hydrosphere, and geosphere 
(see Excursus 1.2 and Section 7.6). Such models 
include Land Surface Models (LSM) that describe the 
energy balance at the interface between terrestrial 
surfaces and the atmosphere:

Net radiation =  
(downwelling SWIR EMR � (1 – SWIR albedo))  
+ downwelling thermal EMR  
– upwelling thermal EMR

Over the surface of the globe, these energy 
components achieve equilibrium, but not at a local 
scale. Different land surfaces store different amounts 
of energy in different cycles (diurnal, seasonal, 
and longer term). The local imbalances in these 
components drive the Earth’s climate. 

Section 5.2.4 introduced the terms sensible and latent 
heat fluxes. The net radiation equation above can also 
be written in the form:

Rn = H + lE + G + F

where

Rn is the net radiation;
H is the sensible heat flux derived from 

the difference between surface and air 
temperatures, aerodynamic resistance, density 
of air, and specific heat of air;

l is the latent heat of vaporisation;
E is evapotranspiration;
G is the soil flux; and
F is the chemical energy flux stored in 

photosynthesis.

Aerodynamic resistance depends on the wind speed 
and surface roughness length, which in turn is related 
to vegetation height since taller vegetation, such 
as forest trees, allow more exchange of turbulent 
heat fluxes than shorter vegetation, such as grass 
(see Section 13). These components are interrelated 
and changes in one component flow on to other 
components (Pitman, 2003) and also affect the 
exchange of materials and gases, such as CO2.

LSM have progressed from simple models based on 
uniform surfaces to multi-layer, EO-based models, that 
include multiple vegetation and soil characteristics, to 
detailed foliage models that account for cell structure 
and biochemical processes (see Section 10.2). 

Energy is indeed present in all things. Living organisms draw it from their environment, as plants take it 
from the sun in photosynthesis and animals take chemical energy from their food through digestion and 
respiration. They accumulate it in their own bodies and use it to power their movements and behaviour. 
When they die, the energy accumulated in their bodies is released to continue on its way in other forms. 
The flow of energy on which your body and your brain depend at this very moment is part of the cosmic 

flux, and the energy within you will flow on after you are dead and gone, taking endless new forms. 
(Rupert Sheldrake, 1994)
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Excursus 7.2�—Flux Towers

Source: Beringer et al. (2016); Isaac et al. (2017); van Gorsel et al. (2018) 

Within atmospheric boundary layers, vertical 
turbulence is measured using the eddy flux technique, 
also known as eddy covariance or eddy correlation 
(EC). This statistical technique is used to compute the 
flux (or flow) of various gases through the atmosphere 
from continuous micrometeorological measurements 
at selected locations. Such measurements track the 
vertical and horizontal movement of air parcels by 
eddies and are typically taken from mobile or fixed 
towers known as Flux Towers.

A global network of over 500 flux towers is coordinated 
by FLUXNET to measure the exchanges of CO2, water 
vapour and energy between the biosphere and the 
atmosphere (FLUXNET, 2018; Williams et al., 2009; 
Oliphant, 2012). This network provides continuous, 
long term micrometeorological measurements for 
monitoring the state of ecosystems globally (see 
Volume 1A—Section 10.1). In Australia and New Zealand, 
data from nearly 30 flux towers, managed by a dozen 
institutions, are collated by TERN Ecosystem Processes 
(formerly TERN OzFlux and TERN Supersites), as part 
of FLUXNET (see Figure 7.7). OzFlux was established 
to provide the Australian and global modelling 
communities with consistent observations of energy, 
carbon and water exchange between the atmosphere 
and the key ecosystems of Australia and New Zealand: 
tropical rainforest and savanna, schlerophyll forest 
and woodland, alpine meadow, peatland, semi-arid 
woodland, savanna, grasslands, croplands, and pastures 
(Beringer et al., 2016). 

The flux towers measure CO2 flux as well as sensible 
and latent heat flux. Processed data from the 
flux tower network is available from a number of 
places (see Section 7.7) and include Net Ecosystem 
Exchange (NEE), Gross Primary Productivity (GPP) 
and Ecosystem Respiration (ER) in addition to 
evapotranspiration (ET), precipitation, and the 
components of the surface energy balance (see 
Figure 7.7b). Using flux measurements in conjunction 
with models and EO datasets, ecosystem dynamics 
(productivity, respiration, evapotranspiration, water-
use efficiency) can be explored within the context 
of climate fluctuations, meteorological drivers, 
phenology, and management activities. Broad science 
outcomes from analyses of EC data provided by the 
flux tower network include:

	§ improved methods for observations 
and interpretation (Beringer et al., 2016; 
Isaac et al., 2017; McHugh et al., 2017); 

	§ upscaling of ecosystem scale measurements to 
regional and larger scales using EO and physical 
modelling (Haverd et al., 2016; Laubach et al., 2016; 

Restrepo-Coupe et al., 2016; Trudinger et al., 2016; 
Whitley et al., 2016); and 

	§ better understanding of the interactions between 
carbon, water and energy cycles and their responses 
to changes related to land use, climate, extreme 
weather, and fire (Bristow et al., 2016a; Hinko-Najera 
et al., 2017; Hunt et al., 2016; Moore et al., 2016a; 
van Gorsel et al., 2016; Fest et al., 2017).

By directly quantifying sensible heat and moisture 
fluxes in and around vegetation canopies, EC moisture 
flux towers provide reliable measures of Actual 
Evapotranspiration (AET) over large areas (hundreds 
to thousands of m2; Drexler et al., 2004), and are 
commonly used with catchment water balance 
data to validate EO-based estimates of AET (Glenn 
et al., 2011). While the accuracy of EC measurements 
have been assessed as being 15–30%, which impacts 
the accuracy of any studies they are used to validate 
(Allen et al., 2011), they deliver important, ecosystem 
level information about the factors that impact AET 
(Glenn et al., 2011) and expand our understanding 
of ecological, biogeochemical and hydrological 
processes in terrestrial ecosystems. Nonetheless, 
uncertainty exists in all methods, and EC towers are 
currently one of the best means of measuring AET at 
the ecosystem scale via an in situ, non-destructive 
approach. Beringer et al. (2016) identify four key 
benefits from these flux towers for Australia:

	§ providing accurate, continuous half-hourly 
to annual estimates of sinks and sources of 
greenhouse gases and water from ecosystems for 
carbon accounting and water management that 
are particularly important in an arid country like 
Australia (Hutley et al., 2005; Raupach et al., 2013); 

	§ evaluating the effects of disturbance, topography, 
biodiversity, stand age, insect/pathogen infestation, 
and extreme weather on carbon and water fluxes, 
particularly cyclone, fire, and heat waves in the 
Australian environment (Beringer et al., 2014; 
Bowman et al., 2009; van Gorsel et al., 2016; 
Hutley et al., 2013); 

	§ examining the effects of land management 
practices, such as harvest, fertilisation, irrigation, 
tillage, thinning, cultivation, and clearing, especially 
for agricultural activities (Bristow et al., 2016b; 
Campbell et al., 2015; Cleverly et al., 2020); and 

	§ producing important ground truth data for 
parameterizing, validating, and improving satellite 
EO and global inversion products (Anav et al., 2015; 
Running et al., 1999; Schimel et al., 2015), 
particularly for phenology (Ma et al., 2013; 
Moore et al., 2016b) and water balance. 
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Figure 7.7  Flux tower distribution and site data

a. Locations of flux tower sites are shown in red for active sites and blue for inactive sites. The thumbnail plots show monthly average 
air temperature and precipitation at Bureau of Meteorology sites that are representative of the tower locations. The diameter of the 
symbol marking the tower locations is proportional to the canopy height (see scale at bottom left of map). 

2906 P. Isaac et al.: Network integration from collection to curation

Figure 1. Map of Australia showing the location of OzFlux sites (red for active sites, blue for inactive) and thumbnail plots of monthly
average air temperature and precipitation at Bureau of Meteorology sites representative of the tower locations. The diameter of the symbol
marking the tower locations is proportional to the canopy height; see scale at bottom left.

OzFlux was established as an informal network of re-
searchers working in the field of land surface–atmosphere ex-
change of momentum, energy and mass in 2001 (Beringer et
al., 2016a). The provision of significant funding by TERN in
2009 allowed the network to grow in size and this was done
with the benefit of knowledge gained since the establishment
of OzFlux. It was understood from the outset that the re-
sources available for operating OzFlux would be limited and
that many of the site PIs were new to the area of EC measure-
ments of surface fluxes. These considerations suggested that
a high degree of standardisation would be required across the
network to reduce the cost of establishing the new sites and
to reduce the time taken to quality control and post-process
the flux tower data.

2.2 Instrumentation suite

OzFlux chose a standard suite of instruments in 2010, but
with the final decision dependent upon local conditions as
these can be extreme. The EC instruments at most sites con-
sists of a CSAT3 sonic anemometer (Campbell Scientific,
Logan, Utah, USA) and a Li-7500[A] open path infrared gas
analyser (IRGA, LI-COR Biosciences, Lincoln, Nebraska,
USA). Three sites (AU-Tum, AU-Otw and AU-Vir) use Gill
HS sonic anemometers (Gill Instruments Ltd, Lymington,
UK), and one site (AU-Wrr) uses an EC155 IRGA (Camp-
bell Scientific). Measurements of the fluxes are made outside
the roughness sublayer for half of the OzFlux sites using the
least conservative criterion for the depth of the roughness
sublayer (RSL) given in Katul et al. (1999; depth < twice
canopy height). This means that care must be taken when
interpreting small site-to-site variabilities in the fluxes over

Biogeosciences, 14, 2903–2928, 2017 www.biogeosciences.net/14/2903/2017/

b. Site diagram for an individual flux tower

Source: a. Isaac et al. (2017) Figure 1; b. Mark Grant, TERN
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7.6  Water Balance
Each year more than half a million cubic kilometres of 
water is moved around the Earth’s surface, between 
the surface and sub-surface storage, and between 
the surface and the atmosphere (see Volume 3B). 
This cycling of water is referred to as the hydrological 
cycle (see Volume 1A—Section 4.2.2). Water balance 
modelling attempts to understand the interactions of 
components within the hydrological cycle:

	§ within atmosphere—solar radiation and moisture 
transport;

	§ from atmosphere to surface—various forms of 
precipitation; 

	§ surface to atmosphere transfers—evaporation from 
land and water surfaces, and transpiration from 
plants; and

	§ surface and sub-surface transfers—runoff, 
infiltration and percolation into soil layer, deep 
seepage to groundwater, and groundwater 
discharge to lakes, streams, and seas.

The Australian climate has highly variable rainfall and 
runoff, and these components of the hydrological 
cycle vary widely in both space and time (see 
Section 2.2). These factors make water balance 
modelling particularly challenging for the Australian 
environment (Zhang et al., 2002).

Transpiration describes the process of water entering 
the atmosphere from plants (see Section 5.2.3) 
while evapotranspiration (ET) collectively refers 
to the transfer of water vapour to the atmosphere 
from both vegetated and unvegetated surfaces 
(see Section 2.2.1). Evapotranspiration is a major 
determinant of water balance in dry continents such 
as Australia and varies with the:

	§ availability of water in the landscape;

	§ climatic conditions, such as temperature, 
cloudiness, humidity, and wind speed; and 

	§ rates of transpiration by individual plants. 

Evapotranspiration increases with temperature, 
so is regulated by the same drivers that regulate 
temperature, namely latitude, altitude, cloud cover, 
and topography (see Section 5.2.4). Potential ET 
(PET) defines a theoretical water volume for an 
ecological system, which represents the water than 
can be ‘extracted’ from it for known inputs of solar 
energy and precipitation. The Actual ET (AET) is 
often less than the potential when water supply 
is limited. AET can be viewed as the reciprocal of 
precipitation, although only 90% of precipitation 
returns to the atmosphere via evapotranspiration 
(NWC, 2007). On a regional basis, when PET 
exceeds precipitation, there is a water deficit; when 
precipitation exceeds PET, there is a water surplus. 
During times of water surplus, water may be stored 
by plants, by soil, or by the water table, for use during 
times of water deficit. 

Water balance modelling “is based on the law of 
conservation of mass: any change in the water 
content of a given soil volume during a specified 
period must equal the difference between the amount 
of water added to the soil volume and the amount of 
water withdrawn from it” (Zhang et al., 2002). Water 
balance can be considered at a range of scales, such 
as the root zone for a small number of plants, for a 
whole catchment, for a continent or the whole globe. 
At a catchment scale, the water balance equation can 
be given as:

DS = P – ET – Q – R

where all components are spatially averaged for the 
catchment:

S is the water storage; 
P is precipitation; 
ET is evapotranspiration; 
Q is surface runoff; and
R is recharge (Zhang et al., 2002).

Water balance models need to be tailored to specific 
climates and landscapes and may be integrated with 
other process models (see Section 7.5). For example, 
the WAVES model (Dawes and Short, 1993; Zhang 
et al., 1996) simulates the energy, water, carbon, and 
solute balances of a one-dimensional soil-canopy-
atmosphere system (Zhang et al., 2002). EO-based 
water balance models are further discussed in 
Sections 9.4 and 10.2.3, and Excursus 10.2.
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7.7  Further Information

Global NPP Image Composites
https://neo.sci.gsfc.nasa.gov/view.

php?datasetId=MOD17A2_M_PSN

TERN Ecosystem Processes
http://www.tern.org.au/OzFlux-pg17729.html

Processed data from the flux tower network is 
available from http://data.ozflux.org.au/portal/
home.jspx and http://dap.ozflux.org.au/thredds/
catalog.html for example, including Net Ecosystem 
Exchange (NEE), Gross Primary Productivity 
(GPP), and Ecosystem Respiration (ER) in addition 
to evapotranspiration (ET), precipitation, and the 
components of the surface energy balance (see 
Excursus 7.2).
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Mapping, monitoring, and modelling of terrestrial landscapes are complementary activities, with 
shared benefits as summarised in the table below (see also Volume 2D—Section 1.5), where:

	§ mapping describes the collation of geographic information about a given landscape as a 
consistent spatial coverage, which implicitly represents a single point in time;

	§ monitoring describes changes in the landscape relative to a defined baseline; and
	§ modelling extends current knowledge to predict or infer landscape condition at some future time 
and/or for a specified set of conditions.

Complementary benefits of mapping, monitoring, and modelling

Relationship Benefits

Mapping→monitoring

Spatial framework for selecting representative sites;

System for spatial extrapolation of monitoring results; and 

Broad assessment of resource condition.

Monitoring→mapping
Quantifies and defines important resource variables for mapping; and

Assesses land suitability over time (including risk assessments for recommended land management).

Modelling→monitoring
Determines whether trends in specific land attributes can be successfully detected with monitoring; and

Identifies key components of system behaviour that can be measured in a monitoring program.

Monitoring→modelling
Validates model results; and

Provides data for modelling.

Modelling→mapping Allows spatial and temporal prediction of landscape processes. 

Mapping→modelling
Provides data for modelling; and

Provides spatial association of input variables. 

Source: McKenzie et al. (2008a) Table 1.1

Sections 8 to 10 below review EO-based methods that can be used to map, monitor, and model 
terrestrial vegetation. The image processing procedures that underlie many of these methods are 
detailed in Volume 2. Applications of EO-based mapping, monitoring, and modelling are introduced 
in Volume 2D—Section 14. The EO-based methods described in the following three sections are 
furthered exampled in the context of specific Australian applications areas in Sections 11 to 20.

Contents
8 � Mapping� 165

9 � Monitoring� 191

10 � Modelling� 213

Background image on previous page: Sentinel-2A image acquired on 29 November 2020 over Newcastle Waters, NT, and displayed using SWIR, NIR and 
green bands as RGB. Source: Norman Mueller, Geoscience Australia 
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8  Mapping

EO-based mapping relates to identifying and labelling surface features in EO imagery at a single instance in 
time (see Volume 1). Imagery to be used for mapping of terrestrial vegetation requires accurate geometric and 
radiometric calibration as detailed in Volumes 2A, 2B, and 2D. 

EO images can vary in terms of their spectral, spatial, 
radiometric, and temporal resolutions and extents 
(see Table 8.1, and Volumes 1B and 2D). The scale of 
any EO data source largely determines its suitability 
to a particular study:

	§ spatial scale dictates the sizes of features that 
might be discerned;

	§ spectral scale indicates the types of features that 
can be identified;

	§ temporal scale is particularly relevant to 
phenological studies (see Section 5.3.2) and longer 
term changes in land cover or condition; and

	§ radiometric scale relates to intrinsic data quality 
and determines the magnitude of surface 
reflectance differences that can be discerned. 

Sensor design constraints do not allow high resolution 
data to be acquired in all dimensions simultaneously 
(see Volume 1A—Section 13.3 and Volume 1B—
Section 1). While high spatial resolution imagery 
is valuable for detailed analyses, it supplies data 
volumes that would be unmanageable for landscape 
scale analyses. However, as spatial resolution 
decreases, more pixels will cover multiple ground 
features so that their spectral values will not be 
unique to a single surface feature. Such mixtures 
can also create characteristic patterns and textures 
that are valuable for land cover inventories (see 
Section 8.3 and Volume 2E).

Interpretation of EO data for inventory purposes 
involves a variety of image processing techniques, 
including:

	§ spectral indices—combining two or more bands (or 
channels) into a single plane of data to focus on a 
particular characteristic (see Section 8.1);

	§ spectral classification—grouping spectrally similar 
pixels into classes to represent ground features 
(see Section 8.2); and

	§ sub-pixel analyses—determining the proportions 
of basic ground components within each pixel (see 
Section 8.3).

Other approaches that analyse EO imagery for 
mapping purposes include:

	§ spatial analyses—exploiting the image spatial 
patterns to delineate objects and gradients, such as 
tree crown delineation (Ke and Quackenbush, 2011) 
or Geographic Object-Based Image Analysis 
(GEOBIA; see Volume 2A—Excursus 10.1); and

	§ structural analyses—modelling the three-
dimensional structure of surface features, such as 
Geometric-Optical Modelling (see Volume 2X—
Excursus 1.1) or Point Cloud Modelling of lidar data 
(Burt et al., 2018; see Excursus 5.1).

Background image: MODIS/Terra global composite image showing the Normalised Difference Vegetation Index (NDVI) for October 2016 (derived from MOD13C1/
MOD13C2 products), with deeper shades of green indicating higher photosynthetic activity. (Note: the vertical extent of this composite image has been clipped 
and the aspect ratio changed.) Source: NASA Earth Observations. (Retrieved from https://neo.sci.gsfc.nasa.gov/view.php?datasetId=MOD_NDVI_M) 

https://neo.sci.gsfc.nasa.gov/view.php?datasetId=MOD_NDVI_M
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Table 8.1  Sampling dimensions in EO imagery

Dimension
Characteristic

Resolution Density Extent

Spectral Width of each wavelength channel Number of channels detected by sensor Range of wavelengths covered by all channels

Spatial Ground area imaged per optical pixel Number of pixels and lines in image Area covered by image

Radiometric
Smallest change in detected energy 
that would be represented as a 
different image brightness level

Number of gradations (grey levels) used 
to represent full range of radiances that 
could be detected by sensor

Actual range of radiances detected in each 
channel

Temporal
Time period over which each image 
is acquired

Frequency of successive image 
acquisitions

Total time period for which this imagery is 
available

Adapted from: Emelyanova et al. (2012) 

8.1  Spectral Indices
A wide range of spectral indices has been proposed 
to improve image interpretation. These indices 
highlight the spectral response that is characteristic 
of particular surface features such as vegetation 
greenness, water content, or fire footprints (see 
Volume 2C). They also offer the advantage of reducing 
the volume of large datasets. Numerous studies have 
either demonstrated the efficacy of these indices to 
represent environmental gradients and/or compared 
spectral indices derived from different sensors (for 
example Huete, et al., 1997, 2002; Liu, 2004, 2008). 
Indices based on ratios of image spectral bands offer 
a robust data compression tool, with the advantages 
of simplified comparisons between multi-date imagery 
and possible cross-calibration between different 
sensor systems (Glenn et al., 2008a).

Some vegetation spectral indices have been shown 
to have strong positive correlation with the fraction of 
photosynthetically active radiation (fAPAR) absorbed 
by a canopy (see Section 6.3.4 and 7.4). Accordingly, 
these have proven most reliable for mapping 
vegetative features that are directly related to canopy 
light absorption, such as vegetation condition and 
density (see Sections 8.1.1–8.1.3). In addition, when 
accurate validation data are available, indices have 
been developed to monitor processes related to 
fAPAR (such as productivity; see Section 8.1.4), 
assess water content (see Section 8.1.5), and highlight 
landscape ‘leakiness’ (see Section 8.1.6). 

Spectral indices have also been used to estimate 
various attributes related to canopy architecture, such 
as fractional vegetation cover, leaf area index (LAI), 
emissivity, and albedo (see Section 6.3). However, 
unlike features directly related to canopy absorption, 
the relationships between spectral indices and these 
attributes are less direct and reliable, and derived 
results can be misleading (Glenn et al., 2008a). 

8.1.1  Greenness
The green colour of vegetation results from 
absorption of red and blue wavelengths by the 
chlorophyll pigment for photosynthesis and reflection 
of green wavelengths (see Section 4.3). However, it is 
the combined ‘colour’ resulting from the chlorophyll 
content of foliage, the area covered by leaves, and the 
density and structure of the canopy that determines 
the optical ‘greenness’ for a given patch of vegetation 
as measured by a remote sensor. 

Greenness indices rely upon highlighting the 
characteristically high near infrared (NIR) reflectance 
and low red reflectance of healthy, green foliage 
(see Figure 5.5). Reflectance values in NIR and 
red are differenced or ratioed to emphasise those 
pixels that are likely to contain a high proportion of 
photosynthetic material (see Volume 2C—Section 11). 
The simplest greenness index involves ratioing red 
and NIR reflectances and is commonly referenced 
as the Simple Ratio (SR; see also Volume 2C—
Sections 10 and 11):

where NIR is near infrared reflectance (rNIR) and red 
is rred. 

One of the most common indices, the Normalised 
Difference Vegetation Index (NDVI; see Volume 2C—
Section 11), is based on the simple difference of NIR 
(rNIR) and red (rred) reflectance, normalised by the 
equation (Rouse et al., 1973; Tucker, 1979):
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Figure 8.1  Normalisation effect in ‘Normalised Difference Vegetation Index’ (NDVI)

a. Simple ratio (y/x)	 b. Normalised ratio ((y-x)/(y+x))

	
Source: Harrison and Jupp (1990) Figure 94 

As illustrated in Figure 8.1, the normalising of NDVI 
values results in a controlled range of raw ratio 
values between -1 and 1 and thus greatly simplifies 
the scaling of output data and comparison of 
multi-temporal imagery. Since NDVI is functionally 
equivalent to SR via the equation: 

then SR = 1 is equivalent to NDVI = 0, and SR = 4 is 
the same as NDVI = 0.60, and so on.

NDVI has been related to a range of vegetation 
characteristics, including cover and condition, which 
may indicate crop yield in agricultural systems 
(see Sections 11 to 14). NDVI derived from airborne 
image spectrometry data has also been used to infer 
forage quality for herbivores at a landscape scale, 
with higher NDVI pixels being indicative of more 
nutritious foliage (Youngentob et al., 2012). Not only 
can spectral indices be normalised for comparison 
between multiple images, but they can be differenced 
between two images to show temporal changes in 
greenness (see Volume 2D). For example, since fire 
reduces the amount of green vegetation, greenness 
indices have been used to map fire footprints, 
infer burn severity, and monitor recovery (see 
Sections 9.2.1 and 18). Such indices are also used 
to determine fire risk by mapping the curing status 
of grasslands and the fire-prone nature of woody 
vegetation (Chuvieco et al., 2003; Lasaponara, 2005; 
see Section 18.3.1.2).

Various studies have observed that NDVI saturates 
for dense vegetation (Carlson and Ripley, 1997; 
Huete et al, 1985), with NDVI reportedly approaching 
maximum value for fractional covers as low as 60% 
(Jiang et al., 2006). Felderhof (2007) observed 
limitations of NDVI in arid and semi-arid Australia 
where bare soil and senescent vegetation affect NDVI 
and restrict its usefulness in mapping spinifex fuel 
load. Dilley et al. (2004) observed an exponential 
relationship between NDVI computed from AVHRR 
imagery and grassland curing. Other researchers have 
observed a linear relationship between EO-based 
NDVI and grassland curing for selected soil types 
(Allan et al., 2003).

A variant of NDVI is the green NDVI (GNDVI; 
Gitelson et al., 1996a), which substitutes the green 
band for the red band, and is more sensitive to 
chlorophyll a concentration in foliage and less 
impacted by atmospheric effects:

For sugar and horticultural crops, GNDVI has been 
shown to be better correlated with yield than NDVI 
(see Section 12). 
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Transformed Vegetation Index (TVI) is a modified 
version of NDVI which avoids operating with negative 
NDVI values and introduces a normal distribution 
(Deering et al., 1975):

Many other variations of NDVI have been proposed, 
including the Enhanced Vegetation Index (EVI; 
Huete et al., 1999, 2002; Liu and Huete, 1995; 
Jiang et al., 2008), which attempts to reduce 
saturation by accounting for effects due to 
atmosphere and background, though not necessarily 
topographic effects (Matsushita et al., 2007): 

where

rred and rNIR are corrected values for MODIS bands 
1 (red) and 2 (NIR) respectively; 

rblue is the corrected value for MODIS band 3 
(blue—500 nm); 

G is a gain factor (G=2.5; Huete et al., 1994, 1997); 
L is an adjustment for the canopy background 

(L=1); and
C1 and C2 are coefficients for aerosol resistance 

(C1=6, C2=7.5).

EVI was designed to reduce interference from 
atmospheric and vegetated canopy characteristics 
that can impact NDVI and produce a clearer signal 
for green vegetation (Huete et al., 2002). Accordingly, 
EVI is more sensitive to variations in canopy 
structure (Gao et al., 2000) and thus has been more 
responsive for land covers with high biomass, such 
as tropical forests (Huete et al., 2002) and crops 
(Wardlow et al., 2007). It has also been shown to be a 
useful indicator of tree richness (Waring et al., 2006). 
EVI uses data from the 500 nm (blue) band to remove 
the effects of smoke, aerosols, and thin clouds, and 
masks out cloud, cloud shadows, marine (as opposed 
to inland) waters, and aerosols (Huete et al., 2011). 
A variant of EVI, called EVI2, that is computed using 
only two spectral bands, has also been proposed 
for sensors without a blue band (Jiang et al., 2008). 
Both NDVI and EVI products are routinely and 
freely available at global and regional scales (see 
Volume 2D—Excursus 10.1). Their use for phenological 
studies is discussed in Section 9.3. 

Other indices have been proposed to reduce the 
effects of atmospheric scattering, such as the 
Atmospherically Resistant Vegetation Index (ARVI; 
Kaufman and Tanre, 1992), or the soil background, 
such as the Soil Adjusted Vegetation Index (SAVI; 
Huete, 1988):

where g usually ~ 1).

where L is a soil brightness correction factor (where 
L=0.5). The Optimised Soil Adjusted Vegetation Index 
(OSAVI; Rondeaux et al., 1996) uses a different value 
for L to minimise soil effects:

where L=0.16

The Visible Atmospherically Resistant Index (VARI) 
was found to be minimally sensitive to atmospheric 
effects (Gitelson et al., 2002):

Both atmospheric and soil corrections are combined 
in the Soil and Atmospherically Resistant Vegetation 
Index (SARVI; Kaufman and Tanre, 1992), in which 
red reflectance is replaced by a linear combination of 
both red and blue reflectance. The EVI formulation is 
based on SARVI and the merging the SAVI with ARVI 
equations.

An Absolute Greenness index (Gabs) was proposed 
to distinguish the weather-related variations in NDVI 
from longer term temporal variability (such as curing) 
within a selected time period (Eidenshink et al., 1990):
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A normalised NDVI or Relative Greenness index (RG), 
which ranks the current NDVI of each pixel relative 
to its minimum and maximum NDVI over a specified 
period of time, was found to better distinguish the 
volume of dead fuel from live fuel (Burgan and 
Hartford, 1993):

The Fire Potential Index (FPI), based on RG of AVHRR 
data and fuel modelling, was developed for regional 
scale fire danger assessment (Burgan et al., 1998) 
and demonstrated strong correlation with actual 
fire occurrence and predicting fire potential. 
Fiorucci et al. (2007) used a similar methodology, 
involving SPOT VEGETATION imagery integrated with 
meteorological forecasts, to improve the accuracy of 
assessing fire danger.

Another type of vegetation index is based on a linear 
combination of visible and NIR channels to highlight 
their differences in terms of transformed dimensions 
relating to brightness, greenness, and yellowness 
(see Volume 2C—Section 11.1.3). The vegetation cover 
triangle (see Figure 6.6) effectively corresponds 
to one plane in this transformed space. A popular 
example of this approach is the Kauth‑Thomas 
Greenness (or Tasselled Cap) Transformation, which 
was developed for Landsat MSS by Kauth and 
Thomas (1976) and adapted to other sensors by Crist 
and Cicone (1984), Cicone and Metzler (1984) and 
Roberts et al. (2018). These indices have been most 
relevant to agricultural applications (see Sections 11 
to 14). 

A range of composite image products based on 
greenness indices are now available from EO time 
series datasets (see Excursus 8.1). Since the spectral 
bands observed by different sensors often span 
similar wavelength ranges, the opportunity exists 
to merge their spectral information. For example, as 
detailed in Volume 2D—Section 6.2, Emelyanova et al. 
(2012, 2013) demonstrated the blending of Landsat 
ETM+ and MODIS imagery, thus providing surrogate 
imagery with MODIS frequency and Landsat spatial 
resolution. Such techniques, however, may not be 
appropriate for imagery from all sensors. Composite 
imagery derived from multiple sensors is introduced 
in Volume 2D—Section 10.2.

Man must rise above Earth, to the top of the atmosphere and beyond, for only thus will he fully 
understand the world in which he lives. 

(Socrates)



Earth Observation: Data, Processing and Applications.  Volume 3: Applications

170

Excursus 8.1�—Composite Image Products

Composite EO image products are introduced in 
Volume 2D—Section 10, including a discussion of 
compositing methods and their constraints. A number 
of such products are now routinely available to 
provide a summary image representing a given time 
period for a selected spectral index (see Section 8.1.1). 
While these composite images are useful for large 
area coverage, and rapid assessment of surface 
condition, changes and long term monitoring of 
trends, it is important to consider their provenance 
and any consequent constraints when interpreting 
results. 

For example, the MOD13Q1 product suite is based 
on a composite of 250 m resolution imagery over a 
16-day period (see Volume 2D), which is corrected for 
atmospheric effects (see Volume 1B—Section 3.5). 
The impact of viewing and illumination angles 
becomes increasingly significant in imagery with 
larger pixel sizes, such as MODIS, especially for tall 
vegetation with multiple sources of shadow. The 
MOD13Q1 product does not currently normalise 
reflectance values to an observer in zenith position, so 
its time series potentially comprises imagery acquired 
with varying viewing geometry.

Gill et al. (2009) investigated the use of two VI 
products within the MOD13Q1 product, namely 
NDVI and EVI, to assess the impact of variations 
in viewing geometry on the estimation of tree and 
grass cover. Their results indicated that MODIS 
EVI was more sensitive to variations in view angle 
than NDVI, and hence vegetation structure (as also 
proposed by Gao et al, 2000), and more sensitive 
to monitoring change in high biomass vegetation 
(Huete et al., 1994). Variations in EVI were found to 
be greatest in more complex land covers, such as 
tropical rainforest, eucalypt woodland, and semi-arid 
woodland.

Other comparisons between MODIS NDVI and EVI 
composite images showed that, while both indices 
agreed with monthly precipitation patterns, there 
were significant differences between their values, with 
NDVI generally being higher, especially for shaded 
backgrounds, and better suited to mapping savanna 
and deciduous vegetation (Silveira et al., 2007). 
Foliage Projective Cover (FPC; see Section 2.3.1) is 
believed to be proportional to evergreen vegetation 
(Lu et al., 2003) and MODIS NDVI was considered 
more appropriate to estimate FPC in low biomass 
vegetation (Gill et al., 2009). In studies of vegetation 
phenology in Amazonia, vegetation fraction for open 
tropical forest showed a strong positive correlation 
with EVI, but not with NDVI (Anderson et al., 2011). 
Wardlow and Egbert (2010) reported high thematic 
accuracy from both EVI and NDVI when used to map 
large area cropping in Kansas. Moura et al. (2012) 
compared EVI derived from both MODIS and MISR 
imagery for tropical forest sites. Results from these 
analyses demonstrated significant variability in both 
intra-annual and interannual trends within MODIS EVI 
time series datasets, that were not directly related to 
canopy photosynthetic activity, but were associated 
with view and illumination effects. EVI was considered 
to be more sensitive to view angle and view direction 
than NDVI.

The use of MODIS data for large area crop 
classifications is reviewed by Wardlow and 
Egbert (2010). Both MODIS EVI and NDVI showed 
high correlation with crops in the US Central Great 
Plains. EVI appeared to be more sensitive to biomass 
differences during the growing season with NDVI 
being more sensitive to lower biomass levels during 
early greening and late senescence.

8.1.2  Hyperspectral indices
In addition to the broad band spectral indices 
introduced in Section 8.1.1, the narrow bands of 
hyperspectral data can be used to compute a range 
of indices that highlight subtle changes in vegetation 
type, health, and density (Xue and Su, 2017). In 
particular, reflectance variations in the ‘red edge’ 
range (see Section 4.3) are highlighted by many 
hyperspectral ratios. For example, the Normalised 
Difference Red Edge index (NDRE), substitutes the 
red edge band for the red band in the NDVI equation:

Since the red edge band can penetrate a leaf more 
deeply than the red band, it is more sensitive to 
higher chlorophyll contents. As such, it correlates 
more closely with crop health than NDVI when a crop 
is close to harvest. It is also used to map within-crop 
variability of foliar nitrogen. A derivative of this index 
is the Canopy Chlorophyll Content Index (CCCI; 
Barnes et al., 2000), which has strong correlation with 
foliar nitrogen: 
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Figure 8.2  Within field crop variability
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 Vegetation indices 
The previous section describes how the spectral 
response of a specific wavelength can provide useful 
information about the presence, absence or 
concentration of certain plant constituents and 
components. However, obtaining a measure at only one 
wavelength is not recommended for the diagnosis of 
specific plant constraints or the subsequent derivation of 
crop condition algorithms, due to a ‘path radiance’ 
influence. In simple terms, this influence relates to the 
distance between the sensor and the target, i.e. the 
greater the distance, the lower the amount of reflected 
light detected. To compensate for this influence, band 
ratios or Vegetation Indices (VIs) are employed. VIs are 
calculated as a ratio of reflectance between two spectral 
bands or ratios of differences and sums of spectral 
bands (Ortiz et al 2011). The simple ratio NIR/Red and 
the Normalised Difference Vegetation Index (NDVI) are 
among the most well-known of these indices and the 
most commonly applied to date in agriculture (Yang, et 
al., 2009a). 

Vegetation indices not only negate the sensor to target 
distance issue, but also help reduce other effects such 
as canopy and cloud shadow. Structural related indices 
are often strongly related to biomass and yield, while 
pigment indices are sensitive to the concentrations of 
chlorophyll, carotenoids and anthocyanins (Blackburn, 
2007). The table in Appendix 3 summarises some of the 
most commonly used vegetation indices. 

VIs can be used as indicators of maturity, health and stress condition (Figure 18). For example, 
during the growing season, pigment-related indices can be used for scheduling harvest. At maturity, 
the photosynthetic capacity of plants is reduced and indices, especially pigment-related, show 
changes that can be used as indicators to schedule or target harvest to maximise yield quality and 
quantity (Bramley, et al., 2011b; Zarco-Tejada, et al., 2005). 

 
Figure 18. Broad vegetation indices showing within-field variability. Structural-related indices NDVI and 
RDVI and pigment-related index: RENDVI. 

 

 

NDVI 

NDVI is the most robust and 
widely applied vegetation index.  

Commonly used vegetation 
indices, such as NDVI employs 
only two band widths i.e. red and 
near infrared (Rouse, et al., 1974). 

NDVI    (NIR - Red) 
 (NIR + Red)  

The universal nature of this index 
limits it applicability to crops at 
later stages of growth where 
canopy cover is at its highest Leaf 
Area Index (LAI). At these later 
stages of crop growth, the index 
provides little indication for any 
response to variability, such as N 
content (Zarco-Tejada, et al., 
2005).  

More than a hundred narrow and 
broadband vegetation indices 
have been developed. 

 

Source: Suarez et al. (2018) Figure 18 

When combined with the Canopy Nitrogen Index 
(CNI; originally the nitrogen stress index, NSI; 
Rodriguez et al., 2006), a much stronger correlation 
was derived for rainfed wheat (Fitzgerald et al., 2010; 
Cammarano et al., 2011). CCCI has also been used 
to differentiate between high and low levels of leaf 
nitrogen in Victorian pear crops (APAL, 2019).

Another popular hyperspectral index is the Red Edge 
Normalised Difference Vegetable Index (RENDVI; 
Gitelson et al., 1996b; Sims and Gamon, 2002):

Whereas most of the greenness indices described 
in Section 8.1.1 are based on broad differences 
in vegetation biomass, RENDVI is more sensitive 
to differences in pigment concentration. This 
sensitivity is particularly useful as a crop approaches 
maturity and its photosynthetic capacity is reduced 
(Suarez et al., 2018; see Figure 8.2). 

Two narrow absorption features at 505 nm and 531 nm 
have been related to the xanthophyll pigments, 
violaxanthin, antheraxanthin, and zeaxanthin, and can 
be used to detect changes in pigment concentration 
(see Excursus 4.1). The Photochemical Reflectance 
Index (PRI) compares absorption at 531 nm with 
a xanthophyll-insensitive reference at 570 nm 
(Gamon et al., 1992, 1997):

PRI measures the light use efficiency (LUE) of foliage 
(see Sections 7.4 and 8.1.4), thus indicates water 
stress and CO2 uptake by plants (see Section 17.4.5).

8.1.3  Vegetation cover and condition
In regions with sparse vegetation, such as much of 
central Australia, vegetation may not be the dominant 
component of the landscape (see Figure 2.1). In arid 
landscapes the soil background is the dominant 
feature at a range of scales, from the regional view to 
an field quadrat. For medium scale EO imagery, any 
given pixel is likely to comprise multiple landscape 
features, which renders indices based on vegetation 
greenness less useful in such environments. 

Furthermore, the dominant vegetation in many of 
these environments often comprises mixes of green, 
dry, and woody material, with little contrast between 
red and infrared (IR) reflectance.

Accordingly, a range of spectral indices has been 
proposed for vegetation features other than 
greenness. One index that was developed to map 
vegetation—both dry and green—in arid rangelands is 
called PD54 (Pickup et al., 1993). PD54 was developed 
for Landsat MSS imagery and is based on green 
and red reflectance (bands 4 and 5 respectively). 
This index maps vegetation cover as the scaled 
perpendicular distance from a predefined soil line and 
is similar to the perpendicular vegetation index (PVI; 
Richardson and Wiegand, 1977). More recently, the 
fractional cover methods introduced in Sections 8.3 
and Excursus 8.3 are used in these environments.

Cellulose Absorption Index (CAI) describes the relative 
depth of the lignocellulose absorption feature at 
2100 nm and can be used to quantify crop residues 
(Daughtry et al., 1996; Daughtry, 2001) and plant litter 
(Nagler et al.,  2003). Daughtry et al. (2005) computed 
CAI as:

The Anthocyanin Reflectance Index (ARI; 
Gitelson et al., 2001) ratios the green and red edge 
reflectances to indicate the physiological status of 
vegetation:

ARI was subsequently modified (MARI) to include NIR 
reflectance include consideration of variability in leaf 
thickness (Gitelson et al., 2006):

These indices have been successfully used for non-
destructive estimation of anthocyanin content in 
grapevine leaves (Steele et al., 2009). However, they 
also require precise spectral bands as acquired by 
hyperspectral sensors rather than multispectral sensors.
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The Land Condition Index (LCI), inspired by CAI, is 
based on the normalised difference of MODIS bands 
6 and 7 (Clarke et al., 2011). Since this ratio yields 
relatively high values for both photosynthetic and 
non-photosynthetic vegetation but low values for bare 
soil, it highlights exposed ground. This is particularly 
useful for “measuring the severity and duration 
of soil exposure over extensive cropping areas” 
(Clarke et al., 2011). LCI also showed closer correlation 
with fractional soil cover (see Excursus 8.3) than 
NDVI. A continental LCI product is available from 
TERN Australia as MODIS 16-day composites 
from 2000 to 2011 at 500 m spatial resolution (see 
Section 8.4).

8.1.4  Plant productivity
The concepts of plant and ecosystem productivity are 
introduced in Sections 5.1.2 and 7.4. Various metrics 
can be considered to be indicative of the productivity 
of vegetation, such as LAI (see Section 6.3.3), fAPAR 
(see Section 6.3.4), and LUE (see Section 7.4). Such 
metrics summarise the capacity of groups of plants to 
produce energy via photosynthesis. That capacity is 
related to the density of leaf cover, the concentration 
of chlorophyll in leaves, and a range of other factors 
determining plant health (see Sections 5.2 and 5.3). 
Seasonal and phenological variations in fAPAR are 
informative for identifying ecosystems and monitoring 
ecosystem health and integrity (see Section 7).

Various greenness indices have been related to APAR, 
fAPAR, and LAI. It should be noted, however, that 
LAI is related to canopy light interception but is not 
linearly related to fAPAR (see Section 6.3.4). NDVI has 
been used to estimate LAI for uniform canopies of 
monocultures, such as crops and irrigated pastures, 
but is not appropriate to derive LAI for more complex 
and/or mixed canopies (Glenn et al., 2008). 

In particular, SR and NDVI (see Section 8.1.1) have 
been used extensively for canopy productivity 
studies. Since,

Gross Ecosystem Productivity (GEP, which is 
commonly used interchangeably with GPP) is often 
modelled from estimates of LUE, fAPAR, and PAR (see 
Section 6.3):

GEP = LUE � fAPAR � PAR 

A number of indices with sensitivity to non-
chlorophyll plant pigments have also been 
proposed (see Section 4.3). The Photochemical 
Reflectance Index (PRI; see Section 8.1.2) is 
sensitive to plant xanthophyll levels, so can be 
considered to be indicative of the efficiency of PAR 
usage and also soil moisture and nutrient status 
(Peñuelas et al., 1995, 1997a). This has been related 
to carbon fluxes and GPP (Gamon et al., 1990, 1992; 
see Section 17), and selectively correlated with LUE 
(with variations related to differences in vegetation 
age, type, and leaf persistance; Grace et al., 2007). 
Net Primary Productivity (NPP; see Section 7.4) has 
also been mapped from NDVI imagery. For example, 
Raupach et al. (2001) used AVHRR NDVI imagery to 
compute NPP, over Australia based on available data 
for climate and agricultural inputs (such as irrigation 
and nutrients). Similar maps were produced to include 
carbon stored in growing plants (leaf, wood, and root), 
and growing plants plus litter. These maps show close 
correlation with the land cover patterns highlighted in 
vegetation index imagery and captured in land cover 
classes. More recently, Donohue et al. (2014) used the 
generic DIFFUSE model to estimate GPP for trees, C3 
and C4 plants in Australia from MODIS time series 
datasets (see Figure 7.6), verified against eddy flux 
tower-derived estimates (see Excursus 7.2).

It should be noted that the relationship between 
reflectance and LAI is direct, but the relationship 
between reflectance and productivity, or biomass, in 
indirect (Hill, 2004). Canopies with different volumes 
of biomass may result in the same LAI measurement 
due to variations in canopy structure, density, and 
composition. Accordingly, biomass estimates from 
optical EO data perform best for canopies with 
simpler structures that are dominated by green, 
actively growing vegetation. This occurs, for example, 
in grasslands managed for pasture, where growth is 
initiated by seasonal variations in temperature and/
or rainfall, and steadily continues until it reaches 
maximum greenness (Hill, 2004; see Section 14). 

Measurement of above ground biomass to validate 
EO analyses is detailed in Schaefer (2018). The use 
of airborne and ground-based lidar (see Excursus 5.1) 
to derive estimates of forest biomass is described 
in Section 16 and models for estimating plant 
productivity in the context of carbon cycling are 
detailed in Section 17.
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8.1.5  Water content
Attributes of foliage water content were introduced 
in Section 4.2.1. One indicator of moisture content in 
vegetation is chlorophyll content (see Section 8.1.1), 
but variations in chlorophyll concentration can 
also result from other factors, including species 
differences, phenological status, atmospheric 
pollution, nutrient deficiency, toxicity, pathology, and 
radiation stress (Ceccato et al., 2001). Good indicators 
of plant water content need to be independent of 
these factors. It should be noted, however, that water 
stress can induce changes in plant architecture as 
well as water content, so modelling approaches that 
incorporate information on plant structure may be 
more appropriate for some applications (Jacquemoud 
and Ustin, 2003).

Equivalent Water Thickness (EWT; Green et al., 1991; 
Gao and Goetz, 1995; see Section 4.2.1) and radiative 
transfer simulations (Jacquemoud et al., 1996; Zarco-
Tejada et al., 2003) have been related to the relative 
water content of vegetation (Dennison et al., 2003). 
EO data can also be used to quantify the water 
content of vegetation by relying on the liquid 
water absorption features in optical wavelengths 
(see Section 13). Since NIR and SWIR reflectance 
is influenced to varying degrees by internal leaf 
structure, water content, and dry matter content, 
reflectance data in both these wavelength regions are 
needed to determine water content (see Section 4.3). 
Various studies have selected wavelengths in both 
of these spectral regions to compute ratios and 
normalised ratios, which have demonstrated good 
correlation with EWT, with double ratios providing 
stronger correlations (Colombo et al., 2008). EWT can 
also be estimated using the Normalised Difference 
Infrared Index (NDII; Hardinsky et al. 1983):

and the Normalised Difference Water Index (NDWI; 
Gao, 1996; Serrano et al., 2000; see Volume 3B—
Section 11):

WI and NDWI derived from AVIRIS imagery have been 
shown to account for most of the variation in canopy 
relative water content, though results are dependent 
on vegetation species (Serrano et al., 2002). 
Datt (2012) developed two semi-empirical indices 
for Eucalyptus species, which demonstrated much 
stronger correlations with EWT and less sensitivity to 
radiation scatter than other indices:

and

Other indices that have been proposed to infer 
vegetation moisture properties from EO imagery 
include the Normalised Difference Moisture Index 
(NDMI): 

and the Moisture Stress Index (MSI), which was 
originally formulated for Landsat TM bands 5 and 4 
(Hunt and Rock, 1989; Ceccato et al. 2001):

and the Water Index (WI; Peñuelas et al., 1997b):

Some of the other spectral indices that have been 
proposed to represent plant water content include:

	§ Plant Water Index ( ; Peñuelas et al., 1997b);

	§ Relative Depth Index (RDI; Rollin and Milton, 1998); 

	§ Global Vegetation Moisture Index (GVMI; Ceccato 
et al., 2002a, 2002b);

	§ Simple Ratio Water Index ( ; 
 
Zarco‑Tejada et al., 2003); and

	§ Canopy Structure Index (CSI; Sims and Gamon, 
2003).

The water absorption features that are prominent in 
EO measurements of vegetation enable an invaluable 
landscape scale measure of plant water content (see 
Section 9.4). Colombo et al. (2008) obtained more 
robust estimates of both leaf and canopy EWT from 
hyperspectral indices than from inversion of leaf and 
canopy radiative transfer models (see Section 10.2). 
As discussed in Section 18.3.1.2, various studies 
have evaluated the capacity of using water content 
indices derived from EO data to infer fuel moisture 
for fire risk prediction (Verbesselt et al., 2002, 2007; 
Chuvieco et al., 2002; Dennison et al., 2003, 2005; 
Yebra et al., 2008; Caccamo et al., 2011a). 
Caccamo et al. (2011b) found NDII based on MODIS 
band 6 offered best results for drought monitoring of 
high biomass vegetation.
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8.1.6  Landscape ‘leakiness’
The concept of landscape function, and the tendency 
of a dysfunctional landscape to ‘leak’ soil and water 
resources, was introduced in Section 7.3. An EO-based 
Leakiness Index (LI) that indicates the potential of a 
landscape to leak, that is not retain, soil sediments 
was developed by Ludwig et al. (2002, 2007):

where 

LI ranges from 0.0 (non-leaky) to 1.0 (totally leaky);
Lcalc is determined with reference to EO pixel 

values and DEM data by modelling surface flows 
to and from adjacent pixels (using the T-HYDRO 
model; Ostendorf and Reynolds, 1993), based 
on the assumption that pixels with greater 
vegetation cover are more likely to retain water 
and soil resources, and slow their flow to pixels 
at lower elevations; 

Lmax is defined as the value of Lcalc when all pixel 
covers are zero;

Lmin is the minimum leakiness value (and is 
typically set to zero for simplicity); and

k defines the shape and steepness of the 
relationship between LI and vegetation cover. 

Figure 8.3  Leakiness index

The leakiness index relates vegetation cover to soil loss based 
on field site measurements.

Adapted from: Ludwig et al. (2007) Figure 1b 

EO-based vegetation cover estimates are calibrated 
against field site data, with appropriate consideration 
of scaling differences. Values of LI decrease non-
linearly with increasing vegetation cover (see 
Figure 8.3). LI has been used to successfully monitor 
the condition of rangeland sites using EO datasets 
over several decades (Ludwig et.al., 2007; see 
Section 15). 

8.2  Spectral Classification
Traditionally, one of the most commonly used image 
processing techniques for analysing EO imagery is 
classification. Image classification is introduced in 
Volume 2A—Section 9, while extensive details of 
this process, and its many variations, are provided in 
Volume 2E. 

Images are classified in a wide range of application 
areas to identify and delineate ‘classes’, that is, to 
separate the image into a set of categories that 
contain ‘similar’ pixels. In this context, the definition 
of ‘similar’ will depend on the selected input data, 
the selected processing method, and the intended 
purpose of the classification. The use of appropriate 
image data is paramount to a credible classification 
result. An understanding of the selected classification 
process is also essential to ensure that the resulting 
classes capture the intrinsic variation in the image 
(see Volume 2E). 

Probably the most common end-product from 
classifying an EO image is a map which aims 
to describe ‘land cover’ (see Section 3). Such 
maps typically have a range of categories which 
differentiate geographic regions using characteristics 
of their vegetation, soils, and landforms. The 

successful mapping of such regional differences 
using EO data requires that the selected categories 
are differentiated somehow in the data itself and can 
be extracted cleanly using image classification and 
segmentation methods (see Volume 2E).

Supervised image classification can be viewed 
as both an art and a science. Volume 2E mostly 
addresses issues relating to the science. The art of 
this area of analysis involves both identifying those 
characteristics of image data that most effectively 
distinguish between the required categories, then 
determining a processing pathway that most 
efficiently produces a reliable land cover map. A key 
issue in these two activities is to establish the level 
of detail with which the categories can be reliably 
differentiated in the image.

As detailed in Volume 1, EO data records levels of 
radiation being reflected from, or emitted by, the 
Earth’s surface, such that each pixel value represents 
some pre-defined type and level of radiation for 
a given area on the Earth’s surface at one instant 
in time. Accordingly, certain categories may be 
differentiable in one EO image but not in another. If 
the characteristics defining the categories exhibit 
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seasonal variation, this may also be true for two 
images acquired at different times from the same 
sensing system. The likelihood of a given category of 
interest being differentiated by image classification 
can be most readily determined using the exploratory 
image analysis tools discussed in Volumes 2A, 2C, 
and 2E. Time spent becoming familiar with an image 
is usually reimbursed by uncovering a clear and 
efficient processing pathway through the subsequent 
stages of classification. These initial analyses also 
indicate those image channels that provide the best 
discrimination, and can assist in the selection of 
transformations to highlight category differences and/
or reduce data volume. As discussed in Volume 2E, 
the choice of allocation algorithms generally depends 
on the number of categories required and the 
processing resources (in terms of both interpreter’s 
time and computing facilities) available for the study.

However, image classification should not be viewed 
solely as a means for interpolating and extrapolating 
known categories over a given area. By recording 
objective and consistent measurements of surface 
radiation, EO data provide an ideal basis for such 
analyses. However, the imagery should also be 
considered as an additional source of information 
that may highlight patterns or occurrences of surface 
features which are not discernible by other means or 
anticipated by the interpreter’s classes. By forcing a 
classification to follow a strictly supervised pathway 
(which effectively assumes that the interpreter already 
knows everything there is to know about the study 
area and is simply assessing how well these features 
can be mapped from an image), useful additional 
information that is available from the image may be 
ignored. The Mosaic Model approach introduced in 
Volume 2A—Section 9 and recommended in Volume 2E 
attempts to combine supervised and unsupervised 
techniques during image classification to derive 
maximum information from the image.

Various categorisations of land use/land cover for 
classifying EO data have been proposed. One of the 
more commonly used systems was proposed by 
Anderson et al. (1976). As detailed in Excursus 3.1, this 
system describes a four level hierarchy of categories 
which was developed by USGS (United States 
Geological Survey). The higher levels are necessarily 
generalised to apply to a range of environments and 
describe land cover in terms of geographical, and 
somewhat academic, labels. Many classifications require 
a set of labels which are specifically tailored to the 
application problem being studied, so would correspond 
to Level III or Level IV in the Anderson system.

The following sub-sections discuss characteristics of 
EO data and processing algorithms which are relevant 
to classifying several major land cover categories: 
vegetation, geology and soils, water, and urban 
features.

8.2.1  Vegetation
Well-established reflectance characteristics 
for vegetation provide a good starting point for 
determining the expected parameters for classes 
relating to vegetation in EO images. As detailed in 
Sections 4.3 and 8.1, high NIR and low red reflectance 
values are reliably used to identify healthy green 
vegetation (see Figure 4.3). As vegetation condition 
deteriorates, the NIR reflectance decreases before, 
and more dramatically than, the green decreases and 
red increases (see Figure 4.4). The ‘red edge’, the 
sharp increase in reflectance between red and NIR 
wavelengths, also occurs at shorter wavelengths as 
plant health declines. The latter change is a subtle 
one though, only detectable by sensors with high 
spectral resolution (see Section 8.1.2).

These heuristic observations can guide selection 
of the most appropriate image channels to use for 
mapping vegetation. Most typically red, NIR, and 
SWIR channels are considered to provide the best 
discrimination of vegetation types. In most cases, the 
red and IR channels usually provide best separation 
between different land cover types. Various 
vegetation indices have been proposed to highlight 
gradients within vegetation in EO images (see 
Section 8.1). These are most commonly based on red 
and NIR reflectance channels and generally combine 
channels using ratios or differences. Drawing on 22 
years of published hyperspectral studies, a review of 
wavebands for vegetation class discrimination found 
that visible and red edge channels were the most 
frequently selected, followed by portions of the SWIR, 
then NIR spectral regions (Hennessy et al., 2020).

Seasonal effects need careful consideration when 
selecting EO imagery for mapping vegetation 
(see Volume 1B—Section 1.4 and Volume 2D). For 
example, known characteristics of crop development 
may define a stage of growth when the crop will 
be markedly different from surrounding vegetation 
(see Sections 5.3.2 and 9.3). This may occur at full 
greenness for an irrigated crop which is growing near 
slower-maturing or later-sown crops, or non-irrigated 
areas, or at the crop’s haying stage if it is mixed 
with later-maturing crops (see Section 12). Similarly, 
as native grasslands dry off, trends within wooded 
vegetation often become easier to differentiate (see 
Section 9.1). For example, in tropical environments, at 
the end of the wet season all vegetation is so lush that 
EO measurements cannot easily distinguish between 
different types. A few months after the start of the 
dry season however, most vegetation has dried out 
and a much greater range of vegetation types can be 
delineated. 
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A major problem for vegetation mapping in many 
Australian environments is the extent of bushfires, 
which result in prominent, dark scars in EO imagery 
(see Section 18), which can be spectrally similar to 
the edges of waterbodies. In the wet/dry tropics, 
image dates need to be carefully selected to allow 
some ‘drying’ of vegetation after the wet season, but 
preferably precede most fires in the dry season. In 
temperate woodlands and forests, understorey shrubs 
(such as acacias) may have flowering characteristics 
which alter their EO reflectance. The greenness of 
grasses, and possibly lichens and/or mosses, vary 
more rapidly with moisture availability than woody 
vegetation, and can also modify imaged values 
in woodlands and open forest (see Section 9.1). 
Leaf and bark colour, and the leaf volume of trees 
themselves, can also change with the seasons, so 
need to be considered if tree mapping is an important 
aspect of the classification (see Section 5.3.2). Sun 
angle becomes significant for forest and woodland 
vegetation, with higher Sun angles (closer to midday 
and the summer solstice) resulting in less shadowing 
of the background in imaged scenes (see Volume 1B—
Section 3.5 and Volume 2X—Excursus 1.1).

One example of classifying vegetation type using EO 
datasets to determine vegetation condition relative to 
a defined benchmark (see Section 3.2.2) is presented 
in Excursus 8.2. 

8.2.2  Geology and soils
As with vegetation, various factors can alter the 
‘typical’ reflectance for exposed soil or rock surfaces 
(see Figure 3.2). These factors were introduced in 
Volume 1B—Section 6.3 and include:

	§ moisture—wet soils have greater absorption, hence 
lower reflectance, for all wavelengths;

	§ organic matter—reflectance of visible to NIR 
wavelengths can be reduced by up to 60% by 
organic matter in soils (5% organic matter content 
results in darker soils, with higher proportions of 
organic matter resulting in minimal reflectance 
reductions);

	§ surface texture and roughness—determined by 
grain size and structure of aggregated grains. 
In general, the rougher a soil surface, the more 
shadowing and darker its appearance. For example, 
coarse grained sands reflect less strongly than fine 
grained sands. Strongly structured soils, with high 
clay content, often form a rougher surface than 
weaker structured sands which further reduces 
reflectance; and

	§ mineral content:

	w ferric iron-bearing oxides and oxyhydrides (or 
limonites) have an absorption band centred 
on ultraviolet wavelengths which results in 
lower reflectance up to about 550 nm, and 

can have shallow absorption in 850–950 nm. 
Their relatively high reflectance in yellow/red 
wavelengths causes the characteristic reddish 
colours of iron-rich soils;

	w carbonate minerals and silicates containing 
hydroxyl ions (such as micas and clay minerals) 
exhibit absorption peaks in the wavelength 
range 2.1–2.5 mm; and

	w increasing silica content causes the 
characteristic absorption peak in 8–14 mm 
range to occur at shorter wavelengths.

Geological analyses often aim to identify linear 
features and patterns in images so tend to use 
enhancement techniques rather than classification 
methods. Filtering techniques can be used to highlight 
lineaments or directional patterns (see Volume 2C—
Section 5). Some enhancements concentrate 
maximum image information into three channels for 
visual interpretation such as: 

	§ Hue Saturation Intensity (HSI) transformations; see 
Volume 2C—Section 8);

	§ Principal Components Analysis (PCA; see 
Volume 2C—Section 9); and 

	§ decorrelation stretching (see Volume 2C—Section 9.4). 

A range of spectral indices have also been developed 
to discriminate surface minerals (see Volume 2C—
Excursus 10.1), especially for ASTER imagery 
(Cudahy, 2012). 

While multispectral satellite imagery can be used 
to discriminate and identify surface features 
related to lithology and soils, applications that are 
particularly concerned with discriminating geological 
features often use hyperspectal imagery (Jupp and 
Datt, 2004) and/or EO sensors that detect energy 
sources other than EMR, such as radioactivity or 
magnetism (see Volume 1A—Sections 6 and 7). 

An impediment to using EO for geological applications 
is that the surface layer can often mask underlying 
geology. Since vegetation cover often conceals the 
soil surface, a ‘software defoliant’ was developed 
by Fraser and Green (1987) for geological analyses, 
which significantly removed the vegetation 
component in woodland images (see Volume 2C—
Section 9). Alternatively, geobotany attempts to link 
anomalies in vegetation type and growth patterns 
to characteristics of soil geochemistry (Goetz 
et al., 1983), but can be confounded by many climate-
related factors such as fire (Simpson, 1990). The 
spectral response of exposed rock surfaces can 
also be modified by lichen cover, iron-rich coatings, 
and deep weathering. For example, past chemical 
weathering events in Australia are reported to have 
altered surface materials to depths of hundreds 
of metres over a large proportion of the continent 
(Simpson, 1990).
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Excursus 8.2�—NSW State Vegetation Type Map (SVTM)

Source: NSW DPIE (2019) 
Further information: https://www.environment.nsw.gov.au/vegetation/state-vegetation-type-map.htm

The NSW State Vegetation Type Map (SVTM) locates 
Plant Community Types (PCT) on a consistent base 
over NSW. This product uses EO image products to 
extrapolate known landscape characteristics from 
thousands of survey sites across NSW. Based on the 
datasets and processes described below, each map 
unit is finally coded in terms of three hierarchical 
attributes:

	§ formations;

	§ classes; and

	§ PCT—indicate the species assemblage at local and 
regional scales.

Vegetation map outputs comprise pre-1750 (before 
European clearing) PCT coverage and extant PCT 
coverage. Specific datasets used to create these 
regional scale maps include:

	§ high resolution aerial photography (ADS40/80: 
50 cm resolution for vegetation classification 
across eastern and central NSW);

	§ satellite time series imagery (SPOT‑5: 2.5 m 
resolution, 2005–2013 for vegetation classification 
across western NSW; Shuttle Radar Topography 
Mission (SRTM); Landsat TM/ETM+: 25 m 
resolution, 1989–2008); 

	§ relevant botanical and environmental variables 
recorded at survey sites (primarily based on pre-
existing, full floristic survey data in the Bionet Flora 
Survey database and augmented by additional 
surveys to fill data gaps);

	§ statewide (continuous and categorical) 
environmental layers covering geology, climate, 
topography, and water; and

	§ archival mapping and other historical references, 
and other compatible regional scale mapping.

The process flow used to create SVTM is consistent 
with the NVIS methodology (Thackway et al., 2008). 
As summarised in Table 8.2, this process flow follows 
parallel pathways for analysing the site-based and 
image datasets. In the fifth stage (Spatial Product 
Development), these datasets are analysed jointly 
using the following processes:

	§ use expert interpretation and GIS technology 
to assign pre-1750 vegetation photo patterns 
to all polygons in imagery based on GEOBIA 
segmentation (see Volume 2A—Excursus 10.1), 
enviromental layers, and site survey data;

	§ model the distribution of plant communities within 
geographical constraints created by vegetation 
photo patterns and label each polygon as a PCT 
(unless a non-PCT class, such as rock or water); 

	§ use expert interpretation to review and edit 
modelling outputs to complete the pre-1750 
vegetation coverage; and

	§ mask out areas which are no longer native 
vegetation to create an extant vegetation coverage.

The map resulting from this processing sequence is 
available online (see Section 8.4) and can be accessed 
in terms of available sub-regions. The SVTM system 
has been designed to incorporate new data when 
available, thus maintaining currency of this product.

Table 8.2  SVTM workflow

Site-based data Spatial data

1. Acquire field data and 
determine plant type

2. Acquire spatial data

3. Classification and allocation 4. Image processing

5. Spatial product development

6. Publish maps

Thermal infrared (TIR) information can also be useful 
for mapping hydrogeology, geology, and soil type and 
condition (see Volume 1B—Section 7). In particular, 
the difference in temperature between daytime 
and nighttime images indicates the rate at which 
surface materials heat and cool. This phenomena is 
referred to as thermal inertia and has been shown 
to be principally related to moisture content and 

lithology. Classification of thermal inertia images 
offer a useful summary of these features. Daytime 
thermal imagery in conjunction with meteorological 
data can be used to estimate evapotranspiration 
(ET), which is a significant parameter in plant growth 
and the hydrologic cycle (see Sections 5.2.3 and 7.6 
respectively). 

https://www.environment.nsw.gov.au/vegetation/state-vegetation-type-map.htm
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8.2.3  Water
Known reflectance characteristics are again a good 
starting point for selecting appropriate channels to 
use for mapping water features. As introduced in 
Volume 1B—Section 6.4 and detailed in Volume 3B, 
water has higher reflectance of shorter wavelengths, 
with reflectance decreasing as wavelength increases 
up to the NIR region where radiation is totally 
absorbed (see Figure 3.2). NIR channels are useful to 
delineate water from land, while the rate of decrease 
in radiation from blue to IR can be related to water 
depth. TIR measurements have also been correlated 
with algal concentrations and thermal pollution. 
Calibrated EO time series, such as Digital Earth 
Australia (DEA; see Volume 2D—Section 11.2), have 
been valuable for delineating persistent and ephermal 
watercourses in Australia (Mueller et al., 2016; 
see Volume 1A—Excursus 5.1) and mapping tidal 
variations in shorelines (see Volume 3B). Volume 3B 
reviews processing techniques and applications for 
these and other EO applications to surface waters, 
including water quality.

Snow cover exhibits characteristically high 
reflectance in visible wavelengths, though some 
reduction in reflectance occurs with age and 
impurities (see Volume 1B—Section 6.5). Reflectance 
is lower for IR wavelengths, especially for older 
snow and glacier ice, with NIR wavelengths (in the 
range 1.0–1.3 mm) being sensitive to grain size (Dozier, 
1984). Thermal wavelengths can be confusing for 
mapping snow and generally offer less contrast 
than visible and IR wavelengths (Salomonson, 1983). 
Engman and Gurney (1991) recommend the use of 
visible channels from satellite imagery for identifying 
and mapping snow, preferably selecting a channel 
close to IR wavelengths (such as Landsat TM3), 
since there is greater difference between snow and 
non-snow at those wavelengths. Snow and cloud can 
be most easily separated in SWIR bands, with snow 
having much lower values than cloud (Dozier, 1984).

8.2.4  Urban features
Urban here refers to the man-made environment of 
buildings and roads with small pockets of vegetation. 
Being monochromatic, many urban materials such 
as concrete and asphalt have uniform levels of 
reflectance across the visible (and NIR) wavelengths. 
As with bare soil, moisture lowers these reflectances. 
Shadows can also reduce reflectance levels averaged 
over several objects and can result in well-defined 
directional patterns in images featuring buildings.

The extent of spatial intermixing of different 
surface materials that occurs in urban areas is a 
major problem when using standard classification 
algorithms. This problem exists at two levels: firstly 
the spatial resolution of most EO data is of a size 
which combines multiple surface components, such 
as vegetation, roofs, and pavement in a single pixel; 
secondly the categories of interest often pertain 
to land uses (such as residential areas) that are 
defined in terms of spatial patterns rather than 
distinct spectral values. The increasing spatial 
resolution of both airborne and spaceborne EO 
sensors is encouraging greater use for monitoring 
of water usage, drainage, construction, tree 
removal, and thermal efficiency in urban areas. EO 
measurements in the 8–14 mm TIR window highlight 
urban concentrations since these generally emit 
more thermal energy than natural features in the 
environment (see Volume 1B—Section 7). Within urban 
centres, the SWIR window of 3.5–5.5 mm can identify 
points of high thermal radiation such as mills, power 
plants, or fires. Features with differing thermal inertia 
characteristics, such as roads/paving, vegetation, 
and water, can also be differentiated by the change 
between their daytime and nighttime temperatures.

A cloak of loose, soft material, held to the earth’s hard surface by gravity,  
is all that lies between life and lifelessness.  

(Wallace H. Fuller)
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8.3  Sub-pixel Analyses
One image feature extraction approach, which was 
originally applied to multispectral imagery (Adams 
and Adams, 1985; Smith et al., 1990) and is now 
widely used for hyperspectral imagery, is variously 
called mixture analysis, endmember analysis, or 
spectral unmixing (Keshava and Mustard, 2002; 
Keshava, 2003). This approach attempts to quantify 
the proportion of pre-defined ground components 
within each pixel. Many variants of ‘sub-pixel’ analysis 
have been adapted to a wide range of applications 
(Somers et al., 2011), including mapping the proportion 
or fraction of vegetation cover, or fractional cover 
(Guerschman et al., 2009), within each pixel. Sub-
pixel analysis is essentially based on a number of 
assumptions:

	§ a finite number of ground components can be 
defined, such as photosynthetic vegetation, non-
photosynthetic vegetation, and bare soil, which 
describe the spectral variation in an EO image;

	§ each ground component is spectrally distinct and 
can be represented by their spectral value(s) or 
‘endmembers’; 

	§ a ‘pure’ image pixel could contain just one type 
of ground component, in which case its spectral 
value(s) could be directly associated with that 
ground component; 

	§ most image pixels are mixed pixels, comprising 
different areal proportions (or ‘fractions’) of each 
ground component; and

	§ the spectral value(s) of mixed pixels are indicative 
of the proportions of its ground components.

A block of ‘pure’ pixels for a given component would 
therefore appear as a single ‘colour’ (or set of spectral 
value/s) with no variance. A block of ‘mixed’ pixels 
with the same ‘mix’ of components would appear 
to be a similar, but variable, colour. Most image 
classification methods use image ‘colour’ (as spectral 
values) to associate each image pixel with one from a 
selected set of feature (or ground cover) classes. By 
contrast, sub-pixel methods rely on image variance 
to determine the varying proportions of a small 
number of pre-defined ground components in each 
pixel. There are a two key issues to consider in this 
scenario:

	§ how are the endmembers defined, both in terms 
of the full set of ground components and their 
spectral value(s)? and

	§ how are their proportions determined, that is, the 
contribution that each component makes towards 
the pixel spectral value/s (Hapke, 1981, 1984, 1986)?

A number of models have been proposed to describe 
how the unique spectral value(s) of each ground 
component is combined into a single set of mixed 
pixel values for an individual pixel. These models 
can be grouped into two broad categories based on 
the way ground component spectral values(s) are 
combined to produce the value(s) of a given pixel:

	§ linear mixture models (LMM; also commonly known 
as Spectral Mixture Analysis: SMA)—assume that 
the ground components present within a given 
pixel combine as a simple addition of their spectral 
values(s) in proportion to the area of the pixel 
they occupy. LMM are relatively straightforward 
mathematically but ignore the numerous 
interactions that can occur between ground 
components within a pixel and also the variations 
that can occur within an image, both of which can 
result in the situation where a given set of ground 
components could occur in the same proportions in 
two different pixels yet result in different spectral 
value(s); or

	§ non-linear mixture models (NLMM)—recognise 
that incident light can be scattered both within 
and between ground components before their 
combined reflectance is measured by the sensor, 
so their combination would not be linear (Keshava 
and Mustard, 2002). NLMM attempt to account for 
these intra-pixel variations but invariably introduce 
mathematical complexity for model implementation 
and greater uncertainly in the modelled results.

LMM can be seen to work when, for a given pixel, 
the incident light only interacts with one ground 
component and the components are mixed at a 
‘macroscopic scale’. An example of this situation would 
be a checkerboard pattern. In this case, the reflected 
light from multiple ground components is only mixed 
at the sensor. Since ground components rarely 
contribute equally to the measured radiance from 
a mixed pixel, with some components simply being 
more reflective than others (see Figure 3.2), the pixel 
radiance is unlikely to be a simple additive combination 
of either the mass or cross-sectional area of the 
proportional radiances of its ground components (see 
Section 6.4 and Volume 1B—Section 6.6). However, 
numerous studies have yielded results which indicate 
that LMM offer an acceptable model for many real 
world scenarios (Bioucas-Dias et al., 2012) and many 
algorithms have been developed to implement these 
models (Zare and Ho, 2014). Variations of LMM 
include multiple endmember spectral mixture analysis 
(MESMA), which extends SMA to permit endmembers 
to vary, in both number and type, for different image 
pixels (Roberts et al., 1998). 
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Mathematically, in LMM the pixel signature (r
s
) is 

assumed to be a linear sum of reflectances from each 
of n endmembers weighted in proportion to its cover 
(kj) in the pixel:

where

the pixel signature, r
s
, is the linear sum of the 

reflectances of each cover type (Rj) weighted by 
its proportion (kj) in the pixel;

kj � 0 for j=1,n; and

Sub-pixel or endmember analysis seeks to invert 
this mixing by deriving the proportions (kj) of each 
component in the pixel signature. This can feasibly 
be derived from the EO data provided that, if there 
are n components (trees, shrubs, grass, etc.), 
then there are at least (n–1) channels of data that 
separate the endmembers spectrally. There has been 
considerable work aimed at deriving endmembers 
from hyperspectral imagery (Boardman, 1990), 
spectral libraries and/or spectral measurements in the 
field (TERN Australia, 2018). Some limitations to this 
approach include:

	§ broad-band signatures of ground components 
(such as the tree and shrub crowns over much of 
Australia) are not markedly spectrally distinct;

	§ where spectrally distinct crowns exist, their 
distinction is confounded by the effects of 
shadowing within crowns and cast shadow on 
the background, with bigger plants shading 
smaller plants. This makes the signature of the 
endmembers difficult to estimate as the signature 
depends on the proportions of crowns and shadows 
present and variations in Sun and look angles; and

	§ relatively low covers of trees and shrubs, together 
with shadowing, introduce such high spectral 
variance into the data relative to the spectral 
contrasts between endmembers that the numerical 
methods used in the endmember analysis become 
highly unstable.

Shadow effects obviously depend primarily on the 
Sun angle (see Volume 1B—Section 3.5). Although 
the crown cover is the same, lower Sun angles 
clearly decrease image brightness. Differences 
due to shadowing can be taken into account in 
endmember analysis, provided the endmember 
values are recalculated for each temporal image and 
one or more components labelled ‘shade’ are added 
to the list. However, its successful application still 
depends on an assumption of linear scaling along 
cover gradients due to changes in Sun position and 
sensor view angle. These assumptions in practice are 
erroneous in structured vegetation (that is, vegetation 
with discontinuous cover of trees or shrubs), 
which may limit the application of such methods to 
general synoptic estimates of change in cover (see 
Volume 2X—Excursus 1.1).

Sub-pixel analysis is being used to derive a number of 
standard image products from EO data in Australia, 
such as fractional cover (see Excursus 8.3) and 
persistent green vegetation (see Section 9.1). 
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Excursus 8.3�—Fractional Cover

Source: TERN Australia: http://www.auscover.org.au/dataset_categories/land-cover-dynamics-and-phenology/ 
Further information: Guerschman et al. (2009, 2015); Muir et al. (2011); Stewart et al., (2014); Scarth et al. (2018); 
Guerschman and Hill (2018)

Fractional cover represents the percentages of 
photosynthetic vegetation (Fpv), non-photosynthetic 
vegetation (Fnpv), and bare soil (Fbs) in a given area 
(see Section 6.3.6 and Figure 8.4). These proportions 
are particularly valuable for a range of regional 
and continental monitoring programs, including 
estimation of:

	§ total biomass—for ecosystem studies of carbon and 
nutrient uptake, surface albedo, and heat exchange 
between the land surface and the atmosphere 
(Guerschman et al., 2009, 2015); 

	§ ground cover monitoring—to assess pastures and 
crops (Muir et al., 2011; Stewart et al., 2014);

	§ landscape condition—by observing regional 
soil exposure dynamics (Clarke et al., 2014) and 
managing stubble to achieve zero tilling;

	§ compliance monitoring—to detect removal of 
woody vegetation (see Volume 2D—Excursus 14.3);

	§ fuel loads that impact fire frequency and intensity 
(Tindall et al., 2014; He et al., 2019); and

	§ susceptibility to wind and water erosion 
(DustWatch, 2019). 

Along with standing biomass and growth rate, 
fractional cover represents one of three vital 
inputs for assessment of sustainable global 

rangeland productivity. 
(Guerschman and Hill, 2018)

Figure 8.4  Fractional cover index image

a. Example image in true colour

Department of Science, Information Technology, Innovation and the Arts 

12 

3.1.2 Field data 

Fractional cover is calibrated/validated using data obtained from the star transect point intercept 
method outlined in Muir et al. (2011) and collected through this project, other RSC field campaigns 
and the National Ground Cover Monitoring Project (http://www.daff.gov.au/abares/aclump/pages/land-
cover/ground-cover-monitoring-for-australia.aspx). 825 star transect sites exist across Queensland in a variety 
of biomes and 343 transects within the Reef Catchments. A further 724 sites collected from across 
Australiaʼs rangelands have also been included in the calibration data set in an attempt to improve the 
model performance by representing the range of cover and bare ground reflectance values expected 
across the country. Certain areas in the Reef catchments are currently under sampled, most notably 
the Southern parts or the two larger inland catchments, the Burdekin and Fitzroy. A field trip was 
recently undertaken in October 2013 in the southern part of the Burdekin to help fill this data gap 
(Figure 2). These additional transect locations were targeted in higher foliage regions to provide field 
data for the development of the Fractional Ground Cover (Trevithick et al, 2014 and Section 3.1.4). 

Figure 1 Example of a fractional cover index image. The top image shows the area in true colour. The fractional 
vegetation cover shows the photosynthetic (ʻgreenʼ), non-photosynthetic (ʻnon-greenʼ) and bare ground fractions. 
For example, vigorously growing crops in centre pivots at the top right of the image are shown in green, and 
bare/fallow crops in the lower left are shown in red. 

b. The fractional vegetation cover image showing the 
photosynthetic (‘green’), non-photosynthetic (‘non-green’), and 
bare ground fractions. For example, vigorously growing crops in 
centre pivots at the top right of the image are shown in green, 
and bare/fallow crops in the lower left are shown in red.
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c. Thematic colour key based on three endmembers
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http://www.auscover.org.au/dataset_categories/land-cover-dynamics-and-phenology/
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Fractional cover methods rely on reflectance 
spectra at defined sites for calibration and validation 
(Scarth et al., 2018). These methods are based on 
the image processing approaches of spectral indices 
(see Section 8.1) and linear unmixing/spectral mixture 
analysis (see Section 8.3 and Volume 2E). Australian 
variants of fractional cover products that are available 
from TERN Australia (see Section 8.4) include:

	§ MODIS fractional cover derived from all bands 
of the MODIS MCD43A4 collection 6 daily 
product, using a linear unmixing methodology 
(Guerschman et al., 2015), with calibration 
and validation from 3022 field observations 
(Guerschman and Hill, 2018). This 8-day fractional 
cover product is available in 500 m spatial 
resolution from 2000 to the present and maintains 
consistency with previous Australian versions 
(Guerschman et al., 2009, 2015; Gill et al., 2014). 
A suite of derivative products is also produced 
including:

	w monthly fractional cover (aggregated from the 
8-day composites using the medoid method);

	w total vegetation cover (photosynthetic + non-
photosynthetic); and 

	w anomaly of total cover against the time series 
(difference between total vegetation cover in 
a given month and the mean total vegetation 
cover for that month in all years available). 

This product is being upgraded to use MODIS 
Collection 6.1 products for compatibility with 
GEOGLAM-RaPP global fractional cover datasets 
(see Excursus 11.1).

	§ MODIS 16-day composites based on Relative 
Spectral Mixture Analysis (RSMA; Okin et al., 2007), 
Spectral Mixture Analysis Time Series (SMATS; 
Okin et al., 2013), and Absolute Relative Spectral 
Mixture Analysis (ARSMA; Clarke et al., 2011) 
methods, which measure changes in fractional 
covers relative to a baseline date at 500 m spatial 
resolution. 

	§ Landsat seasonal fractional cover based 
on constrained linear spectral unmixing 
(Scarth et al., 2010; see Section 8.3). This product 
is available from Digital Earth Australia (DEA; see 
Volume 2D—Section 11.2) at 25 m spatial resolution 
from 1986 to the present.

Figure 8.5  Fractional cover endmembers 

a. Conceptual approach for locating the endmembers for ‘pure’ 
photosynthetic vegetation (fPV), non-photosynthetic vegetation 
(fNPV), and bare soil (fBS) in a crossplot of NDVI versus CAI. In this 
example, point (a) represents a ground site halfway between 
fBS and fPV, while point (b) represents an equal mix of all three 
components.

b. MODIS Fractional cover for Australia in April 2015

123 
 

Figure 7.8.  Fractional Cover image for Australia for April 2015.  
 
 
 
 
 

7.6 Future Fractional Cover Mapping and 
Validation 

The three approaches presented in this chapter demonstrate how a network of field sites and imagery can 
be used to develop robust national scale fractional cover models that successfully retrieve estimates of 
green, dead and bare ground fractions. The MODIS based approaches of Guerschman and Clarke produced 
moderate to high levels of accuracy over most of the cover types validated across Australia. In the Landsat 
based approach of Scarth, the use of synthetic endmembers in a constrained non-negative least squares 
unmixing model enabled the successful retrieval of the groundcover fractions over a large number of scenes 
across Australia. To further improve these products, future work will concentrate on collecting additional 
field data over a variety of different environments along with coincident imagery. By using extensive field 
data sets to drive the MODIS and Landsat derived fractional cover time series products, these can serve as 
key indicators used for a range of environmental monitoring and management activities from catchment to 
state and continental scales.  

 

Source: a. Based on Guerschman et al. (2009) Figure 2; b. TERN Australia 
(2018) Figure 7.8 
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8.4  Further Information

Spectral Indices
Index Database for remote sensing indices: https://

www.indexdatabase.de/

Fractional Cover Products
TERN Australia (2018): http://www.auscover.org.au/

dataset_categories/vegetation-structural-properties-
biomass/

DEA: https://docs.dea.ga.gov.au/notebooks/02_
DEA_datasets/Introduction_to_Fractional_Cover.
html; https://d28rz98at9flks.cloudfront.net/79676/
Fractional_Cover_FC25_v1_5.PDF

NSW State Vegetation Type Mapping 
SVTM: https://www.environment.nsw.gov.au/vegetation/

state-vegetation-type-map.htm
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One of the great promises of EO was the prospect of using ‘objective’ measurements to monitor changes in 
land cover and condition over selected time periods (Singh, 1989). In the context of terrestrial vegetation, 
various applications of environmental monitoring can be readily listed: 

	§ identifying and quantifying land use changes (see 
Section 3.4.2); 

	§ measuring the extent and rate of deforestation and 
afforestation (see Section 16); 

	§ tracking land degradation (see Section 11.4);

	§ highlighting stress conditions in vegetation (due to 
biotic and abiotic factors; see Sections 9.5 and 9.6); 

	§ showing the extent of damage from disaster 
events, such as fire or flood (see Section 18 and 
Volume 3B); and

	§ gauging long term changes in vegetative cover due 
to recurrent drought and other climatic variations 
(see Sections 3.4.1, 9.2.2, 11.3 and 15).

Of all the questions which can come before this nation, short of the actual preservation of its existence in 
a great war, there is none which compares in importance with the great central task of leaving this land 

even a better land for our descendants than it is for us. 
(Theodore Roosevelt)

However, in some areas, the application of this 
technology has hitherto fallen short of its promise. 
Like most technological solutions, using EO for 
environmental monitoring presents its own set 
of problems. While images represent ‘objective’ 
measurements of surface energy that can be related 
to different surface features, the measurements can 
vary with a number of factors which are independent 
of changes in those features. For example, the 
calibration of imaging sensors can vary over time, so 
that the same physical radiance level in a selected 
wavelength band could result in (slightly) different 
recorded values in different overpasses (see 
Volume 2A—Section 3). Changes in Sun position 

with diurnal and annual cycles directly affect surface 
illumination, and hence any remote measurements of 
reflected energy (see Volume 1B—Section 3). Similarly, 
scattering by atmospheric particles can modify the 
surface radiance levels recorded by an airborne or 
spaceborne sensor (see Volume 1B—Section 4). 
Short-term surface conditions, such as increased 
soil moisture after a rainfall event, can also reduce 
radiance levels. Finally, digital comparison of multiple 
images generally requires that images are precisely 
registered geometrically (see Volumes 2B and 2D). 
This process can introduce spatial errors which could 
be falsely interpreted as land cover changes. 

9  Monitoring

Background image: MODIS global composite image showing Land Surface Temperature (LST) anomaly for October 2016 (based on science datasets from 
MOD11C1, MOD11C2, and MOD11C3 products). Colour scale ranging from blue (-12ºC) to red (+12ºC) indicates the deviation of monthly temperature in October 
2016 from the average monthly temperature between 2001–2010. (Note: the vertical extent of this composite image has been clipped and the aspect ratio 
changed.) Source: NASA Earth Observations. (Retrieved from https://neo.sci.gsfc.nasa.gov/view.php?datasetId=MOD_LSTAD_M)

https://neo.sci.gsfc.nasa.gov/view.php?datasetId=MOD_LSTAD_M
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‘Real’ land cover changes still need to be interpreted 
in an informed way. For example, spectral variation 
between successive growing seasons for cultivated 
crops may initially appear to be related to seasonal 
productivity, but may also be due to cultivation 
factors (such a planting pattern, or timing of fertiliser 
application), differences in maturity (due to changes 
in crop variety or soil condition), or differences in 
weather or irrigation (such as stress from heat, cold, 
wind damage, or excessive or insufficient moisture). 
The multivariate nature of the environment, combined 
with variable land use practices, suggest that 
methodologies for accurately monitoring land cover 
may never be fully automated. Nevertheless, EO 
does offer relatively inexpensive, regularly acquired, 
and internally consistent datasets for investigating 
changes in land cover, use and/or condition, especially 
when calibrated and validated as Analysis Ready Data 
(ARD; see Volume 2D—Section 3.2).

In the context of EO, monitoring relies upon the 
availability of multiple images for a given location. 
Two or more coincident images are required to detect 
changes in land cover or condition, and the increasing 
archive of EO time series imagery offers greater 
choice of image resolutions and extents than ever 
before. Image processing methods that are relevant to 
environmental monitoring using time series datasets 
are detailed in Volume 2D. As introduced in Volumes 1 
and 2, EO imagery enables the creation of global 
maps showing vegetation greenness. Spectral indices 
derived from EO datasets (see Section 8.1) have been 
related to a range of ecological parameters, which 
attempt to quantify trends in vegetation cover and 
structure in space and time, including:

	§ Foliage Projective Cover (FPC)—fraction of ground 
surface vertically covered by photosynthetically 
active components of vegetation (that is, excluding 
stems and branches; see Sections 6.3.1);

	§ Leaf Area Index (LAI)—ratio of upper green leaf 
surface area to ground area (see Section 6.3.3, 8.1.1 
and 8.1.4); 

	§ fraction of Absorbed Photosynthetically 
Active Radiation (fAPAR)—proportion of 
photosynthetically active radiation (400–700 nm) 
used by plants (see Section 6.3.4 and 8.1.4); 

	§ fractional cover—proportions of photosynthesising 
vegetation, non-photosynthetic vegetation, and 
bare soil within a given area (see Section 6.3.6 and 
Excursus 8.3) and

	§ Net Primary Productivity (NPP)—the availability 
of carbon or biomass in a landscape (see 
Sections 7.2, 8.1.4 and 17).

Table 9.1  Potential reference site measurements

Environmental 
factor

Attribute Measurement

Vegetation

Structure
Height, density, layers, spatial 
configuration

Species Abundances, ages

Litter Size, volume, distribution

Soil

Type Texture, mineral content

Depth Topsoil and subsoil layers

Nutrient 
status

Proportions of major and minor 
nutrients

Climate

Precipitation
Diurnal, seasonal, annual, and 
longer term ranges

Temperature

Humidity

Aerosols Density, type

Monitoring landscape condition necessarily 
relies on reference sites, at which a range of 
detailed measurements can be made. Examples 
of relevant quantitative measurements at these 
sites are listed in Table 9.1. Of particular relevance 
to Australian terrestrial ecosystem studies is the 
Terrestrial Ecosystem Research Network (TERN), 
which is introduced in Volume 2D—Excursus 12.2. 
Detailed guidelines for measuring vegetation and 
soil parameters for environmental inventory and 
monitoring are provided in TERN Australia (2018), 
McKenzie et al. (2008), and NCST (2009). Integration 
of EO data with other spatial datasets, including site-
based data, is introduced in Volume 2D—Sections 12–
14.

The following sub-sections consider monitoring 
applications using EO imagery in the specific 
contexts of:

	§ vegetation types—such as annual versus perennial 
(see Section 9.1);

	§ change indices—for fire and other disturbances 
(see Section 9.2);

	§ phenology—monitoring changes in vegetation 
growth stage and condition (see Section 9.3);

	§ evapotranspiration—quantifying regional moisture 
loss due to evaporation and transpiration (see 
Section 9.4); 

	§ plant water stress—monitoring water stress in 
vegetation, particularly to optimise irrigation 
scheduling (see Section 9.5); and

	§ plant vigour—nutritional status, pests and diseases 
(see Section 9.6).
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9.1  Vegetation types
Various EO-based methods have been developed 
to monitor changes in different types of terrestrial 
vegetation. For many applications, accurate maps of 
perennial (mostly woody) vegetation are valuable. 
For example, some operational systems that monitor 
perennial vegetation in Australia include:

	§ Statewide Landcover and Trees Study (SLATS) 
has been used operationally in Queensland since 
1995 and in NSW since 2006 (see Volume 2D—
Excursus 14.3 for details). The SLATS methodology 
identifies woody vegetation changes at intervals 
of 1–2 years using a well-defined processing 
workflow, and produces annual reports and maps 
detailing the location and extent of change across 
each state (Scarth et al., 2008; Danaher et al., 2011). 
Near real time detection of vegetation change has 
been recently implemented using EO datasets with 
higher spatial and temporal resolutions.

	§ LandMonitor is a collaborative monitoring project 
in WA that was initially developed in 1988 to 
map salinity and vegetation in southwest WA 
from Landsat imagery (Allen and Beetson, 1999). 
It now delivers state-wide maps of vegetation 
extent and change in perennial vegetation 
cover (Landgate, 2019). This EO-based time 
series is integrated with DEM and other spatial 
datasets to allow vegetation history and salinity 
risk to be monitored efficiently (McFarlene and 
Wallace, 2019). 

	§ A persistent green vegetation product 
(Gill et al., 2017, 2018) was derived from the 
photosynthetic vegetation component of the 
Landsat fractional cover product (see Excursus 8.3) 
for the decade from 2000 to 2010. This product 
maps the density and extent of woody vegetation in 
Australia with an overall accuracy of 82%.

Annual or deciduous vegetation exhibits a larger 
annual change in photosynthetic activity and 
canopy reflectance than evergreen vegetation (see 
Section 5.3.3). Monitoring of vegetation colour 
throughout the year can help to separate areas of 
deciduous and evergreen vegetation cover. Using 
data collected over several years, persistently green 
vegetation can similarly be differentiated from 
vegetation that is suspectible to seasonal or weather-
related browning in hot weather. Some advantages 
of mapping persistently green vegetation include 
highlighting reliable areas of fodder, locating potential 
groundwater resources, indicating areas with high fire 
risk, and identifying useful checkpoints for monitoring 
vegetation dynamics (Johansen et al., 2012). Perennial 
and annual plants also have significantly different 
ecohydrological characteristics as summarised in 
Table 9.2, with some variations due to plant age 
(McVicar et al., 2010). These characteristics have been 
shown to influence catchment water balance at sub-
catchment scales (Donohue et al., 2010a). 

Time series analysis of EO-based vegetation 
indices has been used to differentiate between 
vegetation that is persistently green and 
vegetation that browns off during the annual 
cycle (Lu et al., 2003, Donohue et al., 2008). For 
example, Donohue et al. (2009) used a calibrated 
AVHRR Normalised Difference Vegetation Index 
(NDVI) time series dataset from 1981 to 2006 
(Donohue et al., 2008) to analyse fAPAR trends for 
Australia in terms of 

	§ slowly varying, persistent vegetation—perennial, 
woody; and

	§ rapidly varying, recurrent vegetation—annual, 
herbaceous, and ephemeral (see Figure 9.1).

fAPAR trends were compared with climate records to 
observe an increase in vegetation cover in Australia 
of 7.8% from 1981 to 2006, which corresponded to 
a 7% increase in precipitation during the same time 
period. In terms of vegetation categories, however, 
this analysis reported that persistent vegetation 
increased over 21%, while recurrent vegetation 
decreased by 7% (see Volume 2D—Excursus 8.1).

Table 9.2  Ecohydrological characteristics of perennial and annual vegetation

Vegetation type Root depth Photosynthetic rate Leaf area change Water use

Annual/ephermal Shallow High Fast Alternately high and low

Perennial/non-deciduous Deep Low Slow Generally constant and moderate

Source: McVicar et al. (2010) Table 1
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Figure 9.1  Seasonal vegetation trends derived from AVHRR NDVI data 1981–2006

a. Precipitation	 b. Total fAPAR	 c. Recurrent fAPAR	 d. Persistent fAPAR

Source: Donohue et al. (2009) Figure 5 © Wiley. Used with permission.

9.2  Change Indices
A number of spectral indices have been developed to 
quantify landscape changes based on a pair of images 
acquired before and after a change event. As with all 
monitoring approaches, timing of imagery is important 
to ensure that the pair capture changes resulting 
from a specific event (see Volume 2D). For reliable 
results, these analyses require cloud-free images that 
are not separately impacted by other environmental 
conditions such as drought. Below we consider two 
examples of particular relevance to the Australian 
environment: fire footprints (see Section 9.2.1) and 
ecosystem disturbance (see Section 9.2.2).

9.2.1  Fire footprints
A frequent impetus for monitoring land cover 
change in many parts of Australia is fire. A number 
of methods for mapping both the extent and severity 
of fires have been developed, which are discussed 
in detail in Section 18. Fire indices, however, can 
saturate in the Australian landscape, resulting in 
little distinction between areas impacted by high fire 
severity and those that were completely burnt out 
(Tony Sparks, pers. comm.).

A popular method for mapping fire severity was 
proposed by Key and Benson (2002, 2006) for 
Landsat TM/ETM+ imagery based on the Normalised 
Burn Ratio:
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Since Landsat TM Band 4 (NIR) is sensitive to 
changes in vegetation vigour and biomass and Band 7 
(SWIR) is sensitive to the visibility and character 
of soils (Cocke et al., 2005; Key and Benson, 2002), 
a Normalised Burn Ratio difference image (dNBR), 
which shows change in NBR due to fire, is then 
calculated from:

dNBR = NBRprefire – NBRpostfire

Although originally developed for Landsat TM 
imagery, the ratio has been adapted for use with other 
EO data with similar spectral channels. Uses and 
limitations of this method for mapping fire severity are 
described in Section 18.

Miller and Thode (2007) reported higher accuracy 
in mapping high fire severity areas using a Relative 
dNBR index (RdNBR) and suggested that a relative 
index offers a more consistent basis for comparing 
fires across space and time:

Other indices have been developed for mapping fire 
footprints, including the Mid-infrared Bi-spectral 
Index (MIRBI), which was derived from MODIS MIR 
channels 6 and 7 to detect burned savanna vegetation 
(Trigg and Flasse, 2001):

MIRBI = 10 � MODIS Band 7  
– 9.8 � MODIS Band 6 + 2

As detailed in Section 18, different methods for 
mapping fire footprints have also been compared 
in several studies (Trigg and Flasse, 2001; 
Roman-Cuesta et al., 2005; Holden et al., 2005; 
Smith et al., 2007). 

9.2.2  Ecosystem disturbance
Major disturbances to terrestrial ecosystems, such 
as fire, floods, storm damage, and insect epidemics, 
typically destroy large areas of vegetation, resulting 
in marked changes to the global carbon cycle (see 
Section 17). Observing the timing, location, extent, 
and severity of such disturbances is important both 
to optimise response and recovery efforts, and 
understand the impact of these events on ecosystem 
dynamics. 

The MODIS Global Disturbance Index (MGDI; 
Mildrexler et al., 2007, 2009) detects changes in 
vegetation greenness and land surface temperature 
(LST) such that:

	§ greenness, as measured by the MODIS/Terra 
Enhanced Vegetation Index (EVI; MOD13A1), is 
expected to decrease after a major disturbance due 
to reduction in vegetation cover; and

	§ LST, as measured by MODIS/Aqua LST (MYD11A2), 
is expected to increase due to reduction in 
evapotranspiration from less vegetation cover:

MGDI = (LSTmax/EVImax)/(LSTmean/EVImean)

where

LSTmax is the annual maximum of eight-day 
composite LST;

EVImax is annual maximum of 16-day EVI;
LSTmean is the multiyear mean of LSTmax; and 
EVImean is multiyear mean of EVImax.

MODIS imagery from 2001 to 2013 were analysed 
to generate an experimental version of this product 
for Australia (TERN AusCover, 2014). This has been 
validated using fire events, but could be used to 
assess any major landscape event and the associated 
subsequent regeneration (see Section 9.7).

9.3  Phenology
Phenology, the interaction between plant life 
cycles and seasonal, climatic and other rhythms, 
is introduced in Section 5.3.2 above. A range of 
metrics is used to identify and compare phenological 
stages. As indicated in Table 9.3, these are based on 
either the dates associated with particular stages of 
greenness or the magnitude of greenness. Different 
metrics have been demonstrated to be most effective 
in assessing different types of vegetation and/or 
different vegetation characteristics.

Phenological studies have employed three principal 
tools: in situ observations, bioclimatic models, and 
EO. In situ observations, such as field measurements 
(see Volume 2D—Section 12), automatic sensor 
networks, and phenocams (Brown et al., 2012, 2016), 
are essential to validate both bioclimatic models and 
EO analyses, but are expensive, time-consuming, 
and invariably introduce inconsistencies over large 
areas. Most bioclimatic models tend to be specific to 
selected species and local scales and do not readily 
extend to larger areas. EO offers the only viable 
option to scale up in situ observations for regional and 
global coverage (Cleland et al., 2007).
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Table 9.3  Significant phenological metrics

Basis Name of Metric Application

Greening 
Dates

Start of growing season (SGS) 
Indicate sensitivity of ecosystem productivity to phenology and climate change  
(Ma et al., 2013; Richardson et al., 2010); 

End of growing season (EGS)

Peak period of growing season (PGS)

Magnitude of 
Greenness

First derivatives of seasonal greenness profile
Asymmetry between rate of green-up and rate of senescence used to 
characterise ecosystem type

Variations in rates indicative of vegetation health

Annual integrals of seasonal greenness profile Variations related to ecosystem productivity

Amplitude of seasonal greenness profile
Minimum dry season baseline related to persistent green vegetation cover 
(Donohue et al., 2009)

Amplitude (PGS minus baseline) related to recurrent vegetation cover

Source: Restrepo-Coupe et al. (2018)

As with other time series datasets, annual, interannual, 
and longer term patterns need to be differentiated 
in phenological observations (see Section 5.3.2 
and Volume 2D—Section 8 and 9). Changes in 
phenological metrics between years can result from 
short-term climatic fluctuations (Elmore et al., 2003) 
or localised anthropogenic changes 
(White et al., 2002). Longer-term changes in annual 
cycles may result from major climate variations or 
regional anthropogenic influences (Myneni et al., 1997; 
Potter et al., 2003; Tucker et al., 2001). 

EO techniques have proven to be a reliable method of 
assessing plant phenological status, since vegetation 
canopy greenness is closely related to the generalised 
growth stages of emergence, development, maturity, 
and senescence (or harvest) for most forests, 
grasslands, and wetlands, as well as most agricultural 
crops (see Figure 6.6). In particular, time series 
imagery has enabled new insights into vegetation 
dynamics and land surface changes (see Section 10 
and Volume 2D). 

The majority of EO-based phenological studies 
have analysed changes in vegetation ‘greenness’ as 
represented by spectral indices (see Section 8.1). 
Analyses of historical imagery have allowed models 
for growing season parameters to be established, and 
perturbations induced by climatic or anthropogenic 
factors to be detected (Myneni et al., 1997; 
Huete et al., 2006). Validation methods for satellite 
image-based phenology analyses are detailed in 
Restrepo-Coupe et al. (2018). Zeng et al. (2020) 
review vegetation phenological metrics derived from 
EO time series datasets both in terms of existing 
methods and emerging techniques.

Most of the large area studies of seasonal vegetation 
dynamics have been based on the extensive archives 
of AVHRR, MODIS, or VIIRS imagery, although Landsat 
imagery has also been used for regional analyses. 
AVHRR data provides the longest, continuous time 
series of global imagery, but this dataset has known 
limitations for detailed vegetation analyses, including 
problems with radiometric and geometric precision 
(Goward et al., 1991; Teillet et al., 2000). Comparisons 
between time series from different sensors yielded 
similar results in terms of phenological trends 
between NDVI derived from MODIS and SPOT-
Vegetation datasets, but disagreement with NDVI 
trends from AVHRR GIMMS (Yin et al., 2012).

Since the extent of green plant cover is indicative of 
phenological stages in annual plants (see Section 6.5), 
the key transition dates between greening, maturity, 
senescence, and dormancy can be identified using 
a greenness index. When the greenness values for 
each image pixel are plotted against the calendar 
date, the trend in greenness is clearly visible as 
increasing during the greening phase, most constant 
during the maturity phase and decreasing during the 
senescing phase (see Table 9.4 and Figure 9.2). The 
dates of these transitions correspond to the inflexion 
points in an EO-based greenness plot, that is, the 
dates when the slope of the greenness trend changes 
(Zhang et al., 2003; see Section 14.3). Changes in 
meteorological and environmental conditions or plant 
varieties, however, may vary the precise temporal 
trajectory of pixel values throughout the growing 
season from year to year in terms of duration, 
amplitude, baseline, and start and end dates, (see 
Volume 2D—Section 9).
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While phenological changes in woodlands are less 
dramatic than in herbaceous plant communities, 
they can also be observed. For example, a typical 
annual cycle in NDVI values for pine plantations 
in southeast NSW shows high winter values 
correlating with winter rainfall and low summer 
values corresponding to low rainfall during the 
summer months (Verbesselt et al., 2009). Since the 
impacts of variations in tree vigour are maximised 
in terms of NDVI during the more stressful summer 
months, they can be summarised by the normalised 
difference between winter and summer values 
(Coops et al., 2009), which has been successfully 
used to map tree mortality these plantations 
(Verbesselt et al., 2009). 

To clearly identify surface features in a thematic 
classification, the temporal trends associated with 
each feature type need to be understood, modelled 
and labelled appropriately. White and Nemani (2006) 
suggest five principles that should be observed in 
phenological analyses based on EO:

	§ results do not apply to individual pixels;

	§ pixels with similar time patterns should be treated 
as a group;

	§ sequences should not be filled, fitted, or smoothed;

	§ changes in land surface phenology may not 
correspond to known vegetation events; and

	§ variability and/or uncertainty measures should be 
included.

A range of approaches have been used to determine 
the time of vegetation greening and browning based 
on EO greenness indices for regional studies of 
annual plants (see Section 8.1.1) including thresholds 
for specific levels (White et al., 1997), largest change 
(Kaduk and Heimann, 1996), backward-looking 
moving averages (Reed et al., 1994), and empirical 
equations (Moulin et al., 1997). 

Table 9.4  Phenological stages of rice crop

Growth stage EO greenness

Vegetative

Transplanting Initial seedling

Tillering

Increasing greenness for 
60–100 days depending on 
variety

Stem elongation

Reproductive

Panicle initiation

Booting/heading

Flowering Maximum greenness

Ripening

Milk stage Decreasing greenness often 
takes 30 daysDough stage

Mature Harvest

Adapted from: Mosleh et al. (2015) Figure 1

Figure 9.2  Greenness changes in annual plants

Annual plants typically follow a temporal pattern of increasing 
greenness during growth then a reduction in greenness after 
maturity. 

Adapted from: Lhermitte et al. (2011) Figure 1

As introduced in Volume 2D—Section 9, various 
mathematical models can be fitted to EO time series 
datasets. The following functions have been used 
to identify phenological transition dates from global 
imagery archives:

	§ major changes in curvature for a piecewise logistic 
function fitted to EVI time series data (Zhang et al., 
2003);

	§ Gaussian forms (Jönsson and Eklundh, 2002, 
2004); and

	§ high order splines (Hermance et al., 2007; 
Bradley et al., 2007).

Since the phenological status of vegetation impacts 
energy exchange between the Earth’s surface and 
atmosphere, the relationship between phenology and 
climate is of prime importance to global monitoring. 
A Growing Season Index (GSI) was proposed 
by Jolly et al. (2005) to summarise the relative 
phenological performance of vegetation. At a global 
scale, this index distinguished major differences in 
regional phenological controls and could be used both 
to reconstruct historical variation and forecast future 
phenological responses to climatic changes. More 
recent developments include real time monitoring 
and short term forecasting of phenological changes 
(White and Nemani, 2006; Zhang et al., 2012), and 
integration with other models (Nemani et al., 2009). 
Excursus 9.1 introduces an Australian EO-based 
product, which monitors phenology.
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Figure 9.3  NDVI time series of pine plantation

A 16-day NDVI time series of a pine plantation is decomposed into seasonal, trend, and irregular components. Right hand bars show 
comparable data ranges. Seasonal amplitude range is around 0.1 NDVI.

Source: Verbesselt et al. (2010) Figure 2

Excursus 9.1�—Australian Phenology Product

Source: Qiaoyun Xie, University of Technology Sydney 
Further information: Broich et al. (2014, 2015); https://www.tern.org.au/australian-phenology-product/ 
Data download: http://www.auscover.org.au/purl/modis-phenology-uts

Knowing how different parts of Australia’s 
vegetative land cover are growing and developing 
with the change of seasons is vital information for 
environmental scientists, land managers and those 
in the agricultural and horticultural sectors. The 
Australian Phenology Product provides detailed 
information on the seasonal growth and development 
of Australia’s vegetation at continental scale (see 
Figure 9.2). Potential applications include:

	§ quantifying ecosystem resilience to climate change;

	§ estimating bushfire fuel accumulation;

	§ assessing native vegetation condition;

	§ monitoring airborne allergens; and

	§ informing agricultural management decisions and 
crop yields.

This product has been developed from MODIS 
Enhanced Vegetation Index (EVI) data and a suite 
of additional data collected and made available by 
TERN’s facilities. The Version 1 product was released 
in 2015, providing phenological metrics from 2000 
to 2015 at 0.05º spatial resolution using MOD13C1 

data as input. MYD13A1 data is now being used to 
transition the product into the VIIRS era. It quantifies 
vegetation life cycle dynamics, such as episodes of 
greening and browning, and analyses how these are 
influenced by seasonal and interannual variations in 
climate. Phenological cycles are defined as a period of 
EVI-measured greening and browning that may occur 
at any time of the year, extend across the end of a 
year, skip a year (not occur for one or multiple years) 
or occur more than once a year. Multiple phenological 
cycles within a year can occur in the form of double 
cropping in agricultural areas or be caused by 
aseasonal rain events in water-limited environments.

Based on per-pixel greenness trajectories measured by 
MODIS EVI, phenological cycle curves were modelled 
and their key properties, in the form of phenological 
curve metrics, were derived including: the first and 
second minimum point, peak, start and end of cycle; 
length of cycle, and; the amplitude of the cycle. 
Integrated EVI under the curve between the start and 
end of the cycle time for each cycle is calculated as a 
proxy of productivity (Broich et al., 2015).

https://www.tern.org.au/australian-phenology-product/
http://www.auscover.org.au/purl/modis-phenology-uts
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When applied to the Version 1 product (0.05º 
resolution) from 2000 to 2013, results showed high 
inter- and intra-annual variability in phenological 
cycles across Australia (Broich et al., 2014). The peak 
of phenological cycles occurred not only during the 
austral summer, but also at any time of the year, 
with their timing varying by more than a month in 
the interior of the continent. The magnitude of the 
phenological cycle peak and the integrated greenness 
were most significantly correlated with monthly SOI 
within the preceding 12 months. Correlation patterns 
occurred primarily over northeastern Australia and 
within the Murray Darling Basin, predominantly over 
natural land cover and particularly in floodplain 
and wetland areas. Integrated greenness of the 
phenological cycles (surrogate of vegetation 
productivity) in Figure 9.5 showed negative anomalies 
over most of northern and eastern Australia in 2003 
and positive anomalies over most of eastern Australia 
in 2009–2010, which coincided with the transition 
from the El Niño-induced decadal droughts to 
flooding caused by La Niña.

Figure 9.4  Australian Phenology Product

Timing of maximum vegetation index in 2018 at 500 m 
resolution

Figure 9.5  Seasonally-integrated EVI from Australian Phenology Product

Seasonally-integrated EVI (the first season) from Australian Phenology Product using MYD13A1 data as input at 500 m resolution for 
2003 El Niño dry year case and 2010 La Niña wet year case. White pixels represent areas without detectable vegetation growth. 

     a. Seasonally-integrated EVI in 2003	 b. Seasonally-integrated EVI in 2010

     �c. Seasonally-integrated EVI in 2003 subtracted by          d. Seasonally-integrated EVI in 2010 subtracted by 
climatology from 2003 to 2018                                             climatology from 2003 to 2018
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9.4  Evapotranspiration
Evapotranspiration (ET) describes the combined 
transfer of water vapour to the atmosphere by 
evaporation and transpiration from the Earth’s surface 
(see Sections 2.2, 5.2.3, and 7.6). Understanding and 
managing ET is one of the most important biophysical 
challenges facing natural and man-made ecosystems, 
and its behaviour can change dramatically with 
the scale and nature of particular situations. The 
approaches and solutions to problems relating to ET 
will rely on increasing use of EO technologies to cope 
with issues of scale, and will need diverse, customised 
approaches to tackle problems at farm, district, 
and continental scales (see Section 13). Accepted 
methods for estimating large area, actual ET (AET) 
using ground-based data (Glenn et al., 2011) include:

	§ EC flux towers (see Excursus 7.2);

	§ sap flux sensors (see Section 5.2.3); and

	§ Budyko framework for catchment water balance 
(Budyko, 1958, 1974; see Excursus 9.2). 

EC flux towers are the most commonly used 
method for validating EO-based studies of 
ET. Upscaling of data from sap flux sensors to 
landscape scale analyses is problematic, but 

such sensors have been useful in focused studies 
(Doody and Benyon, 2011), woody agricultural 
crops (Blaike et al., 2001), and when combined with 
EC methods (Silberstein et al., 2001). The Budyko 
framework is popular for catchment scale studies 
(see Excursus 9.2) and has been used in conjunction 
with estimates of total water storage change derived 
from GRACE satellite data (Long et al., 2014; see 
Volume 3B—Excursus 1.1).

In many ecosystems, the proportion of the land 
surface covered by vegetation is closely related to 
water balance and landscape dynamics, especially 
the capability to retain precipitation (see Section 7.6). 
In savanna ecosystems, which comprise sparse 
vegetation and bare soil, evapotranspiration 
controls the water balance. Photosynthetically 
active vegetation in these landscapes cycles 
annually between the wet season of moist, 
green growth, and the dry season of desiccated 
grasses, dry litter, and groundwater-dependent 
trees (Guerschman et al., 2009). In this situation, 
monitoring of photosynthetic vegetation cover 
provides information about the water cycle as well as 
ecosystem dynamics (see Section 7).

Excursus 9.2�—Budyko Framework

Source: Donohue et al. (2007) 
Further Information: Budyko (1958, 1974)

Budyko (1958, 1974) describes the partitioning of 
average precipitation into average evapotranspiration 
and average run-off based on simple physical 
relationships now known as the ‘Budyko curve’. This 
curve describes the patterns observed between 
climate, evapotranspiration, and run-off, and has 
proven to be a useful model for predicting catchment 
energy and water balances. The Budyko framework 
assumes catchments are at steady-state and are 
driven by the macro-climate. These two conditions 
depend on the scales of application, such that the 
framework’s reliability is greatest when applied using 
long term averages (much greater than one year) and 
to large catchments (> 10,000 km2).

Budyko described the hydrology of a catchment using 
a supply-demand framework and a simple bucket 
model where net drainage is assumed to be negligible. 
The water balance (see Section 7.6) was defined as: 

where P, E, and Q are catchment-wide estimates of 
precipitation, evapotranspiration, and run-off fluxes  
respectively (in kg s−1), and Sw (kg) is the soil water 
storage. A catchment is in steady-state when changes 
in Sw are zero. In reality, the water balance is almost 
continually varying due to fluctuations in P, E, and Q, 
and steady-state conditions are typically established 
in analyses by integrating the above equation over a 
finite time period (τ) that is larger than the timescale 
of fluctuations in Sw:

In finite form we have the catchment mass balance:

or
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We can convert to the familiar depth units by 
dividing both sides by the catchment area (Ac, 
in m2) and the density of liquid water (ρw, as 
kg m−3):

The framework can be further extended by noting 
that soil water depends on the volume of the 
bucket (V, m3) and the mass concentration of 
water in the bucket ([Sw], kg m−3):

An upper limit to [Sw] is set by the pore space 
within the soil, which is a function of soil texture 
and structure (Craze and Hamilton, 1991). Soil 
water can change because of a change in the 
volume of the bucket or a change in mass 
concentration within the volume. To the first order 
we have:

The volume of the bucket depends on the 
catchment area and bucket depth (z, m):

For a given catchment, the area is fixed and the 
volume of the bucket can only change because of 
the change in depth (Dz) so that:

Formulating the water balance in this way 
allows links to be made between vegetation 
characteristics and the spatial analysis scales, as 
well as the ‘flux components’ (Q and E) and the 
‘steady-state components’ of the water balance 
(see Donohue et al., 2007). Fluxes of both mass 
and energy are involved in evapotranspiration and 
this provides a critical link between the water and 
energy balances (see Section 7.5). The catchment-
wide energy balance is given by:

where the change in energy storage (Se) is the 
balance between net radiation (Rn) and the 
fluxes of latent (λE) and sensible (H) heat (all 
in J s−1 ) where λ (in J kg−1 ) is the latent heat of 
vaporisation. Note that the sign convention used 
in the above equation assumes that λE and H are 
positive away from the surface while Rn is positive 
into the surface. Using the same form as the 
previous equation gives:

where ze (m) is the depth to which energy can be 
stored. Over annual timescales energy storage can 
usually be omitted from the energy balance.

Evapotranspiration is limited by the supply of 
either water or energy. At steady-state, when 
water is limiting (Rn / λ > P), the maximum possible 
E is P, at which Q=0. Similarly, the maximum 
possible E when energy is limiting is Rn / λ at 
which H=0. Evapotranspiration approaches one of 
these two limits as water or energy, respectively, 
become increasingly limiting. This framework 
of mass and energy balances and supply and 
demand-limited evapotranspiration is the key 
component of Budyko’s work. The type and 
degree of limitation is determined by the radiative 
index of dryness (F), which is the ratio of Rn / λ 
to P. Values of F < 1 represent energy-limited 
environments, and those where F > 1 are water-
limited. Intermediate environments occur where 
F ~ 1.

Figure 9.6  Budyko’s framework and curve

The curve (green line) describes the relationship between 
the dryness index and the evaporative index. Line A–B 
defines the energy-limit to evapotranspiration, and line C–D 
defines the water-limit.

Adapted from: Donohue et al. (2007) Figure 1
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Catchment scale annual (or longer) evapotranspiration 
is usually estimated for gauged catchments by 
assuming that Sw is 0 and hence E is the difference 
between measured values of P and Q. The need 
for a simple means of estimating E from ungauged 
catchments prompted Budyko to develop the 
‘equation of relationship’ that describes the 
dependency of E on the variables P and Rn / λ:

This curvilinear relationship, which built on the works 
of Schreiber (1904) and Ol’dekop (1911), has become 
known as the Budyko curve (see Figure 9.6).

The assumptions inherent in Budyko’s hydrological 
model are that:

	§ catchments are at steady-state (that is, DSw ≈ 0)—
to a large degree, this condition depends on τ; and 
that

	§ at large spatial scales (Ac » 1000 km2), only 
macro-climatic variables are required to describe 
catchment water balances.

When applied over long timescales and to large 
catchments, Budyko’s curve reliably predicts 
catchment water balances. However, when applied to 
small spatiotemporal scales the inherent assumptions 
can be violated. In these circumstances, incorporating 
vegetation into the framework is expected to 
enhance the framework’s predictive capacity (see 
Donohue et al. (2007) for details).

EO-based approaches for predicting ET from 
vegetated surfaces are reviewed by Glenn et al. (2011) 
and Nouri et al. (2013). EO imagery offers the 
opportunity to monitor the spatiotemporal variability 
of ET using:

	§ thermal estimation—the difference between air 
temperature and thermal infrared (TIR)-derived 
surface temperature has been used to compute the 
sensible heat flux (H; see Section 7.5) in the equation:

LE = Rn – G – H

where LE is the latent heat flux associated with 
AET, Rn is the net radiation, and G is the ground 
heat flux (Glenn et al., 2011). Using EO or ground-
based estimates of the other parameters, LE can 
be computed as a surrogate for AET. Various 
models have been proposed on this basis (Li and 
Lyons, 1999), from simple regression relationships 
(see Section 13) to sophisticated, surface energy 
balance models (see Section 10.2.3). While such 
models have known limitations (Glenn et al., 2007; 
Kalma et al., 2008), with appropriate processing 
reasonable agreement has been achieved between 
modelled and ground-based estimates (McVicar 
and Jupp, 2002, Mc Vicar et al., 2007); or

	§ vegetation indices (VI; see Section 8.1)—estimates 
of LAI or vegetation cover, primarily from AVHRR 
and MODIS imagery, have been used as inputs 
to ET models at regional and continental scales 
(Glenn et al., 2010; see Section 7.6). LAI and canopy 
conductance can be derived using VI where 
estimates of maximal stomatal conductance, 
and the constraints of stomatal conductance, 
are available from ground measurements of 
AET, meteorological data, and/or appropriate 
physiological models, although the bare soil 

component of AET must be estimated separately 
(Glenn et al., 2011). The Penman-Monteith 
equation is then used to calculate AET by using 
EO-based estimates of canopy conductance 
(see Section 13.4.2). This approach relies on 
empirical relationships, which can be impractical 
to rescale spectrally, temporally, or spatially 
(Donohue et al., 2010b; Abuzar et al., 2014; see 
Volume 2D—Section 4.3). However, simplified 
models of landscape ET derived from empirical 
relationships are an essential starting point when 
dealing with the challenges associated with data 
sparse, rainfed conditions, where rainfall deficits, 
vegetation type and cover, and evaporative 
demand interact to determine landscape ET (see 
Section 7.6).

Alternative conceptual approaches for estimating AET 
from VI were categorised by Yebra et al. (2013) as:

	§ estimating actual or maximum, leaf level, stomatal 
conductance;

	§ using LAI as a surrogate for AET to scale from 
stomatal to canopy conductance;

	§ using an empirical relationship to estimate either 
canopy conductance or surface conductance 
(including soil evaporation); and

	§ developing direct empirical equations between the 
VI and AET measurements. 

Some of these approaches rely on spatial and/or 
temporal scaling from site-specific measurements 
to regional and continental scale models (see 
Section 10). Again, uncertainties in ET estimates 
can result when the scales of underlying datasets 
are poorly matched (van Niel et al., 2011). Examples 
of EO-based indices that have been developed 
to map and monitor evapotranspiration (ET) for 
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drought assessment include the Drought Severity 
Index (DSI; Su et al., 2003) and Evaporative Drought 
Index (EDI; Anderson et al., 2007; Yao et al., 2010; 
Bayarjargal et al., 2006).

Surface energy balance models that have been 
proposed to estimate AET include SEBAL 
(Surface Energy Balance Algorithm for Land, 
Bastiaanssen et al., 1998; Bastiaanssen, 2000) and 
METRIC (Mapping Evapotranspiration at High 
Resolution with Internal Calibration, Allen et al., 2007). 
In Australia, these models have been successfully 
used to monitor crop water requirements (see 
Section 13) and wetland AET (Khan et al., 2009).

King et al. (2011) evaluated continental AET products 
for Australia, and concluded that estimates based 
on water balance modelling (Raupach et al., 2009, 
van Dijk, 2010) proved to be most reliable in regions 
where AET depends on precipitation, but EO-based 
methods (Guerschman et al., 2009), which accounted 
for surface and groundwater contributions, were more 
appropriate in areas where vegetation is dependent 
on other water sources. EO-based estimates of ET 
have become essential inputs to national water 
resources assessment processes in Australia (van Dijk 
and Renzullo, 2011; see Excursus 10.2). 

9.5  Plant Water Stress
As introduced in Sections 4.2.1, 5.2.3, and 5.2.4, 
plant water stress is signalled by increasing plant 
temperature and reducing transpiration rates. Since 
air temperature, relative humidity, wind speed, 
and incoming irradiance can also impact canopy 
temperature, a normalised index was developed 
to account for such factors (Idso et al., 1981). The 
Crop Water Stress Index (CWSI) was proposed by 
Jackson (1981, 1988) to map variations in canopy 
water status using remotely sensed temperature: 

where

reference temperature is measured from 
comparable, non-stressed vegetation; and

maximum temperature is the upper temperature 
tolerated without transpiration.

CWSI values range from zero for a fully transpiring 
plant to one for a non-transpiring plant with leaf 
temperature 4–6ºC above the air temperature. As with 
similar indices, the validity of the CWSI is critically 
dependent on the selection of appropriate reference 
data. Field measurements of leaf thermal properties 
can be problematic, with variations continually being 
induced by fluctuations in irradiance and air currents. 
View angle variations will also result in different 
temperature measurements (Jones et al., 2002). 

CWSI has been widely used for monitoring water 
stress and scheduling irrigation in a range of 
cereal and horticultural crops (Alderfasi and 
Nielsen, 2000; Irmak et al., 2000; Orta et al., 2003; 
Taghvaeian et al., 2012; Poblete-Echeverria et al., 2017; 
Alghory and Yazar, 2019). For example, 
Park et al. (2017) acquired high resolution thermal 
imagery using UAV to map variability of plant water 
stress in nectarine and peach orchards in Victoria. 
Stem water potential and stomatal conductance 
were measured directly on the ground. An adaptive 
CWSI, derived from crop pixels only (isolated from 
soil background), showed better agreement with the 
direct measurements than the conventional CWSI. 

At a regional scale, McVicar and Jupp (2002) used 
the Normalised Difference Temperature Index (NDTI) 
to monitor moisture availability from integrated 
meteorological and EO datasets:

where

Ts is the observed surface temperature for an EO 
pixel with a given NDVI value; and

Tmax and Tmin are respectively the highest and 
lowest surface temperatures for pixels with the 
same NDVI value.

A Resistance Energy Balance Model (REBM) was used 
to calculate NDTI from meteorological station records, 
which were then interpolated using EO-based covariates 
(see Section 10.1.2). These authors considered NDTI as 
a ‘specific time-of-day version of CWSI’. 



Earth Observation: Data, Processing and Applications.  Volume 3: Applications

204

At global, regional and country levels, the FAO 
Agricultural Stress Index System (ASIS) monitors 
agricultural areas that are very likely to experience 
water stress or drought (Rojas, 2015; FAO, 2020). 
This system relies on the Agricultural Stress 
Index (ASI; Rojas et al., 2011), which compares the 
Vegetation Health Index (VHI) with the seasonal VHI 
average, where the crop season is defined using a 
phenological model derived from NDVI. VHI is one of 
several global products generated by NOAA/NESDIS 
since 1981 to map vegetation health. Derived from 
AVHRR and VIIRS imagery, VHI is a global, validated, 
weekly composite with 4 km spatial resolution based 
on proxies for the relative moisture and thermal 
conditions:

VHI=a � VCI + (1 – a) � TCI

where

VCI (Vegetation Condition Index) indicates the 
moisture condition of vegetation, derived from 
NDVI time series imagery: 

TCI (Thermal Condition Index) indicates the 
thermal condition of vegetation, derived from 
brightness temperature (BT) time series imagery: 

a is a coefficient that determines the relative 
contributions of VCI and TCI to the health 
status of vegetation (NOAA STAR, 2019). 
Typically a=0.5 unless the contribution of 
moisture and temperature status to vegetation 
health is known (Rojas et al., 2011). 

In the calculation of VCI and TCI, the NDVI and BT 
time series are filtered to remove high frequency 
noise and adjusted for land surface non-homogeneity 
(Kogan, 1997). VHI, VCI, and TCI are used to define 
drought conditions (where all indices < 40) as well 
as the risk of fire and malaria. The VH product 
suite has been used for early drought detection, 
assessing drought area coverage, duration, and 
intensity, and for monitoring drought impacts on 
vegetation and agricultural crops (NOAA STAR, 2019; 
see Section 11.2). ASI has been used to historically 
identify major droughts and their impact on the 
African continent (Rojas et al., 2011). ASIS has 
been incorporated into the Global Information and 
Early Warning System (GIEWS; FAO, 2020; see 
Section 11.2) to indicate regions that are currently 
water-stressed and may be facing drought conditions 
(Fritz et al., 2019).

9.6  Plant Vigour
Characteristics of leaf optical reflectance that change 
with variations in plant vigour are introduced in 
Section 4.3. In terms of EO, thermography, chlorophyll 
fluorescence and hyperspectral imaging have been 
the most promising approaches to identify and 
quantify plant diseases (Mahlein et al., 2012). 

Approaches used to measure plant biochemistry, 
and thus plant vigour, based on spectroscopic 
measurement can be grouped into two categories 
(Ustin et al., 2004):

	§ empirical—using linear and non-linear combinations 
of spectral bands, which highlight canopy 
characteristics (Hall et al., 1995; Price, 1992b); and

	§ analytical and semi-analytical—using canopy 
reflectance (CR) models, based on radiative 
transfer theory and leaf optical simulation 
(Meroni et al., 2004), which can be inverted 
to estimate leaf and canopy parameters 
(Privette et al., 1996; Bicheron and Leroy, 1999; 
Jacquemoud et al., 2009).

Some of the most important biochemical compounds 
involved in carbon, water and nutrient cycling 
include the light absorbing pigments (principally 
chlorophylls and carotenoids; see Excursus 4.1) 
and nitrogen, which are directly related to the 
photosynthetic capacity in plants (see Section 5.2.1; 
Gitelson et al., 2006, 2009; Ollinger and Smith, 2005). 
In particular, leaf chlorophyll content varies with the 
photosynthetic capacity, productivity, stress, age, 
and development stage of a plant (Curran et al., 1990; 
Ustin et al., 1998). 

Various plant stress factors modify the proportion of 
light-absorbing pigments to reduce light absorption, 
which further decreases leaf chlorophyll content 
(Zarco-Tejada et al., 2000). As introduced in 
Section 4.3, leaf absorption of wavelengths in the 
spectral region from 550 nm to 700 nm (visible red) 
is closely related to the concentration of chlorophyll 
pigments (Thomas and Gausman, 1977; Carter and 
Knapp, 2001; Devlin and Witham, 1983). As chlorophyll 
concentration increases, the red absorption feature 
both broadens and deepens, which moves the ‘edges’ 
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of that feature (Horler et al., 1983). Of greatest 
significance is the movement of its ‘red edge’ (that 
is, EMR wavelengths from around 690 nm to 740 nm) 
towards longer wavelengths as chlorophyll content 
increases (Rock et al., 1988, Curran et al., 1990; 
Ustin et al., 1998). Accordingly, when red reflectance 
is standardised by a non-absorbing waveband, it 
is strongly correlated with leaf pigment changes 
(Curran, 1989; Curran et al., 1997), especially leaf 
chlorophyll concentration (Turrell et al., 1961; Thomas 
and Gausman, 1977; Everitt et al., 1985). 

Various indices have been designed to capture 
the position and shape of the ‘red edge’ (see 
Section 8.1.2), many of which can be used to track 
chlorophyll concentration (Horler et al., 1983; 
Curran et al., 1991; Miller et al., 1991; Filella and 
Penuelas, 1994; Curran et al., 1995; see Section 8.1). 
Changes in plant vigour, due to nutritional status, 
pests, and/or diseases, has been monitored using EO 
datasets for several decades (see Sections 11 to 16).

9.7  Further Information

TERN Auscover products
Ecosystem Disturbance Index: http://www.auscover.

org.au/purl/modis-disturbance-index

Phenology: http://www.auscover.org.au/purl/modis-
phenology-uts

National Vegetation Information System
NVIS: http://www.environment.gov.au/land/native-

vegetation/national-vegetation-information-system

http://www.environment.gov.au/land/native-vegetation/
national-vegetation-information-system/data-
products

NVIS Technical Working Group (2017) Australian 
Vegetation Attribute Manual: National Vegetation 
Information System, Version 7.0. Department of the 
Environment and Energy, Canberra. Prep by Bolton, 
M.P., deLacey, C., and Bossard, K.B. (Eds)

https://www.environment.gov.au/land/native-
vegetation/national-vegetation-information-system/
data-products#mvg51

New South Wales
Statewide Landcover and Trees Study (SLATS): 

https://www.environment.nsw.gov.au/topics/animals-
and-plants/native-vegetation/reports-and-resources

NSW Report on Native Vegetation 2014–16: https://
www.environment.nsw.gov.au/vegetation/reports.htm

NSW Fire Extent and Severity Mapping (annual 
monitoring and reporting framework): https://www.
environment.nsw.gov.au/topics/animals-and-plants/
native-vegetation/landcover-monitoring-and-
reporting/fire-extent-and-severity-maps

DustWatch: https://www.environment.nsw.gov.au/
topics/land-and-soil/soil-degradation/wind-erosion/
community-dustwatch

Queensland
Ground cover monitoring: https://www.qld.gov.au/

environment/land/management/mapping/statewide-
monitoring/groundcover

Ground cover disturbance index: http://qldspatial.
information.qld.gov.au/catalogue/custom/
detail.page?fid={E2021208-DBCB-4963-A0F7-
D4C7FD3150F2}

Statewide Landcover and Trees Study (SLATS): 
https://www.qld.gov.au/environment/land/
management/mapping/statewide-monitoring/slats

Victoria
Habitat Hectares: https://www.environment.vic.gov.

au/__data/assets/pdf_file/0016/91150/Vegetation-
Quality-Assessment-Manual-Version-1.3.pdf

Spatial data for Victoria: https://www2.delwp.vic.gov.
au/maps?_ga=2.6531511.420315026.1549698228-
873342548.1549698228

Western Australia
LandMonitor: https://landmonitor.landgate.wa.gov.au/

home.php

http://www.auscover.org.au/purl/modis-disturbance-index
http://www.auscover.org.au/purl/modis-disturbance-index
http://www.auscover.org.au/purl/modis-phenology-uts
http://www.auscover.org.au/purl/modis-phenology-uts
http://www.environment.gov.au/land/native-vegetation/national-vegetation-information-system
http://www.environment.gov.au/land/native-vegetation/national-vegetation-information-system
http://www.environment.gov.au/land/native-vegetation/national-vegetation-information-system/data-products
http://www.environment.gov.au/land/native-vegetation/national-vegetation-information-system/data-products
http://www.environment.gov.au/land/native-vegetation/national-vegetation-information-system/data-products
https://www.environment.gov.au/land/native-vegetation/national-vegetation-information-system/data-products#mvg51
https://www.environment.gov.au/land/native-vegetation/national-vegetation-information-system/data-products#mvg51
https://www.environment.gov.au/land/native-vegetation/national-vegetation-information-system/data-products#mvg51
https://www.environment.nsw.gov.au/topics/animals-and-plants/native-vegetation/reports-and-resources
https://www.environment.nsw.gov.au/topics/animals-and-plants/native-vegetation/reports-and-resources
https://www.environment.nsw.gov.au/vegetation/reports.htm
https://www.environment.nsw.gov.au/vegetation/reports.htm
https://www.environment.nsw.gov.au/topics/animals-and-plants/native-vegetation/landcover-monitoring-and-reporting/fire-extent-and-severity-maps
https://www.environment.nsw.gov.au/topics/animals-and-plants/native-vegetation/landcover-monitoring-and-reporting/fire-extent-and-severity-maps
https://www.environment.nsw.gov.au/topics/animals-and-plants/native-vegetation/landcover-monitoring-and-reporting/fire-extent-and-severity-maps
https://www.environment.nsw.gov.au/topics/animals-and-plants/native-vegetation/landcover-monitoring-and-reporting/fire-extent-and-severity-maps
https://www.environment.nsw.gov.au/topics/land-and-soil/soil-degradation/wind-erosion/community-dustwatch
https://www.environment.nsw.gov.au/topics/land-and-soil/soil-degradation/wind-erosion/community-dustwatch
https://www.environment.nsw.gov.au/topics/land-and-soil/soil-degradation/wind-erosion/community-dustwatch
https://www.qld.gov.au/environment/land/management/mapping/statewide-monitoring/groundcover
https://www.qld.gov.au/environment/land/management/mapping/statewide-monitoring/groundcover
https://www.qld.gov.au/environment/land/management/mapping/statewide-monitoring/groundcover
http://qldspatial.information.qld.gov.au/catalogue/custom/detail.page?fid={E2021208-DBCB-4963-A0F7-D
http://qldspatial.information.qld.gov.au/catalogue/custom/detail.page?fid={E2021208-DBCB-4963-A0F7-D
http://qldspatial.information.qld.gov.au/catalogue/custom/detail.page?fid={E2021208-DBCB-4963-A0F7-D
http://qldspatial.information.qld.gov.au/catalogue/custom/detail.page?fid={E2021208-DBCB-4963-A0F7-D
https://www.qld.gov.au/environment/land/management/mapping/statewide-monitoring/slats
https://www.qld.gov.au/environment/land/management/mapping/statewide-monitoring/slats
https://www.environment.vic.gov.au/__data/assets/pdf_file/0016/91150/Vegetation-Quality-Assessment-Manual-Version-1.3.pdf
https://www.environment.vic.gov.au/__data/assets/pdf_file/0016/91150/Vegetation-Quality-Assessment-Manual-Version-1.3.pdf
https://www.environment.vic.gov.au/__data/assets/pdf_file/0016/91150/Vegetation-Quality-Assessment-Manual-Version-1.3.pdf
https://www2.delwp.vic.gov.au/maps?_ga=2.6531511.420315026.1549698228-873342548.1549698228
https://www2.delwp.vic.gov.au/maps?_ga=2.6531511.420315026.1549698228-873342548.1549698228
https://www2.delwp.vic.gov.au/maps?_ga=2.6531511.420315026.1549698228-873342548.1549698228
https://landmonitor.landgate.wa.gov.au/home.php
https://landmonitor.landgate.wa.gov.au/home.php
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EO imagery offers a unique perspective for landscape scale analyses with a range of resolutions (see 
Volumes 1 and 2). For terrestrial vegetation, this perspective allows ecophysiological information relating to 
photosynthetic activity, biomass, productivity, water content, phenology, soil moisture, and nutrient status to 
be acquired and analysed consistently and repeatedly over large areas. Modelling based on EO datasets aims 
to use this perspective to improve our understanding of environmental processes, with the ultimate goal of 
predicting the future environmental impact of changes in current conditions.

Depending on the underlying questions to be 
answered, models can be simple or complex 
(Robins et al., 2003). All models approximate reality, 
and greater functionality means greater complexity. 
Understandably, more complex questions require 
more complex models, which deliver more detailed 
explanations of the underlying processes and drivers. 
More complex models also require more data and 
more processing, as well as a deeper understanding of 
the resource being modelled. 

However, models only estimate parameters—they 
do not supply absolute answers (Robins et al., 2003). 
As complexity increases, systematic error, resulting 
from overly simplified assumptions, decreases, but 
calibration error, due to poorly fitted parameters, 
increases (Zhang et al., 2002; see Figure 10.1). As a 
general rule, a model should only be as complex as it 
needs to be to achieve its defined goal. The reliability 
of modelled results can be determined by comparison 
with historical measurements, field validation (see 
Volume 2D), or sensitivity analysis, where input 
parameters and/or assumptions are varied slightly 
to assess the extent of change in modelled values 
(Robins et al., 2003). 

The most appropriate criteria for evaluating a model 
will depend on its purpose. For example, a common 
example of an applied plant productivity model 
based on EO datasets is a crop yield model, which 
typically correlates a relevant EO-based statistic 
(such as vegetation greenness—see Section 8.1.1) 
with a ground-based measure of crop productivity. 

Such models, which are intended to reduce the risks 
inherent in food supply, need to be reliable, objective, 
timely, consistent, simple, and cost-effective (see 
Sections 10.2.2 and 12). 

In this section, we will revisit the EO analysis 
framework, which underlies modelling of terrestrial 
vegetation (see Section 10.1), then introduce three 
commonly used scales of EO-based modelling for 
vegetated landscapes (see Section 10.2). EO datasets 
are also valuable for terrestrial ecosystem models 
to define model drivers, validate model results, and 
quantify uncertainty (Pasetto et al., 2018).

Figure 10.1  Modelling error 

As complexity increases, systematic error decreases and 
calibration error increases.

Source: Zhang et al. (2002) Figure 5

Background image: MODIS global composite showing Net Primary Productivity (NPP) for November 2016, with deeper shades of green indicating higher 
productivity to a maximum of 6.5 gC/m2/day. (Note: the vertical extent of this composite image has been clipped and the aspect ratio changed.)  
Source: NASA Earth Observations. (Retrieved from https://neo.sci.gsfc.nasa.gov/view.php?datasetId=MOD17A2_M_PSN)

https://neo.sci.gsfc.nasa.gov/view.php?datasetId=MOD17A2_M_PSN
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10.1  Modelling Considerations
Modelling allows future conditions to be predicted 
for a given scenario. It can also be used to predict 
the impact of potential changes in current conditions, 
such as resource characteristics, land uses, or 
management policies. Volume 2A—Section 2.3 
introduces three generic modelling approaches that 
can be used in the context of EO:

	§ empirical or analytical models—simple 
relationships, such as regression analysis, between 
empirical measurements of surface attributes with 
EO measurements;

	§ semi-empirical or semi-analytical models—use 
prior knowledge, including assumptions and 
generalisations, to tailor an EO model to a specific 
situation; and

	§ physics-based models—rely on physical 
relationship between the surface attributes and 
the EO measurements. These models are generally 
more flexible, transferable and computationally 
intensive.

Figure 10.2  Measurement and analysis of image features

Interpreting imagery from EO sensors is an indirect process, 
whereby a measurement model is used to transform EO 
observations to measurements of some measurable property, 
and a structure model is used to relate those measurements to 
application-specific attributes. Forward modelling is indicated 
by red arrows and inverse modelling by blue arrows.

Adapted from: Harrison and Jupp (1989) Figure 33 

Some fundamental concepts regarding modelling 
in the context of EO datasets are introduced in 
Volumes 2D and 2E. In Section 10.1.1 below we review 
those concepts that are particularly relevant to 
modelling of terrestrial vegetation then consider 
interpolation and extrapolation of data (see 
Section 10.1.2), appropriate scaling (see Section 10.1.3), 
and spatial patterns (see Section 10.1.4).

10.1.1  Underlying EO model
As detailed in Volume 1A—Section 1 and Volume 2D—
Section 1.1, the relationship between a feature in 
an EO image and its quantifiable attributes of the 
Earth’s surface is an indirect one. This relationship is 
illustrated in Figure 10.2 and implicitly involves two 
modelling stages: 

	§ the measurement model—relates EO-based 
observations to empirical measurements. Examples 
of measurements models include image calibration 
processes that correct for radiometric and 
geometric distortions in the acquired EO dataset 
(see Volume 1B—Section 2, Volume 2A—Section 3, 
Volume 2B, and Volume 2D—Section 3). The 
measurement model also accounts for distortions 
in image values resulting from the interaction 
between the imaging process and the landscape 
and its component features (see Volume 1B—
Section 3 and Volume 2D—Section 1); and

	§ the structure model—relates calibrated EO-
based measurements to attributes of the Earth’s 
surface (see Volumes 2C, 2D and 2E). This section 
describes approaches to developing structure 
models using EO datasets for terrestrial vegetation.

The downward and upward arrows in Figure 10.2 
distinguish between forward (red) and inverse 
(blue) models (see Volume 2A—Section 2.3 and 
Volume 2D—Section 14.3). Forward models infer 
EO measurements from surface attributes. For 
example, a forward model for terrestrial vegetation 
may use measurements of specific plant attribute(s) 
to model its EO reflectance or emission value(s). 
Conversely, inverse models infer surface attributes 
from EO measurements. An example of an inverse 
model for terrestrial vegetation would be to use EO 
reflectance or emission value(s) to model specific 
plant attribute(s).

A model is a tool that helps us predict changes in a 
particular system before they happen. Models are 

used for all sorts of purposes: from trying to predict 
the weather, to trying to predict the stock market. 

(Robins et al., 2003) 
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10.1.2  Interpolation and extrapolation
Interpolation estimates new, intermediate data 
points within a discrete set of known values, whereas 
extrapolation estimates new data points beyond the 
range of existing points. Methods for spatial and 
temporal interpolation of time series datasets were 
discussed in Volume 2D. Interpolation methods assume 
strong correlation between the known data points. 

Extrapolation assumes some continuity, 
correspondence, or parallelism between the known 
and the unknown. Predictive models extrapolate 
known values in time by assuming that current trends 
will continue into the future. Spatial extrapolation may 
be valid where the relationship between a spatially 
limited dataset and a dataset covering a larger area 
is known, and this relationship can be used to infer 
likely values of the limited data into the larger area. 
In ecology, spatial extrapolation generally follows the 
framework outlined in Figure 10.3.

When working with sparse spatial datasets, modellers 
can either interpolate the data before modelling or 
apply the model to the sparse data then interpolate 
the modelled results. These approaches are often 
called ‘interpolate then calculate' (IC) and ‘calculate 
then interpolate' (CI) respectively. For very sparse 
spatial datasets, such as meteorological records, CI 
has been shown to be more robust (Stein et al., 1991). 

Spatially rich (or comprehensive) and temporally 
stable datasets, such as elevation, can also be used 
as a covariate when extrapolating sparse datasets. 
McVicar and Jupp (2002) used AVHRR imagery 
as a covariate for meteorological records to map 
moisture availability over the Murray-Darling Basin 
(MDB). Normalised Difference Temperature Index 
(NDTI) was derived from temperature data acquired 
at spatially insolated meteorological stations then 
extrapolated using covariates derived from AVHRR 
imagery and interpolated meteorological data (see 
Section 9.5). Using the EO imagery ensured ‘stability’ 
in the interpolated results and avoided direct 
interpolation, with its inherent problems, from sparse 
meteorological data (see Volume 2D—Section 13.3). 

Figure 10.3  Basic framework for extrapolation in ecology

Adapted from: Miller et al. (2004) Figure 1

Many environmental variables influence the signals that reach a remote sensor.  
If we wish to use these remotely sensed signals to estimate environmental variables  
then we need to ensure that the number of remotely sensed signals is greater than  

the number of environmental signals that are causing those signals to vary. 
(Curran, 2001)
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10.1.3  Scaling
An understanding of scale is important for all 
landscape mapping, monitoring, and modelling 
activities. Mismatches in the scales of measurement, 
estimation and prediction for landscape features 
have long presented challenges to cartographers, 
geographers, and EO scientists (Gallant et al., 2008) 
and are particularly relevant to image selection 
for EO analyses. To address such problems, multi-
scale approaches have been proposed for many 
applications (see Volume 2D—Section 1.4; see 
Figure 3.1), and EO archives now offer a spatially and 
temporally extensive range of datasets for terrestrial 
vegetation studies (see Volume 2D—Section 2). 
Selection of the most appropriate EO imagery for 
a given application is considered in Volume 2D—
Section 1.2 and the concept of ‘intrinsic scale’ is 
discussed in Volume 2D—Section 1.4. In some cases, 
it may be appropriate to increase the temporal 
frequency of time series datasets by using image 
blending methods (Emelyanova et al., 2013; see 
Volume 2D—Excursus 6.2).

Upscaling and downscaling of EO datasets are 
described in Volume 2D—Section 4.3. As geographical 
terms:

	§ upscaling implies moving up the scale hierarchy, 
that is, to a larger extent with less detail; and 

	§ downscaling implies moving down the scale 
hierarchy, that is, to a smaller extent with more 
detail. 

Similarly, with appropriate prerequisites and 
constraints, terrestrial vegetation models can be 
developed for a particular spatial scale then upscaled 
to cover larger areas. For example, a model for the 
diffusion of CO2 from the atmosphere to the interior 
of a single leaf has been aggregated to simulate CO2 
transfer at the scale of vegetated canopies, or even 
the entire globe (Williams et al., 2004). Such scaling 
has enabled a range of EO-based models to be 
incorporated in regional and global vegetation studies 
(see Section 10.2.3). 

Scaling up—extrapolating monitoring from small 
plots to larger, more representative landscapes—is 
a significant challenge. Ludwig et al. (2007) propose 
a five-step procedure that is based on scaling to 
determine when EO analyses require additional data 
sources to assess landscape health (see Figure 10.4). 
This procedure defines the focal scale as ‘the size of 
the area over which the core problem occurs’, then 
uses smaller and larger scales to check for cross-scale 
interactions in landscape patterns and processes.

Figure 10.4  Scaling procedure

Adapted from: Ludwig et al. (2007) Figure 1 

Increasing the complexity of a model  
does not necessarily lead to a more accurate  

model and it is essential that model complexity  
matches the availability of data. 

(Zhang et al., 2002)
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10.1.4  Spatial patterns
From a statistical viewpoint, any given landscape 
is merely one manifestation of numerous, equally 
probable, landscapes that may have occurred at 
a particular location. This perspective enables 
stochastic models to be developed, which generate 
potential variations for each actual landscape or 
ecosystem. For example, if a specific process operates 
in the landscape, particular patterns are more likely 
to occur (Fortin et al., 2003). In Figure 10.5, three 
hypothetical landscapes are shown with varying 
spatial patterns, but the same number of patches and 
the same edge density. Differentiation between these 
landscape patterns obviously requires consideration 
of pattern alignment and scale. 

The growing body of geographical data, principally 
from EO sources, provides the opportunity to 
examine, identify, and quantify spatial processes 
within actual landscapes. The increasing archives of 
time series datasets further enables such processes 
to be analysed over time (see Volume 2D). A number 
of statistical tools have been proposed to understand 
these processes, including multivariate statistics, 
ordination methods, spatial statistics, geostatistics, 
and landscape pattern indices (Fortin et al., 2003). 
Spatial pattern analysis essentially attempts to 
quantify the composition and configuration of 
landscape components (Remmel and Csillag, 2003). 
Some specific EO methods to map and monitor 
landscape patterns are described in Sections 8 and 9.

Figure 10.5  Hypothetical landscape patterns

These simulated landscapes of two components have the same number of patches, contagion, landscape shape index, edge density, 
and proportion of components, yet display different degrees of spatial autocorrelation.

a. Random—purely random stochastic 
pattern

b. Noodles—elongated narrow patches c. Bumpy—larger contiguous patches

The development and usage of LPI (also referred to as landscape metrics)
originated when quantifiable measures of similarity (or dissimilarity) among
landscapes were required to answer process related research questions
(O’Neill et al. 1988; O’Neill et al. 1999). Numerous studies attempt to
compare changes to spatial landscape patterns, often resorting to traditional
statistical tests based on changes in LPI values (e.g., Wickham and Riitters
1995; Diaz 1996; Johnson et al. 1999; Hessburg et al. 2000; Patrizia et al.
2000; Imbernon and Branthomme 2001; McGarigal et al. 2001). It has also
been hypothesized and demonstrated that information contained among LPI
is redundant and that correlation and ordination techniques may be used to
reduce the dimensionality of variables describing the spatial landscape
patterns (Riitters et al. 1995; McGarigal and McComb 1995).
While unraveling the complex conceptual and practical linkages between

landscape patterns and spatial processes has been identified as an important
research directive (Turner et al. 1999, p. 107), derived LPI appear to address
specific elements of pattern individually rather than collectively. The
simplicity of a single (or a few) values to describe intricate landscape
patterns is appealing, but it remains highly unlikely that such drastic
simplification of a natural system could adequately describe the multitude of
interactions and patterns found in natural landscapes, especially heteroge-
neous ones. Thus, to use LPI effectively, their behaviour under various
composition and configuration scenarios requires investigation and docu-
mentation.
Unlike spatial statistical models, when either the joint distribution of all

values is characterized by a limited number of parameters (e.g., geostatistics),
or the probability distribution is known (e.g., join-count statistics, neutral
models), the distributions of LPI are not known (Hess and Bay 1997). This
means that expected values and variances are not available to allow
statistical comparisons among various observations of an LPI. Hess and Bay
(1997) successfully generated confidence intervals for LPI using bootstrapped
confusion matrices; however, their approach considers only land cover
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Adapted from: Remmel and Csillag (2003) Figure 1

Landscapes are spatially heterogeneous areas characterised by a mosaic of patches that  
differ in size, shape, contents, and history. When spatial heterogeneity is considered,  

the explicit treatment of scale becomes necessary and hierarchies emerge.  
Landscape ecology is the science of studying and improving the relationship between  

spatial pattern and ecological processes on a multitude of scales and organisational levels. 
(Wu, 2013) 
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10.2  EO-based Models for Terrestrial Vegetation
A diverse range of modelling approaches have been 
proposed for EO datasets. Many models have been 
developed to determine plant productivity for various 
applications, including food crops and pasture (see 
Sections 11 to 15), forestry (see Sections 16), carbon 
sequestration (see Section 17), and fire management 
(see Section 18). Others have been developed to 
estimate crop water requirements (see Section 13), 
fuel moisture (see Section 18) and biodiversity risk 
(see Section 19). The following sub-sections introduce 
selected approaches that are particularly relevant 
to studies of terrestrial vegetation at three broad 
spatial scales:

	§ leaf models (see Section 10.2.1);

	§ plant productivity models (see Section 10.2.2); and

	§ global and regional models (see Section 10.2.3).

10.2.1  Leaf models
The structure, composition and functions of plant 
leaves are introduced in Section 4. Of particular 
relevance to EO is the interaction between leaves 
and the ambient EMR (see Section 4.3). The optical 
properties of leaves are directly related to their 
biochemical composition (primarily pigments), 
enabling EO datasets to be used to estimate leaf 
pigment concentrations for both individual leaves and 
canopies using either:

	§ statistical models based on spectral indices, 
regression relationships, or machine learning (see 
Section 8); or

	§ radiative transfer models (see Volume 1B—
Section 5) for:

	w leaves, which simulate spectral reflectance and 
transmittance based on leaf biochemistry, such 
as the popular PROSPECT model (Jacquemoud 
and Baret, 1990); and

	w canopies, which (for known optical properties 
of leaf and soil, vegetation architecture, and 
acquisition conditions) simulate spectral and 
bidirectional reflectance (Féret et al., 2017), 
such as SAIL (Scattering by Arbitrary Inclined 
Leaves; Verhoef, 1984, 1985; derived from the 
one-dimensional model by Suits, 1972). 

A number of physical and mathematical models 
have been developed to simulate the spectral 
consequences of variations in leaf biochemical 
and physical composition. Some of these are 
detailed in OPTICLEAF (2020) and reviewed by 
Ustin et al. (2004) and Jacquemoud and Ustin (2019). 
Jacquemoud and Ustin (2014) describe computer 
simulations models for leaves in terms of six 
categories (ordered by increasing complexity) as 
summarised in Table 10.1. Only the radiative transfer 
models may be iteratively inverted to derive leaf 
anatomical or biochemical components from spectral 
data (Jacquemound and Ustin, 2001). For example, 
the contribution of chlorophyll, water, dry matter, and 
structure to leaf spectral properties was simulated by 
Ceccato et al. (2001) and Bacour et al. (2002) using 
the PROSPECT model.

As well as furthering our understanding of leaf optical 
properties, leaf models have been integrated with 
canopy models. For example, PROSAIL combines 
the PROSPECT leaf model with the canopy model 
SAIL (Baret et al., 1992; Jacquemoud et al., 2009). 
PROSPECT requires input parameters for leaf 
structure and biochemical content to simulate 
directional-hemispherical reflectance and 
transmittance for the wavelength range 400–2500 nm 
whereas SAIL models canopy architecture from 
bidirectional reflectance measurements. This 
integrated modelling approach allowed the precise 
relationship between the reflectance from a canopy 
and its biophysical and biochemical properties to 
be examined and quantified for specific wavelength 
ranges. These models are used operationally in 
precision agriculture to monitor crop growth, allowing 
fertiliser application to be restricted to areas of 
lowered productivity (see Section 12.6). In natural 
vegetation canopies, such models enable mapping of 
ecosystem functionality, vegetation health, and fuel 
moisture (Jacquemoud et al., 2009). For example, 
Punalekar et al. (2018) used proximal hyperspectral 
data from Sentinel-2A 10 m imagery with the radiative 
transfer model PROSAIL to estimate LAI and biomass 
for dairy farms in southern England, and reported that 
this approach outperformed NDVI-based estimates. 

Ecosystem models that elegantly represent salient ecological processes deliver the capacity to monitor 
and predict change, estimate risks of ecosystem collapse and explore alternative future management 

scenarios. Such models can be parameterised, initiated, or validated with remote sensing data. … Remote 
sensing data therefore has great potential for parameterizing a wide variety of ecosystem models, and is 

increasingly being used to assess the skill of models at reproducing ecosystem dynamics. 
(Murray et al., 2018)
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Table 10.1  Leaf models

Model Models Example

Plate Model  
(Allen et al., 1969)

Cumulative hemispherical reflectance/refraction from 
internal and external surfaces of leaf blades modelled 
as stacks of absorbing plates

PROSPECT (Jacquemoud and Baret, 1990; Baret and Fourty, 1997; 
Féret et al., 2008, 2017)

Compact 
Spherical Particle 
Model

Radiative transfer model to simulate optical 
properties of conifer needles based on interaction of 
light with powders (Melamed,1963)

LIBERTY (Leaf Incorporating Biochemistry Exhibiting Reflectance and 
Transmittance Yields; Dawson et al., 1998)

N-flux Models Leaf as slabs of absorbing and diffusing material 

Two-flux model (Kubelka and Munk, 1931; Allen and Richardson, 1968; 
Vargas, 1999; Cordon and Lagorio, 2007);

Four-flux model (Fukshansky et al., 1991; Martinez von Remisowsky 
et al., 1992; Richter and Fukshansky, 1996)

Radiative Transfer 
Equation

Optical Scattering Model based on leaf as turbid 
homogeneous plate

LEAFMOD (Leaf Experimental Absorptivity Feasibility MODel; 
Ganapol et al., 1998)

Stochastic 
Approach

Radiative transfer simulation based on optical 
properties on leaf tissues simulated by Markov chain 

LFMOD1 (Tucker and Garatt, 1977)

SLOP (Stochastic model for Leaf Optical Properties; Maier et al., 1999)

Ray Tracing 
Models

Complex Internal Leaf Structure model based on 
internal leaf structure and optical constants of 
constituents

RAYTRAN (Govaerts and Verstraete, 1998)

Adapted from categories in Jacquemoud and Ustin (2014)

10.2.2  Plant productivity models
Plant productivity indicates the rate at which 
plants store energy—and accumulate biomass—via 
photosynthesis (see Section 7.4). While a wide range 
of environmental factors can impact the productivity 
of terrestrial vegetation (see Sections 1.1 and 4 to 7), 
the major factors influencing plant growth can be 
grouped in terms of:

	§ defining factors—determine the potential growth 
under ideal conditions, but include factors that 
we cannot directly control such as CO2, radiation, 
temperature, and crop characteristics (physiology, 
phenology, and canopy architecture);

	§ limiting factors—indicate the attainable growth 
under controlled conditions. These factors can be 
controlled to increase production, such as water 
and nutrients; and

	§ reducing factors—impact actual growth under 
real conditions, such that production is reduced if 
these factors (such as weeds, diseases, pests, and 
pollutants) are not controlled (Bouman et al., 1996).

Plant productivity models have traditionally 
attempted to differentiate between these factors 
on the basis of their impact on plant production 
and the extent to which they can be ‘controlled’. A 
commonly encountered model to track changes in 
particular types of terrestrial vegetation is a crop 
simulation model (CSM). A CSM uses information 
about physics, plant physiology, and ecology to 
mimic crop growth and development using a range 
of parameters (such as weather, soil conditions, and 
management practices) in order to forecast various 
crop productivitiy metrics (such as yield, date of 

maturity for harvest, and fertiliser efficiency). More 
sophisticated models, tailored to specific crops, 
can advise on fertiliser and irrigation requirements 
during crop growth and assess the expected impact 
of different scenarios on crop yield, such as changes 
in sowing dates, crop varieties or weather conditions. 
These models typically rely on historical records and 
ground measurements but can only practically be 
tested at a limited number of ground sites. All such 
modelling predictions are made under the assumption 
that the crop will not be impacted by unforeseen 
factors, such as severe frosts or extreme weather 
events, before harvest.

A well-established CSM that was developed 
in Australia is the Agricultural Production 
Systems sIMulator (APSIM) modelling framework 
(APSIM, 2020; Keating et al., 2003). APSIM comprises 
plant, soil, animal, and climate models that simulate 
relevant processes and, where appropriate, their 
responses to various interactions and external 
stresses (Holzworth et al., 2014, 2018). EO-based 
modelling of crop growth is often integrated with 
CSM to spatially and temporally extrapolate the 
results from field test sites, thus constraining crop 
forecasts by current growing conditions (FAO, 2016; 
see Section 11.2). For example, APSIM is used by 
agricultural monitoring systems, such as Yield 
Prophet, a decision support tool which models 
the growth of major grain crops (BCG, 2017), and 
Graincast™ (see Excursus 12.1). Another operational 
cropping system model is WOFOST (World Food 
STudies; de Wit et al., 2019; see Section 11.6), which 
is implemented in the European MARS crop yield 
forecasting system.
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Specific EO-based models to estimate plant 
productivity have been developed for Australian 
cereal and horticultural crops (see Section 11), 
including sugar cane (see Volume 1B—Excursus 1.1), 
peanuts (see Volume 1B—Excursus 9.1), and tree 
crops (see Section 12.7), as well as pasture growth 
(see Section 13), forest biomass (see Section 16), 
and carbon dynamics (see Section 17). For example, 
the AussieGRASS model combines EO-based water 
balance and plant growth models to forecast pasture 
growth (see Excursus 10.1). This type of model is 
used by governments and industries to manage 
climatic influences, such as drought, on grazing lands 
(Nikolova et al., 2013). 

From modest beginnings in the mid-1900s, 
agricultural systems models have greatly benefitted 
from the confluence of growing environmental 
awareness, increased global multidisciplinary 
cooperation, and significant improvements in 
data acquisition and processing technologies 
(Jones et al., 2017). Advanced models now relate 
biophysical and meteorological processes to 
economic and ecological outcomes, and dynamically 
estimate the impacts of various land management 
scenarios on agricultural resources from local to 
global scales (FAO, 2017; see Section 11).

10.2.3  Global and regional models
A wide variety of models relying on EO datasets have 
been developed to monitor terrestrial vegetation at 
regional and global scales. Large scale monitoring 
of our planet is closely related to the concept of 
Earth being an essentially closed system, which 
comprises four integrated spheres (atmosphere, 
hydrosphere, geosphere, and biosphere; see 
Excursus 1.2 and Volume 1A—Section 4.1). These 
spheres exchange energy and matter via four 
fundamental cycles (energy, water, earth, and carbon; 
see Volume 1A—Section 4.2). This global view enables 
a multidisciplinary approach to understanding Earth 
systems and their processes in a range of spatial 
and temporal scales. A sufficient network of in situ 
sensors to monitor these systems and processes is 
impractical in terms of both cost and time, leaving 
EO datasets as the only feasible, relevant, and cost-
effective source for this information. Examples of 
global models include Terrestrial Ecosystem Models 
(TEM) and General Circulation Models (GCM).

TEM primarily track vegetation productivity in terms 
of Net Primary Productivity (NPP; see Section 7.4). 
Specific examples of these models, in the context 
of carbon dynamics, are given in Section 17. Major 
categories of TEM are: 

	§ Dynamic Global Vegetation Models (DGVM)—
process-based models of global biogeochemical 
fluxes and vegetation dynamics to better 
understand terrestrial biosphere processes 
and their interactions with other Earth spheres 
(Prentice et al., 2007; Sitch et al., 2008; 
Boit et al., 2019); and 

	§ Production Efficiency Models (PEM)—describe 
the productivity of vegetation by assuming a 
linear relationship between canopy photosynthesis 
and the fraction of absorbed photosynthetically 
active radiation (fAPAR) to monitor NPP 
(Monteith, 1972, 1977). 

GCM simulate the global climate system by 
representing physical circulation patterns and 
processes in and between the atmosphere, 
ocean, cryosphere, and the land surface. Relevant 
components of GCM include:

	§ energy balance models—link climate and 
biophysical models to describe energy and mass 
transfers between the Earth’s surface and the 
atmosphere (see Section 7.5). Examples of Land 
Surface Models (LSM) include soil-vegetation-
atmosphere transfer (SVAT) models and surface 
energy balance (SEB) models; and

	§ water balance models—describe the movement 
of water through the water cycle (see Section 7.6). 
An Australian implementation of EO-based water 
balance modelling to support regulatory monitoring 
of water resources is summarised in Excursus 10.2. 

These large scale models have a multidisciplinary focus. 
Their development has only been possible in recent 
decades with the advent of high speed computing and 
sophisticated algorithms to manage large datasets. 
DGVM, for example, integrate research from plant 
geography, biophysics, vegetation dynamics, plant 
physiology and biogeochemisty, and anthropogenic 
activities, to simulate the interactions between 
ecosystem state variables, ecosystem processes, and 
driving variables (Prentice et al., 2007; see Figure 10.6). 
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Figure 10.6  Modular structure of Dynamic Global Vegetation Models

Adapted from: Prentice et al. (2007) Figure 15.2

Dynamic Global Vegetation Models (DGVMs) offer the possibility of integrating large amounts of 
geospatial data to quantify and project a large range of ecological variables important for ecosystem 

service provisioning under future scenarios. 
(Boit et al., 2019)



Earth Observation: Data, Processing and Applications.  Volume 3: Applications

222

Excursus 10.1�—AussieGRASS

Source: John Carter, Queensland Department of Environment and Science; https://www.longpaddock.qld.gov.au/
aussiegrass/ 
Further information: McKeon and Carter (2015); DSITI (2015)

The AussieGRASS model monitors key biophysical 
processes associated with pasture growth (such as 
degradation and recovery) at regional scales (for 
example, local government areas, or bioregions). 
Its companion system, FORAGE, extends the 
implementation to property and paddock scale 
(Zhang and Carter, 2018; see Section 15.4). 
AussieGRASS provides time series of rainfall and 
pasture growth information, as well as projections 
for the season ahead. The projections are useful for 
forage budgeting, assessing the impacts of drought, 
and forecasting bushfire risk.

AussieGRASS is an advanced spatial water balance 
and plant growth model, producing output on a 
daily timestep across Australia (Carter et al., 2000). 
The model was initially built on the point scale 
GRASP (GRASS Production) simulation model 
(Rickert et al., 2000), using the SILO climate data 
base (Jeffrey et al., 2001), and calibrated using 
satellite data, plus over 600,000 field pasture biomass 
observations (Hassett et al., 2000). The AussieGRASS 
system has been operational on an Australia-wide 
basis since 1996.

Within the AussieGRASS framework, GRASP is run 
on a daily timestep (1890–current). The observed 
climate data are spatially interpolated to construct 
gridded datasets on a regular 0.05º × 0.05º grid 
(approximately 5×5 km) across Australia. The spatial 
framework includes inputs of key climate variables 
(rainfall, evaporation, temperature, vapour pressure, 
and solar radiation), soil and pasture types, tree 
and shrub cover, domestic livestock, and other 
herbivore numbers. In simulating continental pasture 
response to climate variability, calibration has relied 
on EO-based datasets to estimate green vegetation 
cover, coupled with extensive ground truthing 
across Australia since 1994 (Hassett et al. 2000). 

Various forms of validation have been conducted 
with independent datasets (Carter et al., 2003) and 
inter-model comparisons (McKeon and Carter, 2015). 
EO-based input datasets include fire scars, tree 
density, flooded area, and land use maps. Fractional 
photosynthetic and non-photosynthetic cover 
(Scarth et al., 2010) from the entire Australian Landsat 
TM archive is used as a primary EO calibration dataset 
(see Excursus 8.3). This is supplemented with data 
from radar and gravity satellites for soil moisture, plus 
EO of chlorophyll fluorescence and atmospheric CO2.

Many challenges exist with modelling the EO 
signals due to issues like time and space scaling. 
These include sensed versus modelled depth of soil 
water, variations in mass to cover relationships with 
vegetation structure, obscured cover, and using a 
single observation at one time in the day versus a 
modelled daily integral.

AussieGRASS provides a platform for translating 
seasonal climate outlooks into estimates of future 
plant growth,  including the impacts of total grazing 
pressure from domestic stock and other herbivores. 
It is a powerful tool for value-adding to climate 
information, as it takes into account current condition 
(e.g. soil moisture, ground cover, nitrogen status, 
and grass basal cover) to provide a probabilistic 
view of plant growth for the coming three-month 
period. AussieGRASS outputs are also being 
increasingly used for various environmental analyses, 
such as drought analysis, estimating plant net primary 
production for soil carbon mapping, providing soil 
moisture as an initial condition for air pollution 
models, analysing how stock numbers influence the 
potential amount of biomass which can be burnt, 
analysing conditions suitable for dust storms, and 
estimating the impact of removing tree cover on deep 
soil water infiltration.

https://www.longpaddock.qld.gov.au/aussiegrass/
https://www.longpaddock.qld.gov.au/aussiegrass/
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Excursus 10.2�—Water Resources Assessment 

Further Information: BoM (2008, 2013); Frost et al. (2018)

Water is a very precious resource in Australia (see 
Volume 3B). Current and accurate information about 
the distribution, storage, availability, and use of water 
is necessary to manage this resource, especially at 
regional and continental scales. The Water Act 2007 
assigned responsibility to the Bureau of Meteorology 
(BoM) for regular reporting on the status and usage 
of Australia’s water resources (BoM, 2008). These 
statutory functions include:

	§ issuing national water information standards;

	§ collecting and publishing water information;

	§ conducting regular national water resources 
assessments;

	§ publishing an annual National Water Account;

	§ providing regular water availability forecasts;

	§ advising on matters relating to water information; and

	§ enhancing understanding of Australia’s water resources. 

These assessments help water resource managers 
and policy makers understand past and present 
practices governing water management. In line with 
the National Water Initiative (NWI), which outlines “a 
shared commitment by governments to increase the 
efficiency of Australia’s water use, leading to greater 
certainty for investment and productivity, for rural 
and urban communities and for the environment” 
(DAWR, 2018), they also help to formulate future 
policies and practices. The Australian Water Resource 
Assessment Modelling System (AWRAMS)  has 
been developed to generate two major information 
products for this purpose (see Section 10.3):

	§ the annual National Water Account (NWA: www.bom.
gov.au/water/nwa)—water accounting for nationally 
significant urban and rural regions, including 
information on water stores and flows, water rights, 
and water use (BoM, 2013; see Section 20.5); and

	§ Australian Water Resources Assessment (AWRA) 
reports—daily, monthly and annual estimates of 
water balance parameters (Hafeez et al., 2015). 

The AWRA system is a spatial water resources 
monitoring system to capture and model the major 
water flow processes at regional and national scales. It 
comprises two integrated modules which collectively 
represent the Australian terrestrial water cycle:

	§ AWRA-L—models hydrological processes between 
the atmosphere and the landscape, including 
groundwater (Van Dijk, 2010; Viney et al., 2015; 
Frost et al., 2018); and

	§ AWRA–R—a conceptual hydrological model that 
simulates processes between the atmosphere and 
rivers (Dutta et al., 2015).

This operational system includes major water 
storages and the fluxes in and between component 
models based on a 0.05º grid. AWRA-L simulates 
the daily flow of water through each grid cell in the 
landscape, with the hydrological response of deep-
rooted and shallow-rooted vegetation being modelled 
separately (Frost et al., 2018). Inputs to AWRA-L 
include in situ datasets routinely collected by BoM, 
estimates from the OzFlux network (see Excursus 7.2), 
and parameters derived from EO time series imagery 
(Frost and Wright, 2018—see Figure 2 therein). 
Ongoing, daily AWRA-L gridded outputs include soil 
moisture, evapotranspiration, surface runoff, and 
groundwater recharge/storage/lateral flow. These 
parameters have also been modelled retrospectively, 
providing a simulation of the Australian terrestrial 
water cycle for over a century (Hafeez et al., 2015). 
AWRAMS has been released for public access, 
including a community modelling system (AWRA 
CMS; see Section 10.3).

http://www.bom.gov.au/water/nwa
http://www.bom.gov.au/water/nwa
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10.3  Further Information

Modelling Leaf Optical Properties
http://www.photobiology.info/Jacq_Ustin.html

Terrestrial Observation and Prediction 
System (TOPS)
https://ecocast.arc.nasa.gov/

Water Resource Modelling
Bureau of Meteorology: http://www.bom.gov.au/water/

index.shtml

Australian Landscape Water Balance: http://www.
bom.gov.au/water/landscape/#/sm/Actual/day/-
28.4/130.4/3/Point////2020/8/24/

AWRA Community Modelling System (AWRA CMS): 
https://github.com/awracms/awra_cms

National Water Account (NWA): www.bom.gov.au/
water/nwa

10.4  References
Allen, W.A., and Richardson, A.J. (1968). Interaction 

of light with a plant canopy. Journal of the Optical 
Society of America, 58(8), 1023–1028.

APSIM (2020). Agricultural Production Systems 
sIMulator website: https://www.apsim.info/apsim-
model/

Bacour, C., Jacquemoud, S., Tourbier, Y., Dechambre, 
M., and Frangi, J.P. (2002). Design and analysis 
of numerical experiments to compare four 
canopy reflectance models. Remote Sensing of 
Environment,  79, 72–83.

Baret, F., Jacquemoud, S., Guyot, G., and Leprieur, C. 
(1992). Modeled analysis of the biophysical nature 
of spectral shifts and comparison with information 
content of broad bands. Remote Sensing of 
Environment, 41, 133−142.

Baret, F., and Fourty, T. (1997). Estimation of leaf water 
content and specific leaf weight from reflectance 
and transmittance measurements. Agronomie, 17(9-
10), 455–464.

BCG (2017). Yield Prophet website, Birchip Cropping 
Group: https://www.yieldprophet.com.au/yp/Home.
aspx

Boit, A., Sakschewski, B., Boysen, L., Cano-Crespo, 
A., Clement, J., Alaniz, N.G., Kok, K., Kolb, M., 
Langerwisch, F., Rammig, A., Sachse, R., van Eupen, 
M., von Bloh, W., Zemp, D.C., and Thonicke, K. 
(2019). Using Dynamic Global Vegetation Models 
(DGVMs) for Projecting Ecosystem Services at 
Regional Scales. In Atlas of Ecosystem Services 
(Eds: Schröter M., Bonn A., Klotz S., Seppelt 
R., Baessler C.). Springer, Cham. https://doi.
org/10.1007/978-3-319-96229-0_10

BoM (2008). The Water Act 2007 and the Bureau of 
Meteorology. Bureau of Meteorology, April 2008. 
http://www.bom.gov.au/water/regulations/document/
water_act_2007.pdf

BoM (2013). The National Water Account. Companion 
Guide. Bureau of Meteorology, Melbourne. http://
www.bom.gov.au/water/nwa/document/companion-
guide.pdf

Bouman, B.A.M., van Keulen, H., van Laar, H.H., and 
Rabbinge, R. (1996). The ‘School of de Wit’ crop 
growth simulation models: A pedigree and historical 
overview. Agricultural Systems, 52(2–3), 171–198. 
https://doi.org/10.1016/0308-521X(96)00011-X

Carter, J.O., Hall, W.B., Brook, K.D., McKeon, G.M., 
Day, K.A., and Paull, C.J. (2000). AussieGRASS: 
Australian Grassland and Rangeland Assessment 
by Spatial Simulation. In Applications of seasonal 
climate forecasting in agricultural and natural 
ecosystems—the Australian experience. (Eds. 
G. Hammer, N. Nicholls and C. Mitchell), Kluwer 
Academic Press, Netherlands. pp 229–249.

Carter, J.O., Bruget, D., Hassett, R., Henry, B., 
Ahrens, D., Brook, K., Day, K., Flood, N., Hall, 
W., McKeon, G., and Paull, C. (2003). Australian 
Grassland and Rangeland Assessment by Spatial 
Simulation (AussieGRASS) In Science for Drought, 
Proceedings of the National Drought Forum 2003. 
(Eds: Stone, R., and Partridge, I.). Department of 
Primary Industries, Queensland. pp 152–159. 

Ceccato, P., Flasse, S., Tarantla, S., Jacquemoud, S., 
and Grégoire, J.-M. (2001). Detecting vegetation 
leaf water content using reflectance in the optical 
domain. Remote Sensing of Environment, 77, 22–33.

Cordon, G.B., and Lagorio, M.G. (2007). Absorption 
and scattering coefficients: A biophysical-chemistry 
experiment using reflectance spectroscopy. Journal 
of Chemical Education, 84(7), 1167–1170. 

Curran, P.J. (2001). Imaging spectrometry for 
ecological applications. International Journal of 
Applied Earth Observation and Geoinformation, 
3(4), 305–312. doi:10.1016/S0303-2434(01)85037-6

http://www.photobiology.info/Jacq_Ustin.html
https://ecocast.arc.nasa.gov/
http://www.bom.gov.au/water/index.shtml
http://www.bom.gov.au/water/index.shtml
http://www.bom.gov.au/water/landscape/#/sm/Actual/day/-28.4/130.4/3/Point////2020/8/24/
http://www.bom.gov.au/water/landscape/#/sm/Actual/day/-28.4/130.4/3/Point////2020/8/24/
http://www.bom.gov.au/water/landscape/#/sm/Actual/day/-28.4/130.4/3/Point////2020/8/24/
https://github.com/awracms/awra_cms
http://www.bom.gov.au/water/nwa
http://www.bom.gov.au/water/nwa
https://www.apsim.info/apsim-model/
https://www.apsim.info/apsim-model/
https://www.yieldprophet.com.au/yp/Home.aspx
https://www.yieldprophet.com.au/yp/Home.aspx
https://doi.org/10.1007/978-3-319-96229-0_10
https://doi.org/10.1007/978-3-319-96229-0_10
http://www.bom.gov.au/water/regulations/document/water_act_2007.pdf
http://www.bom.gov.au/water/regulations/document/water_act_2007.pdf
http://www.bom.gov.au/water/nwa/document/companion-guide.pdf
http://www.bom.gov.au/water/nwa/document/companion-guide.pdf
http://www.bom.gov.au/water/nwa/document/companion-guide.pdf
https://doi.org/10.1016/0308-521X(96)00011-X
https://doi.org/10.1016/S0303-2434(01)85037-6


Earth Observation: Data, Processing and Applications.  Volume 3: Applications Volume 3A: Applications—Terrestrial Vegetation

10  Modelling

225

DAWR (2018). Department of Agriculture and Water 
Resources website. National Water Initiative 
webpage: http://www.agriculture.gov.au/water/policy/
nwi

Dawson, T.P., Curran, P.J., and Plummer, S.E. (1998). 
LIBERTY—Modeling the Effects of Leaf Biochemical 
Concentration on Reflectance Spectra. Remote 
Sensing of Environment, 65, 50–60.

De Wit, A., Boogaard, H., Fumagalli, D., Janssen, S., 
Knapen, R., van Kraalingen, D., Supit, I., van der 
Wijngaart, van Diepen, K. (2019). 25 years of the 
WOFOST cropping systems model. Agricultural 
Systems, 168, 154–167. https://doi.org/10.1016/j.
agsy.2018.06.018

DSITI (2015). AussieGRASS Environmental 
Calculator—Product Descriptions v1.5. Department 
of Science, Information Technology and Innovation, 
Queensland. https://data.longpaddock.qld.gov.
au/static/about/publications/pdf/agrass_product_
descriptions.pdf

Dutta, D., Kim, S., Hughes, J., Vaze, J., and 
Yang, A. (2015). AWRA-R version 5.0 
Technical Report. CSIRO Land and Water, 
Canberra. https://publications.csiro.au/rpr/
download?pid=csiro:EP154523&dsid=DS2

Emelyanova I.V., McVicar, T.R., Van Niel, T.G., Li, 
L.T., and van Dijk, A.I.J.M. (2013). Assessing the 
accuracy of blending Landsat-MODIS surface 
reflectances in two landscapes with contrasting 
spatial and temporal dynamics: A framework 
for algorithm selection. Remote Sensing of 
Environment, 133, 193–209.

FAO (2016). Crop Yield Forecasting: Methodological 
and Institutional Aspects. UN Food and Agricultural 
Organisation, Rome. http://www.amis-outlook.org/
fileadmin/user_upload/amis/docs/resources/AMIS_
CYF-Methodological-and-Institutional-Aspects_web.
pdf

FAO (2017). Review of the Available Remote Sensing 
Tools, Products, Methodologies and Data to 
Improve Crop Production Forecasts. UN Food and 
Agriculture Organization, Rome. ISBN 978-92-5-
109840-0. 

Féret, J.B., François, C., Asner, G.P., Gitelson, A.A., 
Martin, R.E., Bidel, L.P.R., Ustin, S.L., le Maire, G., 
and Jacquemoud, S. (2008). PROSPECT-4 and 
5: Advances in the leaf optical properties model 
separating photosynthetic pigments. Remote 
Sensing of Environment, 112(6), 3030–3043. 

Féret, J.B., Gitelson, A.A., Noble, S.D., and 
Jacquemoud, S. (2017). Remote Sensing of 
Environment, 193, 204–215.  
doi:10.1016/j.rse.2017.03.004

Fortin, M.-J., Boots, B., Csillag, F., and Remmel, 
T.K. (2003). On the Role of Spatial Indices in 
Understanding Landscape Indices in Ecology. 
Oikos, 102(1), 203–212.

Frost, A.J., and Wright, D.P. (2018). Evaluation of 
the Australian Landscape Water Balance model: 
AWRA-L v6. Bureau of Meteorology. http://
www.bom.gov.au/water/landscape/assets/static/
publications/AWRALv6_Model_Evaluation_Report.pdf

Frost, A.J., Ramchurn, A., and Smith, A. (2018). The 
Bureau’s Operational AWRA Landscape (AWRA-L 
v6) Model: Technical description of the Australian 
Water Resources Assessment Landscape model 
version 6. Bureau of Meteorology. http://www.bom.
gov.au/water/landscape/assets/static/publications/
AWRALv6_Model_Description_Report.pdf

Fukshansky, L., Fukshansky-Kazarinova, N., and 
Martinez v. Remisowsky, A. (1991). Estimation of 
optical parameters in a living tissue by solving the 
inverse problem of the multiflux radiative transfer. 
Applied Optics, 30(22), 3145–3153.

Gallant, J.C., McKenzie, N.J., and McBratney, A.B. 
(2008). Scale. Ch 3 in Guidelines for Surveying 
Soil and Land Resources. Australian Soil and Land 
Survey Handbook Series. (Eds: McKenzie, N.J., 
Grundy, M.J., Webster, R., and Ringrose-Voase, A.J.) 
CSIRO Publishing, Melbourne.

Ganapol, B.D., Johnson, L.F., Hammer, P.D., Hlavka, 
C.A., and Peterson D.L. (1998). LEAFMOD: a new 
within-leaf radiative transfer model. Remote 
Sensing of Environment, 63(2), 182–193.

Govaerts, Y., and Verstraete, M.M. (1998). Raytran: a 
Monte Carlo ray-tracing model to compute light 
scattering in three-dimensional heterogeneous 
media. IEEE Transactions on Geoscience and 
Remote Sensing, 36(2), 493–505.

Hafeez, F., Frost, A., Vaze, J., Dutta, D., Smith, A., and 
Elmahdi, A. (2015). A new integrated continental 
hydrological simulation system. Water: Journal of 
the Australian Water Association, 42(3), 75–82. 

Harrison, B.A., and Jupp, D.L.B. (1989) Introduction 
to Remotely Sensed Data: Part ONE of the 
microBRIAN Resource Manual. CSIRO, Melbourne. 
156 p.

Hassett, R.C., Wood, H.L., Carter, J.O., and Danaher, 
T.J. (2000). A field method for statewide ground-
truthing of a spatial pasture growth model. 
Australian Journal of Experimental Agriculture, 40, 
1069–1079. 

http://www.agriculture.gov.au/water/policy/nwi
http://www.agriculture.gov.au/water/policy/nwi
https://doi.org/10.1016/j.agsy.2018.06.018
https://doi.org/10.1016/j.agsy.2018.06.018
https://data.longpaddock.qld.gov.au/static/about/publications/pdf/agrass_product_descriptions.pdf
https://data.longpaddock.qld.gov.au/static/about/publications/pdf/agrass_product_descriptions.pdf
https://data.longpaddock.qld.gov.au/static/about/publications/pdf/agrass_product_descriptions.pdf
https://publications.csiro.au/rpr/download?pid=csiro:EP154523&dsid=DS2
https://publications.csiro.au/rpr/download?pid=csiro:EP154523&dsid=DS2
http://www.amis-outlook.org/fileadmin/user_upload/amis/docs/resources/AMIS_CYF-Methodological-and-Institutional-Aspects_web.pdf
http://www.amis-outlook.org/fileadmin/user_upload/amis/docs/resources/AMIS_CYF-Methodological-and-Institutional-Aspects_web.pdf
http://www.amis-outlook.org/fileadmin/user_upload/amis/docs/resources/AMIS_CYF-Methodological-and-Institutional-Aspects_web.pdf
http://www.amis-outlook.org/fileadmin/user_upload/amis/docs/resources/AMIS_CYF-Methodological-and-Institutional-Aspects_web.pdf
https://doi.org/10.1016/j.rse.2017.03.004
http://www.bom.gov.au/water/landscape/assets/static/publications/AWRALv6_Model_Evaluation_Report.pdf
http://www.bom.gov.au/water/landscape/assets/static/publications/AWRALv6_Model_Evaluation_Report.pdf
http://www.bom.gov.au/water/landscape/assets/static/publications/AWRALv6_Model_Evaluation_Report.pdf
http://www.bom.gov.au/water/landscape/assets/static/publications/AWRALv6_Model_Description_Report.pdf
http://www.bom.gov.au/water/landscape/assets/static/publications/AWRALv6_Model_Description_Report.pdf
http://www.bom.gov.au/water/landscape/assets/static/publications/AWRALv6_Model_Description_Report.pdf


Earth Observation: Data, Processing and Applications.  Volume 3: Applications

226

Holzworth, D.P., Huth, N.I., deVoil, P.G., Zurcher, 
E.J., Herrmann, N.I., McLean, G., Chenu, K., van 
Oosterom, E.J., Snow, V., Murphy, C., Moore, A.D., 
Brown, H., Whish, J.P.M., Verrall, S., Fainges, J., 
Bell, L.W., Peake, A.S., Poulton,  P.L., Hochman, 
Z., Thorburn, P.J., Gaydon, D.S., Dalgliesh, N.P., 
Rodriguez, D., Cox, H., Chapman, S., Doherty, A., 
Teixeira, E., Sharp, J., Cichota, R., Vogeler, I., Li, F.Y., 
Wang, E., Hammer, G.L., Robertson, M.J., Dimes, J.P., 
Whitbread, A.M., Hunt, J., van Rees, H., McClelland, 
T., Carberry, P.S., Hargreaves, J.N.G., MacLeod, 
N., McDonald, C., Harsdorf, J., Wedgwood, S., 
Keating, B.A. (2014). APSIM—evolution towards a 
new generation of agricultural systems simulation. 
Environmental Modelling and Software, 62, 327–
350. https://doi.org/10.1016/j.envsoft.2014.07.009

Holzworth, D., Huth, N.I., Fainges, J., Brown, H., 
Zurcher, E. Cichota, R., Verrall, S., Herrmann, 
N.I., Zheng, B., and Snow. V. (2018). APSIM Next 
Generation: Overcoming Challenges in Modernising 
a Farming Systems Model. Environmental Modelling 
and Software, 103, 43–51. https://doi.org/10.1016/j.
envsoft.2018.02.002

Jacquemoud, S., and Baret, F. (1990). PROSPECT: A 
Model of Leaf Optical Properties Spectra. Remote 
Sensing of Environment, 34, 75–91.

Jacquemoud, S., and Ustin, S.L. (2001). Leaf Optical 
Properties: A State of the Art. Proceedings of 8th 
International Symposium Physical Measurements 
and Signatures in Remote Sensing. pp 223–232. 
Aussois (France), 8-12 January, 2001. CNES.

Jacquemoud, S., Verhoef, W., Baret, F., Bacour, C., 
Zarco-Tejada, P.J., Asner, G.P., Francois, C., and 
Ustin, S.L. (2009). PROSPECT + SAIL Models: 
a review of use for vegetation characterization. 
Remote Sensing of Environment, 113, S56–S66.

Jacquemoud, S., and Ustin, S.L. (2014). Modeling Leaf 
Optical Properties. In Photobiological Sciences 
Online (Ed: S.C. Smith). American Society of 
Photobiology. http://www.photobiology.info/ 

Jacquemoud, S., and Ustin, S. (2019). Leaf Optical 
Properties. Cambridge University Press, Cambridge. 
doi:10.1017/9781108686457

Jeffrey, S.J., Carter, J.O. Moodie, K.B., and Beswick, 
A.R. (2001). Using spatial interpolation to construct 
a comprehensive archive of Australian climate 
data. Environmental Modelling and Software, 16/4, 
309–330. 

Jones, J.W., Antle, J.M., Basso, B., Boote, K.J., Conant, 
R.T., Foster, I., Godfray, H.C.J., Herrero, M., Howitt, 
R.E., Janssen, S., Keating, B.A., Munoz-Carpena, 
R., Porter, C.H., Rosenzweig, C., and Wheeler, 
T.R. (2017). Brief history of agricultural systems 
modeling. Agricultural Systems, 155, 240–254. 
https://doi.org/10.1016/j.agsy.2016.05.014

Keating, B.A., Carberry, P.S., Hammer, G.L., Probert, 
M.E., Robertson, M.J., Holzworth, D., Huth, N.I., 
Hargreaves, J.N., Meinke, H., and Hochman, Z. 
(2003). An overview of APSIM, a model designed 
for farming systems simulation. European Journal 
of Agronomy, 18(3–4), 267–288.

Kubelka, P., and Munk, F. (1931). Ein beitrag zur optik 
der farbanstriche. Zeitschrift fur Technische Physik, 
12, 593–601. 

Ludwig, J.A., Bastin, G.N., Wallace, J.F., and McVicar, 
T.R. (2007). Assessing landscape health by scaling 
with remote sensing: when is it not enough? 
Landscape Ecology, 22, 163–169. doi:10.1007/
s10980-006-9038-6

Maier, S.W., Lüdeker, W., and Günther, K.P. (1999). 
SLOP: a revised version of the stochastic model 
for leaf optical properties. Remote Sensing of 
Environment, 68(3), 273–280.

Martinez von Remisowsky, A., McClendon, J.H., and 
Fukshansky, L. (1992). Estimation of the optical 
parameters and light gradients in leaves: multi-flux 
versus two-flux treatement. Photochemistry and 
Photobiology, 55(6), 857–865.

McKeon, G., and Carter, J. (2015). AussieGRASS: 
An Operational National Pasture Model. Ch 1 
in AussieGRASS Environmental Calculator—
Product Descriptions v1.5. Department of 
Science, Information Technology and Innovation, 
Queensland.

McVicar, T.R., and Jupp, D.L.B. (2002). Using 
covariates to spatially interpolate moisture 
availability in the Murray-Darling Basin: a novel 
use of remotely sensed data. Remote Sensing of 
Environment, 79, 199–212.

Melamed, N.T. (1963). Optical properties of powders: 
Part I. Optical absorption coefficients and the 
absolute value of the diffuse reflectance. Journal 
of Applied Physics, 34, 560–570. https://doi.
org/10.1063/1.1729309

Miller, J.R., Turner, M.G., Smithwick, E.A.H., Dent, C.L., 
and Stanley, E.H. (2004). Spatial Extrapolation: 
The Science of Predicting Ecological Patterns and 
Processes. BioScience, 54(4), 310–320. https://doi.
org/10.1641/0006-3568(2004)054[0310:SETSOP]2.
0.CO;2

https://doi.org/10.1016/j.envsoft.2014.07.009
https://doi.org/10.1016/j.envsoft.2018.02.002
https://doi.org/10.1016/j.envsoft.2018.02.002
http://www.photobiology.info/
https://doi.org/10.1017/9781108686457
https://doi.org/10.1016/j.agsy.2016.05.014
https://doi.org/10.1007/s10980-006-9038-6
https://doi.org/10.1007/s10980-006-9038-6
https://doi.org/10.1063/1.1729309
https://doi.org/10.1063/1.1729309
https://doi.org/10.1641/0006-3568(2004)054[0310:SETSOP]2.0.CO;2
https://doi.org/10.1641/0006-3568(2004)054[0310:SETSOP]2.0.CO;2
https://doi.org/10.1641/0006-3568(2004)054[0310:SETSOP]2.0.CO;2


Earth Observation: Data, Processing and Applications.  Volume 3: Applications Volume 3A: Applications—Terrestrial Vegetation

10  Modelling

227

Monteith, J.L. (1972). Solar Radiation and Productivity 
in Tropical Ecosystems. Journal of Applied Ecology, 
9(3), 747–766. 

Monteith, J.L. (1977). Climate and the efficiency 
of crop production in Britain. Philosophical 
Transactions of The Royal Society B: Biological 
Sciences, 281(980), 294–294. doi:10.1098/
rstb.1977.0140. 

Murray, N.J., Keith, D.A., Bland, L.M., Ferrari, R., Lyons, 
M.B., Lucas, R., Pettorelli, N., Nicholson, E. (2018). 
The role of satellite remote sensing in structured 
ecosystem risk assessments. Science of the 
Total Environment, 619–620, 249–257. https://doi.
org/10.1016/j.scitotenv.2017.11.034

Nikolova, S., Bruce, S., Randall, L., Barrett, G., Ritman, 
K., and Nicholson, M. (2012). Using remote 
sensing data and crop modelling to improve 
crop production forecasting: a scoping study. 
ABARES technical report 12.3. Australian Bureau of 
Agricultural and Resource Economics and Sciences, 
Canberra.

OPTICLEAF (2020). OPTICLEAF The database on leaf 
optical properties website: http://opticleaf.ipgp.fr/
index.php?page=home 

Pasetto, D., Arenas-Castro, S., Bustamante, J., 
Casagrandi, R., Chrysoulakis, N., Cord, A.F., Dittrich, 
A., Domingo-Marimon, C., El Serafy, G., Karnieli, A., 
Kordelas, G.A., Manakos, I., Mari, L. Monteiro, A. 
Palazzi, E., Poursanidis, D., Rinaldo, A., Terzago, S., 
Ziemba, A., and Ziv, G. (2018). Integration of satellite 
remote sensing data in ecosystem modelling at 
local scales: practices and trends. Methods in 
Ecology and Evolution, 9, 1810–1821. 

Prentice, I.C., Bondeau, A., Cramer, W., Harrison, S.P., 
Hickler, T., Lucht, W., Sitch, S., Smith, B., and Sykes, 
M.T. (2007). Dynamic Global Vegetation Modeling: 
Quantifying Terrestrial Ecosystem Responses to 
Large-Scale Environmental Change. In Terrestrial 
Ecosystems in a Changing World (Eds: Canadell, 
J.G., Pataki, D.E., and Pitelka, L.F.). Springer-Verlag, 
Heidelberg. 

Punalekar, S.M., Verhoef, A., Quaife, T.L., Humphries, 
D., Bermingham, L., and Reynolds, C.K. (2018). 
Application of Sentinel-2A data for pasture biomass 
monitoring using a physically based radiative 
transfer model. Remote Sensing of Environment, 
218, 207–220.

Remmel, T.K., and Csillag, F. (2003). When are two 
landscape pattern indices significantly different? 
Journal of Geographic Systems, 5, 331–351.

Richter, T., and Fukshansky, L. (1996). Optics of a 
bifacial leaf: 1. A novel combined procedure for 
deriving the optical parameters. Photochemistry 
and Photobiology, 63(4), 507–516.

Rickert, K.G., Stuth, J.W., and McKeon, G.M. (2000). 
Modelling pasture and animal production. In Field 
and Laboratory Methods for Grassland and animal 
Production Research. (Eds: Mannetje, L.T., and 
Jones, R.M.). CABI publishing, New York. pp 29–66.

Robins, L., Freebairn, D., and Sedger, A. (2003). 
Groundwater Models. A Community Guide to Better 
Understanding. Murray-Darling Basin Commission, 
Canberra. ISBN: 1 876830 45 X

Scarth, P., Röder, A., and Schmidt, M. (2010). Tracking 
grazing pressure and climate interaction the role 
of Landsat fractional cover in time series analysis. 
In Proceedings of Australasian Remote Sensing 
and Photogrammetry Conference, Alice Springs, 
13–17 September. figshare.com/articles/Tracking_
Grazing_Pressure_and_Climate_Interaction_-_The_
Role_of_Landsat_Fractional_Cover_in_Time_Series_
Analysis/94250/1 

Sitch, S., Huntingford, C., Gedney, N., Levy, P.E., 
Lomas, M., Piao, S.L., Betts, R., Ciais, P., Cox, P., 
Friedlingstein, P., Jones, C.D., Prentice, I.C., and 
Woodward, F.I. (2008). Evaluation of the terrestrial 
carbon cycle, future plant geography and climate-
carbon cycle feedbacks using five Dynamic Global 
Vegetation Models (DGVMs). Global Change 
Biology, 14(9), 2015–2039. https://doi.org/10.1111/
j.1365-2486.2008.01626.x

Stein, A., Staritsky, I.G., Bouma, J., Van Eijsbergen, 
A.C., and Bgegt, A.K. (1991). Simulation of moisture 
deficits and areal interpolation by universal 
cokriging. Water Resources Research, 27, 1963–
1973.

Suits, G.H. (1972). The calculation of the directional 
reflectance of a vegetative canopy. Remote Sensing 
of Environment, 2, 117−125.

Tucker, C.J., and Garratt, M.W. (1977). Leaf optical 
system modeled as a stochastic process. Applied 
Optics, 16(3), 635–642. 

Ustin, S.L., Jacquemoud, S., Zarco-Tejada, P.J., 
and Asner, G.P. (2004). Remote sensing of the 
environment: state of the science and new 
directions, in Manual of Remote Sensing. Volume 4: 
Remote Sensing for Natural Resource Management 
and Environmental Monitoring (Ed: S.L. Ustin). John 
Wiley and Sons. pp. 679–729.

Van Dijk, A.I.J.M. (2010). AWRA Technical Report 
3. Landscape Model (version 0.5) Technical 
Description. WIRADA / CSIRO Water for a Healthy 
Country Flagship, Canberra.

Vargas, W.E. (1999). Two-flux radiative transfer model 
under nonisotropic propagating diffuse radiation. 
Applied Optics, 38(7), 1077–1085.

https://doi.org/10.1098/rstb.1977.0140
https://doi.org/10.1098/rstb.1977.0140
https://doi.org/10.1016/j.scitotenv.2017.11.034
https://doi.org/10.1016/j.scitotenv.2017.11.034
http://opticleaf.ipgp.fr/index.php?page=home
http://opticleaf.ipgp.fr/index.php?page=home
http://figshare.com/articles/Tracking_Grazing_Pressure_and_Climate_Interaction_-_The_Role_of_Landsat_Fractional_Cover_in_Time_Series_Analysis/94250/1
http://figshare.com/articles/Tracking_Grazing_Pressure_and_Climate_Interaction_-_The_Role_of_Landsat_Fractional_Cover_in_Time_Series_Analysis/94250/1
http://figshare.com/articles/Tracking_Grazing_Pressure_and_Climate_Interaction_-_The_Role_of_Landsat_Fractional_Cover_in_Time_Series_Analysis/94250/1
http://figshare.com/articles/Tracking_Grazing_Pressure_and_Climate_Interaction_-_The_Role_of_Landsat_Fractional_Cover_in_Time_Series_Analysis/94250/1
https://doi.org/10.1111/j.1365-2486.2008.01626.x
https://doi.org/10.1111/j.1365-2486.2008.01626.x


Earth Observation: Data, Processing and Applications.  Volume 3: Applications

228

Verhoef, W. (1984). Light scattering by leaf layers with 
application to canopy reflectance modeling: the 
SAIL model. Remote Sensing of Environment, 16, 
125−141.

Verhoef, W. (1985). Earth observation modeling based 
on layer scattering matrices. Remote Sensing of 
Environment, 17, 165−178.

Viney, N., Vaze, J., Crosbie, R., Wang, B., Dawes, W., and 
Frost, A. (2015). AWRA-L v5.0: technical description 
of model algorithms and inputs. CSIRO, Australia.

Williams, M., Woodward, F.I., Baldocchi, D.D., and 
Ellsworth, D. (2004). CO2 capture from the leaf 
to the landscape, In Photosynthetic Adaptation: 
Chloroplast to Landscape (Eds: W.K. Smith, T.C. 
Vogelmann and C. Critchley) Ecological Studies 178, 
Springer.

Wu, J. (2013). Landscape Ecology. In Ecological 
Systems (Ed: Leemans R.). Springer, New York. 
https://doi.org/10.1007/978-1-4614-5755-8_11

Zhang, B., and Carter, J. (2018) FORAGE—An online 
system for generating and delivering property-
scale decision support information for grazing land 
and environmental management. Computers and 
Electronics in Agriculture, 150, 302–311.

Zhang, L., Walker, G.R., and Dawes, W.R. (2002). Water 
balance modelling: concepts and applications. In 
Regional Water and Soil Assessment for Managing 
Sustainable Agriculture in China and Australia (Eds: 
McVicar, T.R., Li Rui, Walker, J., Fitzpatrick, R.W., 
and Liu Changming). ACIAR Monograph No. 84. pp 
31–47. 

https://doi.org/10.1007/978-1-4614-5755-8_11


Earth Observation: Data, Processing and Applications.  Volume 3: Applications

Observing Agriculture



Earth Observation: Data, Processing and Applications.  Volume 3: Applications

In this context, ‘agriculture’ describes a land use, an activity, a segment of economics, even a 
political portfolio. In Australia, both the state and federal political systems have their own unique 
departments of agriculture. Like many other developed countries, agriculture in Australia often 
describes the demarcation between urban and rural areas. Agriculture also defines the ancestral 
origins of most Australians. 

The earliest EO sensors enabled scientists to assess, monitor, and measure plant material on 
a regular basis, with significantly more advanced sensors becoming available over time (see 
Volume 1A—Sections 12 and 13 and Volume 1B—Section 10). An overview of agriculture in Australia 
and its ongoing challenges is presented in Section 11. Subsequent sections consider the use of 
satellite, airborne and proximal EO datasets to observe vegetation in the Australian landscape for 
specific agricultural applications:

	§ monitor crop type, condition, extent, and yield (see Section 12); 

	§ model crop water use in irrigated horticulture (see Section 13); 

	§ estimate pasture biomass and growth rates (see Section 14); 

	§ assess condition and distribution of pasture species, including woody perennial vegetation, in 
rangelands (see Section 15); and

	§ observe the biomass and condition of both native forests and plantations (see Section 16).
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13 � Irrigated Horticulture� 263
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Background image on previous page: A Copernicus Sentinel image acquired on 12 August 2019 near Pingrup, WA, is overlaid by paddock boundaries defined 
by ePaddocksTM (CSIRO, 2020). This application uses artificial intelligence to segment EO imagery into farm and paddock parcels, which can then be analysed 
to determine crop type and/or yield. Source: Franz Waldner, CSIRO (Waldner and Diakogiannis, 2020) 
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The increased scales of operations on modern farms present major challenges for monitoring the water, nutrient, 
pest, and disease status of various crops to ensure that products are suited to market requirements. EO-
based forecasting of crop yield or pasture growth has become an essential part of modern agriculture, which 
enables efficient marketing and distribution of produce. This involves monitoring pest infestations and fertiliser 
requirements during growth, determining the best time to harvest crops, then managing its storage and sale. 
Reliable monitoring and forecasting—with an emphasis on Early Warning Systems (EWS)—are also critically 
important for shaping food policy and addressing food security concerns around the world (FAO, 2017).

An integrated suite of timely EO technologies is 
required at a range of scales to meet the management 
requirements of food and fibre crops in Australia. Recent 
advances in EO technologies, particularly the advent 
of Digital Earth Australia (DEA; see Volume 2D), have 
transitioned this field from a promising research tool to 
a practical management necessity for many Australian 
agricultural activities. For example, a collaborative project 
between Geoscience Australia (GA) and the Australian 
Bureau of Statistics (ABS) is merging ABS agricultural 
census/survey data (de-identified) with DEA images to 
rapidly develop regional maps of crops and land covers. 
Such maps then form an ideal basis for assessing the 
impact of natural disasters, determining crop suitability in 
changing environmental conditions, and estimating crop 
yield for financial and actuarial applications (ABS, 2020b).

An overview of Australian agricultural activities 
is presented in  Section 11.1. The remainder 
of this section reviews four pivotal topics for 
using EO datasets to map, monitor, and model 
agricultural activities both globally and in Australia, 
namely, defining essential agricultural variables 
(see Section 11.2), monitoring managed landscapes 
(see Section 11.3), understanding land degradation 
(see Section 11.4) and addressing food security 
(see Section 11.5). The following five sections describe 
EO-based methods that are being developed or 
used operationally for specific Australian 
agricultural sectors.

For about two million years humans lived by gathering, herding and hunting. Then in the space of a few 
thousand years a radically different way of life emerged based on a major alteration to natural ecosystems in 
order to produce crops and provide pasture for animals. This more intensive system of food production was 
developed separately in three core areas of the world …. and marked the most important transition in human 
history. Because it was capable of providing much greater quantities of food it made possible the evolution of 
settled, complex, hierarchical societies and a much faster growth in human population. …. By about 2000 BC 
all the major crops and animals that make up the contemporary agricultural systems of the world had been 

domesticated.  
....  

Agriculture is most definitely not an easier option than gathering and hunting. It requires far more effort in 
clearing land, sowing, tending and harvesting crops and in looking after domesticated animals. It does not 

necessarily provide more nutritious food, nor does it offer greater security because it selects and depends on 
a far smaller range of plants and animals. The one advantage agriculture has over other forms of subsistence is 

that in return for a greater degree of effort it can provide more food from a smaller area of land.  
(Ponting, 1991)

Background image: Landsat-8 OLI image over the mixed agricultural district of Kerang, Victoria, acquired on 2 July 2018. This image is displayed using bands 4, 3, 
2 as RGB and clearly differentiates irrigated and non-irrigated crops (see also Volume 2C—Excursus 11.1). Source: Norman Mueller, Geoscience Australia
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11.1  Agriculture in Australia
The mainland of Australia is the sixth largest 
continent in the world and has the dubious honour 
of being the driest, with the majority of its land area 
receiving less than 500 mm of rainfall per year (see 
Figure 2.7). Approximately 97% of the Australian 
population live outside the lower rainfall zone, that is, 
within 15% of Australia’s land area (see Figure 2.15). 
It can be easily extrapolated from these figures that 
of the whole continent (a little less than the size of 
the USA), when areas of dense urban populations 
(including the advancing peri-urban regions) are 
excluded, only a very small area remains with access 
to sustainable water reserves that is suitable for 
intensive farming. Given Australia’s hugely varied 
rainfall patterns, ranging from summer rainfall in 
the north to predominantly spring rainfall in the 
south (see Section 2.2), other factors, such as soil 
types, determine viable agricultural activities (see 
Section 2.5.2). 

Each of the 89,400 agricultural landholdings in 
Australia (ABS, 2020a), from any production sector 
and/or locality, is unique in terms of its size, soil, 
topography, climate, vegetation cover, economic 
security, and/or proximity to market. Since the 
majority of landholdings are privately owned and work 
from a low economic base, farmers and graziers are 
often obliged to rely on less expensive processes to 
improve efficiency and profitability. 

Figure 11.1  Agricultural land uses in Australia

Source: ABARES (2020b). (Retrieved from https://www.agriculture.gov.au/sites/default/files/images/agricultural-production-zones.png)

https://www.agriculture.gov.au/sites/default/files/images/agricultural-production-zones.png
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Australian agricultural areas devoted to food 
production include broad-acre cropping (cereals, 
legumes, and oil; see Section 12), irrigated horticulture 
(see Section 13), grasslands (see Section 14), and 
rangelands (see Section 15). In addition, both native 
forests and exotic plantations are managed for timber 
production (see Section 16). Just over half of the 769 
million ha of land in Australia is used for agricultural 
holdings (ABS, 2020c), of which around 87% is grazed 
(see Figure 11.1). Grazing predominantly occurs on arid 
and semi-arid native pastures, known as rangelands, 
with improved pasture only covering around 10% of 
the grazing area.

The gross value of Australian agricultural 
production in 2020/21 is estimated as $61 billion 
with approximately 75% of produce being exported 
(ABARES, 2020a). Australian agriculture accounts for:

	§ 59% of water extractions (9,434 gigalitres used by 
agriculture in 2015/16);

	§ 11% of goods and services exports in 2018/19; and

	§ 2.2% of value added (GDP) and 2.6% of employment 
in 2018/19 (ABARES, 2020b).

In 2019, the Australian Bureau of Statistics (ABS) 
reported that the Australian population exceeded 
25 million and by 2050 this number may have 
increased by 50%. In addition to the anticipated 
demand resulting from population growth in 
neighbouring countries, this population increase may 
strain the capacity of farmers to meet the projected 
domestic food requirements (see Section 11.5).

The primary source of agricultural commodity 
statistics, with a focus on aggregated production, is 
the five-yearly ABS Agricultural Census, which is sent 
to 170,000 farms whose agricultural activities have 
an estimated value exceeding $5,000. In non-census 
years, the ABS survey 30,000 farms. The Australian 
Bureau of Agricultural and Resource Economics 
and Sciences (ABARES) also survey around 70% of 
farms in the broadacre cropping, grazing and dairy 
industries each year (~2,000 farms) for detailed 
information on finances, which is extrapolated to 
produce regional, state, and national crop production 
estimates in February, June, September, and 
December (Nikolova et al., 2012). 

Amidst the goodwill towards Australia’s productive landscapes, clever farmers and strong agricultural 
research sector, there is often a lack of recognition that the underlying resource base of soils and 

biodiversity has been gripped in a cycle of decline for decades. 
(Ogilvy, 2020)

11.2  Essential Agricultural Variables
A relatively recent focus in EO considers ‘essential 
variables’ (EV), that is, a minimal, streamlined, yet 
comprehensive set of independent, constraining 
variables that can be derived from EO datasets, 
which collectively characterise the state, trend, and 
future evolution of the integrated Earth System 
(Masó et al., 2020; see Excursus 1.2) based on its 
energy and matter cycling (Whitcraft et al., 2019; see 
Section 10.2.3). EV effectively define a set of common, 
geo-referenced measurements of physical, chemical, 
and/or biological attributes that can be acquired 
on a regular basis to efficiently analyse relevant 
drivers, pressures, states, impacts, and responses 
in a range of Earth System disciplines, or ‘domains’ 
(Masó et al., 2020). 

Figure 11.2  Driving force–pressure–state–impact–response 
(DPSIR) framework

Adapted from: Mace and Baillie (2007) Figure 2 and Masó et al. (2020) 
Figure 3 
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Figure 11.3  Essential Variables in the context of UN Sustainable Development Goals

SDG: Sustainable Development Goals; EO: Earth Observation

Adapted from: Masó et al. (2020) Figure 4 

As well as maximising cost-effectiveness, 
recommended criteria for EV include being relevant to 
purpose, readily communicated to target audiences, 
and able to differentiate between measures of 
pressure, state, and response (Mace and Baillie, 
2007). The driving force–pressure–state–impact–
response (DPSIR) framework (OECD, 1993) is often 
used to construct and evaluate sets of indicators (see 
Figure 11.2). This conceptual framework classifies 
indicators as measures of pressure, state, impact, 
or response in social-environmental systems, and 
offers a convenient tool to analysing the socio-
economic impacts of anthropogenic activities on the 
environment, including causal relationships (Burkhard 
and Müller, 2008). For example, social changes 
can be viewed as drivers which apply pressure to 
the environment, resulting in impacts on people or 
ecosystems. In response, policies are introduced to 
relieve pressure and restore the desired state. Since 
indicator development is inevitably an evolutionary 
process, this framework highlights potential gaps 
in current indicator sets, enables the impact of 
changes in components and their interactions to be 
assessed, and helps to retain focus on achievable 
implementation targets (Mace and Baillie, 2007).

Existing EV include Essential Climate Variables (ECV; 
Bojinski et al., 2014; see Volume 1A—Section 1.5.2), 
Essential Ocean Variables (EOV; Moltmann et al., 2019; 
see Volume 3B), and Essential Biodiversity Variables 
(EBV: Pereira et al., 2013; see Section 19.3). These 
standardised variables have particular value for 
global monitoring applications towards the United 
Nations (UN) Sustainable Development Goals 
(SDG; see Section 20.4), such as food security 
(Patias et al., 2019; see Figure 11.3 and Section 11.5).

One of the activities of the Group on Earth 
Observation (GEO) Global Agricultural Monitoring 
initiative (GEOGLAM) is to develop a set of 
globally-relevant Essential Agricultural Variables 
(EAV) that are relevant to agricultural activities 
(Whitcraft et al., 2019; GEO, 2019). EAV will help 
standardise EO-based products for regional and 
global agricultural monitoring (see Excursus 11.1) 
and further integrate EO datasets into operational 
systems designed to reduce land degradation 
(see Section 11.4), alleviate food insecurity (see 
Section 11.5), and monitor crop condition and yield 
(see Section 12).

Resilience describes the capacity of a system to maintain its equilibrium in the face of impacts or 
pressures that arise from natural or human-made interactions or events. 'Resilience' comes from the Latin 

word 'resilire', which means to 'leap back' after adversity. A resilient system has the capacity to absorb 
disturbance and essentially retain the same function, structure and feedbacks. .... Modified ecosystems 

are generally ecologically simpler and therefore have less resilience to external pressures (eg. variations 
in climate) than complex ecosystems. 

(DEWHA, 2010)
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11.3  Monitoring Managed Landscapes
To ensure the health of both soil and vegetation, 
monitoring is an integral part of the adaptive 
management of cultivated and grazed natural 
resources. For example, EO-based systems to 
monitor pasture productivity and condition have been 
established for decades in Australia (see Excursus 14.1 
and Section 15.4). Similarly, an international, EO-based 
system, GEOGLAM RaPP (see Excursus 11.1), observes 
the condition of pastures and rangelands on a global 
scale to estimate biomass dynamics and productivity 
(see Sections 13 and 15), and reduce land degradation 
(see Section 11.4).

The ‘condition’ of land has been described as a 
concept in which “specific indicators like vegetation 
cover, production, or composition .... at a particular 
location (are compared with) the assumed potential 
for that attribute within that vegetation type or 
compared to other locations” (Friedel et al., 2000; 
see also Sections 7.2 and 7.3 above). In the context of 
rangelands for example, to monitor condition means 
“to determine to what extent human factors (e.g. 
grazing management) have caused departure from 
the assumed potential” (Bastin and Ludwig, 2006). 

Land condition is analogous to human health and the 
rating (or rank) given to an area is often subjective, 
and can be contentious (see Section 7.3). This 
uncertainty is increased in the arid rangelands where 
large fluctuations in the amount and timing of rainfall 
can produce considerable natural variation in the 
vegetation attributes used to determine condition. 
As such, it is often difficult to know which parts of 
the grazed rangelands are remaining stable, or are 
improving or deteriorating over time. Since drought 
is part of the normal climatic variation experienced 
by the Australian rangelands, land condition can only 
be assessed in these landscapes in the context of the 
variation between the episodic drought years and the 
infrequent years of high rainfall. 

Figure 11.4  Seasonal quality matrix 

This matrix summarises site level change in condition indicators 
with respect to rainfall amount. The upper left and lower right 
‘traffic light’ colours focus attention on those groups of sites 
showing change that is contrary to seasonal expectations.

Seasonal 
conditions

Decline No change Increase

Above average ~

Average ~

Below average ~

The term ‘seasonal quality’ has been used to 
indicate the relative value of rainfall to vegetation 
(Bastin et al. 2008) and can assist with understanding 
landscape change. The seasonal quality matrix 
(see Figure 11.4) focuses attention on unexpected 
change. Here, site level change based on indicators 
is interpreted with respect to recent ‘seasonal 
quality’. In this case recent seasonal conditions may 
be classified as above average, average, or below 
average, based on rainfall prior to the most recent 
assessment. A decline in indicator value following 
above average rainfall, or an increase following below 
average rainfall, strongly suggest non-rainfall related 
causes. The former is often associated with enhanced 
fire activity, while the latter suggests favourable land 
management practices. The seasonal quality matrix 
also underpins the development and application of 
EO-based methods for monitoring land condition in 
these landscapes (see Section 15).

Landscape Functional Analysis (LFA; Tongway and 
Hindley, 2004; see Section 7.3 above) was developed 
to quantify degradation and recovery in drylands. 
Its conceptual framework is the Trigger-Transfer-
Reserve-Pulse (TTRP) model (see Figure 7.3), 
which describes ecosystem function in terms of 
the transport, usage, and cycling of scarce natural 
resources (such as water, topsoil, organic matter, 
seeds) in space and/or time:

	§ triggers are climatic drivers, management 
interventions or disturbances;

	§ transfers are processes such as wind and water 
erosion that move nutrients into reserves;

	§ reserves are zones or patches (above or below 
ground) where nutrients are stored; and

	§ pulses are increased floral or faunal productivity 
resulting from the stored nutrients and available 
soil moisture.

While traditional approaches assess vegetation 
characteristics, such as composition and structure, 
LFA focuses on landscape function to understand 
the regulation of resource outputs versus inputs 
and internal feedbacks (Reinhart, 2009). The 
loss of resources from the landscape, such as 
by erosion or runoff, indicates its ‘leakiness’ (see 
Sections 7.3 and 8.1.6), whereas gains in resources 
may indicate increased capacity in its ‘reserve’ zones, 
possiby due to successful restoration activities, 
and therefore a more tightly coupled system. The 
distribution of reserve zones in dryland landscapes 
is characteristically patchy and discontinuous with 
different resources occurring at different patch scales 
in both space and time (Tongway and Hindley, 2004). 
These concepts are further explored in Section 15. 
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Excursus 11.1�—GEOGLAM RaPP

Source: Guerschman et al. (2018) 
Further information: https://www.geo-rapp.org 
Reporting tool: https://map.geo-rapp.org/

An integrated system for observing the condition of 
Earth’s pastures and rangelands is being established 
by the Group on Earth Observation (GEO) Global 
Agricultural Monitoring initiative (GEOGLAM; see 
Section 21.3). In particular, the GEOGLAM Rangeland 
and Pasture Productivity (RaPP) aims to enable the 
condition of rangelands and pasture lands to be 
monitored routinely at global, regional, and national 
scales, with the goal of estimating biomass dynamics 
and productivity. The Australian component of this 
system uses MODIS imagery to map fractional cover 
(FC: photosynthetic vegetation, non-photosythetic 
vegetation, and bare soil) on a monthly basis at 500 m 
spatial resolution (see Excursus 8.3). In regions with 
< 20% trees cover, ground cover can be represented 
as the sum of photosynthetic and non-photosynthetic 
vegetation, or the total vegetation cover (see Figure 5.1). 

These EO-based products extend the community-
based work of Leys et al. (2008) in NSW in the 
development of the DustWatch program, which 
monitors wind erosion risk (see Section 11.6). Much 
of Australia’s agricultural land has a significant risk 
of wind erosion (see Section 11.4), which can result 
in localised loss of soil and nutrients and a reduction 
in regional air quality (see Figure 11.5). Water erosion 
on hillslopes is also a risk in some rangeland and 
cropping regions, with subsequent impact on water 
quality. One of the primary factors in controlling soil 
erosion is the retention of a protective cover layer 
over the soil surface, including vegetation, litter, 
biological crusts, and stones. To avoid wind erosion, 
more than half the soil surface needs to be covered 
(Leys, 1991), while to prevent water erosion, over 
70% ground cover is required (Lang, 2005). Thus, 
higher levels of total vegetation cover can be used to 
indicate lower soil erosion risk. 

A range of spatial datasets are integrated by RaPP 
(see Table 11.1 and Leys et al., 2020) to provide 
interactive tools that can be applied to a defined 
region, including:

	§ change in ground cover for a defined time interval;

	§ time series plot of mean ground cover; and

	§ statistical comparisons of current ground cover 
with previous conditions and ‘normal’ state.

These tools assist users to visualise changes in total 
vegetation cover and distribution through time at a 
variety of scales over the entire Australian land mass.

The main objective of GEOGLAM is to reinforce the 
international community’s capacity to produce and 

distribute relevant, timely, and accurate information on 
agricultural land use and production at national, regional, 

and global scales, using Earth observation (EO) data, 
toward enhancing knowledge and improving sustainable 

decisions related to agriculture and food security. 
(GEO, 2019)

Table 11.1  RaPP spatial datasets

FC: Fractional Cover; TV: Total Vegetation; GC: Ground Cover; 
PGC: Persistent Ground Cover; CHIRPS: Climate Hazards Group 
InfraRed Precipitation with Station data (https://www.chc.
ucsb.edu/data/chirps); CLUM: Catchment scale Land Use for 
Australia (see Section 3.3.4 and 3.5); 

Data type Source Description

EO time 
series

MODIS Fractional Cover 
(FC)

Monthly (FC, TV, TV 
anomalies, TV deciles)

8-day (FC, TV)

Seasonal Landsat/Sentinel 
FC

Landsat (FC, GC, PGC—
see Section 9.1)

Sentinel-2 (FC)

Climate Rainfall 
Totals (CHIRPS), 
Monthly anomalies

Land use 
and land 
cover

CLUM (2017) See Section 3.3.4

Land use of Australia National scale (2010–11)

Ramsar wetlands See Volume 3B

IBRA 7.0 regions and 
subregions

See Sections 2.4 and 
3.3.2

Collaborative Australian 
Protected Areas Database 
(CAPAD)

CAPAD (2018)

Major vegetation subgroups NVIS (see Section 2.3.1)

Vegetation height and 
structure

See Excursus 6.1

Boundaries

Australian rangelands See Section 15

NRM regions 2017 See Section 3.4

Local Government Areas 
2016

Australian Bureau of 
Statistics

Census Mesh Blocks 2011

State Suburbs (SSC) 2016

Census Statistical area level

River regions Bureau of Meteorology 

Source: Guerschman et al. (2018) Table 2; see also Leys et al. (2020)

https://www.geo-rapp.org
https://map.geo-rapp.org/
https://www.chc.ucsb.edu/data/chirps
https://www.chc.ucsb.edu/data/chirps
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Land degradation is actually generally a slow process therefore it’s the cumulative impact of both rapid 
and prolonged effects that cause land degradation. Perennial woody vegetation such as trees and shrubs 

generally change over periods of months, years or decades; except when major disturbance events 
occur such as fire, cyclones or land clearing. The non-woody ground cover is generally more dynamic 
and can change over much shorter time periods (e.g. weeks to months), in response to rainfall events 

and land management practices such as grazing and cropping. It can therefore be a useful indicator of 
land management, particularly if it is understood in the context of local or regional climate patterns and 

landscape variability (i.e. soil types and landform pattern).  
(Guerschman et al., 2018)

11.4  Land Degradation
At a global scale, land degradation is not a new 
problem (see Excursus 11.2). In Australia, the majority 
of  agricultural lands have been actively degraded 
since European settlement and this trend still 
continues in parts of the country. The challenge 
now is to learn from history before it is too late (see 
Section 21).

Wind and water erosion continually relocate soil 
in Australia, with soil erosion rates due to water 
exceeding the rate of soil formation by orders of 
magnitude. Soil erosion on Australian cropping land 
has been assessed as unsustainable (Bui et al., 2010), 
delivering excessive volumes of sediments and 
nutrients to inland and coastal watercourses 
and waterbodies. Wind erosion removes topsoil, 
sometimes in sufficient volume to create dust 
storms (see Volume 1B—Section 4), which present 
a significant hazard to human health, vegetation, 
infrastructure, and aviation, and inflict substantial 
economic costs to the affected communities (Tozer 
and Leys, 2013; see Figure 11.5). Since bare land 
is most susceptible to soil loss from both agents, 
the first step towards controlling this problem 

involves retaining ground cover on grazing lands 
and minimising soil disturbance on cropping 
land (SOE, 2016a). Both local systems such as 
DustWatch (Leys et al., 2018) and global systems 
such as GEOGLAM RaPP (see Excursus 11.1) 
utilise EO datasets to monitor potential and actual 
erosion. Meteorological datasets and models are 
also instrumental in understanding dust transport 
pathways in Australia and developing a dust trajectory 
climatology (O’Loingsigh et al., 2017). 

Despite this erosion potential, an estimated 35% of 
Australian agricultural land is currently overgrazed 
and/or over-cultivated (Ogilvy, 2020). While drought—
like fire (see Section 18)—is a characteristic of the 
Australian landscape, when coupled with overgrazing 
the resulting environmental degradation can be 
long term (Hendy et al., 2003; see Section 15). For 
example, McKeon et al. (2004) document and analyse 
eight extended droughts up until the end of the 20th 
century that occurred in different parts of Australia 
(see Table 11.2), each of which resulted in significant 
land degradation. 

There is an intimate relationship between the landscape, its geological and climatic history, weathered 
and transported soil types, groundwater and the hazard posed by salt load within the soil.  

(Spies and Woodgate, 2005)
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Excursus 11.2�—Learning from History

Source: Ponting (1991), Carson (1962)

To be ignorant of what occurred before you were born is to always remain a child. For what is the worth 
of human life, unless it is woven into the life of our ancestors by records of history. 

(Marcus Tullius Cicero)

Ecosystems provide a variety of essential resources for 
human inhabitants, primarily food, water, clothing, shelter, 
and energy (see Section 20.3). However, humans are a 
unique species—they have spread into every ecosystem 
on Earth, yet repeatedly demonstrate the capacity to 
destroy the ecosystems that support them. History offers 
numerous examples of societies that have developed, 
flourished, specialised, foundered, then collapsed as a 
result of overexploitation, mismanagement, degradation, 
and/or pollution of their available natural resources 
(including other humans). This sequence has played out 
to different extents and over different time periods—
largely depending on the resilience of the natural 
ecosystem—all around the globe, most notably in 
Mesopotamia, the Indus Valley, ancient Egypt, the Maya, 
and Easter Island (Ponting, 1991). 

Agricultural practices change natural ecosystems 
by clearing land, introducing new species, exposing 
soil to erosion, changing nutrient recycling, and 
possibly developing irrigation methods (Asner et al., 
2004). Agriculture necessitates settled communities 
and population growth, which generally requires 
further clearing of forests for construction and 
fuel. To support these communities, additional 
mechanisms are then needed to supply water, dispose 
of wastes and revitalise the soil between crops. This 
transformation from natural to managed ecosystems 
has intensified in recent centuries, with the support 
of technological advances in machinery for clearing 
and tilling land, and the availability of an increasing 
array of chemical agents to promote the growth of 
food plants and animals and discourage pests and 
disease (Ramankutty et al., 2018). Such agents include 
artificial fertilisers, insecticides, herbicides, and 
soil treatments, which deliver short term economic 
benefits, but their longer term cost—in terms of 
pollution, species depletions, human health, water 
quality, and disruptions to the food web—is still being 
accounted (Carson, 1962). 

Environmental degradation is not a new problem for 
human communities, but it is now becoming more 
widespread and more urgent on a global basis (see 
Sections 19 and 20). Recent understanding of the 
processes of degradation are prompting effective 
control of this problem in some parts of the world, 
including Australia (McKeon et al., 2004). For example, 
since the mid-1900s, soil erosion has declined in many 
regions due to better land management practices, 
including control of feral animals, rotational grazing, 
minimum tilling, regenerative agriculture, and a focus 
on sustainable development. 

EO is playing a key role in optimising the use of 
agricultural chemicals through precision farming and 
avoiding over-grazing through programs such as 
GEOGLAM RaPP (see Excursus 11.1). A range of spatial 
technologies now provide essential information to 
farmers and bureaucrats to guide their stewardship of 
land resources in both tactical and strategic decisions 
at a range of scales in time and space. EO datasets 
are also being used to monitor the global status of 
terrestrial vegetation across a range of application 
areas (see Section 21). Hopefully, these examples 
demonstate that we have started to learn from history.

What has been, that will be; what has been done, that will be done. Nothing is new under the sun. 
(Book of Ecclesiastes 1:9)
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Figure 11.5  Dust storm

This landscape view of the approaching ‘Red Dawn’ dust storm was taken around 1 pm on 23 September 2009 at Kars Station, 60 km 
east of Broken Hill, NSW. Red dust that had been collected in central Australia was quickly transported across the continent leading 
to an estimated loss of 2.54 Mt of soil (Leys et al., 2011). Along the eastern coastline the plume extended in a 3000 km swath, from 
the Gulf of Carpentaria, Queensland, to Eden, in southeast NSW (see Volume 1B—Figure 4.6b). Red Dawn ultimately shrouded an 
area spanning 840,000 km2, significantly reduced air quality (with a total dust load between 12.1 Mt and 17.5 Mt), and resulted in an 
estimated cost of A$299 million to NSW (Tozer and Leys, 2013). 

Source: Fred Hughes, Kars Station

To mitigate the impact of drought in impoverished 
communities, insurance schemes based on EO 
analyses have been developed for Africa, such as 
Index-based Livestock Insurance (IBLI). For example, 
since 2010, the International Livestock Insurance 
Institute (ILRI) have offered index-based insurance 
to protect vulnerable pastoralists from asset losses 
related to climatic conditions, particularly those 
located in drought-prone, arid and semi-arid lands in 
Kenya and Ethiopia (ILRI, 2020). ILRI relies on Early 
Warning Systems (EWS; see Section 12.3), which use 
EO and meteorological datasets to predict natural 

disasters such as drought (CTA, 2018). Based on 
historical trends, the index approach uses NDVI 
imagery to highlight years when forage will be 
inadequate for stock. By allowing farmers to claim 
assistance through dry seasons they avoid grazing 
dry soils and thereby increasing erosion, so conserve 
the natural resources for better growing seasons 
in the future. This approach also discourages the 
consumption of seed reserves or breeding stock in 
lean years, which would ultimately intensify poverty 
into the future (Barnett and Mahul, 2007).

Table 11.2  Eight extended droughts in Australia

In each case the start of the drought period is defined as the first year with rainfall less than 70% of the mean.

Period Location Environmental Impact Social/Government Consequence

1898/99 to 
1902/03

Western NSW
Soil erosion, woody weed infestation, rabbit 
plagues

Substantial financial losses and financial hardship 
resulting in the Royal Commission of 1901

1925/26 to 
1929/30

South Australia and 
Western NSW

Substantial loss of perennial vegetation and soil 
erosion

Government legislation for regulation of carrying 
capacity and soil conservation

1935/36 to 
1940/41

Gascoyne region of 
Western Australia

Substantial loss of perennial shrubs, soil erosion 
and animal losses

Royal Commission of 1940

1941/42 to 
1944/45

Western NSW Substantial dust storms and animal losses Paintings (Russell Drysdale)

1958/59 to 
1965/66

Central Australia Wind and water erosion 
Extensive surveys and reassessment of carrying 
capacity

1964/65 to 
1967/68

Western NSW Large increases in woody weeds Reduced carrying capacity and income in 1960s

1964/65 to 
1967/68

Southwest 
Queensland

Soil erosion and woody weed infestation
Government-sponsored Southwest Strategy supporting 
review of recommended carrying capacities and 
property amalgamation

1984/85 to 
1987/88

Northeast 
Queensland

Soil erosion and loss of ‘desirable’ perennial 
grasses

Extensive government-sponsored surveys and dramatic 
grazier response

Adapted from: McKeon et al. (2004) Table 1
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Table 11.3  Total economic value of ecosystem services

Value Type Examples

Use

Direct Agricultural produce, fuel, transport

Indirect Flood mitigation, pollination, pest control

Option Genetic resources with potential future value

Non-
use

Existence Value of existence of other species

Bequest
Value of functional ecosystem to future 
generations

Source: DEWHA (2010) Box 4

A significant soil degradation problem in Australia 
is salinity. Anthropogenic salinity is not a new 
problem globally however, having occurred in ancient 
agricultural settlements, such as Mesopotamia, and 
contributed to the demise of numerous civilisations 
(Jacobson and Adams, 1958; see Excursus 11.2). 
Salinity occurs when water tables rise to ground 
level and bring natural salts to the soil surface. In 
addition to some naturally saline land, vegetation 
clearing and inappropriate irrigation have induced 
salinity problems in several regions of Australia. 
Salinity reduces water and soil quality and can 
lead to reduced biodiversity of both plants and 
invertebrates in low lying agricultural lands (Beresford 
et al., 2001; Clarke et al., 2002). In the most recent 
comprehensive survey (NLWRA, 2001), dryland (non-
irrigated) salinity affected 5.7 million ha in Australia, 
primarily in southwest WA and Victoria, and this is 
expected to increase to 17 million ha by 2050 (SOE, 
2016b). Globally, soil salinity is estimated to impact 
nearly 1 billion ha, or around 7% of the land surface, 
especially in arid and semi-arid regions (Ghassemi 
et al., 1995), and at least 20% of irrigated land 
(Pitman and Läuchli, 2002). A number of EO-based 
approaches have been proposed to map and monitor 
salinity using sensors that detect electromagnetic 
radiation (EMR), electromagnetic induction (EMI), and 
geophysical attributes (see Volume 1A—Sections 5–9), 
with an emphasis on data fusion and data integration 
methods, and adequate ground truthing (Metternicht 
and Zinck, 2003; Spies and Woodgate, 2005). 

Soil acidification is an even more widespread problem 
than salinity, due to the use of agricultural fertilisers 
on light soils with low pH, which can lead to unhealthy 
changes in soil biota, increased leaching of selected 
nutrients, loss of clay particles, erosion, and reduced 
Net Primary Productivity and carbon sequestration. 
Acid soils are more likely to release heavy metals 
into watercourses and the food chain, and increase 
siltation and eutrophication of waterbodies (see 
Volume 3B). NLWRA (2001) estimated that around 
50 million ha of Australia’s agricultural land and about 
23 million ha of subsoil are affected by soil acidity, 
with most of these areas occurring in WA and NSW 
(SOE, 2016b). 

The concept of ecosystem services, that is, the 
services that ecosystems deliver to human society, 
is described in Section 7.3. The total economic 
value of ecosystem services includes both use 
and non-use values (see Table 11.3). For example, 
a study of the relationship between soil condition 
in Australian agricultural lands, their management 
practices, and the ecosystem services they provide 
(Cork et al., 2012), concluded that the practices of 
increasing soil carbon, reducing surface soil acidity, 
and maintaining ground cover on agricultural soils 
not only improved financial returns from agricultural 
activities, but also resulted in fewer dust storms, 
cleaner water from catchments, less reliance on 
agricultural chemicals, and an enhanced ‘sense of 
place, mental wellbeing and acquisition of knowledge’. 

Monitoring in drylands used primarily for commercial and subsistence livestock operations, typically 
concentrates on indicators related to plant-herbivore interactions and soil stability in relation to 

trampling. Most monitoring in drylands concentrates first on vegetation attributes and secondarily on 
soils attributes where vegetation attributes, such as cover, usually serve as a proxy for soil attributes, 

such as soil erosion. This is due to an observed negative linear correlation between declining vegetation 
cover and increased erosion. Assessment requires time series data of the drivers of change, including 

human and herbivore population and demographics, climate, and fire data. 
(Washington-Allen and Ravi, 2012)
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11.5  Food Security
Food security is not a new problem. For most of 
human history, the majority of the world’s population 
has lived on the brink of starvation, with high rates of 
infant morality, short lifespans, ongoing malnutrition, 
and the recurrent dangers of famine and disease. 
Some fortunate societies have only managed to 
escape this lifestyle in recent centuries, mostly by 
exploiting the resources of colonies (Ponting, 1991). 

Of the Earth’s total land surface (13.2�109 ha), 
just over half (7�109 ha) is considered arable 
(Zaman et al., 2018). However, as land degradation 
reduces the area of arable land around the world, less 
land is available to grow food (see Section 11.4). In 
the face of growing population pressures—and the 
need for land for other purposes—we are faced with 
a situation where more food is required but less land 
is available to grow it. This situation simply repeats 
the pattern of demise witnessed in many civilisations 
throughout human history (see Excursus 11.2).

The UN defines food security as the global situation 
“when all people, at all times, have physical, social 
and economic access to sufficient, safe and 
nutritious food that meets their dietary needs and 
food preferences for an active and healthy life” 
(FAO, 2020a). Despite food being a basic human need 
and right, around 10% of the world’s population have 
inadequate food supplies on a daily basis. At the same 
time, current estimates indicate that up to 30% of all 
food produced is lost or wasted. In this context, losses 
can occur at each stage in the supply chain between 
the grower and the consumer (FAO, 2020a). Thus 
food security involves more than just food availability, 
but also access to, utilisation of, and stability of food 
supplies:

	§ availability—food supply and trade, not just 
quantity but also the quality and diversity of 
food. Improving availability requires sustainable 
productive farming systems, well-managed natural 
resources, and policies to enhance productivity.

	§ access—economic and physical access to food. 
Improving access requires better market access 
for smallholders allowing them to generate more 
income from cash crops, livestock products, and 
other enterprises.

	§ utilisation—how the human body uses the various 
nutrients in food. Improving utilisation requires 
improving nutrition and food safety, increasing 
diversity in diets, reducing post-harvest loss, and 
adding value to food.

	§ stability—being food secure at all times. Food 
insecurity can be transitory due to weather, 
employment, conflict, and market fluctuations. 
Social networks can play an important role 
is supporting people through transitory food 
insecurity (AIFSRC, 2014).

Australia is currently one of the lucky nations, 
producing far more food than it consumes, and 
only importing around 10% of consumed food and 
beverages (ABARES, 2020c). As such it enjoys the 
status of being ranked as “the world’s equal lowest 
level of undernourishment” (ABARES, 2020c based on 
FAO, 2020b). However, 4% of Australians are viewed 
as food insecure (Lindberg et al., 2015), including 
children (McCrindle, 2017), with an increasing number 
of diet-related problems becoming apparent in 
the wider population (Farmar-Bowers et al., 2013). 
Recommendations to improve food security in 
Australia include:

	§ improving efficiency in food production, processing, 
and distribution; 

	§ reducing wastage and minimise costs; and

	§ encouraging greater productivity in agriculture and 
food processing (PMSEIC, 2010).

In addition to the land degradation factors described 
above that are directly related to agricultural 
activities, land use pressures from a growing 
population are also actively shrinking the area of 
land available to agriculture in Australia. Despite only 
6% of Australian landscapes being deemed suitable 
for cultivated crops and pastures, these areas are 
also considered to be the most appropriate for 
energy production and other developments. Urban 
encroachment, mining, conservation, and other land 
uses have already reduced the area of productive 
land in Australia by 9% in the last two decades 
(Ogilvy, 2020). If we continue to degrade the available 
agricultural resource and allocate productive land 
for other land uses, food security will become a more 
urgent problem for our nation. 

Wealth and vegetation go together, and that exacerbates environmental injustice.  
The poor bear the burden of degraded environments.  

(Natalie Jeremijenko)
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Soil is a non-renewable resource, its preservation is essential for food security and our sustainable future.  
(FAO) 

At a global level, much effort is being expended to 
increase and monitor food production. FAO (2009) 
estimated that to feed the world’s population by 
2050, we will need 70% more food (AIFSRC, 2014). 
Recommendations to avoid increased inequality, 
energy usage, and land degradation globally, 
have included trading safety nets, appropriate 
environmental policy, and consumer education (Martin 
and Laborde, 2018). By delivering information on 
global agricultural production that is timely, objective, 
and repeatable, EO datasets are contributing to 
numerous efforts to both improve food security (e.g. 
Song et al., 2017; see Section 12.3) and reduce disaster 
risk (see Section 11.4). For example, the Vegetation 
Health Index (VHI; see Section 9.5) underpins several 
monitoring systems being used to ensure future food 
security (Kogan, 2019). 

With food security being one of the UN SDGs (see 
Section 20.4), a number of global, EO-based systems, 
such as the CropWatch system (Wu et al., 2014), have 
been developed towards this goal. These systems 
continually monitor food crops and provide early 
warning of potential food crises (see Section 12.5). 
EWS rely on EO datasets to detect signs of looming 
drought and flood conditions, often in conjunction 
with financial relief schemes, such as IBLI (see 
Section 11.4). Such schemes alleviate current hardship, 
avoid extending food security ramifications into future 
seasons, and reduce the potential for further land 
degradation. 

One aspect of food security that is often overlooked 
is the essential ecosystem service of pollination 
(see Section 20.3 and Table 20.6). Since nearly 90% 
of wild flowering plants require animal pollination 
(particularly by wild pollinator species), pollinators 
not only sustain biodiversity and ecosystem functions 
that help to stabilise the biosphere (see Volume 1A—
Section 4.1.4), but their abundance and diversity also 
impacts crop yield and/or quality (Kearns et al., 1998; 
IPBES, 2017). 5–8% of global food production relies 
on pollination services and around 75% of food crops 
are directly impacted by animal pollination, with these 
crops supplying an estimated 35% of the global food 
stock (Klein et al., 2007; Potts et al., 2016). While 
recent decades have seen a significant increase 
in the cultivation of pollinator-dependent crops 
(Aizen et al., 2009), the yield of these crops has 
increased at a lower rate than that of other crops and 
also demonstrated greater variability (based on FAO 
data for 1961–2008; Garibaldi et al., 2011). 

A wide range of studies suggest that the populations 
of pollinators—both wild and managed—are declining. 
Potential reasons for this decline include the direct 
and indirect impacts of both agricultural chemicals 
and genetically modified crops on pollinators, 
biodiversity loss (see Section 19), and climatic 
variability (IPBES, 2017). While EO is currently used 
to monitor related indicators of pollination, such as 
crop health and production, regional biodiversity, and 
remnant habitat extent, it could also be used to gain 
insight into pollination services (Galbraith et al., 2015), 
as well as the interactions between pollination and 
plant health, and their impacts on the spatial and 
temporal variability of yield in pollinator-dependent 
crops (Willcox et al., 2018).

On some estimates, there is almost 20% more food available per person now than there was three 
decades ago, nearly 30% more calories per person per day than necessary, and as much as one third of 

food produced globally (1.3 billion tonnes) is lost or wasted each year. 
(Ogilvy et al., 2015)
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11.6  Further Information

Global EO-based Agricultural Statistics
GSARS (2017). Handbook on Remote Sensing for 

Agricultural Statistics. Global Strategy to improve 
Agricultural and Rural Statistics, Rome.

GSARS (2015). Handbook on Master Sampling Frames 
for Agricultural Statistics: Frame Development, 
Sample Design and Estimation. Global Strategy 
to Improve Agricultural and Rural Statistics, UN 
Statistical Commission, Rome. http://gsars.org/wp-
content/uploads/2016/02/MSF-010216-web.pdf

Erosion in Australia
NSW Community Dustwatch: https://www.environment.

nsw.gov.au/topics/land-and-soil/soil-degradation/
wind-erosion/community-dustwatch 

Soils for Life: https://soilsforlife.org.au/

Food Security in Australia
Clancy and Lesslie (2013)

Australian Department of Foreign Affairs and Trade: 
https://www.dfat.gov.au/aid/topics/investment-
priorities/agriculture-fisheries-water/agriculture-
food-security/Pages/agriculture-food-security-
initiatives

International Food Sustainability
GEOGLAM Rangeland and Pasture Productivity 

(RaPP) tool: 

Australia: https://map.geo-rapp.org/#australia

Global: https://www.geo-rapp.org

Information: https://www.csiro.au/en/Research/LWF/
Areas/Landscapes/Earth-observation/RAPP-Map-
GEOGLAM

CropWatch reports: http://www.cropwatch.com.cn/htm/
en/index.shtml

Crop Monitor: Cropmonitor.org

SERVIR: http://servir.rcmrd.org/

EO4SD (Earth Observation for Sustainable 
Development) is a new ESA initiative which aims to 
achieve a step increase in the uptake of satellite-
based environmental information in the IFIs regional 
and global programs: https://eo4sd.esa.int/

World Food Studies—WOFOST: https://www.wur.
nl/en/Research-Results/Research-Institutes/
Environmental-Research/Facilities-Products/
Software-models-and-databases/WOFOST.
htm#:~:text=WOFOST%20(WOrld%20FOod%20
STudies)%20is,production%20of%20annual%20
field%20crops.&text=In%20the%20Global%20
Yield%20Gap,available%20soil%20and%20water%20
resources.
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12  Crops

Barbara Harrison and Graham Donald

This section focuses on the use of EO datasets to map and monitor food crops, both in Australia and globally. 
EO technologies now feature in the management of a wide range of Australian crops, including cereals, 
legumes, vegetables, fruits, nuts, and other seeds. 

As introduced in Section 10.2.2, Crop Simulation 
Models (CSM) simulate the growth, development and 
yield of crops as a function of soil conditions, weather 
and management practice (Hoogenboom et al., 2004). 
These models allow observations at specific ground 
sites to be extrapolated temporally to improve 
our understanding of the interactions between 
physiological processes and agronomic activities. 

In conjunction with historical yield datasets and 
meteorological records, CSM can be used to estimate 
yield for larger areas (see Section 11.2). EO-based 
datasets are increasingly being integrated with CSM 
to derive surrogates of crop growth, such as Leaf Area 
Index (LAI) (see Section 6.3.3). Some of the methods 
used to achieve this integration are reviewed in 
FAO (2017). 

Forecasting crop production (and crop yield in particular) has been a constant concern since the 
beginning of the history of agriculture. Forecasting techniques have evolved, as has agriculture itself 

and the specifications of the forecasts needed. Those who use forecast data are always seeking greater 
accuracy, granularity, comparability, and timeliness. Those who produce the data or contribute to their 

production always operate under financial and technical constraints. Obtaining timely knowledge 
presents a very real challenge. 

(FAO, 2016)

12.1  Crops in Australia
Weather and climatic conditions split the Australian 
continent into two growing regions (northern and 
southern) and two growing seasons (summer and 
winter) for crops (see Figure 2.6, Figure 2.10 and 
Figure 2.11). The northern region, which spans central 
and southern Queensland and northern NSW, has 
summer rains, so grows a dryland summer crop 
(sorghum, sunflowers, maize, mungbeans, soybeans, 
cotton, and peanuts) in addition to a winter crop 
(wheat, barley, oats, chickpeas, triticale, faba beans, 

lupins, field peas, canola, millet/panicum, safflower, 
and linseed). Southern regions, including central NSW 
to Victoria, Tasmania, southern SA and southwest WA, 
have a Mediterranean climate with dry summers and 
winter rainfall. These areas principally grow winter 
crops (wheat, barley, oats, triticale, cereal rye, lupins, 
field peas, canola, chickpeas, faba beans, vetch, lentils, 
and safflower) and require irrigation for summer crops 
(rice and maize; Australian Grain, 2019a).

Background image: Canola crop near Kojonup, WA, photographed on 28 February 2013. Source: Keith Lightbody, Wikimedia Commons. (Retrieved from https://
commons.wikimedia.org/wiki/File:Canola_crop_near_Kojonup.jpg)

Recommended Chapter Citation: Harrison, B.A., and Donald, G.E. (2021). Crops. Ch 12 in Earth Observation: Data, Processing and Applications. Volume 3A—
Terrestrial Vegetation. CRCSI, Melbourne. pp. 249–262.

https://commons.wikimedia.org/wiki/File:Canola_crop_near_Kojonup.jpg
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An area covering 19 million ha was planted to cereal, 
legume and oil crops in Australia during 2018, which 
produced a total of 33 million tonnes (Australian 
Grain, 2019b)9. Over half of this area grew wheat, 
which delivered around 3% of global production. 
Wheat is a major export crop for Australia, with only 
about 30% of production being destined for the 
domestic market (AEGIC, 2020). 

The horticultural industry in Australia produces 
fruit, vegetables, nuts, flowers, turf, and nursery 
products for both domestic and international 
markets (DAWR, 2016). Horticulture comprises the 
second largest rural production industry after wheat 
(AuSHS, 2019), with the major crops by area being 
grapes, apples, bananas, and potatoes (Nikolova et al., 

9	 Please note: The 2018 cropping area was below the average of 22 million ha due to a prolonged drought.

2012). The major horticulture growing areas are 
located in the naturally well-watered and/or irrigated 
locations of:

	§ Goulburn Valley of Victoria;

	§ Murrumbidgee Irrigation Area of New South Wales 
(NSW);

	§ Sunraysia district of Victoria and NSW;

	§ Riverland region of South Australia;

	§ northern Tasmania;

	§ southwest Western Australia; and

	§ coastal strips of both northern NSW and 
Queensland (DAWR, 2016; see Figure 11.1).

12.2  EO Sensors for Crops
A range of platforms (proximal, airborne and 
spaceborne; see Volume 1A—Sections 10–12) and 
sensors (active and passive; see Volume 1A—
Sections 13–16 and Volume 1B—Sections 6–8) 
are being used to observe terrestrial vegetation. 
The EO datasets acquired by these sensors vary 
in terms of their spectral, spatial, radiometric, and 
temporal resolutions, densities and extents (see 
Volume 1B—Section 1) and fidelity (see Volume 1B—
Section 2.1). Some characteristics of EO sensors 
that are relevant to studies of agricultural crops are 
summarised in Table 12.1. As with all EO analyses, 
validation of results using independent datasets is 

essential (see Volume 2D—Section 12 and Volume 2E). 
Recommended validation procedures to use with EO 
datasets are detailed in TERN Australia (2018) and 
Malthus et al. (2013).

The major EO sensors used to map and monitor 
agricultural crops have traditionally detected optical 
reflectances. The most commonly used approaches 
for mapping vegetation biomass fundamentally detect 
the differences between red and near infrared (NIR) 
reflectance (see Section 8.1.1). EO-based estimates of 
ET are also used to monitor irrigation requirements 
(Abuzar et al., 2019; see Sections 9.4, 9.5 and 13). 

Table 12.1  EO sensors relevant to crops

TIR: Thermal infrared: SAR: Synthetic Aperture Radar; DEM: Digital Elevation Model; ET: Evapotranspiration

Type Sensor Platform Relevance Advantages Disadvantages

Passive 
optical

Multispectral 
radiometer

Satellite or 
airborne

National or regional land 
cover mapping 

Global, recurrent 
coverage, low cost;

Low accuracy, coarse 
scale

Hyperspectral 
spectroradiometer

Airborne

Crop mapping, intensive 
agriculture 

Plant biochemical 
functioning and health

High spectral resolution, 
highlight plant stress

High cost, high data 
volume

TIR radiometer
Field, satellite or 
airborne

Soil/canopy temperature, 
water stress

Surrogate measure 
for ET

Resolution depends on 
platform

Active 
optical

Lidar
Airborne and 
terrestrial

Crop structure 

DEM

Detailed structure for 
plant canopy and soil 
surface

High cost, specialised 
processing

Active optical sensors
Ground vehicles 
or RPAS

Crop cover and condition 
mapping

Convenience, low cost, 
independent of sunlight

Low availability

Active 
microwave

SAR
Satellite or 
airborne

Vegetation structure, soil 
moisture

All weather, operates at 
night

Data availability, noisy 
data, complex processing

Proximal

Passive optical 
sensors (phenocam, 
hyperspectral), 
meteorological 
sensors (including soil 
moisture)

Ground, tractor 
or tower-based 
(see Excursus 7.2 
and Volume 2D—
Section 12)

Soil, crop, and atmospheric 
variability, 

Phenology

Continuous, long term 
measurements

High cost and require 
skilled maintenance

Locational GPS Portable devices Locating field sites Low cost
Coverage in remote 
regions or below dense 
canopies
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SAR sensors detect characteristics of both soil and 
vegetation (see Volume 1B—Section 8). Satellite-
based SAR is used to monitor agricultural and land 
cover practices at both global and regional scales, 
assess soil moisture status, and quantify plant 
biomass (Zhou et al., 2016). Multi-temporal datasets 
of integrated optical and SAR imagery have delivered 
operational inventories of major crops in Canada for a 
range of cropping systems (McNairn et al., 2008). 

Cereal crops in Australia cover thousands of hectares 
so are often mapped using satellite imagery whereas 
horticultural crops are grown in smaller areas and 
generally require imagery acquired by aircraft. The 
principal satellite sensors that are used for crop 
mapping and yield estimation are Landsat, MODIS, 
and Sentinel, all of which are broadband optical 
sensors with adequate spatial coverage and temporal 
frequency (see Section 11.2). Accurate monitoring 
of crop nutrition has been demonstrated using 
airborne hyperspectral imagery (see Section 9.6 
and Volume 1A—Section 14; Pullanagari et al., 2016), 
which is particularly valuable for varying fertiliser 
applications in precision agriculture (Cilia et al., 2014).

Traditional EO-based monitoring of agricultural 
vegetation observes crop greenness and temperature 
as indicators of biomass, vigour, and water stress (see 
Sections 8 and 9 above). More recent approaches 
focus on nutrient status, principally nitrogen, but 
also phosphorus and potassium (see Section 5.3.5 
and 9.6). Aerial and ground-based gamma radiometry 
have also been trialled for mapping soil properties 
(Hall et al., 2014; see Volume 1A—Section 6). New 
proximal sensors, such as soil pH sensors and 
Electromagnetic Induction (EMI) sensors, are also 
being deployed to monitor the impact of soil condition 
on crops. By mapping the apparent electrical 

conductivity, electromagnetic induction (EMI) sensors 
(such as EM38) can be used to highlight the spatial 
variations in clay, salt, and moisture content of soils 
(Stanley et al., 2014; Heil and Schmidhalter, 2017). 

A range of active and passive sensors that are 
being used for precision agriculture are reviewed 
in Suarez et al. (2018). Other digital innovations 
being embraced by precision agriculture, such as 
using Variable Rate Technology (VRT) rather than 
the traditional uniform application of fertilisers, are 
designed to control the efficient use of inputs for 
maximised outputs (see Section 12.6). Terrestrial 
Laser Scanning (TLS) and Airborne Laser Scanning 
(ALS) have also been successfully trialled for 
mapping tree structure in avocado, macadamia, and 
mango orchards in Australia (Wu et al., 2020; see 
Excursus 5.1). 

An increasing number of growers are using unmanned 
aerial vehicles (UAV, commonly called drones; see 
Volume 1A—Section 11.2), carrying multispectral, 
hyperspectral, and thermal sensors, to monitor the 
health, nutrient status, and yield of horticultural crops 
(see Section 11.5). Since these platforms are typically 
flown at low altitude for agricultural applications, the 
acquired sensor measurements are minimally impacted 
by atmospheric effects. UAV-acquired datasets are 
also being used to ground truth crop mapping from 
satellite imagery (Hegarty-Craver et al., 2020). 

A new area of research for crops is solar 
induced chlorophyll fluorescence (SIF), which 
is a direct measure of photosynthetic activity 
(Mohammed et al., 2019; see Section 17.3.2). SIF 
can be detected using optical sensors (especially 
hyperspectral). Several satellites can currently be 
used to do this but there are few bespoke SIF systems 
planned for future launch.

12.3  Crop Type and Agricultural Land Use
Crop type mapping is valuable for a wide range of 
crops in Australia. Growers, distributors and consumers 
all directly benefit from efficiencies derived from 
knowledge of crop extent, timing, vigour, variability, 
and yield, while indirect benefits extend to efficient 
responses to biosecurity threats and natural disasters. 

A range of EO methods for mapping land cover 
have been used to map agricultural land uses 
and different types of crops (see Section 3). 
Early mapping of agricultural land cover used the 
Normalised Difference Vegetation Index (NDVI; see 
Section 8.1.1; Hill et al., 1999) and image classification 
(Hill et al., 2005). More recently, EO time series 
datasets have enabled more sophisticated analyses, 
both for mapping crop type, and also for quantifying 
crop condition and predicting crop yield (see 
Section 12.4). 

The optimum timing of EO image acquisition to 
differentiate between crops, and separate yield 
categories for a single crop, varies considerably 
with both crop and growing region (Van Niel and 
McVicar, 2003, 2004). Single date analyses can be 
misleading if the image date is not indicative of the 
crop peak growth stage. The best relationships 
between vegetation indices and crop yield for grain 
crops have been observed when the image is acquired 
at the mid grain-filling stage (Shanahan et al., 2001; 
Panek and Gozdowski, 2020; see Section 9.3). 
However, temporal characteristics of crops can 
vary from year to year, depending on sowing dates 
and other management practices, and also climatic 
variations between seasons. 
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Some recent approaches that have been developed to 
differentiate agricultural crops using EO datasets in 
Australia include:

	§ applying geostatistical concepts to EO time 
series to differentiate broad crop groups 
(Pringle et al., 2018);

	§ applying curve fitting methods to EO time series 
to characterise the phenology of specific crops, 
then use these characteristics to discriminate 
between crops and estimate crop areas 
(Potgieter et al., 2013);

	§ deriving climate-driven, crop-specific stress indices 
to explain the influence of agro-environmental 
heterogeneity in croplands at finer spatial scales 
(Chen et al., 2020a); 

	§ monitoring fallow dynamics using biased support 
vector machines (see Volume 2E) with fractional 
cover images (see Excursus 8.3; Zhao et al., 2020); 

	§ classifying summer cropping in irrigated 
areas of the Murray-Darling Basin (MDB; see 
Section 2.1 and Figure 2.4) using a random 
forest model (see Volume 2E) with EO-based 
estimates of vegetation phenology and water use 
(Peña‑Arancibia et al., 2014);

	§ using balancing methods to more accurately 
classify rare and infrequent crops 
(Waldner et al., 2019); and

	§ refining criteria for using blended datasets (see 
Volume 2D—Section 6) to increase the density of 
EO time series datasets for crop identification and 
yield prediction (Chen et al., 2020b).

12.4  Crop Extent, Condition and Production Forecasts
Two of the most established applications of EO 
datasets are mapping crop area and forecasting crop 
yield. As crops mature the spectral characteristics 
of vegetation vary temporally with phenological 
changes (see Sections 5.3.2 and 9.3). They also vary 
both temporally and spatially with changes in ambient 
environmental conditions (see Volume 1B—Section 1). 
EO datasets allow these variations to be mapped 
through time to analyse a single growing season 
and/or trends across several seasons. The spatial 
variations in EO imagery, within individual crop fields 
and districts, can highlight infestations of weeds, 
diseases in plants and soils, and deficiencies in water 
or nutrients.

Traditionally, such analyses relied on correlations 
between EO-based greenness indices and crop 
yield (see Volume 2C—Section 11 and 8.1.1). One 
of the spectral indices that is commonly used for 
crop mapping is NDVI (see Section 8.1.1), which is 
considered a surrogate for LAI or fAPAR (fraction 
of Absorbed Photosynthetically Active Radiation; 
see Section 6.3; FAO, 2017). The most appropriate 
spectral information and algorithms to correlate with 
crop yield, however, vary with crop type, season, 
age, condition, and location, with stressed situations 
being more challenging (Suarez et al., 2018). When 
based on spectral indices, the most appropriate 
index is typically selected as the one with the 
highest correlation with yield data, then index values 
for a crop image can be classifed into appropriate 
categories such as low, medium, and high (see 

Volume 1B—Excursus 9.1). While originally such 
methods were applied to broadacre cereal crops, 
principally wheat and rice (Tucker et al., 1980), more 
recently higher resolution imagery has enabled 
this approach to be used with a range of fruit, nut, 
and vegetable crops (see Section 12.6). Other EO-
based approaches to yield mapping include image 
classification (see Volume 2E), machine learning 
regression methods (Kamir et al., 2020), semi-
empirical models (Chen et al., 2020a), and integrated 
crop models, which combine relevant spectral indices 
with predictive models (Schut et al., 2009). 

For example, Crop-SI is a semi-empirical model that 
is used to estimate the yield of wheat, barley, and 
canola crops in the dryland Australian wheatbelt 
(Chen et al., 2020a). It combines a radiation use 
efficiency model with meteorology-driven Stress 
Indices (SI) at critical crop growth stages (e.g. 
anthesis and grain-filling; see Table 12.2). These crop-
specific SI (e.g. drought, heat, and cold stress) help 
explain the impact of high spatial agro-environmental 
heterogeneity, which has lead to substantial 
improvement in grain yield prediction. 

Another example of EO-based yield forecasting in 
Australia is SugarMaps, a prototype system which 
provides automated processing and delivery of EO 
imagery to over 95% of the sugar industry. Products 
include crop vigour, derived yield, and qualitative 
foliar nitrogen concentration maps for most Australian 
growing regions (UNE CASI, 2020). 

Timely and reliable crop production forecasts are crucial to making informed food policy decisions and 
enabling rapid responses to emerging food shortfalls.  

(FAO, 2017)
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Table 12.2  Crop-SI model

Approach Input parameters Derived parameters Result

Radiation Use Efficiency 
(RUE)

Top of atmosphere shortwave 
irradiance

Photosynthetically Active Radiation (PAR)

Carbon 
fixation

Grain yield 
estimate

Ratio of irradiance at sloping surface 
to that at a horizontal surface

Atmospheric transmissivity

NDVI
fraction of Absorbed Photosynthetically 
Active Radiation (fAPAR)

Diffuse fraction
RUE

Photosynthetic capacity

Support Vector Machine 
(SVM) feature selection

Air temperature
Meteorologically-driven Stress Index (SI)

Precipitation 

Source: Chen et al. (2020) Figure 2 

Automated mapping of paddock boundaries helps 
farmers to monitor productivity and land condition 
at a relevant scale. A new Digiscape project, 
ePaddocksTM, uses artificial intelligence to interpret 
high spatial resolution satellite imagery in order to 
define paddock boundaries (CSIRO, 2020a; Waldner 
and Diakogiannis, 2020; see page before Section 11). 
This facility is being applied across the Australian 
grain region and will be integrated with other EO-
based systems to classify land use and identify crop 
types (see Sections 3 and 12.3). The benefits (to both 
individual farmers and the wider agricultural sector) 
of focusing yield forecasts on individual land parcels 
include land management, harvest logistics, and 
financial analysis.

For a selected crop in a given season, integrated 
forecasting systems aim to deliver near real time 
estimates of crop area, which can be merged with 
near real time predictions of yield, to determine 
the likely total production (Nikolova et al., 2012). 
Traditionally, most estimates of crop yield and 
production have been derived from climate-driven 
models, with expert knowledge supplying estimates 
of planted area and production rates. Such models, 
however, cannot account for unexpected changes 
in seasonal conditions during the forecast period, 
such as natural disasters, and are typically less 
accurate for winter cropping. In Australia, different 
crop forecasting methods are used in different 
regions and jurisdictions, and plans are underway 
to develop a nationally-consistent approach for all 
major crops (Nikolova et al., 2012). Increasingly EO-
based datasets and biophysical crop growth models 
are being integrated with agroclimatic models, and 
crop, soil, and management datasets, to improve the 
accuracy, frequency, and latency of spatially-explicit, 
agricultural forecasts at regional, national, and global 

scales. Ultimately such systems enable mapping of 
crop type, area, condition and yield, and forecasting of 
crop production on a regional and global basis (FAO, 
2017; see Section 12.5,).

Meteorological datasets are valuable in crop 
monitoring, not only to track production but also 
to warn of potentially damaging weather condition. 
For example, the Australian Tree Crop Map Severe 
Weather App integrates live weather data with maps of 
commercial horticulture tree crops (avocado, banana, 
citrus, macadamia, mango, and olive) to provide early 
warning of possible storm damage (see Section 12.7). 

The type and precision of crop forecasting varies 
with the purpose and scale of analysis from global 
predictions to farm-based estimates (see Table 12.3). 
In recent years, improvements in near real time 
crop-specific monitoring at regional and national 
scales, including crop type mapping and vegetation 
status, have been achieved using high resolution, 
satellite-derived EO imagery and automated workflows 
(Inglada et al., 2015; Defourny et al., 2019). These 
products provide valuable input to global monitoring 
initatives such as GEOGLAM (see Excursus 11.1). 

While many existing crop yield models have not 
scaled up from field to regional scales with sufficient 
accuracy, some recent, scalable crop yield models 
are showing promise in this area (Lobell et al., 2015; 
Donohue et al., 2018). However, the utility of crop 
models is determined by both their spatial and 
temporal scales. Since the primary goal of these 
models is to reduce risk in all steps along the food 
supply chain from farm to market, timeliness in 
delivering results—particularly minimum latency—
is essential to all users (FAO, 2016). An Australian 
system that delivers multi-scale, real time forecasting 
of yield for cereal crops is introduced in Excursus 12.1. 
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Excursus 12.1�—Graincast

Source: CSIRO (2020b)

Graincast™ uses national weather and soils 
information to estimate the soil moisture that is 
available to plants on a daily basis, and the crop yield 
potential for the current season. This estimate can 
apply to an individual paddock, a farm, a region, or a 
nation. Graincast™ provides objective information for 
farmers and land managers to make better informed 
management decisions in near real time.

Inputs to Graincast™ include:

	§ daily rainfall, temperature, and solar radiation data 
at 5 km resolution from the Bureau of Meteorology 
(BoM, 2020);

	§ climate data from SILO (Scientific Information for 
Land Owners) climate database at 5 km resolution 
(Queensland Government, 2020); and 

	§ soil data from the Soil and Landscape Grid of 
Australia (SLGA; Grundy et al., 2015) at 90 m 
resolution. 

These data layers are integrated with cadastre, 
elevation, and/or EO datasets to generate multiple 
outputs: 

	§ maps of crop species growing in each paddock 
derived using adaptive learning algorithms applied 
to available optical and SAR images from the 
Landsat-8 and Sentinel-2 satellites;

	§ estimates of yield potential and ‘plant available 
soil water’ for the current season calculated using 
the APSIM (Agricultural Production Systems 
sIMulator) crop model (Holzworth et al., 2014, 2018; 
see Section 10.2.2) based on the SLGA and SILO 
datasets;

	§ time series of historical water-limited, potential yield 
estimates for a particular paddock, to assist with 
benchmarking, diagnosing yield constraints and 
setting yield targets; and

	§ seasonal yield forecasts derived using real time 
crop models based on NDVI computed from 
multiple satellite images (Donohue et al., 2018). 

Since APSIM needs to estimate the daily dynamics of 
plant available water (PAW) to simulate crop growth 
under the current seasonal conditions, Graincast™ 
can also be used to provide an estimate of PAW in 
real time, without the need for local knowledge of 
the actual soil type in each paddock. Such estimates 
of PAW often provide better estimates of soil water 
than a single, poorly calibrated, standalone, soil water 
sensor (Freebairn et al., 2018). 

At this stage of development, Graincast™ forecasts 
are based on known conditions to the date of 
publication and the probable conditions to harvest 
based on the previous 30 years. Extreme events, 
such as severe frosts, heat shocks, floods, and hail 
storms, can have significant local implications that are 
not included in the forecasts and may result in lower 
than forecast yields if they are more widespread than 
usual. Also, forecasts do not account for large scale 
outbreaks of pests or diseases which may also result 
in lower than forecast yields.

Table 12.3  Scales of crop forecasting

Ground scale User Decision
EO spatial 
resolution

Field Farmer Crop and resource management Very high

Farm Producers, suppliers Business, marketing, supply chain High

Agroecological zone Districts, farmer co-ops Economic optimisation, environmental management Medium 

Regional State/regional agencies
Land use and economic planning, environmental 
management

Medium

National Governments 
Food security, disaster relief, strategic planning, trade 
policy, environmental impact and policy

Low 

Global International agencies, multinational companies International treaties, protocols, global treaties Very low

Adapted from: FAO (2016) and Potgieter et al. (2013) Figure 1
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12.5  Global Crop Monitoring Systems
The original large scale study of global wheat 
production, the Large Area Crop Inventory 
Experiment (LACIE; MacDonald et al., 1975; 
Erickson, 1984), achieved its goals to:

	§ demonstrate that multispectral, EO from space was 
economical, timely, and repeatable;

	§ forecast the global wheat crop area, yield, 
and production using Landsat-2 MSS imagery 
and NOAA meteorological data, together with 
climatological and conventional data sources; and

	§ validate techniques to deliver timely estimates of 
crop production (Erickson, 1984).

This pioneering project paved the way for many 
more precise and accurate EO-based crop models, 
whose results can be directly interpreted in 
terms of economic outcomes (see Section 10.2.2). 
Sophisticated modelling approaches have been 
developed using EO time series datasets, integrated 
with meteorological records and soil surveys, to 
monitor and profile crop productivity through 
time (FAO, 2016). For example, eight global and 
regional agricultural monitoring systems, reviewed 
by Fritz et al. (2019), are summarised in Table 12.4. 
These systems enable early warnings of potential 
food famines to be coordinated and disseminated 
efficiently (Atzberger, 2013) by monitoring weather 
conditions and crop growth, then highlighting 
anomalies in key indicators such as precipitation, 
Land Surface Temperature (LST; see Section 7.5), 
and NDVI (FAO, 2017). In addition to essential input 
from analysts to vet input data, guide processing, and 
check results, agricultural monitoring systems now 
rely on four major sources of information:

	§ meteorological—e.g. precipitation, temperature, 
evapotranspiration, solar radiation, relative 
humidity, wind speed, snow cover, atmospheric 
pressure (many of these parameters are also 
derived from EO sensors);

	§ optical satellite EO—e.g. vegetation indices, soil 
moisture; 

	§ crop models—e.g. water balance, biophysical; and

	§ auxillary datasets—e.g. cadastre, elevation, census, 
climatic/agroecological zones, soils, crop type, crop 
calendar (Fritz et al., 2019; see Figure 2 therein). 

Typical model outputs include forecasts of crop 
condition, intensity, yield, and area impacted by 
critical anomalies. Not surprisingly, forecasts 
tend to improve during the growing season. While 
several of these systems supply regular reports 
and online maps, they are not validated statistically 
and significant discrepancies exist between the 
results of different systems. Many of the global 
land cover mapping products are used as input 
to define crop type and these also display major 
differences with respect to cropland (Fritz et al., 2011; 
Waldner et al., 2015). Similarly, many global crop 
calendars do not account for detailed spatial 
variations (Fritz et al., 2019), and refinements in 
agricultural system models are needed both in terms 
of data and methods (Jones et al., 2017). 

Although EO-based datasets deliver reliable estimates 
of crop condition and condition anomalies, they do 
not currently supply the quantitative estimates of 
crop area or forecasts of crop production required to 
accurately monitor food security (see Section 11.5). 
Other areas where these systems could be improved 
include more consistent calibration and validation 
protocols, global maps of crop intensity and crop type, 
additional information on crop management, better 
access via portable smart devices, and inclusion of 
crowdsourced and volunteered data (including social 
media; Fritz et al., 2019).

VRT (Variable Rate Technology) is essentially 
managing variability within paddocks by adjusting 

major inputs such as fertiliser to their optimum profit 
level. A synthesis of previous yield maps, imagery 
and soils data can be used to define zones within 

paddocks that warrant varying levels of inputs. 
(Agtrans Research, 2007)
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Table 12.4  Global and regional agricultural monitoring systems

CAS-IRSDE: Institute of Remote Sensing and Digital Earth at the Chinese Academy of Sciences; USDA-FAS: United States 
Department of Agriculture-Foreign Agricultural Service; WFP: World Food Programme; EC-JRC: European Commission Joint 
Research Centre

System Coordinator 
Start 
Date 

Purpose Outputs Reference

Global 
information and 
early warning 
system  
(GIEWS)

UN FAO
Early 
1970s 

Global food crop production, 
consumption and trade

Quarterly reports and ad hoc briefs 
plus monthly bulletins on food price 
trends http://www.fao.org/giews/

en/
Agricultural Stress Index (ASI) 
System

Regional hotspot maps of water 
stressed crops based on ASI every 
ten days (see Section 9.5)

Famine early 
warning systems 
network  
(FEWS NET)

USAID 1985
Quantify changes in crop area 
planted and crop yield

Quarterly outlook reports with 
monthly updates for selected food 
insecure countries and alerts on 
emerging crises

http://www.fews.net/

MARS crop 
yield forecasting 
system 
(MCYFS)

EC-JRC 1992

Operational estimates of area, 
yield and production at pan-
European level for EU member 
states

Monthly bulletins, maps updated 
three times per month

https://agri4cast.jrc.
ec.europa.eu/

Visualisations via JRC MARS 
Explorer

http://www.marsop.info/
en/web/mars-explorer/
home

CropWatch CAS-IRSDE 1998
Predictions of crop conditions 
and production, both within 
China and globally

Quarterly and annual bulletin with 
updates for global coverage, regional 
indicators (VHI, VCI) and detailed 
national/sub-national estimates

http://www.cropwatch.
com.cn/

Crop Explorer USDA-FAS 2001

Global crop conditions and 
production estimates, for all 
major commodities, for all 
foreign countries

Data visualisation products and 
numerous maps and charts updated 
every 10 days

https://www.fas.usda.gov/

Group on Earth 
Observations 
Global 
Agricultural 
Monitoring 
Initiative 
(GEOGLAM)

GEO 2013

Assessment of crop growing 
conditions, crop status and 
agroclimatic conditions that 
may have an impact on global 
production of wheat, maize, rice, 
and soy for Agricultural Market 
Information System (AMIS)

Monthly reports
http://www.geoglam.org/
index.php/en/

Seasonal 
Monitor

WFP 2014

Monitor growing season status 
and to provide early warning of 
conditions detrimental to crop 
and pasture production within 
WFP regions of interest

Monthly reports
https://www.wfp.org/
content/seasonal-monitor

Dataviz visualisation platform http://dataviz.vam.wfp.org/

Anomaly 
Hot Spots of 
Agricultural 
Production 
(ASAP)

EC-JRC 2017

Identify areas where 
unfavourable growing conditions 
for both crops and rangelands 
may represent a potential food 
security problem

Early warnings every ten days based 
on rainfall estimates/NDVI with 
verified hotspots for potential food 
security updated monthly

https://mars.jrc.ec.europa.
eu/asap/

Source: Fritz et al. (2019)

12.6  Precision Agriculture
Precision agriculture comprises a range of digital 
technologies that are designed to monitor variations 
in the environmental conditions of plant, animal and 
soil resources in order to optimise their productivity, 
reduce their environmental impact and enhance food 
security (Zhang et al., 2002; Mulla, 2013; Bramley and 
Trengove, 2013). These technologies allow farmers 
to vary the use of inputs, such as the selection and 
application of seeds, fertilisers, pesticides, and 
water, and/or cultivation methods (planting, tillage, 
harvesting), to match varying soil and crop conditions 
across a field (Srinivasan, 2006). 

Technologies involved with precision agriculture 
basically rely on EO sensors carried by satellite, 
airborne (manned and unmanned), and ground 
platforms. Local platforms, such as low-level aircraft 
and quad bikes, offer convenience and flexibility 
for data acquisition in a precision agriculture 
environment. For example, when equippled with active 
optical sensors, these two platforms have respectively 
enabled assessment of plant vigour for cereal crops 
(Lamb et al., 2009, 2011) and perennial pastures 
(Trotter et al., 2010). 

http://www.fao.org/giews/en/
http://www.fao.org/giews/en/
http://www.fews.net/
https://agri4cast.jrc.ec.europa.eu/
https://agri4cast.jrc.ec.europa.eu/
http://www.marsop.info/en/web/mars-explorer/home
http://www.marsop.info/en/web/mars-explorer/home
http://www.marsop.info/en/web/mars-explorer/home
http://www.cropwatch.com.cn/
http://www.cropwatch.com.cn/
https://www.fas.usda.gov/
http://www.geoglam.org/index.php/en/
http://www.geoglam.org/index.php/en/
https://www.wfp.org/content/seasonal-monitor
https://www.wfp.org/content/seasonal-monitor
http://dataviz.vam.wfp.org/
https://mars.jrc.ec.europa.eu/asap/
https://mars.jrc.ec.europa.eu/asap/
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Examples of location-specfic data that can be 
acquired by relevant sensors include:

	§ soil moisture, temperature, albedo, nutrient content, 
compaction, and elevation;

	§ animal location, digestion, and fertility;

	§ plant biomass, moisture status, temperature, and 
nutritional and physiological status; and

	§ air temperature, humidity, precipitation, and wind 
speed and direction.

Analysis of soil, plant and atmospheric datasets 
enables precise application of irrigation water, 
fertilisers and chemicals to deter pests and weeds. 
This information also provides early warning of 
disease, deficiency conditions, or weed infestations 
at specific locations (Mahlein et al., 2012). Animal 
tracking devices monitor grazing patterns, and allow 
graziers to optimise stocking rates and resource 
usage (see Volume 1A—Excursus 10.1) and implement 
virtual fencing (Butler et al., 2004; CSIRO, 2020c). 
Automated plant counts derived from drone imagery 
are also being trialled to monitor non-overlapping 
vegetable crops, such as brassicas and lettuce 
(O’Halloran and van Sprang, 2019).

A wide range of agricultural robots with both remote 
and proximal sensors are now available to plow, 
fertilise, treat and harvest crops, while automated 
imaging systems can deliver rapid analyses of the 
spatial variations in crop and soil condition, and 
produce georeferenced yield maps. For ease of access 
in the field, many of these applications have been 
adapted to control by smartphone or tablet. 

Variable Rate Technology (VRT) are also being 
embraced by the grains industry to tailor crop 
management to variations in growing conditions 
within crops (Suarez et al., 2018). By adjusting 
agricultural inputs to suit environmental conditions, 
precision agriculture not only increases the 
output of agricultural enterprises, but improves 
the efficiency of resource use with less pollution 
(Agtrans Research, 2007). This is particularly 
important for fertiliser use where excessive 
applications can leach into waterways. Ideally 
nutrient supply only matches, but does not exceed, 
crop requirements to achieve maximum profit (see 
Figure 12.1). For example, Basso et al. (2016) analysed 
high resolution satellite imagery, which had been 
transformed using the Canopy Chlorophyll Content 
Index (CCCI; see Section 8.1.2) and validated using 
hand-held spectrometers, to map the spatial uptake 
of nitrogen applications by wheat crops. Thus, VRT, 
coupled with EO datasets, can both reduce potential 
environmental problems resulting from excessive use 
of fertiliser and avoid expenses that do not contribute 
to crop yield.

Figure 12.1  Crop response to fertiliser application

Additional fertiliser increases crop yield only up to a site-
specific threshold. However, before this threshold, there may be 
a break-even point at which the cost of extra fertiliser exceeds 
the value of increased crop yield.

Adapted from: http://adlib.everysite.co.uk/adlib/defra/content.
aspx?id=2RRVTHNXTS.88UF41WXRQOZS

Selected precision agriculture monitoring datasets 
have been coupled with crop production models and 
meteorological records to deliver real time estimates 
of seasonal yield. In conjunction with a decision 
support framework, farmers can then assess the 
seasonal profitability of additional inputs for individual 
crops. When integrated with Geographic Information 
Systems (GIS), precision agriculture readily generates 
‘Paddock to Plate’ forecasts to achieve efficient 
marketing of produce (see Volume 1B—Excursus 9.1). 

Precision agriculture allows the performance of a crop 
and its environmental conditions to be monitored 
closely throughout is growth cycle and enables 
harvesting to be timed for maximum yield. This 
approach also allows growers to focus on crop quality 
by selective harvesting (Bramley and Trengove, 2013). 
Especially for horticultural crops, prior knowledge 
of harvest time allows growers to optimise labour, 
packaging, and marketing requirements. Some of the 
agricultural industries in Australia that are adopting 
precision agriculture include:

	§ viticulture (Bramley, 2010; Bramley et al., 2011; 
Bramley and Trengove, 2013; Fuentes et al., 2014); 

	§ broadacre cropping—Australian wheat growers are 
optimising crop productivity and profit by using the 
Yield Prophet application (CSIRO, 2020d);  

	§ sugar (see Volume 1B—Excursus 1.1; Rahman and 
Robson, 2016a, 2016b, Robson et al., 2016a);

	§ fruit crops (see Volume 1B—Excursus 9.1; 
APAL, 2019); 

	§ nut crops (Robson et al., 2016b, 2017); and 

	§ vegetable production (Suarez et al., 2018). 

http://adlib.everysite.co.uk/adlib/defra/content.aspx?id=2RRVTHNXTS.88UF41WXRQOZS
http://adlib.everysite.co.uk/adlib/defra/content.aspx?id=2RRVTHNXTS.88UF41WXRQOZS
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12.7  Further Information

Plant Phenomics
https://www.plantphenomics.org.au/about-us/

Australian Crop Monitoring 
Agricultural Production Systems sIMulator (APSIM): 

https://www.apsim.info/apsim-model/

Graincast: https://research.csiro.au/graincast/

Queensland Crop Mapping: https://www.qld.gov.au/
environment/land/management/mapping/statewide-
monitoring/crops

International Monitoring Systems
Cropwatch: http://www.cropwatch.com.cn/htm/en/

index.shtml

EuroGEO: e-shape/eurogeo/h2020/eu-cap

GEOGLAM Rangeland and Pasture Productivity 
(RaPP) tool: 

Australia: https://map.geo-rapp.org/#australia

Global: https://www.geo-rapp.org

Precision Agriculture
Srinivasan (2006)

CSIRO Precision Agriculture webpage: https://www.
csiro.au/en/Research/AF/Areas/Sustainable-farming-
systems/Precision-agriculture

Society of Precision Agriculture Australia (SPAA): 
www.spaa.com.au

Tree Crops
Australian Tree Crop Map Dashboard: 

https://une-2351.maps.arcgis.com/apps/
dashboards/8fd2ce70111e40088127867c63b9127e

Australian Tree Crop Map Severe Weather App: 
Overlays live weather data with the location and 
extent of commercial horticulture tree crops in 
Australia. Mapped commodities include: avocado, 
banana, citrus, macadamia, mango and olive: https://
une-2351.maps.arcgis.com/apps/webappviewer/index.
html?id=03c4d068ada9458da2eeb3e44d6f45ad
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13  Irrigated Horticulture

Des Whitfield, Andrew McAllister, Mohammad Abuzar, and Mark O’Connell

Australian horticulture is introduced in Section 11.1. This section focuses on the use of EO datasets to monitor 
the water requirements of irrigated fruit, nut, and vine crops in southeastern Australia. 

Since most of Australia is too dry for commercial, 
rainfed fruit production, Australian horticultural 
enterprises, including those in the Riverland and 
Mallee areas of South Australia and Victoria, 
respectively, commonly rely on irrigation to supply 
more than half of the crop water requirements in the 
majority of seasons. Discretionary irrigation may be 
practised in other parts of Australia where rainfall 
routinely provides > 50 % of crop water requirements. 

Water needs of crops vary greatly in time and space. 
Spatial differences are attributable to variations in 
crop vegetation status (crop type, age, and growth 
conditions), and temporal differences are associated 
with seasonal and daily weather conditions, and 
rainfall contributions to root zone soil water. Irrigators 
are consequently required to employ sophisticated 
real time information and analytical tools to ensure 
that crops receive the requisite amounts of water. 
Over-irrigation wastes water and results in irrigation 
runoff and/or deep drainage losses from the root 

zone. Over-supply is therefore conducive to nutrient 
runoff (and/or leaching) and shallow water tables, 
respectively. Conversely, effects of under-supply 
are readily seen in reduced rates of crop growth, 
and lowered yields and product quality. Irrigation 
should therefore be used to ensure that root zone soil 
moisture optimally supports the rapid rates of crop 
growth and water use conducive to high yields of high 
quality produce, with minimal contributions to nutrient 
runoff and deep drainage.

Over-allocation of available water resources and 
over-irrigation are also important at district and 
regional scales. Over-allocation of resources, where 
too many irrigators are granted access to a limited 
resource, leads to district scale water shortages 
(under-irrigation) in dry years, chronic limits on the 
availability of environmental water, and elevated water 
prices where marginal producers and industries are 
increasingly required to review their participation in 
irrigated farming. 

13.1  Irrigated Horticulture in Southeast Australia
Irrigated fruit and vegetable production on the Murray 
River in southeast Australia dates back to colonial 
support for the establishment of irrigation settlements 
in the region and the arrival of the pioneering Chaffey 
brothers in the 1890s.

Irrigated horticulture is now expanding rapidly in the 
southern Murray-Darling Basin (MDB; see Section 2.1). 
High growth rates are especially evident in the Mallee 
region of northwest Victoria, where the formative years 
of irrigation development (1887–1947) accounted for 
22,000 ha of crops (principally wine-grapes, dried 

grapes, and citrus), another 52,000 ha was added 
during 1947–1997, with a further 48,000 ha added 
1998–2017 (Argus, 2015). Small scale family farm 
units have been superseded by large scale, highly 
capitalised farming investments. Irrigated almonds 
continue to expand into non-traditional ‘green-field’ 
areas that were previously used for rainfed grains. 
The relatively new capability of flying fresh produce 
into Asian markets has supported the recent rapid 
expansion of table grapes in the Robinvale-Euston 
districts on the NSW/Victoria border.

Background image: Apricot trees (c.v. Golden May) planted on Tatura Trellis at the Stonefruit Experimental Orchard, SmartFarm Tatura, Victoria, photographed in 
August 2019. Source: Mark O’Connell

Recommended Chapter Citation: Whitfield, D., McAllister, A., Abuzar, M., and O’Connell, M. (2021). Irrigated Horticulture. Ch 13 in Earth Observation: Data, 
Processing and Applications. Volume 3A—Terrestrial Vegetation. CRCSI, Melbourne. pp. 263–280.
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The routine and severe spring-summer rainfall 
deficiencies experienced in inland southeast Australia 
impose an absolute dependence on irrigation to meet 
the high yield and quality standards required of modern, 
high value, horticulture enterprises. Notwithstanding, 
irrigation requirements vary annually, depending on 
annual variations in spring-summer rainfall deficiencies. 

Severe summer rainfall deficits experienced in the 
southern MDB consequently impose an obligate need 
for irrigation on horticultural producers in the region. 
Accordingly, the reliable production of profitable high 
yielding, high quality produce is intrinsically dependent 
on the external factors that influence the price and 
availability of water, and, also, the management factors 
that govern on-farm water use efficiency. Irrigation 
licensing regimes in the Mallee, for example, operate 
on fixed annual allocations of supplementary irrigation 
that range to maxima of 14 ML/ha for almonds grown in 
Victoria and to 16 ML/ha for almonds in South Australia. 
Actual seasonal requirements differ from prescribed 
license volumes, and Victoria makes provision to adjust 
licensed volumes for extraordinary seasonal demands. 
Further expansion of the fruit, nut, and vine industries 
in the southern MDB will occur against a backdrop of 
increased regional uncertainty in patterns of autumn 
and winter rainfall, and the associated risk

that major storage levels in Lakes Eildon, Dartmouth 
and Burrinjuck fall short of crop demands in summer. 
There exists, therefore, a strong need to gauge water 
use and demand in the fruit, nut, and vine industries 
of the southern MDB to ensure that irrigators are able 
to match irrigation amounts to crop demand at field 
and farm scales and, further, that regional resources 
are optimally employed to satisfy irrigation, social and 
environmental demands for water. In addition, there is 
an over-arching requirement to ensure that irrigation-
induced rates of root zone drainage do not exacerbate 
salinity concerns in the Murray River.

In this Section, we present examples of ‘Satellite-
based Irrigation Demand Analytics’ for fruit, nut, and 
vine crops grown in the southern MDB, with focus on:

	§ relationships between crop water use 
(evapotranspiration, ET; see Sections 2.2 and 9.4) 
and crop vegetation status (inferred by the 
satellite-based Normalised Difference Vegetation 
Index, NDVI; see Section 8.1.1) in major fruit, nut, 
and vine crops grown in the southern MDB; and the

	§ potential use of those data in daily irrigation 
management and in the assessment of the 
minimum quantities of water that are needed to 
produce high yields of high quality horticultural 
products in the region. 

13.2  EO Sensors for Irrigated Horticulture
Mapping and monitoring of irrigated horticulture 
using EO datasets principally depends upon optical 
sensors to highlight differences between red and near 
infrared (NIR) reflectance (see Section 8.1.1). Thermal 
and passive microwave sensors are also relevant to 
derive land surface temperature (LST; see Section 7.5 

and Volume 1B—Sections 7.6 and 8.1.1). Some of the 
sensor characteristics that are relevant to studies of 
irrigated horticulture are summarised in Table 13.1. In 
particular, drones are being increasingly employed 
to survey horticultural crops (for example, Gonzalez-
Dugo et al., 2013; see Section 12.2).

Table 13.1  EO sensors relevant to irrigated horticulture

TIR: Thermal infrared; GPS: Global Positioning System; RPAS: Remotely piloted aircraft system; DEM: Digital elevation model;  
ET: evapotranspiration

Type Sensor Platform Relevance Advantages Disadvantages

Passive 
optical

Multispectral 
radiometer

Satellite or 
airborne

National or regional land 
cover mapping 

Global, recurrent coverage, 
low cost

Low accuracy, coarse scale

Hyperspectral 
spectroradiometer

Airborne
Plant biochemical 
functioning and health

High spectral and spatial 
resolution highlight plant 
stress and crop nutrition

High cost, high data volume

TIR radiometer
Field, satellite, or 
airborne

Soil/canopy temperature, 
water stress

Surrogate measure for ET
Resolution depends on 
platform

Active 
optical

Lidar
Airborne and 
terrestrial

Crop structure and 
identification, 

DEM

Detailed structure for plant 
canopy and soil surface

High cost, specialised 
processing

Active optical sensors
Ground vehicles 
or RPAS

Crop cover and condition 
mapping

Convenience, independent 
of sunlight

Low availability, specialised 
hardware

Proximal

Passive optical 
sensors (phenocam, 
hyperspectral), 
meteorological sensors 
(including soil moisture)

Ground, tractor, 
or tower-based 
(see Excursus 7.2 
and Volume 2D—
Section 12)

Soil, crop, and 
atmospheric variability 

Phenology

Continuous, long term 
measurements

High cost and require 
skilled maintenance

Locational GPS Portable devices Locating field sites Low cost
Coverage in remote regions 
or below dense canopies
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13.3  Fundamentals of Irrigation Management
Irrigation systems and their management vary widely 
between regions, crops, and industries in Australia. 
System options range from traditional gravity or 
surface irrigation systems to the modern pressurised 
irrigation systems where water is delivered to crops 
through pipes, driplines and sprays. Pressure-based 
systems reliably and precisely deliver small amounts of 
water at daily and sub-daily intervals, whereas gravity-
based systems are characterised by large infrequent 
deliveries, and are used to replenish root zone soil 
water stores at intervals of four or more days.

The quantum of water captured in the root zone after 
gravity irrigation is directly dependent on the soil 
water deficit in the root zone at the time of irrigation. 
Gravity-based irrigators must schedule irrigation 
events based on competing needs to ensure that 
root zone soil water deficits are large enough to 
maximise the retention of water applied to bays and 
furrows, and small enough to support rapid rates 
of crop growth. Errors in the timing (scheduling) of 
irrigation events in relation to soil water deficits, and/
or the application of irrigation volumes that are poorly 
related to soil water deficits and crop requirements, 
cause unacceptable quantities of surface runoff from 
fields, and excessive root zone drainage. Inefficiencies 
are amplified when soil water retention is limited by 
the soil physical properties.

Pressure-based systems are able to deliver precise 
quantities of water to the soil, and are consequently 
conducive to fixed-interval irrigation events (such 
as daily), allowing irrigators to replenish the precise 
amounts of water used by crops in the intervening 
time interval (with appropriate allowance for rainfall). 
The modern pressurised irrigation systems adopted 
extensively by horticulture industries in southeast 
Australia in recent decades are commonly used for 
fixed-interval irrigation and thereby rely on precise 
estimates/measurements of the quantum of root zone 
soil water consumed by crops (ET*; see Section 13.4.1) 
over periods ≤ 2 days.

The management of root zone soil water deficits 
is central in considerations of irrigation water 
management. Soil water deficits determine the 
optimal timing and amount of applied water in gravity 
irrigation and, further, the amount of water delivered 
at fixed time intervals in pressurised systems. 
Cahn and Johnson (2017) described contemporary 
approaches to irrigation scheduling in vegetable 
crops grown in California. They emphasised that the 
use of soil moisture monitoring had progressed from 
limits imposed by sensor accuracy and cost to current 
demands for large scale whole-farm systems where 
the labour costs required for the installation and 

removal of sensors over multiple fields outweighed 
the lower cost of modern sensors. They proposed that 
technical improvements in weather station networks, 
satellite and aerial imaging, and digital communication 
networks allow irrigators to combine satellite and 
weather data to assist in the progression from small to 
large scale irrigation farming systems. 

Many Australian irrigators continue to rely on soil 
moisture sensors and, with the possible exception of 
IrriSAT (Hornbuckle, 2014; Montgomery et al., 2015; 
see Section 13.9), the combined use of satellite 
and weather data to assist in large scale irrigation 
management systems is generally regarded as an 
emerging technology. 

Weather-based estimates of irrigation water 
requirements are widely based on the crop coefficient 
method, which accounts for both crop and weather 
effects on water use (Doorenbos and Pruitt, 1974; 
Allen et al., 1998; Jensen and Allen, 2016). The 
method relies on an initial measure of evaporative 
demand (‘potential’ evaporation), which accounts 
for the effects of weather on crop water use. The 
most widely used measure of evaporative demand, 
known as reference crop evapotranspiration (ETref), is 
modified by crop-specific factors incorporated into 
the crop coefficient to estimate crop water use (see 
Section 13.4). 

Estimates of crop water use by the crop coefficient 
method are combined with rainfall data in soil water 
balance models to gauge the net effects of crop water 
use (ET), weather, and rainfall on the consumption 
of root zone soil water by crops. Soil water models 
reveal when soil water deficits become unacceptable 
for crop growth, and thereby predict both timing of 
irrigation events and the amounts of water required to 
maintain an optimal root zone soil water status. The 
management of multiple fields in large scale whole-
farm irrigation management systems is achieved 
by combining field- and crop-specific satellite data 
(field/crop-specific estimates of crop coefficient) 
with an estimate of evaporative demand based on 
weather data sourced from a local automatic weather 
station or a web-based weather service. As described 
by Cahn and Johnson (2017), water use estimates 
based on satellite and weather data are inherently 
scalable over numerous fields, and thereby provide 
a practical basis for affordable whole-farm irrigation 
management systems.
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13.4  Irrigation Requirements of Horticultural Crops
Crop water use is synonymous with ET, which 
describes the quantities of water evaporated by soil 
and leaf surfaces (evaporation, E, and transpiration, T, 
respectively; see Sections 7.6 and 9.4). Estimates of 
Irrigation Water Requirement (IWR) are therefore 
based on the amount of water required to compensate 
for ET losses from the root zone. Models of root 
zone soil water balance provide an explicit soil 
water accounting mechanism that allow irrigators 
to maintain a favourable soil water regime using 
irrigation to ensure that total water deliveries 
(irrigation + rainfall) are optimally matched to 
prevailing field-specific values of well-watered rates of 
ET (ET*).

13.4.1  Weather-based estimates of soil 
water status in orchards
Weather-based estimates of root zone soil water 
status are routinely based on soil water balance 
calculations where changes in soil moisture, are 
derived from estimates of ET* and rainfall following 
irrigation. In general terms, irrigation is required to 
compensate for rainfall deficits, estimated by:

where RFe is ‘effective’ rainfall in mm (see Table 13.2 
for definitions of major water use terms). 

Calculations of the crop-specific values of ET* are 
routinely based on the assumption that ET* is directly 
proportional to the weather (evaporative demand) 
experienced by crops (see Section 13.4.2), as modified 
by crop characteristics (see Section 13.4.3).

Table 13.2  Definition of major water use terms

Parameter Group Term Definition

Evapotranspiration 

ET Generic evapotranspiration

ET* Well-watered ET

ETref Reference crop ET

ETo ‘Short’ reference crop ET

ETr ‘Tall’ reference crop ET

ETrF Fractional ETr

Crop water use 
coefficients

Kc Crop water use coefficient

Kcb Basal crop coefficient

Kco Coefficient for ‘short’ crop

Kcr Coefficient for ‘tall’ crop

Kd Crop density coefficient

Vegetation 
FC Fractional Cover

VI Vegetation Index

13.4.2  Reference crop evapotranspiration
Evaporative demand, defined as the maximum or 
‘potential’ rate of ET under the prevailing weather 
conditions, depends on solar radiation, humidity, 
temperature, and windspeed (see Section 7.6). 
The availability of affordable automatic weather 
stations has provided widespread access to site-
specific estimates of evaporative demand, and an 
associated increase in the adoption of weather-based, 
soil moisture modelling approaches in irrigation 
scheduling and control systems.

Prior to FAO56 (Allen et al., 1998), numerous variants 
of reference crop ET (ETref) were used to describe 
‘potential’ rates of ET by crops (for example, FAO24; 
Doorenbos and Pruitt, 1977). The use of different 
measures of potential evaporation in reports of crop 
water use severely compromised the transferability of 
water use findings between researchers and regions. 
FAO56 contributors defined the ‘short’ crop version of 
ETref (ETo) as a standardized measure of evaporative 
demand and proposed standardised procedures for 
the computation of ETref based on estimates of ET* 
that are appropriate to an extensive uniform sward of 
short green grass. The grass reference was adopted 
largely due to the preponderance of global lysimeter 
studies conducted on grass to that time. 

The American Society of Civil Engineers (ASCE) 
Environmental and Water Resources Institute (EWRI) 
subsequently complemented short crop ETref with 
an optional ‘tall’ crop ETref (ETr), based on alfalfa 
(ASCE-EWRI, 2005) for use in the USA. The alfalfa 
standard recognised the long history of alfalfa used 
in agricultural applications in the USA and provided 
continuity with the established use of short and tall 
forms of ETref in USA (ASCE-EWRI, 2005; Jensen and 
Allen, 2016). 

Table 13.3  Values of Cn and Cd coefficients

Values of coefficients, Cn and Cd, appropriate to daily estimates 
of ETo and ETr, in the equation for ETref (Allen et al., 2006)

Coefficient Cd  Cn  

‘short’ crop ETo 0.34 900 

‘tall’ crop ETr 0.38 1600
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Mathematically, both short and tall versions of ETref 
were founded on the Penman-Monteith equation, 
expressed as:

where 

ETref is reference crop ET (mm/day);
Rn is net radiation at the crop surface (MJ/m2/day); 
G is soil heat flux density (MJ/m2/day);
Cn is the numerator constant that changes with 

reference type (tall/short) and calculation time 
step in ETref (see Table 13.3);

Cd is the denominator constant that changes with 
reference type (tall/short) and calculation time 
step in ETref (see Table 13.3);

u2 is wind speed at 2 m (m/s);
es is saturation vapour pressure (kPa);
ea is actual vapour pressure (kPa); 
γ is the psychrometric constant (kPA ºC-1); and
T is the mean daily air temperature at 2 m (ºC).

The values of Cn and Cd for short and tall reference 
crops derive from the definition of vegetation 
characteristics adopted for the respective crops 
(vegetation height, leaf area index, stomatal resistance), 
and their impact on the full form Penman-Monteith 
equation (see Table 13.3). The short reference crop 
was defined by FAO56 as an hypothetical crop with 
an assumed height of 0.12 m, a surface resistance 
of 70 s/m and an albedo of 0.23, and closely resembled 
the evaporation from an extensive, actively-growing, 
adequately-watered, green grass sward of uniform 
height. The tall crop reference was based on an 
extensive uniform sward of alfalfa with a height of 0.5 m.

13.4.3  Crop characteristics
ETo and ETr provide standardised indices of 
evaporative demand (ASCE-EWRI, 2005). Crop-
specific values of ET* are calculated for ‘non-
reference’ target crops by multiplying measures of 
ETref (ETo, ETr) by an associated crop coefficient (Kco, 
Kcr) as follows:

Crop- and field-specific values of Kco and Kcr account 
for all factors that cause crop-specific values of 
ET* to differ from the reference estimates, ETo and 
ETr, respectively, that apply to extensive crops of 
uniform height and complete ground cover. Foliage and 
ground cover vary with both crop age and seasonal 
or phenological stages of crop growth in deciduous 
tree, nut, and vine crops. Typical row-based planting 

configurations mean that fruit, nut, and vine crops rarely 
achieve full cover. Tabulated values of Kco for deciduous 
crops therefore require adjustments for growth (crop 
age), and seasonal and cultural differences in foliage 
cover. 

In addition, the nominal values of Kco tabulated in 
FAO56 were described as ‘typical’ values expected 
for ‘standard sub-humid climatic conditions’ (average 
daytime minimum relative humidity (RH) ≈ 45%; 
wind speed ≈ 2 m/s), and height-dependent climate 
corrections were needed in order to apply tabulated 
values of Kco in conditions where average daytime 
minimum RH < 45% and/or wind speed > 2 m/s. 
The magnitude of designated climate corrections 
increased with crop height.

The assignment of tabulated Kco values to fruit, 
nut, and vine crops grown in southeast Australia 
therefore depends on an adequate accounting for 
differences in foliage cover due to crop growth/
age, seasonal phenological changes, planting 
configuration, and crop- and height-dependent climate 
corrections. These and other effects are responsible 
for a voluminous scientific literature directed to the 
quantification and understanding of variations in Kco 
attributable to differences in crop characteristics and 
growth conditions (for example, Guerra et al., 2016). 
Accordingly, the cost and complexity of establishing 
a comprehensive range of crop coefficients for the 
range of crop types, and crop cultural and management 
variants, is prohibitive for the wide array of crop types 
and configurations grown in horticultural regions in 
Australia and elsewhere.

13.4.4  Why two reference crops?
Height-dependent climate adjustments are required 
if the crop coefficient approach based on short crop 
ETref (ETo) is applied to fruit, nut, and vine crops grown 
in the warm, dry climate experienced in southeast 
Australia and the southern MDB. However, the greater 
roughness of the ‘tall’ crop alfalfa reference means 
that measures of ETr approximate peak-season rates 
of ET* for most tall crops, including orchards, in 
warm dry climates, and climate/height adjustments 
are unnecessary when the alternative ‘tall’ crop ETref 
(ETr) is used with tall crops under warm, dry climatic 
conditions (Allen and Pereira, 2009). 

ETo and ETr are both estimated by the equation 
for ET* above, but differ in their numerator and 
denominator coefficients (Cn and Cd ) used for daily 
estimates of ETref (see Table 13.3). ETr tends to be 
20–40% larger than ETo (Allen and Pereira, 2009). 
Kc values associated with the alternative ETo and ETr 
reference values must be clearly distinguished as Kco 
and Kcr, respectively.
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13.5  Satellite-based Estimates of ET
The importance of vegetation status in Kc values has 
been established by many studies relating Kc values, 
developed in lysimeter studies, to satellite- and 
ground-based vegetation indices (VI; see Section 8.1; 
for example Johnson and Trout, 2012). VI have been 
overwhelmingly based on the red and NIR bands 
obtained from EO (such as Heilman et al., 1982; 
Bausch and Neale, 1987; Neale et al., 1989; 
Hunsacker et al., 2003). As detailed in Volume 2C—
Section 11, and summarised in Section 8.1.1 above, 
NDVI and other VI are strongly related to the 
vegetation cover of the soil surface (or Fractional 
Cover: FC; Johnson and Trout, 2012; see Excursus 8.3). 
For example, Rajan and Maas (2014) modelled ET* 
in cotton using satellite-based estimates of FC as a 
direct surrogate for Kc.

Below we consider satellite-based estimates of ET 
based on the:

	§ relationship between the crop water coefficient 
(Kc ) and EO-based VI (see Section 13.5.1);

	§ relationship between surface temperature (Ts ) and 
VI (see Section 13.5.2); and

	§ surface energy balance models (see Section 13.5.3).

13.5.1  Kc-VI relationships
Web-based, irrigation scheduling approaches have been 
developed based on the observed linear relationships 
between Kc and VI. Global examples include:

	§ Demeter in Europe(DEMonstration of Earth 
observation TEchnologies in Routine irrigation 
advisory services; Belmonte et al., 2005;);

	§ TOPS-SIMS in USA (Terrestrial Observation and 
Prediction System Satellite Irrigation Management 
Support;  Cahn and Johnson, 2017; https://ecocast.
arc.nasa.gov/simsi/); and

	§ IrriSAT in Australia (Hornbuckle, 2014). 

TOPS-SIMS, supported by NASA and USGS, aims 
to provide contemporary field scale Kc data and real 
time weather data to support real time, weather-
based, irrigation management by combining field-
specific values of NDVI and Kc with district ETo data 
for the state of California (Cahn and Johnson, 2017). 
TOP‑SIMS uses ETo data sourced from an extensive 
network of weather stations (CIMIS) operated by the 
Californian Department of Water Resources.

Reflectance-based Kc-VI approaches (such as TOPS-
SIMS, Irrisat) are founded on relationships linking 
ET* to a crop coefficient based on FC and/or NDVI. 
EO-based measures of the Ts /NDVI relationships in 
irrigated crops, and/or ET/NDVI relationships based 
on surface energy balance estimates of ET, potentially 
play an important role in the development of practical 
irrigation management systems based on readily-
acquired, reflectance-based VI (see Section 9.4).

13.5.2  Ts-VI relationships
Remotely sensed values of NDVI are not directly 
related to vegetation water status or rates of 
evapotranspiration. Early EO-based studies of 
vegetation water status and water use (or ET) focused 
on relationships between surface temperature (Ts) 
and NDVI on the basis that Ts was inversely related 
to ET, since evaporative cooling due to ET decreases 
vegetation temperature and Ts. Remotely sensed 
Ts/NDVI values were commonly confined within a 
trapezoidal space described by the approximate limits, 
0.1 ≤ NDVI ≤ 0.9 (which can be optionally interpreted 
in terms of FC; 0 ≤ FC ≤ 1) and upper and lower ‘warm’ 
and ‘cool’ edges associated with low and high rates of 
ET, respectively.

The trapezoid/triangle approach proposed by 
Moran et al. (1994, 1996) provided an initial 
quantitative approach to remotely sensed ET and 
soil moisture estimation (see Figure 13.1). Weather-
dependent rates of ET were ascribed to each of the 
vertices of the trapezoid (dry, bare soil; water-stressed 
vegetation; well-watered vegetation; saturated bare 
soil) based on the Penman-Monteith equation (see 
first equation in Section 13.4.2). Intermediate pixel 
scale ET estimates were linearly interpolated based 
on the proximity of Ts/NDVI values to the warm and 
cool fronts in the trapezoidal Ts/NDVI distribution 
(that is, the ratio BC/BA in Figure 13.1).

Figure 13.1  Variation of surface-air temperature differences 
with vegetation cover

Diagram depicting the trapezoidal distribution of surface-
air temperature differences (Ts –Ta ) relative to values of 
fractional vegetation cover (FC, SAVI or NDVI) as seen in 
many vegetation/water stress studies. The ‘warm’ Ts –Ta front 
is associated with low rates of ET (ET=0), and the ‘cool’ front 
depicts well-watered patches of vegetation and/or wet soils  
(ET=ET*). Moran et al. (1994) estimated the ratio ET/ET* by the 
ratio BC/BA.
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13.5.3  Surface energy balance models
Bastiaanssen et al. (1998) published the seminal SEBAL 
model (Surface Energy Balance Algorithm for Land), a 
satellite-based energy balance approach to estimate 
land surface ET (see Section 9.4). SEBAL incorporated 
sub-models to estimate components of the surface 
energy balance (SEB) equation, expressed as:

where, 

Rn is net radiation measured above the vegetation 
(MJ/m2/day);

G is soil heat flux (MJ/m2/day);
H is sensible heat flux (MJ/m2/day); and 
LE is latent heat flux (ET). 

LE is estimated as the residual:

Pixel scale estimates of H are derived by identifying 
‘wet’ and ‘dry’ endmember pixels, where the sensible 
heat, H, assumed the values:

	§ H = 0 (LE = Rn) for ‘wet’ endmembers; and 

	§ H = Rn (LE = 0) for ‘dry’ endmembers. 

Relative to the trapezoid approach, ‘dry’ and ‘wet’ 
endmember pixels in SEBAL analyses corresponded 
to the vertices associated with ‘large Ts + low NDVI’ 
and ‘low Ts + large NDVI’ respectively in Figure 13.1.

Bastiaanssen and Allen subsequently collaborated 
to produce the METRIC model (Mapping 
Evapotranspiration at High Resolution with Internal 
Calibration), an adaption of SEBAL that was tailored 
to irrigation applications (Allen et al., 2007). Whilst 
METRIC also employed wet and dry endmember 
pixels, the wet pixel in METRIC is associated with: 

rather than the assumption, H=0, used by SEBAL. 
The use of ETr to approximate ET at the wet ‘anchor’ 
pixel compensated for regional advection effects, 
and supported the extrapolation of instantaneous 
satellite-derived values of ET to periods of 24 hours 
and longer. METRIC can be applied across crop 
types and growing conditions, and has significant 
advantages over conventional methods of estimating 
ET from documented crop calendar curves (see 
Figure 13.3) in that neither the crop development 
stages, nor the specific crop type need to be known 
with METRIC. Allen et al. (2011) provide a detailed 
comparison of the SEBAL and METRIC algorithms.

The energy balance methods employed in SEBAL 
and METRIC respond to reductions in ET caused by 
water stress. Values of evaporative fraction (LE/Rn) 
produced by SEBAL and fractional ETr   
(ETrF = ET/ETr) from METRIC may be associated 
with crops that are inadequately supplied with water. 
Supporting evidence is required before satellite-based 
SEB estimates of ET can be equated with well-watered 
values, ET*. ETrF estimates in Section 13.7 (made 
with the Agriculture Victoria rendition of METRIC) 
were equated with values of Kcr (see first equation, 
Section 13), based on comparisons with published 
data for irrigated summer crops grown in USA.

13.6  METRIC Model: Summer Crops
Tasumi et al. (2005) applied the METRIC model to 
irrigated summer crops grown in Idaho, USA. They 
employed Landsat imagery to study field scale ETrF/
NDVI relationships. Data were acquired as a series of 
snapshots at overpass intervals of approximately 16 
days during crop growth periods and the resultant 
ETrF/NDVI data were collated in order to develop 
seasonal ETrF/NDVI relationships for the major 
irrigated summer crops grown in Magic Valley, Idaho, 
in 2000. Tasumi et al. (2005) made the a priori 
assumption that all irrigated crops were adequately 
supplied with water (that is, Kc = ETrF) for the crops in 
their study.

Kc/NDVI relationships for potato and sugar beets 
(see Figure 13.2) showed that NDVI values extended 
over the approximate limits, 0.1 ≤ NDVI ≤ 0.85, 
encompassing the range of FC, 0 ≤ FC ≤ 1.0 (from 

bare ground to full canopy cover; see, for example, 
Bastiaanssen and Ali, 2003). Tasumi et al. (2005) 
reported that the lower observed limit on Kc (ETrF ) 
increased approximately linearly with increases in 
NDVI over the entire range of NDVI, and consequently 
equated the lower observed limit on Kc with Kcb (the 
basal crop coefficient), which describes the minimum 
rate of ET of a crop adequately supplied with water 
(surface evaporation = 0). Kcb is defined as the value 
of ETrF when the soil surface is dry (E ≈ 0), and 
transpiration is maintained at maximal rates (Allen 
et al., 1998). The Kcb line has important practical 
implications, as it represents the irrigation trigger 
point, beyond which a further reduction in root zone 
soil water leads to the onset of crop water stress.
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Figure 13.2  Crop coefficient variations

Variation in crop coefficients, Kc, estimated as fractional ‘tall’ crop evapotranspiration (ETrF), versus NDVI for potato and sugar beet 
crops in the Magic Valley area of Idaho for three Landsat dates during crop development in 2000.

ing periods reflects differences in crop growth among individual
fields. A very large variation in Kc was exhibited during the last
image date October 17. By this date, it is likely that some farmers
had already terminated irrigation, causing some reduction in
evaporation from soil, while others had not. In addition, much of
the corn crop appears to have been harvested for silage by Octo-
ber 17, according to the NDVI. Therefore the wide range in Kc
reflects variation in soil wetness or the presence/absence of veg-
etation. The relatively high NDVI on October 17 for nearly all
sugar beet fields indicates that the crops were still actively grow-
ing, but with a reduced rate of transpiration, possibly due to frost
or temperature effects on the stomatal opening.

Potato and Grains
Potato and grain fields had relatively wide and skewed distribu-
tions of Kc during the full cover period, while other crops showed
relatively normal and symmetrical distributions for the period.
This may have been caused by wider variation in the planting
schedules for these crops, or the effect of two or more substan-
tially different crop varieties. Potato crops in Magic Valley are
characteristically split between early harvested varieties and late
harvested varieties. Also potato growth is greatly affected by fer-
tility and physical property of the soil. The wide range in harvest-
ing is reflected in the wide range in NDVI during the September
image dates.

Relationship between Kc and Normalized Difference
Vegetation Index
Several studies and applications of remote sensing have estab-
lished relationships between Kc and NDVI for purposes of map-
ping spatial variability in Kc (Neale et al. 1989; Bausch and Neale
1989; Bausch 1993, 1995; Choudhury et al. 1994). Most of these
studies predicted primarily the transpiration coefficient or “basal”
Kc, because vegetation indices are little impacted by evaporation
from soil. Fig. 6 shows a series of relationships between Kc from
the EB model and NDVI for potato fields throughout the year
2000. As discussed previously in Figs. 4 and 5, Kc and NDVI
have a clear relation during mid season, but, as expected, no clear

relation holds during periods having low ground cover due to
large ranges in the soil evaporation component. Potato fields were
in a bare soil condition on March 15, and therefore NDVI values
were below 0.2 for most fields. However, the Kc values varied
from 0 to over 0.6 according to the level of residual surface mois-
ture from winter, which is impacted by the previous crop and
tillage history. The same impact is shown for the April and May
images and for June 3, where effects of pre- or postplanting irri-
gation created a substantial range in Kc.

The NDVI and Kc show a strong relationship during the period
from June 19 to September 15. During this period, fields having
high NDVI values also had high Kc, because of the frequent irri-
gation coupled with high transpiration rates and reduced opportu-
nity for evaporation from soil. On September 15, a wide range of
Kc occurred in the fields having lower NDVI, because these fields
were likely harvested and therefore ET from such fields depends
only on residual surface moisture. Finally, in the fall (October
17), most fields returned to a bare soil condition, although there
was still a large variation in Kc.

The limitation of Kc estimation by NDVI is more clear when a
series of Kc versus NDVI relationships are overlaid. Fig. 7 shows
Kc versus NDVI relationships for potato and sugar beet fields, for
three satellite dates during the crop development period. For both
crops, the Kc versus NDVI relationship appears as a similar tri-
angular shaped cloud of points, with the minimum Kc increasing
as NDVI increases. The bottom line of the triangle is indicated as
a “basal Kc” in Fig. 7, and explains the contribution of crop tran-
spiration in the total Kc. Any point above the “basal Kc” line
reflects some contribution of soil evaporation, where the soil
evaporation portion is independent of NDVI.

From these analysis results, it is clear that the estimation of ET
for specific fields using a general crop coefficient curve or a
NDVI-based Kc value is difficult, especially during periods of low
vegetation cover. During these periods, an energy balance ET
estimation model is a useful tool both for estimating the average
ET of an area, and for estimating ET from individual fields. The
Kc distributions during mid-season typically had smaller ranges
with a more normal type of distribution. Therefore, estimating ET

Fig. 7. Crop coefficient versus normalized difference vegetation index for 717 potato fields (left) and 516 sugar beet fields (right) in Magic Valley
area of Idaho, for three Landsat dates in crop developing periods during 2000

JOURNAL OF IRRIGATION AND DRAINAGE ENGINEERING © ASCE / JANUARY/FEBRUARY 2005 / 103

Source: Tasumi et al. (2005)

Maximum values of Kc were described by  
Kc = ETrF = 1.0, over the observed range of NDVI (see 
Figure 13.2). The limit, Kc = ETrF = 1.0, complied with 
energy balance limits on the rates of ET observed 
in lysimeter studies of dry surface, full cover crops 
(ET = ETr ; Allen et al., 2007; Jensen and Allen, 2016). 
The dry surface limit, ETrF = 1.0, extends to an 
approximate maximum, ETrF ≤ 1.20, in fields where the 
vegetation and/or soil surface are wet by recent rain 
or irrigation (Tasumi et al., 2005; Allen et al., 2007). 
Tasumi et al. (2005) attributed the large range in ETrF 
at low NDVI (0 ≤ ETrF ≤ 1.0) to variations in surface 
soil moisture, caused by rain and/or irrigation events, 
during periods of low plant cover. 

Kc (ETrF) values were therefore confined to a 
triangular Kc/NDVI space within Kc and NDVI limits, 
Kcb ≤ Kc ≤ 1.0 and 0.1 ≤ NDVI ≤ 0.85, respectively. 
Rainfall and irrigation-induced increases in ETrF were 
progressively diminished by increases in FC during 
crop growth. 

The range of NDVI in the Idaho ETrF/NDVI data 
encompassed recently sown crops with a vegetation-
free soil surface, and fully grown crops with complete 
canopy cover, and therefore extended across the 
potential range of FC seen in annual field crops 
(0 ≤ FC ≤ 1). 

13.7  METRIC Model: Irrigated Horticulture

13.7.1  Introduction
Whilst perennial fruit, nut, and vine crops grown in 
the southern MDB show little physical resemblance 
to irrigated annual summer crops (see Section 13.6), 
the hydrologic responses elucidated by the latter 
provided a comparative, contextual framework 
for the study and interpretation of ET/NDVI data 
in horticultural crops grown in the southern MDB. 
In contrast to perennial fruit, nut, and vine crops, 
summer annuals are resown into freshly-prepared 
seedbeds in spring each year (FC=0) and crops 
exhibit an extended period of low plant cover during 
germination, emergence and establishment stages of 
growth, then subsequent growth and leaf expansion 
is rapid under favourable conditions, resulting in near 
complete cover of the soil surface before crops set 

seed, mature and senesce. Conversely, perennial fruit, 
nut, and vine crops undergo an establishment period 
of up to seven years before they reach full production. 
Once established, deciduous horticultural species 
also show marked seasonal trends in foliage cover: 
FC typically increases rapidly in spring, followed by a 
prolonged period of maximal incomplete cover during 
fruit/nut growth, and harvest in summer or autumn. 
Deciduous species lose leaves during cooler months, 
whereas evergreen species, including citrus, maintain 
a more or less constant foliage cover and water use 
capability (Kc) throughout the year (see Sections 4 
and 5).
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Figure 13.3  Typical crop coefficient curve

Typical crop coefficient curve for Southern Hemisphere 
deciduous tree crops: seasonal changes in the basal crop 
coefficient (Kcb) are approximated by piecewise linear changes 
on calendar transition dates t1, t2, t3, and t4. Peak-season 
values of Kcb (t2–t3) vary depending on the crop age, orchard 
configuration, growth conditions and tree/vine management.
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Seasonal water use of temperate deciduous species 
(and annual summer crops) is therefore characterised 
by large temporal variations in Kc that closely follow 
seasonal changes in foliage cover. To account 
for the impact of variable vegetation cover and 
background evaporation from soil in orchards and 
natural landscapes, Allen et al. (1998) introduced 
the basal crop coefficient (Kcb), which is principally 
the transpiration component of ET, with negligible 
evaporation from soil. As such, it represents the 
minimum rate of ET for a crop adequately supplied 
with water.

Crop ‘calendars’ are used to describe the seasonal 
progression in Kc values attributable to changes in 
vegetation cover of deciduous perennial horticultural 
crops. Calendars for deciduous tree crops in the 
Southern Hemisphere typically show:

	§ a small value for the basal crop coefficient, Kcb, 
(Kcb ini) in the early stages of foliage development;

	§ followed by an increase to a maximum (Kcb mid) 
associated with the period of peak foliage cover; and 

	§ a subsequent post-harvest decline and return to 
the minimum values (Kcb ini) seen in winter (see 
Figure 13.3).

In order to facilitate field operations, vegetation 
cover of the soil surface is carefully planned and 
managed in row-based fruit, nut, and vine plantings. 
Canopy/row configurations may also vary within 
and between orchards in order to promote yield and 
quality outcomes. Allen and Pereira (2009) described 
changes in Kcb of orchards as a function of crop 

height and canopy cover. They employed a density 
coefficient (Kd) to account for the increase in Kcb (and 
associated increase in Kc)with increased vegetation 
cover:

Changes in Kcb in the range Kcb min– Kcb full were 
related to the effects of vegetation cover (FC) 
and crop height (h) depending on the value of Kd 
applicable to the target crop. Kd showed a near-linear 
dependence on FC for low values of FC, and achieved 
a maximum (Kcr=1) at sub-maximal values of FC in tall 
crops (h > 2m). 

The equation above is consistent with the empirical, 
satellite-based, linear relationship linking Kcb to NDVI 
derived by Tasumi et al. (2005; see Figure 13.2), 
which described a linear increase in Kcb of irrigated 
summer annual crops (h < 2 m) with increasing 
NDVI over the full range of NDVI (0.1 ≤ NDVI ≤ 0.85; 
Tasumi et al., 2005: Kcb ≈ 1.33 � (NDVI – 0.1)).

Values of Kc mid (see Figure 13.3) coincide with 
seasonal maximum values of evaporative demand 
experienced in the southern MDB, and hence with 
maximal daily values of IWR. Minimum values of 
Kcb, denoted Kc ini and Kc end in Figure 13.3, apply 
to deciduous fruit, nut, and vine crops during the 
autumn-winter period. Seasonal changes in Kcb of 
evergreen citrus species are minor, and the values 
Kcb = Kc mid apply throughout the year. 

13.7.2  Model implementation
METRIC analyses (Allen et al., 2007) were conducted 
to investigate ETrF/NDVI relationships seen in 
perennial fruit, nut, and vine crops grown in the 
southern MDB during the summer period (peak-
season irrigation demand), and to explore the 
potential relevance of the triangular ETrF/NDVI 
relationship in those crops. Analyses were undertaken 
for the period December 2008–February 2010 in the 
Riverland (RL), Sunraysia/Mallee (SR), and Goulburn-
Murray (GM) irrigation districts of SE Australia. These 
analyses employed Landsat-5 imagery acquired 
during peak-season irrigation periods (October–April, 
inclusive). Landsat images were georeferenced to 
contemporary, field scale, district land use maps (see 
Table 13.4). 

Image-synchronised values of ETr were computed 
using district-specific, meteorological data generated 
by automatic weather stations operated by the 
Bureau of Meteorology for sites at Loxton (RL), 
Mildura (SR) and Tatura (GM; see Table 13.5 and 
Figure 13.4). Values of ETr were calculated according 
to standardised ASCE procedures (ASCE EWRI, 
2005).
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Figure 13.4  Irrigation districts

Map showing the extents of the Riverland, Sunraysia/Mallee and Goulburn-Murray Irrigation Districts in the southern MDB. 
Representative meteorological data were sourced for the towns of Loxton, Mildura and Tatura, respectively. Inset shows the study 
region in a continental context.

Source: Des Whitfield, Agriculture Victoria

Table 13.4  Landsat-5 images used in analysis

Clear-sky Landsat-5 images were employed in analyses of ETrF/NDVI relationships in irrigated fruit, nut, and vine crops in the 
southern MDB. District/date indices were formulated according to irrigation district and date of image acquisition (as doy/year, where 
doy was day of year, e.g. Jan 1 = doy 1, and year was year of century, e.g. 2000).

Irrigation 
district

District 
Code

Acquisition 
Date 

Path/ 
Row

District/ 
Date index

Source of landuse map 

Riverland RL 2010-02-16 96/84 RL047/10
River Murray Irrigated Crops Data (June 2008) produced by the South 
Australian MDB Resource Information Centre of the South Australian MDB 
Natural Resources Management Board (SAMDBNRM, 2010)

Sunraysia/ 
Mallee

SR
2008-12-20 95/84 SR355/08

SunRise21 (www.sunrise21.org.au)
2009-01-05 95/84 SR005/09

Goulburn-
Murray

GM

2008-11-03 93/85 GM308/08

Shepparton Preserving Co. Ltd

2009-01-22 93/85 GM022/09

2009-02-23 93/85 GM054/09

2009-03-27 93/85 GM086/09

2009-04-12 93/85 GM102/09

http://www.sunrise21.org.au
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Field scale values of ETrF (ET/ETr) and NDVI were 
computed for all fruit, nut, and vine crops grown in 
each district according to the procedures described 
in Allen et al. (2007)10. Analytical estimates of 
momentum roughness length (z0m), effects of 
elevation, and the assignment of hot and cold pixels 
were as follows:

	§ The NDVI-albedo (α) approach (see equation 34b 
in Allen et al., 2007) was used for estimates 
of z0m. We used the relationship published by 
Teixeira et al. (2009) for a mixture of agricultural 
and natural ecosystems seen in the Sao Francisco 
River basin, Brazil:

The NDVI-albedo (α) approach helps to distinguish 
z0m of tall and short vegetation types that have 
similar NDVI but different albedo (Allen et al., 2007; 
Teixeira et al., 2009), so avoids the need for crop-
specific land cover/vegetation height relationships 
to describe z0m.

	§ Given the minor variation in elevation across the 
southern MDB (see Table 13.5), the METRIC model 
was applied using a constant elevation of 80 m. 

	§ Hot ‘anchor’ pixels (ET = ETrF = 0) were identified 
within low NDVI (NDVI ≤ 0.3) pixels showing high 
surface temperature (defined as the upper 2% 
of Ts), located in non-irrigated fields adjacent to 
irrigated farms. Cold anchor pixels were selected 
from fields associated with centre-pivot irrigation 
of tomatoes (in Riverland district), carrots (in 
Sunraysia) or lucerne (in Goulburn-Murray). 
Identified cold-pixel crops closely resembled the 
theoretical alfalfa crop underpinning estimates of 
ETr, with candidate pixels being confined to the 
upper range of irrigation NDVI, and the lower range 
of irrigation Ts. Crops were assumed to receive 
regular, adequate irrigation at intervals of 3–4 days, 
as observed for lucerne (in Goulburn-Murray). 
Cold-pixel crops were therefore assumed to be free 
of surface water (or dry) at the times of satellite 
overpass, and the value of ETrF appropriate to dry 
surface foliage, ETrF = 1.0, was assigned to cold 
pixels. 

10	 Analyses were conducted using ENVI/IDL software (Harris Geospatial, Broomfield CO, USA).

Table 13.5  Automatic weather station sites

Site details of automatic weather stations that were used for 
district METRIC analyses. Station number represents the official 
designation used by the Bureau of Meteorology, Australia.

District Site
Station 
number

Latitude 
(°S)

Longitude 
(°E)

Elevation 
(m asl)

GM Tatura 81049 36.4378 145.2672 114

SR Mildura 76031 34.2358 142.0867 51

RL Loxton 24024 34.4390 140.5978 30

Source: Weatherzone (www.weatherzone.com.au)

Paired pixel scale values of ETrF /NDVI were 
attributed to irrigated tree and vine crops based on 
the delineation of fields in land use maps. Field scale 
values of ETrF and NDVI were estimated by respective 
pixel scale means. Crop-specific analyses were 
restricted to major crops in each district, and included 
almond, citrus, and grape crops in both Riverland and 
Sunraysia districts, and pear, peach, apple and apricot 
crops in the Goulburn-Murray irrigation area. 

ETrF /NDVI analyses targeted peak-season irrigation 
periods when fully-grown crops typically experience 
large rainfall deficits (maximum annual values of 
evaporative demand coupled with low rainfall). Clear-
sky weather conditions provided five scenes for the 
Goulburn-Murray district in season 2008–09 (see 
Table 13.4), which allowed for a detailed temporal 
analysis of the major fruit crops grown in the district.

13.7.3  ETrF /NDVI relationships
Figure 13.5 shows the peak-season NDVI and 
ETrF distributions seen in 29 crop/district/date 
combinations for fruit, nut, and vine crops grown in 
the southern MDB within the study period. NDVI was 
predominantly confined to the range 0.1 ≤ NDVI ≤ 0.70, 
and consequently never achieved the large values 
(NDVI > 0.80) seen in the Idaho data (see Figure 13.2). 
Reduced maxima in the fruit, nut, and vine data were 
attributed to row-based plantings in horticultural 
crops (FC < 1). The large variability in peak-season 
NDVI within the range 0.1–0.70 was attributed 
primarily to differences in crop age and development, 
and differences in planting patterns, orchard 
management, and growth conditions. 

http://www.weatherzone.com.au
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Figure 13.5 also shows relatively few observations 
of ETrF in the range ETrF > 1, which are expected 
under conditions where ET is enhanced by direct 
evaporation of liquid water from wet soil/plant 
surfaces due to recent irrigation and/or rainfall. 
Irrigation was employed judiciously during the drought 
period experienced during the study (Goodwin and 
O’Connell, 2017), and rainfall events were scarce. 
Nevertheless, almost all ETrF observations exceeded 

the NDVI-dependent Kcb baseline associated with 
the reference ET/NDVI triangle (see Figure 13.6 and 
Figure 13.7), providing strong empirical support for the 
assumption that crops were adequately supplied with 
water:

ET = ET*

Kcr = ETrF (= ET/ETr)

Figure 13.5  Quartile representations

Quartile representations of the distribution of peak-season, field scale values of NDVI and ETrF in fruit, nut, and vine crops in the 
southern MDB irrigation districts in the period 2008–10 inclusive (see Table 13.4 for district/date codes). Blue lines show the range 
of observed field scale measures of NDVI and ETrF, respectively, while solid black bars represent the range of observations in the 
second and third quartiles. Green dots indicate the median values. Vertical lines demark the values NDVI = 0.1, ETrF = 0 and ETrF = 1.

Source: Des Whitfield, Agriculture Victoria
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Representative ETrF/NDVI relationships in Figure 13.6 
and Figure 13.7 showed few observations where 
high rates of ET (ETrF > 0.9) were associated with 
low NDVI, which is consistent with the scarcity of 
rainfall events during the study period. ETrF/NDVI 

relationships were therefore free of rainfall effects 
at low NDVI (compared with Figure 13.2 of Tasumi 
et al., 2005), and ETrF was consequently significantly 
related to NDVI (P < 0.05) in all 29 crop/district/date 
combinations available to the study.

Figure 13.6  Relationships for selected crops

Peak-season, field scale ETrF/NDVI relationships of almond, grape and citrus crops grown in the Sunraysia/Mallee (SR) in 2008/09 
irrigation season and Riverland (RL) districts in 2009/10 (see Table 13.4 for district/date codes). Grey triangles represent limits on 
ETrF/NDVI values seen in irrigated summer annual crops (Tasumi et al., 2005). White lines represent least squares lines of best fit. 

Source: Des Whitfield, Agriculture Victoria
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The linear regression relationships shown in 
Figure 13.6 and Figure 13.7 were appraised by 
investigating differences in the predicted values of 
ETrF at endmember values of NDVI (0.1 and 0.85) 
defined by the ETrF/NDVI reference triangle  
(using the values ETrFmin and ETrFmax respectively), 
along with appropriate 95% fiducial limits, for each 
crop/district/date combination. 

The analysis paralleled the endmember approach 
adopted by Allen and Pereira (2009), who described 
changes in Kcb of ‘tall’ horticultural crops in terms 
of a density coefficient, Kd, for values of Kcb within 
the range, Kcb min – Kcb full (see equation for Kcb in 
Section 13.7.1).

Figure 13.7  Representative ETrF/NDVI relationships for selected crops

Representative peak-season field scale ETrF/NDVI relationships seen in pear, peach, and apricot crops grown in Goulburn-Murray 
Irrigation District in 2008/09 irrigation season (see Table 13.4 for district/date codes). Grey triangles represent limits on ETrF/NDVI 
values seen in irrigated summer annual crops (Tasumi et al., 2005). White lines depict least-squares lines of best fit.

Source: Des Whitfield, Agriculture Victoria
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Figure 13.8 shows that regression estimates of 
ETrFmin were confined to the approximate range 
0.1 ≤ ETrFmin ≤ 0.4 (fiducial limits -0.1 ≤ ETrFmin ≤ 0.6). 
The mean value of ETrFmin (ETrFmin = 0.27) fell within 
fiducial limits appropriate to individual crop/district/
date combinations. 

Figure 13.8 shows that regression estimates of 
ETrFmax ranged between 0.8 and 1.4 (fiducial limits 
0.7 ≤ ETrFmax ≤ 1.75). The data clearly demonstrated 
that the mean value of ETrFmax for almonds exceeded 
values seen in non-almond crops. The mean value of 
ETrFmax in non-almond crops was consistent with the 
estimate ETrFmax = 1.00 (see Figure 13.8), whereas the 
mean value for almonds was ETrFmax = 1.32. 

Figure 13.8  Endmember regression estimates of ETrFmin and ETrFmax

Predicted values of endmember estimates of ETrFmin (brown) and ETrFmax (green) in crop/district/date combinations (see Table 13.4 
for district/date codes) enumerated in the southern MDB in seasons, 2008/09 and 2009/10, and associated fiducial limits (95%). 
Mean value of the coefficient, ETrFmin, was 0.27 in all fruit, nut, and vine crops (shown as brown vertical line), while mean value of 
ETrFmax was 1.00 in non-almond crops (shown as green vertical line). ETrFmax assumed the value, ETrFmax = 1.32, in almond crops grown 
in the southern MDB (shown as grey vertical line).

Source: Des Whitfield, Agriculture Victoria
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The preceding analysis of satellite-based ETrF/NDVI 
relationships for irrigated fruit, nut, and vine crops 
grown in the southern MDB showed large variations 
in peak-season values of ETrF. Derived estimates of 
ETrFmin and ETrFmax were attributed to adequately 
watered crops on the dual basis that: 

	§ satellite-based ETrF measures were related 
exclusively to irrigated fields and crops defined by 
irrigation land use maps; and

	§ field scale observations of ETrF overwhelmingly 
exceeded values associated with the nominal lower 
limit (Kcb) of the ETrF /NDVI triangle derived from 
Tasumi et al. (2005).

The severe lack of rainfall experienced by irrigation 
districts during the drought conditions of this study 
further suggested that estimates of ETrF shown in 
Figure 13.5, Figure 13.6, and Figure 13.7 were closely 
associated with Kcb values expected for adequately 
watered, fruit, nut, and vine crops.

ETrF showed strong, statistically-significant, linear 
relationships with NDVI in all peak-season crop/
date/district combinations addressed by this study 
(see Figure 13.6 and Figure 13.7), providing strong 
independent support for the use of the Kc-VI to 
determine IWR of horticultural crops grown in the 
southern MDB. Endmember analyses of linear  
Kc/NDVI relationships (see Figure 13.8) showed that 
complex variations in FC, crop height, and tree/vine 

planting distributions were described by crop-specific 
endmember values of ETrF estimated for the extremes 
of NDVI, namely NDVI = 0.1 and NDVI = 0.85, 
according to the ETrF/NDVI triangle derived from 
Tasumi et al. (2005). Data shown in Figure 13.8 
further suggested that linear ETrF/NDVI relationships 
applicable to fruit, nut, and vine crops in the range 
ETrF  ≤  1 may be described by:

Here, ETrFmin described the lower limit on ETrF 
at minimal NDVI (NDVI = 0.1), while ETrFmax 
described differences in ETrF seen at maximal NDVI 
(NDVI = 0.85). ETrFmax varied between species, 
assuming the values ETrFmax = 1.32 in almond, and 
ETrFmax = 1.00 in all other species included in the 
range of fruit, nut, and vine crops. Values of ETrF 
afforded by the equation above are limited to the 
maximum rate of ET attributable to well-watered 
alfalfa (ETrF = 1; Allen et al., 2007; Allen and Pereira, 
2009; Jensen and Allen, 2016). 

Derived estimates of ETrFmin and ETrFmax may therefore 
be combined with weather-based measures of ETr to 
estimate rates of ET* for use in real time, field scale 
irrigation management, or regional and farm scales 
in order to ensure an optimal balance between water 
supply and demand in horticultural crops.

13.8  Application to Irrigated Horticultural Crops in Southeast Australia
Seasonal and annual analyses of regional and farm 
scale irrigation demand may be conducted by 
undertaking crop water balance analyses based 
on weather, and the area and peak-season NDVI of 
constituent crops. This proposed regional approach 
contrasts with existing methods, which use census 
and other data to describe crop type and area, usually 
without regard to differences in the irrigation water 
requirements associated with crop age or size, and 
rely on historic water use data and/or the application 
of a predefined set of Kc values to describe crop water 
use capability.

Regional water use assessments are important in 
districts where crop mix and/or crop area are subject 
to rapid change. Regular assessments allow water 
managers to stay abreast of changes in the regional 
supply/consumption differentials that vary with 
changes in crop mix, crop area, and climate. Variations 
in crop mix change the Kc values that determine 
irrigation intensity (water use per ha), and changes 
in climate (rainfall deficit) also lead to changes in 
irrigation intensity. The largest changes in irrigation 
water use/demand are ultimately attributable to 
changes in the area of irrigated crops.

Irrigation farmers require a clear understanding 
of crop-specific water requirements in order to 
gauge irrigation demand of existing and prospective 
crops, and are challenged by the need to ensure 
that irrigation practices satisfy the yield and quality 
targets of crops, with minimal over-irrigation 
and consequent impact on the deep drainage to 
underlying water tables. Thus irrigators are primarily 
concerned with issues of irrigation intensity, and 
the need to ensure that irrigation applications are 
closely aligned to the temporal and spatial variations 
that arise from the range of crops and fields that 
contribute to on-farm irrigation demand. Methods 
described in this chapter provide the potential to 
define and refine crop-dependent, field scale water 
use targets and are further suited to turnkey regional 
supply/demand analytics when assessments of 
district and farm scale irrigation supply and demand 
are augmented by EO crop mapping techniques.
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Seasonal trends in Kc of deciduous crops are 
important to farm/district scale assessments of 
irrigation demand. These may be incorporated in 
analyses of well-established crops by the use of crop 
calendars for temporal scaling of in-season values of 
NDVI (see Figure 13.2). Alternatively, multiple satellite 
images may be used to undertake real time, field-
customised irrigation management (such as IrriSAT; 
Hornbuckle, 2014; see Section 13.9).

In all cases, estimates of ET* are readily incorporated 
in soil water balance analyses to estimate field- 
and crop-specific irrigation water requirements. 
Methods described in Section 13.7 therefore provide 
a formal, objective basis for the irrigation demand 
analytics needed to ensure that irrigation demand is 
appropriately matched to irrigation resources at field, 
farm and district scales in irrigated fruit, nut, and vine 
crops of the southern MDB.

13.9  Further Information

Australian Horticulture
Australian Department of Agriculture and Water 

Resources: Horticulture fact sheet: http://www.
agriculture.gov.au/ag-farm-food/hort-policy/
horticulture_fact_sheet

Australian Society of Horticultural Science (AuSHS):

Australian Horticulture webpage:  http://aushs.org.au/
australian-horticulture/ http://aushs.org.au/australian-
horticulture/

Australian Horticulture Statistics Handbook 2017/18: 
https://www.horticulture.com.au/growers/help-your-
business-grow/research-reports-publications-fact-
sheets-and-more/australian-horticulture-statistics-
handbook/

IrriSAT
Hornbuckle (2014)

Montgomery et al. (2015)

https://irrisat-cloud.appspot.com/

Evapotranspiration
Allen et al. (1998)

ASCE-EWRI (2005)

Jensen and Allen (2016)
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Graham Donald 

This section considers EO methods for extracting information to assist the management of pasture lands in 
Australia. In this context, the term ‘pasture’ combines the grassland definitions of Hill (2004):

	§ human-made pastures and grasslands—largely 
resulting from clearing of forested lands to grow 
pasture for dairy, meat, or wool production, as 
occurs in the coastal and hinterland regions of 
NSW, Victoria, and WA; and

	§ highly managed natural grasslands—naturally 
grassy regions now used to graze livestock, such 
as the semi-improved pastoral regions of eastern 
Australia.

To be a successful farmer one must first know the nature of the soil. 
(Xenophon)

Section 15 below will consider EO methods that are 
more appropriate for the semi-arid and arid Australian 
rangelands, where vegetation density and stocking 
rates are much lower. 

At a global level, grasslands are the most prevalent 
type of vegetation cover (Latham et al., 2014), the 
second largest terrestrial carbon sink (Derner and 
Schuman, 2007), and the cheapest source of fodder 
for livestock (Ali et al., 2016). However, the combined 
impacts of urbanisation, industrial development, 
overgrazing, intensive management, and climate 
change have meant that the area of agricultural 
land, and particularly permanent pasture cover, has 
declined in recent decades both on a global basis and 
in Australia (Poore, 2016; see Figure 14.1). 

To assist graziers making management decisions, 
a number of spatial technologies have become 
available including EO-based information. Some of the 
attributes of grasslands that can be retrieved from EO 
datasets include biomass, forage quality, growth rate, 

land cover, and degradation (Ali et al., 2016). These 
data provide an objective assessment of pasture 
condition to assist farmers and graziers in resource 
monitoring and management, and thereby measure 
the sustainability of agricultural practices over many 
years. EO-based systems allow graziers and farmers 
to self-regulate their activities to maintain the health 
of their pastures, and enable governmental authorities 
to regulate regional issues such as deforestation and 
the protection of native grasses. 

As with many applications, the major improvements 
with EO data in agriculture are likely to result from its 
integration with other spatial services and the ‘sense 
making’ processes that will be derived from complex 
system modelling. In essence, this includes all the 
information required for balancing the agricultural, 
economic, and ecological systems in a sustainable 
management environment that cannot be otherwise 
achieved without EO technology (see Section 20).

Background image: Cattle grazing in New England region, NSW. Source: Graham Donald

Recommended Chapter Citation: Donald, G.E. (2021). Pastures. Ch 14 in Earth Observation: Data, Processing and Applications. Volume 3A—Terrestrial Vegetation. 
CRCSI, Melbourne. pp. 281–298.
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Figure 14.1  Area of agricultural land 

a. Global

b. In Australia

Source: FAOSTAT (2019)

14.1  Pastures in Australia
In Australia, pastoral regions are relatively well-
vegetated and enjoy a Mediterranean climate (see 
Sections 2.2 and 2.4). The coastal belt and hinterlands 
of Queensland, NSW, and Victoria, plus southeast SA, 
southwest WA, and Tasmania, receive the highest 
rainfalls so are best suited to dairy farms, horticulture, 
and fine wool production (see Figure 11.1). In the drier 
‘wheat-sheep zone’, which covers the slopes and 
plains of NSW, northern Victoria, southern SA, and 
parts of southwest WA, larger properties grow grain 
crops, legumes, and oilseeds, often in rotation with 
grazing by sheep or cattle (McIvor, 2005).

The main livestock grazed commercially in Australia 
are sheep and cattle. Sheep are primarily grazed for 
meat in areas with higher rainfall and grown for wool 
on drier pastures.

The Australian Bureau of Statistics (ABS) regularly 
collects agricultural census data, with the major unit 
for aggregation and reporting being the Statistical 
Local Area (SLA; see Section 11.1). SLA boundaries 
are based on subdivisions or groupings of Local 
Government Areas (LGA) or their equivalent. Data are 
reported at the end of March for each census year, so 
statistics actually relate to production in the previous 
year. ABS agricultural census datasets have been 
used to validate estimates of pasture development 
and production derived from EO-based greenness 
indices, such as NDVI (see Section 8.1.1).
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14.2  EO Sensors for Pastures
In the last decades of the twentieth century, various 
data storage and analysis tools, such as Geographic 
Information Systems (GIS), were embraced by many 
areas of land management, including agriculture. 
These systems integrate spatially-defined grids, 
raster layers, and cadastral datasets, within a variety 
of geographic coordinate systems, and enable spatial 
manipulation, merging, and statistical analyses at 
the national, regional, station/farm, paddock, or even 
at a point, scale (see Volume 2D—Section 13). They 
also provide a means to integrate EO data with other 
datasets and generate derivative products (see 
Section 8).

A wide range of EO datasets at varying spectral and 
spatial scales are now being used to map and monitor 
agricultural activities (see Table 14.1). Satellite imagery 
has been used in agriculture since the early 1970s 
and offers an excellent means to monitor land cover 
at national, regional, and farm scales (see Sections 3 
and 12.3). In particular, outside the intensive 
agricultural areas, medium resolution satellite imagery 
(such as acquired by Landsat) has been one of 
the most productive means of identifying seasonal 
pasture cycles. In general terms, a relationship exists 
between the spatial resolution of EO imagery and 
the reliability/accuracy of the prediction, such that, 
in most cases, a higher image resolution improves 
the predictive capability. This assumption is related 
to the farm/station paddock size and the uniformity 
of biomass composition (see Section 10.1). With the 
more recent advent of higher resolution, spaceborne 
sensors, more detailed information is available 
allowing the horticulture, viticulture, and intensive 
farming production sectors to make use of this 
emerging technology (see Sections 12.6 and 13). 

Repeated coverage of seasonal events and cycles 
has also enabled time series analysis of agricultural 
activities using multiple, accurately-located, EO 
datasets (see Sections 9 and 10). Time series of EO-
based data offer new opportunities for agricultural 
applications, including identifying crop types, 
monitoring land cover, and assessing the productivity 
of land uses relative to their economic return (see 
Volume 1B—Section 1.4 and Volume 2D). For example, 
the Landsat NDVI time series dataset has been used 
to demonstrate the change and content of vegetation 
and salinity across the southwest region of WA 
(Caccetta et al., 2000). The power of this vegetation 
monitoring observation subsequently became a major 
component in the Land Monitoring Project, extending 
across Australia (Wallace et al., 2006).

Both spaceborne and airborne hyperspectral 
sensors provide valuable information for 
agricultural applications. For example, a ground-
based hyperspectral sensor study (Edirisinghe 
et al., 2004) demonstrated excellent prediction of 
in vitro digestibility and protein content for field 
pasture. Remotely piloted aircraft (see Volume 1A—
Section 11.2) offer great flexibility for data acquisition 
over small areas. 

Within GIS, optical, thermal, and microwave EO data 
and derived products have been integrated with many 
other spatial datasets, such as rainfall, temperature, 
soil, topography, and cadastre. Many GIS and EO data 
sources also depend on accessing accurate locational 
information via Global Positioning System (GPS) and 
the Global Navigational Satellite System (GNSS; see 
Volume 1B—Section 10).

Table 14.1  EO sensors relevant to pastures

TIR: thermal infrared; SAR: Synthetic Aperture Radar; DEM: Digital Elevation Model; ET: Evapotranspiration

Type Sensor Platform Relevance Advantages Disadvantages

Passive 
optical

Multispectral 
radiometer

Satellite or 
airborne

National or regional land 
cover mapping 

Global coverage, low cost
Low accuracy, coarse 
scale

Hyperspectral 
spectro-
radiometer

Airborne
Plant biochemical 
functioning and health

High spectral resolution, 
highlight plant stress

High cost, high data 
volume

TIR radiometer
Satellite or 
airborne

Soil temperature Surrogate measure for ET Low spatial resolution

Active optical

Lidar
Airborne and 
terrestrial

DEM Hydrology
High cost, specialised 
processing

Active optical 
sensors

Ground vehicles or 
RPAS

Cover and condition 
mapping

Convenience, low cost, 
independent of sunlight

Specialised hardware

Passive 
microwave

Microwave 
radiometer

Satellite Soil moisture
High temporal frequency, 
large spatial coverage, cloud 
penetration

Low spatial resolution

Active 
microwave

SAR
Satellite or 
airborne

Plant biomass
All weather, independent of 
sunlight

Data availability

Locational GPS Portable devices Tracking livestock Low cost
Low signal reception in 
remote areas



Earth Observation: Data, Processing and Applications.  Volume 3: Applications

284

Microwave imagery, both passive and active, has the 
advantages of being largely independent of weather 
and lighting conditions (see Volume 1B—Section 8). 
Satellite-based Synthetic Aperture Radar (SAR) can 
be used for monitoring agricultural and land cover 
practices at a global and regional scales, assessing 
soil moisture status, and quantifying plant biomass 
(Zhou et al., 2016). Airborne SAR (C-, L- and P-band) 
has been used to predict grassland biomass and 

the types and heights of grass cover in grass cover 
monitoring studies (Hill et al., 1996, 1999a, 2005). 
Since optical EO datasets primarily describe 
chlorophyll and water content (see Section 4.3), 
whereas microwave information is more relevant 
to the structural appearance of pasture, the fusion 
of optical and radar images can also be valuable 
(Hill et al., 2005; Schmidt et al., 2016).

14.3  Phenology and Production
Time series modelling is widely used for deriving 
phenological metrics (see Section 9.3) and monitoring 
changes in EO-based indices (see Volume 2D). For 
example, for a grassland pasture region in southwest 
Australia, Hill and Donald (2003) extracted agricultural 
production data from long term ABS agricultural 
census data (see Sections 11.1 and 14.1) for the 
period 1983–1997, then compared these data with 
NOAA AVHRR NDVI 15 day composites (calculated 
using a maximum value method; Holben, 1986; see 
Excursus 8.1). Bi-weekly images were processed into an 
NDVI time series from which a number of metrics were 
derived (see Figure 14.2, Table 14.2 and Table 14.3). 

In this example, the period of lag corresponded 
approximately to the length of the non-growing period, 
therefore the forward and backward lag periods were 
set to 13 intervals corresponding to the non-growing 
period of 6.5 months. For each NDVI pixel, a time series 
curve was produced and averaged within each SLA. 
The resulting metrics were then correlated with the 
agricultural ABS statistics (Hill and Donald, 2003). 
The area under the curve, or the integrated NDVI 
value, represents the accumulated amount of 
vegetation greenness, or net primary production (NPP; 
Reed et al., 1994; see Section 7.4), which related well to 
agricultural production within each SLA. These metrics 
are most appropriate in highly seasonal grasslands 
systems, such as those regions with Mediterranean 
climates in southern Australia (Hill, 2004). 

Figure 14.2  Basic metrics

The phenology metrics defined in Table 14.2 and Table 14.3 can be derived from attributes of an NDVI profile (line shown with points) 
and its smoothed curve. 

Adapted from: Hill and Donald (2003) from Reed et al. (1994) 
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Table 14.2  Description of NDVI metrics 

Abbreviation Definition Metric

OnT Intersection of forward lag and smooth curve Starting date of NDVI high period

OnV Value of NDVI at forwards intersection NDVI at start of high period

EndT Intersection of backwards lag and smooth curve End date of NDVI high period

EndV Value of NDVI at backwards intersection NDVI at end of high period

MaxT Time of maximum raw corrected NDVI Date of maximum NDVI

MaxV Maximum value of corrected raw NDVI Maximum NDVI

DurT Time from forwards to backwards intersections Length of NDVI high period

RanV Difference between minimum and maximum value of smooth curve Amplitude of season

RIN Slope of line from forwards intersection to raw maximum Rate of NDVI increase

RDN Slope of line from raw maximum value to backwards intersection Rate of NDVI decrease

TINDVI Integrated area under smooth NDVI curve ‘‘Magnitude’’ of season

DurNT Time from backwards to forwards intersection Length of NDVI low period

Source: Hill and Donald (2003) Table 1

Table 14.3  Supplementary metrics

Abbreviation Definition Metric

RRINDN Rate of increase/rate of decrease ‘‘Quality’’ of season

HranTO Time of half range value at onset—equals OnV+(RanV/2) when rising Start of active growing season

HranVO Half range value at onset—OnV+(RanV/2) NDVI at start of active growing season

HranTE Time of half range value at end—equals EndV+(RanV/2) when falling End of active growing season

HranVE Half range value at end—EndV+(RanV/2) NDVI at end of active growing season

HdurT Duration of period from HranTO to HranTE Duration of active growing season

SMMaxT Time of maximum smooth NDVI curve Date of peak of season

SMMaxV Maximum value of smooth NDVI curve Value at peak of season

SMMinT Time of minimum smooth NDVI curve Date of season minimum

SMMinV Minimum value of smooth NDVI curve Value of season minimum

Source: Hill and Donald (2003) Table 1
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14.4  Pasture Growth Rate
Pasture Growth Rate (PGR) is a biophysical property 
of grassland vegetation that represents the daily 
increase in biomass (measured as kg of total dry 
matter/ha/day). PGR is influenced by climatic 
factors and management practices (Ali et al., 2016), 
and provides valuable information for graziers to 
determine the ‘feed on offer’ (FOO; Edirisinghe et al., 
2000, 2002) for their livestock in the context of 
individual paddocks. 

NDVI time series datasets, in conjunction with 
estimates of PAR, moisture, and temperature, can 
be used to model PGR (Hill et al., 2004). Based on 
a variation of the light use efficiency (LUE) models 
(Prince, 1991; see Section 7.4), the PGR model requires 
greater than 60% grass cover to ensure that biomass 
assumptions are valid. Hill et al. (2004) modelled 
PGR as:

PGR = LUE � APAR

where

PGR is in units of g/ha;
LUE is in units of g/MJ; and
APAR is in units of MJ/m2.

This model has underpinned the successful Australian 
application called Pastures from Space (PfS; see 
Volume 1A—Excursus 14.1), an EO-based system 
that maps PGR (see Excursus 14.1). PfS, and its 
successor PfS+, were developed by CSIRO using a 
range of EO datasets and models (Hill et al., 2004; 
Donald et al., 2004a; Smith et al., 2011; 
Donald et al., 2015, 2016). The PfS/PfS+ were hosted 
by Landgate (WA) as a near real time tool to map 
pasture productivity at farm and paddock scales from 
2000 to 2018. It is now available for Western Australia 
via DIPRD (WA, see Section 11.6) to deliver FOO and 
PGR imagery. PfS/PFS+ is a product of a consortium 
comprising CSIRO, DPIRD (WA), and LandGate (WA).

These online PGR estimates provide a time series 
record of the changes in Gross Annual Pasture 
Production (GAPP) for Australian pastures, thus 
making it a useful tool for monitoring climatic effects 
on plant production and the impacts of land use. 
Biweekly estimates of PGR can be averaged to derive 
annual figures. Annual PGR and NDVI profiles reveal 
paddock NPP (or total dry matter, TDM) and provide 
a means to compare the productivity of paddocks 
over time and identify analogous years. National maps 
of PGR also provide an input to the supply chain 
management process, highlight those areas/regions 
that have responded favourably to climatic changes, 
and deliver confidence to those purchasing livestock 
or supplying urban markets. 

A dairy farmer was asked about the benefit of satellite EO models of providing ‘feed on offer’ (FOO) 
and pasture growth rate (PGR) to the farm operations. He replied “What we wish to know is how many 

days grazing is there and to which paddock the cows should go next”. At a farm/station scale EO-based 
models can illustrate those pasture types that are more productive and reliable. The moral here is to 

keep the message simple to assist farmers with their day-to-day decision-making processes.  
(Graham Donald)
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Excursus 14.1�—EO-based Pasture Products

Source: Graham Donald

A number of operational products based on EO 
datasets are now available to assist farmers and 
graziers to improve their management techniques and 
productivity (see Section 14.8). Below we summarise 
some pioneering Australian systems. 

SatMap
One of the first significant EO-based products for 
pasture management was SatMap (Vickery and 
Hedges, 1987), which was designed to assist with 
proposed fertiliser applications. Initially, this farm 
map defined classes of pasture growth status and 
provided a fertility index for pastures in the Northern 
Tablelands of NSW in terms of three levels of pasture 
ranging from slow (native pastures), medium (semi-
improved or degraded), to fast growth (highly 
improved). In conjunction with the Grassgro DSS 
(Hill et al., 1999b), a component of the GRAZPLAN 
DSS (Donnelly et al., 1997), SatMap data provided 
a soil fertility scalar to spatially simulate pasture 
production and weaning weights of lambs. 

In a long term grazing trial, a set of improved pastures 
used for sheep grazing were allocated to high and low 
stocking rates, then half of these were systematically 
rotated leaving areas to recover. Landsat images of 
these areas showed significant differences between 
treatments as management impacts and seasonal 
conditions took effect (Donald et al., 2013). All Landsat 
optical bands were processed into clusters and 
subsequently classified using unsupervised maximum 
likelihood procedures (using the ISODATA algorithm; 
see Volume 2E). The resulting classifications showed 
discrimination across a continuum from sparse, 
dry pastures to highly improved, green pastures 
(Vickery et al., 1997). Since satellite surveillance 
objectively reflects the strengths and weaknesses 
of a farm unit with respect to its soil types, slope, 
aspect, and pasture composition, such applications 
inform decisions relating to renovating pasture, 
maintaining pasture composition, and continuing soil 
fertility, as well as adjusting stocking rates and grazing 
management across every paddock for an entire farm. 

Pastures from Space
Pastures from Space (PfS) provides near real time 
information tools at whole-of-farm and within-
paddock levels for Australian pastoral businesses. 
Using EO datasets PfS estimates pasture production 
during the growing season to derive pasture biomass, 
or ‘feed on offer’, FOO (Edirisinghe et al., 2000, 2002). 
When combined with climate and soil data, the 
model forecasts pasture growth rate, PGR. The 
technology was initially developed in WA and has 
since been validated across Australia’s southern and 
Mediterranean agricultural regions, and also New 
Zealand’s dairy pastures (CSIRO, 2019). 

In 2000, the introduction of the PGR model 
(Hill et al., 2004) into the southwestern grasslands 
of WA was met by enthusiasm from farmers (see 
Volume 1A—Excursus 14.1) and road signs were 
erected to advertise the local PGR. Prior to this, the WA 
Department of Agriculture (DAFWA) was in the process 
of demonstrating to farmers how to manually assess 
FOO and PGR. 

The Australian PGR model (Hill et al., 2004) 
differentiates itself from related models by the fusion 
of weekly real time BoM continental 5�5 km gridded 
climate data and weekly composited daily MODIS 
250�250 m NDVI information (Holben et al., 1986; see 
Section 14.4), incorporating:

	§ a light use efficiency index (LUE; Gower et al., 1999);

	§ fAPAR (Goward et al., 1994);

	§ a growth index (Nix, 1981, Fitzpatrick and Nix, 1970); 

	§ weekly local climate data (BoM National Climate 
Centre); and

	§ MODIS NDVI imagery (LandGate, GA; see 
Section 8.1.1). 

NDVI provides a practical means for determining fAPAR 
(Goward et al., 1994), which relates to LAI and NPP (see 
Sections 6.3 and 7.4). This PGR prediction model was 
calibrated on approximately 50 farms in southwest WA 
over the years 1995–99, and validated for the next six 
years (Donald et al., 2004a). DAFWA pasture technicians 
provided 8–10 geolocated point values for PGR and FOO 
values in each paddock, for a range of pasture types over 
the growing season (May to October). 
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Figure 14.3  Examples of Pasture Growth Rate imagery

This example Landsat image was acquired on 26 July 2016 for a farm in southwest WA.

a. Normalised Difference Vegetation Index (NDVI)

b. Farm Pasture Growth Rate (PGR)

c. Feed On Offer (FOO)

Source: PfS+, www.landgate.gov.wa.gov.au

http://www.landgate.gov.wa.gov.au


Earth Observation: Data, Processing and Applications.  Volume 3: Applications Volume 3A: Applications—Terrestrial Vegetation

14  Pastures

289

National estimates of FOO, PGR, and NDVI were 
available online from WA Landgate, as PfS from 
1999, and PfS+ from 2016, until 2018 at national, 
regional, and farm scales (Donald et al., 2004b, 
Donald et al., 2010a; see Figure 14.3). Since its 
inception, this product has enjoyed numerous 
enhancements:

	§ Smith et al. (2011) derived a MODIS NDVI FOO 
model suitable for the southern temperate pastures 
where paddock sizes exceed 100 ha.

	§ Donald et al. (2015, 2016) modified the MODIS (and, 
where possible, included Landsat) NDVI model 
to assess total green biomass and total accrued 
biomass as TDM, which is also referred to as gross 
annual pasture production (GAPP). This modified 
model was released as Rangewatch (see below). 
Weekly PGR, TDM, and GAPP are also available as 
averages for each paddock. 

	§ When intersected with geo-located farm cadastre 
information, individual real time paddock PGR and 
biomass data can be extracted. This process was 
improved by incorporating a national perennial 
remnant vegetation cover (Furby, 2002) to exclude 
scrub and forest from paddock and farm estimates. 

	§ Farmers can also input their own localised rainfall 
if they believe it differs from the BoM integrated 
estimate. This is useful as generalised BoM data 
may not pick up local storms that can impact 
farm management. A secondary benefit provides 
farmer interaction, which enhances the experience, 
encourages adoption, and contributes to overall 
confidence in the product.

The weekly plot of GAPP over time for each paddock, 
for each growing season, over many years, reflects 
the productivity capacity of individual paddocks 
and provides farmers with a tool to highlight those 
paddocks that may require additional attention. 
Paddock data can be filtered into FatStock (a 
livestock module and Smartphone app), which 
allows farmers to describe the livestock grazed on 
the selected paddock and provides information 
relating to the management of these livestock, 
such as the suggested stocking rate and grazing 
days. Spatial maps of these data are very useful 
for other farm activities, such as highlighting the 
need for fertilisers, proposed fencing, and potential 
cereal cropping, which may offer a more financial 
proposition. Sensitivity of NDVI is limited at high 
LAI, and therefore at high green biomass levels, 
however moderate relationships have been obtained 
between biomass and NDVI for grazed rangeland (see 
RangeWatch product below).

One example of a farmer’s application of PfS+ 
(Foley, 2017), involved applying climate forecasts and 
replacing MODIS with Landsat NDVI in the PfS model 
to provide a spatial representation of PGR and a 
paddock average FOO (Smith et al., 2011). This grazier 
also used PfS+ to generate the liveweight growth 
rate of his sheep, which, when combined with climate 
forecasts, allowed him to adjust the paddock stocking 
rates to maximise his financial return.

RangeWatch
The Landsat time series datasets provide an 
opportunity to assess fractional ground cover 
estimates of bare ground, green vegetation, 
and non-green vegetation (see Excursus 8.3; 
Scarth et al., 2010, 2015), with the inference that 
any increase in bare ground over time could 
suggest either overstocking or climatic extremes in 
rangelands (see Section 15). Using this approach, 
the Rangewatch tool was developed from PfS. This 
was initially developed in the Kimberley region 
(Donald et al., 2015, 2016) and validated on a Pilbara 
cattle station in the northern rangeland regions of 
WA. This tool gave graziers assistance to maximise 
production, self-regulate the sustainability of sensitive 
rangelands, and assess available biomass suitable 
for livestock. As spectral bands of the MODIS 
and Landsat sensors are similar, merged spectral 
information were used to provide more intensive 
time series spectral information at the Landsat 
spatial resolution (Emelyanova et al., 2012, 2013; see 
Volume 2D—Section 6.2). More recent adaptations 
include a variety of livestock intake requirements 
and a stocking rate calculator to predict the potential 
number of grazing days remaining. When combined 
with livestock tracking, this EO-based information 
also identified regions on large cattle stations where 
watering points could be installed. 

The imagery from Rangewatch (PfS+) demonstrated 
the potential benefits of better quality pastures 
in higher producing regions and suggested where 
fencing around better quality pastures could improve 
livestock production (Donald et al., 2015). Another 
rangelands study (Donald et al., 2016) showed that 
pasture utilisation (the amount of edible pasture) 
was less than 20% and in some cases the amount 
of ground cover was as low as 15%. PfS+ has 
also provided WA graziers and WARMS (Western 
Australian Regional Monitoring System—see 
Section 15.3.2) the ability to independently assess 
station management.
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14.5  Biomass Monitoring
While vegetation greenness indices are valuable for 
estimating the biomass of green pasture, in many 
parts of Australia, especially where perennial pasture 
species are prevalent, grass still provides valuable 
fodder after it has turned brown (see Section 15). In 
these environments biomass estimates based on a 
cover-to-mass relationship can be derived throughout 
the annual cycle. As introduced in Excursus 8.3, 
fractional cover (FC) can determine the proportions 
of green vegetation, non-green vegetation, and bare 
soil contained within each pixel. With appropriate 
time series models, persistent vegetation (such as 
evergreen trees; see Section 9.1.) can be separated 
from other green vegetation, allowing the ‘non-
woody’ non-green and green proportions to be used 
to estimate biomass. A limitation of approaches 
relying on the cover-to-mass relationship is that this 
relationship will change depending on the land type 
and species mix, allowing only local scale or very 
generalised global estimates to be made. 

To improve the cover-to-mass approach requires 
either time series integration of the cover fractions 
and/or inclusion of other data, such as additional 
spectral bands, indices, and ancillary datasets (for 
example, climatic and land type information). These 
improvements have been achieved in recent years 
with the advent of Sentinel-2 data, with valuable 
spectral information in the red edge region and a 
revisit time of five days. One promising way to utilise 
this additional information is to implement a machine 
learning (ML) approach based on calibration against 
field data (see Volume 2E). Using this ML approach, 
biomass estimates can be derived for each new 
satellite image to provide a dynamic sequence of 
biomass snapshots to assist decision making on 
rural properties. In time, these sequences could 
be quantified in terms of seasonal and longer term 
trends in biomass and related to climatic and/or 
environmental drivers.

A variety of in situ data allows these models to 
be rapidly calibrated and validated to account 
for differing environmental and/or atmospheric 
conditions. For example, the farm management 
app AgriWebb enables farmers to photograph and 
record relevant information about the type and 
quantity of pasture at specific locations for easy 
integration with EO-based analyses. Open data kit 
(ODK) based field applications, as used by TERN and 
several government organisations, have also been 
used to collect a large amount of publicly available 
biomass data. The availability of current, accurately-
located, in situ data means the generic model can 
be calibrated for spatial and temporal differences in 
biomass, then validated independently. This ‘living 
laboratory’ process allows continual refinement of 
models, interpretation, and ground data collection 
to improve both the accuracy and precision of the 
derived estimates (see Excursus 14.2), which can be 
directly used to derive carrying capacity by farmers 
(see Section 15).
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Excursus 14.2�—Integrated Biomass Estimation

Source: Peter Scarth, cibolabs 
Further Information: https://www.cibolabs.com.au/

Using a ‘living laboratory’ model of data science 
tailored to Australian agriculture, estimates 
of biomass and food on offer (FOO) are now 
commercially available to graziers at 10 m resolution 
every five days. Using predictive models based on 
field calibration data applied to Sentinel-2 imagery 
from the ESA archives, these estimates allow graziers 
to monitor biomass in each paddock and property 
throughout the year. 

Over 2,000 field samples of total standing dry matter 
(TSDM) across northern and eastern Australia were 
collected over a two-year period (see Figure 14.4). 
This dataset aims to capture much of the variability 
across species and land types in the grazing regions. 
Coincident Sentinel-2 imagery and the associated 
Landsat-derived persistent green fraction is used to 
train a three layer, multilayer perceptron regression 
model using a 50% dropout, a maximum norm 
constraint, and a robust loss function to avoid open 
prediction. A national biomass map resulting from this 
modelling process is shown in Figure 14.5. 

33% of the field site data is used for training, with 
the remainder reserved for validation. To determine 
the prediction error, the model is trained 100 times 
for approximately 16,000 epochs before reaching 
the termination criterion, and results in a median 
prediction error of 295�8 kg/ha. (Note that in ML 
terminology, an epoch indicates the number of passes 
of the entire training dataset the ML algorithm has 
completed.) In this example, significant outliers can 
be attributed to missed cloud or shadow, poor tree 
or shrub cover estimation, significant rainfall events 
close to the calibration time, or heavy grazing in the 
week following the field observation.

The relative simplicity of this model, coupled with 
the availability of global imagery in cloud optimised 
formats, means that biomass estimates can be 
obtained in either batch mode over large areas in 
a high performing computing environment, or on 
demand as a cloud computing function. The typical 
latency between image capture and delivery is under 
24 hours. This enables fast interrogation of individual 
paddocks from global scale imagery, either in the 
user’s browser or through integrations with other farm 
management software, including detailed statistical 
summaries over space and time.

https://www.cibolabs.com.au/
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Figure 14.4  Biomass calibration/validation sites

These photographs sample more than 2000 field calibration sites across Australia. The locations of these sites are shown as blue 
dots on the map in Figure 14.5. The sites are used to train a machine learning (ML) model which allows per pixel prediction of Total 
Standing Dry Matter (TSDM) from Sentinel-2 image data.
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Figure 14.5  Sample national biomass map, September 2020
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14.6  Precision Grazing
There has been an increase in the number farmers and 
graziers embracing EO-based, precision agriculture 
technologies to assist with the growing complexity 
of farm management decisions (see Section 12.6). 
For example, farmers in rangelands, grasslands, or 
intensive grazing environments are implementing GPS 
tracking of livestock (see Volume 1A—Section 10). 

Recent perturbed climate events, coupled with 
insecurity in the economic sector, have made 
landholders more aware that they need to improve their 
understanding of farm management. Farmers have the 
capacity to monitor the locations and movements of 
their livestock across the farm, which in turn provides 
information on grazing behaviour (Trotter et al., 2010). 
For example, satellite-based datasets can provide 
frequent, up-to-date, biomass assessments of PGR, 
total biomass and ground cover (see Section 14.4). 

Several precision agricultural companies are also 
developing a range of products for integrated 
precision agriculture, some of which rely on drones 
(see Volume 1A—Section 11 and Section 12.6). In 
combination with GPS tracking, this information 
provides a powerful tool for managing livestock 
production in a sustainable manner. In light of these 
resource and economic factors, farmers have to be 
more flexible in choosing enterprises from the number 
of production sectors available. 

Biosecurity research (Donald et al., 2010b, 
Miron et al., 2007) also showed that livestock 
movements, both on and off farm, were highly 
correlated to PGR and biomass estimates. This 
provided inputs into models pre-empting livestock 
movements within regions, which is necessary for 
those needing supply chain movements. Results 
demonstrated a high correlation between the 
movement of cattle at farm locations and PGR/
biomass within six SLAs in southern Queensland. 

Livestock tracking is also critically important in the 
event of an outbreak of an exotic disease, such as foot 
and mouth. Early detection and identification of an 
area around infected stock reduces the spread of the 
disease (Miron et al., 2007). Meat Livestock Australia 
(MLA), in conjunction with state governments, 
has introduced a National Livestock Identification 
Scheme (NLIS) to electronically track the movement 
of livestock off-farm via radio frequency identification 
(RFID). This technology will undoubtedly be eventually 
refined to enable ready integration into a GIS system 
and thus enable many other uses, including tracking 
livestock theft. 

14.7  Wool Production
The sale of greasy wool is highly dependent on its fibre 
diameter and tensile strength, with a lesser emphasis 
on colour, condition, and length. Finer wool has a lower 
fibre diameter and a higher price by weight. 

Throughout the grazing year, pasture nutrition varies 
with seasons and climatic conditions. Since the fibre 
diameter profile (FDP) reflects the sheep’s nutritional 
status, the nutritional composition of pasture can 
impact fibre diameter. A rapid shift in nutrition from 
poor to high, as can occur at the end of a drought, 
may cause severe fibre weakening (referred to as 
‘tender’) and reduced yield (Mata and Masters, 2002), 
which together substantically reduces the value of a 
fleece. Particularly in the highly prized Saxon merino 
genotype, where the fleece is valued primarily by 
its fibre diameter and tensile strength, wool that 
becomes tender has little or no value. 

While wool fibre diameter is not only dependent on 
nutrition but a number of other factors, including 
genetics and physical stresses, such as lambing, the 
yearly variation in the profile of the fibre diameter is 
mostly attributed to quantity and quality of pasture. 
The weakest stage of the wool profile occurs at 

the change of season when there is an increase in 
available green pasture. Managing these changes 
of seasonal pasture growth across the major wool 
producing regions of Australia will help graziers to 
maintain the fleece staple strength and achieve a 
more even diameter profile.

The fibre diameter of wool has been associated 
with the seasonal environmental nutrition of grazing 
pastures in a number of wool producing regions 
(Whelan et al., 2008). This environmental nutritional 
profile can be easily observed in NDVI imagery. 
Whelan et al. (2008) predicted the average fibre 
diameter of the wool clip using NDVI and showed 
that the NDVI profile could be used to indicate when 
feed availability should be increased or decreased 
to avoid weakening of the wool staple. NDVI from 
strategic wool producing regions may forecast wool 
production with more certainty than rainfall data and 
expert opinion (Whelan et al., 2007). Thus, combining 
estimates of sheep numbers with NDVI, FOO, and 
PGR may provide an ongoing platform to predict the 
Australian wool supply, and in conjunction with the 
FDP, its potential economic value.
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Using the tools within EO applications such as PfS, 
farmers can detect changes in PGR across a farm, 
highlight areas where wool staple strength may be at 
risk, then decide whether to avoid risking profitability 
at the next shearing. An example of the efficacy of the 

PfS+ model with respect to its application in sheep 
farming was reported by Foley (2017), a wool producer 
in the southern region of WA, who was able to improve 
overall wool production by 60%, increase lambing 
rates, and double pasture production.

14.8  Further Information

Agricultural Statistics
ABARES (2018). Snapshot of Australian Agriculture. 

Insights (1): https://www.agriculture.gov.au/abares/
publications/insights/snapshot-of-australian-
agriculture

UN Food and Agriculture Organisation (FAO): http://
www.fao.org

EO-based Pasture Models
Pastures from Space:

WA Agriculture and Food: https://www.agric.wa.gov.
au/sheep/understanding-pastures-space-south-
west-western-australia

https://www.csiro.au/en/Research/AF/Areas/Digital-
agriculture/Cropping-pastures/Pastures-from-Space

CIBO-Labs—Building Solutions for Agriculture: https://
www.cibolabs.com.au

FarmMap4D Spatial Hub (formerly NRM Spatial 
Hub; see Volume 1B—Excursus 10.3): http://www.
farmmap4d.com.au/
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15  Rangelands

Gary Bastin

Arid and semi-arid landscapes, or drylands (aridity index < 0.65), occur in both tropical and temperate 
latitudes, and cover 41.3% of the land surface of Earth (IUCN, 2019). They are home to a third of the world’s 
population and more than 28% of endangered species globally (IUCN, 2019). They also feature significantly in 
terms of global biophysical risks identified by the World Economic Forum (WEF, 2018). 

Dryland landscapes are predominantly used for 
grazing and commonly known as ‘rangelands’. In 
Australia, they include (but are not limited to) the 
ecoregions labelled as deserts and xeric shrublands 
(see Section 2.4.1), temperate grasslands, savannas 
and shrublands (see Section 2.4.5), and tropical and 
subtropical grasslands, savannas, and shrublands 
(see Section 2.4.6) in Figure 2.14. From Section 2.2 
and Table 2.4 it is readily apparent that the majority of 
the Australian continent is arid or semi-arid and thus 
considered as rangeland.

Much of the information in the following sections 
describing the Australian rangelands derives from 
the Australian Collaborative Rangelands Information 
System (ACRIS, Bastin et al., 2008, 2009; 

DSEWPC, 2013). From 2002 to 2014 ACRIS operated 
as a partnership between the Australian Government 
and the state/territory jurisdictions responsible for 
rangelands, primarily to collate the available, and 
often disparate, biophysical, and socio-economic 
datasets to report change in this environment (see 
Figure 15.1). 

The following sub-sections introduce EO of 
rangelands in terms of:

	§ Australian conditions (see Section 15.1);

	§ relevant sensors (see Section 15.2);

	§ land condition (see Section 15.3);

	§ operational systems (see Section 15.4); and

	§ conserving biodiversity (see Section 15.5).

The rangelands encompass tropical woodlands and savannas in the far north; vast treeless grassy plains 
(downs country) across the mid-north; hummock grasslands (spinifex), mulga woodlands and shrublands 

through the mid-latitudes; and saltbush and bluebush shrublands that fringe the agricultural areas 
and Great Australian Bight in the south. Across this gradient, seasonal rainfall changes from summer-

dominant (monsoonal) in the north to winter-dominant in the south. Soils are characteristically infertile. 
Great climate variability and the dominating influence of short growing seasons distinctly characterise 

rangeland environments. 
(Bastin et al., 2008) 

Background image: The Bokhara Plains Station, 35 km north of Brewarrina, NSW, is a case study in Soils for Life. (For details visit: https://soilsforlife.org.au/
bokhara-plains-reaching-the-real-potential-of-the-nsw-rangelands/). Source: Kirsty Yeates

Recommended Chapter Citation: Bastin, G.N. (2021). Rangelands. Ch 15 in Earth Observation: Data, Processing and Applications. Volume 3A—Terrestrial 
Vegetation. CRCSI, Melbourne. pp. 299–322.

https://soilsforlife.org.au/bokhara-plains-reaching-the-real-potential-of-the-nsw-rangelands/
https://soilsforlife.org.au/bokhara-plains-reaching-the-real-potential-of-the-nsw-rangelands/
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Figure 15.1  Framework for ACRIS reporting

ACRIS attempted to integrate available and suitable biophysical, economic and social data to describe and understand changes 
in Australia’s rangelands. Key drivers of change are related to their effects on landscape values and their further impact on socio-
economic outcomes. Ideally these outcomes then feed back to the drivers via appropriate learning and adaptive management.

Adapted from: Bastin et al. (2009) Figure 1 

15.1  Rangelands in Australia
The Australian Rangelands Society defines 
rangelands as ‘all those environments where natural 
ecological processes predominate and where 
values and benefits are based primarily on natural 
resource areas which have not been intensively 
developed for primary production’ (ARS, 2019). In 
Australia, rangelands occur where regular cropping 
is (generally) not possible due to insufficient rainfall 
and/or poor soils. These areas are principally used for 
grazing by both domestic livestock and wild fauna. 
They cover 81% of the country (Bastin et al., 2008; 
see Figure 15.2) and are popularly referred to as ‘the 
outback’. They are also home to numerous indigenous 
communities, who actively support the health and 
wellbeing of remote, rangeland communities, and play 
an important role in the stewardship of indigenous 
cultural heritage (Foran et al., 2019). Rangelands 
landscapes include savannas, woodlands, shrublands, 
grasslands, and wetlands, and span latitudes ranging 
from monsoonal to temperate (Bastin et al., 2008). 

Despite being the least populated region in Australia 
(see Figure 2.15), the economic value realised 
from rangelands totals nearly $60 billion annually 
(ARS, 2019). Most of this revenue is generated from 
mineral mining, with the remainder mostly being 
derived from agriculture and tourism. Land uses 
across Australia’s rangelands in the 2001/2002 
financial year are summarised in Figure 15.2.

Australia’s rangelands are characterised by infertile soils, 
large climatic variations, and short growing seasons 
(Bastin et al., 2008). Grazing from domestic stock 
(principally sheep and cattle, plus some goats), native 
wildlife (principally kangaroos), and feral animals (rabbits, 
goats, camels, horses, and donkeys), combined with a 
highly variable rainfall, frequent fires, and exotic weeds, 
present unique and complex management challenges 
for maintaining biodiversity and landscape stability in 
this region. The task of monitoring vegetation change 
is further exacerbated by highly variable vegetation 
patterns and remote locations, where permanent 
landmarks are, quite literally, few and far between. 
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There is no such thing as ‘pristine’ in the Southern Rangelands [of WA]. The landscape is ever changing 
and evolving, and being shaped by different processes, including those introduced by humans. 

(Pollock, 2019)

Understanding, monitoring, and managing the 
rangelands as a whole becomes more tractable when 
they are stratified into components reflecting their 
biophysical characteristics. A number of classification 
systems have been used to categorise biogeographic 
differences in this region, including NVIS (National 
Vegetation Information System; see Section 2.4.1) 
and IBRA (Interim Biogeographic Regionalisation of 
Australia; see Section 2.5). Characteristics, locations, 
and extents of major vegetation types and their 
underlying soils are broadly summarised in terms of 
52 IBRA bioregions in Bastin et al. (2008). Relevant 
state-based systems include regional ecosystems in 
Queensland and land systems in other jurisdictions, 
while SA developed a seamless mapping system 
relating land systems to component units of bioregions 
in the rangelands of that state (see Section 2.3.1). 

For EO analyses, however, hierarchical categorisations 
are most useful to allow further stratification for 
monitoring and assessment of the rangelands 
landscape. The IBRA bioregions provide a convenient 
stratification for dealing with the broadly different 
environments/landscapes within the rangelands 
and, with their component units, were the preferred 
regionalisation for the ACRIS Management Committee 
(Bastin et al., 2008).

Despite decades of grazing, much of the rangelands 
environment can still be considered as ‘natural’ (see 
Figure 3.3 classes I, II and III). Many ecosystems 
are largely intact but require careful management 
to maintain biodiversity and, where grazed, their 
productive value. Potential agents of degradation 
include the impact of overgrazing by domestic, feral 
and native herbivores, inappropriate fire regimes, 
introduced predators, weeds and other invasive 
biota (DSEWPC, 2013), and poor road design and 
maintenance in some areas (OAGWA, 2017). 

Figure 15.2  Land uses in Australian rangelands

Land Use 2001/02

Water/lake - mostly dry (1.8%)
Not included

Grazing natural vegetation (59%)

Cropping (0.5%)
Grazing modified pastures (0.5%)

Irrigated agriculture (0.1%)

Conservation & natural environments (38%)

Horticulture (0.0007%)
Forestry (0.1%)

Intensive uses including urban (0.05%)

Source: Bastin et al. (2008) Figure 3.108 (p130) Updated data can be downloaded from: http://www.agriculture.gov.au/abares/aclump/land-use/data-download

http://www.agriculture.gov.au/abares/aclump/land-use/data-download
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15.1.1  Vegetation
Vegetation in rangelands varies from tropical 
savannas and woodlands in northern Australia to 
arid environments in central Australia, and semi-
arid shrublands in southern regions. Ground-layer 
species composition can vary greatly in short time 
periods, particularly in the arid zone. Rangelands 
encompass a wide variety of vegetation associations, 
structures and densities, with underlying soils varying 
from cracking clays to alluvial loam to sand dunes. 
As in most ecosystems, perennial species act as an 
environmental anchor, sustaining the landscape by 
stabilising the soil surface and recycling nutrients. 

In rangelands, forage comprises any non-woody 
plant material. In addition to grasses, many shrub 
species have leaves that are palatable for stock, 
and palatable perennial grasses and shrubs sustain 
livestock into dry times and drought. The ACRIS 
Management Committee described these palatable 
perennial species as ‘critical stock forage’ and 
examples of the results of jurisdictional monitoring for 
this key indicator of rangeland condition are given in 
Bastin et al. (2008; see pages 42–51). Although some 
weed species provide valuable pasture, others are 
spreading rapidly through cleared areas in savanna 
regions and into the arid zone (see Section 2.3.2). 
Biodiversity has also been observed to reduce in 
many rangeland areas that have been colonised by 
exotic weeds (see Section 15.5).

While droughts can be extended and devastating 
(see Section 15.1.2), rangeland vegetation responds 
quickly to most rainfall events. Especially in central and 
southern Australia, vegetation growth, and subsequently 
fuel loads, are directly related to antecedent rain 
(Bastin et al., 2008; Bastin and Allan, 2012). 

Recurring periods of higher rainfall can also 
encourage germination and growth of woody species 
in the Australian rangelands. This response is not 
always advantageous for the broader landscape, 
and has contributed to woody thickening, which may 
restrict future pasture growth through competition for 
soil water, nutrients, or light (see Section 15.1.3). 

To survive the harsh climatic conditions in arid and 
semi-arid regions, many plants have adapted to the 
limited soil nutrients and moisture, and generous 
exposure to sunlight (see Sections 4.2 and 5.2 above). 
Such adaptations typically involve:

	§ reducing water loss by limited transpiration; 

	§ efficient root systems to maximise water uptake;

	§ controlled or deferred photosynthesis until 
conditions are favorable;

	§ conscientous storage and recycling of nutrients; 
and 

	§ rapid growth and reproduction when circumstances 
are advantageous (Stafford Smith and McAllister, 
2008).

Native vegetation has also adapted to fire—a frequent 
and harsh environmental broom, particularly in the 
northern tropical savanna (see Section 18). 

While these vegetation communities appear to 
be robust, having become established in extreme 
climates, some are fragile, at times balancing 
between survival and demise. Even where plant 
communities have adapted to these conditions, they 
cannot necessarily withstand major changes in their 
environment (see Section 7). Ecosystems find their 
own range of stability in managing environmental 
resources, and significant perturbations can 
takes years or decades of recovery. Additional 
environmental pressures, whether from grazing, 
increased fire frequency, extended drought or 
excessive water usage, can undermine the stability 
of rangeland ecosystems (see Section 7.2). Once 
degraded, vegetation recovery can take many years 
of above average rainfall and low grazing pressure to 
enable plant populations and perennial root systems 
to recoup (McKeon et al., 2004; Pollock, 2019), with 
decades sometimes being required to attain pre-
degradation levels of ecosystem ‘health’ and pasture 
productivity. One example of this process is illustrated 
in Figure 15.3.

I love a sunburnt country, a land of sweeping plains, 
of ragged mountain ranges, of droughts and flooding rains. 

I love her far horizons, I love her jewel-sea, 
Her beauty and her terror, the wide brown land for me. 

(Dorothea MacKellar, from ‘My Country’)
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Figure 15.3  Vegetation Recovery

This sequence of photos shows the vegetation recovery process at a fixed location in the Victoria River Research Station, 40 km 
north of Victoria River Downs Homestead and 220 km southwest of Katherine in the Northern Territory.

a. April 1973—extensive areas of bare soil before construction of 
cattle-proof exclosure

b. June 1978—revegetation with grasses, forbs and the 
introduced shrub Calotopis procera (rubberbush)

Rangelands 2008 — Taking the pulse 11

2 Assessing change

Detecting change

Change is part of the natural world and can be 
detected by a number of methods — for example, 
by taking photos from a fixed position (Figure 2.1) 
or by taking complex quantitative measurements 
over time (Figure 2.2). If changes are detected, how 
do we interpret them?

The sequence of photos in Figure 2.1 illustrates 
some of the more spectacular vegetation change  

This chapter describes how change is detected 
through monitoring activities, the reasons change 
occurs, and how we interpret change. An important 
issue in interpreting change is the reliability of the data 
available. The chapter also describes how Australian 
Collaborative Rangeland Information System (ACRIS) 
data are used to document change in Australia’s 
rangelands by summarising available information into 
regions. It ends by briefly describing pastoral monitoring 
programs of the states and the Northern Territory 
(NT) that contribute data for reporting change.

Figure 2.1  Change in the Ord Victoria Plain bioregion, NT

Sequence of photos from a fixed location at the Victoria River Research Station, 40 km north of Victoria River Downs Homestead and 
220 km southwest of Katherine in the Northern Territory.

Photos: CSIRO, Alice Springs

April 1973 June 1978

June 1989 June 2000
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Sequence of photos from a fixed location at the Victoria River Research Station, 40 km north of Victoria River Downs Homestead and 
220 km southwest of Katherine in the Northern Territory.

Photos: CSIRO, Alice Springs

April 1973 June 1978

June 1989 June 2000

c. June 1989—rubberbush has been replaced by native tree and 
shrub species

d. June 2000—landscape dominated by native perennial black 
spear grass (Heteropogon contortus)

Rangelands 2008 — Taking the pulse 11
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Figure 2.1  Change in the Ord Victoria Plain bioregion, NT

Sequence of photos from a fixed location at the Victoria River Research Station, 40 km north of Victoria River Downs Homestead and 
220 km southwest of Katherine in the Northern Territory.

Photos: CSIRO, Alice Springs
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2 Assessing change

Detecting change

Change is part of the natural world and can be 
detected by a number of methods — for example, 
by taking photos from a fixed position (Figure 2.1) 
or by taking complex quantitative measurements 
over time (Figure 2.2). If changes are detected, how 
do we interpret them?

The sequence of photos in Figure 2.1 illustrates 
some of the more spectacular vegetation change  

This chapter describes how change is detected 
through monitoring activities, the reasons change 
occurs, and how we interpret change. An important 
issue in interpreting change is the reliability of the data 
available. The chapter also describes how Australian 
Collaborative Rangeland Information System (ACRIS) 
data are used to document change in Australia’s 
rangelands by summarising available information into 
regions. It ends by briefly describing pastoral monitoring 
programs of the states and the Northern Territory 
(NT) that contribute data for reporting change.

Figure 2.1  Change in the Ord Victoria Plain bioregion, NT

Sequence of photos from a fixed location at the Victoria River Research Station, 40 km north of Victoria River Downs Homestead and 
220 km southwest of Katherine in the Northern Territory.

Photos: CSIRO, Alice Springs

April 1973 June 1978

June 1989 June 2000Source: Bastin et al. (2008) Figure 2.1

15.1.2  Water
An overriding constraint in most rangelands is water. 
While major river systems exist around the fringes of 
the Australian rangelands (see Figure 2.2), rainfall is 
episodic and ephemeral, and surface water is scarce. 
Thus, in most of this region, rainfall is the primary 
driver of landscape change (Bastin et al., 2008). 
Duration, frequency, volume, and timing of rain are 
significant for both floral and faunal populations. 
Droughts—extended periods without rain—have 
occurred in Australia for millennia (Hendy et al., 2003), 
but in conjunction with overgrazing can be 
devastating (see Section 11.4 and Table 11.2). 

The Great Artesian Basin (GAB; see Section 2.1 and 
Figure 2.5), which underlies much of northeastern 
Australia and extends into central Australia, enables 
settlement and enterprises in this region. Prior to 
the first deep bores drilled in the late 19th Century 
to access the GAB, semi-permanent waterholes and 
springs along major rivers and mountain ranges, plus 
a few wells, supplied the only reliable water sources. 
Now, in addition to surface water in large catchments 
or drainage basins (such as the Lake Eyre Basin), 
smaller dams or earthern tanks at paddock scale and 
localised aquifers accessed by bores or wells provide 
water for communities, livestock, and limited irrigation 
(mainly horticulture), but don’t promote pasture 
growth for grazing (Bastin et al., 2008). Tens of 
thousands of bores, some reticulated using polyphene 
piping, tanks, and troughs, have now been installed to 
supply water for stock. 
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The density and location of these waterpoints is 
significant for both livestock production and land 
degradation, as well as biodiversity of native and 
introduced fauna and flora (James et al., 1999). 
Landsberg et al. (1997) estimated that there are few 
areas in pastoral rangelands that are located more 
than 10 km from a source of water (Croft et al., 2007; 
see Figure 15.4). There is concern that the artificial 
supply of water in rangelands has impacted 
biodiversity by biasing the distribution of native 
vegetation and further encouraging the spread of 
some exotic flora and fauna (James et al., 1999; 
DEWHA, 2009), resulting in loss of biodiversity and 
landscape functionality (Howes and McAlpine, 2008; 
see Section 15.5). 

Figure 15.4  Density of waterpoints

For a typical rangeland region in central Australia, this graph 
shows the proportion of land area at different distances from a 
water point (natural and artificial).

Adapted from: Biograze (2000) 

Droughts are inevitable in Australia’s rangelands. Yet, despite the physical hardship, the social heartbreak, 
the animal suffering, the financial and economic consequences, and the environmental damage we know 

for certain will occur, we appear to be surprised by the next inevitable drought.  
(McKeon et al., 2004)

15.1.3  Fire 
Fire affects long term changes in vegetation, such 
that a decreased fire frequency encourages tree 
growth and an increased fire frequency encourages 
grass growth. Accordingly, fire has long been used 
by indigenous land managers to promote pasture 
(Jurskis, 2015). In some rangeland bioregions, the 
longterm suppression of fire, either through active 
management to eliminate or control fire, or the lack 
of fuel due to grazing, has resulted in an increase in 
woody biomass in the the semi-arid savannas from 
both native and exotic shrubs (Burrows et al., 1990; 
Fuhlendorf et al., 2008). This change is known as 
woody thickening and considered undesirable for 
both grazing and habitat balance. Woody thickening 
has also been observed in Australia’s northern tropical 
savannas (Murphy et al., 2014).

The use of controlled burning to reduce fuel load, 
and hence the intensity of late season fires, is 
increasing, particularly in northern rangeland areas 
(see Section 18). In the savannas of northern Australia, 
where high (summer monsoonal) rainfall encourages 
high fuel loads, fire is frequent and extensive. More 
than half the area of some bioregions can be burnt 
annually (Bastin et al., 2008). The most extensive fires 
occur in the late dry season, and these are intense 

in terms of burn severity and largely uncontrolled. 
Early dry-season burning using controlled fires, 
particularly on indigenous-held land, are being 
promoted to mitigate greenhouse gas emissions 
and reduce the severity of late season fires (Russell-
Smith and Sangha, 2018; see Section 18). In arid and 
semi-arid central Australia, fires are more episodic 
and linked to prior rainfall, which stimulates plant 
growth (Bastin et al., 2008, Bastin and Allan, 2012). 
Widespread fire, however, is rare in the chenopod 
shrublands of the southern rangelands. 

15.1.4  Grazing
The spatially dominant land use in Australian 
rangelands is livestock grazing. Bastin et al. (2008) 
reported that nearly 3.7 million km2 of native 
vegetation and 30,000 km2 of modied pastures 
were used for this purpose in 2001/2002, while 
Foran et al. (2019) estimated a slightly smaller 
area (3.4 million km2) based on figures from 
ABARES (2017) and URS Australia P/L (2013). 
Cattle grazing predominates in northern regions, 
with greater numbers of sheep in southern regions 
(Foran et al., 2019), however, sheep numbers have 
declined in recent decades, partly due to problems 
with dingo control (see Section 2.3.3).
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Figure 15.5  Impact of artificial waterpoints on native species

While the presence of artificial waterpoints increases the 
abundance of some native species of fauna and flora, other 
species can be negatively impacted.

Adapted from: Biograze (2000) 

As a general trend, grazing pressure has been 
observed to decline with distance from water (Andrew 
and Lange, 1986). The term ‘piosphere’ describes the 
impact of grazing on vegetation and soils in a zone 
centred on an animal attractant, such as water or 
mineral licks, with impacts being most concentrated 
closer to the centre of the zone (Lange, 1969; Andrew 
and Lange, 1986). Accordingly, in large paddocks, the 
impact of livestock on vegetation and soils is greatest 
near waterpoints (Pickup et al., 1994), with ‘near’ 
equating to ~3 km for sheep and ~5 km for cattle. 
Within the piosphere, increased soil erosion is likely 
with reduced vegetation cover and changes in soil 
chemistry (Washington-Allen et al., 2004). Soil erosion 
is greatest within 2–3 km from the water source 
(Howes and McAlpine, 2008). 

Historically, excessive grazing pressure has resulted 
in land degradation, which manifests as degraded 
soil structure, increased soil erosion, loss of palatable 
forage, and an increase in unpalatable woody weeds 
(see Section 11.4). Although most native species of 
flora and fauna survive in grazed areas of rangelands, 
the presence of artificial watering points has 
altered the composition of some species, with their 
abundance and extent being largely determined by 
distance from water (Howes and McAlpine, 2008; see 
Figure 15.5). 

The potential response of vegetation to grazing 
exclusion varies with the initial site productivity (see 
Table 15.1). Provided landscapes have not crossed a 
degradation threshold, either a reduction in grazing 
pressure or a sequence of wetter years can facilitate 
recovery to an improved state (Ash et al., 2011). 
In the arid and semi-arid rangelands, recovering 
the most degraded state by manipulating grazing 
pressure alone (such as wet season spelling) is more 
problematic since extensive erosion and/or woody 
thickening generally results. Erosion control often 
requires earthworks to manage flows of rainwater and 
increase on site infiltration to restore the water cycle. 
Limited grass growth and fuel accumulation precludes 
the use of fire for thinning woody thickets.

Table 15.1  Potential responses of vegetation to grazing exclusion

Site 
degradation

Initial site productivity

Low High

Low

Native dominance Native dominance

Small increase in biomass Large increase in biomass

Small change in exotic biomass Potential increases in large exotic species

Possible minor increase in small scale richness of low biomass 
species

Decline in small scale plant richness, especially in low biomass 
species

High

Native: exotic co-dominance Exotic dominance

Small increase in biomass Large increase in biomass

Possible minor increase in small scale richness of low biomass 
species

Decline in small scale richness, especially in low biomass species

Limited increase in native richness owing to propagule 
constraints

Negligable increase in native diversity owing to competition and 
propagule constraints

Source: Lunt et al. (2007) Table 1
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The worst instances of pasture degradation 
occur when overgrazing is coupled with drought 
(McKeon et al., 2004; see Section 11.4). Past 
expectations of carrying capacity, sometimes 
unwittingly encouraged by government policy, 
have led to undesired outcomes, in terms of both 
environmental and social devastation, as landscapes, 
stock, and communities are impacted by drought 
(see Table 11.2). For example, until 1992, NT pastoral 
leases had a minimum stocking covenant and, in 
some cases, the prescribed number exceeded the 
inherent carrying capacity of the land types (or land 
systems) present on the lease. Closer settlement 
schemes in both Queensland and NSW in the 
1900s produced leases which became unviable and 
were often severely degraded with both climate 
variability (drought) and changing economic 
circumstances. Australian literature contains many 
examples of pastoral families that have faced 
emotional and financial ruin during severe droughts 
(e.g., Ker Conway, 1989). With hindsight, it appears 
these disasters could have been avoided, or at least 
mitigated, by appropriate management of pastoral 
resources. For example, the impact of grazing is 
now considered to be more benign, and difficult 
to distinguish from the effects of large interannual 
variability in rainfall.

15.1.5  Socio-economic factors
Human settlement patterns in Australian rangelands 
are highly variable. Being remote from large urban 
centres, these communities are often isolated 
and tend to be distanced from political attention 
and influence. In Figure 15.6, regions classified as 
‘remote’ by the Australian Bureau of Statistics (ABS) 
for population census purposes (ABS, 2016) are 
compared with the accepted boundary of rangelands 
based on environmental attributes (Bastin et al., 2008) 
and the extent of grazing (ABARES, 2017). 

Some of the areas used for pastoral activities in 
rangelands are owned under freehold title, but much 
of the area is crown land and leased to pastoralists 
with specific conditions and restrictions. Pastoral 
leases now cover 44% of the Australian mainland 
(Austrade, 2019) and over half the area defined as 
rangelands (Foran et al., 2019). These leases are 
administrated by state and territory jurisdictions, who 
have legislative responsibility to regularly assess and 
monitor the leased land condition. 

Figure 15.6  Remote populations in Australia

Source: Foran et al. (2019) Figure 1
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Monitoring of rangelands is undertaken at a range of 
scales, including:

	§ paddock and property—as part of enterprise 
management to determine forage budgeting, 
appropriate stocking rates, etc; and

	§ regional, usually agency-based—to fulfill legislative 
responsibilities for leasehold and Crown lands to 
ensure that natural resources are suitably managed.

Foran et al. (2019) outlined the current challenges 
facing rangeland communities in Australia and 
proposed some systemic actions that are needed 
to address these concerns. A national, integrated 
approach to rangeland monitoring that maximises the 
value of EO datasets would help the custodians of this 
environment to understand and maintain its resilience 
for the benefit of current and future generations 
(Sparrow, 2017). 

15.2  EO Sensors for Rangelands
As indicated by the examples provided in the 
following sub-sections, the most commonly used 
EO sensors for observing rangelands detect passive 
optical wavelengths to discern differences in the land 
surface and its vegetative cover (see Table 15.2). 
The scale of the Australian rangelands necessitates 
reliance on spaceborne rather than airborne sensors. 

The optical reflectance of a hypothetical dryland pixel 
has been described as a function of:

	§ geometry—viewing and illumination positions (see 
Volume 1B—Section 3);

	§ tissue optics for all vegetative components—living 
and dead (see Sections 4 and 5 above);

	§ canopy structure—volume and orientation of 
vegetative tissue including litter (see Sections 5 
and 6 above);

	§ landscape structure—crown size, canopy cover and 
height (see Section 7 above); and

	§ soil optics—mineral content, organic matter, 
surface roughness, grain size distribution, 
and cryptobiotic soil crusts (Asner, 1998; see 
Volume 1B—Section 6.4). 

The sparse density and high spatial variability of 
vegetation in rangelands landscapes pose challenges 
to EO analyses in terms of selecting the optimal 
spatial scale for imagery (see also Volume 2D). Several 
aspects of grassland ecosystems relating to scale are 
particularly relevant to EO monitoring (Hill, 2004):

	§ scale of sward variation relative to pixel size—
grassland ‘texture’ can vary from a uniform 
monoculture to different mixtures of grasses, 
tussocks, shrubs, and bare soil;

	§ persistence of spatial patterns—can be examined 
using spatial and temporal statistics (see Volume 2A—
Section 8) and may be informative to land managers; 

	§ temporal variations may be driven by climate/
phenology or management practices—both spatial 
and temporal variations in vegetation are further 
complicated by the movements and appetites of 
grazing animals; 

	§ scale and density of ground sampling relative to 
pixel size—ground ‘truth’ data need to represent 
structural and chemical properties, especially for 
quantitative products, and be sufficiently dense to 
relate to image pixel size; and 

	§ surveys for ecological, botanical, or production 
attributes may require different spatial resolutions, 
revisit frequencies and spectral discrimination 
capabilities.

The impact of EO image spatial resolution on spatial 
statistics is introduced in Volume 2A—Section 8.2. In 
the context of rangelands:

	§ high resolution (H-resolution) pixels are generally 
smaller than vegetation entities so depict them 
against a contrasting background; and

	§ low resolution (L-resolution) pixels are generally 
larger than vegetation entities so observe an 
integrated signal for vegetation and background. 

Table 15.2  EO sensors relevant to rangelands

TIR: Thermal infrared; SAR: Synthetic Aperture Radar

Type Sensor Platform Relevance Advantages Disadvantages

Passive 
optical

Multispectral 
radiometer

Satellite  
(or airborne)

Mapping vegetation extent, biomass, 
biodiversity, and productivity

Monitoring land degradation 

Local to national scale, recurrent 
coverage with high temporal 
frequency and extent, low cost;

Cloud contamination 

TIR 
radiometer

Satellite  
(or airborne)

Soil/canopy temperature

Mapping fire potential, severity, and 
extent

Assessing drought and monitoring 
regional hydrological changes

Highlight thermal anomalies
Low resolution, low 
signal to noise ratio

Active 
microwave

Multi-band 
SAR

Satellite  
(or airborne)

Soil characteristics

Vegetation structure and biomass

Water dynamics

All weather, operates at night
Data availability, 
noisy data, complex 
processing
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In this sparsely-vegetated landscape, most medium 
resolution optical sensors image dryland vegetation 
as L-resolution, with each pixel representing a mixture 
of different soil types (with varying age, mineralogy, 
and parent materials) and different vegetation types 
(with varying growth forms, cluster patterns, and 
condition, where vegetation condition is defined as 
the vigour, photosynthetic capacity, or stress of a 
particular vegetation canopy or cluster; Asner, 2004).

Thus, a given pixel contains multiple landscape 
components so is well-suited to fractional cover 
analyses (Scarth et al., 2012; see Section 8.3). Since 
dryland canopies have low leaf area index (LAI; 
see Section 6.3.3), leaf level variations are not a 
major component of canopy reflectance in optical 

wavelengths (Asner, 2004). Accordingly, most 
variations in EO reflectance in rangeland landscapes 
can be assumed to result from changes in canopy 
cover (Guerschman et al., 2009). Slow rates of 
decomposition means that non-photosynthetic 
material accumulates in these landscapes, which 
increases spectral reflectance across all optical 
wavelengths, especially in herbaceous canopies.

In rangeland environments, thermal sensors are also 
used to monitor fire (see Section 18) and regional 
hydrology (see Section 7.6 and Excursus 10.2), 
including drought. Multi-band SAR sensors have 
also been investigated for mapping the dynamics of 
above ground biomass in tropical and sub-tropical 
rangelands (Zhou et al., 2016).

15.3  Rangeland Condition
In more arid regions, a useful indicator of habitat 
condition is the amount of vegetation versus bare soil 
covering the ground surface, especially relative to 
what might be expected for a given rangeland climate 
and soil type (see Section 7.3). The ‘intactness’ of 
vegetation cover in this landscape indicates the 
structural and functional integrity of habitats, which is 
critical for maintaining plants and animal populations. 
There are three key considerations when analysing EO 
data for the purpose of monitoring land condition in 
rangelands: 

	§ determining an appropriate and suitably robust 
index of vegetation cover based on the spectral 
properties or dimensions of the sensor (see 
Section 8.1 and Volume 2C); 

	§ examining spatial patterns in the derived index, 
including typical summary statistics for stratified 
areas, such as land type/system, paddock, or 
property (see Volumes 2A and 2E); and 

	§ exploring the temporal dynamics of spatially-
summarised data (see Volume 2D).

Approaches that are used to monitor the health of 
grazed rangelands rely on multiple, reliable indicators 
that individually, and in combination, provide 
objective and consistent information from which land 
condition can be assessed (see Section 7.3). These 
approaches can be differentiated in terms of their 
reliance on point, population, or pattern sampling (see 
Figure 15.7). Conventional ground-based techniques 
for assessing land condition and its change (trend) 
utilise a limited number of point-based assessments 
at stratified locations within landscapes and 
paddocks, which acquire repeated measures at fixed 
sites (see Figure 15.7a). EO-based methods analyse 
the spectral properties of the population of pixels 
within an area of interest (landscape type, paddock, 
or region) with varying levels of sophistication (see 
Figure 15.7b). Grazing gradient methods (Pickup 
and Chewings, 1994; Pickup et al., 1994) search for 
systematic spatial patterns in vegetation cover (see 
Figure 15.7c) that are explicitly related to grazing, 
such as the persistence of grazing gradients within 
paddocks (see Section 15.3.1). Methods such as land 
cover change analysis (Karfs, 2002) examine patterns 
of change through time (see Section 15.3.1.2). All three 
approaches can be used to look for change over time 
(Pickup et al., 1998; Wallace et al., 2006). 

The ecological sustainability of pastoral lands is not adequately protected by the State’s 
current system of land monitoring and administration. Pastoral lands have been under threat 

for over 75 years and during that time there has been limited progress to halt the decline 
in pastoral land condition. Current knowledge of the environmental condition of individual 

leases is poor. A reduction in the scope of monitoring since 2009 and limited use of remote 
sensing tools has contributed to a lack of understanding of land condition at the lease level, 

and restricted visibility of the extent of land condition issues across the pastoral estate. 
Future sustainability of the pastoral industry and the Crown’s land estate relies on being able 

to make informed decisions on how to address existing issues and prevent new ones.  
(OAGWA, 2017)



Earth Observation: Data, Processing and Applications.  Volume 3: Applications Volume 3A: Applications—Terrestrial Vegetation

15  Rangelands

309

Figure 15.7  Monitoring approaches

Schematic representation of point (ground-based), population (high and low resolution EO-based) and pattern (EO grazing 
gradients) approaches to monitoring condition and trend, and some of their key characteristics.

a. Point: ground-based monitoring

	§ small sample area (generally < 5 ha per site), and few sample 
sites (1–2 per paddock or 1 per water point)

	§ rapid subjective assessment or quantitative and descriptive 
information about plant species and soil; typically includes 
information about vegetation composition

	§ problems of measurement error and repeatability

	§ data can be presented in easily understood tables/charts

	§ data seem readily interpretable (but dependent on the 
underlying model of landscape change, which may be poorly 
developed for some ecosystems)

	§ generally inadequate spatial or temporal sampling for 
separating grazing impacts from site-specific and seasonal 
effects

b. Population: satellite data and change over time

	§ general advantages of satellite data: 
- can analyse total area grazed 
- repeat coverage and selective acquisition 
- historical archive for many sensors 
- range of spatial resolutions

	§ landscape change expressed through differences in 
fractional cover over time 

	§ VegMachine and other tools provide tailored, user-friendly 
software for analysing time series data

	§ inference based on ancillary data is generally required to 
separate grazing effects from natural variation

c. Pattern: satellite data and change over space and time—grazing gradient methods

	§ general advantages as for satellite data above

	§ search for systematic change in cover related to grazing, 
reliably identifying grazing effect but requiring larger 
paddocks

	§ stratification according to landscape type (e.g. land systems) 
allows separate grazing effects within large paddocks to be 
monitored

	§ uses an explicit definition of land degradation to determine 
landscape change (ability of vegetation cover to respond to 
large episodic rainfall events, when received)

	§ reasonably complex—results not easily understood or 
accepted by land managers

	§ broadly applicable to rangelands with < 500 mm annual 
rainfall

The utility of the pattern approach (see Figure 15.7c)  
to understanding grazing effects on vegetation cover 
dynamics is enhanced where the range in rainfall 
variability is restricted to either above average or 
below average seasonal conditions (see Figure 11.4). 
These two constraints correspond, respectively, with 
ecological analogues of vegetation resilience and 
persistence (or stability; see Section 7.2). 

In the sub-sections below, we consider EO-based 
approaches that have been developed for monitoring 
vegetation resilience (see Section 15.3.1), landscape 
condition and leakiness (see Section 15.3.2), and 
ground cover persistence (see Section 15.3.3) in the 
Australian rangelands.
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15.3.1  Vegetation resilience 
Resilence is “a measure of the persistence of systems 
and their ability to absorb change and disturbance 
and still maintain the same relationships between 
system variables” (Holling 1973). Vegetation resilience, 
specifically the increase in ground cover after 
much above average (and often, episodic) rainfall, 
underpins the grazing gradient methods developed by 
Pickup et al. (1994; see Section 8.1.3). 

Ecosystem resilience is thought to be a product 
of the diversity of ecosystem functional groups, 
the diversity of species within those functional 

groups, and diversity within species and populations 
(Folke et al. 2004). …. Resilience has been an 
important quality of the ecology of Australia’s 

biodiversity, as ecosystems have had to develop a 
range of evolutionary strategies to cope with the 

naturally high variability of rainfall, poor soils, and the 
long term drying of the continent. 

(DEWHA, 2010)

15.3.1.1  Grazing gradients

As introduced in Section 15.1.4, grazing gradients of 
vegetation cover develop with increasing distance 
from stock watering points in large paddocks 
(> 100 km2—shown as the red line in Figure 15.8). 
Water-remote areas provide a guide to the expected 
(reference) cover at any point in time, such that the 
extent to which ground cover increases (recovers) 
after large rainfall events indicates the landscape’s 
capacity to retain its inherent resilience to respond 
to such events (see Section 7.2). Thus, in Figure 15.8, 
the horizontal green line shows the expected average 
level of ground cover in a fully resilient landscape, 
where all areas at increasing distance from water 
have similar cover, while the brown curve indicates a 
permanent effect from grazing with the vegetation 
cover response closer to water being suppressed, 
even after substantial rainfall.

Figure 15.8  Stylised grazing gradient based on remotely 
sensed ground cover

In the grazing gradient methods, the resilience of vegetation 
cover near stock watering points indicates condition. In this 
diagram, the red curve indicates vegetation cover relative to 
distance from water before rain. After substantial rains, vegetation 
either recovers at all distances from water, which would indicate 
a fully resilient landscape (green line), or remains sparse closer to 
water, which indicates loss of resilience (brown curve). 

Adapted from: Bastin and Ludwig (2006) Figure 1a 

15.3.1.2  Land Cover Change Analysis

Contemporaneous with the application of 
grazing gradient methods in central Australia 
(Bastin et al., 1993, 1996, 1998), the ‘land cover 
change analysis’ (LCCA) method was developed 
for monitoring grazing effects in WA and the NT 
(Wallace et al., 1994). This method had its genesis 
from the observation that a major indicator of 
condition in many grazing regions was the loss of 
perennials and their replacement by seasonally-
dependent annuals. 

In the shrublands and grasslands of WA, multi-temporal 
Landsat image sequences were used to produce maps 
of the differential temporal responses of annuals and 
perennials (see Volume 2D). For example, areas known 
to be in poor condition have a negative slope over time 
(indicating cover loss) and increasing seasonal variance 
(indicating increased presence of annuals). Other 
meaningful, pixel level, trend summaries include areas 
of positive slope (increasing cover) and no change 
(stable cover over time). This analysis was initially 
based on limited ground knowledge, but subsequent 
field validation demonstrated that the maps were 
useful for interpreting condition (Karfs, 2002; 
Karfs et al., 2004). Long term cover trends from multi-
year image sequences also provided information on 
shrub invasion and cover dynamics, from which aspects 
of condition could be inferred (Wallace et al., 2006).
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The LCCA method was widely tested in the 
Kimberley (WA), Victoria River (NT) regions and 
southwest Queensland (Wallace and Thomas, 1998, 
Karfs et al., 2004), and subsequently developed into 
‘VegMachine’ (Peel et al., 2006, Beutel et al., 2015). 
This software package assisted graziers and 
natural resource management staff to summarise 
and benchmark vegetation cover change, based 
on EO data, over long periods at user specified 
locations. VegMachine is now freely available 
online (Beutel et al., 2015, 2019) and is described in 
Excursus 15.1. 

15.3.2  Landscape condition and leakiness
Mapping land condition in the rangeland environment 
in Australia is difficult due to the enduring problems 
of its vast extent coupled with the spatial complexity 
and temporal variability of arid-zone vegetation. 
Methods used to map vegetation condition in 
rangelands need to be (Bastin and Ludwig, 2006): 

	§ robust—rigorous methods are needed to 
differentiate the impact of management decisions 
on vegetation from its inherent variability over 
space and time;

	§ efficient—effective methods must be suited to 
large area mapping at low cost; and 

	§ general—the complex interactions between 
vegetation, climate, fire and grazing in rangelands 
means that methods need to be adaptable to 
specific environments. 

Given debate about the relevance and suitability 
of current paradigms for understanding vegetation 
dynamics in parts of the rangelands (see 
Briske et al., 2003 for a review), some monitoring 
systems focus on vegetation change over time (see 
Sections 7.3 and 11.3). This avoids the often fraught 
process of trying to ‘shoe horn’ assessments into ill-
fitting and often arbitrary condition classes. Causality 
is a fundamental component of understanding 
change; in this case, determining the most plausible 
reasons for observed change, be they related to 
climatic variations or due to grazing, fire, or other 
forms of disturbance. For example, the Western 
Australian Rangeland Monitoring System (WARMS; 
Watson et al., 2007a, 2007b; Novelly et al., 2008) 
is a sophisticated site-based monitoring system 
for reporting regional scale change in perennial 
vegetation under grazing. WARMS focuses on change 
and its most probable causes when interpreting 
monitoring data.

The concept of landscape function—the capacity of 
a landscape to capture and retain rainwater, soils and 
their nutrients after rainstorms (Ludwig et al., 2007)—
is introduced in Section 7.3 above. The capacity 
to retain these components depends not just on 
vegetation cover per se but its distribution in the 
landscape. In Figure 15.9a, the relevant vegetative 
and surface water components in a rangelands 
environment are identified. Landscape Function 
Analysis (LFA) relies on measurement of the sizes 
of vegetation patches, the inter-patch distances (or 
fetch), and the soil surface condition of both patches 
and fetches (Tongway and Hindley, 2004), which 
in combination demonstrate how rainwater moves 
through the landscape (see Figure 15.9b). Since 
its development, this approach has been used for 
research and land management purposes in a range 
of landscapes (Eldridge et al., 2020).

Figure 15.9  Landscape function

a. A transect to measure simple indicators of land condition in 
Landscape Functional Analysis (LFA)

b. The role of vegetation patches as obstructions to surface 
flows, where a high cover of patches on the upper slopes greatly 
slows runoff to enhance water retention and a low cover on 
lower slopes leads to long fetches and loss of water, that is, a 
‘leaky’ landscape.

Source: Bastin and Ludwig (2006) Figures 1b and 1c 
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Figure 15.10  Leakiness index example

a. Leakiness index for rangeland monitoring site compared with 
mean levels of persistent vegetation cover for five monitoring 
periods from 1980 to 2002. b. Annual rainfall from 1979 to 2004 
in relation to 305 mm average.

Source:  Ludwig et al. (2007) Figure 4 

The leakiness index (see Section 8.1.6) used EO 
imagery and DEM data to derive landscape scale 
values for leakiness (see Figure 15.10). This method 
has been applied to change in landscape leakiness 
from 1986 to 2005 for selected sub-catchments of 
the Fanning River, Queensland (Bastin et al, 2007). 
Leakiness Index (LI) values were calculated with 
the Leakiness Calculator (version LI4). In this study 
changes over time in indicated leakiness of sub-
catchments dominated by native perennial-tussock 
grasses were contrasted with those dominated by an 
introduced stoloniferous mat-forming grass, Indian 
couch (Bothriochloa pertusa). For example, under 
the Grazing Land Management (GLM) program in 
Queensland (FutureBeef, 2020), the former pastures 
tend to be in good condition and the latter in reduced 
condition. For the same level of average cover, 
pastures dominated by Indian couch were deemed 
to be more leaky than the native tussock grasses. Of 
critical importance, average cover appeared to decline 
to relatively low values following a run of poor, wet 
seasons (such as occurred in the mid 1990s) and, 
at this time, values of the leakiness index reached 
relatively high values. While this study was supported 
by limited ground data, the results demonstrate the 
importance of:

	§ maintaining minimum acceptable levels of persistent 
pasture cover (particularly on hillslopes); and 

	§ managing to improve the density and cover of 
native perennial-tussock grasses in the pasture.

This method has been used for research purposes 
in different parts of the rangelands overseas and as 
a connectivity index to link vegetation patterns with 
erosion risk (Xu et al., 2018, 2019). However, there are 
no known applications of the leakiness index as part 
of jurisdictional monitoring of rangelands in Australia. 

15.3.3  Persistence of ground cover
In drier years, retained ground cover is critical for 
minimising the risk of wind and water erosion. It is 
reasonable to infer that most of the cover present in 
drier (and drought) years comprises perennial species 
(see Section 9.1)

The Dynamic Reference Cover Method (DRCM) 
automatically calculates an expected (reference) 
level of ground cover for each Landsat TM pixel in 
a nominated dry/drought year (Bastin et al., 2012). 
The difference between the actual and reference 
cover—the cover deficit—indicates the extent to 
which an area has been modified by past grazing. 
Change in cover deficit from one drought period to 
the next provides an objective and systematic way 
of determining how ground cover is being managed 
when its presence is most critical.

Landsat fractional cover (see Excursus 8.3) for repeat 
dry years between 1988 and 2005 was analysed with 
DRCM at sub-bioregional scale for approximately 
640,000 km2 of the Queensland rangelands 
(Bastin et al., 2014). All 34 sub-regions analysed had 
similar or increased levels of seasonally-adjusted 
ground cover at the end of the analysis period 
(2003 or 2005). Allowing for possible landscape 
heterogeneity effects on assessed condition, at the 
first assessment in 1988 the Einasleigh Uplands 
bioregion was in a comparatively better state at 
the end of the period and those analysed parts of 
the Mulga Lands bioregion in poorer state. Most 
sub-regions of the Cape York Peninsula, Brigalow 
Belt North, Desert Uplands, Gulf Plains and Mitchell 
Grass Downs bioregions, lay between these two end-
states. Simulated levels of pasture utilisation based 
on modelled pasture growth and statistically-based 
grazing pressure supported the results of this regional 
assessment of land condition.

It is important to remember that remotely sensed 
ground cover is but one indicator of the functionality 
of rangelands under grazing use. Information about 
other indicators is also required, such as the persistence 
of palatable perennial forage species, the dynamics of 
the woody layer, and erosion status. Thus ground-based 
monitoring is required in addition to EO analyses, but 
the value of the ground component is increased where it 
complements information available from EO.
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A number of operational systems and products have 
been developed to use EO datasets for monitoring 
change in woody vegetation cover, including the 
Statewide Landcover and Tree Study (SLATS; see 
Volume 2D—Excursus 14.3) and the Persistent Green 
Vegetation product (see Section 9.1). The routine 

monitoring of woody cover dynamics in Australia’s 
arid rangelands is currently limited by the lack of a 
suitably robust cover index for ‘non-green’ canopies 
such as Acacia species, however, research is 
continuing in this area (e.g. Barnetson et al., 2019). 

15.4  Operational Systems for Monitoring Rangelands
A range of systems have been developed to monitor 
Australian rangelands (see Table 15.3). In the absence 
of a national coordinating body, current details for 
these programs are difficult to determine, although 
status reports on pastoral leases are available for some 
states (such as OAGWA, 2017 and DENR, 2019). These 
systems have been improved over time and in some 
states multiple systems are still in use in different 
regions. For example, FORAGE is an online decision 
support system developed in Queensland for grazing 
land managers, which integrates information specific 
to individual properties including rainfall, pasture 
growth, seasonal rainfall and pasture growth outlooks, 
ground cover, Foliage Projective Cover (FPC), soil 
erodibility, land types, and climate projections (Zhang 
and Carter, 2018). More generic systems for mapping 
vegetation and ecosystems at both the state/territory 
and national level (see Section 2.3.1) complement and 
support the rangeland-specific systems. 

Excursus 15.1 describes an operational, EO-based 
system that has been specifically developed to 
monitor the rangeland environment in Australia. The 
international Group on Earth Observation (GEO) 
Global Agricultural Monitoring initiative (GEOGLAM; 
see Section 21.3) is also developing the GEOGLAM 
Rangeland and Pasture Productivity (RaPP) 
application to monitor the condition of pastures and 
rangelands globally (see Excursus 11.1).

Table 15.3  Rangelands in Australia

This table summarises the status of rangelands monitoring in 2008. Current status for most jurisdictions are difficult to update in the 
absence of a national coordinating body. Reassessment of ground sites varies with jurisdiction between one and 14 years.

State/
Territory

% of 
state as 
rangelands

Rangeland tenure
Rangeland 
population  
(2016)

Permanent monitoring 
sites

Monitoring system

NSW 60
Mostly leasehold 
with small areas 
freehold

52,670
350 sites monitored 
annually 

Rangeland Assessment Program (RAP)

SLATS (see Volume 2D—Excursus 14.3)

NT 98
46% pastoral 
leases 

89,444
2333 pastoral monitoring 
sites 

Integrated monitoring program which relates 
site-based data to Landsat fractional cover 
(DENR, 2019)

SA 85

60% pastoral 
leases 

40% conservation 
or regional 
reserves

62,797

Baseline monitoring on 
~400 sites and resource 
inventories on each of the 
328 pastoral leases

Arid Lands Information System (ALIS) based on 
Grazing gradient assessment in northern leases

Land Condition Index (LCI) in southern leases

Queensland 82
75% freehold and 
leasehold grazing 
properties 

124,050 ~1000 pastoral leases

SLATS (see Volume 2D—Excursus 14.3)

AussieGRASS (see Excursus 10.1)

FORAGE (Zhang and Carter, 2018)

VegMachine (see Excursus 15.1)

WA 87
42% pastoral 
leases

81,341

1622 sites monitored since 
1992 on 435 pastoral leases

Grassland sites assessed 
3 yearly and shrublands 
assessed 5 yearly

Western Australian Rangelands Monitoring 
System (WARMS; see also OAGWA, 2017, 
Table 3)

Source: Bastin et al. (2008); Foran et al. (2019); NSW DPI (2019); Austrade (2019); OAGWA (2017)
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Excursus 15.1�—VegMachine

Source: https://vegmachine.net 
Further Information: Beutel et al. (2019)

VegMachine is a free, online tool that uses time 
series of satellite imagery and derived products to 
summarise spatial and temporal changes in land cover 
on Australia’s grazing lands. The software has been 
refined and used by government agencies, Natural 
Resource Management (NRM) groups and pastoralists 
since 2002, with the current national website 
being launched in 2016 (Beutel et al, 2019). Using 
VegMachine, for selected areas a user can:

	§ generate comprehensive ground cover monitoring 
reports;

	§ measure land cover change or estimate soil erosion 
rates;

	§ view satellite image land cover products; and

	§ better understand the links between management, 
climate and cover in grazing land.

Figure 15.11  VegMachine comparisons 

a. This partial screenshot compares two adjacent sites that are separated by a fence. The North site (red) has had consistently more 
ground cover and better land condition than the South site (blue) over that period. Red and blue lines respectively show the median 
seasonal ground cover at each site, and the red band shows the ‘range’ (actually 20th to 80th percentile) of ground cover values on 
the North site. The analysis reflects known conditions at the sites since 2003, and also suggests the observed difference extends 
back to the early 1990s. Since the two sites are in the same land type with a common rainfall history, management is the most likely 
cause of the observed differences. 

b. This extract from a regional comparison report shows the total ground cover in part of a paddock that has been very heavily 
grazed from 2005. The pale grey bands show the percentiles of ground cover in the FT05 land type of the surrounding region 
(5th–20th: lower grey band; 50th: central grey line; 80th–95th: upper grey band). The overlaid time trace shows median ground cover 
in the same land type within the paddock. The symbols along the time trace classify cover in the paddock relative to the regional 
cover percentiles (Well below: < 5th; Below: 5th–20th; Similar: 20th–80th; Above: 80th–95th; Well above > 95th). This analysis shows 
cover in the paddock has declined dramatically since 2005, corresponding to the increased grazing pressure over this period. This 
trend is evident despite the presence of rainfall-driven fluctuations in regional cover (higher in 2010–2012, and lower in 2004–2007 
and 2013–2014). 

Source: Beutel et al. (2019) Figure 2

https://vegmachine.net
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The current datasets interrogated by VegMachine 
date from 1990 and include imagery from Landsat 
TM/ETM+/OLI and Sentinel-2 as the products: 
seasonal ground cover (see Section 9.2), fractional 
cover (see Section 8.3), and persistent green cover 
(see Section 9.1). These datasets can be viewed 
as images at a range of scales, and ranked in time 
and space. Spatial comparisons are particularly 

informative for ‘identifying paddocks in need of more 
attention’ (Brinsmead 2017; QRIScloud, 2018; see 
Figure 15.11). Paddock-by-paddock and land type-by-
land type analyses of ground cover change from 1990 
to the present allow graziers to clearly see the impact 
of management decisions and infrastructure changes 
on their properties.

15.5  Conserving Biodiversity
The major threats to biodiversity in Australia are 
considered to be habitat fragmentation, climatic 
changes, land use change, invasive species, grazing 
pressure, altered fire regimes, and changed hydrology 
(DEWHA, 2009), all of which are significant landscape 
factors in rangelands (see Sections 7.1 and 19). While 
threatened biota occur in greatest abundance in 
areas with high population and the highest land use 
pressures, there is evidence that the numbers of 
small mammals in tropical savannas are declining. All 
changes in conservation status of threatened species 
in recent decades have shown declines and virtually 
every bioregion includes several threatened taxa. 

The Australian rangelands comprise 52 IBRA 
bioregions and 244 subregions (see Section 2.4). 
In many of these bioregions, grazing by domestic 
livestock has resulted in significant impacts on soils, 
landscape processes, and native biota, with ongoing 
loss of landscape function, particularly within the 
piosphere (see Section 15.1.4). Lunt et al. (2007) 
identified six site factors that could be used “to 
predict, interpret and compare the impacts of grazing 
on natural ecosystems”:

	§ soil and ecosystem processes—positive, negative, 
or no impact of grazing;

	§ grazing history—including loss of grazing-sensitive 
species;

	§ site productivity—in terms of landscape function;

	§ plant palatability—of dominant native and exotic 
species;

	§ plant recruitment—impact on germination and 
growth; and

	§ context in the broader landscape—across different 
spatial scales.

These characteristics were integrated into a 
hierarchical decision tree, which concluded that 
“livestock grazing is likely to be detrimental to 
biodiversity conservation in many ecological 
contexts” (Lunt et al., 2007; see also Table 15.1). 

Although a number of state/territory and federal 
programs have been undertaken to monitor the 
condition of rangelands in Australia, these have 
been disproportionately funded given the extent of 
the rangeland environment. Monitoring programs 
include the TERN AusPlots Rangelands program, 
which uses a standardised approach to sample soil 
and vegetation characteristics at 442 sites within 
the rainfall range of 129–1437 mm (White et al., 2012; 
Guerin et al., 2017). Many state-based programs are 
tailored to the information needs of local regions and 
produce data that are difficult to compare across the 
continent. Also, pastoral monitoring programs, which 
focus on pastorally productive country, typically 
collect different data from environmental monitoring 
programs that aim to assess biodiversity. Although 
biological assets are declining in Australia, existing 
data are insufficient to report on biodiversity trends 
at a national level (DEWHA, 2009). 

Locking up the land purely for conservation is not the solution to our environmental problems [in the WA 
rangelands]. We must do better than that. I have no doubt that if we do lock it up, ecological processes 

will take over and the land will heal itself into a stable state. But, eventually, those small conservation 
areas are certain to fail if we do not change the way that we manage the surrounding land. Even if those 
small pockets of pristine wilderness did manage to persist, the increasing pressure to produce food from 
dwindling resources would eventually mean that they were overrun in a last-ditch effort to wring the final 

bit of productivity from the landscape to feed ourselves. 
(Pollock, 2019)
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Native vegetation is a cost-effective and powerful surrogate for biodiversity. 
The distribution of threatened species and communities is closely aligned with 

areas where native vegetation has been extensively cleared.  
(DEWHA, 2009)

To understand the impact of grazing on plant 
biodiversity and composition in Australia—and its 
consequential impact on fauna—requires a systematic 
approach to biodiversity monitoring at a landscape 
scale. Potential frameworks for jurisdictional 
monitoring of biodiversity in the rangelands were 
proposed by Eyre et al. (2011a) (see Excursus 15.2) 
and McAlpine et al. (2014). To date, however, no 
rangeland jurisdiction in Australia has implemented 
this monitoring framework operationally. More studies 
are required to link habitat condition indicators 
to those species that are dependent on particular 
proportions and types of groundcover. Linkages 
between groundcover and biological diversity have 
hitherto been based on local sites only. To assess this 
relationship across our rangelands, broader landscape 
and regional analyses will be needed (Sparrow, 2017).

Recognising that management improvements for 
grazing can also benefit biodiversity, tools are being 
developed to assist rangeland managers to assess 
land condition in terms of biodiversity. For example, 
procedures for assessing the biodiversity condition, 
or BioCondition, of grazing lands in southern 
Queensland have been defined with support from 
Meat and Livestock Australia (Eyre et al., 2011b; 
MLA, 2011, 2012). This complements the Grazing 
Land Management (GLM) package, which promotes 
sustainable management by graziers in northern 
Australia (DPIF, 2006; see Excursus 7.1). BioCondition 
is designed for rapid assessment of sites and rests on 
three components:

	§ a set of site-based and landscape-scaled attributes, 
which indicate biodiversity (see Table 15.4);

	§ benchmarks for each attribute derived from 
reference sites; and a

	§ rating system for the relative value of attribute to 
benchmark values.

Similar systems have been developed for other 
jurisdictions (such as Butler et al., 2020, Table 1; see 
Section 3.4.1).

Towards avoiding loss of biodiversity, and stressing 
the importance of maintaining and enhancing 
landscape heterogeneity, various reviews of 
biodiversity status that are limited to specific regions 
have hitherto offered a ‘portfolio of partial solutions’ 
(Waters and Hacker, 2008). However, in order to 
effectively manage rangelands across Australia, 
consistent and objective monitoring protocols are 
required in all jurisdictions and at all landscape scales 
to provide reliable answers to the questions:

	§ where is change occurring?

	§ how much change is there?

	§ what is driving that change? (Sparrow, 2017).

The challenge for future land managers will be to 
balance the requirements of agricultural production 
for growing human populations with appropriate 
safeguards for biodiversity conservation. Given the 
scale of Australian rangelands, EO datasets need to 
be a significant part of any monitoring solution.

Table 15.4  BioCondition indicators

Indicator Attribute

Site-based

Regeneration—recruitment of dominant tree species 

Diversity—native plant species richness for four life 
forms

Cover/complexity—tree canopy cover and canopy 
health (%); tree height (m); shrub layer cover (%); native 
perennial ‘decreaser’ grass species basal area; native 
perennial forb and non-grass cover (%); native annual 
grasses, forb, and non-grass cover (%); cryptogram 
cover 

Habitat—large trees and hollows; fallen woody material; 
litter cover

Weeds—weed cover

Landscape

Size of patch

Context

Connectivity

Distance to artificial water

Source: MLA (2011) Table 2

…our ability to report change in biodiversity is limited due to inadequate data  
(Bastin et al., 2008) 
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Excursus 15.2�—Rangelands Biodiversity Monitoring Framework

Source: Eyre et al. (2011a, 2011b)

A framework for jurisdictional monitoring of 
biodiversity in the rangelands was proposed by 
Eyre et al. (2011a). This systematic and scaled 
approach combines field measurements and EO-
based methods to integrate:

	§ direct measures of biodiversity attributes;

	§ indirect measures of biodiversity (through 
indicators or surrogates);

	§ measures of drivers of biodiversity; and 

	§ measures of response indicators. 

As detailed in Section 19, changes in biodiversity 
drivers exert a pressure on biotic attributes, leading 
to a change in their state (where biotic attributes 
measure biodiversity either directly, in terms of 
abundance or extent of a species, or indirectly, as 
habitat condition). In this context, biodiversity drivers 
impact environmental attributes at both the local 
and landscape scales, and include indicators such 
as climate variations, management practices, and 
disturbances (Eyre et al., 2011a). This framework 
follows the multi-resolution approach of relating 
EO datasets to ground measurements shown in 
Figure 3.1 and identifies three spatially hierarchical 
and complementary components that are integrated 
through research, analysis and modelling:

	§ Targeted monitoring—localised, field-based 
monitoring to address specific management 
questions based on target species that are known 
to be indicators of change or have been identified 
as vulnerable. These programs need to be well-
defined, focused in terms of spatial extent and 
stated goals, and reviewed frequently. 

	§ Surveillance monitoring—broadscale, field-based 
sampling for a range of species across multiple 
ecosystems. 

	§ Landscape scale monitoring—regional to national 
scale information on habitat quality and trends in 
threats to, or drivers of, biodiversity, using data 
from systematic ground-based and EO methods 
with frequent coverage. 

Some of the biodiversity driver indicators that would 
be observed in each layer of this hierarchy include: 

	§ incidence of fire—threatens species habitat or 
species directly, and varies with ecoregion;

	§ vegetation clearing and fragmentation—directly 
threatens habitat for native species, most 
commonly in tropical savanna environments;

	§ grazing pressure—threatens habitat and 
competition for resources, and includes both 
domestic and feral animals;

	§ feral predator abundance and distribution—
endangers native fauna and domestic stock;

	§ invasive plant abundance and distribution—
threatens habitat quality, competes with native 
flora, and can change fire regimes;

	§ climatic data—particularly rainfall and temperature, 
to provide context for both short and long term 
variations (Eyre et al., 2011a).

Any biodiversity sampling system also needs to 
ensure that surveillance sites are stratified by 
bioregions within jurisdictions (Eyre et al., 2011a).
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15.6  Further Information

GEOGLAM Rangeland and Pasture 
Productivity (RaPP) tool 
Australia: https://map.geo-rapp.org/#australia

Global: https://www.geo-rapp.org

Information: https://www.csiro.au/en/Research/LWF/
Areas/Landscapes/Earth-observation/RAPP-Map-
GEOGLAM

Australian Collaborative Rangelands 
Information System (ACRIS) 
ACRIS: http://www.environment.gov.au/land/

rangelands/acris

Bastin et al. (2008)

Foran et al. (2019)

Soils for Life
A not-for-profit charity dedicated to supporting 

Australian farmers and rural communities in 
regenerating soils and landscapes to build natural 
and social capital and transform food systems: 
https://soilsforlife.org.au/about/

FarmMap4D Spatial Hub 
Online, subscription tool for mapping, assessing and 

monitoring property infrastructure, land resources 
and ground cover: http://www.farmmap4d.com.au/
mapping/

Northern Territory
DENR (2019). Rangelands Field Monitoring Manual 

Version 5. Department of Environment and Natural 
Resources, NT. ISBN 1 920772 93 6

New South Wales
SLATS: https://www.environment.nsw.gov.au/topics/

animals-and-plants/native-vegetation/reports-and-
resources 

Queensland
SLATS: https://www.qld.gov.au/environment/land/

management/mapping/statewide-monitoring/slats

FORAGE: https://www.longpaddock.qld.gov.au/forage/
about/

Vegmachine: https://vegmachine.net/

AussieGRASS: national simulation framework for 
Australian grasslands and rangelands based on 
GRASP soil water and pasture growth model: 
https://www.longpaddock.qld.gov.au/aussiegrass/

BioCondition: MLA (2012)

Western Australia
https://www.agric.wa.gov.au/rangelands/assessing-

rangeland-condition

OAGWA (2017)

WARMS: Watson et al., 2007a, 2007b; Novelly et al., 
2008

Rangelands NRM: https://rangelandswa.com.au

TERN AusPlots
Rangelands: https://www.tern.org.au/AusPlots-

Rangelands-pg28320.html

World Atlas of Desertification (3rd edition)
https://wad.jrc.ec.europa.eu/

15.7  References
Andrew, M.H., and Lange, R.T. (1986). Development of 

a new piosphere in arid chenopod shrubland grazed 
by sheep. 2: Changes to the vegetation. Australian 
Journal of Ecology, 11, 411–424. 

ABARES (2017). Landuse by NRM region. Australian 
Bureau of Agricultural and Resource Economics 
and Sciences website: http://www.Agriculture.gov.au/
abares/aclump/land-use/catchment-scale-land-use-
reports 

ABS (2016). Quickstats—data by geography. 
Australian Bureau of Statistics website: http://
www.abs.gov.au/websitedbs/D3310114.nsf/Home/
Census?OpenDocument&ref=topBar 

ARS (2019). Australian Rangelands Society website, 
landing page. https://www.austrangesoc.com.au/ 

Ash, A.J., Corfield, J.P., McIvor, J.G., and Ksiksi, 
T.S. (2011). Grazing management in tropical 
savannas: Utilisation and rest strategies to 
manipulate rangeland condition. Rangeland 
Ecological Management, 64, 223–239. doi:10.2111/
REM-D-09-00111.1 

Asner, G.P. (1998). Biophysical and biochemical 
sources of variability in canopy reflectance. Remote 
Sensing of Environment, 64, 234–253.

https://map.geo-rapp.org/#australia
https://www.geo-rapp.org
https://www.csiro.au/en/Research/LWF/Areas/Landscapes/Earth-observation/RAPP-Map-GEOGLAM
https://www.csiro.au/en/Research/LWF/Areas/Landscapes/Earth-observation/RAPP-Map-GEOGLAM
https://www.csiro.au/en/Research/LWF/Areas/Landscapes/Earth-observation/RAPP-Map-GEOGLAM
http://www.environment.gov.au/land/rangelands/acris
http://www.environment.gov.au/land/rangelands/acris
https://soilsforlife.org.au/about/
http://www.farmmap4d.com.au/mapping/
http://www.farmmap4d.com.au/mapping/
https://www.environment.nsw.gov.au/topics/animals-and-plants/native-vegetation/reports-and-resources
https://www.environment.nsw.gov.au/topics/animals-and-plants/native-vegetation/reports-and-resources
https://www.environment.nsw.gov.au/topics/animals-and-plants/native-vegetation/reports-and-resources
https://www.qld.gov.au/environment/land/management/mapping/statewide-monitoring/slats
https://www.qld.gov.au/environment/land/management/mapping/statewide-monitoring/slats
https://www.longpaddock.qld.gov.au/forage/about/
https://www.longpaddock.qld.gov.au/forage/about/
https://vegmachine.net/
https://www.longpaddock.qld.gov.au/aussiegrass/
https://www.agric.wa.gov.au/rangelands/assessing-rangeland-condition
https://www.agric.wa.gov.au/rangelands/assessing-rangeland-condition
https://rangelandswa.com.au
https://www.tern.org.au/AusPlots-Rangelands-pg28320.html
https://www.tern.org.au/AusPlots-Rangelands-pg28320.html
https://wad.jrc.ec.europa.eu/
http://www.Agriculture.gov.au/abares/aclump/land-use/catchment-scale-land-use-reports
http://www.Agriculture.gov.au/abares/aclump/land-use/catchment-scale-land-use-reports
http://www.Agriculture.gov.au/abares/aclump/land-use/catchment-scale-land-use-reports
http://www.abs.gov.au/websitedbs/D3310114.nsf/Home/Census?OpenDocument&ref=topBar
http://www.abs.gov.au/websitedbs/D3310114.nsf/Home/Census?OpenDocument&ref=topBar
http://www.abs.gov.au/websitedbs/D3310114.nsf/Home/Census?OpenDocument&ref=topBar
https://www.austrangesoc.com.au/
https://doi.org/10.2111/REM-D-09-00111.1
https://doi.org/10.2111/REM-D-09-00111.1


Earth Observation: Data, Processing and Applications.  Volume 3: Applications Volume 3A: Applications—Terrestrial Vegetation

15  Rangelands

319

Asner, G.P. (2004). Biophysical Remote Sensing 
Signatures of Arid and Semiarid Ecosystems. Ch. 
2 in Manual of Remote Sensing, Volume 4, Remote 
Sensing for Natural Resource Management and 
Environmental Monitoring. (Ed: Ustin, S.L.) Wiley 
International, New York. 768 p.

Austrade (2019). Pastoral leases webpage, Austrade 
website: https://www.austrade.gov.au/land-tenure/
Land-tenure/pastoral-leases

Barnetson, J., Phinn, S., and Scarth, P. (2019). 
Mapping woody vegetation cover across Australia’s 
arid rangelands: utilising a machine-learning 
classification and low-cost Remotely Piloted 
Aircraft System. International Journal of Applied 
Earth Observation and Geoinformation, 83, 101909. 
https://doi.org/10.1016/j.jag.2019.101909

Bastin, G., and Allan, G. (2012). After the smoke 
has cleared: 2011 fire in central Australia. Range 
Management Newsletter, 12/2, 3–6. Australian 
Rangeland Society, Australia.

Bastin, G.N., and Ludwig, J.A. (2006). Problems and 
prospects for mapping vegetation condition in 
Australia’s arid rangelands. Ecological Management 
and Restoration, 7, S71–S74. 

Bastin, G.N., Pickup, G., Chewings, V.H., and Pearce, 
G. (1993). Land degradation assessment in central 
Australia using a grazing gradient method. The 
Rangeland Journal, 15, 190–216. doi:10.1071/
RJ9930190 

Bastin, G.N., Pickup, G., and Stanes, A. (1996). 
Estimating Landscape Resilience from Satellite 
Data and its Application to Pastoral Land 
Management. The Rangeland Journal, 18(1), 
118–135.

Bastin, G.N., Tynan, R.W., and Chewings, V.H. (1998). 
Implementing satellite-based grazing gradient 
methods for rangeland assessment in South 
Australia. The Rangeland Journal, 20, 61–76.

Bastin, G.N., Abbott, B.N., Chewings, V.H., and 
Wallace, J. (2007). Metrics of landscape health for 
sustainable grazing in the Burdekin Dry Tropics, 
Queensland. Project report for the Sustainable 
Grazing Program Great Barrier Reef catchments 
node Water for a Healthy Country Flagship, CSIRO. 
doi:https://doi.org/10.4225/08/59a70b5a5345c

Bastin, G., and the ACRIS Management Committee 
(2008). Rangelands 2008—Taking the Pulse. 
National Land and Water Resources Audit, 
Canberra. http://www.environment.gov.au/land/
publications/acris-rangelands-2008-taking-pulse 

Bastin, G.N., Stafford Smith, D.M., Watson, I.W., and 
Fisher, A. (2009). The Australian Collaborative 
Rangelands Information System: preparing for 
a climate of change. The Rangeland Journal, 31, 
111–125. doi:10.1071/RJ08072

Bastin, G., Scarth, P., Chewings, V., Sparrow, A., 
Denham, R., Schmidt, M., O’Reagain, P., Shepherd, 
R., and Abbott, B. (2012). Separating grazing and 
rainfall effects at regional scale using remote 
sensing imagery: a dynamic reference-cover 
method. Remote Sensing of Environment, 121, 
443–457. doi:10.1016/j.rse.2012.02.021 

Bastin, G., Denham, R., Scarth, P., Sparrow, A., and 
Chewings, V. (2014). Remotely-sensed analysis of 
ground-cover change in Queensland’s rangelands, 
1988–2005. The Rangelands Journal, 36, 191–204. 
http://dx.doi.org/10.1071/RJ13127

Beutel, T., Karfs, R., Wallace, J., Trevithick, R., 
Scarth, P., and Tindall, D. (2015). VegMachine® 
in Queensland. In Innovation in the Rangelands. 
Proceedings of the 18th Australian Rangeland 
Society Biennial Conference. Alice Springs, NT. 
(Ed: Friedel, M.H.) Australian Rangeland Society, 
Parkside, SA. 

Beutel, T.S., Trevithick, R., Scarth, P., and Tindall, D. 
(2019). VegMachine.net. online land cover analysis 
for Australian rangelands. The Rangeland Journal, 
41, 355–362. https://doi.org/10.1071/RJ19013 

Biograze (2000) Biograze: waterpoints and wildlife. 
CSIRO, Alice Springs NT. 

Brinsmead, N. (2017). Let’s get technical. Introducing 
you to VegMachine®. Envoy, 2017, 17. 

Briske, D.D., Fuhlendorf, S.D., and Smeins, F.E. (2003). 
Vegetation dynamics on rangelands: A critique of 
the current paradigms. Journal of Applied Ecology, 
40, 601–614.

Burrows, W.H., Carter, J.O., Scanlan, J.C., and 
Anderson, E.R. (1990). Management of savannas 
for livestock production in north-east Australia: 
contrasts across the tree-grass continuum. 
Journal of Biogeography, 17(4/5), 503–512. 
doi:10.2307/2845383

Butler, D., Thackway, R., and Cosier, P. (2020). 
Technical Protocol for Constructing Native 
Vegetation Condition Accounts Version 1.0 
- May 2020. Accounting for Nature Limited, 
Sydney, Australia. https://static1.squarespace.
com/static/5dc38cde1d028031235ca3cf/t/5
fa246b73c71c92e01513cc7/1604470479988/
AfN+Native+Vegetation+Technical+​Protocol+​
ACCREDITED.pdf

Croft, D.B., Montague-Drake, R., and Dowle, M. (2007). 
Biodiversity and water point closure: is the grazing 
piosphere a persistent effect? In Animals of Arid 
Australia: out on their own? (Eds: Dickman, C., 
Lunney, D., and Burgin, S.) Royal Zoological Society 
of NSW, Mosman. pp143–171.

DENR (2019). NT Pastoral Land Board Annual 
Reports: https://depws.nt.gov.au/boards-and-
committees/pastoral-land-board

https://www.austrade.gov.au/land-tenure/Land-tenure/pastoral-leases
https://www.austrade.gov.au/land-tenure/Land-tenure/pastoral-leases
https://doi.org/10.1016/j.jag.2019.101909
https://doi.org/10.1071/RJ9930190
https://doi.org/10.1071/RJ9930190
https://doi.org/10.4225/08/59a70b5a5345c
http://www.environment.gov.au/land/publications/acris-rangelands-2008-taking-pulse
http://www.environment.gov.au/land/publications/acris-rangelands-2008-taking-pulse
https://doi.org/10.1071/RJ08072
https://doi.org/10.1016/j.rse.2012.02.021
http://dx.doi.org/10.1071/RJ13127
https://doi.org/10.1071/RJ19013
https://doi.org/10.2307/2845383
https://static1.squarespace.com/static/5dc38cde1d028031235ca3cf/t/5fa246b73c71c92e01513cc7/1604470479988/AfN+Native+Vegetation+Technical+​Protocol+​ACCREDITED.pdf
https://static1.squarespace.com/static/5dc38cde1d028031235ca3cf/t/5fa246b73c71c92e01513cc7/1604470479988/AfN+Native+Vegetation+Technical+​Protocol+​ACCREDITED.pdf
https://static1.squarespace.com/static/5dc38cde1d028031235ca3cf/t/5fa246b73c71c92e01513cc7/1604470479988/AfN+Native+Vegetation+Technical+​Protocol+​ACCREDITED.pdf
https://static1.squarespace.com/static/5dc38cde1d028031235ca3cf/t/5fa246b73c71c92e01513cc7/1604470479988/AfN+Native+Vegetation+Technical+​Protocol+​ACCREDITED.pdf
https://static1.squarespace.com/static/5dc38cde1d028031235ca3cf/t/5fa246b73c71c92e01513cc7/1604470479988/AfN+Native+Vegetation+Technical+​Protocol+​ACCREDITED.pdf
https://depws.nt.gov.au/boards-and-committees/pastoral-land-board
https://depws.nt.gov.au/boards-and-committees/pastoral-land-board


Earth Observation: Data, Processing and Applications.  Volume 3: Applications

320

DEWHA (2009). Assessment of Australia’s Terrestrial 
Biodiversity 2008. Biodiversity Assessment 
Working Group of the National Land and Water 
Resources Audit for the Australian Government, 
Canberra. 

DEWHA (2010). Ecosystem Services: Key Concepts 
and Applications. Occasional Paper No 1, 
Department of the Environment, Water, Heritage 
and the Arts, Canberra.

DPIF (2006). The ABCD pasture condition guide: 
Mulga and Mitchell Grass. Department of Primary 
Industries and Fisheries, Charleville. ISSN 0727-
6273

DSEWPC (2013). The Australian Collaborative 
Rangelands Information System (ACRIS): Reporting 
Change in the Rangelands. Department of 
Sustainability, Environment, Water, Population and 
Communities, Canberra. https://www.environment.
gov.au/system/files/resources/46e443c5-673a-
4093-948d-d87830cfc2f9/files/acris-reporting-
change.pdf

Eldridge, D.J., Delgado-Baquerizo, M., Quero, J.L., 
Ochoa, V., Gozalo, B., Escolar, C., García-Gómez, M., 
Prina, A., Bowker, M.A., Bran, D.E., Castro, I., Cea, 
A., Derak, M., Espinosa, C.I., Florentino, A., Gaitán, 
J.J., Gatica, G., Gómez-González, S., Ghiloufi, W., 
Gutierrez, J.R., Gusmán-Montalván, E., Hernández, 
R.M., Hughes, F.M., Muiño, W., Monerris, J., Ospina, 
A., Ramírez, D.A., Ribas-Fernández, Y.A., Romão, 
R.L., Torres-Díaz, C., Koen, T.B., and Maestre, F.T. 
(2020). Surface indicators are correlated with soil 
multifunctionality in global drylands. Journal of 
Applied Ecology, 57(2), 424–435.

Eyre, T.J., Fisher, A., Hunt, L.P., and Kutt, A.S. (2011a). 
Measure it to better manage it: a biodiversity 
monitoring framework for the Australian 
rangelands. The Rangeland Journal, 33, 239–253. 

Eyre, T.J., Kelly, A.L., Neldner, V.J., Wilson, B.A., 
Ferguson, D.J., Laidlaw, M., and Franks, A.J. (2011b). 
BioCondition: A Condition Assessment Framework 
for Terrestrial Biodiversity in Queensland. 
Assessment Methodology Manual. Department of 
Environment and Resource Management, Brisbane. 

Folke, C., Carpenter, S., Walker, B., Scheffer, M., 
Elmqvist, T., Gunderson, L., and Holling, C.S. 
(2004). Regime shifts, resilience, and biodiversity in 
ecosystem management. Annual Review of Ecology 
Evolution and Systematics, 35, 557–81 doi:10.1146/
annurev.ecolsys.35.021103.105711

Foran, B., Stafford Smith, M., Burnside, D., Andrew, 
M., Blesing, D., Forrest, K., and Taylor, J. (2019). 
Australian rangelands futures: time now for 
systemic responses to interconnected challenges. 
The Rangeland Journal, 41, 271–292. https://doi.
org/10.1071/RJ18105

Fuhlendorf, S.D., Archer, S.A., Smeins, F., Engle, D.M., 
and Taylor, C.A. (2008). The Combined Influence 
of Grazing, Fire, and Herbaceous Productivity on 
Tree-Grass Interactions. In Western North American 
Juniperus Communities: A Dynamic Vegetation 
Type. 196. (Ed: Van Auken, O.W.) Springer, New 
York, NY. Pp. 219–238.

FutureBeef (2020). Grazing land management 
webpage, FutureBeef website: https://futurebeef.
com.au/knowledge-centre/grazing-land-
management/

Guerin, G.R., Sparrow, B., Tokmakoff, A., Smyth, 
A., Leitch, E., Baruch, Z., and Lowe, A.J. (2017). 
Opportunities for Integrated Ecological Analysis 
across Inland Australia with Standardised Data from 
Ausplots Rangelands. PloS ONE, 12(1), e0170137. 
https://doi.org/10.1371/journal.pone.0170137

Guerschman, J.P., Hill, M.J., Renzullo, L.J., Barrett, 
D.J., Marks, A.S., and Botha, E.J. (2009). Estimating 
fractional cover of photosynthetic vegetation, 
non photosynthetic vegetation and bare soil in 
the Australian tropical savannah region upscaling 
Hyperion and MODIS sensors. Remote Sensing of 
Environment, 113, 928–945.

Hendy, E.J., Gagan, M.K., and Lough, J.M. (2003). 
Chronological control of coral records using 
luminescent lines and evidence for non-stationary 
ENSO teleconnections in northeast Australia. 
Holocene, 13, 187–199. 

Hill, M.J. (2004). Grazing agriculture–Managed 
Pasture, Grassland and Rangeland. Ch. 9 in Manual 
of Remote Sensing, Volume 4, Remote Sensing for 
Natural Resource Management and Environmental 
Monitoring. (Ed: Ustin, S.L.) Wiley International, New 
York. 768 p.

Holling, C.S. (1973). Resilience and stability of 
ecological systems. Annual Review of Ecology and 
Systematics, 4, 1–23.

Howes, A.L., and McAlpine, C.A. (2008). The 
impact of artificial watering points on rangeland 
biodiversity: A review. DKCRC Working Paper 15, 
The WaterSmartTM Literature Reviews. Desert 
Knowledge CRC, Alice Springs. 

IUCN (2019). Global Drylands Initiative webpage. 
International Union for Conservation of Nature 
website: https://www.iucn.org/theme/ecosystem-
management/our-work/global-drylands-initiative

James, C.D., Landsberg, J., and Morton, S.R. (1999). 
Provision of watering points in the Australian arid 
zone: a review of effects on biota. Journal of Arid 
Environments, 41(1), 87–121. https://doi.org/10.1006/
jare.1998.0467

Jurskis, V. (2015). Firestick Ecology. Connor Court 
Publishing, Ballarat.

https://www.environment.gov.au/system/files/resources/46e443c5-673a-4093-948d-d87830cfc2f9/files/acris-reporting-change.pdf
https://www.environment.gov.au/system/files/resources/46e443c5-673a-4093-948d-d87830cfc2f9/files/acris-reporting-change.pdf
https://www.environment.gov.au/system/files/resources/46e443c5-673a-4093-948d-d87830cfc2f9/files/acris-reporting-change.pdf
https://www.environment.gov.au/system/files/resources/46e443c5-673a-4093-948d-d87830cfc2f9/files/acris-reporting-change.pdf
https://doi.org/10.1146/annurev.ecolsys.35.021103.105711
https://doi.org/10.1146/annurev.ecolsys.35.021103.105711
https://doi.org/10.1071/RJ18105
https://doi.org/10.1071/RJ18105
https://futurebeef.com.au/knowledge-centre/grazing-land-management/
https://futurebeef.com.au/knowledge-centre/grazing-land-management/
https://futurebeef.com.au/knowledge-centre/grazing-land-management/
https://doi.org/10.1371/journal.pone.0170137
https://www.iucn.org/theme/ecosystem-management/our-work/global-drylands-initiative
https://www.iucn.org/theme/ecosystem-management/our-work/global-drylands-initiative
https://doi.org/10.1006/jare.1998.0467
https://doi.org/10.1006/jare.1998.0467


Earth Observation: Data, Processing and Applications.  Volume 3: Applications Volume 3A: Applications—Terrestrial Vegetation

15  Rangelands

321

Karfs, R. (2002). Rangeland monitoring in tropical 
savanna grasslands Northern Territory, Australia: 
relationships between temporal satellite data and 
ground data. Masters Thesis, Research School 
of Tropical Environment Studies and Geography, 
James Cook University, Townsville, Queensland.

Karfs, R.A., Daly, C., Beutel, T.S., Peel, L., and Wallace 
J.F. (2004). VegMachine—Delivering monitoring 
information to northern Australia’s pastoral 
industry. Proceedings of 12th Australasian Remote 
Sensing and Photogrammetry Conference, 
Fremantle Western Australia. RSPAA, Perth. 

Ker Conway, J. (1989). The Road from Coorain. 
Mandarin, London.

Landsberg, J., James, C.D., Morton, S.R., Hobbs, T.J., 
Stol, J., Drew, A., and Tongway, H. (1997). The 
Effects of Artificial Sources of Water on Rangeland 
Biodiversity. Environment Australia and CSIRO, 
Canberra. 

Lange, R.T. (1969). The piosphere, sheep track and 
dung patterns. Journal of Range Management, 22, 
396–400. http://hdl.handle.net/10150/649971

Ludwig, J.A., Bastin, G.N., Chewings, V.H., Eager, R.W., 
and Liedloff, A.C. (2007). Leakiness: a new index 
for monitoring the health of arid and semiarid 
landscapes using remotely sensed vegetation cover 
and elevation data. Ecological Indicators, 7, 442–
454. doi:10.1016/j.ecolind.2006.05.001 

Lunt, I., Eldridge, D.J., Morgan, J.W., and Witt, G.B. 
(2007). Turner Review No. 13: A framework to 
predict the effects of livestock grazing and 
grazing exclusion on conservation values in natural 
ecosystems in Australia. Australian Journal of 
Botany, 55, 401–415. doi:10.1071/BT06178 

McAlpine, C., Thackway, R., and Smith, A. (2014). 
Towards an Australian Rangeland Biodiversity 
Monitoring Framework. A discussion paper 
developed from a biodiversity monitoring workshop 
convened by Australian Collaborative Rangeland 
Information System (ACRIS) held at the University 
of Queensland, Brisbane, 30–31 October 2013. 
University of Queensland, Brisbane. https://espace.
library.uq.edu.au/view/UQ:342912/Acris_Report.pdf

McKeon, G.M., Hall, W.B., Henry, B.K., Stone, G.S., 
and Watson, I.W. (2004). Pasture Degradation 
and Recovery in Australia’s Rangelands: Learning 
From History. Queensland Department of Natural 
Resources, Mines and Energy, Brisbane. 

MLA (2011). Biodiversity Condition Assessment for 
Grazing Lands. Meat and Livestock Australia Ltd, 
North Sydney. ISBN 9781741916393

MLA (2012). Biodiversity Condition Toolkit for Grazed 
Lands. Meat and Livestock Australia Ltd. ISBN 
9781741919240

Murphy, B.P., Lehmann, C.E.R., Russell-Smith, J., 
and Lawes, M.J. (2014). Fire regimes and woody 
biomass dynamics in Australian savannas. Journal 
of Biogeography, 41(1). doi:10.1111/jbi.12204

Novelly, P.E., Watson, I.W., Thomas, P.W.E., and Duckett, 
N.J. (2008). The Western Australian Rangeland 
Monitoring System (WARMS)—operating a regional 
scale monitoring system. The Rangeland Journal, 
30, 271–281. doi:10.1071/RJ07047 

NSW DPI (2019). Rangelands webpage. NSW 
Department of Primary Industries website: https://
www.dpi.nsw.gov.au/agriculture/pastures-and-
rangelands/rangelands

OAGWA (2017). Management of Pastoral Lands in 
Western Australia. Report 17: October 2017. Office 
fo the Auditor General Western Australia, Perth. 
https://‌www.parliament.wa.gov.au/​publications/
tabledpapers.nsf/displaypaper/4010833a47ac7e​
4cc25e5b46482581b600166282/$file/833.pdf

Peel, L.J., Beutel, T.S., Bull, A.L., Karfs, R.A., and 
Wallace, J. (2006). NBP.315 VegMachine—
Extending Integrated Rangeland Monitoring 
Information to Industry. Meat and Livestock 
Australia, North Sydney, NSW.

Pickup, G., and Chewings, V.H. (1994). A grazing 
gradient approach to land degradation assessment 
in arid areas from remotely-sensed data. 
International Journal of Remote Sensing, 15, 
597–617. 

Pickup, G., Bastin, G.N., and Chewings, V.H. (1994). 
Remote-sensing-based Condition Assessment for 
Nonequilibrium Rangelands under Large-Scale 
Commercial Grazing. Ecological Applications, 4(3), 
497–517. https://doi.org/10.2307/1941952

Pickup, G, Bastin, G.N., and Chewings, V.H. (1998). 
Identifying trends in land degradation in non-
equilibrium rangelands. Journal of Applied 
Ecology, 35, 365–377. https://doi.org/10.1046/j.1365-
2664.1998.00319.x

Pollock, D. (2019). The Wooleen Way. Scribe, 
Melbourne. ISBN: 9781925849257

QRIScloud (2018). QRIScloud delivers satellite data 
to Australian farmers, government and the public. 
https://www.qriscloud.org.au/about-qriscloud/case-
studies/item/82-qriscloud-delivers-satellite-data-to-
australian-farmers-govt-and-the-public

Russell-Smith, J., and Sangha, K.K. (2018). Emerging 
opportunities for developing a diversified land 
sector economy in Australia’s northern savannas. 
The Rangeland Journal, 40, 315–330. doi.
org/10.1071/RJ18005

http://hdl.handle.net/10150/649971
https://doi.org/10.1016/j.ecolind.2006.05.001
https://doi.org/10.1071/BT06178
https://espace.library.uq.edu.au/view/UQ:342912/Acris_Report.pdf
https://espace.library.uq.edu.au/view/UQ:342912/Acris_Report.pdf
https://doi.org/10.1111/jbi.12204
https://doi.org/10.1071/RJ07047
https://www.dpi.nsw.gov.au/agriculture/pastures-and-rangelands/rangelands
https://www.dpi.nsw.gov.au/agriculture/pastures-and-rangelands/rangelands
https://www.dpi.nsw.gov.au/agriculture/pastures-and-rangelands/rangelands
https://www.parliament.wa.gov.au/publications/tabledpapers.nsf/displaypaper/4010833a47ac7e4cc25e5b46482581b600166282/$file/833.pdf
https://www.parliament.wa.gov.au/publications/tabledpapers.nsf/displaypaper/4010833a47ac7e4cc25e5b46482581b600166282/$file/833.pdf
https://www.parliament.wa.gov.au/publications/tabledpapers.nsf/displaypaper/4010833a47ac7e4cc25e5b46482581b600166282/$file/833.pdf
https://doi.org/10.2307/1941952
https://doi.org/10.1046/j.1365-2664.1998.00319.x
https://doi.org/10.1046/j.1365-2664.1998.00319.x
https://www.qriscloud.org.au/about-qriscloud/case-studies/item/82-qriscloud-delivers-satellite-data-
https://www.qriscloud.org.au/about-qriscloud/case-studies/item/82-qriscloud-delivers-satellite-data-
https://www.qriscloud.org.au/about-qriscloud/case-studies/item/82-qriscloud-delivers-satellite-data-
https://doi.org/10.1071/RJ18005
https://doi.org/10.1071/RJ18005


Earth Observation: Data, Processing and Applications.  Volume 3: ApplicationsEarth Observation: Data, Processing and Applications.  Volume 3: Applications

322

Scarth, P., Röder, A., and Schmidt, M. (2012). Tracking 
Grazing Pressure and Climate Interaction—The 
Role of Landsat Fractional Cover in Time Series 
Analysis. Proceedings of the 15th Australasian 
Remote Sensing and Photogrammetry Conference 
(ARSPC), 13–17 September, Alice Springs, Australia. 
https://doi.org/10.6084/m9.figshare.94250.v1

Sparrow, B. (2017). Monitoring in the Australian 
Rangelands: Where we’ve come from and where 
we should be headed. Proceedings of the 19th 
Australian Rangeland Society Biennial Conference. 
Australian Rangeland Society, Parkside, SA. 

Stafford Smith, M., and McAllister, R.R.J. (2008). 
Managing arid zone natural resources in Australia 
for spatial and temporal variability—an approach 
from first principles. The Rangeland Journal, 30, 15–
27. 

Tongway, D.J., and Hindley, N.L. (2004). Landscape 
Function Analysis Manual: Procedures for 
Monitoring and Assesssing Landscapes with 
Special Reference to Minesites and Rangelands, 
Version 3.1. CD-ROM. CSIRO Sustainable 
Ecosystems, Canberra.

URS Australia P/L (2013). Sustainable Land Use 
and Economic Development Opportunities in the 
Western Australian Rangelands. Unpublished 
report prepared for the Department of 
Agriculture and Food, South Perth, WA. https://
d3n8a8pro7vhmx.cloudfront.Net/modernoutback/
pages/515/attachments/original/1472028646/
Rangeland_Opportunities_Final_Report_URS_2013.
pdf?1472028646 

Wallace, J.F., and Thomas, P.W.E. (1998). Rangeland 
monitoring in northern Western Australia using 
sequences of Landsat imagery. Report to National 
Landcare Program Project No. 953024. Agriculture 
Western Australia, unpublished.

Wallace, J.F., Holm, A. Mc.R., Novelly, P.E., and 
Campbell N.A. (1994). Assessment and monitoring 
of rangeland vegetation composition using 
multi-temporal Landsat data. In Proceedings 7th 
Australian Remote Sensing Conference, Melbourne. 
pp. 1102–1109. 

Wallace, J., Behn, G., and Furby, S. (2006). Vegetation 
condition assessment and monitoring from 
sequences of satellite imagery. Ecological 
Management and Restoration, 7, S31–S36. https://
doi.org/10.1111/j.1442-8903.2006.00289.x 

Washington-Allen, R.A., Van Niel, T.G., Ramsey, 
R.D., and West, N.E. (2004). Remote Sensing-
Based Piosphere Analysis. GIScience and 
Remote Sensing, 41(2), 136–154, doi:10.2747/1548-
1603.41.2.136

Waters, C., and Hacker, R. (2008). Integration of 
biodiversity and primary production in northern 
and western New South Wales. NSW Department of 
Primary Industries.

Watson, I.W., Thomas, P.W.E., and Fletcher, W.J. 
(2007a). The first assessment, using a rangeland 
monitoring system, of change in shrub and tree 
populations across the arid shrublands of Western 
Australia. The Rangeland Journal, 29, 25–37. 
doi:10.1071/RJ07018 

Watson, I.W., Novelly, P., and Thomas, P.W.E. (2007b). 
Monitoring changes in pastoral rangelands—the 
Western Australian Rangeland Monitoring System 
(WARMS). The Rangeland Journal, 29, 191–205. 
doi:10.1071/RJ07008 

WEF (2018). The global risks report 2018. World 
Economic Forum, Geneva. Switzerland. https://www.
weforum.org/reports/the-global-risks-report-2018

White, A., Sparrow, B., Leitch, E., Foulkes, J., Flitton, R., 
Lowe, A.J., and Caddy-Retalic, S. (2012). AusPlots 
Rangelands Survey Protocol Manual. The University 
of Adelaide Press, Adelaide. ISBN 978-1-922064-38-7

Xu, S., Zhao, Q., Ding, S., Qin, M., Ning, L., and Ji, X. 
(2018). Improving Soil and Water Conservation of 
Riparian Vegetation Based on Landscape Leakiness 
and Optimal Vegetation Pattern. Sustainability, 10, 
1571.

Xu, S., Zhao, Q., Liu, Y., Ding, S., and Qin, M. (2019). 
Sensitivity and Applicability of Landscape 
Leakiness Index in Determining Soil and Water 
Conservation Function of a Subtropical Riparian 
Vegetation Buffer Zone. Environmental Engineering 
Science, 36(2), 227–236.

Zhang, B., and Carter, J. (2018). FORAGE—An online 
system for generating and delivering property-
scale decision support information for grazing land 
and environmental management. Computers in 
Electronics in Agriculture, 150, 302–311. https://doi.
org/10.1016/j.compag.2018.05.010

Zhou, Z.-S., Caccetta, P., Sims, N.C., and Held, A. 
(2016). Multi-band SAR Data for Rangeland Pasture 
Monitoring. Proceedings of IEEE IGARSS 2016, pp. 
170–173, July 2016. doi:10.1109/IGARSS.2016.7729035 

https://doi.org/10.6084/m9.figshare.94250.v1
https://d3n8a8pro7vhmx.cloudfront.Net/modernoutback/pages/515/attachments/original/1472028646/Rangeland_Opportunities_Final_Report_URS_2013.pdf?1472028646
https://d3n8a8pro7vhmx.cloudfront.Net/modernoutback/pages/515/attachments/original/1472028646/Rangeland_Opportunities_Final_Report_URS_2013.pdf?1472028646
https://d3n8a8pro7vhmx.cloudfront.Net/modernoutback/pages/515/attachments/original/1472028646/Rangeland_Opportunities_Final_Report_URS_2013.pdf?1472028646
https://d3n8a8pro7vhmx.cloudfront.Net/modernoutback/pages/515/attachments/original/1472028646/Rangeland_Opportunities_Final_Report_URS_2013.pdf?1472028646
https://d3n8a8pro7vhmx.cloudfront.Net/modernoutback/pages/515/attachments/original/1472028646/Rangeland_Opportunities_Final_Report_URS_2013.pdf?1472028646
https://doi.org/10.1111/j.1442-8903.2006.00289.x
https://doi.org/10.1111/j.1442-8903.2006.00289.x
https://doi.org/10.2747/1548-1603.41.2.136
https://doi.org/10.2747/1548-1603.41.2.136
https://doi.org/10.1071/RJ07018
https://doi.org/10.1071/RJ07008
https://www.weforum.org/reports/the-global-risks-report-2018
https://www.weforum.org/reports/the-global-risks-report-2018
https://doi.org/10.1016/j.compag.2018.05.010
https://doi.org/10.1016/j.compag.2018.05.010
https://doi.org/10.1109/IGARSS.2016.7729035


Earth Observation: Data, Processing and Applications.  Volume 3: Applications

323

Volume 3A: Applications—Terrestrial VegetationEarth Observation: Data, Processing and Applications.  Volume 3: Applications

16  Forestry

Nicholas Coops and Barbara Harrison

The need for accurate, timely, and cost-effective forest information has never been more critical (White et al., 
2016). Australia’s commitment to sustainable forest management and conservation of biodiversity, as well as 
a renewed focus on biomass and bioenergy, and increasing awareness of climate change scenarios, all require 
detailed knowledge of the existing forest resource, and a greater understanding of the dynamic processes of 
forest growth and stand condition. 

Forestry has long-established practices for using 
airborne EO datasets for timber volume estimation 
and sampling stratification. However, like other 
forestry communities around the world, the use of 
EO in Australia has increased in recent decades 
in response to the need for accurate, and spatially 
explicit, information on land cover change, forest 
health assessment, fire severity and burn scar 
mapping, and carbon sequestration, as well as 
estimation of areas planted and harvested. 

Traditionally, EO imagery acquired by most state-
based forest organisations in Australia comprised 
medium scale, aerial photography (1:10,000–1:25,000), 
which was manually interpreted to stratify large 
heterogeneous forests into smaller, more uniform 
areas deemed suitable for ground sampling 
(Smith and Woodgate, 1985). The resulting maps 
enabled relevant metrics of timber volume and/or 
environmental health to be determined, recorded, 
and monitored. The advent of readily available, high 
spatial resolution, digital EO imagery has seen a shift 
in forestry EO data usage, enabling more automated 
processing to derive relevant forest attributes. 

The wide range of information needs and users, 
however, resulted in many different EO data sources 
and approaches being used for different purposes, 
with no single EO platform or processing stream being 
suitable to meet all user requirements (Packalen and 

Maltamo, 2008). In addition, the complexity of the 
Australian forest environment makes the development 
of generalised EO procedures to cover such diversity 
a difficult task. Australian forest canopies are 
typically more open than their northern hemisphere 
counterparts, which means many EO-based methods 
that were derived overseas may not be appropriate. 
Extensive shadowing, which is common in most 
images, is caused by complex topography in most 
forested landscapes (for example, see banner image 
for Section 1). This undulating foundation is overlaid 
with a variety of natural and human disturbance 
regimes leading to an array of structural and floristic 
patterns (see Section 2.3.1). The high degree of 
speciation and intra-species variation in the genus 
Eucalyptus further complicates the situation, as does 
the canopy geometry of that genus, which features 
generally vertical leaves and a wide variety of leaf 
forms, with juvenile to old and insect-damaged leaves 
sometimes being present on a single tree (Lees and 
Ritman, 1991). As a result, hybrid methods, which 
use a combination of technologies, are likely to 
continue, such as airborne lidar for Digital Elevation 
Model (DEM) development and volume assessment, 
coupled with more conventional optical imagery for 
species and health assessment. In the drier and less 
productive areas, which are essentially unmanaged, 
combinations of freely available, satellite-based 
optical and radar datasets offer viable alternatives.

Background image: Terrestrial scan of an open eucalypt forest at Tumbarumba, Australia, acquired using Dual-Wavelength Echidna Lidar (DWEL; Douglas et al., 
2015). The image uses a blue–red colour table applied to the normalised difference index (NDI), which is computed from the wavelengths, in nm, as (1064–1548)/
(1064+1548). The distinction between woody and non-woody material can clearly be seen in the level of the NDI, irrespective of range from the instrument. 
Source: Glenn Newnham, CSIRO (from Newnham et al., 2015, Figure 1)

Recommended Chapter Citation: Coops, N.C., and Harrison, B.A. (2021). Forestry. Ch 16 in Earth Observation: Data, Processing and Applications. Volume 3A—
Terrestrial Vegetation. CRCSI, Melbourne. pp. 323–350.
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Vast expanses of Eucalyptus forests present in springtime an unforgettable picture, the straight, clean 
trunks rising in a blend of tints that range from delicate cream to ochre, from pearl pink to deepest red, a 

single giant trunk sometimes displaying all of these colours at once. 
(Elizabeth Kenny, from 'And They shall Walk')

11	 Forests Australia: https://www.agriculture.gov.au/abares/forestsaustralia/australias-forests

EO methods that are relevant to assessment of 
forest vegetation are introduced in earlier sections 
of this volume. In this section, we discuss the role EO 
technology can play in improving our understanding 
of forests across Australia. To do so we focus 
on assessment of those components commonly 
considered when describing forest vegetation and 
managing the forest resource, namely:

	§ forest type—zonation of plant communities and 
species (see Section 16.3);

	§ forest hydrology—catchment and drainage 
characteristics (see Section 16.4);

	§ forest structure—plant height and stratification 
(see Section 16.5); 

	§ forest functionality—forest health and biosecurity 
(see Section 16.6); 

	§ forest diversity—ecosystem richness (see 
Section 16.7); and

	§ forest disturbance—landscape scale changes (see 
Section 16.8).

Characteristics of Australian forests are introduced 
in Sections 2.3.1 and 2.4 and detailed in Section 16.1. 
EO sensors that are relevant to forest mapping and 
monitoring are summarised in Section 16.2.

Silviculture is the art and science of controlling the establishment, growth, composition and quality, 
health, protection and utilisation of stands of trees or forests to meet the diverse needs and values of 

forest owners and society on a sustainable basis. Silvicultural practice embodies a range of treatments to 
maintain and enhance the utility of the forest for any defined management purpose.  

(IFA Forestry Policy Statement 2.9; IFA, 2008)

16.1  Forestry in Australia
In Australia, a forest is defined as:

An area, incorporating all living and non-living 
components, that is dominated by trees having 
usually a single stem and a mature or potentially 
mature stand height exceeding 2 m and with 
existing or potential crown cover of overstorey 
strata about equal to or greater than 20%. This 
includes Australia’s diverse native forests and 
plantations, regardless of age. It is also sufficiently 
broad to encompass areas of trees that are 
sometimes described as woodlands.11

Using this definition, Australia contains around 3% of 
global forests by area (SOFR, 2018). These forests vary 
significantly in structure and floristic diversity, from 
dense rainforests, to sparse, multi-stemmed mallee 
associations, to exotic plantations (see Section 2.3.1). 

The area of forest in Australia is monitored by the 
National Forest Inventory (NFI), which incorporates 
systematic and validated analyses of multi-temporal 
Landsat imagery (including data from the National 
Greenhouse Gas Inventory, formerly known as the 
National Carbon Accounting System—NCAS) in 
conjunction with state and territory records and 
ground surveys. Forests cover 17% of the Australian 
land mass (134 Mha; SOFR, 2018), the vast majority of 
which (132 Mha) comprises native hardwood forests, 
dominated by species from Eucalyptus and/or Acacia, 
with relatively small areas of forest being dominated 
by Callitris, Melaleuca, and Casuarina (see Table 16.1).

https://www.agriculture.gov.au/abares/forestsaustralia/australias-forests
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Table 16.1  Forest area in Australia

Category Description
Area 
(‘000 ha)

% 
Area

Native

Acacia 10,813 8.07

Callitris 2,011 1.50

Casuarina 1,236 0.92

Eucalyptus (including 
species from Corymbia and 
Angophora)

101,058 75.40

Mangrove 854 0.64

Melaleuca 6,382 4.76

Rainforest 3,581 2.67

Other native forest 5,679 4.24

Total 131,615 98.2

Commercial 
plantations

Softwood species 1,015 0.77

Hardwood species 922 0.67

Unknown or mixed species 11 0.0

Total 1,949 1.45

Other forests
Non-industrial plantations and  
various planted forests

474 0.35

Total All forests 134,037 100

Source: SOFR (2018) Table 1.5

These native forests are largely distributed throughout 
Tasmania and near the northern, eastern and southern 
coastal and hinterland regions of continental Australia 
(see Figure 16.1a). Six tenure categories of native forest 
are recognised by the NFI (with the proportion by area 
shown in parentheses below):

	§ Leasehold forest (35.9%)—Crown land held under 
leasehold title and generally regarded as privately 
managed, including land with special conditions for 
designated Indigenous communities (see Section 2 
for definitions of land tenure categories in Australia). 

	§ Private forest (31.2%)—land held under freehold 
title and private ownership. 

	§ Nature conservation reserve (16.5%)—publicly 
owned land formally reserved for conservation and 
recreational purposes including national parks, 
nature reserves, and state and territory recreation 
and conservation areas. 

	§ Other Crown land (8.4%)—reserved for purposes 
including utilities, mining, water catchments, and 
use by indigenous communities. 

	§ Multiple-use public forest (7.4%)—publicly owned 
forest on which government agencies manage a 
range of forest values including wood harvesting, 
water supply, biodiversity conservation, recreation, 
and environmental protection. 

	§ Unresolved tenure (0.6%)—areas of unknown 
tenure (SOFR, 2018).

In Australia, most native forest grows on privately-
owned or leasehold land (see Figure 16.1b), which is 
managed for forestry and/or grazing purposes (see 
Section 15). In total, around one third of the native 
forest area (46 Mha) is protected for biodiversity 
conservation (SOFR, 2018). Many Australian forests 
also serve an important function as water catchment 
areas for major cities and towns. Importantly, 
an estimated 22 million tonnes of carbon were 
sequestered in Australian forests in 2016 (SOFR, 2018). 

Two thirds of the vegetation in the native forest area is 
commonly described as woodland, with crown cover of 
20–50%, while around one quarter is designated open 
forest (50–80% crown cover), and only 3% as closed 
forest (see Table 16.2). Native forests are commonly 
sub-divided by both height and crown cover into nine 
structural classes as illustrated in Figure 16.2. Around 
two thirds of native forest are classified as medium 
height (10–30 m), about 30% as low (2–10 m) and the 
remainder as tall (> 30 m; SOFR, 2018). Distribution of 
these structural classes is closely related to moisture 
availability, past and present land uses, altitude and 
underlying geology (see Section 2). 

Table 16.2  Native forest classes

Type
Crown Cover 
(%)

Area (‘000 ha) % Area

Woodland 20–50 91,455 69

Open forest 50–80 33,962 26

Closed forest 80–100 3,622 3

Unknown – 2,576 2

Total – 131,615 100

Source: SOFR (2018) 

The Australian bush owes its peculiarity, more than anything else, to Eucalyptus. No other 
continental forest or woodland is so dominated by a single genus. Other biomes on Earth 

have scleromorphs, most have grasses, and few are spared wholly from fire, but none has the 
combination that exists in Australia and has given the bush its indelible character. 

(Pyne, 1992)



Earth Observation: Data, Processing and Applications.  Volume 3: Applications

326

Figure 16.1  Australian forests

a. Forest type

b. Tenure

Source: SOFR (2018) Figures 1.1 and 1.4
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Figure 16.2  Native forest categories

Native forests are sub-divided by height and crown cover into nine general categories. The percentages below each diagram 
represent the proportion of each height/crown cover type within Australia’s total area of native forests.

Source: SOFR (2018) Figure 1.2 

16.2  EO Sensors for Forestry
Since the launch of the Landsat series of satellites 
in 1972, numerous studies have been undertaken 
to map forest area, condition, and structure from 
satellite imagery (Skidmore et al., 1987). The relevance 
of different EO sensors to forestry applications is 
summarised in Table 16.3.

Passive optical sensors (including panchromatic, 
multispectral, and hyperspectral) are introduced in 
Volume 1A—Section 14 and their data characteristics 
are considered in Volume 1B—Section 6. While 
multispectral imagery acquired by satellite sensors 
has produced valuable global forest maps, their 
accuracy and spatial resolution are both low (see 
Section 16.3). Various studies have also combined 
passive optical datasets with data derived from 
other EO and GIS sources for a range of forestry 
applications (e.g. Hayward and Stone, 2011; Stone 
et al., 2008).

In recent years, standardised time series of passive 
optical imagery (see Volume 2D) have enabled a 
greater understanding of the temporal changes 
in forested lands around the globe. For example, 
Digital Earth Australia (DEA) has enabled ready 

access to the Landsat archive for monitoring the 
Australian landscape (see Volume 2D—Section 11.2). 
Hyperspectral sensors are relevant to understanding 
spectral covariates for various subtle variations of 
forest type and condition, and their datasets have 
been used to deduce plant species and biochemical 
status (see Section 16.6).

Light Detection and Ranging (lidar, also known as 
laser scanning; see Excursus 5.1) is an active form 
of EO that uses light emissions in the form of pulsed 
lasers to measure the distance from the sensor to a 
target (see Volume 1A—Section 15.1). These active 
optical sensors can be mounted in a variety of 
spaceborne and airborne platforms and also ground-
based instruments (see Volume 1A—Section 10), with 
Airborne Laser Scanning (ALS) being most commonly 
used for forestry applications. Both forestry and 
topographic ALS applications rely on pulses of NIR 
wavelengths, typically at 1064 nm (Lim et al., 2003). 
Lidar sensors can provide information relevant to 
describing the three-dimensional distribution of 
vegetation canopy components as well as the sub-
canopy topography (see Section 16.5). 
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Table 16.3  EO sensors relevant to forestry

SAR: Synthetic Aperture Radar; DEM: Digital Elevation Model

Type Sensor Platform Relevance Advantages Disadvantages

Passive 
optical

Multispectral 
radiometer

Satellite or 
airborne

Broad forest type and condition 
mapping 

Global coverage, low cost
Relatively low spectral 
and spatial resolution

Hyperspectral 
spectro-
radiometer

Satellite or 
airborne

Species mapping

Plant biochemical functioning and 
health

High spectral resolution, 
highlight plant stress

High data volume, 
specialised processing

Active 
optical

Lidar
Satellite, airborne 
and terrestrial

Forest structure

Biomass

DEM

Fuel load

Detailed structure for trees 
and stands, forestry hydrology

High cost, specialised 
processing

Active 
microwave

SAR
Satellite or 
airborne

Biomass

Forest disturbance
All weather, so useful in 
tropical regions

More complex 
processing

The application of lidar technology to forestry, 
both in Australia and internationally, has been 
rapid. In Australia, various studies have examined 
the application of lidar data to plantations 
(Bennett, 2005; Alam et al., 2012), open woodlands, 
and tall eucalypt forests (Lovell et al., 2003, Lee 
et al., 2004, Lucas et al., 2006; Jupp and Lovell, 2007; 
Fedrigo et al., 2018; Fisher et al., 2020). In North 
America and Europe, lidar is well recognised as a 
mature EO technology, routinely being applied to 
forest management and operations (Næsset, 2002, 
Reutebuch et al., 2005, Wulder et al., 2008, 
White et al., 2013). For example, the Area Based 
Approach (ABA; Næsset 2002) has been used 
operationally for a decade to process lidar point 
cloud data into spatial metrics for forest inventory 
applications (Wulder et al., 2008; White et al., 2013). 
This approach enables precise prediction of a suite of 
basic forest inventory variables, such as stem volume, 
basal area, and height. Lidars carried by unmanned 
aerial vehicles (UAV) are gaining popularity, and 
advances in this field will likely result in these sensors 
being more readily available and applicable to tailored 
forest management applications (Du Toit et al., 2020). 
In forestry applications, Terrestrial Laser systems 
(TLS) complement ALS by providing structural 
information about tree trunks that can be obscured by 
the vegetation canopy from an airborne sensor (see 
Excursus 5.1).

Radar sensors are introduced in Volume 1A—
Section 15.2 and detailed in Volume 1B—Section 8. 
These active microwave sensors also offer the 
potential to map the structure and biomass of 
Australian forests, both from spaceborne and airborne 
platforms, especially in the drier eucalypt forests with 
lower biomass. The majority of studies investigating 
the use of radar data for biomass estimation have 
focused either on coniferous forests in the northern 
hemisphere, particularly in North America and Eurasia, 
or tropical regions. However, radar-based methods 
have also been developed in Australia for the UN 
REDD+ (Reducing Emissions from Deforestation and 
Forest Degradation) framework (Mitchell et al., 2017; 
see Section 17.7.3). Since different radar frequency 
bands penetrate into multi-layered volumes (such as 
vegetation canopies) to differing depths, L-band data is 
often preferred for vegetative studies (see Figure 16.3).

Space-based Synthetic Aperture Radar (SAR) 
technology is rapidly developing, with the imminent 
launch of new satellites carrying radars that use 
longer wavelengths than ever before. For example, 
at the end of 2020, ESA are launching BIOMASS, 
a satellite with P-band (~68 cm wavelength) radar 
which can penetrate the canopy and interact with tree 
trunks and the ground surface. This will be the first of 
its kind, as P-band has previously been restricted to 
airborne platforms.

Figure 16.3  Penetration of radar wavelengths into vegetation layer

Source: Bruce Forster and Linlin Ge, Course Notes, UNSW



Earth Observation: Data, Processing and Applications.  Volume 3: Applications Volume 3A: Applications—Terrestrial Vegetation

16  Forestry

329

16.3  Forest Type
Conventionally, most processing of digital satellite 
imagery for mapping forest type has used various 
image classification procedures (see Volume 2E for 
details on classification algorithms). Classification 
accuracy is usually determined using a confusion 
matrix, which compares the allocation of a number of 
randomly selected pixels in the image with a known 
cover class (derived from independent sources such 
as maps, photographs, or ground data). The overall 
classification accuracy is then computed as the ratio 
of the total number of correctly classified pixels to the 
total number of pixels in each class (see Volume 2E). 

Early forest type classifications from multispectral 
imagery relied on Landsat MSS data and, while 
spatially comprehensive and revolutionary at the time, 
generally resulted in low classification accuracy, with 
only broad forest types (such as coniferous versus 
broadleaf) being differentiated reliably (for example, 
see Section 3.3.2). Landsat MSS was also used to 
estimate rates of forest clearing in Victoria (Woodgate 
and Black, 1988). The improved spectral, spatial, and 
radiometric resolutions of Landsat TM/ETM+/OLI, 
as well as greater temporal resolution in more recent 
EO satellites such as Sentinel-2, have proved to be 
superior for classifying forest information. For example: 

	§ SPOT XS and Landsat TM imagery, in conjunction with 
ancillary datasets, allowed discrimination of species 
and age classes in native and exotic vegetation 
(Skidmore and Turner, 1988, Skidmore, 1989);

	§ a combination of aerial photography and multi-
temporal Landsat TM imagery were used to classify 
and differentiate various forest type associations 

(including dry eucalypt forest, humid eucalypt forest, 
and littoral rainforest, Yagüe and Garcia, 2006); and 

	§ the performance of metrics derived from Landsat TM 
imagery with auxiliary terrain and climatic variables 
were used to predict forest cover across the state 
of Victoria, delivering an overall accuracy of 96% for 
forest/non-forest classification (Mellor et al., 2013).

Hyperspectral imagery and lidar data have also been 
used to map forest type in Australia. Examples include: 

	§ Lucas et al. (2008)—outlined an approach for 
the use of airborne digital hyperspectral imagery 
(Compact Airborne Spectrographic Imager: CASI) 
to discriminate and map mixed-species forests at 
the tree crown/cluster level for use in biodiversity 
assessment, which identified dominant genera in the 
central southeast Queensland study area including 
Acacia, Eucalyptus, Angophora, and Callitris. 

	§ Jafari and Lewis (2012)—utilised Hyperion 
hyperspectral data to discriminate distinct land 
cover types in an arid landscape in South Australia 
using endmember analysis (see Volume 2E and 
Section 8.3 above). 

	§ Fedrigo et al. (2018)—used airborne lidar data as 
inputs to predict the distribution of rainforest and 
eucalypt stands that was comparable to existing 
ecological vegetation classes derived manually. 
The result was highly accurate (84%), allowing 
identification of small rainforests that had not 
previously been identified and demonstrating lidar 
as a key technology for mapping the structural and 
spatial complexity of these ecosystems.

16.4  Forest Hydrology
One of the most useful and important products of 
airborne lidar EO data is the generation of highly 
accurate and detailed DEM, even under forest 
canopies (see Excursus 5.1). For forest practitioners, 
lidar-based DEMs can provide detailed information 
about the underlying hydrology and water access 
across the forested landscape. Lidar topographic 
maps are critical for forest managers for operations 
and access, terrain stability, and erosion assessment, 
determination of drainage patterns for catchment 
protection, and engineering and road constructions 
(Bater and Coops, 2009; Reutebuch et al., 2005; 
Wulder et al., 2008). 

Knowledge of the surface topography is also useful 
for forest planning and management decisions, 
such as selecting tree species for planting or 
determining an appropriate intensity of management. 
Murphy et al. (2011) utilised a lidar-derived DEM to 
predict a depth-to-water (DTW) index, which was then 
used to predict soil drainage, soil type, and a number of 

additional forest soil properties at Swan Hills, Alberta, 
Canada. Important indicators of soil moisture content, 
coarse fragment sand, silt, clay composition, pH, 
and a range of other nutrients by soil layer type and 
depth were reliability predicted. Detailed topographic 
information both identifies and explains those forest 
ecological processes that are impacted by soil 
drainage and DTW, including nitrogen loss and forest 
litter/soil organic matter accumulation from ridge tops 
to depressions. 

As the use of airborne lidar-derived terrain indices 
is expanding, research is also investigating the 
application of lidar to the development of predictive 
landscape ecological site classification modelling, 
integrating slope, topographic position, water and 
nutrient availability, as well as vegetation structure 
more holistically. This is paralleled by the acquisition 
of new information about the effects of eco-site 
characteristics on the distribution of wood attributes 
at different scales (Pokharel et al., 2014). 
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16.5  Forest Structure

12	  Breast height is fixed at 1.3 m in Australia, UK, Canada and continental Europe, and at 1.4 m in the USA, New Zealand, Burma, India, Malaysia and South Africa. 

In forest vegetation, a contiguous group of trees 
within a forest that appears to be uniform in terms 
of species composition, age, size, structure, density, 
and/or condition is often referred to as a ‘stand’. For 
silvicultural purposes, a stand is viewed, measured 
and managed as an integrated unit. Silvicultural 
practices, such as thinning and harvesting, alter the 
stand age structure. Accordingly, the distribution 
of tree diameters (measured by Diameter at Breast 
Height12: DBH) within a stand is closely related to its 
structure and composition, and indicative of its age 
and management history (see Section 6). Spatial 
diversity measures, such as the Stand Variance 
Index (STVI; Staudhammer and LeMay, 2001), which 
consider the variance in tree diameter and height 
within a stand, provide a useful platform to compare 
the structure of stands.

Desirable forest stand conditions, which meet multiple 
resource objectives, can generally be expressed in 
terms of stand structure. A stand structure approach 
to forest management therefore presents a unifying 
theme for multiple resource management objectives 
(O’Hara et al., 1996), providing information to: 

	§ enable sound silvicultural practice (Florence, 1996);

	§ assess suitability of the forest for wildlife;

	§ estimate fire risk;

	§ stratify the forest for more efficient ground-based 
inventories; and 

	§ facilitate point source data, such as growth plots, to 
be extrapolated to a wider spatial context. 

For silvicultural assessment, stand structure is 
typically represented in terms of mean DBH, tree 
height, canopy cover, and/or timber volume (see 
Sections 5 and 6). Estimates of total biomass and/
or carbon content in a forest are also relevant to 
forest ecological studies and carbon accounting (see 
Sections 7.4 and 17).

The most common method to obtain estimates 
of volume and growth in forests is by developing 
relationships between direct measurements of the 
size and weight of the plants or plant parts and 
their corresponding EO-based observations (see 
Section 10). These relationships are developed by 
dividing a forest stand into different components, 
such as trees, shrubs, and ground covers, each of 
which can then be considered separately. Typically, 
a forest sampling program involves three types of 
sample measurements: 

	§ non-destructive (such as DBH and height);

	§ destructive (such as cutting branches and trees, 
partitioning them into functional groups, such as 
leaves, main branches, boles, then estimating their 
dry weight or volumes); and 

	§ various types of litter fall (see Sections 5.1.2 and 6.3). 

Empirical methods, such as regression analysis, 
can then be used to obtain correlations between 
a comparatively small destructive sample and 
a significantly larger sample of non-destructive 
measurements that are representative of the total 
forest stand. Advances in TLS technologies (see 
Section 16.2), however, invite new approaches to 
using structural information in forest biometrics 
(Newnham et al., 2015; see Excursus 5.1). 

16.5.1  Stand height and cover
The use of ALS (airborne lidar) data to determine 
tree height is well established (see Excursus 5.1). This 
attribute is one of the few physical parameters that 
can directly be measured by lidar instruments. For 
example, strong correlations between lidar height 
and ground-measured height were observed in 
Blackbutt and River Red Gum forests (r2=0.95, Turner, 
2006). Other studies in Australian conditions have 
also shown height correlations in the range 89–97% 
(Bennett, 2005, Tickle et al., 2001, Weller et al., 2003). 
Crown cover (see Section 6.3.1) can be computed 
from ALS data, with lidar-derived estimates showing 
good correspondence with field data in woodland 
and open dry eucalypt forest in Queensland (r2=0.79, 
Lucas et al., 2006). At the same location, Lee and 
Lucas (2007) found strong relationships between lidar 
results and field measures of height, (r2=0.81), tree 
density (r2=0.82), crown cover (r2=0.78), and foliage 
and branch cover (r2=0.89). 

In addition to predicting stand structural metrics, 
there has been much focus on estimating forest 
canopy attributes using EO datasets. Foliage 
Projective Cover (FPC, see Sections 2.3.1 and 
Excursus 6.1) is a critical attribute in many vegetation 
classification schemes (see Section 6.3) and is known 
to be highly dynamic. It is a required dataset at 
catchment through to continental scales in Australia 
and other areas around the world. Across Queensland 
and NSW, the state governments have mapped 
FPC using EO imagery to derive maps of land cover 
and land cover change which support government 
policies. For example, the Statewide Landcover and 
Trees Study (SLATS) program has been operationally 
processing Landsat imagery for several decades 
(SLATS; see Section 9.1 and Volume 2D—Excursus 14.3).
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As part of this program, Armston et al. (2009) 
observed long term trends in woody vegetation in 
Queensland using Landsat-5 TM and Landsat-7 ETM+ 
imagery and a combination of modelling approaches. 
Results indicated that parametric and artificial 
intelligence models had similar prediction errors 
(RMSE < 10%), but the latter models had less bias when 
overstorey FPC was greater than ~60%. All models 
showed more than 10% bias in plant communities with 
high herbaceous or understorey FPC. 

Two additional biophysical parameters that provide 
information about the forest canopy and can be 
accurately estimated using EO approaches are:

	§ Leaf Area Index (LAI)—a dimensionless unit 
representing the area of foliage per area of ground 
(see Section 6.3.3); and 

	§ Fraction of absorbed photosynthetically 
active radiation (fAPAR)—the fraction of 
photosynthetically active radiation (PAR) in visible 
wavelengths that is absorbed by a canopy including 
overstorey, understorey, and ground cover 
elements (Gower et al., 1999; see Section 6.3.4).

At the global scale, a range of satellite sensors 
provides estimates for LAI and fAPAR at broad spatial 
resolution and fine temporal resolution over the 
Australian continent, including Advanced Very High 
Resolution Radiometer (AVHRR), Moderate Resolution 
Imaging Spectroradiometer (MODIS), and the SPOT 
VEGETATION sensor (see Volume 1A—Sections 12 
and 14). A number of studies have assessed the 
capacity of these global datasets to measure LAI and 
fAPAR under Australian conditions (Hill et al., 2006; 
Sea et al., 2011). For example, Pickett‑Heaps 
et al. (2014) investigated the consistency of six 
fAPAR products (MODIS, MERIS, SeaWIFS, MODIS-
TIP, SPOT VEGETATION, and AVHRR) across the 
Australian continent using multi-year records. Large 
differences in fAPAR products were observed over 
much of Australia and these were explained by simple 
offsets and different sensitivities in fAPAR products 
to changes in vegetation cover. Relatively high 
agreement was observed at grassland, shrubland, and 
agricultural sites, with more significant disagreement 
occurring at sites classified as forest. 

TLS are increasingly being used to measure 
plot level leaf area and gap fractions within 
forested landscapes (Zheng and Moskal, 2009; 
Danson et al., 2007) as well as individual tree 
dimensions, such as stem diameter (with RMSE 
ranging between 1.5–3.3 cm from field measurements, 
Hopkinson et al. 2004; Tansey et al., 2009), plus 
stem taper (Bienert et al., 2007), sweep, and 
lean (Thies et al., 2004). TLS has also been used 

successfully to estimate standing timber volume, 
branch size, density and configuration, foliage density, 
and tree growth (Murphy, 2008; Maas et al., 2008, 
Klemmt et al., 2010; Bucksch and Fleck, 2011). Further, 
TLS enables the estimation of standing timber 
volume to be based on the full tree profile (rather 
than simply the traditional approximations of DBH 
and tree height) and allows bole size and taper to 
be predicted (Murphy, 2008; Maas et al., 2008). For 
example, an Australian TLS system (Echidna®) has 
been used to accurately estimate LAI, DBH, and tree 
density in both native and plantation forests (Jupp 
et al., 2009). Strahler et al. (2008) used Echidna® to 
retrieve a range of forest parameters including mean 
DBH, stand height, distance to tree, stocking, and 
foliage area in plantation and native forest stands in 
NSW. Results indicated that LAI from this TLS system 
matched favourably with ground-based estimates. 
Tree stems were clearly delineated, and diameters 
retrieved very accurately (r2=0.99), with stand basal 
area and stocking (a practical index of density) being 
within 2% of field-measured estimates.

16.5.2  Individual trees
Both the growing availability of high spatial resolution 
imagery and increasing computing power have 
enabled greater focus on detecting and measuring 
individual trees as opposed to obtaining stand 
level statistics. For analysing individual tree crowns 
in forests, a general rule is that the image spatial 
resolution should be much greater than the crown size 
(that is, more than nine pixels per crown), such that 
an image spatial resolution ranging between 10 cm 
and 2 m is preferred (Gougeon and Leckie, 2001). A 
wide variety of tree crown detection and delineation 
algorithms have been developed in a range of forest 
types (Cabello-Leblic, 2018), some especially for 
Australian conditions (such as Culvenor, 2002; 
Bunting and Lucas, 2006; Held et al., 2001), including 
wet and dry eucalypt, tropical, deciduous, and mixed 
species forests. Existing approaches for automated 
tree crown delineation and tree crown detection can 
be broadly categorised into four groups (Ke and 
Quackenbush, 2011):

	§ local maxima/minima—identifies crown locations 
based on brightness variations (Pinz, 1991; 
Walsworth and King, 1999); 

	§ valley following—relies on shading patterns 
(Gougeon, 1995, 1999);

	§ region growing—segments the image assuming 
that treetops are brightest (Culvenor, 2002); and

	§ watershed segmentation (Serra, 1982; 
Ticehurst et al., 2001).
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Culvenor (2002) found region growing was most 
suited to crown delineation in pre-mature forest 
canopies where trees have a well-defined crown 
shape, noting that individual tree crown delineation 
from spaceborne EO imagery is not a realistic 
expectation (even via manual image interpretation) 
in structurally complex forests. Variations in viewing 
angle and Sun angle inhibited the ability to achieve 
repeatable results in multi-temporal imagery 
(see Volume 1B—Section 3). In a mixed species, 
dry eucalypt forest in Queensland, Bunting and 
Lucas (2006) found the accuracy of their approach, 
when compared to field data, to be ~70% (range 
48–88%) for either individual trees, or groups of trees 
from the same species, having DBH greater than 
10 cm, with reduced accuracies associated with dense 
stands containing several canopy layers. 

Lidar-derived branching information, such as the 
number of branches per whorl (Klemmt et al., 2010), 
can be used to simulate knot morphology 
(Duchateau et al., 2013) or detailed tree architecture 
(Runions et al., 2007; Côté et al., 2009, 2011; 
Van der Zande et al., 2011). In combination with 
tree models, such as L-systems (Prusinkiewicz and 
Hanan, 1990) and quantitative structure models 
(QSM, Calder et al., 2015), individual trees can also be 
‘reconstructed’ accurately (see Figure 16.4). 

While many ground-based lidar studies have 
investigated deriving individual tree structure, the 
intricate differences between, and complementary 
features of, TLS and ALS datasets have also been 
researched (Hilker et al., 2013). The combination of 
these two perspectives promises to be an effective 
and efficient tool for measuring the three-dimensional 
structure of individual trees (Dassot et al., 2011). 
Given that ground-based measures (such as TLS) 
focus on the tree trunks whereas airborne data 
(such as ALS) mainly describe the top of the canopy, 
there are clear distinctions between TLS and ALS 
observations. Likewise, TLS data are less suitable 
for investigating stand structure over larger areas 
but provide a means for calibrating and validating 
ALS data, by enabling investigation of changes in 
the stem density and structure, and branching and 
understorey characteristics, as a function of overall 
stand structure. These relationships can then be used 
to model the relationship between below canopy 
architecture and the upper canopy light regime 
(Hilker et al., 2010) and may ultimately allow an 
indirect retrieval of the complete canopy architecture 
from ALS measurements across the landscape. 

Figure 16.4  TLS-derived tree structure

TLS data was collected for a tree (Eucalyptus tricarpa, 21 m tall, 
in Rushworth forest, Australia) using a RIEGL VZ-400 TLS. The 
Quantitative Structure Model (QSM) was generated following 
the procedure described by Calders et al. (2015). 

a. Point cloud coloured by 
height

b. QSM

Source: Newnham et al. (2015) Figure 3

An alternative approach to scaling up TLS-based 
attributes for individual trees to forest stands 
and landscapes has been demonstrated by 
Côté et al. (2012), who built three-dimensional libraries 
of individual trees and then distributed them across 
the landscape using L-systems approaches, enabling 
three-dimensional modelling of entire forest stands 
(Côté et al., 2012). 

16.5.3  Geometric-optical models 
Spectral and spatial responses in EO data have also 
been related to forest variables by numerical models 
that account for the geometry of the tree structure 
at the time of the satellite overpass (see Volume 1X—
Excursus 1.1). This modelling approach views each 
pixel as mixtures of four basic components: sunlit 
canopy, shaded canopy, sunlit background, and 
shaded background. 

Strahler and Li (1981, 1984) modelled conifer trees as 
widely spaced cones and surmised that the different 
reflectances of forest pixels result from different 
mixtures of illuminated/shadowed background 
and illuminated/shadowed tree crowns within each 
ground pixel. This geometric-optical model was 
used to estimate tree density and height in sparse to 
moderately dense ponderosa pine plantations using 
Landsat MSS data, with the modelled results being 
within 10% of the ground-based measurements. 

This approach was adapted to Australian forests 
(Jupp et al., 1986; Walker et al., 1986) and used to 
demonstrate how geometric-optical models could 
be interfaced with simple process-based models 
of vegetation function to predict changes in plant 
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responses to increasing woody weeds (Jupp and 
Walker, 1996; see Volume 2X—Excursus 1.1). Scarth 
and Phinn (2000) applied a similar approach to mixed 
eucalypt forests in Queensland using Landsat TM 
imagery and found that modelled estimates of crown 
cover, canopy size, and tree densities had significant 
agreement with ground validation, but structural 
successional stage showed less significant correlation. 
Others have used the approach to better understand 
patterns of tree density in EO imagery (Coops and 
Culvenor, 2000) and predict gap probability profiles 
(Lovell et al., 2012; Haverd et al., 2012). 

Spectral mixture analysis (see Section 8.3 and 
Volume 2E) has also been used to determine the 
proportions of sunlit canopy and background, and 
shadowed canopy and background, within each EO 
pixel, with subsequent inversion based on geometric-
optical modelling being used to derive stand 
structural attributes (Coggins et al., 2013).

16.5.4  Biomass and fuel load
The importance of assessing forest biomass has been 
recognised both as an indicator for global climate 
change and to provide insights into the forest carbon 
storage (see Section 17; Richards and Brack, 2004). 
The use of passive optical data to map forest biomass 
has been well-established through the strong 
correlations of above ground biomass (AGB) with 
cover and LAI (see Sections 6.3.3 and 14), as well as 
with active remote sensing systems such as lidar (see 
Excursus 5.1). For example, using Landsat time series 
imagery Nguyen et al. (2020) developed a robust 
approach for monitoring forest biomass dynamics 
associated with forest disturbance and recovery, 
which allowed a single date conventional inventory 
to be extrapolated through time. Lidar has also been 
used for biomass assessment in regrowth Blackbutt 
forests on the NSW Central Coast, to estimate AGB 
components by segmenting canopy height data, 
which yielded results within 9% of the ground-based 
estimates (Turner, 2006).

The use of both spaceborne and airborne SAR 
is still an active area of research in Australia 
(Watt et al., 2012; Richards, 2012). SAR is well-suited 
to the Australian environment since the majority of 
Australia’s forested area is represented by woodlands, 
the biomass of which rarely exceeds 100 Mg/ha 
and is especially low in areas of regeneration (see 
Section 16.1). C-, L-, and P-band scattering intensity 
has been shown to saturate at biomass levels of 
approximately 20–40 Mg/ha, 60–100 Mg/ha, and 
150 Mg/ha respectively (see Section 16.2). The 
biomass of most woodland areas should thus be 
quantifiable using, as a minimum, single-polarised 
L-band data, since most of the biomass is below 

its threshold of saturation (Milne et al., 2000). For 
example, at a long term study site in Queensland, 
Lucas et al. (2006) evaluated the use of multi-
frequency, radar data for quantifying the AGB of 
open eucalypt forests and woodlands. Using NASA 
JPL AIRSAR (POLSAR) data, empirical relationships 
between AGB and SAR backscatter confirmed that 
C-, L-, and P-bands saturated at different levels and 
revealed both a greater strength in the relationship at 
higher incidence angles and a larger dynamic range 
and consistency of relationships at HV polarisations. 
The study concluded that L-band HV backscatter 
data acquired at incidence angles approaching or 
exceeding 45º were best suited to estimating the 
AGB up to the saturation level of 80–85 Mg/ha 
(Lucas et al., 2006). The availability of P-band SAR 
data from the BIOMASS mission (see Section 16.2) is 
expected to provide more information about both tree 
trunks and the ground surface in forested landscapes.

Another ALS application involves providing spatial 
layers to forest fuel models, which traditionally have 
not used significant amounts of EO data due to an 
inability of spectral data to capture the structural 
complexity of closed canopies. In the USA, ALS has 
been used to predict crown bulk density, foliage 
biomass, and crown volume (Riaño et al., 2003). The 
US Forest Service has also evaluated the capacity 
of ALS to predict crown bulk density, canopy base 
height, and crown fuel weight, demonstrating its 
effectiveness for characterising landscape level, fuel-
related variables (Andersen et al., 2005). Research 
under Australian conditions has found that, while it 
is difficult to distinguish surface and ‘near surface’ 
fuels using ALS data (Gould and Cruz, 2012), good 
correlations could be achieved between lidar-derived 
understorey attributes and elevated fuel load, fuel 
cover, and fuel volume (Brown et al., 2011). Since 
understorey vegetation is an important fuel-ladder 
for crown fires in Australia, mapping of elevated fuel 
structure is valuable (Turner, 2007). 

ALS data has also been used to assess fuels in the 
wildland-urban interface where wildfires present 
a significant risk to homes, life, and property. 
Management of this risk requires current and detailed 
knowledge of the spatial extent of wildland. ALS 
has been used to map wildland vegetation based 
on the combination of a vertically-stratified cover 
threshold and spatial morphology (Newnham et al., 
2012). Results indicated that the proportion of 
homes destroyed at the wildland-urban interface was 
greater than previously reported and that there was 
an exponential decline in the proportion of homes 
destroyed as a function of distance from wildland (see 
Section 18).
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16.6  Forest Functionality
Plant physiological processes are highly dynamic 
and can vary over space and time as plants respond 
to rapidly changing environmental conditions. In 
the forestry context, plant functionality is closely 
related to forest health, and EO methods can provide 
early warning of disease, nutritional imbalance, 
moisture stress, or increasing predators. Current 
monitoring programs in Australia are integrating lidar 
and multispectral data sources to monitor forest 
biosecurity and manage forest health (NSW DPI, 2015).

Leaf biochemistry is closely related to leaf reflectance 
characteristics (see Sections 4, 8.1.1, and 9.6), 
allowing high spatial and spectral resolution imaging 
techniques to be used to infer information about 
the chemical composition of a vegetated canopy 
(Ollinger and Smith, 2005). These relationships only 
apply to photoactive molecules, such as pigments, 
and may be obscured by broad leaf water absorption. 
As detailed in Volume 1A—Section 13, spectrometers 
measure reflectance in specific, narrow, and often 
multiple, wavebands allowing imaging spectrometers 
to be used with ground-based, aerial, or spaceborne 
platforms for calibration and validation purposes to 
deliver consistent and contiguous measurements of 
the Earth’s surface. 

16.6.1  Plant nutrition
Forest nutrition assessments were amongst the 
earliest research projects conducted with the 
hyperspectral scanner, Hyperion, as part of calibration 
and validation for that instrument in Australia. 
Coops et al. (2003) demonstrated the use of Hyperion 
image data for mapping nutrient concentrations 
in Eucalyptus and Pinus species. These models 
initially focused on nitrogen but were also shown 
to be useful for mapping the concentration of 
additional macronutrients and micronutrients in a 
southern Australian P. radiata estate. Each of these 
nutrients plays an important role in the physiological 
functioning of plants and can influence the size and 
form of plantation trees (see Sections 4.2 and 5.3.5). 

In a review of the use of EO technology to map 
nutrient status and fertiliser requirements in Australian 
plantations, Sims et al. (2013) discussed a number 
of operational considerations when using EO data. 
They mapped concentrations of 12 macronutrients 
and micronutrients in a Queensland exotic pine estate 
(P. carribea and P. elliotii) with comprehensive field 
data collection. They also considered many questions 
relating to model transferability between species and 
age classes, including the need for hyperspectral 
image data, detailed correction approaches, timing 
of image acquisition, complete sampling of the entire 
nutrient range in a forest stand, and the impact of 
stand age and canopy closure.

16.6.2  Plant stress
Factors that impact plant vigour and EO methods to 
detect stress are described in Sections 9.5 and 9.6. 
Thus far, the EO approaches that show the most 
promise for identifying and quantifying plant diseases 
have been thermography, chlorophyll fluorescence, 
and hyperspectral imaging (Mahlein et al., 2012). 

Various stress factors can induce leaf loss and 
discolouration (chlorosis and/or redness due to 
production of anthocyanins; see Excursus 4.1) 
and reduced leaf and crown sizes in eucalypts 
(Pook, 1985; Stone and Coops, 2004). Changes in 
leaf pigment concentrations impact foliar absorption 
of visible wavelengths, while changes in leaf and 
crown structure are most obvious in NIR reflectance 
(Asner, 1998; Gitelson et al., 2002). A range of spectral 
indices has been developed for vegetation studies 
that highlight the relative changes in leaf reflectance 
of red and NIR wavelengths (see Section 8.1 above 
and Volume 2C). In particular, various vegetation 
indices have been proposed to identify and monitor 
stress in different eucalypt species. For example, 
Datt (1999) developed a series of chlorophyll indices 
suitable for eucalypt vegetation at both the leaf and 
stand level. Many of these indices were tested by 
Coops et al. (2002) using CASI-2 imagery, who found 
that the Datt (1999) indices correlated moderately 
well with relative leaf chlorophyll content for all 
dominant eucalypt species in the NSW study area 
and yielded slightly higher correlation for individual 
species. 

In Australia, forest health has traditionally been 
surveyed by trained assessors using both ground-
based and aerial observations (Carnegie, 2008; 
Carnegie et al., 2008). Barry et al. (2008) used 
hand-held spectrometers to determine whether 
spectral analysis methods could detect changes in 
chlorophyll concentration resulting from stress. Three 
commercially important species of Eucalyptus were 
observed after defoliation (E. globulus) or exposure 
to cold and nutrient deprivation (E. pilularis and 
E. grandis). The resulting leaf loss in both E. globulus 
and E. pilularis was strongly correlated with two 
greenness indices (Modified Chlorophyll Absorption 
Ratio Index 2: MCARI2 and Modified Triangular 
Vegetation Index 2: MTVI2) as well as changes in the 
position and slope of the red edge, while leaf redness 
induced by stress in E. grandis and E. pilularis was 
strongly correlated with the Anthocyanin Reflectance 
Index (ARI) and the Red-Green Index (RGI; see 
Section 8.1 above). Stress-related changes in both 
chlorophyll concentration and leaf loss in E. pilularis 
were more noticeable than in E. grandis, possibly due 
to phenological factors (Stone et al., 2005).
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Chisholm (2006) investigated the use of hand-held 
spectra to assess both chlorophyll and moisture 
content of E. camaldulensis stands subject to a 
range of moisture stress regimes. Results indicated 
that moisture stress could be detected using high 
resolution spectral reflectance data at the leaf level 
and that the analysis was successful at identifying 
broad regions of the electromagnetic (EM) spectrum 
which could be used to discriminate different levels 
of stress. 

In addition to chlorophyll and nitrogen, the past 
decade has seen advances towards estimation of 
other plant pigments as indicators of plant stress and 
light absorption. One of these pigments is xanthophyll, 
which is produced in a leaf during a process known 

as photo-protection (see Section 4.2.3). Briefly, 
while plants can use most of the energy they absorb 
for photosynthesis, in strong illumination, the 
photochemical reaction tends to be limited by factors 
such as temperature, water, or nutrient availability. A 
change in the concentration of xanthophyll in foliage 
is indicative of Light Use Efficiency (LUE), which in 
turn is related to Gross Primary Productivity (GPP; see 
Section 7.4). Advances in estimation of LUE and GPP 
from spaceborne sensors have focused on imagery 
from MODIS or CHRIS-PROBA (Drolet et al., 2008, 
Hilker et al., 2009, 2011) in readiness for the European 
FLEX mission (Mohammed et al., 2019), which will 
measure fluorescence from vegetation, a key attribute 
for GPP estimation (Coops et al., 2011; see Section 17).

16.7  Forest Diversity
In addition to forest structure and function, the 
diversity of species within forest stands is often 
a critical piece of information both for forest 
management and biodiversity assessment. Species 
diversity, of course, relates to both flora (see 
Section 16.7.1) and fauna (see Section 16.7.2).

16.7.1  Floral diversity
In Australian conditions, the classification of native 
forest species is highly challenging (Shang and 
Chisholm, 2014; Kumar et al., 2010). This is largely 
attributed to similarities in structural and chemical 
properties between species and the architecture of 
eucalypt leaves. These leaves are characteristically 
pendulous, forming a generally open canopy 
structure, so that the spectral reflectance obtained 
from EO imagery is strongly affected by the 
background. 

Hyperspectral imagery is often viewed as necessary 
for discriminating the small spectral differences 
between species. For example, Lucas et al. (2008) 
produced tree species maps (including Acacia, 
Angophora, Callitris, and Eucalyptus) for central 
southeast Queensland using hyperspectral imagery 
acquired by CASI. Classification of the dominant 
species delivered the most accurate result (76%). The 
fusion of HyMap (airborne hyperspectral) spectra 
increased the accuracy for some species, principally 
due to the additional MIR (middle infrared) spectral 
wavebands. Shang and Chisholm (2014) assessed 
the potential of hyperspectral EO data to classify 
Australian forest species at the leaf, canopy and 
community levels in eastern NSW and obtained the 
most accurate classification result at the leaf level 
(94.7%), which reduced to 84% and 75% at the canopy 
and community levels respectively. 

Rather than attempting to directly detect individual 
tree species, indirect mapping methods utilise 
environmental parameters and EO data to predict 
species distributions or associations with the 
aid of a priori knowledge (Coops et al., 2008). 
Mackey et al. (2004) and Berry et al. (2007) 
developed an integrated index to track landscape 
productivity over the Australian continent using 
monthly observations of fAPAR during 2003. This 
index was used to assess how biomass is partitioned 
and made available as food and other habitat 
resources for fauna on the premise that, while some 
animal species reside within a single landscape 
region, many species are highly mobile, primarily 
in search of food and habitat. Mobile species often 
move large distances on a regular (mostly driven by 
seasonal changes) or irregular (dispersive or nomadic 
movement reflecting less predictable changes) basis 
(Gilmore et al., 2007). Variations in mean annual, 
minimum, and seasonal patterns of fAPAR were 
related to vegetation production and seasonality, 
which in turn provided insights into species habitat 
and forage conditions for that year. The integrated 
index provided useful information about the structure 
and cover of Australian vegetation and demonstrated 
that vegetation-related habitat resource availability 
can readily be tracked through time using EO data 
and can be quantified in terms of carbon or energy 
assimilation over ecologically relevant timeframes 
(Berry et al., 2007).
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An alternative approach is that of Palmer et al. (2002), 
who proposed the spectral variation hypothesis 
whereby species richness can be inferred from the 
variations in the spectral characteristics of an EO 
image, that is, more unique spectra indicate greater 
species diversity. A number of studies have tested 
this approach by comparing field-based, species 
richness measures to image spectral heterogeneity 
using both multispectral and hyperspectral imagery 
(Rocchini et al., 2004, 2007; White et al., 2010). 

Asner and Martin (2009) proposed a ‘spectranomics’ 
approach to forest biodiversity monitoring that can be 
used to link the chemistry, spectroscopy, taxonomy, 
and ecology of canopies. Initial work has been 
undertaken examining the leaf spectral and chemical 
properties of 162 canopy species in tropical forest 
sites in Queensland. They concluded that, within 
a site, leaf chemistry varied more strongly among 
species rather than along a climate gradient and 
did not aggregate well along genus or family levels, 
highlighting the spectral and species diversity and 
complexity in these stands (Asner et al., 2009). This 
work has expanded into the Carnegie Spectranomics 
Project described by Asner and Martin (2016; see 
Excursus 16.1).

Excursus 16.1�—Carnegie Spectranomics Project

Source: Asner and Martin (2016)

Spectranomics is an approach to conceptually 
and geographically link plant canopy species and 
their functional traits to their ‘spectral-optical’ 
properties. With the long term goal of advancing 
EO in the biodiversity science arena, the Carnegie 
Spectranomics Project has generated tree-of-life, 
or phylogenetically-based, connections between 
the spectral properties of plants and their canopy 
functional traits for more than 13,000 canopy tree and 
liana specimens in over 3 million tissue samples. This 
sample represents around 10,000 species, mostly 
tropical, and focuses on canopy species growing in 
full sunlight.

Canopy functional traits refer to a constellation of 
elemental and molecular properties, some of which 
support growth, such as nitrogen and photosynthetic 
pigments (which are functionally related), and others 
that provide defence, like polyphenols and lignin, 
which have evolved in plant canopy leaves (see 
Section 4.2). This chemical make-up of plant canopies, 
and its similarity and uniqueness among species, 
is called ‘chemical phylogeny’. These functional 
traits mediate leaf processes, whole plant function, 
and ecosystem dynamics, are often differentially 
formulated at the species level, and are an essential 
component of Spectranomics (see Figure 16.5a).

In this context, spectral properties of plant canopies 
describes the mostly invisible interactions between 
plant foliage and solar radiation. Between the 
EM wavelengths from ultraviolet to short wave 
infrared (350–3500 nm), this interaction is strongly 
determined by 21 or more chemicals (Asner et al., 
2011) that underpin plant evolution, and which power 
the biosphere. Chemometric studies determine how 
these chemicals relate to reflectance spectra, with 
methods ranging from traditional spectroscopic 
assays to new machine learning approaches 
(Feilhauer et al., 2015; Serbin et al., 2014; Wold et al., 
2001; see Figure 16.5b). Spectral properties also 
provide a tantalising pathway forward to scale up from 
leaves to landscapes (Ustin et al., 2004) and to the 
planetary level (Jetz et al., 2016; see Section 10.2), but 
only if we can accurately and repeatedly measure and 
interpret the spectra of plants over increasingly larger 
portions of Earth (see Figure 16.5c,d).

The Spectranomics database has become 
increasingly useful for quantitatively testing the 
relationships between plant phylogeny, canopy 
traits, and spectral properties at nested biographic 
scales, whether in tree communities, on mountains, 
or between continents. It has also transitioned 
to a forecasting tool to predict what can be 
remotely mapped and monitored using spectral EO 
instruments. These insights are feeding back to more 
focused field studies and improved EO sensor design 
(Asner et al., 2012).
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Figure 16.5  Spectranomics Database elements

The essential interactive elements of the Spectranomics Database include phylogenetic, chemical, and spectral information on 
canopy species.

a. 21 foliar chemical traits are collected, organised and analysed phylogenetically, producing a tree-of-life based on the relatedness 
of functional trait signatures. This generic phylogeny shows the chemical relatedness of thousands of species in the Spectranomics 
Database. 

b. Chemometric equations are derived to quantitatively relate canopy functional traits (chemicals) to spectral data. Example 
relationships are shown for foliar lignin, nitrogen (N), and polyphenols. The x-axis indicates spectral wavelength from 400–2500 nm; 
the y-axes indicate relative importance of the spectrum to each example chemical constituent.

c. An example remotely sensed canopy reflectance spectrum of one species is shown along with indicators of key chemical 
contributions to the spectrum (Curran, 1989; Kokaly et al., 2009; Ustin et al., 2009).

d. Oblique three-dimensional view of a one hectare portion of lowland Amazonian forest canopy. Different colors indicate different 
species detected based on chemical traits using airborne imaging spectroscopy.

G.P. Asner, R.E. Martin / Global Ecology and Conservation 8 (2016) 212–219 213

Fig. 1. The essential interactive elements of the Spectranomics Database include phylogenetic, chemical and spectral information on canopy species.
(a) Twenty-one foliar chemical traits are collected, organized and analyzed phylogenetically, producing a tree-of-life based on the relatedness of functional
trait signatures. This generic phylogeny shows the chemical relatedness of thousands of species in the Spectranomics Database. (b) Chemometric equations
are derived to quantitatively relate canopy functional traits (chemicals) to spectral data; Example relationships are shown for foliar lignin, nitrogen (N),
and polyphenols. The x-axis indicates spectral wavelength from 400–2500 nm; the y-axes indicate relative importance of the spectrum to each example
chemical constituent. (c) An example remotely sensed canopy reflectance spectrum of one species (see Fig. 2 for thousands of species) is shown along with
indicators of key chemical contributions to the spectrum (Curran, 1989; Kokaly et al., 2009; Ustin et al., 2009). (d) Oblique 3-D view of a one-hectare portion
of lowland Amazonian forest canopy; Different colors indicate different species detected based on chemical traits using airborne imaging spectroscopy. The
horizontal dashed line in the figure indicates our ability to scale the measurements from leaf (above) to canopy (below) levels (Asner and Martin, 2008;
Asner et al., 2015b, 2011). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

leaves. This chemical make-up of plant canopies, and its similarity and uniqueness among species, is called ‘‘chemical
phylogeny’’. These functional traits mediate leaf processes, whole plant function, and ecosystem dynamics, are often
differentially formulated at the species level, and are an essential component of Spectranomics (Fig. 1(a)).

Whenwe refer to spectral properties of plant canopies, another component of Spectranomics (Fig. 1(b)–(c)), wemean the
mostly invisible way that plant foliage interacts with solar radiation. From the ultraviolet to the visible to the near-infrared
and the shortwave-infrared regions of the electromagnetic spectrum (350–3500nm), plants havemany commonand yet also
unique patterns of interactionwith solar energy. In plant canopy foliage, this interaction is strongly determined by 21 ormore
chemicals (Asner et al., 2011) that underpin plant evolution, andwhichpower the biosphere. Chemometric studies determine
how these chemicals relate to reflectance spectra, and the methods today range from traditional spectroscopic assays and
newer machine learning approaches (Feilhauer et al., 2015; Serbin et al., 2014; Wold et al., 2001). Spectral properties also
provide a tantalizing pathway forward to scale up from leaves to landscapes (Ustin et al., 2004), and to the planetary level
(Jetz et al., 2016), but only if we can accurately and repeatedly measure and interpret the spectra of plants over increasingly
larger portions of Earth (Fig. 1(c)–(d)).

In the first ten years of the Spectranomics project, we have collected, cataloged and stored more than 13,000 canopy tree
and liana specimens, in over 3,000,000 tissue samples, representing about 10,000 species heavily biased to tropical sources

Source: Asner and Martin (2016) Figure 1



Earth Observation: Data, Processing and Applications.  Volume 3: Applications

338

16.7.2  Faunal monitoring
In Australian forestry conditions, Coops and 
Catling (1997) described how airborne video data, if 
correctly pre-processed, could be used to accurately 
predict the suitability of the forest for ground-
dwelling fauna. They used habitat quality ratings to 
develop maps of habitat quality across the landscape. 
It was concluded that these spatial predictions could 
then be used to stratify the landscape into regions 
that would predict the distribution and abundance 
of some faunal groups. These predictions were then 
verified in the field, with actual species abundances 
being accurately predicted in over 70% of situations 
(Catling and Coops, 1999). 

Using hyperspectral EO imagery, 
Youngentob et al. (2012) developed relationships 
between foliage nutritional quality and HyMap 
imagery acquired with 3.5 m pixels over native 
eucalypt and plantation forest in NSW. An 
integrated measure of foliage nutritional quality 
(available nitrogen) was related to the spectra 
using continuum removal and derivative analysis. 
Regression relationships were developed with a 
range of accuracies (r2=0.55–0.78). The significant 
majority of spectral bands selected by the regression 
analysis related to known foliage pigments and 
nutrient absorption features. The results indicated 
the potential of hyperspectral imagery to be used to 
map variations in foliar constituents across forested 
landscapes. These types of spatial predictions can 
then be used to estimate the presence and abundance 
of folivores (herbivores that specialise in consuming 
leaves), such as the greater glider.

16.8  Forest Disturbance
Monitoring and quantifying forest disturbance is 
valuable for a range of forestry activities, including 
timber harvesting and reforestation. Forest changes 
can also result from natural disasters such as fire, 
windthrow, lightning, drought and floods. Other 
factors that can disturb forests include pollution, 
predators, and disease, all of which may be introduced 
by other anthropogenic activities (see Section 9.6). At 
a landscape scale, such disturbances change forest 
patterns, and those changes can be delineated in 
appropriate EO datasets (see Section 9.2). 

EO provides an ideal basis to identify forest 
disturbance, and monitor forest regrowth 
(Kennedy et al., 2010; Zhu et al., 2012). Approaches 
which map and monitor landscape disturbance are 
highly scale-dependent however, both spatially and 
temporally (see Volume 2D). As such, the landscape 
patterns and processes that are discernible within 
any particular image source will be dependent 
on the target of interest—that is, individual trees 
or a whole stand—and the spatial, spectral, 
radiometric, and temporal characteristics of the 
image data (Turner, 1989; Perera and Euler, 2000; 
see Volume 1B—Section 1). Disturbances that are 
non-stand replacing and heterogeneous over the 
landscape, such as defoliation or partial harvesting, 
are generally more difficult to detect with EO data 
than larger and more spatially contiguous, stand-
replacing disturbances, such as fire or land clearing 
(Coops et al., 2006). Hislop et al. (2019) utilised 
Landsat time series data over a 29-year period to map 
abrupt disturbances in Victorian sclerophyll forests. 
Using an ensemble approach, they found an overall 
error rate of 7% and developed annual disturbance 
maps for 9 million ha of forest for this time period.

16.8.1  Insect damage
At a broad spatial scale, the high radiometric 
quality and frequent temporal resolution of MODIS 
can allow non-stand replacing disturbances, such 
as insect-induced tree mortality, to be detected. 
Verbesselt et al. (2009) used a MODIS time 
series (250 m; 16-day composite) to assess Pinus 
radiata plantation mortality in southern NSW (see 
Section 9.3). Results indicated that NDVI images were 
more effective for assessing tree mortality than the 
Enhanced Vegetation Index (EVI) or the Normalised 
Difference Infrared Index (NDII; see Section 8.1). 

The more recent development of the Harmonised 
Landsat-Sentinel Data processing methodology 
is now allowing sub-weekly, global multispectral 
observations at 30 m resolution. This resource opens 
the way for finer scale insect damage assessments 
in the future (Claverie et al., 2018; see Volume 2D—
Section 10.2).

16.8.2  Fire monitoring
EO assessment of fire severity is one of the major 
success stories in disturbance observation (see 
Section 18). EO of burn extent has two major 
advantages over traditional methods of field 
assessment: cost-effectiveness and global coverage 
in remote areas. Most commonly, with spectral bands 
that are sensitive to fire disturbance and being freely 
available globally, Landsat TM/ETM+/OLI imagery 
is well-suited to the task of studying fire severity. 
As detailed in Section 18.5.1, extensive research has 
demonstrated that fire severity can be assessed using 
the:
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	§ Normalised Burn Ratio (NBR)—normalised ratio of 
the NIR and SWIR spectral bands; and the

	§ Normalised Burn Ratio difference (dNBR; or 
Differenced NBR)—post-fire NBR is subtracted 
from a pre-fire NBR (Key and Benson, 2006; see 
Section 9.2.1). 

dNBR has been shown to be particularly useful 
for forest and ecological research and land 
management projects as the index accounts for both 
pre- and post-fire conditions, making the overall 
approach more transferable across ecosystems 
(Kasischke et al., 2008; Soverel et al., 2011). 

In Australia, Landsat imagery has been 
used for several decades to derive a more 
comprehensive understanding of fire histories 
(Russell‑Smith et al., 1997) and seasonality (see 
Figure 18.1). For example, Goodwin and Collett (2014) 
developed a new, fully automated approach to 
classifying burnt areas across Queensland based on 
different Landsat TM/ETM+ spectral combinations. In 
their approach time series imagery (rather than just 
a pair of images pre-and post-fire) is developed and 
the thermal, reflective and contextual characteristics 
of landscape patches are assessed through time. 
The results indicated an overall producer’s accuracy 
of 85% and user’s accuracy of 71% (see Volume 2E). 
Areas frequently misclassified were most often 
areas of cropping or inundated land, with variations 
in moisture and ground cover on dark soil. Other 
approaches to mapping fire severity and extent are 
detailed in Section 18.5.1.

If there were no Forestry in Australia, beyond mere 
fire-prevention, the benefits to the country would 

be incalculable. … For complete fire-protection three 
measures are necessary:  

1. Watch-towers and a good look-out.  
2. Fire-paths.  

3. Extra watchers during the fire season. 
(David E. Hutchins, from 'A Discussion of Australian 

Forestry', 1916)

16.8.3  Environmental monitoring
EO datasets have also been used to monitor land 
use changes for various purposes (see Section 3.4). 
For example, Furby et al. (2008) describe the use of 
over 5,000 Landsat scenes to map land use changes 
associated with agriculture and forestry across 
Australia as part of the NCAS Land Cover Change 
Project. Dry season Landsat MSS, TM and ETM+ 
imagery was used to detect land cover change and 
discriminate between forest and non-forest cover 
from 1972 onwards. The program was then expanded 
to map a number of other land cover change 
attributes such as detection of new hardwood and 
softwood plantations, forest density classes, and 
sparse vegetation cover mapping.

The opening up of the complete Landsat archive 
(Wulder et al. 2012) has led to the development of 
many more monitoring approaches focusing on multi-
temporal and pixel-based analyses of EO time series 
data (Kennedy et al., 2010; see Volume 2D). These 
approaches move beyond scene-based analysis 
to compositing algorithms which select the best 
available pixel (BAP) from multiple images acquired 
within a pre-defined time interval (Roy et al., 2010), 
thus allowing pixel level tracking of forest disturbance 
through time (Zhu et al., 2012). Common to many of 
these approaches is the derivation of information 
from spectral changes in Landsat reflectance 
at a given location over time using what are 
broadly known as temporal trajectory methods 
(Hermosilla et al., 2016; see Volume 2D—Section 9). 
For example, Lehmann et al. (2013) applied this type 
of approach to a Landsat time series for continental 
scale monitoring of disturbances within forested 
regions of Australia to produce the National Forest 
Trend (NFT), which identifies within-forest vegetation 
changes (disturbance and recovery) over time using 
imagery acquired from 1989 to 2006. By examining 
the spectral trajectory of a vegetation cover index, 
this approach can identify processes affecting forests 
that are of interest to ecologists and forest managers. 
Trend information along the trajectory, such as the 
slope curvature, is calculated to highlight areas 
of forest decline or recovery, which are critical for 
environmental reporting. Other EO-based monitoring 
approaches for forest vegetation, such as BFAST 
(Breaks for Additive Season and Trend) Monitor 
(Verbesselt et al., 2012), are described in Volume 2D. 
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16.9  Further Information

Australian Forestry
State of the Forests Report (SOFR) 2018: https://www.

agriculture.gov.au/abares/forestsaustralia/sofr/sofr-
2018

Australia’s forests at a glance 2019: with data to 2017–
18. Australian Bureau of Agricultural and Resource 
Economics and Sciences, Canberra. https://doi.
org/10.25814/5dc8d577976b8

Australia’s forests webpage, ABARES website: https://
www.agriculture.gov.au/abares/forestsaustralia/
australias-forests

Department of Agriculture: http://www.agriculture.gov.
au/forestry

Institute of Foresters Australia (IFA)—http://www.
forestry.org.au/

National Forest Inventory (NFI)—http://www.
agriculture.gov.au/abares/forestsaustralia/australias-
national-forest-inventory

Statewide Landcover and Trees Study 
(SLATS)
SLATS Queensland: https://www.qld.gov.au/

environment/land/management/mapping/statewide-
monitoring/slats

SLATS NSW: https://www.environment.nsw.gov.au/
topics/animals-and-plants/native-vegetation/reports-
and-resources 
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The carbon cycle is introduced in Volume 1A—Section 4.2.4 and Excursus 1.2 above. The following 
sections consider the use of EO to map and monitor the Australian landscape in two areas that are 
relevant to carbon studies:

	§ carbon cycling (see Section 17); and

	§ fire (see Section 18).

Contents
17 � Carbon Cycling� 353

18 � Fire� 389

Background image on previous page: Sentinel-2B image over the Kimberley region, WA, acquired on 13 November 2020 and displayed using bands 11, 8, 3 as 
RGB. Source: Norman Mueller, Geoscience Australia



Earth Observation: Data, Processing and Applications.  Volume 3: Applications

353

Volume 3A: Applications—Terrestrial Vegetation

17  Carbon Cycling

Alfredo Huete 

Carbon is the foundation and primary energy source of all life on Earth—from the food that sustains us to the 
fossil fuels that drives the global economy. Carbon, as an important greenhouse gas, is intertwined with the 
Earth’s climate by helping to regulate the Earth’s temperature. Human activities such as the burning of fossil 
fuels, and land use and land cover modifications, are greatly raising the amounts of carbon dioxide (CO2) in the 
atmosphere with associated impacts on global temperatures and climate. 

The carbon cycle describes the flow and storage 
of carbon among the land, ocean, and atmosphere 
carbon reservoirs (see Figure 17.1, Excursus 1.2 above, 
and Volume 1A—Section 4.2.4). Most of the carbon 
is stored in geologic rocks and sediments, including 
fossil carbon, while the rest is present in the ocean, 
atmosphere, land, and living organisms. The carbon 
cycle functions across a wide range of timescales and 
includes:

	§ a relatively ‘slow’ carbon cycle—geologic 
processes, such as the weathering of rocks, soil 
formation, sedimentation, and deep ocean storage 
of carbon; and

	§ a more active, ‘fast’ carbon cycle—biologic 
processes absorb CO2 from the atmosphere to 
sustain life and release CO2 when organisms 
die, and in the ocean, there are also chemical 
exchanges of carbon between surface waters and 
the atmosphere (see Excursus 1.1). 

Accurate estimates of carbon pools and fluxes in 
the biosphere are necessary for quantifying carbon 
balances across space and time, and at regional 
to global scales, but are quite challenging to 
accomplish (Schimel, 1995; Baldocchi et al., 2001). 
The determination of productivity across diverse 
landscapes is traditionally carried out in various, 
often inconsistent ways, that include field and 
plot scale biomass measurements, plant harvests, 
micrometeorological flux measurements, EO, and 
empirical and process-based models that may involve 
field, micrometeorological, and EO data inputs (see 
Excursus 17.2). 

We cannot hope to either understand or to manage the carbon in the atmosphere unless we understand 
and manage the trees and the soil too. 

(Freeman Dyson)

Background image: Major bushfires in southeastern Australia photographed on 18 January 2003 from the International Space Station. Winds direct smoke plumes 
eastward off the Australian coast, north of Cape Howe, near the NSW/Victoria border. The agricultural valleys of the Murrumbidgee and Murray Rivers give way 
to the burning, darker bush areas of the mountains, with the extreme eastern coastline of Victoria visible on the right of this image. Source: NASA-JSC. (Retrieved 
from https://eol.jsc.nasa.gov/Collections/EarthObservatory/articles/Australian_Bushfires.htm)

Recommended Chapter Citation: Huete, A.R. (2021). Carbon Cycling. Ch 17 in Earth Observation: Data, Processing and Applications. Volume 3A—Terrestrial 
Vegetation. CRCSI, Melbourne. pp. 353–388.

https://eol.jsc.nasa.gov/Collections/EarthObservatory/articles/Australian_Bushfires.htm
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Figure 17.1  The carbon cycle between land, atmosphere, and oceans

Source: NASA

Carbon is the currency of life. The rapid formation of carbon-rich topsoil  
is the greatest priority and opportunity of our time. 

(Rattan Lal)

Excursus 17.1�—The Carbon Cycle

Source: Alfredo Huete, University of Technology, Sydney

The carbon cycle—the flow and storage of carbon 
among the land, ocean, and atmosphere carbon 
reservoirs—is introduced in Excursus 1.2 above (see 
also Volume 1A—Section 4.2.4) and illustrated in 
Figure 17.1. 

Carbon Reservoirs (Pools)
Carbon reservoirs refer to the major storage areas of 
carbon on the Earth, distributed among land, ocean, 
and atmosphere (see Figure 17.1). Global quantities 
of these carbon reservoirs are uncertain. Most of 

Earth’s carbon (estimated at 65,500 Pg, where 
1 Pg=1 billion metric tons) is stored in rocks, while the 
rest is present in the ocean, atmosphere, land surface 
(vegetation, soil), and fossil fuels, and include:

	§ atmosphere carbon—as CO2 and CH4 carbon gases 
is estimated at 800 Gt;

	§ ocean carbon—in the surface ocean (1,000 Gt), 
deep ocean (37,000 Gt), and reactive sediments 
(6,000 Gt); and

	§ terrestrial carbon—as plant biomass (550 Gt), soil 
(2,300 Gt), and fossil carbon (10,000 Gt). 
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Slow Carbon Cycle
The slow carbon cycle occurs at geologic timescales 
(> 1 million years), in which processes of rock 
weathering, soil formation, and sedimentation of 
carbonates in oceans move carbon among rocks, soil, 
ocean, and atmosphere. On average, 0.01–0.10 Pg 
of carbon move through the slow carbon cycle 
every year. Carbon moves from the atmosphere to 
the lithosphere (rocks) as carbonic acid in rainfall. 
The acid dissolves rocks and initiates the process 
of chemical weathering, which, along with physical 
weathering, contributes to soil formation. Chemical 
weathering releases calcium and other nutrients, 
which may be transported to the ocean and combine 
with bicarbonate ions to form calcium carbonate. 

In the oceans, calcium carbonate shells from marine 
organisms, such as corals and plankton produce 
layers of calcium carbonate that sink to the seafloor, 
which over time, are cemented together and turn 
to rock, storing the carbon in limestone, and other 
carbon-containing rocks. Organic carbon may also 
be embedded in layers of mud which, under heat and 
pressure, compress the mud and carbon over millions of 
years to form sedimentary rock such as shale. In special 
cases, when dead plant matter builds up faster than it 
can decay, layers of organic carbon become oil, coal, or 
natural gas instead of sedimentary rock like shale.

Over time, carbon eventually returns to the 
atmosphere through volcanoes, At the ocean surface, 
CO2 gas dissolves in and ventilates out of the ocean 
in a steady exchange with the atmosphere. Once in 
the ocean, the CO2 gas reacts with water to make the 
ocean more acidic, and reacts with carbonate from 
rock weathering to produce bicarbonate ions.

This complex and integrated carbon cycle system 
maintains a balance among the land-atmosphere-
ocean carbon pools that prevents excessive carbon 
accumulation in the atmosphere or excessive carbon 
stored in rocks. For example, increases in CO2 in 
the atmosphere from volcanic activity, will lead to 
rising temperatures which will result in more rainfall 
that increases the weathering of rocks, that will 
eventually deposit more carbon on the ocean floor. 
This rebalances the slow carbon cycle through 
chemical weathering over a period of a few hundred 
thousand years. This buffering of carbon behaves as a 
thermostat and helps to maintain the quantity of CO2 
in the atmosphere and keep the Earth’s temperature 
relatively stable. As Earth’s climate is intimately tied to 
atmospheric concentrations of carbon (CO2 and CH4), 
an understanding of the carbon cycle is essential for 
dealing with current climate change problems, as well 
as modelling and predicting Earth’s future carbon-
climate system.

Fast Carbon Cycle
The fast carbon cycle operates at diurnal, annual and 
decadal timescales, where carbon is exchanged between 
the land, ocean, and the atmosphere, through the 
relatively fast processes of photosynthesis and respiration 
(autotrophic and heterotrophic), fire, and land use and 
land cover change. Plants, marine biota, soil microbes, 
and human activities are the main components of the 
fast carbon cycle and 10–100 Gt of carbon move through 
this cycle every year through land and ocean uptake of 
atmosphere CO2 through photosynthesis, CO2 diffusion 
into the ocean, and the release of CO2 in respiration, 
decomposition, fire, and air-sea gas exchange.

Photosynthesis

In the process of photosynthesis, plants absorb CO2 
from the atmosphere and use sunlight to combine 
it with water to form sugar molecules (CH2O) and 
oxygen (O2; see Figure 17.2 and Section 5.2.1). The 
chemical reaction is:

CO2 + H2O + light energy = CH2O + O2

The organic compounds produced by plants are 
assimilated for building plant structures (leaves, stems, 
wood branches, trunks, and roots) and stored in biomass. 

The rate of carbon fixation by the biosphere, or total 
organic carbon produced per unit of time and over 
a defined area is termed gross primary productivity 
(GPP; see Section 7.4). GPP is the basis for food, fibre, 
and wood production, and has important implications 
for human welfare. It is the largest carbon flux 
between the terrestrial biosphere and the atmosphere 
and is a key measure of ecosystem metabolism. 

Figure 17.2  Terrestrial photosynthetic carbon cycle

Source: https://public.ornl.gov/site/gallery/

https://public.ornl.gov/site/gallery/
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Respiration

Part of the carbon fixed in photosynthesis by plants 
is returned to the atmosphere through the process of 
respiration (autotrophic respiration; see Section 5.2.2). 
The energy content of the organic carbon molecules 
is an excellent source of energy for all living things. 
Oxygen combines with sugar to release water, CO2 
and energy. The basic chemical reaction is:

CH2O + O2 = CO2 + H2O + energy

There are various mechanisms by which the 
biosphere-fixed organic carbon molecules return to 
the atmosphere, but all involve the same chemical 
reaction. Plants and phytoplankton may break 
down the sugar to get the energy they need to grow 
(autotrophic respiration). The plants or phytoplankton 
may also be consumed by higher organisms, along 
food chains, and break down the plant sugar to get 
energy (heterotrophic respiration). 

Growing season carbon processes

At seasonal to annual timescales, plants and 
phytoplankton may die and decay at the end of the 
growing season, and carbon moves from plants and 
animals to the atmosphere and soils through microbial 
decomposition and heterotrophic respiration. 
Litterfall, plant materials that fall to the ground 
(leaves, branches, flowers, and fruits), contributes to 
the buildup of the soil carbon pool. The size of the 
soil organic carbon pool will be a function of carbon 
inputs from litterfall, root exudation, and mortality, 
and the release of carbon during decomposition 
(Wang et al., 2018; Gray et al., 2015). Fire may also 
consume plants and stored carbon and release it into 
the atmosphere (see Section 18). 

The fast carbon cycle is tightly coupled between 
the atmosphere and biosphere, as can be seen 
by CO2 fluctuations in the atmosphere with the 
changing seasons. When the large land masses of 
the Northern Hemisphere green up during spring 
and summer, atmospheric CO2 decreases as carbon 
is removed from the atmosphere in the process of 
photosynthesis. This cycle peaks in August, with 
about 2 ppm of CO2 drawn out of the atmosphere. 
In the autumn and winter, many plants senesce and 
decay with GPP declining while decomposition and 
heterotrophic respiration increase, thus returning CO2 

back to the atmosphere.

Resource Constraints

Productivity is generally limited by spatially 
and temporally varying resource constraints 
(e.g. nutrients, light, water, and temperature; 
Field et al., 1995; Churkina and Running 1998; 
Nemani et al., 2003). GPP and microbial respiration 
will thus be limited by water availability in arid regions 
and by cold temperatures at very high latitudes and 
elevations. This results in spatially distributed high 
biomass, carbon rich ecosystems as well as low 
biomass areas (e.g. deserts) with low carbon contents 
over the planet in response to climatic, geologic 
(nutrient), and topographic variations. The same 
occurs in the oceans in which primary productivity 
varies along coastlines and areas of warm and cool 
ocean currents (see Volume 3B). 

Photosynthesis or primary production is essentially 
an integrator of resource availability, and according 
to the resource optimisation theory (Field et al., 1995), 
ecological processes tend to adjust plant 
characteristics over time periods of weeks or months 
to match the capacity of the environment to support 
photosynthesis and maximise growth.

Productivity terms
The net balance between photosynthesis and 
respiration is defined as net productivity of an area 
and determines whether an area is source or a sink of 
CO2 to the atmosphere (see Section 7.4). Productivity 
forms the basis of biosphere functioning and carbon, 
energy, and water budgets. There are various ways to 
express productivity, including:

	§ Net primary productivity (NPP), defined as the 
difference between GPP, or photosynthesis, and 
autotrophic respiration. Terrestrial net primary 
productivity (NPP) is the amount of carbon fixed by 
plants and accumulated as biomass (Cramer et al., 
1999). 

	§ Net ecosystem productivity (NEP) is defined as 
GPP minus ecosystem respiration (ER), which is the 
sum of autotrophic and heterotrophic respiration. 
This includes photosynthesis by plants and 
respiration from soils, and plants, including litter. 

	§ Net biome productivity (NBP) is defined as the 
overall net ecosystem carbon balance, and includes 
other processes such as deforestation, harvest, and 
fire that lead to the loss of, and changes in, carbon.
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Figure 17.3  Seasonal variations in photosynthesis (GPP) between hemispheres

Source: NASA Earth Observatory https://earthobservatory.nasa.gov/features/CarbonCycle/page3.php

https://earthobservatory.nasa.gov/features/CarbonCycle/page3.php
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Excursus 17.2�—Measuring Biosphere Productivity

Source: Alfredo Huete, University of Technology, Sydney

In Situ Methods
In situ measures of carbon stocks and productivity 
involve sampling methods that will vary with biome 
type, and can include tree inventories, litter traps, 
grassland forage estimates, destructive sampling, 
cropland harvests, and market statistics. Field 
inventory plots and plot networks have been 
established for carbon monitoring of forests at the 
national scale (FAO, 2007). The plots enable direct 
carbon measurements and systematic data collection 
of forest information over small areas of forest, 
and although they can be difficult to maintain, they 
provide valuable in situ information on carbon stocks 
over time (Chambers et al., 2009). 

Established long term experimental plots further 
enable cross-site production comparisons. Plot 
level methods generally measure above ground 
net primary production (ANPP), from which gross 
primary production (GPP) can be been estimated by 
correcting for respiratory losses (Field et al., 1995). 
Agricultural yield statistics combined with maps of 
cropland areas provide large scale ANPP estimates 
from local to national level census statistics 
(Monfreda et al., 2008; Guanter et al., 2014). These 
methods are amenable to many uncertainties due to 
differences in site-based procedures, and in some 
cases, inconsistent sampling methods over time 
at a given site (Moran et al., 2014). For example, 
established procedures for biomass clipping of grass 
sampling plots can vary in timing from either the 
peak of the growing season or the end of the growing 
season (see Moran et al., 2014).

Eddy covariance flux towers

A global network of over 500 micrometeorological 
tower sites, known as FLUXNET (see Excursus 7.2), 
provide continuous measurements of carbon and 
water flux exchanges between ecosystems and the 
atmosphere (Baldocchi, 2001). The eddy covariance 
method is used to directly measure fluxes at a 
spatial scale of hundreds of metres, by computing 
the covariance between the vertical velocity and 
target scalar mixing ratios at each tower site. 
The carbon gas flux measured is the net amount 
resulting from autotrophic and soil heterotrophic 
respiration and photosynthesis, and is termed net 
ecosystem exchange production (NEE):

NEE = GPP + Respiration

This yields information on diurnal, daily, and seasonal 
dynamics plus interannual variations of NEE of 
CO2 between the land surface and the atmosphere 
(Baldocchi et al., 2001; Verma et al., 2005). GPP is the 
residual calculated from the direct measurements 
of NEE and estimates of respiration. This generates 
valuable in situ information for validating EO‑based 
productivity products and for carbon model 
development and independent evaluation and 
assessment of their uncertainties.

Earth Observation

Over the last four decades, EO has played an 
increasingly important role in global (terrestrial 
and marine) carbon cycle studies. Satellite imaging 
sensors offer synoptic scale observations of 
ecosystem states and landscape dynamics, and 
are seen as invaluable tools to help fill the large 
spatial gaps and restrictive coverage afforded by 
in situ measurements (experimental plots and eddy 
covariance flux towers) to better constrain and 
improve the accuracies of models (see Section 10). EO 
provides much needed data and information of under-
sampled critical regions (e.g. tropical and arctic/boreal 
environments) and facilitates broadscale patterns of 
ecosystem functioning. A strategic combination of 
satellite observations and in situ data, can provide 
the dense sampling in space and time required 
to characterise the heterogeneity of ecosystem 
structure and function (Schimel et al., 2015).

As illustrated in Figure 17.4, carbon fluxes assessed 
with EO data include gross primary production (GPP), 
ecosystem respiration (ER), net primary production 
(NPP), net ecosystem production (NEP), and net 
biome production (NBP). The carbon stocks that 
are quantified by EO include above ground biomass 
(AGB), litter, and soil organic carbon (SOC).
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Figure 17.4  EO of terrestrial carbon cycle studies

Source: Xiao et al. (2019) Figure 2

17.1  Carbon Cycling in Australia
National and regional carbon budgets are important 
for providing information on spatial and temporal 
variations in carbon fluxes and stocks in response 
to climate variability, fire activity, and land use and 
land cover changes. Haverd et al. (2013) performed a 
comprehensive assessment of the terrestrial carbon 
budget for Australia over a decadal period from 1990 
to 2011. They combined a regional biogeochemical 
model (BIOS2) and a land surface model (CABLE) 
constrained by published emissions data and multiple 
types of observations, including satellite measures 
of vegetation cover, leaf area index (LAI), and burnt 
areas from AVHRR and MODIS sensors. 

The national carbon budget assessments included 
the mean, variance, and uncertainty estimates of the 
following land-atmosphere carbon flux components 
(Haverd et al., 2013): 

	§ net primary production (NPP) and net ecosystem 
production (NEP); 

	§ fires and land use change; 

	§ riverine export, dust export, and harvest (wood, 
crop and livestock); and 

	§ fossil fuel emissions (both territorial and non-
territorial).

Their findings demonstrated the Australian terrestrial 
carbon cycle is characterised by extreme variability 
in carbon uptake by vegetation, emissions from 

fires, and land use changes (see Figure 17.5). Overall, 
Australian ecosystems were absorbing carbon (NEP) 
by 80 TgC yr−1, with climate variability accounting 
for 12 TgC yr−1 and rising CO2 levels accounting for 
68 TgC yr−1. The relative contributions of the climate 
and CO2 forcings (or drivers) varied greatly across 
bioclimatic regions. In the desert areas of central 
Australia, CO2 fertilisation and very high rainfall in 
1990–2011 together generated a strong positive NEP 
response, while in the cool temperate regions the CO2 
fertilisation effect was offset by long term drought 
(1990–2011) and its negative impact on NEP. The 
response of NPP to rising CO2 also varied regionally, 
being higher for regions where gross primary 
production (GPP) was strongly influenced by high 
vapour pressure deficit (VPD). 

Moreover, the positive ecosystem gains in NEP 
(80 TgC yr−1) were partially offset by fire emissions 
(26 TgC yr−1) and land use change (18 TgC yr−1), 
resulting in a net biome productivity (NBP) of 
36 TgC yr−1. Thus, the aggregate Australian ecosystem 
net positive NBP offset averaged fossil fuel emissions 
of 95 TgC yr−1, by 38% (Haverd et al., 2013). The 
interannual variability (IAV) in the Australian carbon 
budget was dominated by interannual variability in 
ecosystem NEP, and exceeded Australia’s total fossil 
fuel carbon emissions. Lateral transport of carbon in 
rivers accounted for 0.1% of NPP, while net export of 
carbon by dust was smaller at 0.05%. 
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Figure 17.5  Australian territorial carbon budget 1990–2011

Source: Haverd et al. (2013) Figure 1

Australia has also been an active partner in 
international agreements to track global carbon 
emissions resulting from forest degradation, including 
the Reducing Emissions from Deforestation and 
Forest Degradation in Developing Countries (REDD+) 

and the UN Global Forest Observations Initiative 
(GFOI; see Section 17.9). The current EO-based 
approaches for national measurement, reporting, and 
verification within the REDD+ framework are reviewed 
by Mitchell et al. (2017).

17.2  EO Sensors for Carbon Cycling
A wide variety of satellite sensors and techniques 
have been used to quantify carbon fluxes 
(Running et al., 2004; Xiao et al., 2019) and stocks 
(Saatchi et al., 2011) at various spatial and temporal 
scales (see Table 17.1). These include sensors in 
the optical, thermal, and microwave regions of 
the electromagnetic (EM) spectrum, and include 
measures of land and ocean chlorophyll content, leaf 
area, biomass, solar-induced chlorophyll fluorescence 
(SIF), canopy height and structure, and atmosphere 
carbon gases (see Figure 17.4). This combination 
renders EO a powerful tool for studying vegetation 
productivity at local, regional, and global scales 
(Gitelson et al., 2006; Schimel et al., 2015). 

Historically, the availability of satellite observations 
since the 1970s has enabled the assessments 
of the magnitude, spatial patterns, interannual 
variability, and long term trends of carbon dynamics 
at landscape, regional, and global scales. Recent 
satellites with high resolution spectrometers, which 
can retrieve concentrations of key atmospheric 
gases (such as the Orbiting Carbon Observatory-2; 
OCO-2), are providing valuable insights into global 
variations in, and sources of, greenhouse gases (see 
Section 17.6). 
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Table 17.1  EO sensors relevant to carbon cycling 

SAR: Synthetic Aperture Radar

Type Sensor Platform Relevance Advantages Disadvantages

Passive 
optical

Multispectral 
radiometer

Satellite or 
airborne

Carbon fluxes and stocks 

Long archives, short revisit 
frequency, global coverage, 
readily available at a range 
of spatial scales

Impacted by cloud cover

Spectrometer Satellite

Terrestrial chlorophyll 
fluorescence

GPP

Drought and heat stress 
sensitivity

Unique global coverage Coarse spatial resolution

Meteorological Satellite
Atmospheric carbon and 
energy fluxes

Global coverage Coarse spatial resolution

Active 
optical

Lidar
Satellite, airborne, 
and terrestrial

Forest biomass

Fuel load 
Detailed structure for trees 
and stands

High cost, specialised 
processing

Active 
microwave

SAR
Satellite or 
airborne

Biomass

Forest disturbance
All weather, available since 
early 1990s

Medium-coarse 
resolution

Proximal

Passive optical 
sensors (phenocam, 
hyperspectral); 
meteorological 
sensors

Ground and 
tower-based (see 
Excursus 7.2 and 
Volume 2D—
Section 12)

Ecosystem and atmospheric 
variability

Carbon dynamics

Phenology

Continuous, long term 
measurements

High cost, high data 
volume, require skilled 
maintenance

17.3  Biosphere productivity
Vegetation productivity is directly related to the 
interaction of solar radiation with the plant canopy 
(see Section 7.4). As plants and phytoplankton grow, 
the productivity gain resulting from their conversion 
of CO2 into biomass through photosynthesis, can be 
quantified with EO approaches involving vegetation 
indices (VIs), solar-induced chlorophyll fluorescence 
(SIF), and light use efficiency (LUE) models. Spectral 
measures of vegetation growth include vegetation 
and chlorophyll indices, LAI and fractional vegetation 
cover (see Section 8). VIs are the most empirical 
spectral measure of productivity, however, they 
do not measure photosynthesis fluxes directly. EO 
complements the detailed information available 
from in situ sensors, such as from flux tower sites 
(see Excursus 7.2), through broad spatial-temporal 
coverage and extension, and further enables 
intercomparisons of vegetation across space and time 
(see Volume 2D). 

Monteith and Unsworth (1990) noted that spectral 
VIs can legitimately be used to estimate the rate of 
processes that depend on absorbed light, such as 
photosynthesis. EO-based estimates of Gross Primary 
Productivity (GPP) have been implemented at global 
scales, based on the LUE equation that defines the 
amount of carbon fixed through photosynthesis as 
proportional to the solar energy absorbed by green 
vegetation multiplied by the efficiency with which the 
absorbed light is used in carbon fixation:

GPP = εpar � APAR = εpar � fAPAR � PAR

where

εpar is the efficiency of conversion of absorbed 
light into above ground biomass (AGB), or LUE; 

PAR is the photosynthetically active radiation; 
APAR is the absorbed PAR integrated over a time 

period; and 
fAPAR is the fraction of APAR to the PAR 

available. 

Monteith (1972) suggested that productivity of 
stress-free annual crops would be linearly related to 
vegetation absorbed PAR. 

Asrar et al. (1984) showed the Normalised Difference 
Vegetation Index (NDVI; see Section 8.1.1) was 
linearly related with vegetation absorption of light 
energy, APAR, and thereby related to productivity 
through the potential capacity of vegetation to 
absorb light for photosynthesis (see Figure 17.6). 
The linear relationship between NDVI and fAPAR 
has been documented through field measurements 
(Fensholt et al., 2004) and theoretical analyses 
(Sellers, 1985; Goward and Huemmrich, 1992; Myneni 
and Williams, 1994), although these relationships 
were not universal, and appeared to be unique to 
vegetation type, structure, soil optics. EO products, 
such as NDVI, were then used to map GPP globally, 
providing estimates of GPP that approximated eddy 
covariance (EC) estimates (Schimel et al., 2015).
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Figure 17.6  NDVI-APAR relationship

A linear relationship exists between NDVI and vegetation 
absorption of light energy (APAR) or fraction of APAR across 
multiple cropland and biome sites in Africa.

Source: Fensholt et al. (2004) Figure 10

17.3.1  Relationships between EO and flux 
tower GPP estimates
The advent of global, flux tower networks (see 
Excursus 7.2) has provided the opportunity to validate 
remotely sensed retrievals of productivity with in 
situ GPP estimates derived from the tower flux 
measures of net ecosystem exchange (NEE). This 
has been useful for validating EO spectral measures 
and carbon models, and to cross-calibrate EO-based 
methods. With the measurement footprint of flux 
towers at least partially overlapping the pixel size of 
daily return satellites (e.g. 250 m for MODIS), EO can 
simplify the upscaling of ecosystem processes, such 
as photosynthesis, from the network of flux towers 
to larger landscape units and to regional scales. 
Today, the integration of independently derived tower 
measured carbon fluxes with satellite data is the 
focus of many investigations across many ecosystems 
(Glenn et al., 2008). 

Several studies have suggested that EO products, 
such as VIs, are able to estimate GPP with relatively 
good accuracy, thus potentially simplifying carbon 
balance models and offering opportunities for region-
wide upscaling of carbon fluxes (Glenn et al., 2008). 
As top-of canopy measurements, flux towers do 
not require knowledge of LAI or details of canopy 
architecture to estimate fluxes facilitating their 
comparisons with satellite spectral index measures 
that similarly involve community properties resulting 
from integrative, top-of-canopy radiation interactions. 

Rahman et al. (2005) initially reported that the 
Enhanced Vegetation Index (EVI; see Section 8.1.1) 
provided reasonably accurate estimates of GPP 
across a wide range of North American ecosystems. 
The strength of the linear relationships between 
EVI and tower GPP in temperate forests was 
greater in seasonally contrasting deciduous forests 
compared with more aseasonal evergreen forests 
(Rahman et al., 2005; Sims et al., 2006). Strong 
correlations between EVI and GPP were reported 
across Northern Europe (Olofsson et al., 2008), 
across African tropical savanna ecosystems 
(Sjostrom et al., 2011), and in dry to humid tropical 
forest sites in Southeast Asia and the Amazon 
(Xiao et al., 2005; Huete et al., 2006, 2008). 
Ma et al. (2013) observed good convergences 
between MODIS EVI and tower GPP across mesic and 
xeric tropical savannas in northern Australia. 

The relationships between EVI and tower GPP are 
partly a result of fairly good correlations between LUE 
and EVI that make an independent estimate of LUE 
less necessary. Sims et al. (2006) reported that LUE 
derived from nine flux towers in North America was 
well-correlated with EVI (r2=0.76), while Wu et al. (2011) 
reported moderate correlation between EVI and tower 
LUE in temperate and boreal forest ecosystems in North 
America. Further, the 16-day averaging period removes 
much of the influences of short term fluctuations in 
solar radiation and other environmental parameters, 
thereby minimising the need for climatic drivers.

Sims et al. (2006) further noted that when data from 
the winter period of inactive photosynthesis was 
excluded by use of land surface temperature (LST) 
observations below 0°, the EVI-tower GPP relationship 
improved. This demonstrates a limitation of spectrally-
based satellite products for GPP estimations, in that 
spectral measurements record evergreen coniferous 
forests to remain ‘green’, even when temperatures 
inhibit photosynthesis (GPP). 

Distinct differences in VI relationships with tower 
GPP were found between phenology-driven and 
meteorologically-driven Australian ecosystems. 
Restrepo-Coupe et al. (2016) found that in primarily 
meteorologically-driven (e.g. PAR, temperature, 
and/or precipitation) and relatively aseasonal 
ecosystems, there were no statistically significant 
relationships between GPP and MODIS vegetation 
products (LAI, fAPAR, VIs). The poor correlations 
were observed where meteorology and phenology 
were asynchronous (e.g. Mediterranean ecosystems). 
On the other hand, in phenology-driven ecosystems, 
changes in the vegetation status can be well-
represented by VIs, and highly correlated VI-GPP 
relationships can be found in locations where key 
meteorological variables and vegetation phenology 
were synchronous.
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The validation of satellite-based productivity 
products remains challenging due to a variety of 
spatial and temporal scaling issues. These include 
the matching of large satellite pixels (~1 km) with field 
plot scale measurements in both time and space. 
Li et al. (2007) demonstrated limitations associated 
with disparate footprints between satellite and tower 
flux measurements and the need for Landsat spatial 
resolutions for flux footprint matching, particularly 
in non-forested canopies. However, tower data of 
fluxes potentially offer much more than simply 
validating and/or calibrating EO products and 
models. An understanding of why satellite–flux tower 
relationships hold, or do not hold, will greatly advance 
and contribute to our comprehension of the carbon 
cycle mechanisms and scaling factors at play.

17.3.2  Solar-induced chlorophyll 
fluorescence (SIF) as proxy for GPP
More recent capabilities to measure solar-induced 
chlorophyll fluorescence (SIF) from airborne and 
space-based platforms now provides a more direct 
approach for estimating GPP (Frankenberg et al., 2011; 
Joiner et al., 2011). The PAR absorbed by chlorophyll 
in leaves is used to drive photosynthesis, but some 
radiation is also dissipated as heat or emitted back 
into the atmosphere at longer wavelengths  
(650–850 nm; see Volume 1A—Section 5). This 
re-emitted red and near infrared (NIR) light from 
illuminated plants as a by-product of photosynthesis, 
or SIF, has been found to strongly correlate with 
GPP (Baker, 2008; Meroni et al., 2009). Chlorophyll 
fluorescence may be conceptualised as:

SIF = εf × PAR × fAPAR

where εf is the fAPAR photons that are re-emitted 
from the canopy as SIF photons, or yield of 
fluorescence photons. 

SIF data provide information on both the light 
absorbed and the efficiency with which it is being 
used for photosynthesis. It is an independent 
measurement, linked to chlorophyll absorption, 
providing unique information on photosynthesis 
relative to VIs. The SIF expression can be combined 
with the GPP-based LUE equation to yield: 

Empirical studies at the leaf and canopy scale 
indicate that the two LUE terms tend to covary 
under the conditions of the satellite measurement 
(Flexas et al., 2002). SIF is seen as one way to increase 
the effective remotely sensed temporal resolution 
of vegetation photosynthesis, with near real time 
capabilities. SIF has been found to be more dynamic 
than greenness measures, and respond more quickly 
to environmental stress, through both change in 
stress-induced LUE and canopy light absorption 
(Porcar-Castell et al., 2014: Schimel et al., 2015). 
Vegetation indices, on the other hand, sense long and 
medium term changes (weeks to months) in canopy 
chlorophyll, related to canopy stress, phenology, 
and photosynthetic capacity of the vegetation 
(Glenn et al., 2008). 

As SIF responds to both incoming radiation and 
fluorescence yield, one may also normalise SIF by 
PAR (SIF/ PAR) to better relate SIF signals to canopy 
properties (Shen et al., 2020). Shen et al. (2020) 
also combined SIF and EVI, as measure of SIF per 
unit greenness. Current sensors with capabilities 
to measure SIF include, NASA’s Orbiting Carbon 
Observatory-2 (OCO-2) satellite, the Global Ozone 
Monitoring Instrument (GOME-2), and the more recent 
TROPOspheric Monitoring Instrument (TROPOMI) on 
board the Copernicus Sentinel-5.

17.4  Net Primary Productivity 

17.4.1  VIs as proxies for ANPP
Vegetation indices (VIs) may be more appropriate 
measures of net primary productivity, NPP, the 
balance between GPP and plant autotrophic 
respiration, that is, VIs measure the vegetation 
remaining after respiration (Ra): 

NPP = GPP – Ra

At short timescales, plants respond to the dynamics 
of environmental variables through stomatal closure 
and other diurnal adjustments that cannot be easily 
sensed by satellite-derived VIs and other LAI, 
fAPAR, or fractional cover products (see Section 8). 

Variations in GPP and LUE are likely to be significant 
over shorter, daily time frames when water or 
temperature stress develops. At moderate to longer 
(e.g. weekly to monthly) timescales, plants tend to 
increase leaf foliage under favorable environments as 
an investment of resources into their photosynthetic 
apparatus, and reduce leaf foliage under stress 
when leaves are expensive to produce and maintain. 
Thus, at longer timescales, there is a convergence of 
satellite greenness vegetation signals with biologic 
and structural canopy properties (Glenn et al., 2008). 
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Several studies have suggested that ecosystem 
NPP can be captured with an annual VI integral, 
that integrates growing season production through 
VI relationships with APAR. Goward et al. (1985) 
found good relationships between above ground 
NPP (ANPP) and integrated NDVI from AVHRR, over 
annual growing periods of North American biomes. 
Wang et al. (2004) found that the NDVI integral over 
the early growing season was strongly correlated to 
in situ forest measurements of diameter increase and 
tree ring width in the U.S. central Great Plains. 

The integrated Enhanced Vegetation Index (iEVI) 
was also found to be a good proxy of ANPP. Ponce-
Campos et al. (2013) compiled in situ field measures 
of ANPP over a range of North American and 
Australian biomes, and found iEVI to be an effective 
surrogate to estimate ANPP:

ANPP = 51.42 × iEVI × 1.15

where a log–log relation accounted for the uneven 
distribution of ANPP estimates over time. 

The annual integrated VI offers a robust 
approximation of vegetation productivity, because, in 
general, VIs provide both a measure of the capacity 
to absorb light energy, as well as reflect recent 
environmental stress acting on the canopy, with stress 
forcings showing up as reductions in VI expressed 
as either less chlorophyll and/or less foliage 
(Running et al., 2004). 

17.4.2  Ecosystem respiration
Whereas optical EO data acquired in the visible, 
NIR, and short wave infrared (SWIR) wavelengths 
are used to determine ecosystem fluxes, GPP, and 
NPP, ecosystem respiration (ER) is more commonly 
measured using LST observations from thermal 
infrared (TIR) wavelengths (Rahman et al., 2005; see 
Volume 1B—Section 7). ER is a combined measure 
of autotrophic and heterotrophic respiration and is 
a large carbon flux from the Earth’s surface to the 
atmosphere. 

Since the main controlling factor of microbial activity 
is air and surface (soil, water) temperature, using 
remotely sensed measurements of land surface 
temperature (LST) has the potential to provide 
information on the spatial and temporal estimates 
or retrievals of ER. Rahman et al. (2005) found a 
strong correlation between MODIS-derived LST 
and EC tower-derived ER over North American 
sites (especially forests), and Schubert et al. (2012) 
found good relationships over peat lands in Sweden. 
Others have combined LST with either EVI or a 
water index in order to obtain better estimates of 
GPP or NEE, which were then used to derive ER. For 

example, MODIS LST was combined with EVI in a 
modified Temperature-Greenness (T-G) model (Sims 
et al., 2008; see Section 17.5.3) to investigate ER in 
insect-infested forests (Moore et al., 2013). Tang et al. 
(2011) combined MODIS LST with a water index 
to model ER in a mixed temperate forest. Kimball 
et al. (2009) used LST derived from the Advanced 
Microwave Scanning Radiometer for EOS (AMSR-E) 
sensor and found it to be an effective surrogate for 
soil respiration (heterotrophic respiration and root 
respiration) across a broad range of boreal forest, 
grassland, and tundra sites in the boreal and arctic 
biomes. Methods to constrain ER estimates with other 
drivers, such as soil moisture, vegetation production, 
or nutrient limitations will further improve EO-based 
estimates of ER (Jagermeyr et al., 2014).

17.4.3  Net ecosystem productivity and net 
biome productivity
Net ecosystem productivity (NEP) and net biome 
productivity (NBP) both estimate net ecosystem 
carbon uptake/release. The fluxes contributing to NEP 
are GPP and autotrophic (Ra) and heterotrophic (Rh) 
respiration, while NBP is mainly determined by NEP 
minus the loss of carbon by processes such as fire 
and harvest: 

NEP = GPP – Ra – Rh

NBP = NEP – fire – harvest

The recent availability of column CO2 concentration 
retrievals from newly launched satellites has made 
it feasible to quantify NEP and NBP from satellite 
observations. These satellites use high resolution 
spectrometers to measure the intensity of sunlight, at 
different wavelengths, for retrievals of columnar CO2 
and CH4 concentrations. For example, NASA’s OCO-2 
(launched in 2014) provides comprehensive, global 
measurements of CO2 in the atmosphere, including 
seasonal fluctuations of the greenhouse gas and 
their spatial sources and sinks. This enables a better 
understanding of how ecosystems absorb and release 
CO2, both seasonally and across years in response 
to interannual climate variability. Basu et al. (2013) 
estimated the global distribution of CO2 fluxes 
using column CO2 measurements from the GOSAT 
instrument. Inversions of satellite CO2 observations 
provide useful constraints on terrestrial carbon sinks 
and sources.

17.4.4  Growing season phenology
Numerous efforts have been made to improve 
upon the characterisation of the plant growing, 
or productivity, season at regional scales using 
satellite-based phenology models (see Section 9.3). 
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The phenological life cycles of plant species 
and communities have large effects on their 
rates of photosynthesis and annual productivity 
(Tucker et al., 1986) and VIs are able to provide 
seasonal and annual growing season metrics of 
plant productivity (see Section 8.1). Phenological 
factors such as leaf age and life expectancy play 
important roles in productivity (Wilson et al., 2001) 
with some vegetation production models explicitly 
incorporating phenophase periods, such as bud 
burst to full leaf expansion, and full expansion to 
dormancy (Xiao et al., 2004). LST satellite data and/
or meteorological air temperature data (Ta) are also 
used to identify biologically inactive seasonal periods, 
for example, masking cold temperature time intervals 
from the VI integrals.

Generally, in situ measures of productivity are 
made at discrete times within the growing season 
and there is a need to synchronise the satellite 
measurements with scheduled or variable destructive 
or harvesting sampling dates to reduce in situ ANPP-
VI uncertainties. Often it is difficult to predict and 
sample at peak productivity and greenness periods. 
Continuous VI growing season productivity profiles 
allow one to better synchronise VI temporal values 
with actual in situ sampling periods. For example, 
Moran et al. (2014) found significant improvements 
in productivity–iEVI relationships across a range 
of grassland sites, when the EVI was only partially 
integrated from the beginning to the peak of the 
growing season period (rather than the full season). 
This was due to the synchronisation of time periods 
to peak biomass periods when grassland ANPP 
destructive sampling is typically conducted (see 
Section 5.1.2). In such cases, EO data provides better 
temporal stability and opportunities to reduce 
productivity uncertainties.

17.4.5  Photochemical Reflectance Index 
The Photochemical Reflectance Index (PRI; 
Gamon et al., 1997; see Section 8.1.2) derived from 
tower-based spectral measurements and MODIS 
data (Middleton et al., 2018) provides a scaled LUE 
measure based on light absorption processes by 
carotenoids (see Section 4.3 and Excursus 4.1), which 
has been shown to be a good proxy for LUE: 

The potential of PRI as an EO-based proxy for LUE 
has been demonstrated (Goerner et al., 2009). The 
spectral variations at 531 nm are associated with 
dissipation of excess light energy by xanthophyll 
pigments (a major carotenoid group of yellow 
pigments; see Section 4.3) in order to protect the 
photosynthetic leaf apparatus. Carotenoids function in 
light absorption in plants as well as protecting plants 
from the harmful effects of high light conditions, 
hence lower carotenoid/chlorophyll ratios, indicate 
lower physiological stress. However, the PRI has also 
been shown to be very sensitive to canopy structure, 
gap fraction, background, viewing angle, and LAI, 
which complicates the association between PRI and 
LUE (Middleton et al., 2018). In addition, although the 
short term variation in leaf level PRI appears indeed 
to be controlled by non-photochemical quenching 
(NPQ), the seasonal variation in leaf level PRI seems 
to be controlled by the slow changes in pigment pools 
rather than NPQ. The mechanistic link between the 
PRI and LUE appears to be highly dependent on scale 
and remains to be fully elucidated.

17.5  Carbon Models
There are many empirical, diagnostic, and process-
based models that have been developed over 
the past few decades to quantify land and ocean 
productivity, with many of these methods integrating 
independently derived carbon flux measurements 
from satellite data, EC tower fluxes, and field 
measurements (see Excursus 17.2). Estimates of daily 
GPP and annual NPP are now routinely produced 
operationally over the global terrestrial surface at 
1 km spatial resolution through production efficiency 
models (PEM) with near real time satellite data inputs 
from MODIS (Turner et al., 2006; see Section 10.2.3).

EO–based modelling approaches focus on the fAPAR 
term (see Section 6.3.4), which is derived through 
spectral VI relationships (Asrar et al., 1984; Sellers, 1985; 
Goward and Huemmrich, 1992; see Section 8.1.4). The 

fundamental basis for these models is the LUE equation 
that defines the amount of carbon fixed through 
photosynthesis (GPP), as proportional to the PAR from 
solar energy that is absorbed by vegetation multiplied 
by the efficiency with which the absorbed light is used 
in carbon fixation (see Sections 7.4 and 17.3):

GPP = εpar × APAR = εpar × fAPAR × PAR

This simple LUE-based productivity equation 
comprises a large amount of biological complexity, 
resulting in numerous productivity modelling 
approaches that tend to emphasise either the fAPAR 
equation term or LUE (ε). The LUE approach has 
been one of the most important methods to map GPP 
and NPP regionally or globally (Potter et al., 1993; 
Running et al., 2004).
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17.5.1  EO-based LUE models 
The LUE concept has been widely adopted by the 
EO community to assess and extrapolate carbon 
processes through knowledge of two conversion 
coefficients: 

	§ fAPAR (see Section 6.3.4); and 

	§ LUE or ε (see Section 7.4). 

EO data play a significant role in the LUE approach 
by providing information on vegetation type, growth 
status, and environmental conditions. fAPAR is 
readily estimated using remotely sensed 'greenness' 
measures (see Section 8.1.1), or through satellite 
MODIS-FPAR products (Zhao et al., 2005). Longer 
term GLASS-FAPAR products (Xiao et al., 2015) 
extend the temporal coverage of FAPAR back to 1982 
and can potentially lead to long term GPP estimates. 

LUE (ε) however is very difficult to measure 
as it dynamically varies with plant functional 
type, vegetation phenophase, and different 
environmental stress conditions (Ruimy et al., 1995; 
Turner et al., 2004; Sims et al., 2006; 
Jenkins et al., 2007). As a result, there are scarce 
measurements of LUE available, particularly at 
the landscape scale, and potential or maximum 
LUE values have only been specified for a limited 
set of biome types, with these values down-
regulated by environmental stress scalars derived 
from meteorological inputs (Zhao et al., 2005; 
Heinsch et al., 2006). 

EO also provides measures of two other inputs of 
LUE models, namely water stress (Jones et al., 2017) 
and incident radiation (Zhang et al., 2014), as well 
as spatially explicit information on land cover type 
(Friedl et al., 2010) that determines maximum LUE and 
other model parameters.

17.5.2  Greenness and radiation (G-R) 
models
The fraction of PAR absorbed by chlorophyll 
throughout the canopy (fAPARchl) could lead to more 
accurate cropland GPP estimates than the MODIS-
FPAR (Zhang et al., 2014). VIs are commonly used, but 
chlorophyll indices can also be coupled with measures 
of light energy, PAR, to provide robust estimates of 
GPP. Canopy level chlorophyll represents a community 
property that is most relevant in quantifying the 
amount of absorbed radiation used for productivity. 
Gitelson et al. (2006) showed that for the same LAI 
amount, the chlorophyll content during the green-up 
stage might be more than two times higher than the 
chlorophyll content in leaves in the reproductive and 
senescence stages: 

GPP = VIchl × PARtoc

where

PARtoc is the top-of-canopy measured PAR 
(MJ m−2 day−1); and 

VIchl is a chlorophyll-related spectral index.

Peng et al. (2013) described two types of chlorophyll 
spectral indices:

	§ commonly used VIs, such as EVI and the Wide 
Dynamic Range Vegetation Index (WDRVI), which 
indirectly indicate total chlorophyll content through 
‘greenness’ estimates; and 

	§ chlorophyll indices, such as the MERIS Terrestrial 
Chlorophyll Index (MTCI), which directly represent 
the leaf chlorophyll content. 

The WDRVI equation is: 

where a is a weighing coefficient with value between 
0.1 and 0.2 (Gitelson, 2004; Gitelson et al., 2006).

MTCI is the ratio of the difference in reflectance 
between an NIR and red edge band and the difference 
in reflectance between red edge and red band as:

where r753.75, r708.75, and r681.25 are reflectances in the 
centre wavelengths of the MERIS narrow-band channel 
settings (Dash and Curran, 2004). In the Greenness 
and Radiation (G-R) model, both fAPAR and LUE 
are driven by total chlorophyll content with strong 
correlations between GPP/PAR and canopy chlorophyll 
content (Gitelson et al., 2006; Peng et al., 2011).

Ma et al. (2014) found significant improvements in the 
use of G-R models, relative to EVI alone, for predicting 
tower GPP, demonstrating the importance of this 
quantity as a critical driver of savanna vegetation 
productivity (Whitley et al., 2011; Kanniah et al., 2013a). 
The G-R model has been successfully applied in 
estimating GPP in natural ecosystems (Sjostrom 
et al., 2011; Wu et al., 2011, 2014) and croplands, 
including maize, soybeans, and wheat (Wu et al., 2010; 
Peng et al., 2011).

Two definitions of LUE become apparent in G-R 
models, with this term either defined as the 
ratio of GPP to APAR, or the ratio of GPP to PAR 
(Gower et al., 1999), with the latter sometimes referred 
to as ecosystem-LUE or eLUE:
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An advantage of using chlorophyll-based VIs in G-R 
models is that the biological drivers of photosynthesis, 
fAPAR and ε resulting from environmental stress and 
leaf age phenology, are combined into eLUE, thereby 
simplifying EO-based productivity estimates.

Other measures of PAR that have been used 
include ‘potential’ PAR, or maximal clear-sky PAR 
(PARpotential ; Peng et al., 2013; Rossini et al., 2015) 
and top-of-atmosphere PAR (PARtoa ). PARpotential can 
be calibrated from long term PARtoc measurements 
or modelled using an atmosphere radiative 
transfer code (Kotchenova and Vermote, 2007). 
Gitelson et al. (2014) found an improved performance 
of PARpotential relative to PARtoc noting that decreases in 
PARtoc during the day do not always imply a decrease 
in GPP. Further, Kanniah et al. (2013) showed that 
the negative forcings of wet season cloud cover over 
Australian tropical savannas were partly compensated 
by enhanced LUE resulting from a greater proportion 
of diffuse radiation. Ma et al. (2014) found that 
coupling of EVI with PARtoa better predicted GPP than 
coupling EVI with PARtoc and attributed this to tower 
sensor-based measurement uncertainties of PARtoc , 
as well as better approximations of meteorological 
controls on GPP by PARtoa.

17.5.3  Temperature-Greenness (T-G) model
Although potentially useful in certain cases, the 
simple VI ‘greenness’ model—defined as the 
straightforward relationship between VIs and 
GPP—exhibits various limitations due to its inability 
to always recognise between-growth and inactive-
growth periods, in which spectral ‘greenness’ may 
show little change. These inactive periods are 
associated with evergreen vegetation in winter 
months with low temperatures, as well as evergreen 
vegetation growing in Mediterranean climates in 
which high temperature, vapor pressure deficit, 
and soil drought limit growth (Sims et al., 2008; 
Vickers et al., 2012).

For these reasons, Sims et al. (2008) introduced 
the temperature and greenness (T-G) model, using 
combined daytime LST and EVI products from MODIS. 
They found the T-G model substantially improved the 
correlation between predicted and measured GPP at 
11 EC flux tower sites across North American biomes 
compared with the MODIS GPP product or MODIS 
EVI alone, while keeping the model based entirely on 
remotely sensed variables without any ground-based 
meteorological inputs (Sims et al., 2008). The T-G 
model may be described as follows:

where

LSTscaled sets GPP to zero when LST is less than 
zero, and defines the inactive winter period; 

EVIscaled adjusts EVI values to a zero baseline value 
in which GPP is known to be zero; 

m is a scalar that varies between deciduous and 
evergreen sites, with units of mol C m−2 day−1; 
and

LSTscaled also accounts for low temperature 
limitations to photosynthesis when LST is 
between 0°C and 30°C, and accounts for high 
temperature and high VPD stress in sites that 
exceed LST values of 30°C (Sims et al., 2008; 
see Figure 17.7).

LST is closely related to VPD and thus can provide 
a measure of drought stress, consistent with 
the BIOME-BGC model, where temperature and 
VPD are used as scalars directly modifying LUE 
(Running et al., 2004). LST is a useful measure of 
physiological activity of the upper canopy leaves, 
provided that leaf cover is high enough that LST is 
not significantly affected by soil surface temperature. 
Thus, the T-G model has been found less useful in 
sparsely vegetated ecosystems (e.g. shrublands) 
where soil surface temperatures significantly 
influence derived LST values, rendering them 
less useful as indicators of plant physiology. As 
an example, Ma et al. (2014) found coupling EVI 
with LST showed no improvements in predicting 
savanna GPP compared with using EVI alone over 
the relatively open tropical savannas in northern 
Australia, with appreciable soil exposure. This may 
also be due to temperature not being a limiting factor 
or significant driver of photosynthesis in tropical 
savannas (Leuning et al., 2005; Cleverly et al., 2013; 
Kanniah et al., 2013).
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Figure 17.7  Combined temperature-greenness model 

GPP is enhanced by increasing temperatures up to 30ºC. Solid line is scaled LST from the T-G model.

Source: Sims et al. (2008) Figure 2

17.5.4  Carbon modelling
Modelling of carbon, water, and energy fluxes 
between terrestrial surfaces and the atmosphere are 
increasingly important for hydrological and climate 
studies. Ecophysiological information relating to 
photosynthetic activity, biomass, productivity, water 
content, phenology, soil moisture, and nutrient status 
may be acquired and analysed consistently and 
repeatedly over large areas.

The BIOME-BGC (BioGeochemical Cycles) model 
calculates daily GPP as a function of incoming solar 
radiation, conversion coefficients, and environmental 
stresses (Running et al., 2004). This was implemented 
as the first operational standard satellite product for 
MODIS (MOD17), providing global estimates of GPP, 
expressed as follows:

GPP = εmax × 0.45 × SWrad × fAPAR × f(VPD)  
× f(Tmin)

where 

εmax is the maximum LUE (g C MJ−1) obtained from 
a biome properties lookup table (BPLUT); 

SWrad is shortwave downward solar radiation 
(MJ−1  day−1), of which 45% is assumed to be 
PAR; 

f(VPD) and f(Tmin) are vapor pressure deficit and 
air temperature reduction scalars for the biome 
specific εmax values; and

fAPAR is directly input from the MODIS-FPAR 
(MOD15) product (Running et al., 2004; 
Zhao et al., 2005). 

MODIS-FPAR retrievals are physically-based and use 
biome specific lookup tables generated using a three-
dimensional radiative transfer model (Myneni et al., 
2002).

The reduction scalars encompass LUE variability 
resulting from water stress (high daily VPD) and 
low temperatures (low daily minimum temperature, 
Tmin; Running et al., 2004). The MODIS GPP product is 
directly linked to EO and weather forecast products and 
can provide near real time information on productivity 
and the influence of anomalies such as droughts. A 
consistent forcing meteorology is based upon the 
NCEP/NCAR (National Centres for Environmental 
Prediction/National Centre for Atmospheric Research) 
Reanalysis II datasets (see Figure 17.8).
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Figure 17.8  MODIS NPP product based on BIOME-BGC model 

Global mean annual NPP (g C m−2 year−1) over the period 2000–2015 based on the MODIS GPP/NPP product.

Source: Steven W. Running, NTGS (see http://www.ntsg.umt.edu/project/modis/default.php)

Using these satellite products, Zhao and 
Running (2010) found that global NPP declined 
slightly by 0.55 Pg C due to drought from 2000 to 
2009. Ichii et al. (2007) used the BIOME-BGC model 
to simulate seasonal variations in GPP for different 
rooting depths, 1–10 m, over Amazon forests, then 
determine which rooting depths best estimated GPP 
to be consistent with satellite-based EVI. They were 
subsequently able to map rooting depths at regional 
scales and improve the assessments of carbon, water, 
and energy cycles in tropical forests.

The utility and accuracy of MODIS GPP/NPP 
products have been validated in various FLUXNET 
studies (see Excursus 7.2), which have also 
demonstrated the value of independent tower flux 
measurements to better understand the satellite-
based GPP/NPP products (Leuning et al., 2005; 
Zhao et al., 2005, 2006; Turner et al., 2006). These 
studies highlight the capabilities of MODIS GPP to 
correctly predict observed fluxes at tower sites, but 
also draw attention to some of the uncertainties 
associated with use of coarse resolution and 
interpolated meteorology inputs, uncertainties with 
the LUT-based values, noise and uncertainties in the 
satellite fAPAR inputs, and difficulties in constraining 
the LUE term (Zhao et al., 2005; Heinsch et al., 2006; 
Yuan et al., 2010). Since meteorological inputs are 
often not available at sufficiently detailed temporal 
and spatial scales, they can introduce substantial 
errors into the carbon exchange estimates.

Turner et al. (2006) concluded that although the 
MODIS NPP/GPP products are generally responsive to 
spatial–temporal trends associated with climate, land 
cover, and land use, they tend to overestimate GPP 
at low productivity sites and underestimate GPP at 
high productivity sites. Similarly, Sjostrom et al. (2011) 
found that although MODIS GPP described 
seasonality at 12 African flux tower sites quite well, 
it tended to underestimate tower GPP at the dry 
sites in the Sahel region due to uncertainties in 
the meteorological and fAPAR input data and the 
underestimation of εmax. Jin et al. (2013) reported the 
MODIS GPP product to substantially underestimate 
tower GPP during the greening up phase at a woodland 
savanna site in Botswana, while overestimating tower-
GPP during the browning down phase.

Some studies have found that when properly 
parameterised with site level meteorological 
measurements, MODIS GPP becomes more 
closely aligned with flux tower derived GPP 
(Turner et al., 2003; Kanniah et al., 2009). 
Kanniah et al. (2011), however, found that utilizing site-
based meteorology could only improve GPP estimates 
during the wet season over northern Australian 
savannas, and suggested the MODIS GPP product has 
a systematic limitation in the estimation of savanna 
GPP in arid and semi-arid areas due to the lack of the 
representation of soil moisture. Sjostrom et al. (2011) 
also found soil moisture information to be quite 
important for accurate GPP estimates in drier African 
savannas.

http://www.ntsg.umt.edu/project/modis/default.php
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17.5.5  Vegetation Photosynthesis Model (VPM)
Xiao et al. (2004) developed a mostly satellite-
based vegetation photosynthesis model (VPM) that 
estimates GPP using satellite inputs of EVI and the 
land surface water index (LSWI):

GPP = ε � fAPARchl � PARtoc

ε = εmax � Tscalar � Wscalar � Pscalar

where 

fAPARchl is estimated as a linear function of EVI; 
PARtoc is measured at the site; 
Tscalar, Wscalar, and Pscalar are scalars for the effects 

of temperature, water, and leaf phenology on 
vegetation, respectively (see Figure 17.9); 

Tscalar is based on air temperature and uses 
minimum, maximum, and optimum temperature 
for photosynthesis at each time step; and

Wscalar is based on satellite-derived LSWI that 
accounts for the effect of water stress on 
photosynthesis:

where 

rswir is the reflectance in a broadband SWIR band 
(e.g., MODIS, 1580–1750 nm); and

LSWImax is the maximum value for the growing 
season.

Pscalar accounts for the effect of leaf age on 
photosynthesis and is dependent on the 
growing season life expectancy of the leaves 
(Wilson et al., 2001). Pscalar is calculated over two 
phenophases as:

from bud burst to full leaf expansion, and Pscalar=1, 
after full expansion (Xiao et al., 2004).

Figure 17.9  Primarily Satellite-based Vegetation Photosynthesis and Respiration Model (VPRM)

LSWI: Land Surface Water Index; EVI: Enhanced Vegetation Index; Gross Ecosystem Exchange (GEE): light-dependent part of Net 
Ecosystem Exchange (NEE); Respiration (R): light-independent part of NEE; FAPARPAV: fraction of incident light absorbed by the 
photosynthetically active vegetation in the canopy; Tscale, Pscale, and Wscale: scalars for temperature, leaf phenology, and canopy water 
content, respectively; l, PAR0, a, and b: four model parameters, one set per vegetation type.

Source: Mahadevan et al. (2008)
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The VPM model has been applied to both MODIS 
and SPOT-4 VEGETATION sensor data to produce 
tower-calibrated estimates of GPP across a wide 
range of biomes, including evergreen and deciduous 
forests, grasslands, and shrub sites in temperate 
North America and in seasonally moist tropical 
evergreen forests in the Amazon (Xiao et al., 2005; 
Mahadevan et al., 2008; Jin et al., 2013). 

Mahadevan et al. (2008) further developed the 
vegetation photosynthesis and respiration model 
(VPRM), a satellite-based assimilation scheme that 
estimates hourly values of NEE using EVI, LSWI, and 
high-resolution meteorology observations of sunlight 
and air temperature (see Figure 17.9). NEE represents 

the difference between uptake (photosynthesis) and 
loss (respiration) processes that vary over a wide 
range of timescales. The VPRM model provides fine-
grained fields of surface CO2 fluxes for application 
in inverse models at continental and smaller scales. 
This capability is presently limited by the number of 
vegetation classes for which NEE can be constrained 
using EC tower flux data. 

Another popular LUE model for quantifying GPP or 
NPP, which has incorporated satellite products, is the 
Carnegie Ames Stanford Approach (CASA) Biosphere 
model (Potter et al., 1993). CASA has been widely 
used to simulate carbon dynamics at regional to 
global scales using NDVI and EVI inputs.

17.6  Anthropogenic carbon emissions
Human activity is significantly altering the global 
cycling of carbon through the burning of fossil fuels 
and land cover modifications (including fires—see 
Section 18), all of which result in more carbon 
accumulating in the atmosphere. The burning of 
fossil carbon fuels from coal, oil, and natural gas 
currently releases over 8 Gt of carbon annually into 
the atmosphere, representing the primary source 
of increased atmospheric CO2 (see Figure 17.10). 
Land cover modifications and land use changes 

currently transfer an additional 1 Gt of carbon into the 
atmosphere each year. Increases in CO2 (a greenhouse 
gas) warms the atmosphere by absorbing TIR energy 
emitted by the Earth (see Volume 1A—Section 5.2.2) 
and then re-emitting it in all directions, including 
towards the Earth’s surface, and thereby having a 
significant impact on the warming of our planet. As a 
result, average global temperatures have risen 0.8°C 
since 1880. 

Figure 17.10  Global Carbon Budget 2009–2018

Source: Global Carbon Atlas, http://www.globalcarbonatlas.org/en/content/global-carbon-budget

http://www.globalcarbonatlas.org/en/content/global-carbon-budget


Earth Observation: Data, Processing and Applications.  Volume 3: Applications

372

17.6.1  CO2 emissions
Ground-based CO2 measurements first began in 1958 
by Dr. Charles Keeling at Mauna Loa, Hawaii, and 
have steadily recorded increasing CO2 concentrations 
in the atmosphere over time (see Figure 17.11). An 
increasing number of ground stations now provide 
a broader view of carbon in the atmosphere, with 
models and estimates filling in some details. These 
show the levels of CO2 in the atmosphere to have 
increased from about 280 ppm, at the beginning 
of the Industrial Revolution, to over 400 ppm at 
present—a greater than 40% increase—significantly 
exceeding their envelope over the last several million 
years (Sellers et al., 2018). 

Our knowledge of global CO2 from ground stations 
is restricted by the inability to collect sufficient 
measurements over the oceans and remote land 
areas, and by incomplete reporting by countries 
and companies that are monitoring this gas. EO 
technologies for measuring atmospheric column 
CO2 and CH4 concentrations from space have made 
many recent advances, enabling inversions of carbon 

fluxes from satellite observations with high accuracy 
and coverage. Remotely sensed greenhouse gas 
observations provide a significant potential for 
improving our understanding of the natural carbon 
cycle and for the monitoring of anthropogenic 
emissions. 

NASA’s OCO–2 satellite was designed to study how 
carbon sources and sinks are distributed and how 
they change over time. OCO–2 is able to map and 
monitor areas that have not been observed much 
before, such as vast ocean areas, remote tropical 
forests and high latitude tundra areas. This allows 
the pinpoint location of CO2 emitting sources and 
the estimation of the net ecosystem productivity 
(NEP). OCO-2 is also used to identify emissions from 
urban areas, biomass burning, volcanoes, and ‘hidden’ 
sources. Other current and planned satellite missions 
include OCO-3, GeoCARB, GOSAT-2, Sentinel-5P, and 
CO2M. They will enable large scale and consistent 
measurements with the same instrument over all land 
and sea surfaces. 

Figure 17.11  Changes in carbon dioxide concentration

Interannual and seasonal time series of monthly average atmospheric CO2 measurements at Mauna Los Observatory, Hawaii. This is 
known as the Keeling curve in honour of Dr. Charles Keeling who first started making these monthly measurements in 1958.

Source: Scripps Institute of Oceanography, http://scrippsco2.ucsd.edu/data/atmospheric_co2/primary_mlo_co2_record

http://scrippsco2.ucsd.edu/data/atmospheric_co2/primary_mlo_co2_record
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17.6.2  Examples of satellite studies of CO2 
emissions and flux inversions
It is a challenge to isolate recent human emissions 
from natural cycles and long term accumulations, and 
spatially-temporally attribute specific human CO2 
emissions. Some examples of attempts to do this are 
mentioned below.

17.6.2.1  El Niño-Southern Oscillation (ENSO)

The El Niño-Southern Oscillation (ENSO) is a recurring 
climate warming and cooling pattern involving water 
temperature changes in the Pacific Ocean (see 
Volume 3B). The oscillation period ranges from two 
to seven years and is referred to as the ENSO cycle. 
El Niño and La Niña are the extreme phases of the 
ENSO cycle, representing the warming and cooling 
phases of the ocean surface, respectively. Both 
phases significantly influence the rainfall distribution 
patterns, and thereby carbon cycle patterns in many 
parts of the world, including Australia.

EO has been instrumental in understanding how 
CO2 fluctuates during ENSO cycles, and what roles 
the land and ocean play in this process. During the 
2015–2016 El Niño, for instance, droughts, heat, and 
fires in tropical areas caused plants and soil on three 
continents to contribute to the largest growth of CO2 
on record. During this event, because of little rain and 
higher than normal temperatures in South America, 
Africa, and Asia, some plants did not absorb as much 
CO2 while others died and decomposed more quickly, 
releasing the carbon they had absorbed from the air. 
During this period, an extra 2.5 Gt of CO2 was released 
into the air compared to 2011, when conditions were 
normal. That extra carbon came from tropical areas 
in South America, Africa, and Asia—where plants 
all reacted differently. In South America, the growth 
of plants was stunted by drought, causing them to 
extract less CO2 than usual. In Africa, the heat caused 
dead plants to decompose more quickly, releasing 
high amounts of CO2, and in Asia, drought and 
heat caused forest fires, which also pumped huge 
quantities of carbon into the air. 

17.6.2.2  Volcanoes and cities

The OCO-2 satellite makes such high resolution 
measurements that researchers can look at CO2 
concentrations over very small areas, such as a city 
or a volcano. CO2 is higher in urban areas, where 
there are more cars and power plant emissions, 
than in suburban areas. The findings show that the 
OCO-2 satellite can quickly scan cities for pollution, 
complementing ground-based measurements. 

OCO-2 data can also be used to monitor active 
volcanoes, such as the Yasur volcano in Vanuatu, 
which constantly spews out a plume rich in CO2. 
These measurements suggest that Yasur is pumping 
out 41.6 kt of CO2 a day. By processing OCO-2 data 
to account for seasonal changes, as well as the 
background level (already near 400 ppm), one is left 
with the signal of emissions from motor vehicles, 
power plants, and other industrial processes. 

17.6.3  Land use and land cover modification
Changes in land cover, land use activities and land 
use management decisions will have corresponding 
impacts on carbon absorption and the carbon cycle 
(see Figure 17.10). The activities of deforestation, land 
degradation, forest logging and forest conversion to 
pastures and cropland remove large carbon stocks 
in woody biomass and replace them with vegetation 
that has lower carbon storage. The woody carbon that 
has accumulated over many years is then released 
back into the atmosphere, either through burning or 
decomposition (Friedlingstein et al., 2019). 

Increasing agricultural expansion activities will have 
the greatest impact and incursion onto rangelands 
to meet an ever expanding human population (see 
Section 15). Carbon emissions also result from 
disturbances such as fire and insect outbreaks. 
Agriculture intensification has increased to grow more 
food on less land (see Section 11.5). These managed 
agricultural lands release additional greenhouse 
gases (GHG), including methane (Sellers et al., 2018) 
whose concentration has risen from 715 ppb in 1750 to 
1,774 ppb in 2005.

Whereas deforestation can release large amounts 
of CO2 into the atmosphere, forest regrowth acts to 
remove CO2. In many areas, abandoned farmland is 
reverting to forest and drawing carbon out of the 
atmosphere, and these forests store much more 
carbon, both in wood and soil, than crops would. 

Various EO datasets and approaches have been 
used to estimate carbon emissions from land use, 
land cover change, disturbance, and other sources. 
In particular, time series satellite data from the 
Landsat satellites, have enabled detailed monitoring 
of changes in forest cover (Hansen et al., 2013; see 
Section 16), and land cover modifications resulting 
from urbanisation and expansion of agricultural lands 
(see Section 3). MODIS sensors also measure fire 
activities, and map burned areas and the subsequent 
regeneration of the landscape (see Section 18).



Earth Observation: Data, Processing and Applications.  Volume 3: Applications

374

17.6.4  Effects of Carbon Cycle Changes
The changes in the carbon cycle impact each of the 
carbon reservoirs. About half of the fossil carbon 
emissions into the atmosphere each year are removed 
by the fast carbon cycle (see Excursus 17.1), but the 
remainder stays in the atmosphere. Increased carbon 
in the atmosphere can alter or induce plant growth, 
either through CO2 fertilisation and its warming 
related increase in biological activity and plant growth 
(see Section 17.6.4.1) or changes in growing season 
phenology (see Section 17.6.4.2). Through increased 
levels of photosynthesis, plants have taken up 
approximately 25% of the CO2 that humans have put 
into the atmosphere. This is termed a land cover sink 
(see Section 17.6.4.3).

17.6.4.1  Carbon fertilisation

With more atmospheric CO2 available to convert 
to plant matter in photosynthesis, plants are able 
to grow more. This increased growth is referred 
to as carbon fertilisation and was associated with 
significant changes in global LAI (Myneni et al., 
1997; see Figure 17.12). CO2 fertilisation increases 
plant growth until the plant reaches another limiting 
resource, such as water, nutrients, or light. Donohue 
et al. (2013) demonstrated that even in warm arid 
regions, with the effects of rainfall variations removed, 
the fertilisation effect was a significant land surface 
process that accounted for an 11% increase in green 
cover in the first decade of this century. The amount 
of carbon that plants take up varies greatly from 
year to year, but in general, the world’s plants have 
increased the amount of CO2 they absorb since 1960. 

Figure 17.12  Change in global leaf area across 1982–2015

The change in MODIS-derived leaf area across the globe from 1982 to 2015 is associated with CO2 fertilisation.

Source: https://www.nasa.gov/feature/goddard/2016/carbon-dioxide-fertilization-greening-earth/

https://www.nasa.gov/feature/goddard/2016/carbon-dioxide-fertilization-greening-earth/
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17.6.4.2  Climate change and variability impacts 
on the carbon cycle

Interannual variations in climate (precipitation and 
temperatures) can also cause significant variations 
in biosphere-atmosphere carbon cycling. GPP is a 
critical intersection between the terrestrial biosphere 
and the Earth’s climate. The increases of CO2 and 
CH4 and other greenhouse gases shift the Earth’s 
climate on time and space scales that are important to 
humans (Sellers et al., 2018).

During ENSO cycles (see Section 17.6.2.1), drought and 
wet years alter the net uptake and release of CO2. In 
dry El Niño years, the vegetation is unable to absorb 
as much CO2 due to water limitations. Thus CO2 levels 
in the atmosphere will be higher than in more normal 
years. Further, dry years can increase the frequency 
and intensity of fire activity resulting in greater CO2 
emissions into the atmosphere. The opposite may 
occur in wet La Niña years, in which less vegetation is 
water limited and more CO2 can be absorbed from the 
atmosphere through photosynthesis.

17.6.4.3  Australian carbon sink anomaly in 2011 

The amount of carbon that plants take up varies 
greatly from year to year, due to variations in limiting 
factors that restrict photosynthesis and plant growth. 
As an example, in an unusual, extremely wet year 
across Australia in 2011, an exceptionally large land 
carbon sink anomaly was recorded, of which more 
than half was attributed to Australia (see Figure 17.13; 
Ma et al., 2016).

The biggest changes in the land carbon cycle are 
likely to come because of climate change. Continued 
global warming can extend the growing seasons and 
prolong growth, unless water becomes a limiting 
factor. However, warmer temperatures can also 
stress plants and, with a longer, warmer growing 
season, the plants need more water to survive. 
There is already evidence that plants in the Northern 
Hemisphere slow their growth in the summer because 
of warmer temperatures and water shortages 
(Angert et al., 2005).

EO datasets have been used in a vast number of 
carbon-climate studies over northern latitudes, 
Africa, and the Amazon (Tucker et al., 1986; 
Myneni et al., 1997; Tucker et al., 2001; 
Zhou et al., 2001; Xiao and Moody, 2005; 
Saleska et al., 2016). Satellite measurements have 
helped assess how the global carbon cycle is 
changing through time. They help us gauge the 
impact we are having on the carbon cycle by releasing 
carbon into the atmosphere or finding ways to store 
it elsewhere. They will show us how our changing 
climate is altering the carbon cycle, and how the 
changing carbon cycle is altering our climate. A better 
understanding of the carbon cycle is essential for 
improving projections of the Earth’s carbon-climate 
system under future conditions (Schimel et al., 2015). 

Figure 17.13  Australian interannual variations in carbon-related indicators

Variations are shown for the continental summation of NEP (Pg C yr−1), continental average of annual integrated EVI, continental 
average of SIFn (PAR normalised SIF, mW m−2 sr−1 nm−1), continental average of Total Water Storage Change (TWSC, cm), and 
continental total fire carbon emission (Pg C yr−1). NEP is derived from GOSAT atmospheric inversion modeling. The gray shaded area 
represents the Bayesian uncertainty range of inverted NEP (±1σ).

Source: Ma et al. (2016) Figure 1b



Earth Observation: Data, Processing and Applications.  Volume 3: Applications

376

17.7  Carbon stocks
Measurements of carbon stocks, including vegetation 
biomass and soil organic carbon, are essential in 
quantifying the carbon cycle, and various optical, 
microwave, and lidar observations have been 
employed to quantify these. 

17.7.1  Biomass carbon stock 
Above ground biomass (AGB; see Section 5.1.2) 
can be estimated from passive optical EO 
methods that are sensitive to vegetation canopy 
properties (see Sections 12, 14, and 16). Coarse 
spatial resolution satellite data are frequently 
used to produce biomass estimates at regional 
or global scales for forest, grassland, and tundra 
ecosystems (Chopping et al., 2011; John et al., 2018; 
Epstein et al., 2012), while medium spatial resolution 
data, such as from Landsat and Sentinel-2, are 
more frequently used for biomass estimations at 
local and regional scales (Turner et al., 2004; Friedl 
et al., 1994; Shoshany and Karnibad, 2011). Fine spatial 
resolution data (< 5 m) from high spatial resolution 
imaging sensors such as QuickBird, Ikonos, and 
WorldView-2/-3 can be used to calculate local tree 
biomass (Palace et al., 2008; Fuchs et al., 2009) and 
grass biomass (Sibanda et al., 2017).

Satellite-derived AGB estimates are based on 
empirical models, machine learning (ML) methods, 
and allometric models (see Section 10). The variables 
derived from passive optical EO data for use in 
these models may include spectral reflectance, VIs, 
spatial texture, and vegetation canopy attributes 
(see Section 8). For example, empirical regression 
models have been developed by associating VIs to 
field biomass measurements (Roy and Ravan, 1996; 
Heiskanen, 2006; Cohen et al., 2003). Spatial texture 
algorithms can improve biomass estimations by 
quantifying the spatial characteristics of images, such 
as contrast, objects, edge features, and heterogeneity 
(Sarker and Nichol, 2011; see Volume 2C—Section 6). 
Vegetation canopy attributes include fractional 
cover, clumping, LAI, and shadow fraction, and 
are used as proxies of AGB (see Section 6). Other 
important canopy structural quantities in deriving 
foliage biomass and total standing biomass in 
forests are tree height, crown size and area, density, 
and shadow fraction (Franklin and Hiernaux, 1991; 
Greenberg et al., 2005; Leboeuf et al., 2007; 
see Section 16). Spectral unmixing models 
(Hall et al., 1995) and canopy reflectance models, 
such as the Li–Strahler geometric-optical model, 
can retrieve crown size, tree shadow, and density 
in satellite imagery (Li and Strahler, 1985; see 
Volumes 1X and 2X). 

ML algorithms are increasingly being used in 
biomass estimation efforts (see Section 14.5). 
These non-parametric approaches have been used 
to estimate forest AGB with time series MODIS 
reflectances and environmental data over large 
regional areas in California (Baccini et al., 2004), 
Africa (Baccini et al., 2008), and Russia 
(Houghton et al., 2007), as well as for AGB estimates 
over grasslands in Mongolia and Inner Mongolia 
(John et al., 2018). Similarly, random forests were 
used to calculate biomass at regional scales using 
many other types of satellite data (Breiman, 2001; 
Powell et al., 2010; Karlson et al., 2015). However, both 
empirical and ML approaches for AGB estimations 
remain impracticable to directly transfer across biomes, 
or even different vegetation phenological stages, and 
saturation is a common problem.

Allometric models are a physically-based approach for 
the estimation of forest AGB. The simplest and most 
commonly used allometric models relate tree diameter 
at breast height (DBH) to AGB as a power function 
(see Section 16.5). More sophisticated models employ 
a wider range of forest variable measurements 
(e.g. canopy crown size, crown depth, tree height, 
and stem diameter) to derive AGB based on field 
observations (TerMikaelian and Korzukhin, 1997). 
Although the tree allometric models are generally 
species-specific and site-specific, they can be 
generalised to estimate biomass in mixed species 
across larger regions (Wirth et al., 2004). For example, 
general allometric models were derived using linear 
least squares regression from field measurements 
of conifer, deciduous and mixed trees (Zhang and 
Kondragunta, 2006).

17.7.2  Soil organic carbon
EO of soil organic carbon (SOC) builds upon 
laboratory-based spectral measurements of soils 
in visible-to-SWIR EM wavelengths that have been 
conducted since the mid-1990s (Ben-Dor et al., 1999; 
Rossel et al., 2006). Organic matter influences the 
shape of a soil spectral signature due to vibrations of 
O-H and C-H bonds linked to lignin and cellulose and 
laboratory-based spectral measurements have been 
shown to accurately estimate soil organic carbon 
(Ben-Dor et al., 1997; see Volume 1B—Section 6.3). 
Using a fuzzy clustering method to classify over 
1500 soil samples, Shi et al. (2014) found that the soil 
clusters generally decreased in their reflectance with 
increasing SOC content (soil darkening).

Several studies have successfully mapped 
SOC content at landscape and regional 
scales using visible-to-SWIR satellite imagery 
(Jarmer et al., 2010), the hyperspectral Hyperion 
sensor (Gomez et al., 2008), and hyperspectral 
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airborne sensors (Hbirkou et al., 2012). Landsat 
and MODIS data have been used for SOC content 
mapping, either as spectral bands (Were et al., 2015; 
Grinand et al., 2017) or through biophysical 
variables, such as NDVI and percent vegetation 
cover (Gray et al., 2015; Mishra et al., 2010; 
Somarathna et al., 2016). Using such satellite sensors, 
Wang et al. (2018) found large variability in the 
performance of SOC stock estimations over semi-arid 
rangelands of eastern Australia. Long term MODIS 
satellite data can also be used to examine the trends 
in SOC at regional scales (Chen et al., 2019).

Further progress has been made in SOC mapping 
by incorporating SpectroTransfer Functions 
(STFs) that link soil properties measured by 
laboratory analysis with the visible-to-SWIR 
imagery (Gomez et al., 2008; Stevens et al., 2010). 
The STFs can only be applied over exposed bare 
soils, such as croplands during ploughing periods 
(Bartholomeus et al., 2011), bare soil pixels in arid 
ecosystems, and exposed soils resulting from 
ecosystem disturbances (Jarmer et al., 2010). Other 
studies have successfully estimated SOC content 
using STFs with laboratory (Rossel and Hicks, 2015; 
Guo et al., 2019), field (Cambou et al., 2016), and image 
data (Guo et al., 2019). In another STF approach, each 
variable associated with SOC stocks (soil organic 
matter, soil bulk density) is separately estimated 
followed by an equation linking SOC to these variables 
(Mishra et al., 2010).

One can also incorporate environmental data 
with soil properties determined through visible-
to-SWIR laboratory analysis by use of SCORPAN 
(Soil properties, Climate properties, Organisms, 
Relief setting, Parent material, Age, and the 
spatial coordinate, N) ML techniques (McBratney 
et al., 2003). The SCORPAN models are mainly 
based on random forest and boosted regression 
trees (Wang et al., 2018). As they use environmental 
variables indirectly linked to SOC content, they 
potentially have higher mapping coverage than 
STF models and can be applied over croplands, 
rangelands, shrublands, and grasslands. 
Wang et al. (2018) showed that the use of seasonal 
fractional cover data derived from visible-to-SWIR 
image data in association with environmental 
predictors (climate, parent material, and relief) 
improved the performance of SOC stock prediction. 

17.7.3  Microwave EO
Microwave EO sensors, including ‘passive’ radiometers 
and ‘active’ scatterometers, have been used in 
forest estimates of AGB since the early 1990’s (see 
Excursus 6.1 and Section 16.5). Spaceborne SAR 
can observe under all-weather conditions, and is of 
particular use for the estimation of forest AGB over 

areas covered by cloud all year (see Volume 1B—
Section 8). Le Toan et al. (1992) observed the strong 
correlation of L- and P-band SAR backscattering 
coefficients with red pine biomass, and 
Dobson et al. (1992) reported a strong dependency 
of the backscatter of airborne polarimetric SAR at P-, 
L-, and C-bands on AGB of conifer forests. Generally, 
the penetration of microwaves into the forest varies 
positively with longer wavelengths, such as L-band 
(23.5 cm) and P-band (70.0 cm; see Section 16). Later 
studies estimated forest biomass with multi-band 
and multi-polarisation SAR data (e.g. Ranson and 
Sun, 2000; Ni et al., 2016) and interferometric 
coherence (Luckman et al., 2000). These studies 
showed that the SAR backscatter increased almost 
linearly with increasing biomass until it saturates at a 
biomass level that depends on the radar frequency. 

Mitchell et al. (2017) conducted a review of methods 
for assessments of forest degradation and their role 
in carbon emissions for national reporting within 
the framework of UN REDD+. Various assessment 
methods exist employing multi-resolution SAR and/
or optical and lidar data. They reviewed two main 
approaches for monitoring forest degradation, with 
the first being the detection of changes in canopy 
cover, and the second involving the quantification 
of loss (or gain) in AGB. They concluded that 
improvements in canopy cover change detections 
were being made through SAR-optical data fusion and 
the use of very high resolution data, while increased 
sensitivities to forest structure and biomass were 
being achieved using repeat SAR with lidar data. They 
further noted progress in discrimination of forest age 
and growth stage using data fusion methods and lidar 
height metrics, and new interferometric SAR and lidar 
applications in linking changes in forest structure to 
degradation in tropical forests (Mitchell et al., 2017).

Neither the SAR backscattering coefficients nor the 
interferometric coherence are a direct measurement 
of forest AGB, but instead they directly measure 
the canopy spatial structure, characterised by tree 
density, tree height, and/or tree diameter at breast 
height (DBH; see Section 16.5). Novel methods for 
direct measurements of forest spatial structure 
employ modern SAR methods, such as Polarimetric 
Interferometric Synthetic Aperture Radar (PolInSAR) 
and three-dimensional point cloud tomographic 
SAR (TomoSAR) data (Frey et al., 2008), that can 
directly detect the three-dimensional structure of 
forest, reduce the biomass saturation problem, and 
provide improved methods for monitoring forest 
AGB. Currently, PolInSAR and TomoSAR data are only 
acquired by airborne sensors, however, their potential 
advantages in AGB estimations will be fully explored 
with the upcoming BIOMASS (Europe), NISAR (USA, 
India), and Tandem-L (Germany) missions, scheduled 
in 2020–2022 timeframes (Le Toan et al., 2011).



Earth Observation: Data, Processing and Applications.  Volume 3: Applications

378

17.7.4  Lidar and above ground biomass
Lidar is an active remote sensing technology 
that offers much potential for terrestrial carbon 
assessments and for quantifying AGB in forests 
(Lefsky et al. 2005; see Section 16.5), shrublands, 
and grasslands (Li et al., 2017; see Excursus 5.1). 
Opportunities to fuse temporally dynamic vegetation 
optical measurements with lidar have promising 
potential for better assessments of not only standing 
wood biomass, but also forest disturbance, biomass 
loss, and carbon accumulation through forest 
regrowth (Asner et al. 2007). Lidar can also serve as 
a reliable replacement for inventory plots in areas 
lacking field data. 

Terrestrial laser scanning (TLS; see Excursus 5.1) 
provides very detailed vertical structure data for 
forests, enabling separation of points from trunk, 
branch, and leaves (Liang et al., 2016; see Volume 1A—
Section 10). The quantitative, three-dimensional 
laser point information provided can be used 
in structural models (Disney et al., 2018) or for 
development of allometric equations to estimate AGB 
(Kankare et al., 2013). Thus, lidar integration with field 
inventory plots can provide calibrated lidar estimates 
of above ground carbon stocks, which can then be 
scaled up using satellite data on vegetation cover, 
topography, and rainfall from satellite data to model 
carbon stocks. 

Airborne laser scanners (ALS) are increasingly being 
used to estimate larger scale forest AGB, through its 
capability to to quantify height, density, crown width, 
and crown volume at scales from individual trees to 

more extensive forest stands (Popescu et al., 2018; 
Tao et al., 2014; see Volume 1A—Section 15.1). The 
larger airborne footprint waveform data has also led 
to reasonable biomass estimates for a variety of forest 
types (Drake et al., 2002). The Global Observation 
of Forest Cover and Land Dynamics (GOFC-GOLD) 
program recommended the use of ALS data for 
biomass estimation in local efforts in reducing 
emissions from deforestation and forest degradation 
(REDD+; GOFC-GOLD, 2016).

Several spaceborne lidar sensors have also been 
utilised in larger scale canopy structure studies 
and for estimates of AGB. The Geoscience Laser 
Altimeter System (GLAS) aboard the ICESat satellite 
was shown to be able to estimate forest AGB in pan-
tropical and temperate forests (Baccini et al., 2008; 
Saatchi et al.,2011; Lefsky et al., 2005; see 
Excursus 6.1). New generation lidar instruments 
are becoming available, such as the Advanced 
Topographic Laser Altimeter System (ATLAS) and the 
Global Ecosystem Dynamics Investigation (GEDI). The 
GEDI system, launched in December 2018, contains a 
three-laser system flying on the International Space 
Station (ISS), and the full waveform lidar has a circular 
footprint of ~25 m (Stavros et al., 2017). It is the first 
spaceborne lidar mission specifically designed to 
study forests and facilitate the estimation of AGB at 
large scales. As with the airborne instruments, the 
retrievable structural height and density metrics 
can be combined with biomass data from field plots 
or TLS data to build biomass estimation models 
(Zhao et al., 2009).

17.8  The Future 
New space-based observations can strongly 
complement in situ observations in providing required 
quantitative ecosystem information globally (see 
Sections 19 and 20). While spaceborne measurements 
have uncertainty and bias errors of their own, they 
can help in reducing bias errors associated with 
relatively sparse in situ systems. Given the challenges 
of long term, in situ observations at regional scales, 
satellite measurements have made increasingly 
important contributions, complementing the detailed 
information available in situ by providing broad spatial 
and temporal coverage. 

New space-based observations, including 
fluorescence, hyperspectral, thermal, and lidar 
are greatly expanding the number of ecosystem 
properties that can be quantified from space. Many 
of the key fluxes and stocks shown in Figure 17.1, 
Figure 17.2 and Figure 17.10, can, or will soon, be 
estimated using EO instruments and techniques. 
Combined, they now enable a more thorough 

coupling of the environmental conditions that plants 
experience with improved characterisation of their 
biophysical states, and with better monitoring 
capabilities to track plant responses to environmental 
changes. These advances are providing a better 
understanding of the dynamics of terrestrial 
productivity and the use of satellite data to drive 
productivity models of the land surface.

To have comprehensive knowledge of carbon stocks 
and fluxes everywhere and over time involves the 
coordination of in situ and remote observations. It 
still remains a challenge to develop such a coherent 
set of terrestrial ecosystem observations of the 
carbon cycle, and be able to develop early warning 
and prediction capabilities of carbon cycle feedbacks. 
All of these observations will have the common 
goal of helping us better understand our planet and 
understand how it is changing to benefit food, health, 
and economic security.
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17.9  Further Information

Additional Reading
Viscarra Rossel, R.A., Webster, R., Bui, E.N., and 

Baldock, J.A. (2014). Baseline map of organic 
carbon in Australian soil to support national carbon 
accounting and monitoring under climate change. 
Global Change Biology, 20(9), 2953–2970. https://
doi.org/10.1111/gcb.12569

Angelopoulou, T., Tziolas, N., Balafoutis, A., Zalidis, G., 
and Bochtis, D. (2019). Remote sensing techniques 
for soil organic carbon estimation: A review. 
Remote Sensing, 11(6), 1–18. https://doi.org/10.3390/
rs11060676

Global Projects
UN Global Forest Observations Initiative (GFOI): http://

www.fao.org/gfoi

Reducing Emissions from Deforestation and Forest 
Degradation in Developing Countries (REDD+): 
https://redd.unfccc.int/

Australia
National Inventory System (NIS; formerly National 

Carbon Accounting System: NCAS): https://www.
industry.gov.au/data-and-publications/national-
inventory-reports

National Greenhouse Accounts (Land sector 
estimates): https://www.industry.gov.au/data-and-
publications/land-sector-estimates-may-2017-update

Climate Change Strategies: https://www.industry.
gov.au/strategies-for-the-future/australias-climate-
change-strategies

National Greenhouse and Energy Reporting: http://
www.cleanenergyregulator.gov.au/NGER/About-
the-National-Greenhouse-and-Energy-Reporting-
scheme

International Forest Carbon Initiative: Australia’s 
IFCI supported global efforts to establish a 
REDD+ mechanism under the UNFCCC. Jointly 
administered by the Australian Department of 
Climate Change and Energy Efficiency and AusAID, 
the Initiative enabled Australia to work closely 
with developing countries to find practical ways to 
reduce forest emissions: https://www.unredd.net/
partners/103-international-forest-carbon-initiative-
australia-.html

Roxburg, S., Karunaratne, S., and Paul, K. 
(2017). A revised above-ground maximum 
biomass layer for Australia’s national carbon 
accounting system. CSIRO Land and Water, 
Canberra. https://publications.csiro.au/rpr/
download?pid=csiro:EP181854anddsid=DS1

NASA
The Carbon Cycle: https://www.earthobservatory.nasa.

gov/features/CarbonCycle/page1.php

A New Space-Based View of Human Made Carbon 
Dioxide: https://www.jpl.nasa.gov/news/news.
php?feature=6666

Orbiting Carbon Observatory-2: https://ocov2.jpl.nasa.
gov/ 
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EO datasets have been used in many studies related to fire prediction, behaviour, occurrence, and 
impact (Tian et al., 2005; Lentile et al., 2006; Roy et al., 2013; Chu and Guo 2014; Pettorelli et al., 2014; 
Mueller et al., 2017; Chuvieco et al., 2020). These studies can be summarised into three broad groups:

	§ predictive fire analyses: examining pre-fire 
conditions which would affect fire likelihood and 
consequence (see Section 18.3);

	§ active fire analyses: identifying fire occurrence and 
magnitude to most effectively direct suppression 
and evacuation (see Section 18.4); and

	§ retrospective fire analyses: examining conditions 
after a fire event, which may include pre-fire 
conditions, to understand fire extent, severity, 
emissions, behaviour, impact, and recovery (see 
Section 18.5).

The temporal and spatial resolution of satellite 
and airborne imagery is constantly advancing 
(see Volume 1) and access to satellite imagery is 
continually enhanced as data acquisition, storage, 
and processing become faster, cheaper, and more 
accessible (see Volume 2). With rapidly advancing 
technologies, it is an ongoing challenge to 
successfully transfer the results of academic research 
into an operational environment (see Section 18.2). 
While there are still many limitations involved with 
the operational use of EO data for fire mapping and 
monitoring, significant advances have been made in 
this field in recent decades (see Section 18.6).

The Fire (Katie Ford) 
 

When a human is asked about a particular fire,  
she comes close:  
then it is too hot,  

so she turns her face— 
 

and that’s when the forest of her bearable life 
appears,  

always on the other side of the fire. The fire  
she’s been asked to tell the story of,  

she has to turn from it, so the story you hear  
is that of pines and twitching leaves  
and how her body is like neither— 

 
all the while there is a fire  

at her back  
which she feels in fine detail,  
as if the flame were a dremel  

and her back its etching glass.  
 

You will not know all about the fire  
simply because you asked.  

When she speaks of the forest  
this is what she is teaching you,  

 
you who thought you were her master.

Background image: A bushfire at Lancefield, Victoria, on 7 October 2015, was imaged from 20,000 feet altitude. This false colour composite is displayed using 
thermal infrared (8.5–13 μm) as red, middle infrared (3–5 μm) as green, and visible blue (~0.5 μm) as blue. Source: Robert Norman, Air Affairs Australia Pty Ltd

Recommended Chapter Citation: Gibson, R.K., Yebra, M., Harrison, B.A., and Bradstock, R.A. (2021). Fire. Ch 18 in Earth Observation: Data, Processing and 
Applications. Volume 3A—Terrestrial Vegetation. CRCSI, Melbourne. pp. 389–426.
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18.1  Fire in Australia
Fire is a major factor in shaping the Australian 
landscape (Pyne, 1992; Kershaw et al., 2002; 
Ellis et al.,  2004). Fire regimes around Australia 
differ with the flammability of vegetation, attributes 
of weather and climate, and characteristics of 
terrain (see Section 2). The ‘seasonality’ of fires in 
Australia has been observed to vary with latitude, 
with northern regions being considered more likely 
to burn during winter and spring and southern areas 
being more susceptible to fire in summer and autumn 
(Luke and McArthur, 1978). These trends are largely 
governed by rainfall, which drives fuel accumulation 
(Bradstock, 2010). An EO-based analysis derived from 
AVHRR (Advanced Very High Resolution Radiometer) 
imagery (1997–2005) and rainfall data (1969–2004), 
which mapped the seasonal distribution of recent 
Australian fires (Russell-Smith et al., 2007), shows a 
more complex pattern of fire activity (see Figure 18.1). 

As introduced in Section 1.1.2.3, many Australian 
plants have developed mechanisms to recover 
and/or benefit from fire. Indigenous use of fire 
prior to European settlement is believed to have 
been frequent and widespread (Pyne, 1992; see 
Section 2.5.1). In recent centuries, however, the 
frequency and severity of bushfires in Australia 
has changed due to different settlement patterns, 
land management practices and climatic variations 
(Bartlett et al., 2007; Jurskis, 2015), often with 
disasterous consequences to the landscape, local 
communities, infrastructure, and wildlife (see 
Table 18.1). A shift to significantly more hazardous 
fire regimes may be occurring in Australia 
(and elsewhere), characterised by increasing 
fire frequency and intensity associated with 
dynamic fire propagation, and the development 
of catastrophic ‘fire storms’ (Sharples et al., 2016; 
Pyne, 2020; Oldenborgh et al., 2020). For example, 
the unprecedented 2019/20 bushfire season burned 
nearly 19 million ha nationally, destroyed over 3,000 
homes, and resulted in 33 deaths (Filkov et al., 2020; 
CoA, 2020). 

Figure 18.1  Fire seasonality in Australia

This map was derived from AVHRR imagery (1997–2005) and 
classification of rainfall data (1969–2004). The legend table 
below this map details the main burning period and average 
proportion of each coloured region that is burned each year. 
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extensively documented (Ellis et al. 2004), and contribute to
a substantial national policy focus on southern Australian con-
temporary fire patterns and their consequences. This emphasis
contributes to the neglect of globally significant fire issues in
less populated central and northern regions.

Our observations illustrate the lack of extensive burning evi-
dent generally in populous south-eastern Australia. Ever since
the formative ‘Black Friday’ bushfires of January 1939, mul-
tiple boards of inquiry have urged concerted prescribed fuel
reduction burning in forested southern Australia as a mitigating
practice (Pyne 1991, 2006). Many studies from temperate Aus-
tralia (McCarthy and Tolhurst 2001; McCaw et al. 2003) and
elsewhere (Fernandes and Botelho 2003) illustrate the effective-
ness, within limitations, of prescribed burning in reducing fuel
loads, ameliorating subsequent wildfire behaviour, and assist-
ing management operations. Today, however, such practice is

increasingly restricted in extent given political, operational and
ecologic complexities and constraints (Bradstock et al. 1998;
Cary et al. 2003; Esplin et al. 2003; Ellis et al. 2004; Pyne 2006).

While prescribed burning is not a panacea under extreme fire
weather conditions, the alternative of complete fire exclusion is
practically untenable given the coincidence of lightning and peak
fire weather conditions in forested southern Australia; for exam-
ple, most of the 2002–2003 south-eastern bushfires were ignited
by lightning that emanated from dry thunderstorms (Esplin et al.
2003; Ellis et al. 2004). For south-eastern Australia at least,
continued periodic bushfire conflagrations under drought condi-
tions, particularly associated with El Nino Southern Oscillation
(ENSO) events, may be anticipated to be the norm (Hennessy
et al. 2006; Pyne 2006).

For rainfall-event driven fire-prone central Australia, and
annually fire-prone northern Australia, accumulating evidence

Colour Main burning period Mean annual burned area (%)

Pink May–November 35

Red July–November 27

Orange August–November 19

Brown September–November 5

Yellow September–December 3

Green December–March 1

Source: Russell-Smith et al. (2007) Figure 8c

Occasional, major fires are a long standing part of our ecological furniture, with their imprint hard-
wired into the lifecycles of our biota. If we are to live in these environments we must do so on the 

understanding that we will not eliminate risk. 
(Ross Bradstock)
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Table 18.1  Major bushfires in Australia

This sample of fire seasons shows the ‘worst’ fire years in recent history based on area burned, number of fires, and/or damage to 
settlements.

Year(s) [name] State
Area burned
(Million ha)

Deaths
Homes/ 
shops 
burned

Other losses
Estimated cost 
at time of fires

1851  
[Black Thursday]

Victoria 5 ~12 –
25% of state burned; 

Huge livestock loss
–

1926/27 NSW >2 8 many – > £1 million

1938/39  
[including Black Friday]

Victoria 1.52 71 > 700 69 timber mills –

1944 Victoria >1 49 500 Huge stock loss –

1951 Queensland 2.8 – – Significant stock loss £2 million

1951/52 NSW 4.5 11 – – £6 million

1957/58 NSW >2 5 158 Community facilities –

1960/61 WA >1.5 – 132 Other buildings –

1966/67 Tasmania 0.26 64 >1,400 Significant livestock and infrastructure loss –

1968/69
NT 40 – – Remote areas –

NSW >2 14 80 81 buildings –

1969/70 NT 45 – – Remote areas –

1974/75

NT 45 – –

Over 100 million ha burned nationally

–

Queensland 7.3 – – –

NSW 4.5 6 – –

SA 16 – – –

WA 29 – – –

1983  
[Ash Wednesday]

Victoria 0.15 47 1620 > 1,500 other buildings and 32,400 livestock $138 million

SA 0.16 28 383 200 other buildings $38 million

1984/85 NSW 3.5 – 5 Livestock and infrastructure $40 million

2002 NT 38 – – Remote areas –

2002/03 
[Alpine/Canberra]

NSW 1.5 3 86 151 days of severe fire activity $12 million

Victoria 1.1 (1) 41 Livestock 

ACT >0.16 4 488
Plantations, livestock, Observatory,  
100 other structures

> $350 million

2003 WA 15.5 – – Remote areas –

2009 
[Black Saturday]

Victoria >0.4 173 2,029 Community facilities $1070 million

2019/20 
[Black Summer]

NT 6.8 – 5

> 1 billion vertebrate animals;

Global impacts of smoke

$40 billion

Queensland 2.5 – 48 

NSW 5.6 25 2,475 

ACT 0.06 – –

Victoria 1.5 5 396 

Tasmania 0.036 – 2 

SA >0.29 3 186

WA 2.2 – 1 

Sources: Ellis et al. (2004); Filkov et al. (2020); ADRKH (2020)
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In this fire-prone country, reducing fire risk will be 
strongly dependent on reducing fire severity, a 
metric of loss or change in organic matter caused 
by fire (Keeley, 2009). Major fires typically follow 
major droughts (as distinct from drier, herbaceous-
dominated ecosystems where major fires typically 
follow major rains), with their impact becoming more 
devastating when they are adjacent to areas of 
urban and peri-urban expansion. In recent decades 
the incidence and severity of megafires, where fire 
behaviour characteristics exceed all efforts at control, 
have increased in Australia (Bradstock et al., 2012a). 

One of the greatest advantages of using EO datasets in 
fire studies is the ability to look back on the vegetation, 
soil and other environmental conditions that preceded 
fire. While the scale of observation is often deficient 
in field-based fire studies that focus on single events, 
EO techniques offer the regional, national, and global 
scales required to adequately inform fire research and 
management (see Volume 2D). 

For many years, EO imagery has been used globally 
to identify hotspots—pixels with abnormally high 
temperatures that may highlight fire ignitions. Hotspot 
imagery is routinely generated in Australia to enable 
fire response agencies to investigate small fires before 
they threaten lives and resources (see Section 18.6.2).

EO datasets are also used to map fire severity. 
The degree of combustion resulting from a fire is a 
function of its intensity and duration, as evidenced by 
the condition of the post-fire landscape. Incomplete 
combustion leaves a carbon residue (char or black 
ash), while complete (or near-complete) combustion 
produces a mineral (incombustible) residue (white ash 
or silica). Accordingly, the fuel consumption of a fire 
can be inferred from the proportion of white ash per 
unit area. For example, black ash is produced during 
the first 20 minutes of savanna fires, after which time 
the cumulative fire effects produce white ash (Roy 
and Landmann, 2005; Smith et al., 2005). 

The volume of white ash has been found to be 
significantly correlated with surface fuel consumption, 
thereby indicating fire severity (Hudak, 2013). 
Increasing availability of hyperspectral and 
multispectral image capture by remotely piloted 
aircraft (or drones) provides greater access to the 
spatial and spectral resolution required to examine 
the characteristics of ash, an ecologically significant 
feature related to fire severity (Hamilton et al., 2017)

An initial assessment of fire severity provides a 
valuable overview of fire impact for land management 
and planning authorities to plan immediate 
rehabilitation activities. This has particular value 
in water catchment areas where post-fire rain can 
potentially accelerate erosion and reduce water 
quality. Such analyses also allow environmental 
scientists to foresee impacts on fauna and flora. 
Rapid response teams are commonly deployed from 
land management agencies immediately after a fire 
is contained. For example, the US Forestry Service 
(USFS) deploys Burned Area Emergency Response 
(BAER) teams, and in Australia, most jurisdictions 
have an equivalent systems of Rapid Risk Assessment 
Team (RRAT) deployments. These teams assess 
immediate post-fire landscape conditions in order to 
identify areas with highest need for site stabilisation 
treatments. 

Identifying factors which can precipitate high fire 
severity, such as high fuel load, low fuel moisture, 
terrain liability, and meteorological pre-conditions 
(Bradstock et al., 2010; Estes et al., 2017), are 
paramount for predicting fire occurrence and activity 
(see Section 18.3). Similarly, real time monitoring 
of high fire intensity during active fires enables 
mitigation efforts to be directed to areas of greatest 
need (Keramitsoglou et al., 2004; see Section 18.4). 
Finally, analysis of fire severity patterns of past fires—
and determining their drivers—will allow informed 
management decisions to reduce the severity of 
future fires (see Section 18.5).

18.2  EO Sensors for Fire
The recent report by the Australian ‘Bushfire Earth 
Observation Taskforce’ (ASA, 2020) highlighted the 
fact that the most appropriate combination of imagery 
and analysis methods for EO of fire will vary with the 
specific objectives of inquiry (see Table 18.2). For 
example, sensors used for detection of active fires 
will have different spatial, spectral, and temporal 
resolutions (see Volume 1B—Section 1) compared 

to sensors for post-fire analysis of fire severity. The 
many different biogeographic landscapes in Australia 
may also influence the imagery and analysis methods 
most appropriate for the type of inquiry. For example, 
the capacity of passive optical sensors to accurately 
capture spectral signatures from understorey layers 
is limited under very dense canopies (see Section 
18.3.1.3). 
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Applications using MODIS (Moderate Resolution 
Imaging Spectroradiometer) data in Australia 
demonstrate these scale and landscape 
considerations. A wide range of global MODIS 
products for fire mapping have been available for 
over a decade (see Excursus 8.1 and Volume 2D—
Excursus 10.1) including:

	§ MOD14/MYD14/MCD14—a thermal anomalies 
product that shows active fires and biomass 
burning. It is available as daily (day and night) 
images and composites (based on 8 day or monthly 
data; see Excursus 18.1); and

	§ MCD64A1—a monthly 500m resolution burned 
area product that improves on the original 
algorithm used for MCD64 (Roy et al., 2005; 
Giglio et al., 2009). Padilla et al. (2015) found 
MCD64A1 to be superior to MCD45A1 for mapping 
burned area.

In the sparsely-populated, open savanna landscapes 
of northern Australia, the MODIS active fire product 
(MOD14) is particularly useful for fires with an active 
flaming area of 100–300 m2 (Maier et al., 2013). While 
the low spatial resolution of MODIS thermal infrared 
(TIR) imagery (1 km pixel size) limits its utility in 
southern regions, where forests are more dense and 
multi-layered, it can provide a useful cross-check 
against other fire information sources and helps to 
locate fires started by lightning in these landscapes 
(see Sections 18.6 and 18.7). 

Similarly, tailored algorithms to estimate fuel 
moisture content (FMC) from MODIS optical bands 
with 500 m spatial resolution (Yebra et al., 2018) 
have been used to characterise fuel condition and 
flammability across Australia (see Figure 18.2a), 
which is essential for providing a broadscale sense 
of fuel dryness (see Section 18.3.1.2). However, when 
applied to a higher spatial resolution version dataset 

(such as Sentinel-2), local FMC gradients in the 
landscape can be delineated (see Figure 18.2b). These 
detailed gradients may act as soft containment lines 
when planning prescribed burns or prepositioning 
firefighting resources but would not be identifiable 
using a coarser spatial resolution image product.

However, the pace of technology development 
is continually increasing, with rapidly evolving 
improvements in the spatial, temporal, and 
spectral resolutions of sensors. For example, while 
geostationary sensors have traditionally had a 
temporal resolution of imaging the Earth each 1–2 
days (see Volume 1A—Section 12), newer sensors 
supply more frequent imagery. One example is 
the Advanced Himawari Imager (AHI) on board 
Himawari-8, which provides hemispherical imagery 
every 10 minutes at 2 km spatial resolution. This 
improved temporal resolution greatly increases 
the likelihood of detecting new fire hotspots 
(Wickramasinghe et al., 2016; Xu et al., 2017), 
extracting fire rate of spread (Liu et al., 2018), and 
even detecting pre-fire fuel condition, such as FMC, at 
a sub-daily timescale (Quan et al., 2018). 

In addition to the EO data available from public 
good satellites, the International Charter for Space 
and Major Disasters (ICSMD) supplies EO ‘assets’ 
from international space agencies and commercial 
enterprises to assist emergency managers during the 
disaster response phase (ICSMD, 2020). This initiative 
supplies data at no charge and also coordinates 
the acquisition of appropriate datasets at relevant 
locations. For example, in November 2019 Geoscience 
Australia (GA) activated the charter on behalf of 
Emergency Management Australia Crisis Coordination 
Centre (CCC) and New South Wales Rural Fire Service 
(NSW RFS) to access additional EO imagery to help 
with that catastrophic fire season.

Table 18.2  EO sensors relevant to fire-related studies

TIR: Thermal infrared; SAR: Synthetic Aperture Radar

Type Sensor Platform Relevance Advantages Disadvantages

Passive 
optical

Multispectral 
radiometer

Satellite or 
airborne

Fuel moisture content

Fuel type and fire severity

Weather monitoring

Global coverage, low cost Cloud contamination

Hyperspectral 
spectro-
radiometer

Airborne or 
terrestrial

Fuel moisture content

Fuel type and fire severity
High spectral resolution, 
highlight plant stress

High cost, high data volume, 
specialised processing

TIR 
radiometer

Satellite or 
airborne

Fire detection and fuel moisture 
content

Weather monitoring
Global coverage, low cost

Coarse scale, cloud 
contamination, incapacity to 
detect small fires 

Active 
optical

Lidar
Satellite, airborne, 
or terrestrial

Fuel structure and load
High accuracy, penetrates 
cloud, smoke

Data availability, high cost, 
specialised processing

Active 
microwave

SAR
Satellite, airborne, 
or terrestrial

Fuel structure, load, and moisture 
content

Weather monitoring

All weather, so useful in 
tropical regions, penetrates 
cloud, smoke

Data availability, specialised 
processing
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Figure 18.2  Fuel Moisture Content estimates

Local fuel moisture content (FMC) estimates derived using MODIS and Sentinel-2 satellite imagery acquired on 21 November 2019 
over the Namadgi National Park, ACT. Both maps were produced using the FMC method described in Yebra et al. (2018), with FMC 
(%) values ranging from 17 (red) to 136 (blue). The higher spatial resolution of the Sentinel-2 imagery is able to detect terrain-driven 
gradients that are not visible in the MODIS product.

a. MODIS 	 b. Sentinel-2

	
Source: Ivan Kotzur, University of Western Sydney

The use of sensors carried by remotely operated 
aircraft (commonly known as remotely piloted aircraft 
(RPA), unmanned aerial vehicles (UAV), or drones, 
and formally labelled Remotely Piloted Aerial Systems 
(RPAS); see Volume 1A—Section 11.2) is another 
rapidly evolving technology with applications in 
fire management and research. There is significant 
interest by fire management agencies in Australia in 
using UAV for monitoring active fires, as pioneered 
in the USA (Wing et al., 2014). Research has recently 
been conducted in Australia on the use of UAV in 
fire severity assessments (McKenna et al., 2017). 
Many opportunities exist to enhance the use of 
UAV-mounted sensors for fire management in 
Australia following international developments, such 
as mapping fuel structure and moisture assessment 
(Shin et al., 2018; Polinova et al., 2019). A UAV platform 
can carry a versatile range of sensors, including 
multispectral, hyperspectral, thermal, and lidar. The 
capacity for sub-centimeter spatial resolution and 
lack of cloud contaminated imagery are significant 
advantages of UAV. However, further development 
in radiometric and atmospheric corrections 
(Tu et al., 2018) is needed to enhance the scientific 
rigour for EO applications of UAV imagery, particularly 
for broadscale and multi-temporal applications. 

Both multispectral and thermal line scan imagery 
have been acquired for many fires over several 
decades around Australia. The data is generally 
used in fire fighting and suppression operations 
during a fire event, but it has also been investigated 
in fire behaviour research (Filkov et al., 2018; 
Storey et al., 2020a, 2020b). Analysis of this imagery 
has the potential to provide unique insights into 

the behaviour and progress of fires in different 
landscapes and the way fires interact with terrain 
and weather conditions (Sharples et al., 2012). This 
understanding will improve fire mitigation efforts for 
the best possible outcome. 

Given the unique biogeographic features of Australia, 
being able to spectrally characterise land cover 
changes induced by fire, with high precision, would 
greatly advance our understanding of Australian 
ecosystems and their dynamic interaction with fire 
(see Section 2.4). Hyperspectral imaging provides 
an opportunity for greater precision due to the 
narrow bandwidths, compared to the broad spectral 
bands of multispectral sensors (see Volume 1A—
Section 14.3.3). Comparisons of multispectral and 
hyperspectral data for assessing fire severity using 
optical wavelengths indicate that fractional cover 
and burned fraction estimates were significantly 
better when derived from hyperspectral data 
(Veraverbeke et al., 2014). However, advanced 
analysis techniques are required, which may limit 
the operational capacity. Hyperspectral imagery has 
not been widely explored for fire extent or severity 
studies in Australia, however, this sensor type has 
provided valuable fire-related information in overseas 
studies (e.g. Kokaly et al., 2007) and warrants 
further investigation in the Australian fire-prone 
landscape. A detailed spectral library of Australian 
land cover components, both pre-fire and post-
fire, would significantly improve our understanding 
of the information provided by EO imagery (see 
Volume 2D—Section 12.3).
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18.3  Predictive Fire Analyses
Predictive analyses are relevant to the pre-fire 
environment to delineate those areas that are most 
likely to be vulnerable to fire. The major factors which 
determine fire behaviour and propagation are:

	§ fuels (biomass and flammability; see Section 18.3.1);

	§ weather (see Section 18.3.2); and 

	§ ignitions (see Section 18.3.3). 

Climate and terrain have biogeographic influences on 
these key drivers, which are inevitably interrelated:

	§ fuel type, structure, volume, and moisture content 
are dependent on climate and terrain; while

	§ the interaction between topography and weather 
creates environmental conditions that are either 
more or less conducive to fire.

EO data can be used to derive near real time 
information about fuel load and weather conditions, 
which can then be readily related to terrain data. Local 
scale quantitative field measurements, such as fuel 
type, biomass, and moisture content can be scaled up 
through models against regional climatic and terrain 
data (see Section 10 and Volume 2D). Integrated 
modelling of the factors driving the occurrence of 
wildfire are used in risk analysis approaches, such 
as fire danger indices (see Section 18.3.4). These 
tools allow for efficient management of fire fighting 
resources and early warning systems to help protect 
lives and assets.

18.3.1  Fuels
Fuel is the live and dead vegetation that may be 
consumed by fire. Total biomass and flammability of 
fuels contribute to the incidence and spread of fire. 
The specific characteristics of fuel which are relevant 
to bushfire likelihood include:

	§ fuel type and structure—size (diameter), horizontal 
and vertical distribution, and vegetation type (see 
Section 18.3.1.1);

	§ fuel moisture content (see Section 18.3.1.2); and

	§ fuel load (weight per unit area) and density (weight 
per unit volume; see Section 18.3.1.3). 

An understanding of the distribution, volume and 
flammability of vegetative fuel in the landscape is 
essential for risk assessment and fuel management. 
Fuel is the only driver of fire which can be controlled, 
so fuel reduction is the primary management tool 
for reducing fire likelihood, although the efficacy 
of prescribed burning in reducing future fire risk 
is partial at best, due to the strong influence 
of fire weather on fire incidence and spread 
(Bradstock et al., 2012b).

18.3.1.1  Fuel type and structure 

The type, density, and structure of fuel vary within 
and between landscapes and biogeographic regions 
(see Section 2.4). Some vegetation communities are 
more prone to fire than others, due to the flammability 
and volume of fuel they produce and accumulate. 
While the attributes of vegetation communities 
are highly variable in Australia, in terms of species 
composition, structure, and function, the mechanisms 
influencing fire behaviour can be condensed into a 
small number of categories. Bradstock et al. (2012c) 
reviewed fire regimes and biodiversity for Australian 
ecosystems in terms of seven major fuel types:

	§ Grasslands dominate the Australian landscape. 
This fuel type includes annual or perennial grasses, 
crops and improved pastures, and open forests 
and woodlands with a grassy understorey. Weather 
is generally more significant than fuel load in 
determining fire intensity and extent in grassy fuel 
systems (Morgan, 1999). However, fuel load may 
directly influence fire behaviour in grasslands through 
the spatial continuity of fuel. For example, heavily 
grazed grasslands may have scattered patches of 
bare ground (Bradstock et al., 2012c). Fire frequency 
and time-since-fire influence grassland composition 
and structure (Lund and Morgan, 2002), although the 
abundance of most grassland species is not adversely 
affected by fire (McDougall and Kirkpatrick, 1994).

	§ Spinifex grasslands occur on low nutrient soils in 
arid and semi-arid climates and cover about 25% of 
Australia. Although spinifex species are taxonomically 
classified as grasses, the fire behaviour they propagate 
is sufficiently different to warrant a separate fuel class 
(Bradstock et al., 2012c). Moisture content of spinifex 
reduces with age, which increases its flammability. 
Wind speed has been modelled as the major factor in 
determining fire rate of spread in spinifex grasslands, 
with fuel quantity and moisture also being significant 
(Burrows et al., 2006). Fire frequency varies from three 
to 30 years with fires following antecedent rain (Allan 
and Southgate, 2002)

	§ Shrublands include Acacias, chenopod shrublands 
and heathlands. This fuel type generally occurs on 
deficient, acid soils in Mediterranean, temperate, and 
tropical climates. Shrublands have fine, well-aerated 
fuels with dead foliage persisting in some species. 
Without the protection of a canopy layer, fuels are 
directly exposed to wind and Sun so dry quickly 
even after rain. Inter-fire periods depend on post-fire 
fuel density and have been reported to vary from 18 
months to 8 years (Keith et al., 2002). Time-since-fire 
has been modelled as the main determinant of fire 
spread, with higher fire severity resulting in longer 
intervals between fires (Bradstock et al., 1998).
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	§ Mallee-heaths in semi-arid (200–500 mm), 
southern Australia, occur in lateritic and aeolian 
sandplains, dunefields, and flats. These shrublands 
are characterised by multi-stemmed eucalypts and 
a Mediterranean climate. Vegetation density, and 
hence flammability, is affected by soil type, with 
cover ranging from 20% to 50%. Fuels are often 
discontinuous and inadequate for fire spread. After 
sufficient fuel accumulation, large episodic fires can 
occur in summer initiated by lightning and fanned 
by changeable winds (Bradstock and Cohn, 2002).

	§ Dry sclerophyll forests dominated by eucalypts 
cover the Great Dividing Range (GDR) from 
Queensland to Victoria and into Tasmania. This 
mountainous landscape features significant 
variation in topography, with vegetation density 
increasing in moister areas such as valleys. Leaf 
litter is the major fire fuel in these forests. Open 
forests burn more frequently than closed forests 
due to lower fuel moisture. Research has shown a 
wide range in fire intensity both within and between 
fires in these forests (Gill and Catling, 2002). Areas 
of forest also occur in the Mediterranean climates 
of southwest WA and southeast SA.

	§ Other forests/woodlands: Prior to European 
settlement, temperate woodlands covered 
extensive areas in southeast Australia, 
predominantly on the drier side of the GDR from 
Queensland to Victoria and into Tasmania. Much 
of this fuel type is now used for agriculture and 
therefore unaccustomed to fire. Similarly, most of 
the former Mediterranean woodlands in southwest 
WA have also been cleared for agricultural 
activities. Mean annual rainfall in these areas 
varies between 200 mm and 800 mm. Relatively 
little is known about the floristic composition or 
fire regimes of these woodlands before European 
settlement. Litter fuels accumulate more slowly in 
woodlands than in forests due to both the lower 
vegetation density and greater termite activity, so 
fires occur less frequently (Hobbs, 2002).

	§ Rainforests occur in high rainfall areas of nutrient 
rich, well-drained soils in tropical, sub-tropical, and 
temperate climates. The absence of fire in some 
areas is allowing rainforest to expand into wet 
sclerophyll forest and tropical savannas, and in 
other areas intense, late dry season fires in tropical 
savannas are damaging the margins of small 
patches of rainforest. Recovery of rainforest from 
fire depends on the frequency and seasonality of 
fires (Russell-Smith and Stanton, 2002).

Attempts to map multi-layer fuel structure using 
passive optical datasets have been primarily 
confounded by the concealing effect of overstorey 
vegetation. Reasonable fuel structure mapping 
accuracies have been obtained for grasslands, 
but dense forest and shrub cover can obscure 
estimates of the height of surface fuel. Active 
sensor systems offer the opportunity to measure 
the three-dimensional structure of vegetation more 
directly (see Section 16.5). Forest fuel structure has 
been estimated using various lidar platforms (see 
Excursus 5.1):

	§ airborne (or Airborne Laser Scanning, ALS; 
Hall et al., 2005; Hudak et al., 2008; 
Chen et al., 2017a), including UAV-based 
(Wallace et al., 2016); and 

	§ ground-based (or Terrestrial Laser Scanning, TLS; 
Jupp et al., 2008; Strahler et al., 2008; 
Chen et al., 2016; Marselis et al., 2016). 

Studies using ALS to map Australian forest floristics 
and structure have produced results comparable to 
conventional vegetation surveys (Tickle, et al., 2006; 
Lucas et al., 2008a, Price and Gordon, 2016). While 
surface and near surface fuels are generally modelled 
by small footprint lidar with less accuracy compared 
to elevated fuels (Turner, 2007; see also Section 12), 
the data may still provide a useful indicator (Price and 
Gordon, 2016). Recent developments in international 
research have applied fusion techniques for 
integrated modelling of forest structure using ALS 
data with satellite radar and multispectral imagery 
(Manzanera et al., 2016, Garcia et al., 2018). 

18.3.1.2  Fuel moisture content

Fuel moisture is one of the key fire limiting switches 
that determines the propensity of vegetation to 
burn (Bradstock, 2010). The moisture content of 
both live and dead fuels is influenced primarily by 
temperature, humidity, and soil moisture. EO data 
has traditionally contributed to the fuel moisture 
characterisation of live fuel types, while dead fuel 
types (that is, not photosynthetically active) are 
generally derived from weather variables. Fuel moisture 
content (FMC) is inversely related to the flammability 
of vegetation and fire rate of spread. Traditionally 
FMC studies have been based on field observation 
or indirect estimates derived from atmospheric data. 
EO data offer an internally consistent approach to 
interpolate available FMC field data over a wide area 
(Nolan et al., 2016a, 2016b). Alternatively, direct 
estimates of FMC can be retrieved from EO data 
based on radiative transfer models (RTM) inversion 
techniques (Yebra et al., 2013, 2018). 
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As grasses senesce or become dormant their FMC 
content gradually decreases and their flammability 
correspondingly increases. This process is called 
curing, which is measured as the percentage of grass 
fuel that is dead. Grasslands that are less than 50% 
cured are not likely to foster and spread fire, however, 
when grass is between 70–90% cured, the rate of 
spread of a fire significantly increases (Cheney and 
Sullivan, 2008). In Australia, grassland curing is an 
integral component of the Grassland Fire Danger 
Index (GFDI; Cheney and Sullivan, 2008). As grasses 
cure, their spectral reflectance increases in the 
visible and middle infrared (MIR) wavelengths and 
decreases in the near infrared (NIR) region (Danson 
and Bowyer, 2004; see Section 4.3). 

Numerous studies have attempted to relate 
vegetation indices derived from EO data to the 
curing state of grasslands. The Normalised 
Differenced Vegetation Index (NDVI) has been used 
to indicate vegetation greenness in many studies 
(see Section 8.1.1) and is closely correlated with the 
moisture content of vegetation. In Australia, Paltridge 
and Barber (1988) established an inverse exponential 
relationship between FMC and NDVI derived from 
AVHRR data. Dilley et al. (2004) showed that the 
relationship between curing and NDVI varied between 
sites and derived a more accurate relationship 
between GCI and NDVI. A Relative Greenness 
approach was then developed using MODIS-derived 
NDVI (Grassland Curing Index (GCI) algorithm-C; 
Newnham et al., 2011). This method is used by 
Landgate to produce Curing Index maps for WA 
(see Section 18.7). More recently, Martin et al. (2015) 
developed a satellite model for estimating the degree 
of curing based on EO time series and weekly ground-
based observations. Results from these studies are 
used by the Bureau of Meteorology (BoM) to produce 
Australia-wide curing maps and a more quantitative 
curing estimate for computing GFDI13. 

In forested landscapes, NDVI has been correlated 
with FMC for fire risk prediction in various locations, 
including in southern Spain (Aguado et al., 2003), 
the Canadian boreal forests (Oldford et al., 2006), 
Mediterranean grasslands and shrublands 
(Chuvieco et al., 2002), and African savannas 
(Verbesselt et al., 2007). Several studies have 
reported significant correlations between 
live fuel moisture and alternative vegetation 
indices (such as NDVI < NDWI < VARI; see 
Section 8.1.1; Stow et al., 2006, Hao and Qu 2007, 
Caccamo et al., 2012; Garcia et al., 2020). However, 
empirical studies relating FMC to EO-based 
vegetation indices have reported variable results 
(Yebra et al., 2008; Casas et al., 2014), which may be 
due to sensor and site-dependent effects. 

13	 This data is available from TERN AusCover (see Section 18.7).
14	 Both FMC and Flammability estimates for Australia can be accessed via the Australian Flammability Monitoring website (see Section 18.7).

As introduced in Section 10 and Volume 1B—
Section 5, RTM are based on physical relationships 
between spectral reflectance and the biophysical 
(such as water content) and structural (such as 
leaf area index, LAI) properties of vegetation (see 
Sections 5 and 6). Therefore RTM are independent 
of sensor or site conditions and are generally more 
universal than empirical modelling (Casas et al. 
2014; Yebra et al. 2013). Yebra et al. (2018) derived 
a continental-wide FMC model for Australia using 
RTM inversion techniques, based on MODIS imagery 
(see Figure 18.2). This model was evaluated using 
high quality field data from around Australia and a 
flammability index, and indicated reasonable skill in 
fire risk prediction14. Ongoing research within the NSW 
Bushfire Risk Management Research Hub (co-led by 
the University of Western Sydney and the Australian 
National University) aims to develop spatially explicit 
monitoring and forecasting of dead and live fuel 
moisture in forested landscapes by integrating 
biophysical and EO modelling. 

Emerging alternative approaches to modelling fuel 
moisture in forested landscapes include the use 
of radar data. Airborne SAR was used to model 
live fuel moisture against field data in a semi-arid 
Australian forest dominated by white cypress pine 
(Tanase et al., 2014). Sentinel-1 C-band SAR was also 
used to model fuel moisture against field data in a 
Juniper, Redberry and Oak forest in central Texas, 
USA (Wang et al., 2019). Sophisticated integration 
or radar and optical sensors provide improved 
accuracies of fuel moisture compared to traditional 
vegetation indices derived from optical datasets, such 
as NDVI (Rao et al., 2020). Radar may also provide the 
opportunity to monitor soil moisture content, which is 
related to the moisture availability of fine surface fuels 
(Tanase et al., 2014; Punithraj et al., 2019). The recent 
and imminent launches of several spaceborne SAR 
sensors with high temporal revisit times and suitable 
sensor characteristics provide great opportunities for 
advancement of current knowledge and operational 
practices in fuel moisture monitoring for fire risk 
prediction. 

One who neglects or disregards the existence of 
earth, air, fire, water and vegetation disregards his 

own existence which is entwined with them.  
(Mahavira)



Earth Observation: Data, Processing and Applications.  Volume 3: Applications

398

18.3.1.3  Fuel load and density

A range of EO data sources and methods have been 
used to estimate fuel load (as t/ha;  
Roff et al. 2005, 2006; Chafer et al., 2004; 
Chafer, 2007). Many surrogates for forest fuel load, 
such as biomass or LAI, vary with species composition, 
tree height, and forest structure. As such, reflectance-
based methods may be more appropriate when fuel 
load is estimated indirectly, using fire extent and/or 
severity derived from EO to infer fire history (time-
since-fire), with ancillary vegetation type data and 
known fuel accumulation curves subsequently being 
used to model fuel loads (Brandis and Jacobson, 2003; 
Duff et al., 2013). Recently, the Vegetation Structure 
Perpendicular Index (VSPI) derived from Landsat data 
has been used to estimate stand age by fitting post-
fire VSPI time series to an exponential decay curve 
(Massetti et al. 2019). Time-since-fire may be a poor 
predictor of fuel load in some cases, as interactions 
between fire severity, vegetation type, and landscape 
productivity influence both the fuels remaining after 
fire and the rates of fuel re-accumulation (Price and 
Gordon, 2016). Direct measures of fuel load from active 
sensors may reduce such modelling uncertainty. 

Active sensors such as lidar have has been used 
to estimate fuel load in Australia and as input 
into operational hazard mapping (Power, 2006, 
2008). The use of active sensors may overcome 
limitations in estimating fuel load under dense 
canopies that obstruct the view of understorey layers 
(see Excursus 5.1 and Section 16.5). For example, 
predictive models of surface fuel in eucalypt forests 
in southeastern Australian have been developed 
using estimates of litter-bed depth derived from 
TLS, topographical data, and relevant environmental 
factors including previous fire disturbance (Chen 
et al., 2017a). 

One of the problems with validating EO methods 
for estimating fuel load is the lack of sufficient and 
objective field data. Visual assessment methods for 
estimating fuel load typically involve a qualitative 
element subject to observer bias, and destructive field 
sampling is only viable for a small number of sites (see 
Section 5.1.2). Field assessment methods of fuel load, 
such as McCarthy et al. (1999) and Gould et al. (2008), 
are expensive, time-consuming, complicated and 
subjective. Furthermore, recent evidence indicates 
visual assessment overestimated fuel load for very 
high and extreme fuel hazard categories, compared to 
destructively sampled surface fuels (McColl-Gausden 
and Penman, 2017). 

Keane et al. (2001) discuss other challenges 
involved with mapping fuel loads, including fuelbed 
complexity, fuel type diversity, fuel variability, 
and fuel model generalisations. Multi-scale fuel 
mapping methods, based on vegetation community, 
composition, and structure derived from field 
data, EO and gradient modelling, may help to 
overcome the limitations of using EO datasets to 
estimate fuel loads (McColl‑Gausden et al., 2019; 
Jenkins et al., 2020). This methodology was further 
developed in the LANDFIRE (Landscape Fire and 
Resource Management Planning Tools) system in the 
US, which combines fire behaviour and fuel models 
(Rollins, 2009). Similar systems are operational in 
Australia, such as FireTools used by NSW National 
Parks and Wildlife Service, which is used to predict 
fuel loads and plan prescribed burning. The integrated 
modelling being developed by the NSW Bushfire Risk 
Management Research Hub aims to characterise 
fuels using lidar data, then quantify initial post-fire 
fuel loads and re-accumulation curves in key fuel 
types, under varying levels of fire severity (NSW 
BRMR, 2020). 

18.3.2  Weather conditions and topography
A range of weather variables affect fire ignition and 
propagation, both directly and indirectly, including 
temperature, relative humidity, precipitation, dew 
point temperature, solar insolation, wind speed, 
and wind direction (Rothermel, 1972). The risk of 
large fires that are difficult to control increases with 
extreme fire weather, which is the combination of low 
relative humidity, high temperature, and strong winds. 
Specific combinations of these conditions exacerbate 
fire danger in different ways, with wind direction and 
velocity largely determining the direction and speed 
of fire spread. Nocturnal temperature inversions can 
also lead to increased fire behaviour that is unrelated 
to wind (McRae et al., 2008).

Unstable atmospheric conditions can precipitate 
extreme fire-atmosphere interactions, such as 
violent pyrocumulonimbus (pyroCb) storms 
(Fromm et al., 2010). Pyroconvection can influence 
widespread flaming and unpredictable fire behavior 
through strong and erratic changes in surface wind 
speed and direction, wind shear, mid-level moist 
instability, latent heating inside the convective cloud, 
and increased ignition likelihood through lightning 
(Sharples et al., 2016; Potter, 2012a, 2012b). An 
increased risk of pyroconvection with future climate 
change has been identified for southeast Australia 
during spring and summer, due to decreased vertical 
atmospheric stability and humidity, combined with 
more severe, near surface conditions (Dowdy and 
Pepler, 2018). 
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Certain interactions between topography and 
meteorological conditions can escalate fire danger, 
such as dynamic channelling (Kossmann et al., 2001; 
Sharples et al., 2012), where fire is directed by 
terrain to spread down valleys as well as in the major 
wind direction (Sharples, 2009). The direction and 
rate of channelling can be predicted by analysis 
of slope, aspect, and wind regime (McRae, 2004; 
Sharples et al., 2012). Numerous other complex 
interactions with slope and wind characteristics 
have been described with associated effects on fire 
behaviour, such as:

	§ atypical lateral fire spread on steep lee-
facing slopes, which may be associated with 
pyroconvective activity (Simpson et al., 2016). 

	§ Foehn winds, the warm dry winds down the 
lee slopes of mountains caused by adiabatic 
compression, which can increase the intensity and 
rate of spread of fires (Sharples et al., 2010).

	§ mountain wind waves occur as air movement is 
deflected over a ridge. Lee slope eddies can draw 
any nearby fire into the channelling zone and 
circulate embers downwind (Sharples et al., 2009). 
Terrain can also produce jet-like winds when 
airflow is accelerated through narrow passes 
(Stensrud, 1996).

	§ low level jets may be produced through geostrophic 
forcing due to horizontal differences in sensible 
and latent heat fluxes with elevation variation in 
mountainous regions. The high wind speed and 
abrupt atmospheric warming and drying increase 
the potential for fire ignition and propagation 
(Sharples et al., 2009). 

Meteorological terrain interactions are often difficult 
to predict and therefore present significant risk to 
firefighters. Satellite imagery captures characteristic 
cloud patterns produced by some of these 
phenomena. For example, mountain wind waves and 
‘dry slots’ of low humidity air in the upper atmosphere 
are visible in water vapour imagery. A range of near 
real time TIR imagery is also available which shows 
surface temperature and detects thermal belts 
(see Volume 1B—Section 7). Meteorological events 
have been observed in conjunction with several 
extreme fires in Australia (Mills, 2008a, 2008b, 
Fromm et al., 2006, Cruz et al., 2012). 

The use of EO to detect and predict drivers of the 
meteorological-terrain conditions that increase 
fire danger is an active area of research. A better 
understanding of the interaction between weather 
and topography on fire intensity and rate of spread 
will enable suppression agencies to anticipate 
extreme fire events with more certainty, and to plan 
and manage resources accordingly.

18.3.3  Ignitions 
EO detection of fire ignitions is particularly useful 
for operational management of active fires, however, 
predicting ignition risk requires an understanding of 
the drivers of ignitions. Fire ignition datasets developed 
from EO products offer spatially consistent, regional 
scale data to study and model drivers of ignitions. 
For example, satellite-derived ignition data has been 
used to model the spatial relationships between 
anthropogenic land use or disturbance features and 
ignition for different ecoregions (Fusco et al., 2016; 
Vilar et al., 2016). Predicting areas prone to lightning-
caused ignitions has also been analysed through 
coupled modelling of EO-based hotspot ignition data 
and lightning occurrence (Krawchuk et al., 2009). 

Line Scanning Systems mounted to aircraft have 
been used for many years for active firefighting 
purposes, however, systematic use of this EO 
data type for fire behaviour analyses has been 
limited (see Section 18.2). Recently, research has 
commenced into using line scans in fire behaviour 
analysis, with recommendations for routine capture 
of this data source (Filkov et al., 2018). Line scans 
are being used to understand drivers of increased 
spotting risk (Storey et al., 2020a, 2020b). Spotting 
dynamics are known to dominate fire propagation in 
catastrophic wildfires. For example, during the 2009 
Black Saturday fire in Victoria (Cruz et al., 2012; see 
Table 18.1), prolific short range spotting linked with 
crown fire propagation in eucalypt forest promoted 
extremely fast rates of spread. Greater understanding 
of the circumstances that are conducive to increased 
spotting risk may enable better forecasting, 
preparedness, and mitigation.

18.3.4  Risk analysis
Risk assessment includes both the physical 
probability of fire occurrence (likelihood) and the 
potential extent of damage (consequence). Analysis 
of EO data in conjunction with GIS has led to an 
improved understanding of both fire behaviour and 
likelihood (Chuvieco et al., 2010, 2014). Being able 
to identify those locations where fire is likely to 
occur and, if it occurs, whether it is likely to spread, 
allows incident management authorities to manage 
suppression resources most effectively.

Fire danger indices have long been used to estimate 
the likelihood of fire ignition and propagation 
(Burgan et al., 1998). These indices are basically 
derived from measures of weather, topography 
and fuel dryness. Satellite EO data has been used 
to compute inputs for these indices for decades 
(Verbesselt et al., 2002).
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Australian fire danger ratings are currently based on 
two indices:

	§ Grassland Fire Danger Index (GFDI); and

	§ Forest Fire Danger Index (FFDI). 

Initially developed as analogue meters 
(McArthur, 1966, 1967), these indices were 
subsequently expressed as equations by Noble 
et al. (1980). They indicate the likelihood of fire events 
and the likelihood of fire suppression. Both indices 
are derived from estimates of average wind velocity, 
relative humidity, air temperature, and fuel moisture. 
The latter component should reflect long term fuel 
moisture, that is, seasonal rather than diurnal variation 
in moisture content. An estimate of grassland curing 
is used to represent fuel moisture when computing 
GFDI, whereas a drought factor is used to compute 
FFDI. The drought factor is calculated using 
precipitation data and the Keetch-Byram Drought 
Index (KBDI; Keetch and Byram, 1968), where KBDI 
indicates the dryness of soils, deep forest litter, logs, 
and living vegetation. 

Many other indices have been used to assess fire 
danger. For example, the Haines index (Haines, 1988), 
which measures lower atmosphere stability and 
dryness, quantifies the potential for forest fire 
growth and is used operationally by the USFS. 
The Continuous Haines Index is modified for more 
appropriate applications in Australia, due to high 
values of Haines index occurring very frequently in 
Australia (Mills and McCaw, 2010). However, a single 

index is not expected to precisely indicate the multi-
faceted dimensions of fire risk.

A new National Fire Danger Rating System prototype 
was trialled by the NSW RFS over the summer of 
2017/18 to better incorporate extreme fire behaviour. 
The revised system is based on empirical fire 
behaviour models and fuel type mapping, as well as 
meteorological data. This system aims to provide 
greater ability to understand and predict localised fire 
danger risk with improved scientific accuracy, rather 
than applying the same fire danger across large areas 
(Kenny et al., 2019).

Several international systems have combined EO 
data with weather and/or topographic data to 
estimate fire danger (Leblon et al., 2007), ignition 
potential (Chuvieco et al., 2004), and seasonal fire 
risk (Manzo‑Delgado et al., 2009). In particular, the 
LANDFIRE Project has produced a comprehensive 
system which integrates a range of geospatial tools to 
model various landscape attributes across continental 
USA, including fire regime condition class (Rollins, 
2009). Some Australian fire mitigation agencies 
produce risk maps to show those areas whose 
topography and fuel load are associated with a higher 
likelihood of fire (for example, see https://www.bnhcrc.
com.au/hazardnotes/77). Bushfire threat has also been 
analysed in terms of proximity to bushland (Chen and 
McAneney, 2004, 2005) and changing demographics 
(Lowell et al., 2009). 

18.4  Active Fire Analyses
Active fires typically progress through two stages, 
flaming then smoldering, which are characterised by 
different temperatures, intensities, and emissions of 
aerosol particles. EO imagery from both satellite and 
airborne platforms has been used to map and monitor 
active fires. Space photography of extreme fire events 
graphically demonstrates the impact of the smoke 
plume on the upper atmosphere. 

Several polar orbiting satellites are operationally 
used to map active fires globally (see Section 18.4.1). 
Recently, the new generation of geostationary 
sensors, with greater spatial and temporal resolution, 
have improved the capacity for active fire detection. 
This data can be combined with meteorological 
satellite imagery and prediction models, as well as 
imagery from airborne sensors, for both tactical and 
strategic fire suppression and to predict the volume 
and movement of smoke (see Section 18.4.2).

18.4.1  Satellite imagery
EO TIR bands have varying sensitivities to the 
temperature ranges associated with flaming and 
smoldering fires (Dozier, 1981; see Volume 1B—

Section 7). An EO image pixel may comprise a mixture 
of areas that are unburned, flaming, and smoldering, 
which complicates detection of fire pixels using satellite 
imagery (Justice et al., 2006). Change between an 
active flaming fire front and a low intensity smouldering 
fire can occur in a short space of time. As such, the 
revisit frequency of an EO sensor is an important part 
of the accurate detection of active fires. Differentiation 
between current fires and the normal land temperature 
is another major challenge in active fire detection 
methods. For this reason, detection of smouldering fires 
from satellite imagery remains a challenge given their 
relatively low temperatures and small spatial extent 
compared to flaming fires. Cloud contamination is a 
general problem in satellite imagery applications, and 
can obscure the detection of active fires. 

Numerous EO methods have been developed 
to identify pixels containing active fires (see 
Excursus 18.1). Most algorithms use MIR and TIR 
bands (such as AVHRR band 3: 3.8 μm; and band 4: 
10.8 μm respectively) with differing sensitivities to 
flaming and smoldering fires (Giglio and Justice, 2003, 
Plank et al., 2017). These regions of the electromagnetic 
spectrum are particularly useful for detecting active 

https://www.bnhcrc.com.au/hazardnotes/77
https://www.bnhcrc.com.au/hazardnotes/77
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fire because, under normal conditions, the background 
emission in the TIR range is significantly greater than 
that in the MIR range. By contrast, when a fire occurs, 
the emitted radiation becomes more intense at the 
shorter wavelength in the MIR range (Jones et al., 
2017). Other image channels (such as AVHRR band 2, 
NIR) can also be used to identify and exclude ‘bright’ 
non-fire pixels (such as small clouds or bare soil 
patches), although such masks can also eliminate fire 
pixels affected by smoke. 

Early algorithms compared individual pixels with fixed 
thresholds. More sophisticated contextual algorithms 
have been used to determine relative thresholds 
based on the statistics of neighbouring pixels 
(Ressl et al., 2009; Plank et al., 2017). Methods using 
a multi-temporal approach to detecting active fires 
have also been developed (Koltunov and Ustin, 2007) 
and some methods use a combination of all three 
types of algorithms (fixed threshold, contextual, or 
multi-temporal; Jones et al., 2017). While active fire 
detection algorithms have been developed for many 
satellite sensors (Giglio et al., 2000; Calle et al., 2008), 
MODIS imagery became the preferred image source 
for detecting hotspots since it offers superior spatial 
resolution and significantly less saturation of the 
thermal signal, resulting in fewer false positives 
(Jones et al., 2017). 

An internationally coordinated initiative to produce a 
globally consistent system that includes fire mapping 
and monitoring is the Global Observations of Forest 
Cover and Land Cover Dynamics (GOFC-GOLD; 
see Section 18.7). The fire mapping and monitoring 
program within GOFC-GOLD aims to develop a 
real time, global observation network based on 
geostationary sensors (GOES, MSG and MTSAT) for 
large area fire detection. Results reported by Calle 
et al. (2008) demonstrated the feasibility of using 
MSG SEVIRI data to detect and map forest fires at 
national and global scales. 

18.4.2  Airborne imagery
Various airborne sensors have been integrated with 
inertial measurement units and differential global 
positioning units for streamlined geo-referencing. 
Such systems provide detailed, rectified imagery 
showing location, intensity, and direction of fire 
fronts and spot fires and their potential targets. Some 
airborne sensors that are used for fire mapping and 
monitoring, either singly or in combination, include:

	§ multispectral scanners, such as Daedalus 1268 ATM 
(with 12 bands spanning the visible, NIR, short wave 
infrared (SWIR) and TIR wavelengths), can be used 
before, during, and after fires to assess fuel and 
map fire fronts, perimeters, intensity, and impact 
(see Figure 18.3);

	§ TIR digital cameras or radiometers (some with 
selectable temperature ranges) can image the area, 
perimeter, temperature, and intensity of active fires;

	§ forward looking infrared (FLIR) scanners can 
penetrate smoke to locate hotspots and fire 
edges in active fires, which can be useful to direct 
suppression or mopping up operations including:

	w assessing the effort required to black out remote 
edges using Remote Area Fire Teams (RAFT);

	w in conjunction with visible imagery, indicating 
whether ground staff can gain access to remote 
fires; and

	w Helicopter-mounted FLIR, providing Air Attack 
Supervisors and Air Observers additional vision 
through smoke to see fire perimeters and 
landmarks for suppression coordination and 
mapping;

	§ hyperspectral scanners can capture fire intensity 
information during active fires (Dennison and 
Roberts, 2009);

	§ digital cameras and video cameras can capture 
valuable aerial views of active fires; and

	§ radar and lidar systems can be used to detect 
smoke plumes during active fire.

A variety of sensor platforms are used during active 
fire image capture, including helicopters and fixed-
wing airplanes. Helicopters are more manouverable 
and can take off and land in more diverse 
environments, but have higher operational costs and 
smaller payload capacity than fixed-wing airplanes 
(Allison et al., 2016). The use of piloted aircraft can be 
limited in extreme fire conditions due to safety risks. 
Recent advances in the technology and affordability 
of UAV show promise in the operational capture of 
EO imagery during active fires, with reduced risk 
to personnel safety when compared to manned 
aircraft (Yuan et al., 2015, Allison et al., 2016). Many 
of the same sensor types that can be mounted on 
manned aircraft are available for UAV platforms, 
including multispectral, hyperspectral and thermal 
sensors, digital cameras, and video recorders. While 
operational deployment of UAV is currently not widely 
adopted, there is increasing reporting of their use 
during operational fire management in Australia. 

Intelligence system which integrate data from 
EO (scanners plus video) with GIS and downlink 
in near real time are used in high fire risk areas 
(Kontoes et al., 2009a, 2009b). These data sources 
are not only invaluable to fire managers during 
operational fire containment, but also provide 
an objective record of fire activity, which can be 
used to reconstruct time sequences and further 
understand fire behaviour. For example, imagery from 
multispectral and thermal sensors mounted on aircraft 
have been used to observe the direction and rate of 
channelling (McRae, 2008; Sharples et al., 2012).
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Excursus 18.1�—Fire Detection Products

15	 A contextual algorithm based on Lee and Tag (1990) and Flasse and Ceccato (1996) used AVHRR bands 3 and 5, as well as latitude and Sun elevation to 
classify pixels as ‘fire’ or ‘possibly fire’.

Hotspot imagery, which highlights the locations of 
active fires, has been available for several decades 
from a range of satellite sensors. Giglio et al. (1999) 
evaluated three algorithms that had been proposed 
for large area detection of fire using AVHRR data 
and presented an enhanced algorithm for global 
monitoring which demonstrated a high probability of 
detecting small fires and excluding false positives in 
a range of landscapes. Landgate (WA) developed a 
hotspot detection method for Australian conditions 
(Craig et al., 2002) using AVHRR imagery, which 
detected most hotspots (Smith et al., 2007b)15. More 
recently, this process has been modified to identify 
hotspots using MODIS and Digital Earth Australia 
(DEA) datasets (GA, 2020).

The MODIS Fire and Thermal Anomalies product 
(MOD14/MYD14) has been available for over a decade 
(see Section 18.2). The algorithm used for this global 
product computes brightness temperatures from 
two 4 μm channels (21 and 22, which saturate at 
different temperatures) and channel 31 (11 μm). Other 
channels may be used to exclude ‘bright’, non-fire 
pixels (channels 1, 2 and 7) or cloud (channels 1, 2, 
7 and 32; Giglio et al., 2003; Justice et al., 2006). 
Validation of MODIS Fire Products has mostly used 
higher spatial resolution imagery from sensors 
such as Landsat and ASTER (Morisette et al., 2005; 
Schroeder et al., 2008a, 2008b), as well as 
comparisons with databases maintained by fire 
management agencies (Benali et al., 2016). 

Satellite-based active fire detection systems can show 
‘false-alarms’ (false positives or commission error), 
due to sunglint, forest clearing, desert boundaries, 
black soil, or hot rocks (Giglio et al., 2016; GA, 2020). 
False negatives (omission error) from satellite-based 
systems may be due to small fires, fires of short 
duration, persistent cloud cover, thick smoke, or 
topographic shadow effects (de Klerk, 2008; 

Hawbaker et al., 2008; Benali et al., 2016; 
Giglio et al., 2016). Updated algorithms for the MODIS 
Fire and Thermal Anomalies product (Collection 6) 
were targeted to address limitations observed with 
the previous Collection 5 fire product, notably the 
occurrence of false alarms caused by small forest 
clearings, and the omission of large fires obscured 
by thick smoke (Giglio et al., 2016). Ongoing research 
into the physical properties and processes of fire, and 
their relation to remotely sensed measurements may 
help to further reduce these errors in EO of active fires.

Improved fire detection products have recently 
been developed that build on the well-established 
MODIS Fire and Thermal Anomalies product. 
Schroeder et al. (2014) describe an algorithm that 
uses the Visible Infrared Imaging Radiometer 
Suite (VIIRS), launched in October 2011 aboard the 
Suomi-National Polar orbiting Partnership (S-NPP) 
satellite. Initial assessments indicate significant 
improvements in the mapping capabilities of active 
fires, compared to the MODIS product, including 
greater consistency in delineating burned area extent 
(Schroeder et al., 2014). 

Recent advances in geostationary sensors also offer 
potential improvement in satellite-based active fire 
detection methods. For example, the Advanced 
Himawari Imager onboard the Himawari-8 satellite 
in 2014, provides near real time access to imagery at 
ten-minute intervals. The high temporal resolution 
provides an increased volume of data, capturing 
contextual information to describe background 
temperature of a landscape in the absense of fire, 
and increases the opportunity for cloud-free imagery 
(Hally et al., 2018). Wickramasinghe et al. (2016) have 
developed a multi-spatial resolution approach to the 
surveillance of active fire lines using data acquired by 
Himawari-8. In Australia, the DEA Hotspots service 
routinely delivers hotspot information detected from 
Himawari-8 imagery (see Section 18.7).

Among the ancient elements, fire is the odd one out. Earth, water, air—all are substances. 
Fire is a reaction. It synthesises its surroundings, takes its character from its context. It 
burns one way in peat, another in tallgrass prairie, and yet another through lodgepole 

pine; it behaves differently in mountains than on plains; it burns hot and fast when the air 
is dry and breezy, and it might not burn at all in fog. It’s a shape shifter. 

(Pyne, 2015)
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Figure 18.3  Aerial imagery of active fire

A bushfire near Myall Park (western Darling Downs, Queensland) on 5 December 2021 was imaged from 25,000 feet. These true and 
false colour composites demonstrate the valuable fire information provided by the longer infrared wavelengths that is obscured by 
smoke in visible wavelengths (see also banner image for Section 18 on page 389).

a. True colour composite b. False colour composite using 2.2 μm (SWIR) as red, 1.6 μm 
(SWIR) as green, and ~0.5μm (visible blue) as blue.

	
Source: Robert Norman, Air Affairs Australia Pty Ltd

18.5  Retrospective Fire Analyses
A major advantage of using EO in fire studies is the 
ability to retrospectively view the environmental 
conditions that preceded a fire. Standardised EO time 
series datasets offers this unique ability to obtain pre-
fire environmental conditions after a fire event has 
occurred (see Volume 2D). Equivalent retrospective 
analyses are generally only possible with field studies 
prior to planned burns, which may not necessarily 
burn the area that was measured. 

EO-based retrospective fire analyses characterise the 
effects of fire on the landscape, including removal 
of vegetation and alteration of vegetation structure. 
These changes may reveal understorey vegetation 
or soil, and deposition of charcoal and ash. Change 
detection techniques that capture the difference 
between pre- and post-fire imagery in relation to 
reflectance properties of soil, water, and vegetation, 
are commonly used in EO of fire extent and severity 
(Miller et al., 2009; Cansler and McKenzie, 2014; see 
Volume 2D). Pre-processing of EO data is especially 
pertinent for image differencing techniques (see 

Volume 2C). For example, Gitas and Devereux (2006) 
demonstrated a 40% increase in mapping accuracy 
of forest fires after using topographic correction. 
Variations in solar angle and atmospheric influences 
also have demonstrable effects on the spectral 
separation of burned and unburned vegetation 
(Trigg et al., 2005; see Volumes 2A and 2X). 

Reflectance properties of land cover may be 
influenced by fire severity, vegetation, topography, 
and the spectral and spatial resolutions of the EO 
sensor (see Volume 1B—Section 6). In general, 
visible and NIR reflectances decrease after fire due 
to charring and reduced green vegetation (Trigg 
and Flasse, 2000). In some cases, the presence of 
white ash and the exposure of highly reflective soils 
can increase visible and NIR reflectance (Roy and 
Landmann, 2005; Huang et al., 2016). A post-fire rise 
in MIR and SWIR reflectances occurs due to greater 
soil exposure and changes in vegetation moisture 
content (Poon and Kinoshita, 2018). Ratios of NIR 
and SWIR bands therefore enhance the contrast 
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between burned and unburned areas, although the 
precise relationship between spectral indices and fire 
severity is poorly understood (Lentile et al., 2006). To 
maximise the value of EO, the underlying processes 
that control fire effects need to be better understood 
and linked directly to EO measurements.

There are generally two temporal categories for 
analysing fire effects (Reinhart, 2001):

	§ First-order or immediate effects—the direct 
consequence of fire, such as damage to, and 
death of, vegetation, fuels consumed, and smoke 
produced; and

	§ Second-order or delayed effects—the impact of 
subsequent weather conditions and time, including 
dispersion of smoke, erosion, and vegetation 
recovery, changes in species composition, and 
other ecological responses.

First order effects are only observable for a short 
period after the fire, while second order effects may 
be observable for months or years after the fire. The 
length of time varies with fire severity, seasonality, 
and productivity of the landscape. First order effects 
may become undetectable within days in highly 
dynamic ecosystems during peak growth periods. 
Similarly, dissipation of ash and charcoal will modify 
radiance of burned areas (Roy et al., 2002), which may 
be exacerbated with high post-fire rainfall. Vegetation 
may start to regrow, with growth rates dependent 
on primary productivity and environmental factors. 
Vegetative recovery (second-order effect) has 
phenological signals that may mask the first-order 
effects. Field validation may increase confidence that 
the targeted effects (first or second order) are being 
captured by the imagery used.

Several authors have noted the lack of standardisation 
for describing and measuring post-fire effects 
(Morgan et al., 2001; Lentile et al., 2006; Keeley, 2009). 
Many commonly used methods are qualitative, so 
lack an objective basis to consistently apply them to 
different times, places, and scales. A standardised 
Australian system would greatly improve data quality 
and fire management outcomes for assessing fire 
impacts.

This section will discuss some of the most useful 
retrospective analyses of fire in EO, including;

	§ delineating the extent of a fire and classifying 
the severity of its impact on vegetation (see 
Section 18.5.1);

	§ monitoring environmental recovery after fire (see 
Section 18.5.2); and

	§ analysing fire history and fire behaviour to 
understand underlying patterns and major drivers 
(see Section 18.5.3).

Operational systems that use EO datasets to map fire 
extent and severity are introduced in Section 18.6.

18.5.1  Fire extent and severity
Fire extent (variously termed fire scar, burned 
area, fire footprint, and fire perimeter) delineates 
burned from unburned ground, whereas fire severity 
measures the loss or change in organic matter 
caused by fire (Keeley, 2009). Fire severity differs 
from fire intensity, which is the energy output of the 
fire. Fire impacts vary regionally due to differences in 
climate, vegetation, topography, and biogeography, 
but are generally more heterogeneous in areas of 
low and moderate severity compared to high severity 
(Turner et al., 1999). Fire releases carbon stored in 
living and decaying vegetation so fire severity metrics 
may also be used to estimate carbon emissions 
(Chuvieco, 2008; see Section 17). 

Fire extent and severity mapping is best suited to a 
post-fire analysis, as the perimeter and proportions 
of severity classes continue to change during an 
active fire (Hudak et al., 2007). Traditional measures 
of fire severity relied on field determination of the 
depth of burn in vegetation structure, the volume 
of scorched vegetation, and changes in soil colour 
and condition. EO data now provides a cheaper and 
more extensive basis for evaluating fire extent and 
severity, with arguably greater standardisation and 
accuracy compared to either manual hand-digitisation 
in the field or helicopter-based methods (Kolden and 
Weisberg, 2007). Fire severity classifications derived 
from EO are useful for many applications, including:

	§ understanding post-fire fuel loads and re-
accumulation in relation to fire severity and fuel 
type (Eskelson and Monleon, 2018);

	§ modelling environmental drivers and landscape 
patterns of fire severity (King et al., 2008; 
Estes et al., 2017);

	§ assessing impacts of fire severity on habitats 
and ecological processes (Berry et al., 2016; 
Collins et al., 2019; Walker et al., 2019);

	§ understanding effects of climate change on fire 
regimes (Enright et al., 2015; Wang et al., 2015);

	§ analysing effectiveness of hazard reduction 
treatments and predicting severity of subsequent 
wildfires (Bradstock et al., 2010; Price et al., 2012);

	§ identifying high erosion risk sites when combined 
with slope and aspect information (Salis et al., 2019);

	§ calibrating fire behaviour models and 
exploring patterns of fire occurrence 
(Diaz‑Delgado et al., 2004); and 

	§ predicting ecosystem recovery (Lentile et al., 2009).

Fire severity information is also valuable for 
operational activities, such as salvaging timber and 
predicting impacts on water quality within water 
supply catchments. To map fire extent and fire 
severity both require the delineation of burned from 
unburned areas, with severity requiring additional 
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information about the relative scale of impact within 
the area burned. Fire extent and severity may be 
mapped manually by aerial reconnaissance or on the 
ground. Activities undertaken by many operational 
fire management organisations, such as the NSW 
RFS and the USFS, routinely capture aerial and 
ground-based sketch mapping of fire extents. While 
suited to the objectives at time of capture, such as 
emergency incident management, there are accuracy 
and consistency limitations in using such fire history 
data for other applications. EO offers a cost-effective, 
standardised, repeatable, landscape scale view, 
which is particularly advantageous for remote 
and inaccessible locations. Digital Earth Australia 
(DEA; see Volume 2D—Section 11.2) has offered an 
unprecedented opportunity to develop a continental 
fire history map for Australia (Renzullo et al., 2019; see 
Section 18.7). 

Accuracy of fire extent and severity mapping using 
EO imagery is influenced by temporal, spectral and 
spatial resolution (see Section 18.2 and Volume 1B—
Section 1). Temporally, the data needs to image the 
effects of fire as soon as possible after combustion, 
once smoke has sufficiently cleared. The date of the 
post-fire imagery needs to be late enough that the 
full extent of the fire has been reached (that is, the 
fire is extinguished), and early enough that post-
fire recovery of vegetation has not commenced. 
Vegetative recovery rates are not well-quantified 
at a standardised, regional scale. They are likely to 
be highly variable between vegetation types and 
climate regions. However, in forest and woodland 
communities, moderate resolution satellite imagery is 
typically used to capture immediate post-fire effects 
for up to 6–8 weeks post-fire. In some landscapes, 
fire effects are clearly measurable for some time 
afterwards, so field measurements can still be usefully 
conducted at a much later date.

Spectrally, EO data needs to be unaffected by smoke 
and cloud. While smoke and cloud contamination 
may inhibit suitable acquisition of post-fire imagery, 
the recent EO satellite launches have significantly 
increased the frequency of capture of multispectral 
imagery. The NIR and SWIR spectral wavelengths are 
important in detecting fire effects and delineating 
burned from unburned area. The charring and removal 
of vegetation results in a post-fire reduction in NIR, 
while soil exposure and increased radiation absorption 
by the charred vegetation results in a post-fire rise 
in SWIR (Pereira et al., 1999). Acquisition of SWIR 
reflectance is generally limited to large satellite-
borne sensors, due to the cryogenic cooling systems 
required, however future developments in technology 
are likely to eliminate this limitation (Keller, 2019). 
Radar and other active sensors such as lidar can 
penetrate cloud and smoke as well as the forest 
canopy to inform about fire effects in the understorey 
(see Excursus 5.1 and Volume 1A—Section 15). While 

active sensors have demonstrated applications in 
fire extent and severity mapping (Tanase et al. 2014; 
Hu et al., 2019), passive optical sensors are more 
commonly used. Current research is being undertaken 
on the potential for integrating active and passive 
sensors for fire extent and severity mapping, as well 
as monitoring post-fire recovery. 

Spatially, EO data must be sensitive to the landscape 
patterns of burned and unburned ground as well as 
the scale of fire severity. Many EO analyses of fire 
extent and severity are conducted at a local scale, 
using imagery from medium scale sensors (such 
as Landsat TM and Sentinel-2 MSI). For large fires 
(> 100 ha), accuracies over 80% are common. The 
accuracy of estimates from coarse spatial resolution 
data is affected by the spatial patterns of fires. With 
coarser resolution sensors (such as MODIS) many 
small, scattered fires can be easily omitted, leading 
to an underestimation of total area burned, whereas 
a predominance of large, compact fires can cause 
overestimation of burned area (Eva and Lambin, 1998; 
Silva et al., 2005). Higher resolution sensors have 
the potential for greater precision in mapping fine 
scale patterns in severity and unburned mosaics 
within the larger fire extent. Operational products 
of fire extent and severity are available from a 
number of international and Australian agencies as 
detailed in Sections 18.6 and 18.7. Several studies 
have highlighted deficiencies in these products 
(Bradley and Millington, 2006) while some have 
reported consistency with other image-based maps 
(Boschetti et al., 2008). National scale, fire severity 
mapping programs are not currently operational in 
Australia, and presents a clear gap in Australia’s fire 
mapping capability.

Regardless of the method used to produce a fire 
severity classification, some form of validation of 
results is required before it should be used on an 
operational basis. High resolution aerial photography 
that is captured immediately post-fire provides a 
surrogate for field observation data to independently 
validate EO-based fire extent and severity mapping 
products. Although not routinely captured after all 
fires in most jurisdictions in Australia, land and fire 
management agencies often commission large or 
otherwise notable fires to be flown for high resolution 
aerial photography. Various satellites are also able 
to capture high resolution imagery suitable for 
independent validation techniques (see Volume 1A—
Section 12). While this data is not freely available, 
high resolution post-fire imagery can be a worthwhile 
investment for many applications when compared 
to the time and cost invested in traditional field 
validation. High resolution imagery is also suitable 
for broadscale landscape studies and validation 
of various EO-modelled fire mapping products 
(such as Vanderhoof et al., 2017, Collins et al., 2018, 
Gibson et al., 2020).
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18.5.1.1  Normalised Burn Ratio 

A commonly used reflectance index in fire extent and 
severity mapping is the differenced normalised burn 
ratio (dNBR), which highlights the differences between 
pre- and post-fire imagery to detect the fire-induced 
spectral response in the NIR and SWIR wavelengths 
(Lopez Garcia and Caselles, 1991;  
Key and Benson, 1999; see Section 9.2.1 for equations). 
This index has been shown many times to be more 
effective than NDVI for this application. Initially 
developed for Landsat TM imagery, the dNBR is 
also suited to data with similar spectral bandwidths, 
such as Sentinel-2 MSI. The dNBR is used in national 
fire extent and severity mapping programs, such as 
the US Monitoring Trends in Burn Severity (MTBS; 
Eidenshink et al., 2007), and has been shown to produce 
reasonable accuracy compared to field validation for 
severity within a single fire, across a range of vegetation 
communities (for example, approximately 60–70% 
accuracy; Miller and Thode, 2007; Soverel et al., 2010; 
see Section 18.6.3). Miller and Thode (2007) also 
produced higher accuracy maps, especially for high 
fire severity classes in heterogenous landscapes, using 
dNBR relativised for the pre-fire NBR (the RdNBR; see 
Section 9.2.1; also Miller et al., 2009).

Many studies have compared alternative 
reflectance indices against the dNBR, which has 
been widely reported to be more sensitive to fire 
effects than dNDVI and NDVI (Hudak et al. 2007, 
Escuin et al., 2008). Other studies have reported 
that NBR and its variants were insensitive to some 
post-fire spectral changes soon after fire occurrence 
(Roy et al., 2006; Lewis et al., 2007). Variations in 
NBR can occur due to changes in seasonal solar 
elevation and topographic shadowing in high 
latitudes (Verbyla et al. 2008, French et al. 2008). 
Many spectral indices are confounded by dark soil 
backgrounds, which become indistinguishable from 
burned areas. In forest communities with understorey/
mid-storey structural layers, reflectance indices in 
general have greater accuracies in quantifying canopy 
fire effects than sub-canopy fire effects, which is an 
expected limitation of passive optical EO approaches. 

The dNBR, like many other fire severity reflectance 
indices, have limited accuracy when thresholded into 
standardised severity classes for comparison between 
different fires, due to the influence of pre-fire vegetation 
structure, soil type, and vegetation moisture (Miller 
and Thode, 2007; Kolden et al., 2015). A combination of 
multiple indices may provide more complete and accurate 
information than any single index (Miller and Thode, 
2007). Indices measuring the relative sub-pixel cover of 
photosynthetic, non-photosynthetic material, and bare 
ground (such as fractional cover, or spectral unmixing; 
see Excursus 8.3) may provide a closer estimate of the 
quantity of organic matter consumed by fire compared 
to NBR. 

18.5.1.2  Composite Burn Index 

The Composite Burn Index (CBI), also referred to as 
the Geometrically-structured Composite Burn Index 
(GeoCBI), was specifically developed to validate 
regional classification schemes of EO-derived fire 
severity data (Cansler and McKenzie, 2014). It is 
the most commonly used method to field validate 
and calibrate fire severity reflectance indices 
(e.g. Strand et al., 2013; McCarley et al., 2017). 
Measurements of surface and vegetation changes 
are visually estimated and aggregated into a unitless 
score and the protocol requires a subjective estimate 
of pre-fire condition by including field plots in 
adjacent unburned areas. Miller and Thode (2007) 
also report that some transformation may be required 
when dNBR or RdNBR is used to model CBI since 
NBR is sensitive to soil conditions and CBI is primarily 
a vegetation severity measurement. CBI reaches a 
maximum value when there is complete vegetation 
mortality as opposed to dNBR (which varies in 
value after complete vegetation mortality, resulting 
in a nonlinear relationship between dNBR to CBI). 
Furthermore, CBI correlates poorly to biophysical 
metrics and to the spectral reflectance of the top 
surface, which is likely due to the combinations 
of effects that can result in the same CBI score 
(Hudak et al., 2007; Miller and Thode, 2007). 
Keeley (2009) questioned the validity of using a 
composite field index (such as CBI) that combines 
attributes of fire severity and ecosystem response, 
even if it is correlated with spectral measures. 

18.5.1.3  Alternative approaches

Spectral unmixing is increasingly being demonstrated 
as an effective, if somewhat complicated, method 
for mapping fire extent and severity in EO (see 
Section 8.3 and Volume 2E). Spectral unmixing uses a 
calibrated relationship with high quality, quantitative 
field data (Scarth et al., 2010; Guerschman et al., 2015), 
which may be more directly analogous to traditional 
field-based assessment (Lentile et al., 2006; 
Morgan et al., 2014; Meddens et al., 2016). Spectral 
unmixing methods have been used with hyperspectral 
imagery to assess fine scale effects of fire on the soil 
surface (Robichaud et al., 2007; Lewis et al., 2007). 
Alencar et al. (2011) used a system based on a Monte 
Carlo mixture modeling approach to define the 
usual photosynthetic, non-photosynthetic, and bare 
fractions, plus a fraction called shade/burn (defined 
as having zero reflectance in all spectral wavelengths) 
to distinguish the canopy disturbances caused by 
fire from those caused only by logging. The resulting 
Burn Scar Index (Alencar et al., 2011) produced a 
classification accuracy of 88.9% for burned area, 
and 95.15% for unburned area. Gibson et al. (2020) 
compared the performance of multiple indices 
(including spectral unmixing of Sentinel-2 data and 
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reflectance-based indices) in a machine learning 
framework trained on severity class samples derived 
from high resolution post-fire aerial photograph 
interpretation and concluded that the addition of 
fractional cover-based indices was particularly helpful 
in delineating burned from unburned areas. 

RTM inversion shares some similarities with spectral 
unmixing (see Section 8.3), with the spectral response 
of target surface types being obtained through 
an RTM, rather than from sampling the image 
directly (Yin et al., 2019). Pixels are subsequently 
classified as one of the modelled surfaces based on 
the similarity to the modelled spectral responses. 
De Santis et al. (2010) developed this approach for 
the purpose of mapping fire severity by using the 
PROSPECT leaf RTM coupled to the GeoSail canopy 
RTM to forward model spectra for 30 different 
surfaces with different fire severity levels (defined 
by their GeoCBI index; see Section 18.5.1.2) in coastal 
California. These spectra formed a Look-Up Table 
(LUT), and for each pixel, the closest match was 
defined by the ‘spectral angle’ between model and 
observed reflectances (see Volume 2D—Section 7). 
The approach showed a strong linear relationship with 
field-observed GeoCBI values.

Recent advances in computing technology, such as 
readily accessible cloud-based satellite data and 
processing services, have opened new frontiers to 
develop more sophisticated techniques with complex 
datasets and multiple indices. Recent examples 
in fire extent severity mapping include principal 
components analysis (PCA; Aitkaci et al., 2018, 
Alexandris et al., 2017; see Volumes 2C and 2D), 
supervised image classification using machine 
learning (see Volume 2E) and Google Earth engine 
(Collins et al., 2018), and the integration of reflectance 
and fractional cover indices in a machine learning 
framework (Gibson et al., 2020). Some of these 
techniques have demonstrated greater sensitivity and 
predictive power compared to traditional approaches, 
particularly in complex heterogeneous environments.

18.5.2  Fire recovery
Post-fire recovery is a second-order effect of fire, 
characterised as a successional process towards 
either the pre-fire community structure and function 
or to an alternative stable state (Turner et al., 2016). 
Measuring and monitoring fire severity and 
subsequent post-fire recovery are essential for 
understanding the full effects of fire across the 
landscape. The relationship between fire severity 
and post-fire recovery rates has long been a focus 
for ecology and global carbon cycle studies and is 
becoming a more pressing issue, as the frequency and 
severity of fire disturbance increases with warmer and 
drier global climatic conditions (Turner et al., 2016, 
Meng et al., 2018).

Post-fire forest recovery is closely connected to fire 
severity, with strong spatial heterogeneity across 
the landscape (Bolton et al., 2015). The interaction 
between first-order fire effects (fire extent and 
severity) and environmental variables, such as 
rainfall and climate conditions, influence the post-
fire recovery trajectory over time, which may be 
observable for decades after a fire. The rate of 
ecosystem recovery after fire depends on local and 
regional weather, the timing and severity of fire, and 
the type of vegetation affected. In some communities, 
high severity burns may encourage subsequent 
weed invasion and erosion, and may destroy seed or 
vegetative sources. By contrast, in other communities, 
high severity fires may promote greater rates of 
resprouting or seedling emergence than lower 
severity fires. Post-fire vegetation recovery rates may 
also vary between species within a community and 
between conspecific individuals (such as age-related 
variation in resprouting response to fire; Bellingham 
and Sparrow, 2000). For example, a homogenous area 
of extreme fire severity (that is, 100% post-fire loss of 
above ground biomass) may display heterogeneous 
patterns in the rates of vegetative resprouting in one 
vegetation community, while another community may 
display a more even and rapid rate of resprouting 
or regrowth (for example, a closed forest with a mix 
of resprouter and obligate seeder plant functional 
types (see Section 4.2.1) compared to an open 
grassland). Such variation in recovery from fire can 
create difficulty in applying and interpreting metrics 
of fire recovery between different communities. This 
highlights the importance of local knowledge for 
interpreting EO fire mapping products.

A wide range of approaches to monitoring post-
fire recovery have been explored in the literature, 
including image classification (see Section 8.2 
and Volume 2E), NDVI (Malak and Pausas, 2006), 
dNBR (Lentile et al., 2007), SAR-based recovery 
index (Minchella et al., 2009), char fraction 
(Smith et al., 2007a), and NDVI time series (Hope et al., 
2007). Spectral unmixing has also been used for 
multi-temporal cover change mapping (Okin, 2007), 
as well as the vegetation structure perpendicular 
index (VSPI; Massetti et al., 2019). LandTrendr, 
based on Landsat SWIR data, has also been tested 
for recovery monitoring applications. However, it 
requires a recovery curve pattern assumed a priori 
(Kennedy et al., 2010), which may be a limitation for 
applying the model at a landscape scale without local 
knowledge. 

The limitations of different EO sensors for monitoring 
post-fire recovery are becoming widely recognised. 
The key limitation of optical sensors is the difficulty 
in separating post-fire forest canopy recovery 
from understorey recovery (Castro et al., 2011; 
Fisher et al., 2016). While understorey vegetation 
(including shrubs, herbaceous, and woody) can 
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recover quickly after a fire event, the structure and 
function of understorey vegetation may differ from 
the pre-fire canopy in terms of lifeform, productivity, 
and capacity for carbon and water storage 
(Swanson et al., 2011). 

Radar sensors can penetrate cloud, haze, and 
smoke, and are sensitive to forest structure and 
biomass (see Volume 1A—Section 15.2 and Volume 
1B—Section 8). The SAR L-band sensitivity to forest 
structural parameters allows for differentiation 
between forest growth and degradation stages, 
which may be useful for post-fire regrowth monitoring 
(Joshi et al., 2015), although known soil moisture 
effects need to be carefully accounted for (Chu and 
Guo, 2014). Discriminating post-fire recovery from 
ALOS PALSAR data was observed to be difficult 
during early stages of regrowth due to saturation 
effects (Tanase et al., 2011). Multi-sensor integrated 
approaches for recovery monitoring are becoming 
more commonly explored, especially as computing 
power and processing limitations are further reduced 
with advancing technology. 

18.5.3  Fire history and behaviour 
Fire extent and severity mapping compiled over 
many years gives the opportunity for spatiotemporal 
patterns of fire incidence, frequency, and severity 
to be examined (Boer et al., 2006, 2008; Tolhurst 
and McCarthy, 2016; Case and Staver, 2017). Over 
40 years of global satellite data are now available 
to analyse the progression of a wide range of fire 
events. Various statistics can be derived from such 
fire history databases, including years burned, years 
since last burn, extent of burned area, and frequency 
of fire, which are commonly used by land and fire 
management agencies to inform prescribed burning 
plans. Many of these statistics are now available on 
web-based fire mapping systems (see Section 18.7). 
Time series analysis techniques are particularly useful 
in this context to highlight and quantify patterns of 
change (see Volume 2D—Sections 8 and 9). Time 
series analyses of fire extent and severity can help to 
inform the role of fuel treatments and previous wildfire 
on subsequent fire extent and severity patterns 
across the landscape (Tolhurst and McCarthy, 2016, 
Lydersen et al., 2017). 

Recent advances in fire behaviour studies have 
integrated analyses of EO data captured prior 
to, during and immediately after a fire event. For 
example, meteorological observations during a fire 
event may be used to help understand the role of 
pyro-convection in driving atypical and dangerous 
fire behaviour (pyroCb storms; Fromm et al., 2010, 
McRae et al., 2015; see Section 18.3.2). Line scan 
aerial imagery can help to understand the interaction 
between wind and terrain on fire behaviour 
(Sharples et al., 2012) and factors influencing patterns 
of spotfire dynamics (see Section 18.3.3). A strong 
understanding of the effects of meteorological 
conditions on fire behaviour allows the forecasting 
of violent and dangerous fire conditions (see 
Section 18.3.4). Maps of hotspots and subsequent fire 
extents may be compared to model fire progression 
(see Section 18.4). This approach is particularly 
useful for large, unimpeded fires, as occur in tropical 
savanna landscapes.

Fire simulation systems, such as Phoenix Rapidfire in 
Australia (Tolhurst et al., 2008), offer a fire behaviour 
analysis tool that is commonly used for decision 
support by land and fire managers (Miller et al., 2015). 
Inputs include atmospheric conditions, fuel 
conditions, topography, and initial fire location, which 
can be sourced from a range of databases or derived 
from satellite imagery. However, fire simulation 
systems generally use rate of spread models 
generated under moderate conditions (to enable 
safe control of the experimental fire), and as such 
may have limited accuracy in predicting the dynamic 
wildfire behaviours that occur under more extreme 
fire weather conditions (Filkov et al., 2018).

Recent climatic changes have been associated with 
increased frequency of extreme fire weather and 
consequently, extreme fire events (Collins, 2014; 
Stavros et al., 2014). These changes are increasing 
the potential for erratic and extreme fire behavior that 
puts lives and property at greater risk. Under extreme 
fire weather conditions, fire behaviour can rapidly 
change with regard to rate of spread and fire intensity, 
including unusual or unpredictable phenomena 
such as plume-dominated spread, vorticity-
driven lateral spread, and mass spotting events 
(Sharples et al., 2012). Further research and more 
sophisticated prediction models of fire behaviour are 
increasingly more critical to provide early warnings to 
protect the lives of fire fighters and local communities.
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18.6  Operational Systems for Fire Management
EO methods offer a consistent, scientific base 
from which known measures of fire likelihood can 
be extrapolated (both fuel ignition and potential). 
The vast landscapes of the Australian environment 
make EO the only cost-effective way to achieve 
the broadscale assessments required for fire 
management. While EO imagery offers a unique 
perspective of any landscape, the challenge in 
Australia is to identify those elements in this 
perspective which are associated with the potential 
for fire in our landscape—and its impact. 

Hitherto EO has been an underutilised resource for 
mapping, monitoring, and studying fire in Australia. 
While most agencies use EO data for some aspects 
of fire planning and management, the potential 
benefits of this technology are not being completely 
realised. Operational use of EO for fire management 
in Australia is often opportunistic, relying on data, 
equipment, methods and validation as these become 
available. Many risk assessment procedures for 
fire management currently rely upon subjective 
measures of fuel condition and load, which can vary 
significantly within and between geographic regions 
and jurisdictions.

Following the unprecedented bushfire crisis of 
2019/20, five recommendations from the NSW 
Independent Bushfire Inquiry focus on further 
government investment into EO of fire to improve fire 
management and emergency response:

	§ 4—establish a spatial technology acceleration 
program to maximise the information available from 
the various EO technologies;

	§ 18—ensure that there is a single whole-of-
government procurement and acquisition program 
for imagery;

	§ 22—as part of the spatial technology acceleration 
program, support deployment of EO and image 
processing technologies for monitoring and 
auditing;

	§ 36—invest in long term ecosystem and land 
management monitoring, modelling, forecasting, 
research and evaluation, and harness citizen science, 
to (among other things) better understanding the 
influence of different land management practices on 
landscape flammability; and 

	§ 51—expand the Remotely Piloted Aerial Systems 
(RPAS) capability of NSW Fire and Rescue.

Recommendations from the Royal Commission into 
National Natural Disaster Arrangements, 2020, 
reiterate the need for national coordination and 
dissemination of relevant spatial information, 
including EO datasets (CoA, 2020).

Nonetheless, EO datasets are already being used 
operationally in a number of areas of fire management 
in Australia. Operational systems implement research 
that will continue to be enhanced with ongoing 
development and refinements, including:

	§ modelling flammability (see Section 18.6.1);

	§ hotspots to locate active fires (see Section 18.6.2); 
and

	§ fire extent and severity following fires (see 
Section 18.6.3).

18.6.1  Flammability models
The Australian Flammability Monitoring System 
(AFMS; http://anuwald.science/afms) is an 
experimental, operational, near real time flammability 
data service developed by the Australian National 
University (ANU) with funding from the Bushfire and 
Natural Hazards CRC (BNHCRC) to support fire risk 
management and fire operation response activities 
such as hazard reduction burning and pre-positioning 
firefighting resources and, in the longer term, the new 
National Fire Danger Rating System (see Table 18.3). 
The AFMS has been built in consultation with end 
users to make sure the system is adapted to their 
needs in terms of, for example, data content and 
formats. The AFMS provides information on fuel 
moisture content and flammability across Australia 
at 500 m resolution. It also displays information on 
soil moisture content near the surface (0–10 cm) and 
shallow soils (10–35 cm) as research outcomes from 
the joint BoM/BNHCRC project entitled ‘Improving 
land dryness measures and forecast’. The AFMS is the 
only system of this kind at a continental scale and it is 
in the process of being transitioned to GA to sustain 
the system into the longer term.

http://anuwald.science/afms
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Table 18.3  Current and potential uses of the Australian Flammability Monitoring System 

FMC: Fuel Moisture Content

Stage Purpose Usage examples

1. Planning
Assist with scheduling 
plan prescribed burns

Drier FMC in a forest may indicate more potential to scorch the canopy

Fuel moisture differential can act as soft control lines

Long term fuel conditions for the Prescribed Burning Decision Support Tool (PB-DST)

Emissons assessment and smoke dispersion

2. Preparedness
Amend preparedness 
levels

These relate to Fire Danger Rating in response to lower/higher than average landscape dryness 
conditions or exceed set defined thresholds

3. Response
Assist in firefighting 
and resources 
allocation

FMC as an input in Spinifex grass fire behaviour

Highlight potential for anomalies in predicted rate of spread: for lower FMC a fire may spread faster 
than predicted

Soft control lines based on fuel moisture differential

Source: Marta Yebra, ANU

18.6.2  Hotspot imagery
Web-based GIS systems are commonly used to 
provide near real time, end user access to active 
fire products in order to support natural resource 
management and operational fire management 
decisions. A range of web-based platforms have been 
developed, using different satellite systems to derive 
end user products for different regions of the world 
(see Section 18.4.1 and Excursus 18.1). 

In Australia, AVHRR and MODIS imagery are 
incorporated into several web-based active fire 
monitoring systems to deliver hotspot information 
in near real time (with 0.5–2 hour delay). As detailed 
in Section 18.7, such systems include Firenorth, NAFI 
(North Australian Fire Information), and Landgate 
FireWatch (WA). The revised Sentinel Hotspots 
system (now called DEA Hotspots) also incorporates 
information from the AHI sensor on the Himawari-8 
satellite using algorithms developed by Landgate to 
derive active fire products (GA, 2020). In addition, 
Australian fire information is available from Sentinel 
Asia and some global fire mapping systems (see 
Section 18.7).

18.6.3  Fire extent and severity
National scale estimates of fire extent have been 
derived from a range of imagery, including AVHRR 
(Otón et al., 2019) and MODIS (Roy et al., 2002, 
Roy et al., 2005, Chen et al., 2017b). One of the global 
MODIS land products (MCD45A1) is a monthly, 
500 m, burned area product (Roy et al., 2005), based 
on an automatic algorithm that uses a “bidirectional 
reflectance distribution function (BRDF) model-
based expectation approach” (Roy et al., 2002). 
Various updates and refinements to the MODIS 
burned area algorithms have occurred, with the 
current version (collection 6) providing considerably 

more sensitivity than the original (Giglio et al., 2016). 
Chuvieco et al. (2018) developed an algorithm that 
uses MODIS red and NIR reflectances and thermal 
anomalies data, which provides the highest spatial 
resolution (~250 m) among the existing global burned 
area datasets. 

The Monitoring Trends in Burn Severity (MTBS) 
project maps the fire extent and severity of all large 
fires (> 1000 acres in the west; > 500 acres in the 
east) in the USA using Landsat imagery since 1984 
(Eidenshink et al., 2007; see Section 18.7). This work 
is sponsored by the Wildland Fire Leadership Council 
(WFLC) and conducted by the USGS Centre for Earth 
Resources Observation and Science (EROS) and USFS 
Remote Sensing Applications Centre (RSAC). The 
project uses dNBR and RdNBR to manually delineate 
fire extents (see Section 18.5.1.1). Analyst input is 
required to determine appropriate image thresholds 
of dNBR and/or RdNBR fire severity classes, based 
on the method proposed by Key and Benson (2006). 
Fires in a range of landscapes have been cross-
calibrated to maintain consistency. Results are used 
to determine long term fire trends for policy purposes, 
pre- and post-fire assessment and monitoring, 
LANDFIRE data inputs (see Section 18.3.4), and 
academic fire severity research. 

In Australia, automated or semi-automated systems 
are operational for fire extent mapping over the 
rangelands of northern Australia, with differing 
approaches being adopted in different jurisdictions. 
Queensland government produces an annual burned 
area map based on Goodwin and Collett (2014). The 
NAFI burned area methodology involves differencing 
pre- and post-fire MODIS imagery with a subsequent 
segmentation and classification step including some 
supervisor input. Landgate (WA) also deliver burned 
area maps and fire history products (see Section 18.7).
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In NSW, the Department of Planning, Industry and 
Environment (DPIE) in partnership with the NSW 
RFS, is in the final stages of testing an operational 
fire extent and severity mapping system (FESM), 
based on a Sentinel-2 random forest algorithm 
(Gibson et al., 2020). The FESM system was used to 
support NSW and ACT Government rapid response 
operations during the bushfire crisis of 2019/20.

In Victoria, the Department of Environment, Land, 
Water and Planning (DELWP), in partnership with 
La Trobe University, have implemented a severity 
mapping system that closely aligns with the 
severity classification framework used in NSW 
(Collins et al., 2018). This mapping, which uses 
Landsat and Google Earth Engine, was generated 
and made publicly available for the Victorian fires 
following the bushfire crisis of 2019/20.

An automated algorithm for nation-wide burned area 
and severity mapping using DEA infrastructure (see 
Volume 2D—Section 11.2) was recently developed 
and is close to operational. The algorithm includes a 
sequence of:

	§ change detection—for individual pixels based on 
the cosine distance between the observed and 
geometric median reflectances for preceding years 
(Roberts et al., 2017);

	§ change characterisation—uses absolute and 
relative NBR and cosine distance changes to 
quantify fire severity and duration;

	§ region growing—helps to improve classification by 
contracting pixels with below-threshold evidence of 
burning; and 

	§ attribution—integrates results with DEA Hotspots 
(see Section 18.7) and any externally-available 
fire maps to produce a burned area product with 
pixels identified as: potential (detected change); 
corroborated (change coinciding with detected 
fire); or confirmed (change coinciding with 
externally provided burn information). 

Depending on the objective of fire mapping and 
the jurisdiction in Australia, there may be a trade-
off decision regarding the spectral and spatial 
resolution of different data types for operational 
programs of mapping fire extent and severity. For 
local scales, where high resolution post-fire aerial 
imagery has been captured, hand digitisation of 
fire extent and severity may be appropriate. This is 
routinely undertaken by the Victorian government, 
for example. However, for broader scales, or where 
high resolution post-fire aerial photography is not 
routinely captured, satellite sensors using spectral 
analysis will be more appropriate. The most suitable 
data source and mapping strategy is also likely 
to vary between landscapes, climatic zones, and 
biogeographic regions (Gregoire et al., 2003). 
Edwards et al. (2013) proposed that fire severity 
classification in northern Australia, dominated by 
open savanna woodlands, would be suited to simply 
differentiating ‘Severe’ from ‘Not-Severe’. By contrast, 
in forested ecosystems of southern Australia, fire 
severity is more accurately categorised with a higher 
number of classes to discriminate varying levels of 
scorch, and consumption of canopy and understorey 
layers (McCarthy et al., 2017; Gibson et al., 2020). 
Approaches to mapping fire extent may also require 
different solutions in landscapes where fire locations 
are generally unknown, such as vast remote areas 
of northern Queensland, Western Australia, and the 
Northern Territory, compared to NSW and Victoria 
where 95% of fires have their locations identified and 
mapped by incident management authorities shortly 
after ignition.
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18.7  Further Information

2020 Royal Commission into National 
Natural Disaster Arrangements
https://naturaldisaster.royalcommission.gov.au/

publications/html-report

Geoscience Australia (GA)
Bushfires: https://www.ga.gov.au/scientific-topics/

community-safety/bushfire

DEA Hotspots is an upgraded version of Sentinel 
Hotspots originally developed by CSIRO. DEA 
Hotspots, features a number of contextual layers 
and interactive functions, including historical 
fire data, with latency of 17–60 minutes: https://
hotspots.dea.ga.gov.au/

TERN AusCover
Fire Dynamics and Impact—a range of monthly fire-

related maps to track vegetation and landscape 
changes over time: http://www.auscover.org.au/
dataset_categories/fire-dynamics-impact/

Seasonal composites of fractional cover based on 
Landsat-5, -7 and -8 for every calendar season 
since 1986 are available from: http://auscover.org.au/
purl/landsat-seasonal-fractional-cover

Landgate (Western Australia)
Landgate provide several satellite online fire products 

and services:

	§ My FireWatch—national hotspot map updated 
every 2–4 hours: https://myfirewatch.landgate.
wa.gov.au/

	§ FireWatch Pro—advanced fire information for 
management agencies: https://firewatch-pro.
landgate.wa.gov.au/home.php

	§ Aurora—fire spread predictions and simulations: 
https://aurora.landgate.wa.gov.au/home.php

Other relevant Landgate products derived from 
EO datasets include maps of lightning detection, 
greenness/curing and burned area: www.landgate.
wa.gov.au/maps-and-imagery

North Australia Fire Information (NAFI)
The North Australia Fire Information (NAFI) website 

was designed to meet the bushfire needs of fire 
managers in northern Australia. NAFI is a MODIS-
based fire scar mapping system hosted by Charles 
Darwin University, which presents near real time 
hotspots and regularly updated fire scar maps, and 
includes data related to fire history: https://www.
firenorth.org.au/nafi3/

New South Wales
NSW DPIE, in conjunction with NSW RFS, have 

developed a semi-automated fire extent and 
severity mapping (FESM) approach using Sentinel-2 
imagery: https://datasets.seed.nsw.gov.au/dataset/
fire-extent-and-severity-mapping-fesm

Australian Fire History
ANU WALD/GA DEA: an automated workflow is 

being developed to map burned area extent for 
operational use across Australia, with a focus on 
woody vegetation (Renzullo et al., 2019): http://wald.
anu.edu.au/challenges/bushfires/burn-mapping/

Victoria: This dataset represents the spatial extent 
of fires recorded in Victoria since 1903 primarily 
on public land, including bushfires and DELWP 
planned burn information. Since 2006 fire severity 
data has been included in the Fire History dataset. 
Country Fire Authority (CFA) data on fires 
occurring on private land has also been included 
since 2009: https://discover.data.vic.gov.au/dataset/
fire-history-records-of-fires-primarily-on-public-land

Australian Flammability Monitoring System 
(AFMS)
AFMS allows users to visualise and interpret national 

scale information on live fuel moisture content 
and its uncertainty, a flammability index, and soil 
moisture content (both near surface and in shallow 
soil) as maps or graphs: http://wenfo.org/afms/

Sentinel Asia
Sentinel Asia is a cooperative led by the APRSAF 

(Asia-Pacific Regional Space Agency Forum) to 
share disaster information in the Asia-Pacific region 
(Held and Kaku, 2007). This region experiences the 
largest proportion of natural disasters in the world, 
many of which are observable in real time using 
satellite EO: https://sentinel-asia.org/

The Global Observations of Forest Cover 
and Land Cover Dynamics (GOFC-GOLD)
Internationally coordinated initiative to produce 

a globally consistent system that includes fire 
mapping and monitoring: http://gofc-fire.umd.edu/

MODIS Fire Products
modis.gsfc.nasa.gov/data/dataprod/index.php

https://naturaldisaster.royalcommission.gov.au/publications/html-report
https://naturaldisaster.royalcommission.gov.au/publications/html-report
https://www.ga.gov.au/scientific-topics/community-safety/bushfire
https://www.ga.gov.au/scientific-topics/community-safety/bushfire
https://hotspots.dea.ga.gov.au/
https://hotspots.dea.ga.gov.au/
http://www.auscover.org.au/dataset_categories/fire-dynamics-impact/
http://www.auscover.org.au/dataset_categories/fire-dynamics-impact/
http://auscover.org.au/purl/landsat-seasonal-fractional-cover
http://auscover.org.au/purl/landsat-seasonal-fractional-cover
https://myfirewatch.landgate.wa.gov.au/
https://myfirewatch.landgate.wa.gov.au/
https://firewatch-pro.landgate.wa.gov.au/home.php
https://firewatch-pro.landgate.wa.gov.au/home.php
https://aurora.landgate.wa.gov.au/home.php
http://www.landgate.wa.gov.au/maps-and-imagery
http://www.landgate.wa.gov.au/maps-and-imagery
https://www.firenorth.org.au/nafi3/
https://www.firenorth.org.au/nafi3/
https://datasets.seed.nsw.gov.au/dataset/fire-extent-and-severity-mapping-fesm
https://datasets.seed.nsw.gov.au/dataset/fire-extent-and-severity-mapping-fesm
http://wald.anu.edu.au/challenges/bushfires/burn-mapping/
http://wald.anu.edu.au/challenges/bushfires/burn-mapping/
https://discover.data.vic.gov.au/dataset/fire-history-records-of-fires-primarily-on-public-land
https://discover.data.vic.gov.au/dataset/fire-history-records-of-fires-primarily-on-public-land
http://wenfo.org/afms/
https://sentinel-asia.org/
http://gofc-fire.umd.edu/
http://modis.gsfc.nasa.gov/data/dataprod/index.php
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Monitoring Trends in Burn Severity (MTBS)
fsgeodata.fs.fed.us/mtbs/

Fire Philosophy Publications
Bradstock, R.A., Gill, A.M., and Williams, R.J. (2012). 

Flammable Australia: Fire Regimes, Biodiversity 
and Ecosystems in a Changing World. CSIRO, 
Melbourne. 333pp.

Dyer, R., Jacklyn, P., Partridge, I., Russell-Smith, J., 
and Williams, D. (Eds). (2002). Savanna Burning 
Understanding and Using Fire in Northern 
Australia. Tropical Savannas Cooperative Research 
Centre, Darwin. 136pp.

Jurskis, V. (2015). Firestick Ecology. Connor Court 
Publishing, Ballarat. 335p. ISBN: 9781925138740

Latz, P. (2007). The Flaming Desert: Arid Australia—a 
Fire Shaped Landscape. Alice Springs, NT. 164pp. 
ISBN: 9780646481753

Pyne, S.J. (1992). The Burning Bush: A Fire History of 
Australia. Allen and Unwin, Sydney. 520pp. ISBN: 
1863731946

Pyne, S.J. (2012). Fire: Nature and Culture. Reaktion 
Books, London. 224pp. ISBN: 978 1 78023 046 7.

Pyne, S.J. (2015a). The Fire Age. Aeon essay: https://
aeon.co/essays/how-humans-made-fire-and-fire-
made-us-human

Pyne, S.J. (2020). The Still-Burning Bush. Scribe Short 
Books, Melbourne. 144pp. ISBN: 1920769757

Steffensen, V. (2020). Fire Country, How Indigenous 
Fire Management Could Help Save Australia. 
Explore Australia. 240pp. ISBN: 9781741177268 

18.8  References
ADRKH (2020). Australian Disaster Resilience 

Knowledge Hub website: https://knowledge.aidr.org.
au/about/

Aguado, I., Chuvieco, E., Martin, P., and Salas, J. 
(2003). Assessment of forest fire danger conditions 
in southern Spain from NOAA images and 
meteorological indices. International Journal of 
Remote Sensing, 24(8), 1653–1668. 

Aitkaci, M., Gitas, I.Z., Alioua, A., and Khaddaj, 
T. (2018). Burned area mapping using single-
date principal components analysis. In Recent 
advances in environmental science from 
the Euro-Mediterranean and Surrounding 
Regions. Proceedings of EMCEI-1, Tunisia 2017. 
Advances in Science, Technology and Innovation 
(IEREK Interdisciplinary Series for Sustainable 
Development) (Eds: A. Kallel, M. Ksibi, B. H. Dhia 
and N. Khelifi). Springer, Chamonix, Switzerland. 
https://doi.org/10.1007/978-3-319-70548-4_507

Alencar, A., Asner, G.P., Knapp, D., and Zarin, D. (2011). 
Temporal variabillity of forest fires in eastern 
Arizonia. Ecological Applications, 21(7), 2397–2412.

Alexandris, N., Koutsias, N., and Gupta, S. (2017). 
Remote sensing of burned areas via PCA, Part 2: 
SVD-based PCA using MODIS and Landsat data. 
Open Geospatial Data, Software and Standards, 
2(21).

Allan, G., and Southgate, R. (2002). Fire regimes in 
the spinifex landscapes of Australia. In: Flammable 
Australia: the Fire Regimes and Biodiversity of 
a Continent (Eds: R. Bradstock, J. Williams and 
A. Gill) pp 145–176. Cambridge University Press, 
Cambridge

Allison, R.S., Johnston, J.M., Craig, G., and Jennings, 
S. (2016). Airborne Optical and Thermal Remote 
Sensing for Wildfire Detection and Monitoring. 
Sensors, 16, 1310.

ASA (2020). Bushfire earth Observation Taskforce. 
Australian Space Agency, Canberra. https://
naturaldisaster.royalcommission.gov.au/system/files/
exhibit/IND.0003.0001.0001.pdf

Bartlett, T. Leonard, M., and Morgan, G. (2007). 
The mega-fire phenomenon: some Australian 
perspectives. In: The 2007 Institute of Foresters 
of Australia and New Zealand Institute of Forestry 
Conference: Programme, Abstracts and Papers. 
Institute of Foresters of Australia, Canberra.

Bellingham, P.J., and Sparrow, A.D. (2000). 
Resprouting as a life history strategy in woody 
plant communities. Oikos, 89(2), 409–416.

Benali, A., Russo, A., Sa, A.C.L., Pinto, R.M., Price, O., 
Koutsias, N., and Pereira, J.M.C. (2016). Determining 
fire dates and locating ignition points with satellite 
data. Remote Sensing, 8(326), rs8040326.

http://fsgeodata.fs.fed.us/mtbs/
https://aeon.co/essays/how-humans-made-fire-and-fire-made-us-human
https://aeon.co/essays/how-humans-made-fire-and-fire-made-us-human
https://aeon.co/essays/how-humans-made-fire-and-fire-made-us-human
https://knowledge.aidr.org.au/about/
https://knowledge.aidr.org.au/about/
https://doi.org/10.1007/978-3-319-70548-4_507
https://naturaldisaster.royalcommission.gov.au/system/files/exhibit/IND.0003.0001.0001.pdf
https://naturaldisaster.royalcommission.gov.au/system/files/exhibit/IND.0003.0001.0001.pdf
https://naturaldisaster.royalcommission.gov.au/system/files/exhibit/IND.0003.0001.0001.pdf


Earth Observation: Data, Processing and Applications.  Volume 3: Applications

414

Berry L.E., Lindenmayer D.B., Dennis T.E., Driscoll 
D.A., Banks S.C. (2016). Fire severity alters spatio–
temporal movements and habitat utilisation by an 
arboreal marsupial, the mountain brushtail possum 
(Trichosurus cunninghami). International Journal of 
Wildland Fire, 25, 1291–1302. https://doi.org/10.1071/
WF15204

Boer, M.M., Norris, J., Sadler, R.J., Grierson, P.F. 
(2006). Ecologically sustainable management of 
fire-prone landscapes in southern Australia: A 
complex systems point of view. Forest Ecology and 
Management, 234S, S155. 

Boer, M., Sadler, R., and Grierson, P. (2008). Objective 
characterisation of fire regimes for science-based 
management of fire-prone landscapes. Proceedings 
of Australasian Fire and Emergency Services 
Authorities Council conference, 2008. 

Bolton, D.K., Coops, N.C., and Wulder, M.A. (2015). 
Characterizing residual structure and forest 
recovery following high-severity fire in the western 
boreal of Canada using Landsat time-series 
and airborne LiDAR data. Remote Sensing of 
Environment, 163, 48–60.

Boschetti, L., Roy, D., Barbosa, P., Boca, R., and Justice, 
C. (2008). A MODIS assessment of the summer 
2007 extent burned in Greece. International Journal 
of Remote Sensing, 29(8), 2433–2436. 

Bradley, A.V., and Millington, A.C. (2006). Spatial 
and temporal scale issues in determining biomass 
burning regimes in Bolivia and Peru. International 
Journal of Remote Sensing, 27(11), 2221–2253. 

Bradstock, R.A. (2010). A biogeographic model 
of fire regimes in Australia: current and future 
implications. Global Ecology and Biogeography, 19, 
145–158.

Bradstock, R.A., and Cohn, J. (2002). Fire regimes 
and biodiversity in semi-arid mallee ecosystems. 
In Flammable Australia: The Fire Regimes and 
Biodiversity of a Continent. (Eds: R.A. Bradstock, 
J.E. Williams, and M.A. Gill) Cambridge University 
Press, Cambridge. 

Bradstock, R.A., Bedward, M., Kenny, B.J., and Scott, 
J. (1998). Spatially explicit simulation of the effect 
of prescribed burning on fire regimes and plant 
extinctions in shrublands typical of south-eastern 
Australia. Biological Conservation, 86, 83–95. 

Bradstock, R.A., Hammill, K.A., Collins, L., and Price, O. 
(2010). Effects of weather, fuel and terrain on fire 
severity in topographically diverse landscapes of 
south-eastern Australia. Landscape Ecology, 25(4), 
607–619. doi:10.1007/s10980-009-9443-8 

Bradstock, R.A., Williams, D.J., and Gill, A.M. (2012a). 
Future fire regimes of Australian ecosystems: 
new perspectives on enduring questions of 
management. Ch 15 in Flammable Australia: 
Fire Regimes, Biodiversity and Ecosystems in a 
Changing World. CSIRO, Melbourne. pp 307–324.

Bradstock, R.A., Cary, G.J., Davies, I., Lindenmayer, 
D.B., Price, O.F., and Williams, R.J. (2012b). Wildfires, 
fuel treatment and risk mitigation in Australian 
eucalypt forests: Insights from landscape-scale 
simulation. Journal of Environmental Management, 
105, 66–75.

Bradstock, R.A., Williams, D.J., and Gill, A.M. (Eds) 
(2012c). Flammable Australia: Fire Regimes, 
Biodiversity and Ecosystems in a Changing World. 
CSIRO, Melbourne. 333 p.

Brandis, K., and Jacobson, C. (2003). Estimation of 
vegetative fuel loads using Landsat TM imagery in 
New South Wales, Australia. International Journal of 
Wildland Fire, 12, 185–194.

Burgan, R., Klaver, R., and Klaver, J. (1998). Fuel 
models and fire potential from satellite and surface 
observations. International Journal of Wildland Fire, 
8, 159–170. 

Burrows, N.D., Burbidge, A.A., Fuller, P.J., and Behn, 
G. (2006). Evidence of altered fire regimes in the 
Western Desert region of Australia. Conservation 
Science Western Australia, 5(3), 272–284. 

Caccamo, G., Chisholm, L.A., Bradstock, R.A., 
Puotinen, M.L., and Pippen, B.G. (2012). Monitoring 
live fuel moisture content of heathland, shrubland 
and sclerophyll forest in South-Eastern Australia 
using MODIS data. International Journal of Wildland 
Fire, 21, 257–269.

Calle, A., Gonzalez-Alonso, F., and Merino de Miguel, 
S. (2008). Validation of active forest fires detected 
by MSG-SEVIRI by means of MODIS hot spots and 
AwiFS images. International Journal of Remote 
Sensing, 29(12), 3407–3415. 

Cansler, C.A., and McKenzie, D. (2014). Climate, fire 
size and biophysical setting control fire severity 
and spatial pattern in the northern Cascade Range, 
USA. Ecological Applications, 24(5), 1037–1056.

Casas, A., Riaño, D., Ustin, S.L., Dennison, P., and Salas, 
J. (2014). Estimation of water-related biochemical 
and biophysical vegetation properties using 
multitemporal airborne hyperspectral data and its 
comparison to MODIS spectral response. Remote 
Sensing of Environment, 148, 28–41. http://dx.doi.
org/10.1016/j.rse.2014.03.011

https://doi.org/10.1071/WF15204
https://doi.org/10.1071/WF15204
https://doi.org/10.1007/s10980-009-9443-8
http://dx.doi.org/10.1016/j.rse.2014.03.011
http://dx.doi.org/10.1016/j.rse.2014.03.011


Earth Observation: Data, Processing and Applications.  Volume 3: Applications Volume 3A: Applications—Terrestrial Vegetation

18  Fire

415

Case, M.F., and Staver, A.C. (2017). Fire prevents 
woody encroachment only at higher than historical 
frequencies in a South African savanna. Journal of 
Applied Ecology, 54, 955–962.

Castro, J., Allen, C.D., Molina-Morales, M., Marañón-
Jiménez, S., Sánchez-Miranda, Á., and Zamora, 
R. (2011). Salvage Logging Versus the Use of 
Burnt Wood as a Nurse Object to Promote Post-
Fire Tree Seedling Establishment. Restoration 
Ecology, 19, 537–544. https://doi.org/10.1111/j.1526-
100X.2009.00619.x

Chafer, C.J., Noonan, M., Macnaught, E. (2004). 
The post-fire measurement of fire severity and 
intensity in the Christmas 2001 Sydney wildfires. 
International Journal of Wildland Fire, 13, 227–240. 

Chafer, C.J. (2007). Using Satellite Imagery to 
Estimate Landscape Fuel Loads in a Diverse 
Eucalypt Environment on the Central Coast of New 
South Wales, Australia. A report prepared by SCA 
for the NSW RFS, March 2007. 

Chen, K., and McAneney, J. (2004). Quantifying 
bushfire penetration into urban areas in Australia. 
Geophysical Research Letters, 31, L12212. 
doi:10.1029/2004GL020244

Chen, K., and McAneney, J. (2005). The bushfire 
threat in urban areas. Australian Science, 14–16. 

Chen, Y., Zhu, X., Yebra, M., Harris, S., and Tapper, N. 
(2016). Strata-based forest fuel classification for 
wild fire hazard assessment using terrestrial LiDAR. 
Journal of Applied Remote Sensing, 10(4), 046025.

Chen, Y., Zhu, X., Yebra, M., Harris, S., and Tapper, N. 
(2017a). Development of a Predictive Model for 
Estimating Forest Surface Fuel Load in Australian 
Eucalypt forests with LiDAR Data. Environmental 
Modelling and Software, 97, 61–71.

Chen, D., Pereira, J.M.C., Masiero, A., and Priotti, 
F. (2017b). Mapping fire regimes in China using 
MODIS active fire and burned area data. Applied 
Geography, 85, 14–26.

Cheney, P., and Sullivan, A. (2008). Grassfires—Fuel, 
Weather and Fire Behaviour. Melbourne, CSIRO 
Publishing, Melbourne.

Chu, T., and Guo, X. (2014). Remote sensing 
techniques in monitoring post-fire effects and 
patterns of forest recovery in Boreal forest regions: 
A review. Remote Sensing, 6, 470–520.

Chuvieco, E. (2008). Satellite Observations of Biomass 
Burning. In Earth observation of global change: 
the role of remote sensing in monitoring the global 
environment. (Ed: E. Chuvieco). Springer, NY. 

Chuvieco, E., Riano, D., Aguado, I., and Cocero, D. 
(2002). Estimation of fuel moisture content from 
multitemporal analysis of Landsat Thematic 
Mapper reflectance data: application in fire danger 
assessment. International Journal of Remote 
Sensing, 23(11), 2145–2162. 

Chuvieco, E., Aguado, L., and Dimitrakopoulos, A.P. 
(2004). Conversion of fuel moisture content values 
to ignition potential for integrated fire danger 
assessment. Canadian Journal of Forest Research, 
34(11), 2284–2293. 

Chuvieco, E., Aguado, I., Yebra, M., Nieto, H. Salas, 
J., Martín, M.P., Vilar, L., Martínez, J., Martín, S., 
Ibarra, P., de la Riva, J., Baeza, M.J., Rodríguez, 
F., Molina, J.R., Herrera, M.A., and Zamora, R, 
(2010). Development of a framework for fire risk 
assessment using Remote Sensing and Geographic 
Information System technologies. Ecological 
Modelling, 221, 46–58.

Chuvieco, E., Aguado, I, Jurdao, S., Pettinari, M.L., 
Yebra, M., Salas, J., de la Riva B, J., Ibarra, P., 
Rodrigues, M., Echeverría, M., Azqueta, D. Román, 
M.V., Bastarrika, A., Martínez, S., Recondo, C., 
Zapico, E., and Martínez-Vega, J. (2014). Integrating 
geospatial information into fire risk assessment. 
International Journal of Wildland Fire, 23, 606–619.

Chuvieco, E., Lizundia-Loiola, J., Pettinari, M.L., Ramo, 
R., Padilla, M., Tansey, K., Mouillot, F., Laurent, 
P., Storm, T., Heil, A., and Plummer, S. (2018). 
Generation and analysis of a new global burned 
area product based on MODIS 250 m reflectance 
bands and thermal anomalies. Earth System 
Science Data, 10(4), 2015–2031.

Chuvieco, E., Aguado, I., Salas, J., Garcia, M., Yebra, 
M., and Oliva, P. (2020). Satellite Remote Sensing 
Contributions to Wildland Fire Science and 
Management. Current Forestry Reports, 6, 81–96. 
https://doi.org/10.1007/s40725-020-00116-5

CoA (2020). Royal Commission into National Natural 
Disaster Arrangements Report. Commonwealth 
of Australia, Canberra. https://naturaldisaster.
royalcommission.gov.au/

Collins, B.M. (2014). Fire weather and large fire 
potential in the northern Sierra Nevada. Agricultural 
and Forest Meteorology, 189–190, 30–35.

Collins, L., Griffioen, P., Newell, G., and Mellor, 
A. (2018). The utility of Random Forests for 
wildfire severity mapping. Remote Sensing of 
Environment, 216, 374–384. https://doi.org/10.1016/j.
rse.2018.07.005

https://doi.org/10.1111/j.1526-100X.2009.00619.x
https://doi.org/10.1111/j.1526-100X.2009.00619.x
https://doi.org/10.1029/2004GL020244
https://doi.org/10.1007/s40725-020-00116-5
https://naturaldisaster.royalcommission.gov.au/
https://naturaldisaster.royalcommission.gov.au/
https://doi.org/10.1016/j.rse.2018.07.005
https://doi.org/10.1016/j.rse.2018.07.005


Earth Observation: Data, Processing and Applications.  Volume 3: Applications

416

Collins, L., Bennett, A.F., Leonard, S.W.J., and Penman, 
T.D. (2019). Wildfire refugia in forests: Severe 
fire weather and drought mute the influence of 
topography and fuel age. Global Change Biology, 
25(11). https://doi.org/10.1111/gcb.14735

Craig, R., Heath, B., Raisbeck-Brown, N., Steber, M., 
Marsden, J., and Smith, R. (2002). The distribution, 
extent and seasonality of large fires in Australia, 
April 1998-March 2000, as mapped from NOAA-
AVHRR imagery. In Australian Fire Regimes: 
Contemporary Patterns (April 1998-March 2000) 
and Changes since European Settlement. (Eds: 
Russell-Smith, J., Craig, R., Gill, A.M., Smith, R., and 
Williams, J.). Australia State of the Environment 
Second Technical Paper Series (Biodiversity), 
Department of the Environment and Heritage, 
Canberra. 

Cruz, M.G., Sullivan, A.L., Gould, J.S., Sims, N.C., 
Bannister, A J., Hollis, J.J., and Hurley, R.J. (2012). 
Anatomy of a catastrophic wildfire: The Black 
Saturday Kilmore East fire in Victoria, Australia. 
Forest Ecology and Management, 284, 269–285.

Danson, F.M., and Bowyer, P. (2004). Estimating Live 
Fuel Moisture Content from Remotely Sensed 
Reflectance. Remote Sensing of Environment, 92, 
309–321. 

de Klerk, H. (2008). A pragmatic assessment of the 
usefulness of the MODIS (Terra and Aqua) 1-km 
active fire (MOD14A2 and MYD14A2) products for 
mapping fires in the fynbos biome. International 
Journal of Wildland Fire, 17, 166–178. https://doi.
org/10.1071/WF06040

De Santis, A., Asner, G.P., Vaughan, P.J., and Knapp, 
D.E. (2010). Mapping burn severity and burning 
efficiency in California using simulation models and 
Landsat imagery. Remote Sensing of Environment, 
114, 1535–1545.

Dennison, P.E., and Roberts, D.A. (2009). Daytime 
fire detection using airborne hyperspectral data. 
Remote Sensing of Environment, 113, 1649–1657. 

Diaz-Delgado, R., Lloret, F., and Pons, X. (2004). 
Statistical analysis of fire frequency models for 
Catalonia (NE Spain, 1975–1998) based on fire scar 
maps from Landsat MSS data. International Journal 
of Wildland Fire, 13, 89–99. 

Dilley, A., Millie, S., O’Brien, D., and Edwards, M. 
(2004). The relation between normalised difference 
vegetation index and vegetation moisture content 
at three locations in Victoria, Australia. International 
Journal of Remote Sensing, 25(19). 3913–3928. 

Dowdy, A.J., and Pepler, A. (2018). Pyroconvection risk 
in Australia: Climatological changes in atmospheric 
stability and surface fire weather conditions. 
Geophysical Research Letters, 45(4), 2005–2013.

Dozier, J. (1981). A method for satellite identification 
of surface temperature fields of subpixel resolution. 
Remote Sensing of Environment, 11, 221–229. 

Duff, T.J., Bell, T.L., and York, A. (2013). Predicting 
continuous variation in forest fuel load using 
biophysical models: a case study in south-eastern 
Australia. International Journal of Wildland Fire, 22, 
318–332.

Edwards, A.C., Maier, S.W., Hutley, L.B., Williams, R.J., 
and Russell-Smith, J. (2013). Spectral analysis of 
fire severity in north Australia tropical savannas. 
Remote Sensing of Environment, 136, 56–65.

Eidenshink, J., Schwind, B., Brewer, K., Zhu, Z., Quayle, 
B., and Howard, S. (2007). A project for monitoring 
trends in burn severity. Fire Ecology Special Issue, 
3(1), 3–21.

Ellis, S., Kanowski, P., and Whelan, R. (2004). National 
Inquiry on Bushfire Mitigation and Management. 
Commonwealth of Australia, Canberra.

Enright, N.J., Fontaine, J.B., Bowman, D.M.J.S., 
Bradstock, R.A., and Williams, R.J. (2015). Interval 
squeeze: altered fire regimes and demographic 
responses interact to threaten woody species 
persistence as climate changes. Frontiers of 
Ecology and Environment, 13(5), 265–272.

Escuin, S., Navarro, R., and Fernandez, P. (2008). Fire 
severity assessment by using NBR (Normalised 
Burn Ratio) and NDVI (Normalized Difference 
Vegetation Index) derived from LANDSAT TM/ 
ETM images. International Journal of Remote 
Sensing, 29(4), 1053–1073. 

Eskelson, B.N.I., and Monleon, V.J. (2018). Post-fire 
surface fuel dynamics in California forests across 
three burn severity classes. International Journal of 
Wildland Fire, 27, 114–124.

Estes, B.L., Knapp, E.E., Skinner, C.N., Miller, J.D., 
and Preisler, H.K. (2017). Factors influencing fire 
severity under moderate burning conditions in 
the Klamath Mountains, northern California, USA. 
Ecosphere, 8(5), e01794. https://doi.org/10.1002/
ecs2.1794

Eva, H., and Lambin, E.F. (1998). Remote sensing 
of biomass burning in tropical regions: sampling 
issues and multisensor approach. Remote Sensing 
of Environment, 64, 292–315. 

Filkov, A.I., Duff and T.J., Penman, T.D. (2018). 
Improving fire behaviour data obtained from 
wildfires. Forests, 9(2), 81.

https://doi.org/10.1111/gcb.14735
https://doi.org/10.1071/WF06040
https://doi.org/10.1071/WF06040
https://doi.org/10.1002/ecs2.1794
https://doi.org/10.1002/ecs2.1794


Earth Observation: Data, Processing and Applications.  Volume 3: Applications Volume 3A: Applications—Terrestrial Vegetation

18  Fire

417

Filkov, A.I., Ngo, T., Matthews, S., Telfer, S., and 
Penman, T.D. (2020). Impact of Australia’s 
catastrophic 2019/20 bushfire season on 
communities and environment. Retrospective 
analysis and current trends. Journal of Safety 
Science and Resilience, 1(1), 44–56. https://doi.
org/10.1016/j.jnlssr.2020.06.009

Fisher, A., Day, M., Gill, T., Roff, A., Danaher, T., and 
Flood, N. (2016). Large-area, high-resolution 
tree cover mapping with multi-temporal SPOT-
5 imagery, New South Wales, Australia. Remote 
Sensing, 8(6), 515. https://doi.org/10.3390/rs8060515

Flasse, S.P., and Ceccato, P. (1996). A contextual 
algorithm for AVHRR fire detection. International 
Journal of Remote Sensing, 17, 419–424. 

French, N.H.J., Kasischke, E.S., Hall, R.J., Murphy, K.A., 
Verbyla, D.L., Hoy, E.E., and Allen, J.L. (2008). Using 
Landsat data to assess fire and burn severity in the 
North American boreal forest region: an overview 
and summary of results. International Journal of 
Wildland Fire, 17(4), 443–462. 

Fromm, M., Tupper, A., Rosenfield, D., Servranckx, 
R., and McRae, R. (2006). Violent pyroconvective 
storm devestates Australia’s capital and pollutes 
the stratosphere. Geophysical Research Letters, 
33(5). https://doi.org/10.1029/2005GL025161

Fromm, M., Lindsey, D.T., Servranckx, R., Yue, G., Trickl, 
T., Sica, R., Doucet, P., and Goudin-Beekmann, S. 
(2010). The untold story of pyrocumulonimbus. 
Bulletin of American Meteorological Society, 91, 
1193–1209.

Fusco, E., Abatzoglou, J.T., Balch, J.K., Finn, J.T., 
and Bradley, B.A. (2016). Quantifying the human 
influence on fire ignition across the western USA. 
Ecological Applications, 26(8), 2390–2401.

Garcia, M., Saatchi, S. Ustin, S., and Balzter, H. (2018). 
Modelling forest canopy height by integrating 
airborne LiDAR samples with satellite Radar and 
multispectral imagery. International Journal of 
Applied Earth Observation and Geoinformation, 66, 
159–173.

García, M., Riaño, D., Yebra, M., Salas, J., Cardil, 
A., Monedero, S., Ramirez, J., Martín, M.P., Vilar, 
L., Gajardo, J., and Ustin, S. (2020). A Live Fuel 
Moisture Content Product from Landsat TM 
Satellite Time Series for Implementation in Fire 
Behavior Models. Remote Sensing, 12, 1714. https://
doi.org/10.3390/rs12111714

GA (2020). Digital Earth Australia Hotspots Product 
Description. D2020-64303. Ecat Reference 
#70869. Geoscience Australia, Canberra. 
hotspots.dea.ga.gov.au/cache/DEA+Hotspots+-
+Product+Description+-+Version+1.6_final.pdf

Gibson, R., Danaher, T., Hehir, W., and Collins, L. 
(2020). A remote sensing approach to mapping 
fire severity in south-eastern Australia using 
sentinel 2 and random forest. Remote Sensing of 
Environment, 240(111702).

Giglio, L., and Justice, C.O. (2003). Effect of 
wavelength selection on characterisation of fire 
size and temperature. International Journal Remote 
Sensing, 24(17), 3515–3520. 

Giglio, L., Kendall, J.D., and Justice, C.O. (1999). 
Evaluation of global fire detection algorithms using 
simulated AVHRR infrared data. International 
Journal of Remote Sensing, 20, 1947–1985. 

Giglio, L., Kendall, J.D., and Tucker, C.J. (2000). 
Remote sensing of fires with TRMM VIRS. 
International Journal Remote Sensing, 21, 203–207. 

Giglio, L., Descloitres, J., Justice, C.O., Kaufman, Y.J. 
(2003). An Enhanced Contextual Fire Detection 
Algorithm for MODIS. Remote Sensing of 
Environment, 87, 273–282. 

Giglio, L., Loboda, T., Roy, D.P., Quayle, B., and Justice, 
C.O. (2009). An active-fire based burned area 
mapping algorithm for the MODIS sensor. Remote 
Sensing of Environment, 113, 408–420

Giglio, L., Schroeder, W., and Justice, C.O. (2016). The 
collection 6 MODIS active fire detection algorithm 
and fire products. Remote Sensing of Environment, 
178, 31–41.

Gill, M.A., and Catling, P.C. (2002). Fire regimes and 
biodiversity of forested landscapes of southern 
Australia. In Flammable Australia: The Fire 
Regimes and Biodiversity of a Continent. (Eds: R.A. 
Bradstock, J.E. Williams, and M.A. Gill) Cambridge 
University Press, Cambridge. 

Gitas, I.Z., and Devereux, B.J. (2006). The role of 
topographic correction in mapping recently burned 
Mediterranean forest areas from LANDSAT TM 
images. International Journal of Remote Sensing, 
27(10), 41–54. 

Goodwin, N.R., and Collett, L. (2014). Development 
of an automated method for mapping fire history 
captured in Landsat TM and ETM+ time series. 
Remote Sensing of Environment, 148, 206–221. 

Gould, J.S., McCaw, W.L., Cheney, N.P., Ellis, P.F., 
and Matthews, S. (2008). Field Guide: Fire in 
Dry Eucalypt Forest. Fuel Assessment and Fire 
Behaviour Prediction in Dry Eucalypt Forest. CSIRO 
Publications, Melbourne. 92 p. 

Gregoire, J.-M., Tansey, K., and Silva, J.M.N. (2003). 
The GBA2000 Initiative: developing a global burnt 
area database from SPOT-VEGETATION imagery. 
International Journal of Remote Sensing, 24(6), 
1369–1376.

https://doi.org/10.1016/j.jnlssr.2020.06.009
https://doi.org/10.1016/j.jnlssr.2020.06.009
https://doi.org/10.3390/rs8060515
https://doi.org/10.1029/2005GL025161
https://doi.org/10.3390/rs12111714
https://doi.org/10.3390/rs12111714
http://hotspots.dea.ga.gov.au/cache/DEA+Hotspots+-+Product+Description+-+Version+1.6_final.pdf
http://hotspots.dea.ga.gov.au/cache/DEA+Hotspots+-+Product+Description+-+Version+1.6_final.pdf


Earth Observation: Data, Processing and Applications.  Volume 3: Applications

418

Guerschman, J.P., Scarth, P.F., McVicar, T.R., Renzullo, 
L.J., Malthus, T.J., Stewart, J.B., Rickards, J.E., and 
Trevithick, R. (2015). Assessing the effects of site 
heterogeneity and soil properties when unmixing 
photosynthetic vegetation, non-photosynthetic 
vegetation and bare soil fractions for Landsat and 
MODIS data. Remote Sensing of Environment, 161, 
12–26.

Haines, D.A. (1988). A lower atmospheric severity 
index for wildland fire. National Weather Digest, 
13(2), 23–27. 

Hall, S.A., Burke, I.C., Box, D.O., Kaufman, M.R., and 
Stoker, J.M. (2005). Estimating stand structure 
using discrete-return lidar: an example from low 
density, fire prone ponderosa pine forest. Forest 
Ecology and Management, 208, 189–209. 

Hally, B., Wallace, L., Reinke, K., Jones, S., and 
Skidmore, A. (2018). Advances in active fire 
detectionn using a multi-temporal method for 
next-generation geostationary satellite data. 
International Journal of Digital Earth, 12(9), 1030–
1045.

Hamilton, D., Bowerman, M., Colwell, J., Donohoe, G., 
and Myers, B. (2017). Spectroscopic analysis for 
mapping wildland fire effects from remotely sensed 
imagery. Journal of Unmanned Vehicle Systems, 
5(4), 146–158. doi:10.1139/juvs-2016-0019

Hao, X., and Qu, J.J. (2007). Retrieval of real-time live 
fuel moisture content using MODIS measurements. 
Remote Sensing of Environment, 108, 130–137.

Hawbaker, T.J., Radeloff, V.C., Syphard, A.D., Zhu, Z, 
and Stewart, S.I. (2008). Detection rates of MODIS 
active fire products in the United States. Remote 
Sensing of Environment, 112, 2656–2664. 

Hobbs, R. (2002). Fire regimes and their effects in 
Australian temperate woodlands. In Flammable 
Australia: The Fire Regimes and Biodiversity of a 
Continent. (Eds: R.A. Bradstock, J.E. Williams, and 
M.A. Gill) Cambridge University Press, Cambridge. 

Hope, A., Tague, C., and Clark, R. (2007). 
Characterizing post-fire vegetation recovery of 
California chaparral using TM/ETM+ time-series 
data. International Journal of Remote Sensing, 
28(6), 1339–1354. 

Hu, T., Q. Ma, Y. Su, J. J. Battles, B. M. Collins, S. L. 
Stephens, M. Kelly and Q. Guo (2019). A simple and 
integrated approach for fire severity assessment 
using bi-temporal airborned LiDAR data. 
International Journal of Applied Earth Observation 
and Geoinformation, 78, 25–38.

Huang, H., Roy, D.P., Boschetti, L., Zhang, H.K., 
Yan, L., Kumar, S.S., Gomez-Dans, J., and Li, J. 
(2016). Separability analysis of Sentinel-2a Multi-
Spectral Instrument (MSI) data for burned area 
discrimination. Remote Sensing, 8(10), 873. https://
doi.org/10.3390/rs8100873

Hudak, A.T., Morgan, P., Bobbitt, M.J., Smith, A.M.S., 
Lewis, S.A., Lentile, L.B., Robichaud, P.R., Clark, 
J.T., and McKinley, R.A. (2007). The relationship of 
multispectral satellite imagery to immediate fire 
effects. Fire Ecology Special Issue, 3(1), 64–90. 

Hudak, A.T., Crookston, N.L., Evans, J.S., Hall, D.E., 
and Falkowski, M.J. (2008). Nearest neighbour 
imputation of species-level, plot-scale forest 
structure attributes from LiDAR data. Remote 
Sensing of Environment, 112, 2232–2245. 
[Corrigendum: Remote Sensing of Environment, 113, 
289–290.] 

Hudak, A.T., Ottmar, R.D., Vihnanek, R.E., Brewer, 
N.W., Smith, A.M.S., and Morgan, P. (2013). The 
relationship of post-fire white ash cover to surface 
fuel consumption. International Journal of Wildland 
Fire, 22(6), 780–785. https://doi.org/10.1071/WF15074

ICSMD (2020). International Charter for Space and 
Major Disasters website: https://disasterscharter.org/
web/guest/home

Jenkins, M.E., Bedward, M., Price, O., and Bradstock, 
R.A. (2020). Modelling bushfire fuel hazard using 
biophysical parameters. Forests, 11(9), 925. https://
doi.org/10.3390/f11090925

Jones, S., Reinke, K., Mitchell, S., McConachie, F., and 
Holland, C. (2017). Advances in the remote sensing 
of active fires: a review—detection, mapping and 
monitoring v1.0. Bushfire and Natural Hazards CRC, 
Melbourne.

Joshi, N., Mitchard, E.T.A., Woo, N., Torres, J., Moll-
Rocek, J., Ehammer, A., Collins, M. Jepsen, M.R., 
and Fensholt, R. (2015). Mapping dynamics of 
deforestation and forest degradation in tropical 
forests using radar satellite data. Environmental 
Research Letters, 10(3), [034014].

Jupp, D.L.B., Culvenor, D.S., Lovell, J.L., Newnham, 
G.J., Strahler, A.H., and Woodcock, C.E. (2008). 
Estimating forest LAI profiles and structural 
parameters using a ground-based laser called 
Echidna. Tree Physiology, 29, 171–181. 

Jurskis, V. (2015). Firestick Ecology. Connor Court 
Publishing, Ballarat.

https://doi.org/10.1139/juvs-2016-0019
https://doi.org/10.3390/rs8100873
https://doi.org/10.3390/rs8100873
https://doi.org/10.1071/WF15074
https://disasterscharter.org/web/guest/home
https://disasterscharter.org/web/guest/home
https://doi.org/10.3390/f11090925
https://doi.org/10.3390/f11090925


Earth Observation: Data, Processing and Applications.  Volume 3: Applications Volume 3A: Applications—Terrestrial Vegetation

18  Fire

419

Justice, C., Giglio, L., Boschetti, L., Roy, D., Csiszar, I., 
Morisette, J., and Kaufman, Y. (2006). MODIS Fire 
Products (Version 2.3, 1 October 2006). Algorithm 
Technical Background Document. MODIS Science 
Team, NASA. http://modis.gsfc.nasa.gov/data/atbd/
atbd_mod14.pdf 

Keane, R.E., Burgan, R., van Wagtendonk, J. (2001). 
Mapping wildland fuel for fire management across 
multiple scales: integrating remote sensing, GIS 
and biophysical modelling. International Journal of 
Wildland Fire, 10, 301–319. 

Keeley, J.E. (2009). Fire intensity, fire severity and 
burn severity: a brief review and suggested usage. 
International Journal of Wildland Fire, 18, 116–126. 

Keetch, J.J., and Bryam, G.M. (1968). A drought index 
for forest fire control. U.S.D.A. Forest Service 
Research Paper SE-38. 32 p. 

Keith, D.A., McCaw, W.L., and Whelan, R.J. (2002). Fire 
regimes in Australian heathlands and their effects 
on plants and animals. In Flammable Australia: 
The Fire Regimes and Biodiversity of a Continent. 
(Eds: R.A. Bradstock, J.E. Williams, and M.A. Gill) 
Cambridge University Press, Cambridge. 

Keller, J. (2019). Air force readies shortwave infrared 
sensors for satellites to reveal materials and 
lasers on the ground. Military and Aerospace 
Electronics. November 20th, 2019. https://www.
militaryaerospace.com/sensors/article/14072398/
shortwave-infrared-sensors-satellites

Kennedy, R.E., Yang, Z., and Cohen, W.B. (2010). 
Detecting trends in forest disturbance and recovery 
using yearly Landsat Time Series: 1. LandTrendr—
Temporal segmentation algorithms. Remote 
Sensing of Environment, 114, 2897–2910.

Kenny, B., Matthews, s., Grootemaat, S., and Hollis, J., 
Sauvage, S., and Fox-Hughes, P. (2019). Australian 
Fire Danger Rating System Research Prototype: 
National fuel map. Proceedings of the 6th 
International Fire Behavior and Fuels Conference, 
April 29–May 3, 2019, Sydney, Australia. Published 
by the International Association of Wildland Fire, 
Missoula, Montana, USA.

Keramitsoglou, I., Kiranoudis, C.T., Sarimvels, H., and 
Sifakis, N. (2004). A multidisciplinary decision 
support system for forest fire crisis management. 
Environmental Management, 33(2), 212–225.

Kershaw, A.P., Clark, J.S., Gill, A.M., and D’Costa, D.M. 
(2002). A history of fire in Australia. In Flammable 
Australia. (Eds: R.A. Bradstock, J.E. Williams and 
A.M. Gill). Cambridge, Cambridge University Press. 
pp. 3–25.

Key, C.H., and Benson, N.C. (1999). Measuring and 
remote sensing of burn severity: the CBI and NBR. 
Proceedings of Joint Fire Science Conference and 
Workshop, Vol. 2, June, (Eds. L.F. Neuenschwander, 
K.C. Ryan) pp. 284. University of Idaho, Moscow, ID.

Key, C.H., and Benson, N.C. (2006). Landscape 
Assessment: Sampling and Analysis Methods. 
USDA Forest Service, Rocky Mountain Research 
Station General Tech. Rep. RMRS-GTR-164-CD. 
Odgen, UT. 

King, K., Marsden-Smedley, J., Cary, G., Allan, G., 
Bradstock, R., Gill, M. (2008). Modelling fire 
dynamics in the West MacDonnell Range area. 
Working Paper 20, Desert Knowledge CRC, Alice 
Springs.

Koltunov, A., and Ustin, S.L. (2007). Early fire 
detection using non-linear multitemporal 
prediction of thermal imagery. Remote Sensing of 
Environment, 110(1), 18–28.

Kokaly, R.F., Rockwell, B.W., Haire, S.L., and King, T.V.V. 
(2007). Characterization of post-fire surface cover, 
soils and burn severity at the Cerro Grande Fire, 
New Mexico, using hyperspectral and multispectral 
remote sensing. Remote Sensing of Environment, 
106, 305–325.

Kolden, C.A., and Weisberg, P.J. (2007). Assessing 
accuracy of manually-mapped wildfire perimeters 
in topographically dissected areas. Fire Ecology 
Special Issue, 3(1), 22–31. 

Kolden, C.A., Abatzoglou, J.T., and Smith, A.M.S. 
(2015). Limitations and utilisation of monitoring 
trends in burn severity products for assessing 
wildfire severity in the USA. International Journal of 
Wildland Fire, 24, 1023–1028.

Koltunov, A., and Ustin, S.L. (2007). Early fire 
detection using non-linear multitemporal 
prediction of thermal imagery. Remote Sensing of 
Environment, 110, 18–28. 

Kontoes, C., Keramitsoglou, I., Sifakis, N., and 
Konstantinidis, P. (2009a). SITHON: An Airborne 
Fire Detection System Compliant with Operational 
Tactical Requirements. Sensors, 9, 1204–1220. 

Kontoes, C.C., Poilvé, H., Florisch, G., Keramitsoglou, I., 
and Paralikidis, S. (2009b). A comparative analysis 
of a fixed thresholding vs. a classification tree 
approach for operational burn scar detection and 
mapping. International Journal of Applied Earth 
Observation and Geoinformation, 11(5), 299–316. 
doi:10.1016/j.jag.2009.04.001. 

http://modis.gsfc.nasa.gov/data/atbd/atbd_mod14.pdf
http://modis.gsfc.nasa.gov/data/atbd/atbd_mod14.pdf
https://www.militaryaerospace.com/sensors/article/14072398/shortwave-infrared-sensors-satellites
https://www.militaryaerospace.com/sensors/article/14072398/shortwave-infrared-sensors-satellites
https://www.militaryaerospace.com/sensors/article/14072398/shortwave-infrared-sensors-satellites
https://doi.org/10.1016/j.jag.2009.04.001


Earth Observation: Data, Processing and Applications.  Volume 3: Applications

420

Kossman, R., Sturman, A., Zawar-Reza, P. (2001). 
Atmospheric influences on bush fire propagation 
and smoke dispersion over complex terrain. 
Proceedings of 2001 Australasian Bushfire 
Conference, Christchurch, NZ. 

Krawchuk, M.A., Moritz, M.A., Parisien, M.-A., 
Van Dorn, J., and Hayhoe, K. (2009). Global 
pyrogeography: the current and future distribution 
of wildfire. PloS ONE, 4(4), e5102.

Leblon, B., Augusto, P., Garcia, F., Oldford, S., Maclean, 
D.A., Flannigan, M. (2007). Using cumulative NOAA-
AVHRR spectral indices for estimating fire danger 
codes in northern boreal forests. International 
Journal of Applied Earth Observation, 9, 335–342. 

Lee, T. F., and Tag, P. M. (1990). Improved detection 
of hotspots using the AVHRR 3.7 mm channel. 
Bulletin of the American Meteorological Society, 71, 
1722–1730. 

Lentile, L.B., Holden, Z.A., Smith, A.M.S., Falkowski, 
M.J., Hudak, A.T., Morgan, P., Lewis, S.A., Gessler, 
P.E., and Benson, N.C. (2006). Remote sensing 
techniques to assess active fire characteristics and 
post-fire effects. International Journal of Wildland 
Fire, 15, 319–345. 

Lentile, L.B., Morgan, P., Hudak, A.T., Bobbitt, M.J., 
Lewis, S.A., Smith, A.M.S., and Robichaud, P.R. 
(2007). Post-fire burn severity and vegetation 
response following eight large wildfires across the 
western United States. Fire Ecology Special Issue, 
3(1), 91–108. 

Lentile, L.B., Smith, A.M.S., Hudak, A.T., Morgan, P., 
Bobbitt, M.J., Lewis, S.A., and Robichaud, P.R. 
(2009). Remote sensing for prediction of 1-year 
post-fire ecosystem condition. International Journal 
of Wildland Fire, 18(5), 594–608. 

Lewis, S.A., Lentile, L.B., Hudak, A.T., Robichaud, P.R., 
Morgan, P., and Bobbitt, M.J. (2007). Mapping 
ground cover using hyperspectral remote sensing 
after the 2003 Simi and Old wildfires in southern 
California. Fire Ecology Special Issue, 3(1), 109–128. 

Liu, X., He, B., Quan, X., Yebra, M., Qiu, S., Yin, C., Liao, 
Z., and Zhang, H. (2018). Near Real-Time Extracting 
Wildfire Spread Rate from Himawari-8 Satellite 
Data. Remote Sensing, 10(10), 1654. https://doi.
org/10.3390/rs10101654

López García, M.J., and Caselles, V. (1991). Mapping 
burns and natural reforestation using thematic 
mapper data. Geocarto International, 1, 31–37. 
https://doi.org/10.1080/10106049109354290

Lowell, K., Shamir, R., Siqueira, A., White, J., O’Connor, 
A., Butcher, G., Garvey, M., and Niven, M. (2009). 
Assessing Capabilities of Geospatial Data to 
Map Built Structures and Evaluate Their Bushfire 
Threat. International Journal of Wildland Fire, 18(8), 
1010–1020. https://doi.org/10.1071/WF08077

Lucas, R., Bunting, P., Paterson, M., and Chisholm, 
L. (2008a). Classification of Australian forest 
communities using aerial photography, CASI and 
HyMap data. Remote Sensing of Environment, 
112(5), 2088–2103. 

Luke, R., and McArthur, A. (1978). Bushfires in 
Australia. Australian Government Publishing 
Service, Canberra.

Lund, I.D., and Morgan, J.W. (2002). The role of fire 
regimes in temperate lowland grasslands of south- 
eastern Australia. In Flammable Australia: The Fire 
Regimes and Biodiversity of a Continent. (Eds: R.A. 
Bradstock, J.E. Williams, and M.A. Gill) Cambridge 
University Press, Cambridge.

Lydersen, J. M., B. M. Collins, M. L. Brooks, J. R. 
Matchett, K. L. Shive, N. A. Povak, V. R. Kane and 
D. F. Smith (2017). Evidence of fuels management 
and fire weather influencing fire severity in an 
extreme fire event. Ecological Applications, 27(7), 
2013–2030.

Maier, S.W., Russell-Smith, J., Edwards, A.C., and Yates, 
C. (2013). Sensitivity of the MODIS fire detection 
algorithm (MOD14) in the savanna region of the 
Northern Territory, Australia. ISPRS Journal of 
Photogrammetry and Remote Sensing, 76, 11–16. 
https://doi.org/10.1016/j.isprsjprs.2012.11.005

Malak, D.A., and Pausas, J.G. (2006). Fire regime 
and post-fire Normalised Difference Vegetation 
Index changes in the eastern Iberian peninsula 
(Mediterranean basin). International Journal of 
Wildland Fire, 407–413. 

Manzanera, J. A., A. Garcia-Abril, C. Pascual, R. Tejera 
and S. Martin-Fernandez (2016). Fusion of airborne 
LiDAR and multispectral sensors reveals synergic 
capabilities in forest structure characterisation. 
GIScience and Remote Sensing, 53(6), 723–728.

Manzo-Delgado, L., Sanchez-Colon, S., and Alvarez, 
R. (2009). Assessment of seasonal forest fire 
risk using NOAA-AVHRR: a case study in central 
Mexico. International Journal of Remote Sensing, 
30(19), 4991–5013.

Marselis, S.M., Yebra, M., Jovanovic, T., and van 
Dijk, A.I.J.M. (2016). Deriving comprehensive 
forest structure information from mobile laser 
scanning observations using automated point 
cloud classification. Environmental Modelling and 
Software, 82, 142–151.

https://doi.org/10.3390/rs10101654
https://doi.org/10.3390/rs10101654
https://doi.org/10.1080/10106049109354290
https://doi.org/10.1071/WF08077
https://doi.org/10.1016/j.isprsjprs.2012.11.005


Earth Observation: Data, Processing and Applications.  Volume 3: Applications Volume 3A: Applications—Terrestrial Vegetation

18  Fire

421

Martin, D., Chen, T., Nichols, D. Bessel, R. Kidnie, 
S. Alexander, J. (2015). Integrated ground and 
satellite-based observations to determine the 
degree of grassland curing. International Journal of 
Wildland Fire, 24(3), 329–339.

Massetti, A., Rüdiger, C., Yebra, M., Hilton, J. (2019). 
The Vegetation Structure Perpendicular Index 
(VSPI): a forest condition index for wildfire 
predictions. Remote Sensing of Environment, 224, 
167–181. https://doi.org/10.1016/j.rse.2019.02.004

McArthur, A.G. (1966). Weather and Grassland Fire 
Behaviour. Australian Forestry and Timber Bureau 
Leaflet. 100, 23 p. 

McArthur, A.G. (1967). Fire Behaviour in Eucalypt 
Forests. Australian Forestry and Timber Bureau 
Leaflet 107, 25 p. 

McCarley, T.R., Kolden, C.A., Vaillant, Andrew N.V., 
Hudak, A.T., Smith, A.M.S., and Kreitler, J. (2017). 
Landscape-scale quantification of fire-induced 
change in canopy cover following mountain 
pine beetle outbreak and timber harvest. Forest 
Ecology and Management, 391, 164–175, https://doi.
org/10.1016/j.foreco.2017.02.015

McCarthy, G.J., Tolhurst, K.G., and Chatto, K. (1999). 
Overall fuel hazard guide, 3rd edn. Research report 
47, Fire Management Branch, Department of 
Natural Resources and Environment, Victoria. 

McCarthy, G., Moon, K., and Smith. L. (2017). Mapping 
fire severity and fire extent in forest in Victoria 
for ecological and fuel outcomes. Ecological 
Management and Restoration, 18, 54–64.

McColl-Gausden, S.C., and Penman, T.D. (2017). Visual 
assessment of surface fuel loads does not align 
with destructively sampled surface fuels. Forests, 
8(11), 408.

McColl-Gausden, S.C., Bennett, L.T., Duff, T.J., Cawson, 
J.G., and Penman, T.D. (2019). Climatic and edaphic 
gradients predict variation in wildland fuel hazard in 
south-eastern Australia. Ecography, 43(3), 443–
455. https://doi.org/10.1111/ecog.04714

McDougall, K., and Kirkpatrick, J.B. (1994). 
Conservation of Lowland Native Grasslands in 
South-Eastern Australia. World Wide Fund for 
Nature Australia, Sydney. 

McKenna, P., Erskine, P.D., Lechner, A.M., and Phinn, 
S. (2017). Measuring fire severity using UAV 
imagery in semi-arid central Queensland, Australia. 
International Journal of Remote Sensing, 38(14), 
4244–4264.

McRae, R. (2004). The Breath of the Dragon—
Observations of the January 2003 ACT Bushfires. 
Proceedings of 2004 Australasian Bushfire 
Research Conference, Adelaide. 

McRae, R. (2008). 2003 ACT Bushfires Fire Behaviour 
Post-Analysis. Unpublished report, ACT ESA, 
Canberra. 

McRae, R., Sharples, J.J., and Weber, R.O. (2008). High 
Fire Risk: The Thermal Belt in Australia. Poster: 
AFAC/BushfireCRC Conference 2008, Adelaide. 

McRae, R.H.D., Sharples, J.J., and Fromm, M. 
(2015). Linking local wildfire dynamics to pyroCb 
development, Natural Hazards and Earth System 
Science, 15, 417–428. https://doi.org/10.5194/
nhess-15-417-2015

Meddens, A. J. H., C. A. Kolden and J. A. Lutz 
(2016). Detecting unburned areas within wildfire 
perimeters using Landsat and ancillary data across 
the northwestern United States. Remote Sensing of 
Environment, 186, 275–285.

Meng, R., Wu, J., Zhao, F., Cook, B.D., Hanavan, R.P., 
and Serbin, S.P. (2018). Measuring short-term post-
fire forest recovery across a burn severity gradient 
in a mixed pine-oak forest using multi-sensor 
remote sensing techniques. Remote Sensing of 
Environment, 210, 282–296.

Miller, J.D., and Thode, A.E. (2007). Quantifying burn 
severity in a heterogenous landscape with a relative 
version of the delta Normalized Burn Ratio (dNBR). 
Remote Sensing of Environment, 109, 66–80.

Miller, J.D., Knapp, E.E., Key, C.H., Skinner, C.N., Isbell, 
C.J., Creasy, R.M., and Sherlock, J.W. (2009). 
Calibration and validation of the relative differenced 
Normalized Burn Ratio (RdNBR) to three measures 
of fire severity in the Sierra Nevada and Klamath 
Mountains, California, USA. Remote Sensing of 
Environment, 113, 645–656. 

Miller C., Hilton J., Sullivan A., Prakash M. (2015). 
SPARK—A Bushfire Spread Prediction Tool. In: 
Environmental Software Systems. Infrastructures, 
Services and Applications. (Eds: Denzer R., Argent 
R.M., Schimak G., Hřebíček J.) ISESS 2015. IFIP 
Advances in Information and Communication 
Technology, vol 448. Springer, Chamonix.

Mills, G.A. (2008a). Abrupt surface drying and 
fire weather Part 1: overview and case study of 
the South Australian fires of 11 Janurary 2005. 
Australian Meteorological Magazine, 57, 299–309. 

Mills, G.A. (2008b). Abrupt surface drying and fire 
weather Part 2: a preliminary synoptic climatology 
in the forested areas of southern Australia. 
Australian Meteorological Magazine, 57, 311–328. 

https://doi.org/10.1016/j.rse.2019.02.004
https://doi.org/10.1016/j.foreco.2017.02.015
https://doi.org/10.1016/j.foreco.2017.02.015
https://doi.org/10.1111/ecog.04714
https://doi.org/10.5194/nhess-15-417-2015
https://doi.org/10.5194/nhess-15-417-2015


Earth Observation: Data, Processing and Applications.  Volume 3: Applications

422

Mills, G.A., and McCaw, L. (2010). Atmospheric 
Stability Environments and Fire Weather in 
Australia—extending the Haines Index. CAWCR 
Technical Report No. 20, Centre for Australian 
Weather and Climate Research. ISBN: 978-1-
921605-56-7

Minchella, A., Frate, F.D., Capogna, F., Anselmi, S., and 
Manes, F. (2009). Use of multitemporal SAR data for 
monitoring vegetation recovery of Mediterranean 
burned areas. Remote Sensing of Environment, 113, 
588–597. 

Morgan, J.W. (1999). Defining grassland fire events 
and the response of perennial plants to annual fire 
in temperate grasslands of south-eastern Australia. 
Plant Ecology, 1444, 127–144. 

Morgan, P., Hardy, C.C., Swetnam, T.W., Rollins, M.G., 
and Long, D.G. (2001). Mapping fire regimes across 
time and space: Understanding coarse and fine-
scale fire patterns. International Journal of Wildland 
Fire, 10, 329–342. 

Morgan, P., Keane, R.E., Dillon, G.K., Jain, T.B., Hudak, 
A.T., Karau, E.C., Sikkink, P.G., Holden, Z.A., and 
Strand, E.K. (2014). Challenges of assessing fire and 
burn severity using field measures, remote sensing 
and modelling. International Journal of Wildland 
Fire, 23, 1045–1060.

Morisette, J., Giglio, L., Csiszar, I., and Justice, C.O. 
(2005). Validation of the MODIS active fire product 
over Southern Africa with ASTER data. International 
Journal of Remote Sensing, 26, 4239–4264. 

Mueller, E.V., Skowronski, N. Clark, N., Gallagher, M., 
Kremens, R., Thomas, J.C., El Houssami, M., Filkov, 
A., Hadden, R.M., Mell, W., and Simeoni, A. (2017). 
Utilization of remote sensing techniques for the 
quantification of fire behaviour in two pine stands. 
Fire Safety Journal, 91, 845–854.

Newnham, G.J., Verbesselt, J., Grant, I.F., and 
Anderson, S.A.J. (2011). Relative Greenness Index 
for assessing curing of grassland fuel. Remote 
Sensing of Environment, 115(6), 1456–1463. https://
doi.org/10.1016/j.rse.2011.02.005

Noble, I.R., Bary, G.A.V., Gill, A.M. (1980). McArthur’s 
fire-danger meters expressed as equations. 
Australian Journal of Ecology, 5, 201–203. 

Nolan, R.H., Boer, M.M., Resco de Dios, V., Caccamo, G., 
and Bradstock, R.A. (2016a). Large scale, dynamic 
transformations in fuel moisture drive wildfire 
activity across southeastern Australia. Geophysical 
Research Letters, 43, 4229–4238.

Nolan, R.H., Resco de Dios, Boer, M.M., Caccamo, 
G., Goulden, M.L., and Bradstock, R.A. (2016b). 
Predicting dead fine fuel moisture at regional 
scales using vapour pressure deficit from MODIS 
and gridded weather data. Remote Sensing of 
Environment, 174, 100–108.

NSW BRMR (2020). NSW Bushfire Risk Management 
Research Hub website: https://www.uow.edu.au/
science-medicine-health/research/cermb/nsw-
bushfire-risk-management-research-hub/

Okin, G.S. (2007). Relative spectral mixture 
analysis—A multitemporal index of total vegetation 
cover. Remote Sensing of Environment, 106, 
467–479. 

Oldford, S., Leblon, B., Maclean, D., and Flannigan, M. 
(2006). Predicting slow-drying fire weather index 
fuel moisture codes with NOAA-AVHRR images 
in Canada’s northern boreal forests. International 
Journal of Remote Sensing, 27(18), 3881–3902. 

Otón, G., Ramo, R., Lizundia-Loiola, J., and Chuvieco, E. 
(2019). Global Detection of Long-Term (1982–2017) 
Burned Area with AVHRR-LTDR Data. Remote 
Sensing, 11, 2079.

Padilla, M., Stehman, S.V., Ramo, R., Corti, D., Hantson, 
S., Oliva, P., Alonso-Canas, I., Bradley, A.V., Tansey, 
K., Mota, B., Pereira, J.M., Chuvieco, E. (2015). 
Comparing the accuracies of remote sensing global 
burned area products using stratified random 
sampling and estimation. Remote Sensing of 
Environment, 160, 114–121.

Paltridge, G.W., and Barber, J. (1988). Monitoring 
grassland dryness and fire potential in Australia 
with NOAA/AVHRR Data. Remote Sensing of 
Environment, 25(3) 381–394. 

Pereira, J.M.C., Sa, A.C.L., Sousa, A.M.O, Silva, J.M.N., 
Santos, T.N., and Carreiras, J.M.B. (1999). Spectral 
characterization and discrimination of burnt areas. 
In Remote Sensing of Large Wildfires. (Ed: E. 
Chuvieco). Springer-Verlag, Berlin. 

Pettorelli, N., Laurance, W.F., O’Brien, T.G., Wegmann, 
M., Nagendra, H., and Turner, W. (2014). Satellite 
remote sensing for applied ecologists: opportunities 
and challenges. Journal of Applied Ecology, 51, 
839–848.

Plank, S., Fuchs, E.-M., and Frey, C. (2017). A Fully 
Automatic Instantaneous Fire Hotspot Detection 
Processor Based on AVHRR Imagery—A TIMELINE 
Thematic Processor. Remote Sensing, 9, 30.

Polinova, M., Wittenberg, L., Kutiel, H., and Brook, A. 
(2019). Reconstructing pre-fire vegetation condition 
in the wildland urban interface (WUI) using 
artificial neural network. Journal of Environmental 
Management, 238, 224–234.

https://doi.org/10.1016/j.rse.2011.02.005
https://doi.org/10.1016/j.rse.2011.02.005
https://www.uow.edu.au/science-medicine-health/research/cermb/nsw-bushfire-risk-management-research-hub/
https://www.uow.edu.au/science-medicine-health/research/cermb/nsw-bushfire-risk-management-research-hub/
https://www.uow.edu.au/science-medicine-health/research/cermb/nsw-bushfire-risk-management-research-hub/


Earth Observation: Data, Processing and Applications.  Volume 3: Applications Volume 3A: Applications—Terrestrial Vegetation

18  Fire

423

Poon, P.K., and Kinoshita, A.M. (2018). Estimating 
evapotranspiration in a post-fire environment using 
remote sensing and machine learning. Remote 
Sensing, 10, (1728).

Potter, B.E. (2012a). Atmospheric interactions 
with wildland fire behaviour—I. Basic surface 
interactions, verticle profiles and synoptic 
structures. International Journal of Wildland Fire, 
21(7), 779–801.

Potter, B.E. (2012b). Atmospheric interactions with 
wildland fire behaviour—II. Plume and vortex 
dynamics. International Journal of Wildland Fire, 
21(7), 802–817.

Power, C. (2006). A Spatial Decision Support System 
for Mapping Bushfire Hazard Potential using 
Remotely Sensed Data. Proceedings of Bushfire 
Conference 2006. Brisbane, 6–9 June 2009. 

Power, C. (2008). Fuel Hazard Mapping (Karawatha) 
Project Report for Brisbane City Council, Open 
Space Planning Section. 

Price, O.F., and Bradstock, R.A. (2012). The efficacy 
of fuel treatment in mitigating property loss during 
wildfires: insights from analysis of the severity of 
the catastrophic fires in 2009 in Victoria, Australia. 
Journal of Environmental Management, 113, 146–157. 
https://doi.org/10.1016/j.jenvman.2012.08.041

Price, O., and Gordon, C.E. (2016). The potential for 
LiDAR technology to map fire fuel hazard over large 
areas of Australian forest. Journal of Environmental 
Management, 181, 663–673.

Punithraj, G., Pruthviraj, U., and Shetty, A. (2019). 
Surface Soil Moisture Retrieval Using C-Band 
Synthetic Aperture Radar (SAR) over Yanco Study 
Site, Australia—A Preliminary Study. In Applications 
of Geomatics in Civil Engineering. (Eds: Ghosh, J.K., 
and da Silva, I.) Springer Professional. https://doi.
org/10.1007/978-981-13-7067-0_8

Pyne, S.J. (1992). The Burning Bush: A Fire History of 
Australia. Allen and Unwin, Sydney. 520pp. ISBN: 
1863731946

Pyne, S.J. (2015). The Fire Age. Aeon essay: https://
aeon.co/essays/how-humans-made-fire-and-fire-
made-us-human

Pyne, S.J. (2020). The Still-Burning Bush. Scribe Short 
Books, Melbourne. 144pp. ISBN: 1920769757

Quan, X., He, B., Yebra, M., Liu, X., Liu, X., Zhung, 
X., and Cao, H. (2018). Retrieval of Fuel Moisture 
Content from Himawari-8 Product: Towards Real-
Time Wildfire Risk Assessment. IGARSS 2018 - 
2018 IEEE International Geoscience and Remote 
Sensing Symposium, Valencia, 2018, pp. 7660–7663. 
doi:10.1109/IGARSS.2018.8517602.

Rao, K., Park Williams, A., Fortin Flefil, J., and Konings, 
A.G. (2020). SAR-enhanced mapping of live fuel 
moisture content. Remote Sensing of Environment, 
245, 111797.

Reinhart, E.D., Keane, R.E., and Brown, J.K. (2001). 
Modeling fire effects. International Journal of 
Wildland Fire, 10, 373–380.

Renzullo, L.J., Tian, S., van Dijk, A.I.J.M., Rozas 
Larraondo, P.R., Yebra, M., Yuan, F., and Mueller, 
N. (2019). Burn extent and severity mapping by 
spectral anomaly detection in the Landsat data 
cube. 23rd International Congress on Modelling 
and Simulation, 1–6 December 2019, Canberra, ACT, 
Australia. https://mssanz.org.au/modsim2019/H7/
renzullo.pdf

Ressl, R., Lopez, G., Cruz, I., Colditz, R.R., Schmidt, 
M., Ressl, S., and Jimenez, R. (2009). Operational 
active fire mapping and burnt area identification 
applicable to Mexican Nature Protection Areas 
using MODIS and NOAA-AVHRR direct readout 
data. Remote Sensing of Environment, 113, 1113–1126

Roberts, D., Mueller, N., and McIntyre, A. (2017). 
High-Dimensional Pixel Composites From Earth 
Observation Time Series. IEEE Transactions on 
Geoscience and Remote Sensing, 55(11), 6254–
6264. https://ieeexplore.ieee.org/stamp/stamp.
jsp?arnumber=8004469

Robichaud, P.R., Lewis, S.A., Laes, D.Y.M., Hudak, A.T., 
Kokaly, R.F., and Zamudio, J.A. (2007). Postfire soil 
burn severity mapping with hyperspectral image 
unmixing. Remote Sensing of Environment, 108, 
467–480.

Roff, A., Goodwin, N., and Merton, R. (2005). 
Assessing Fuel Loads using Remote Sensing. NSW 
RFS Technical Report, University of NSW, Sydney.

Roff, A.M., Taylor, G.R., Turner, R., Day, M., Mitchell, 
A., and Merton, R. (2006). Hyperspectral and Lidar 
Remote Sensing of Forest Fuel Loads in Jilliby State 
Conservation Area. Proceedings of 13th Australian 
Photogrammetric and Remote Sensing Conference, 
Canberra, Australia. 

Rollins, M.G. (2009). LANDFIRE: a nationally 
consistent vegetation, wildland fire, and fuel 
assessment. International Journal of Wildland Fire, 
18, 235–249. 

Rothermel, R. (1972). A mathematical model for 
predicting fire spread in wildland fuels. Research 
Paper INT-115. Ogden, Utah, USDA Forest Service.

Roy, D.P., and Landmann, T. (2005). Characterizing the 
surface heterogeneity of fire effects using multi- 
temporal reflective wavelength data. International 
Journal of Remote Sensing, 26(19), 4197–4218. 

https://doi.org/10.1016/j.jenvman.2012.08.041
https://doi.org/10.1007/978-981-13-7067-0_8
https://doi.org/10.1007/978-981-13-7067-0_8
https://aeon.co/essays/how-humans-made-fire-and-fire-made-us-human
https://aeon.co/essays/how-humans-made-fire-and-fire-made-us-human
https://aeon.co/essays/how-humans-made-fire-and-fire-made-us-human
https://doi.org/10.1109/IGARSS.2018.8517602
https://mssanz.org.au/modsim2019/H7/renzullo.pdf
https://mssanz.org.au/modsim2019/H7/renzullo.pdf
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8004469
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8004469


Earth Observation: Data, Processing and Applications.  Volume 3: Applications

424

Roy, D.P., Lewis, P., and Justice, C. (2002). Burned area 
mapping using multi-temporal moderate spatial 
resolution data—a bi-directional reflectance model-
based expectation approach. Remote Sensing of 
Environment 83, 263–286. 

Roy, D.P., Lewis, P., and Justice, C.O. (2005). 
Prototyping a global algorithm for systematic fire-
affected area mapping using MODIS time series 
data. Remote Sensing of Environment, 97, 137–162. 

Roy, D.P., Boschetti, L., and Trigg, S.N. (2006). Remote 
sensing of fire severity: assessing the performance 
of the Normalized Burn Ratio. IEEE Geoscience and 
Remote Sensing Letters, 3(1), 112–116. 

Roy, D.P., Boschetti, L., and Smith, A.M.S. (2013). 
Satellite remote sensing of fires. In Fire Phenomena 
and the Earth System: An interdisciplinary guide to 
fire science. 1st edn (Ed: C.M. Belcher). John Wiley 
and Sons, Ltd. 

Russell-Smith, J., and Stanton, P. (2002) Fire regimes 
and fire management of rainforest communities 
across northern Australia. In Flammable Australia: 
The Fire Regimes and Biodiversity of a Continent. 
(Eds: R.A. Bradstock, J.E. Williams, and M.A. Gill) 
Cambridge University Press, Cambridge. 

Russell-Smith, J., Yates, C.P., Whitehead, P.J., Smith, 
R., Craig, R., Allan, G.E., Thackway, R., Frakes, I., 
Cridland, S., Meyer, M.C.P., and Gill, A.M. (2007). 
Bushfires ‘down under’: patterns and implications 
of contemporary Australian landscape burning. 
International Journal of Wildland Fire, 16, 361–377.

Salis, M., Del Giudice, L., Robichaud, P.R., Ager, 
A., Canu, A., Duce, P., Pellizzaro, G., Ventura, A., 
Alcasena-Urdiroz, F., Spano, D., and Arca, B. (2019). 
Coupling wildfire spread and erosion models to 
quantify post-fire erosion before and after fuel 
treatments. International Journal of Wildland Fire, 
28, 687–703. https://doi.org/10.1071/WF19034

Scarth, P., Roder, A., and Schmidt, M. (2010). Tracking 
grazing pressure and climate interaction—The role 
of Landsat fractional cover in time series analysis. 
Proceedings of the 15th Australasian Remote 
Sensing and Photogrammetry Conference, Alice 
Springs, Australia.

Schroeder, W., Prins, E., Giglio, L., Csiszar, I., Schmidt, 
C., Morisette, J., and Justice, C.O. (2008a). 
Validation of GOES and MODIS active fire detection 
products using ASTER and ETM+ data. Remote 
Sensing of Environment, 112, 2711–2726. 

Schroeder, W., Ruminski, M., Csiszar, I., Giglio, L., Prins, 
E., Schmid, C., and Morisette, J. (2008b). Validation 
of analyses of an operational fire monitoring 
product: The Hazard Mapping System. International 
Journal of Remote Sensing, 29(20), 6059–6066. 

Schroeder, W., Oliva, P., Giglio, L., and Csiszar, I.A. 
(2014). The new VIIRS 375m active fire detection 
data product: Algorithm description and initial 
assessment. Remote Sensing of Environment, 143, 
85–96.

Sharples, J.J. (2009). An overview of mountain 
meteorological effects relevant to fire behaviour 
and bushfire risk. International Journal of Wildland 
Fire, 18, 737–754. 

Sharples, J.J., Mills, G.A., McRae, R.H., and Weber, R.O. 
(2010). Foehn-like winds and elevated fire danger 
conditions in southeastern Australia. Journal of 
Applied Meteorology and Climatology, 49, 1067–
1095.

Sharples, J.J., McRae, R.H., and Wilkes, S.R. (2012). 
Wind-terrain effects on the propagation of wildfires 
in rugged terrain: fire chanelling. International 
Journal of Wildland Fire, 21, 282–296.

Sharples, J.J., Cary, G.J., Fox-Hufghes, P., Mooney, S., 
Evans, J.P., Fletcher, M.S., Fromm, M., Grierson, P., 
McRae, R., and Baker, P. (2016). Natural Hazards in 
Australia: extreme bushfire. Climatic Change, 139, 
85–99.

Shin, P., Sankey, T., Moore, M.M., and Thode, A.E. 
(2018). Evaluating unmanned aerial vehicle images 
for estimating forest canopy fuels in a Ponderosa 
pine stand. Remote Sensing, 10, 1266.

Silva, J.M.N., Sá, A.C.L., and Pereira, J.M.C. (2005). 
Comparison of burned area estimates derived from 
SPOT-VEGETATION and Landsat ETM1 data in 
Africa: Influence of spatial pattern and vegetation 
type. Remote Sensing of Environment, 96, 188–201.

Simpson, C.C., Sharples, J.J., and Evans, J.P. (2016). 
Sensitivity of atypical lateral fire spread to wind 
and slope. Geophysiology Research Letters, 43, 
1744–1751.

Smith, A.M.S., Wooster, M.I., Drake, N.A., Dipotso, F.M., 
Falkowski, M.J., and Hudak, A.T. (2005). Testing 
the potential of multi-spectral remote sensing 
for retrospectively estimating fire severity in 
African savanna environments. Remote Sensing 
of Environment, 97, 92–115. doi:10.1015/J.RSE-
2005.04.014. 

Smith, A.M.S., Lentile, L.B., Hudak, A.T., and Morgan, 
P. (2007a). Evaluation of linear spectral unmixing 
and dNBR for predicting post-fire recovery in North 
American ponderosa pine forest. International 
Journal of Remote Sensing, 28(22), 5159–5166. 

Smith, R., Adams, M., Maier, S., Craig, R., Kristina, 
A., and Maling, I. (2007b). Estimating the area 
of stubble burning from the number of active 
fires detected by satellite. Remote Sensing of 
Environment, 109, 95–106. 

https://doi.org/10.1071/WF19034
https://doi.org/10.1015/J.RSE-2005.04.014
https://doi.org/10.1015/J.RSE-2005.04.014


Earth Observation: Data, Processing and Applications.  Volume 3: Applications Volume 3A: Applications—Terrestrial Vegetation

18  Fire

425

Soverel, N.O., Perrakis, D.D.B., and Coops, N.C. (2010). 
Estimating burn severity from Landsat dNBR and 
RdNBR indices across western Canada. Remote 
Sensing of Environment, 114, 1896–1909.

Stavros, E.N., Abatzoglou, J.T., McKenzie, D., and 
Larkin, N.K. (2014). Regional projections of the 
likelihood of very large wildland fires under a 
changing climate in the contiguous Western United 
States. Climatic Change, 126, 455–468.

Stensrud, D.J. (1996). Importance of low-level jets to 
climate: a review. Journal of Climate, 9, 1698–1711.

Storey, M.A., Price, O.F., Sharples, J., and Bradstock, R. 
(2020a). Drivers of long-distance spotting during 
wildfires in south-eastern Australia. International 
Journal of Wildland Fire, 29(6), 459–472. https://doi.
org/10.1071/WF19124

Storey, M.A., Price, O.F., Bradstock, R.A., and Sharples, 
J.J. (2020b). Analysis of variation in distance, 
number, and distribution of spotting in southeast 
Australian wildfires. Fire, 3(2), 10. http://dx.doi.
org/10.3390/fire3020010

Stow, D., Niphadkar, M., and Kaiser, J. (2006). 
International Journal of Wildland Fire, 15, 347–360.

Strahler, A.H., Jupp, D.L.B., Woodcock, C.E., Schaaf, 
C.B., Yao, T., Zhao, F., Yang, X., Lovell, J., Culvenor, 
D., Newnham, G., Ni-Miester, W., and Boykin-Morris, 
W. (2008). Retrieval of forest structural parameters 
using a ground-based lidar instrument (Echnida). 
Canadian Journal of Remote Sensing, 34, S426-40. 

Strand, E.K., Bunting, S.C., and Keefe, R.F. (2013). 
Influence of Wildland Fire Along a Successional 
Gradient in Sagebrush Steppe and Western 
Juniper Woodlands. Rangeland Ecology and 
Management, 66(6), 667–679. https://doi.org/10.2111/
REM-D-13-00051.1

Swanson, M.E., Franklin, J.F., Beschta, R.L., Crisafulli, 
C.M., DellaSala, D.A., Hutto, R.L., Lindenmayer, 
D.B., and Swanson, F.J. (2011). The forgotten 
stage of forest succession: early-successional 
ecosystems on forest sites. Frontiers in Ecology 
and the Environment, 9, 117–125. https://doi.
org/10.1890/090157

Tanase, M., de la Riva, J., Santoro, M., Pérez-Cabello, 
F., and Kasischke, E. (2011). Sensitivity of SAR data 
to post-fire forest regrowth in Mediterranean and 
boreal forests. Remote Sensing of Environment, 
115(8), 2075–2085.

Tanase, M.A., Santoro, M., Aponte, C., and de La Riva, 
J. (2014). Polarimetric properties of burned forest 
areas at C- and L-band. IEEE Journal of Selected 
Topics in Applied Earth Observations and Remote 
Sensing, 7(1), 267–276.

Tian, X., Mcrae, D., Shu, L., Wang, M. (2005). Satellite 
remote-sensing technologies used in forest fire 
management. Journal of Forestry Research, 16(1), 
73–78.

Tickle, P.K., Lee, A., Lucas, R.M., Austin, J., and Witte, 
C. (2006). Quantifying Australian forest floristics 
and structure using small footprint LiDAR and 
large scale aerial photography. Forest Ecology and 
Management, 223, 379–394. 

Tolhurst, K.G., and McCarthy, G. (2016). Effect 
of prescribed burning on wildfire severity: a 
landscape-scale case study from the 2003 fires in 
Victoria. Australian Forestry, 79(1), 1–14.

Tolhurst, K., Shields, B., and Chong, D. (2008). 
Phoenix: development and application of a bushfire 
risk management tool. The Australian Journal of 
Emergency Management, 23, 47–54.

Trigg, S., and Flasse, S. (2000). Characterizing the 
spectral-temporal response of burned savannah 
using in situ spectroradiometry and infrared 
thermometry. International Journal of Remote 
Sensing, 21(16), 3161–3168. 

Trigg, S.N., Roy, D.P., and Flasse, S.P. (2005). An in situ 
study of the effects of surface anisotrophy on the 
remote sensing of burned savannah. International 
Journal of Remote Sensing, 26(21), 4869–4876. 

Tu, Y., Phinn, S., Johansen, K., and Robson, A. (2018). 
Assessing radiometric correction approaches 
for multi-spectral UAS imagery for horticultural 
applications. Remote Sensing, 10, 1684.

Turner, R. (2007). Assessment of Fuel Loads by 
Remote Sensing. Sub-report on Airborne Laser 
Scanner application in the Jilliby Catchment Area. 
Final report to NSW RFS 30 March, 2007. Forests 
New South Wales. 

Turner, M.G., Romme, W.H., and Gardner, R.H. 
(1999). Prefire heterogeneity, fire severity, and 
early postfire plant reestablishment in subalpine 
forests of Yellowstone National Park, Wyoming. 
International Journal of Wildland Fire, 9, 21−36. 

Turner, M.G., Twhitby, T.G., Tinker, D.B., and Romme, 
W. (2016). Twenty-four years after the Yellowstone 
Fires: Are postfire lodgepole pine stands 
converging in structure and function? Ecology, 
97(5), 1260–1273.

https://doi.org/10.1071/WF19124
https://doi.org/10.1071/WF19124
http://dx.doi.org/10.3390/fire3020010
http://dx.doi.org/10.3390/fire3020010
https://doi.org/10.2111/REM-D-13-00051.1
https://doi.org/10.2111/REM-D-13-00051.1
https://doi.org/10.1890/090157
https://doi.org/10.1890/090157


Earth Observation: Data, Processing and Applications.  Volume 3: Applications

426

van Oldenborgh, G.J., Krikken, F., Lewis, S., Leach, 
N.J., Lehner, F., Saunders, K.R., van Weele, M., 
Haustein, K., Li, S., Wallom, D., Sparrow, S., Arrighi, 
J., Singh, R.P., van Aalst, M.K., Philip, S.Y., Vautard, 
R., and Otto, F.E.L. (2020, in review). Attribution 
of the Australian bushfire risk to anthropogenic 
climate change. Natural Hazards and Earth System 
Sciences Discussions. https://doi.org/10.5194/
nhess-2020-69

Vanderhoof, M.K., Brunner, N., Beal, Y.G., and 
Hawbaker, T.J. (2017). Evaluation of the U.S. 
Geological Survey Landsat Burned Area Essential 
Climate Variable across the conterminous U.S. 
using commercial high-resolution imagery. Remote 
Sensing, 9(7), 743.

Veraverbeke, S., Stavros, E.N., and Hook, S.J. (2014). 
Assessing fire severity using imaging spectroscopy 
data from the Airborne Visible/Infrared Imaging 
Spectrometer (AVIRIS) and comparison with 
multispectral capabilities. Remote Sensing of 
Environment, 154, 153–163.

Verbesselt, J., Fleck, S., and Coppin, P. (2002). 
Estimation of fuel moisture content towards Fire 
Risk Assessment: A review. In: Forest Fire Research 
and Wildland Fire Safety (Ed: Viegas), Millpress. 
Rotterdam. ISBN 90-77017-72-0. 

Verbesselt, J., Somer, B., Lhermitte, S., Jonckheere, 
I., van Aardt, J., and Coppin, P. (2007). Monitoring 
herbaceous fuel moisture content with SPOT 
VEGETATION time-series for fire risk prediction 
in savanna ecosystems. Remote Sensing of 
Environment, 108, 357–368. 

Verbyla, D.L., Kasischke, E.S., and Hoy, E.E. (2008). 
Seasonal and topographic effects on estimating fire 
severity from Landsat TM/ETM+ data. International 
Journal of Wildland Fire, 17, 527–534. 

Vilar, L., Camia, A., San-Miguel-Ayanz, J., and Pilar 
Martín, M. (2016). Modeling temporal changes in 
human-caused wildfires in Mediterranean Europe 
based on Land Use-Land Cover interfaces. Forest 
Ecology and Management, 378, 68–78.

Walker, R.B., Coop, J.D., Downing, W.M., Krawchuk, 
M.A., Malone, S.L., Meigs, G.W. (2019). How Much 
Forest Persists Through Fire? High-Resolution 
Mapping of Tree Cover to Characterize the 
Abundance and Spatial Pattern of Fire Refugia 
Across Mosaics of Burn Severity. Forests, 10, 782. 
https://doi.org/10.3390/f10090782

Wallace, L., Lucieer, A., Malenovsky, Z., Turner, D., and 
Vopenka, P. (2016). Assessment of forest structure 
using two UAV techniques: a comparison of 
airborne laser scanning and structure from motion 
(SfM) point clouds. Forests, 7(3), 62.

Wang, L., Quan, X., He, B., Yebra, M., Xing, M., and 
Liu, X. (2019). Assessment of the dual polarimetric 
Sentinel-1A data for forest fuel moisture content 
estimation. Remote Sensing, 11, 1568.

Wang, X., Thompson, D.K., Marshall, G.A., Tymstra, 
C., Carr, R., and Flannigan, M.D. (2015). Increasing 
frequency of extreme fire weather in Canada with 
climate change. Climatic Change, 130(4), 573–586.

Wickramasinghe, C., Jones, S., Reinke, K., and Wallace, 
L. (2016). Development of a multi-spatial resolution 
approach to the surveillance of active fire lines 
using Himawari-8. Remote Sensing, 8(11), 932. 

Wing, M.G., Burnett, J.D., and Sessions, J. (2014). 
Remote sensing and unmanned aerial system 
technology for monitoring and quantifying forest 
fire impacts. International Journal of Remote 
Sensing Applications, 4(1), 18.

Xu, G., and Zhong, X. (2017). Real-time wildfire 
detection and tracking in Australia using 
geostationary satellite: Himawari-8. Remote 
Sensing Letters, 8, 1052–1061.

Yebra, M., Chuvieco, E., and Riano, D. (2008). 
Estimation of live fuel moisture content from 
MODIS images for fire risk assessment. Agricultural 
and Forest Meteorology, 148, 523–36. 

Yebra, M., Chuvieco, E., Danson, M., Dennison, P., 
Hunt, E.R, Jurdao, S., Riano, D., Zylstra, P. (2013). A 
global review of remote sensing of live fuel moisture 
content for fire danger assessment: moving 
towards operational products. Remote Sensing of 
Environment, 136, 455–468.

Yebra, M., Quan, X., Riano, D., Rozas-Larraondo, P., 
van Dijk, A., and Cary, G. (2018). A fuel moisture 
content and flammability monitoring methodology 
for continental Australia based on optical remote 
sensing. Remote Sensing of Environment, 212, 
260–272. 

Yin, C., He, B., Yebra, M., Juan, X., Edwards, A.C., 
Liu, X., Liao, Z., Lui, K. (2019). Burn Severity 
Estimation in Northern Australia Tropical Savannas 
Using Radiative Transfer Model and Sentinel-2 
Data. IGARSS 2019 (2019 IEEE International 
Geoscience and Remote Sensing Symposium) 
Yokohama, Japan. pp. 6712–6715. doi:10.1109/
IGARSS.2019.8899857.

Yuan, C., Zhang, Y., and Lui, Z. (2015). A survey on 
technologies for automatic forest fire monitoring, 
detection and fighting using unmanned aerial 
vehicles and remote sensing techniques. Canadian 
Journal of Forest Research, 45(7), 783–792.

https://doi.org/10.5194/nhess-2020-69
https://doi.org/10.5194/nhess-2020-69
https://doi.org/10.3390/f10090782
https://doi.org/10.1109/IGARSS.2019.8899857
https://doi.org/10.1109/IGARSS.2019.8899857


Earth Observation: Data, Processing and Applications.  Volume 3: Applications

Observing Ecosystems



Section 1 introduces environmental factors that shape and impact ecosystems and their global 
distribution. Significant attributes of ecosystems are described in Section 7. 

Ecological integrity is said to be “the ability of an ecological system to support and 
maintain a community of organisms that has species composition, diversity, and functional 
organisation comparable to those of natural habitats within a region” (Parrish et al., 2003). In the 
following two sections we consider ecological integrity in terms of biodiversity (see Section 19) and 
sustainability (see Section 20). 

Contents
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Background image on previous page: Landsat-8 OLI image over the Gulf of Carpentaria, NT, acquired on 7 June 2016, displayed uisng bands 6, 5, 3 as RGB. 
Source: Norman Mueller, Geoscience Australia
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Biodiversity is a relatively recent term, blended from the Greek word ‘bios’, meaning life, and the Latin word 
‘diversitas’, meaning variety or difference. It basically represents the concept of biological diversity and 
embraces all life forms on Earth (see Sections 1.3.1 and 7.1).

As human populations have expanded, global 
biodiversity has been observed to decline at both local 
and global scales (see Section 11.4). Many organisms 
change their environments to create niches which 
provide them and their progeny with a competitive 
advantage over other species in terms of access to, 
and use of, various resources (Pereira et al., 2012). 
However, the impact of Homo sapiens on global 
biodiversity vastly exceeds that of other species (see 
Excursus 11.2). Since the industrial revolution, this 
impact has accelerated due to massive technological 
changes and rapid population growth (see Figure 19.1), 
and has been accompanied by significant pollution 
of air, water and soil from a wide range of new, toxic 
materials. The major anthropogenic drivers for 
biodiversity change (namely, fire, hunting, fishing, 
agriculture and forest clearing, island invasions, 
pollution, and anthropogenic climate change) have all 
been increasing in parallel with population growth over 
this time period (Pereira et al., 2012). The main threats 
to biodiversity of mammals, birds and amphibians have 
been identified (in decreasing order) as: 

	§ habitat changes—urban development, agriculture, 
mining, transportation;

	§ overexploitation—fishing, hunting;

	§ invasive species—introduced exotics;

	§ climatic variations—temperature and precipitation 
patterns, sea level rise; and 

	§ pollution—water, air, soil (Pereira et al., 2012; 
IPBES, 2019).

In response to the global decline in biodiversity, the 
United Nations Envrionment Programme (UNEP) 
developed an international legal instrument called the 
Convention on Biological Diversity (CBD), which was 
presented at the 1992 UN Conference on Environment 
and Development (the Rio ‘Earth Summit’) and ratified 
at the end of 1993 with the support of 168 world 
leaders. The objectives of this convention were:

	§ conservation of biological diversity;

	§ sustainable use of the components of biological 
diversity; and

	§ fair and equitable sharing of the benefits arising out 
of the utilisation of genetic resources (CBD, 2020a).

To achieve these objectives, a global strategy was 
designed, which could be translated into national 
biodiversity policies and procedures (BIP, 2010). The 
Strategic Plan for Biodiversity 2011–2020 included the 
Aichi Biodiversity Targets, which defined five strategic 
goals:

A.	 Address the underlying causes of biodiversity loss 
by mainstreaming biodiversity across government 
and society;

B.	 Reduce the direct pressures on biodiversity and 
promote sustainable use;

C.	 Improve the status of biodiversity by safeguarding 
ecosystems, species, and genetic diversity;

D.	 Enhance the benefits to all from biodiversity and 
ecosystem services; and

E.	 Enhance implementation through participatory 
planning, knowledge management, and capacity 
building (CBD, 2020b).

19  Biodiversity

Background image: Blue Marble Next Generation image with topography and bathymetry for April 2004. (Note: the vertical extent of this composite image has 
been clipped and the aspect ratio changed.) Source: NASA. (Retrieved from https://visibleearth.nasa.gov/collection/1484/blue-marble)

https://visibleearth.nasa.gov/collection/1484/blue-marble


Earth Observation: Data, Processing and Applications.  Volume 3: Applications

430

Figure 19.1  Human population growth

Human population growth since 10,000 BC to present day shows an exponential rate of increase since the industrial revolution.

Source: El T, Wikimedia: https://commons.wikimedia.org/wiki/File:Population_curve.svg

Within this set of goals, 20 targets (to be achieved by 
2020) were outlined based on measurable indicators 
of progress (CBD, 2020b). Using the CBD framework, 
National Biodiversity Strategies and Action Plans 
(NBSAP), which define policies, planning processes, 
and research agendas to ensure “consideration of 
the conservation and sustainable use of biological 
resources into national decision-making”, are then 
developed and implemented by all signature nations. 
A revised Global Biodiversity Framework is currently 
being prepared by CBD for post-2020.

The International Union for Conservation of Nature 
(IUCN) defines six categories for protected areas 
based on management objectives, which are used 
as a global standard for defining and recording such 
regions (IUCN, 2020a):

“Ia	 Strict Nature Reserve: Category Ia are strictly 
protected areas set aside to protect biodiversity 
and also possibly geological/geomorphical 

features, where human visitation, use and 
impacts are strictly controlled and limited to 
ensure protection of the conservation values. 
Such protected areas can serve as indispensable 
reference areas for scientific research and 
monitoring. 

Ib	 Wilderness Area: Category Ib protected areas 
are usually large unmodified or slightly modified 
areas, retaining their natural character and 
influence without permanent or significant human 
habitation, which are protected and managed so 
as to preserve their natural condition. 

II	 National Park: Category II protected areas are 
large natural or near natural areas set aside to 
protect large-scale ecological processes, along 
with the complement of species and ecosystems 
characteristic of the area, which also provide a 
foundation for environmentally and culturally 
compatible, spiritual, scientific, educational, 
recreational, and visitor opportunities. 

The human appropriation of Earth’s natural resources is not only leading to biodiversity loss but also to 
large alterations of biodiversity distribution, composition, and abundance. 

(Pereira et al., 2012)

https://commons.wikimedia.org/wiki/File:Population_curve.svg
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III	 Natural Monument or Feature: Category III 
protected areas are set aside to protect a specific 
natural monument, which can be a landform, sea 
mount, submarine cavern, geological feature 
such as a cave or even a living feature such as 
an ancient grove. They are generally quite small 
protected areas and often have high visitor value. 

IV	 Habitat/Species Management Area: Category 
IV protected areas aim to protect particular 
species or habitats and management reflects this 
priority. Many Category IV protected areas will 
need regular, active interventions to address the 
requirements of particular species or to maintain 
habitats, but this is not a requirement of the 
category. 

V	 Protected Landscape/ Seascape: A protected area 
where the interaction of people and nature over 
time has produced an area of distinct character 
with significant, ecological, biological, cultural 
and scenic value: and where safeguarding the 
integrity of this interaction is vital to protecting 
and sustaining the area and its associated nature 
conservation and other values.

VI	 Protected area with sustainable use of natural 
resources: Category VI protected areas conserve 
ecosystems and habitats together with associated 
cultural values and traditional natural resource 
management systems. They are generally large, 
with most of the area in a natural condition, where 
a proportion is under sustainable natural resource 
management and where low-level non-industrial 
use of natural resources compatible with nature 
conservation is seen as one of the main aims of 
the area.” 

Global ecosystem maps are necessary to assess 
the representation of ecosystems in protected 
areas. In particular, Sayre et al. (2020) derived a 
global dataset with 250 m spatial resolution to map 
terrestrial ecosystems by combining climate, landform 
and vegetation information. Of the 431 identified 
ecosystems, 278 were described as natural/semi-
natural. Using Aichi target 11, which defines adequate 
representation as 17% of the global ecosystem area 

being managed for conservation to meet IUCN 
management categories I–IV (see also Table 3.6), 
only 19 of the natural/semi-natural ecosystems were 
adequately represented, 44 were poorly represented 
(8.5–17% of total area was protected), 206 were very 
poorly represented (< 8.5%) and 9 were not protected 
at all. When assessed against IUCN categories 1–
VI and including undesignated protected areas, 
these proportions improved to around one third 
as adequate, one third as poor and one third as 
very poor.

In order to monitor biodiversity globally, a set of 
agreed and appropriate indicators are required “to 
measure status and trends of biodiversity, sustainable 
use, threats to biodiversity, ecosystem integrity and 
ecosystem goods and services, status of knowledge, 
innovations and practice, and status of resource 
transfers” (BIP, 2010; see also Section 7.1). Global, 
EO-based, biodiversity indicators that can be used 
for standardised monitoring are being developed 
by the Group for Earth Observations Biodiversity 
Observation Network (GEOBON; see Section 19.3), 
which are commonly called ‘Essential Biodiversity 
Variables’ (EBV; see Section 11.2). 

Standardised criteria for assessing the risk of 
biodiversity loss (see Section 19.4) are needed to 
improve the management of biodiversity resources 
and protect ecosystem services (see Section 20.3). 
Such criteria have been developed by the IUCN for 
both species and ecosystems (see Excursus 19.1). 
Despite the bleak outlook for biodiversity risk around 
the world, in recent decades biodiversity monitoring 
has shown that some improvements are being 
achieved by global, regional and national initiatives 
to conserve specific habitats, reintroduce threatened 
species, enforce environmental legislation, and 
increase public awareness (Pereira et al., 2012). 

An overview of Australian biodiversity is presented 
in Section 19.1 and Australian biodiversity monitoring 
systems based on EO datasets are described in 
Section 19.5. Some EO sensors that are appropriate 
for assessing biodiversity are reviewed in Section 19.2.

An understanding of risks to biodiversity is needed for planning action to slow current rates of decline 
and secure ecosystem services for future human use. 

(Keith et al., 2013)
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19.1  Biodiversity in Australia
To date, a diverse range of policies and programs 
have been implemented by different jurisdictions to 
manage and conserve biodiversity in Australia (see 
Section 19.5). The central environmental legislation 
at a federal level is the Environmental Protection 
and Biodiversity Conservation Act (EPBC) 1999, 
which “provides a legal framework to protect and 
manage nationally and internationally important flora, 
fauna, ecological communities and heritage places 
as defined in the EPBC Act as matters of national 
environmental significance” (DAWE, 2020a). 

Biodiversity indicators are used for various 
environmental reporting exercises, including 
Australian state and federal State of Environment 
(SoE) reports. For example, the Victorian SoE 2018 
report evaluated that, in that state, 75% of the 
biodiversity indicators had declined or were not 
known (SoE, 2018), which is consistent with global 
trends (IPBES, 2019). Land management practices 
that have been identified as having the greatest 
impact on biodiversity in Australia are summarised in 
Table 19.1.

Natural Resource Management (NRM) is the integrated management of the natural resources that make 
up Australia’s natural landscapes, such as land, water, soil, plants and animals. That is, our land, water and 

biodiversity assets. 
(NRM, 2019)

Table 19.1  Land management practices with ongoing impact on biodiversity in Australia

Land Management 
Practice

Impacts on biodiversity Geographic Area

Removing native 
vegetation

Replacing native grasses 
with improved pasture

Habitat destruction and fragmentation, reduced 
population sizes, isolation of populations, reduced 
resilience to other threats, loss of species and 
diversity, depleted condition and functioning of 
ecosystems

Ongoing threat to vegetation communities in southeast 
Queensland and northern NSW, parts of Tasmania and the 
NT

Small scale clearing threatens remnants in all settled areas 
of Australia

Increasing the intensity of 
grazing

Habitat depletion and fragmentation, reduced 
population sizes, isolation of populations, reduced 
resilience to other threats, loss of species and 
diversity, depleted condition and functioning of 
ecosystems

Ongoing pressure across the rangelands, the wheat–sheep 
zone, and alpine areas, including grazing by livestock, native 
herbivores, and invasive herbivores

Increasing the intensity of 
artificial watering points

Habitat destruction, increased competition from 
invasive species, loss of species and diversity, 
depleted condition and functioning of ecosystems

Ongoing pressure across much of the rangelands.

Extracting surface and 
groundwater for irrigation 
and other uses;

Draining wetlands

Depletion of river flows and aquatic habitat, loss 
of species and diversity, increased vulnerability to 
invasive species and other threats, depletion of 
condition, and functioning of aquatic ecosystems

Ongoing threat in all major irrigation areas, especially in the 
Murray-Darling Basin

Groundwater extraction is an ongoing threat to wildlife 
and natural systems in the Great Artesian basin, southwest 
Western Australia, and many areas of southern Australia

Converting from livestock 
to cropping

Habitat destruction and fragmentation, reduced 
population sizes, isolation of populations, reduced 
resilience to other threats, loss of species and 
diversity, depleted condition and functioning of 
ecosystems, depletion of the condition of aquatic and 
marine ecosystems

Relatively stable but ongoing threat across the intensive 
land use wheat–sheep belt of southeastern Australia

Ongoing threat to the Great Barrier Reef

Altering natural fire regimes Depleted composition and structure, reduced 
resilience to other threats

Australia-wide, but impacts significant in northern savannas 
and fire-sensitive and fire-dependent communities (e.g. 
monsoon vine thickets)

Revegetating cleared areas Increased habitat and reduced fragmentation, 
increased resilience to other threats

Natural regeneration occurs throughout the country

Revegetation programs are primarily implemented in 
southern Australia

Large scale examples aim to link remnants across 
landscapes.

Reducing the density of 
livestock

Reduced competition, increased resilience to other 
threats

Occurs in response to drought throughout grazing lands and 
in some areas as part of sustainable grazing management 
programs

Newly acquired conservation areas are generally destocked.

Source: DEWHA (2009) Table 5.5
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Table 19.2  Biodiversity in Australia’s terrestrial vegetation

Key finding Description

Native vegetation is a key 
surrogate for biodiversity

Native vegetation is a cost-effective and powerful surrogate for biodiversity. The distribution of threatened species 
and communities is closely aligned with areas where native vegetation has been extensively cleared.

The extent of native 
vegetation is known

National mapping of native vegetation has advanced significantly since 2002 with improvements in data and in 
mapping technologies (e.g. through NVIS). Although important gaps remain (in scale, and in defining some major 
vegetation groups such as derived native grasslands), we now know the extent of most major vegetation types in the 
landscape.

Native vegetation has 
been modified or cleared

Native vegetation has been modified and cleared since European settlement, especially from intensive agricultural 
and urban areas (particularly in southern and eastern Australia and in southwestern Australia). The losses have 
been greatest in eucalypt woodlands and have also been significant in eucalypt open forest and mallee woodlands 
and shrublands. The loss of biota in the cleared and modified areas has been dramatic and continues today (e.g. in 
woodland birds).

Native vegetation is 
being lost faster than it is 
replaced

Broadscale clearing has been reducing since 2002, however nationally, native vegetation is still being cleared 
and modified faster than it is replaced. A net loss of forest (including native and non-native vegetation) of around 
260,000 ha per year occurred between 2000 and 2004 and was primarily attributed to clearing for agriculture and 
urban development.

We are making progress 
towards assessing native 
vegetation condition

Since 2002, there has been progress in the collaboration between national, state, and territory jurisdictions in 
improving Australia’s vegetation information. This includes approaches to modelling, monitoring, and mapping 
vegetation condition, on both national and more localised scales. Reference-based methodologies are being used in 
most states for target setting, investment and planning decisions, and reporting.

Source: DEWHA (2009) Table 2

Measures of biodiversity are introduced in Section 7.1. 
The major indicators for biodiversity assessment in 
terrestrial ecosystems in Australia are defined as:

	§ native vegetation extent and distribution;

	§ changes in native vegetation extent and 
distribution; and the 

	§ status and trends of native vegetation condition 
(DEWHA, 2009; see Table 19.2). 

Mapping of native vegetation, an effective indicator 
of biodiversity, has improved in recent decades 
with systems like NVIS (see Section 2.3.1), although 
information gaps remain. The available data indicates 
that native vegetation still grows on 87% of the 
Australian continent (DEWHA, 2009), however 
62% of this area is likely to be modified (Thackway 
and Lesslie, 2006). Not surprisingly, the greater 
concentrations of threatened species occur in the 
eastern, southern and southwestern coastal fringes 
where population densities are highest. 

In order to conserve biodiversity in Australia, a 
network of conservation parks and reserves has been 
coordinated by the National Reserve System (NRS) 
to meet the IUCN principles of ‘comprehensiveness, 
adequacy and representativeness’ (CAR):

	§ comprehensiveness—samples the full range of 
regional ecosystems recognisable at an appropriate 
scale within each IBRA bioregion;

	§ adequacy—at a bioregional scale, consider 
ecological viability and resilience for each reserve 
and the reserve system; and

	§ representativeness—sample regional variability 
(IBRA sub-region; DEWHA, 2009). 

In 2006, 11.6% of the Australian land mass was 
officially reserved, however, while 49 bioregions 
satisfied the goals of � 10% representation in reserves, 
36 did not (DEWHA, 2009). Although the NRS is a 
collaborative undertaking between state and federal 
jurisdictions to provide linked refuges across the 
landscape, differing priorities and progress towards 
CAR persist both within and between jurisdictions. 

Conservation reserves alone cannot protect the biodiversity of a region. Even if 10% of every ecosystem 
could be included, which is highly unlikely, in the protected area network, most species would not be 

included. Any conservation reserve system will fail if the broader land use management practices ignore 
the conservation of biodiversity in off-reserve areas. 

(Tony Brandis, from ‘Rescuing the Rangelands’)
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19.2  EO Sensors for Biodiversity
Passive optical satellite imagery provides the 
overwhelming majority of EO information to inform 
biodiversity decision making and legislative 
instruments, such as mapping and monitoring of land 
cover, land use, biophysical vegetation properties, 
and vegetation extent (see Sections 3, 8, and 9). This 
data source is now available at a range of spatial 
scales, from pixels spanning centimetres to kilometres, 
with data archives dating back many decades (see 
Volume 1A—Section 14). Many of these archives have 
been calibrated and standardised for ease of use, and 
reprocessed into a variety of composite image datasets 
with relevance to biodiversity (see Volume 2D).

Other sources of EO datasets that are relevant to 
mapping and monitoring biodiversity are summarised 
in Table 19.3. A growing variety of ground-based 
sensors are also being utilised to collect in situ and 
near ground data (see Volume 2D—Section 12).

Changes in and the loss of biodiversity directly 
influences the capacity of an ecosystem to produce 

and supply essential services, and can affect the 
long term ability of ecological, economic and social 
systems to adapt and respond to global pressures. 

(DEWHA, 2010)

Table 19.3  EO sensors relevant to biodiversity

TIR: Thermal infrared; SAR: Synthetic Aperture Radar; RPAS: Remotely Piloted Aircraft Systems; ET: Evapotranspiration

Type Sensor Platform Relevance Advantages Disadvantages

Passive 
optical

Multispectral 
radiometer

Predominantly 
satellite, 
decreasingly 
airborne

Local to national scale 

Global, recurrent 
coverage, high temporal 
frequency and extent, 
low cost, significant 
calibration/validation 
efforts established, many 
operational processing 
methods

Some low spatial resolution 
datasets are not appropriate 
for detailed studies 

Hyperspectral 
spectro-
radiometer

Predominantly 
airborne

Species discrimination 

Plant biochemical 
functioning and health

High spectral resolution

High cost, high data volume, 
lower signal to noise 
ratio, greater processing 
complexity

TIR radiometer
Field, satellite or 
airborne

Soil/canopy temperature
Surrogate measure for ET 
plus input into EO modelling

Low resolution, low signal to 
noise ratio

Active 
optical

Lidar

Predominantly 
airborne, 
increasingly 
terrestrial, 
emerging satellite

Vegetation structure, 
volume, and biomass

Water balance 
applications

DEM

Highlights detailed structure 
of plant canopy and soil 
surface

High cost, specialised 
processing, longer acquisition 
times

Active optical 
sensor

Ground vehicles or 
RPAS

Cover and condition 
mapping

Specific property 
recognition (e.g. disease, 
optical properties of 
water)

Convenience, low cost, 
independent of sunlight

Low availability and limited 
surface coverage

Passive 
microwave

Microwave 
radiometer

Satellite
Soil moisture

Climate variables

High temporal frequency, 
large spatial coverage, cloud 
penetration

Very low energy targets, very 
coarse spatial resolution

Active 
microwave

SAR Satellite or airborne

Soil characteristics

Vegetation structure

Water dynamics

All weather, operates at 
night

Data availability, noisy data, 
complex processing

Proximal 

Passive 
optical sensor 
(phenocam, 
hyperspectral); 
meteorological 

Ground and 
tower-based (see 
Excursus 7.2 and 
Volume 2D—
Section 12)

Ecosystem and 
atmospheric variability

Carbon dynamics

Phenology

Continuous, long term 
measurements

High cost, high data volume, 
require skilled maintenance

Positioning GPS

Portable devices 
linked to satellite-
based positioning 
systems

Locating field sites for 
cal/val

Low cost
Coverage in remote regions 
or below dense canopies

Citizen 
Science

Portable,  
hand-held r

Ground-based
Validation of species 
occurrence and major 
phenological events

Low cost, public 
involvement

Potentially subjective 
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19.3  Global Biodiversity Indicators
While we are acutely aware of the alarming rate 
of biodiversity loss worldwide, it is a challenge to 
quantify the status of global biodiversity change 
using an approach that is consistent over space and 
time. There has been considerable debate on the 
topic of measuring and monitoring biodiversity at a 
global scale (e.g. EASAC, 2004; Teillard et al., 2016; 
OECD, 2020). Various sets of global biodiversity 
indicators have been proposed (BIP, 2019), but many 
accepted measures, such as the Living Planet Index 
(LPI; WWF, 1998), have been assessed as failing “to 
fulfill fundamental scientific requirements” (Böhringer 
and Jochem, 2007). 

One framework that has been proposed to identify 
and classify appropriate indicators for consistent 
biodiversity monitoring and evaluation at regional 
and global scales is the response-pressure-state-
benefit framework (Sparks et al., 2011; see Figure 19.2), 
where the linkages between indicators show the 
interaction of relevant factors in biodiversity loss 
(see also Figure 11.2). The function of each indicator 
is summarised in Table 19.4. This framework 
underpins the biodiversity monitoring program being 
implemented in NSW (see Section 19.5). 

Major gaps and uncertainties currently exist within 
the survey data records that are available to monitor 
global biodiversity (Pereira et al., 2012). There are also 
significant variations between and within national 
and regional monitoring programmes. Coupled 
with insufficient financial resources and a lack of 
consensus on reliable, scalable biodiversity indicators, 
these factors have thwarted implementation 
of an operational ‘global system of harmonised 
observations’ (Pereira et al., 2013). However, EO offers 
considerable potential for both direct and indirect 
assessment of biodiversity (Gillespie et al., 2008) and 
conservation planning (Rose et al., 2014) at regional 
to global scales, particularly with the advent of high 
spatial resolution, spaceborne sensors. 

If you can’t measure it, you can’t manage it. 
(Peter Drucker)

Figure 19.2  Response-pressure-state-benefit (RPSB) framework

Adapted from: Sparks et al. (2011)
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Thus it happens in affairs of state, for when the evils that arise have been foreseen (which it is only given 
to a wise man to see), they can be quickly redressed, but when, through not having been foreseen, they 

have been permitted to grow in a way that every one can see them, there is no longer a remedy. 
(Machiavelli, from 'The Prince', 1513)

Since raw biodiversity data is typically sparse and 
heterogeneous, using EO data as covariates with 
appropriate modelling tools allows the available 
raw data to be sensibly interpolated both spatially 
and temporally (Jetz et al., 2019; see Volume 2D). 
Progress towards a globally-accepted, EO-based 
set of indicators is being achieved by GEOBON. 
This international initative of GEO (Group for 
Earth Observations, a voluntary intergovernmental 
partnership; see Volume 1A—Section 1.5) aims to 
“improve the acquisition, coordination and delivery 
of biodiversity observations and related services to 
users including decision makers and the scientific 
community” and establish an integrated, global 
network to observe biodiversity in a timely and 
consistent fashion at a range of scales. This network 
will help to assess progress towards the CBD 
Strategic Plan and Aichi Targets (GEOBON, 2020; 
Walters and Scholes, 2017). 

A major focus for GEOBON is defining a set of 
EBV that can be measured and modelled globally, 
preferably by integrating EO datasets with in situ 
observations (Pereira et al., 2013; GEOBON, 2020; 
Masó et al., 2020; see Section 11.2), where an ideal 
EBV is defined as:

	§ “able to capture critical scales and dimensions of 
biodiversity;

	§ biological;

	§ a state variable (in general);

	§ sensitive to change;

	§ ecosystem agnostic (to the degree possible); and

	§ technically feasible, economically viable and 
sustainable in time” (GEOBON, 2020).

Table 19.4  RPSB indicators

Indicator Function Example

Response

Measure implementation of 
policies or actions aimed to 
prevent or reduce biodiversity 
loss

Conservation 
actions including 
offsets

Pressure
Measure the extent and intensity 
of the threats to or causes of 
biodiversity loss

Certain land uses

State
Measure the current condition 
and status of biodiversity or 
ecological integrity

Status of threatened 
species or condition 
of suitable habitats

Benefit
Quantify the benefits that 
humans derive from biodiversity

Ecosystem services

Source: Sparks et al. (2011); OEH and CSIRO (2019) 

The current set of EBV classes and candidates are 
listed in Table 19.5. Primary observations from in 
situ monitoring and EO systems are preprocessed 
and combined into EBVs, which represent an 
intermediate data layer for harmonisation between 
sampling protocols and measurement systems (see 
Figure 11.3). All EBV classes should be included in a 
biodiversity monitoring program. EBVs inform multiple 
biodiversity and ecosystem service indicators, such 
as those needed to assess the Aichi Biodiversity 
targets. Some indicators require the integration of 
EBVs with other sources of information such as data 
on ancillary biodiversity attributes (slowly changing 
variables), drivers and pressures, management and 
policy responses, and valuation and demand of 
ecosystem services. Future projections of drivers 
and policy responses can be used to develop 
scenarios for biodiversity and ecosystem services 
using models calibrated and validated with EBVs 
(Pereira et al., 2013). Further integration between 
these EBV and appropriate models and infrastructure 
will support assessment at a range of scales for both 
policy and research purposes.

Table 19.5  EBV classes and candidates

EBV class EBV candidate

Genetic composition

Co-ancestry

Allelic diversity

Population genetic differentiation

Breed and variety diversity

Species populations

Species distribution

Population abundance

Population structure by age/size class

Species traits

Phenology

Morphology

Reproduction

Physiology

Movement

Community composition
Taxonomic diversity

Species interactions

Ecosystem function

Net primary productivity

Secondary productivity

Nutrient retention

Disturbance regime

Ecosystem structure

Habitat structure

Ecosystem extent and fragmentation

Ecosystem composition by functional type

Source: GEOBON (2020)
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19.4  Risk Assessment

16	 http://www.environment.gov.au/cgi-bin/sprat/public/publicshowcommunity.pl?id=28&status=Endangered

As introduced above, global biodiversity is declining 
dramatically, especially since the start of the 
industrial age. These changes include both loss and 
alteration of biodiversity, in differing proportions 
(see Figure 19.3). In Australia, one example of this 
decline is the current extent of Brigalow communities 
(Acacia harpophylla dominant and co-dominant) 
which before pastoral settlement covered 10.2 million 
ha in southeast Queensland (Neldner, 2018)16. By 
1940, the extent of brigalow had been reduced to 
less than 8.5 million ha, and by 1970 it covered half 
this area (Accad and Neldner, 2015). Various social 
and political factors contributed to the significant 
decline for this vegetation group, including subsided 
ringbarking during the Great Depression and 
mechanical and chemical clearing following World 
War 2 (Seabrook et al., 2006). Brigalow now covers 
only 1.3 million ha and is an EPBC-listed Endangered 
Ecological Community (Neldner et al., 2017).

The IUCN Red List of Ecosystems (RLE) defines 
criteria for assessing declining ecosystem biodiversity 
at a global scale (see Excursus 19.1). These criteria 
satisfy the IUCN design goals of generality, 
precision, realism and simplicity (Keith et al., 2015) 
and have been applied to a wide range of 
ecosystems around the world. RLE has been used 
to assess ecosystem risk in Australia for a range 
of ecosystem types (Keith, 2015), including Alpine 
herbfields (Williams et al., 2015), lowland rainforests 
(Metcalfe and Lawson, 2015), forests (Burns et al., 
2015; Auld and Leishman, 2015), woodlands (Tozer 
et al., 2015; Wardle et al., 2015), and wetlands (Pisanu 
et al., 2015). While widespread, these individual case 
studies do not satisfactorily represent the status of 
Australian ecosystems. Keith (2015) recommends a 
comprehensive risk assessment approach comprising:

	§ a systematic and consistent framework for 
assessment and scaling with precise differentiation 
of ecosystems—current typologies for terrestrial 
vegetation are not consistent with IUCN RLE;

	§ high to medium resolution spatial data showing 
ecosystem distribution—EO time series datasets 
are invaluable here, together with other spatial data 
(see Volume 2D);

	§ long term ecological monitoring for assessing and 
managing ecosystems—such as the TERN Long 
Term Ecological Research Network (LTERN; see 
Section 19.6); and

	§ cross-disciplinary collaboration and cooperation. 

Figure 19.3  Biodiversity change in terms of loss and alterations

Loss of biodiversity includes both species extinctions and loss 
of genetic diversity, while alteration of biodiversity includes 
changes in species composition and relative abundance, 
changes in community structure, and changes in species range 
or extent.

Adapted from: Pereira et al. (2012) Figure 1 

Many data sources are relevant for ecosystem 
risk assessment, including those from short and 

long term monitoring programs, field surveys, 
and underwater, aerial and satellite sensors. Of 

these, satellite remote sensing offers the greatest 
opportunity to evaluate ecosystem change beyond 

the site level and to scale the risk assessment 
process to provincial, national and continental 

jurisdictions.  
(Murray et al., 2018a)

http://www.environment.gov.au/cgi-bin/sprat/public/publicshowcommunity.pl?id=28&status=Endangered
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EO datasets are being used increasingly to assess 
risks to biodiversity, ideally with sufficient spatial 
and temporal resolutions to represent ecosystem 
dynamics and detect rapid change. Some of the 
environmental variables that can be monitored using 
EO include area loss, biomass change, and disease 
stress, which can subsequently be used to estimate 
the spatial extent of biotic and abiotic degradation. EO 
time series can also be analysed to derive disturbance 
histories that could further inform forecasts of 
degradation (Murray et al., 2018a). Appropriate EO 
data and methods need to be selected for such 
assessments and repeated as new data become 
available. For example, Figure 19.4 summarises a 
framework for using EO datasets to list ecosystems in 
the RLE:

	§ evaluate the risk assessment protocol and define 
assessment unit (01−02);

	§ develop conceptual ecosystem model and identify 
indicator variables to monitor with EO (03–06);

	§ incorporate field data and ecosystem models; 

	§ evaluate ecosystem against risk assessment criteria 
(07–09);

	§ summarise and review results (10−12); and

	§ formally list ecosystem in RLE (13). 

An online mapping platform, remap (Remote 
Ecosystem Assessment and Monitoring Pipeline; 
Murray et al., 2018b), enables ecosystem status maps 
to be generated rapidly from freely available EO 
imagery and other spatial datasets (remap, 2020). 
This tool is designed for users without specialist 
knowledge of EO and relies on machine learning 
algorithms (see Volume 2E) to generate RLE-
compatible assessments of ecosystems.

There are risks and costs in a program of action, but 
they are far less than the long range risks and costs 

of comfortable inaction. 
(John F. Kennedy)

Figure 19.4  EO framework for ecosystem risk assessment

Source: Murray et al. (2018a) Figure 2
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Excursus 19.1�—IUCN Red Lists of Threatened Species and Ecosystems

Source: Keith et al. (2013); Rodríguez et al. (2015) 
Further information: �IUCN Red List of Threatened Species: https://www.iucnredlist.org/ 

IUCN Red List of Ecosystems: https://www.iucn.org/theme/ecosystem-management/our-
work/red-list-ecosystems 
IUCN-CEM (2016); Bland et al. (2016) 
IUCN–CEM Research and development: https://iucnrle.org/resources/research-
development/

The International Union of Conservation of Nature 
(IUCN) was established in 1948 to examine the 
impact of anthropogenic activities on nature. Since 
its inception it has expanded into a democratic 
union of 1,400 government and civil organisations 
around the world, with access to expertise in a wide 
variety of disciplines related to natural resources. 
The IUCN has contributed to numerous international 
conventions, strategies and agreements that address 
global challenges to conserve nature and achieve 
sustainable and equitable use of its resources 
(IUCN, 2020a). 

Two of its global achievements are the Red List of 
Threatened Species and the Red List of Ecosystems.

IUCN Red List of Threatened Species
The IUCN Red List of Threatened Species “provides 
information about range, population size, habitat and 
ecology, use and/or trade, threats, and conservation 
actions that will help inform necessary conservation 
decisions” (IUCN, 2020b). This list has become the 
most comprehensive source of information relating 
to extinction risk status of 116,000 animal, plant, 
and fungal species globally and is used by a wide 
range of agencies with interests in land management, 
education, business, and nature conservation. Its 
ongoing assessments enable the status of listed 
species to be monitored and new species to be 
included with a target of assessing an additional 
44,000 species in 2020 (IUCN, 2020b). By 2020, 
31,000 species were listed as threatened with 
extinction (IUCN, 2020c), representing over a quarter 
of those assessed. 

IUCN Red List of Ecosystems (RLE)
In recognition that the ecosystems have changed 
more rapidly since 1950 due to human impact, a new 
conservation policy tool was developed by the IUCN 
to assess the risk of ecosystem collapse. The resulting 
global standard is called the Red List of Ecosystems 
Categories and Criteria (RLE) and was accepted by 
the IUCN in 2014 for application at local, national, 
regional, and global scales (IUCN‑CEM, 2020). All 
freshwater, marine, terrestrial, and subterranean 

ecosystem types of the world at a global level are 
planned for assessment using RLE by 2025, with 
periodic updates to monitor progress towards 
international targets, such as the Aichi Targets 
(CBD, 2010) or Sustainable Development Goals 
(UN General Assembly, 2012; see Excursus 20.2).

RLE is a generic method that can be used to assess 
terrestrial, subterranean, inland and marine waters, 
and transitional environments. RLE determines 
ecosystem status in three broad divisions of eight 
categories:

	§ least concern—not currently facing significant risk 
of collapse;

	§ threatened—critically endangered, endangered or 
vulnerable; or

	§ collapse—endpoint of ecosystem decline, “when 
most of the diagnostic components of the 
characteristic biota are lost from the system, or 
when functional components (biota that perform 
key roles in ecosystem organisation) are greatly 
reduced in abundance and lose the ability to 
recruit. Chronic changes in nutrient cycling, 
disturbance regimes, connectivity, or other 
ecological processes (biotic or abiotic) that sustain 
the characteristic biota may also signal ecosystem 
collapse” (Keith et al., 2013; see Figure 19.5a).

In this context, an ecosystem comprises four essential 
elements:

i.	 a biotic complex or assemblage of species; 

ii.	 an associated abiotic environment or complex; 

iii.	 the interactions within and between those 
complexes; and 

iv.	 a physical space in which these operate (Tansley, 
1935).

‘Ecosystem type’ is considered to be synonymous 
with the terms ‘ecological community’, ‘habitat’, 
and ‘vegetation type’ (Keith et al., 2013). 
Nicholson et al. (2015) review terms used in 
ecosystem risk assessment.

https://www.iucnredlist.org/
https://www.iucn.org/theme/ecosystem-management/our-work/red-list-ecosystems
https://www.iucn.org/theme/ecosystem-management/our-work/red-list-ecosystems
https://iucnrle.org/resources/research-development/
https://iucnrle.org/resources/research-development/
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Figure 19.5  RLE categories and criteria and categories

a. RLE risk categories b. Mechanisms of ecosystem collapse and symptoms of collapse 
risk

	
Source: a. Keith et al., (2013) Figure 2; b. Rodríguez et al. (2015) Figure 2

The underlying conceptual model identifies four 
distributional and functional symptoms of ecosystem 
risk as the basis for assessment criteria: 

	§ Criterion A: rates of decline in ecosystem 
distribution—identify each ecosystem type that 
is currently declining in extent or may decline in 
the near future using at least two measures of its 
distribution taken at different points in time and 
calibrated to the timescales of RLE assessments; 

	§ Criterion B: restricted distributions with continuing 
declines or threats—evaluate the risk of loss of all 
occurrences of an ecosystem type by considering 
the interaction between the spatial extent of 
threats and the spatial distribution of ecosystem 
occurrences; 

	§ Criterion C: rates of environmental (abiotic) 
degradation—evaluate the risk of collapse posed 
by degradation of the abiotic environment by 
measuring an appropriate abiotic variable; and 

	§ Criterion D: rates of disruption to biotic processes—
evaluate the risk of collapse posed by degradation 
of the biotic environment by measuring an 
appropriate biotic variable. 

Criterion E is a quantitative estimate of the risk 
of ecosystem collapse, which enables integrated 
assessment of multiple processes and provides 
a conceptual anchor for the other criteria 
(Keith et al., 2013; see Figure 19.5b). This criterion 
relies on specific process-based ecosystem models 
to estimate risk of collapse over a 50 or 100 year 
timeframe. Criteria A, C, and D assess ecosystem 
decline over three timeframes:

	§ current—preceding 50 years;

	§ future—next 50 years; and

	§ past—relative to the reference years 1750, which is 
assumed to be the onset of industrial exploitation 
of the environment (see Figure 19.6b and 
Section 3.3.1).

The steps followed to apply the RLE are summarised 
in Figure 19.6c. In 2018, 1,397 ecosystem units in 100 
countries had been assessed following the IUCN 
RLE protocol (Bland et al., 2018). This approach has 
been used to assess ecosystem risk in Australia for 
a range of ecosystem types (Keith et al., 2015; see 
Section 19.4). 
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Figure 19.6  Application of RLE

AOO: area of occupancy; EOO: extent of occurrence.

a. Sequence for assessment protocol 

Describe ecosystem  
(characteristic biota, abiota, interactions, location, and spatiotemporal/thematic scale)

Identify approprate measure of distribution 
(maps, sightings)

Describe salient mechanisms of ecosystem dynamics and function 
(process model)

Identify appropriate 
measure of distribution 
(maps, sightings)

Identify appropriate 
measure of biotic 
interaction

Model ecosystem 
dynamics

Assess rate of change 
Criterion A

Assess current extent 
Criterion B

Assess rate of 
substrate degradation 
Criterion C

Assess rate of disruption 
of interactions 
Criterion D

Assess risk of collapse  
Criterion E

A1: present 
A2: future 
A3: historic

B1: EOO 
B2: AOO 
B3: locations 
and for B1 and B2: 
i. Continuing decline 
ii. Threats (e.g. fragmentation) 
iii. Number of locations

C1: present 
C2: future 
C3: historic

D1: present 
D2: future 
D3: historic

b. Timescales for assessment of change under criteria A, C,and D. Historic declines are relative to the reference date of 1750.

c. Summary of assessment steps.  

Source: a. Keith et al. (2013) Figure 3; b. Keith et al. (2013) Figure 4; c. Rodríguez et al. (2015) Figure 3
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19.5  Australian Biodiversity Monitoring
The two most significant issues impacting biodiversity 
management at a national level in Australia have 
been identified as the lack of systematic monitoring, 
and limitations in resources available to respond to 
threats (DEWHA, 2010). Inconsistencies occur both 
within and between jurisdictions in terms of legislation 
and regulation related to biodiversity. There is also 
a trend toward increased private land biodiversity 
conservation (DEWHA, 2009), such as the Australian 
Wildlife Conservancy (see Section 20.5). Policy tools 
that could be used to promote natural resource 
management and biodiversity conservation in 
Australia are summarised in Table 19.6. 

The Australian Biodiversity Conservation Strategy 
(ABCS) 2010–2030 (CoA, 2014) identified ten 
national targets based on the CBD Strategic Plan 
for Biodiversity 2011–2020 template (see Table 19.7). 
Progress on the Aichi targets from 2014 to 2018 is 
reviewed in CoA (2020). The Australian national 
strategy was updated in 2019 as Australia’s Strategy 
for Nature 2019–2030 (DAWE, 2020b) to coordinate 
other federal, state, and territory initiatives in this 
area, in both the public and private sectors. This 
strategy includes a dedicated website listing relevant 
projects, Australia’s Nature Hub (see Section 19.6), 
and rests on three priorities:

	§ connect all Australians with nature;

	§ care for nature in all its diversity; and

	§ share and build knowledge (DAWE, 2020b).

In parallel, the Global Strategy for Plant Conservation 
(GSPC; also managed by CBD) includes 16 global 
targets for 2020 (CBD, 2020c). ABCS targets 1, 2, 4, 5, 
6 and 7 relate to the GSPC. 

Table 19.6  Policy tools

Tool Options Example

Suasion

Education Information to landholders

Promotion of best 
practice

Extension programs

Grants Community assets

Regulation
Restrictions

Land use planning, compliance 
monitoring

Taxes Carbon tax

Market-
based

Pricing
EcoTendors, rebates, LGA rates, 
revolving funds, 

Quantity regulation Cap and trade schemes, offsets

Market friction
Environmental labelling, 

eco certification

Source: DEWHA (2010)

Under the NSW Biodiversity and Conservation Act 
2016, state-wide biodiversity is being assessed using 
a suite of indicators ‘to measure different aspects of 
biodiversity and ecological integrity’ as part of the 
Biodiversity Indicator program (DPIE, 2020a). The 
NSW Environmental Monitoring and Assessment 
and Reporting (eMAR) Framework is used with 
the RPSB framework as the basis for selecting 
indicators and grouping them into functional themes 
(Sparks et al., 2011; see Figure 19.2 and Table 19.8). 
For terrestrial species and ecosystems, biodiversity 
indicators are mostly derived from EO datasets and 
environmental models (OEH and CSIRO, 2019) and 
supported by in situ and related data (such as NSW 
BioNet; see Section 19.6). The first assessment from this 
program concluded that in 2013 relative to the reference 
year of 1750:

	§ 79–91% of the original, within-species, plant genetic 
diversity still existed;

	§ the original habitat effectiveness for supporting 
native species had reduced to one third; and 

	§ half of the species rated as ‘threatened’ were likely 
to be extinct in another century without effective 
management (DPIE, 2020b).

To retain existing biodiversity within the Australian 
landscape, several state governments have legislated 
to limit the area of land that can be cleared of 
native vegetation. Compliance monitoring for 
such legislation now relies on EO datasets (see 
Volume 2D—Section 14.2.2). One operational system 
for detecting changes in woody vegetation is the 
Statewide Landcover and Trees Study (SLATS; see 
Section 9.1 and Volume 2D—Excursus 14.3). An 
EO-based, hierarchical framework for monitoring 
biodiversity in rangelands is described in Section 15.5 
(Eyre et al. 2011; see Excursus 15.2), and floral and 
faunal components of forest diversity are considered 
in Section 16.7.

Other approaches for assessing vegetation condition 
compare current vegetation characteristics with 
a benchmark representing a mature and long 
undisturbed state. The benchmark that has been 
adopted for Australia is the estimated condition of 
vegetation in 1750, prior to European settlement and 
industrialisation (see Section 3.1.1). One benchmark-
based method that assesses ‘vegetation quality’ using 
EO datasets is the Victorian model of Vegetation 
Quality Assessment (VQA; formerly known as Habitat 
Hectares), which is described in Excursus 19.2. 
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Table 19.7  Australian Biodiversity Conservation Strategy 
2010–2030 Targets

ABCS 
Target 
Number

Target for 2015
Maps 
to Aichi 
Targets

1 

Achieve a 25% increase in the number 
of Australians and public and private 
organisations who participate in biodiversity 
conservation activities

1, 2, 4, 17

2
Achieve a 25% increase in employment 
and participation of Indigenous peoples in 
biodiversity conservation

2, 14, 18

3
Achieve a doubling of the value of 
complementary markets for ecosystem service

3

4

Achieve a national increase of 600,000 km2 
of native habitat managed primarily for 
biodiversity conservation across terrestrial, 
aquatic, and marine environments

5, 7, 11

5
1,000 km2 of fragmented landscapes and 
aquatic systems are being restored to improve 
ecological connectivity

5, 7, 11, 
14, 15

6
Four collaborative continental scale linkages 
are established and managed to improve 
ecological connectivity

5, 11, 14, 
15

7

Reduce by at least 10% the impacts of invasive 
species on threatened species and ecological 
communities in terrestrial, aquatic, and marine 
environments

9, 10, 12

8
Nationally agreed science and knowledge 
priorities for biodiversity conservation are 
guiding research activities

18, 19

9
All jurisdictions will review relevant legislation, 
policies and programs to maximise alignment with 
Australia’s Biodiversity Conservation Strategy

2, 4, 17

10
Establish a national long term biodiversity 
monitoring and reporting system

2, 19

Source: CoA (2014)

Table 19.8  NSW Biodiversity Indicator Program

Tool Theme Indicator family

Biodiversity

Expected 
survival of 
biodiversity

Listed threatened species and 
ecological communities

All known and undiscovered species

State of 
biodiversity

All known species

State of biodiversity including 
undiscovered species

Field monitoring of species and 
ecosystems

Ecological 
integrity

Ecosystem 
quality

Habitat condition

Pressures 

Ecosystem 
management

Management responses

Management effectiveness

Capacity to sustain ecosystem quality

Ecosystem 
integrity

Capacity to retain biological diversity

Capacity to retain ecological 
functions

Source: OEH and CSIRO (2019) 

The Habitat Condition Assessment System (HCAS) 
is being developed to provide a nationally consistent 
coverage of biodiversity habitat condition in Australia 
(Donohue et al., 2013; Harwood et al., 2016), where 
habitat condition is defined as “the condition of 
terrestrial areas in terms of their predicted capacity 
to support the wildlife expected there under natural 
conditions” (CSIRO, 2019). This system combines EO 
and environmental datasets with reference site data 
and spatial ecological modelling to estimate habitat 
condition at 250 m resolution across terrestrial 
Australia. 

Many of the mechanisms and symptoms of species vulnerability are relevant to ecosystems, because 
species are integral parts of ecosystems. Yet ecosystems embody processes and higher-order 
components of biodiversity that are difficult or impossible to account for in species-by-species 

assessment. Whereas species risk assessment rests on population theory, ecosystem risk assessment 
must draw from a wider array of inter-related theories that deal with continua, niches, fractal geometry, 
succession, resilience, ecological integrity, biodiversity-ecosystem function and insurance, as well as 
population theory. The success of ecosystem risk assessment therefore rests on a robust synthesis 
of conservation planning and process ecology to translate theoretical foundations into a practical 

assessment protocol that can be applied to a wide variety of ecosystems by specialist assessors with 
differing backgrounds and limited data.  

 (Keith et al., 2013)
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Excursus 19.2�—Vegetation Quality Assessment

Source: Parkes et al. (2003), DELWP (2017) 
Further Information: �DSE (2004): https://www.environment.vic.gov.au/__data/assets/pdf_file/0016/91150/

Vegetation-Quality-Assessment-Manual-Version-1.3.pdf

To effectively manage native vegetation, information 
is needed about the:

	§ vegetation type;

	§ previous and current ecological processes that 
shape that vegetation type; 

	§ function of that vegetation type in the local 
landscape; and

	§ effectiveness of that function (Parkes et al., 2003). 

The Vegetation Quality Assessment (VQA; formerly 
Habitat Hectares) method has been used across 
Victoria for over a decade. VQA determines the 
condition of current vegetation by comparing the 
existing vegetation features with those of a defined 
bioregional benchmark that represents “the average 
characteristics of a mature and apparently long-
undisturbed stand of the same community type” 
(Parkes et al., 2003). Design characteristics of this 
method include consistency, objectivity, simplicity, 
and efficiency across a wide range of vegetation 
communities. Results from this method also need to 
be easily communicated to land owners.

Vegetation mapping in Victoria delineates 28 
bioregions—landscape scale categories comparable 
to ecoregions (see Section 2.4). Vegetation 
characteristics are represented by Ecological 
Vegetation Classes (EVC), a hierarchical classification 
that aggregates floristic communities (“defined 
by a combination of floristics, life form, position in 
landscape and an inferred fidelity to a particular 
environment”; DSE, 2004). For VQA, benchmarks 
relate to a single EVC in one bioregion. Details of 
field assessment for this method are provided in 
DSE (2004).

The final score derived for a site combines 
assessment of ‘site condition’ (largely determined by 
field work) and ‘landscape context’ (best calculated 
using GIS) components (see Table 19.9). The final 
habitat score is the sum of all scores from each site 
converted from a percent to a decimal, while the final 
Habitat Hectare score is the product of the decimal 
habitat score (quality) and the area of vegetation 
(quantity).

Given the broad categories defined by VQA, this 
method is not used to quantify change over time. 
However, the information from 17,000 VQA sites has 
been extrapolated using EO and other spatial datasets 
to create a regional scale map showing the condition 
of native vegetation across Victoria (DSE, 2004; 
DELWP, 2017).

Table 19.9  VQA scoring

Criteria Component Score

Site Condition

(derived from field assessment)

Large trees 10

Tree canopy cover 5

Understorey 25

Lack of weeds 15

Recruitment 10

Organic litter 5

Logs 5

Landscape Context

(derived from spatial datasets) 

Patch size 10

Neighbourhood 10

Distance to core area 5

Total 100

Source: DSE (2004)

Essentially, this method (‘habitat hectares’) attempts to assess how ‘natural’ a site is by comparing it 
to the same vegetation type in the absence of major ecosystem changes that have occurred following 

European settlement of Australia. 
(Parkes et al., 2003)

https://www.environment.vic.gov.au/__data/assets/pdf_file/0016/91150/Vegetation-Quality-Assessment-Manual-Version-1.3.pdf
https://www.environment.vic.gov.au/__data/assets/pdf_file/0016/91150/Vegetation-Quality-Assessment-Manual-Version-1.3.pdf
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19.6  Further Information

IUCN Red Lists
IUCN Red List of Threatened Species: https://www.

iucnredlist.org/

IUCN Red List of Ecosystems: https://www.iucn.org/
theme/ecosystem-management/our-work/red-list-
ecosystems

IUCN-CEM (2016)

IUCN–CEM Research and development: https://iucnrle.
org/resources/research-development/

Australian Biodiversity Policies and Programs
Review of the EPBC Act: https://epbcactreview.

environment.gov.au/

National Environmental Science Program: https://www.
environment.gov.au/science/nesp/about

Biodiversity Information for Australia
Australia’s Nature Hub: https://www.

australiasnaturehub.gov.au/

Department of Agriculture, Water and the 
Environment: http://www.environment.gov.au/
biodiversity

Collaborative Australian Protected Area Database: http://
www.environment.gov.au/land/nrs/science/capad

Common Assessment Method: https://www.
environment.gov.au/biodiversity/threatened/cam

Australia State of the Environment 2016: https://soe.
environment.gov.au/

Australia State of the Environment 2016—Biodiversity: 
https://soe.environment.gov.au/sites/default/files/
soe2016-biodiversity-launch-version2-24feb17.
pdf?v=1488792935

Australian Biological Resources Study: https://www.
environment.gov.au/science/abrs

Australia’s State of the Forest report: http://www.
agriculture.gov.au/abares/forestsaustralia/sofr/sofr-
2018

Atlas of Living Australia: https://www.ala.org.au/

Australasian Virtual Herbarium: https://avh.chah.org.au/

Terrestrial Ecosystem Research Network (TERN): 
https://www.tern.org.au/

LTERN: https://www.ltern.org.au/

Australian Wildlife Conservancy: https://www.
australianwildlife.org/

Operational Biodiversity Monitoring

New South Wales: 

BioNet: https://www.environment.nsw.gov.au/
topics/animals-and-plants/biodiversity/biodiversity-
indicator-program

Victoria: 

Habitat Condition Assessment System (HCAS): 
CSIRO (2019)

https://research.csiro.au/biodiversity-knowledge/
projects/hcas/

Global Biodiversity
Intergovernmental Panel on Biodiversity and 

Ecosystem Services: https://ipbes.net/

Aichi Targets: www.cbd.int/sp/targets

Sustainable Development Goals: https://
sustainabledevelopment.un.org

Global Footprint Network: https://www.
footprintnetwork.org/

Global ecosystems: https://rmgsc.cr.usgs.gov/outgoing/
ecosystems/Global/

Biodiversity Indicators
European Academies’ Science Advisory Council: 

https://royalsociety.org/~/media/royal_society_
content/policy/publications/2005/9667.pdf

Nature Serve: https://www.natureserve.org/
biodiversity-science/conservation-topics/
biodiversity-indicators#:~:text=Biodiversity%20
indicators%20help%20us%20measure,as%20the%20
protection%20of%20important

Ecosystem Assessment
Global Ecosystem and Environment Observation 

Analysis Research Cooperation (GEOARC): https://
www.earthobservations.org/activity.php?id=144

ECOPOTENTIAL Project: a large, European-funded 
H2020 project, focusing on a targeted set of 
internationally recognised Protected Areas in 
Europe, European Territories and beyond, and 
addressing crossscale ecological interactions and 
landscape-ecosystem dynamics at regional to 
continental scales, as well as long term and large 
scale environmental and ecological challenges: 
https://www.ecopotential-project.eu/

EC CORDIS Ecopotential Project: https://cordis.europa.
eu/article/id/254154-earth-observation-data-for-
ecosystem-monitoring

https://www.iucnredlist.org/
https://www.iucnredlist.org/
https://www.iucn.org/theme/ecosystem-management/our-work/red-list-ecosystems
https://www.iucn.org/theme/ecosystem-management/our-work/red-list-ecosystems
https://www.iucn.org/theme/ecosystem-management/our-work/red-list-ecosystems
https://iucnrle.org/resources/research-development/
https://iucnrle.org/resources/research-development/
https://epbcactreview.environment.gov.au/
https://epbcactreview.environment.gov.au/
https://www.environment.gov.au/science/nesp/about
https://www.environment.gov.au/science/nesp/about
https://www.australiasnaturehub.gov.au/
https://www.australiasnaturehub.gov.au/
http://www.environment.gov.au/biodiversity
http://www.environment.gov.au/biodiversity
http://www.environment.gov.au/land/nrs/science/capad
http://www.environment.gov.au/land/nrs/science/capad
https://www.environment.gov.au/biodiversity/threatened/cam
https://www.environment.gov.au/biodiversity/threatened/cam
https://soe.environment.gov.au/
https://soe.environment.gov.au/
https://soe.environment.gov.au/sites/default/files/soe2016-biodiversity-launch-version2-24feb17.pdf?v=1488792935
https://soe.environment.gov.au/sites/default/files/soe2016-biodiversity-launch-version2-24feb17.pdf?v=1488792935
https://soe.environment.gov.au/sites/default/files/soe2016-biodiversity-launch-version2-24feb17.pdf?v=1488792935
https://www.environment.gov.au/science/abrs
https://www.environment.gov.au/science/abrs
http://www.agriculture.gov.au/abares/forestsaustralia/sofr/sofr-2018
http://www.agriculture.gov.au/abares/forestsaustralia/sofr/sofr-2018
http://www.agriculture.gov.au/abares/forestsaustralia/sofr/sofr-2018
https://www.ala.org.au/
https://avh.chah.org.au/
https://www.tern.org.au/
https://www.ltern.org.au/
https://www.australianwildlife.org/
https://www.australianwildlife.org/
https://www.environment.nsw.gov.au/topics/animals-and-plants/biodiversity/biodiversity-indicator-program
https://www.environment.nsw.gov.au/topics/animals-and-plants/biodiversity/biodiversity-indicator-program
https://www.environment.nsw.gov.au/topics/animals-and-plants/biodiversity/biodiversity-indicator-program
https://research.csiro.au/biodiversity-knowledge/projects/hcas/
https://research.csiro.au/biodiversity-knowledge/projects/hcas/
https://ipbes.net/
http://www.cbd.int/sp/targets
https://sustainabledevelopment.un.org
https://sustainabledevelopment.un.org
https://www.footprintnetwork.org/
https://www.footprintnetwork.org/
https://rmgsc.cr.usgs.gov/outgoing/ecosystems/Global/
https://rmgsc.cr.usgs.gov/outgoing/ecosystems/Global/
https://royalsociety.org/~/media/royal_society_content/policy/publications/2005/9667.pdf
https://royalsociety.org/~/media/royal_society_content/policy/publications/2005/9667.pdf
https://www.natureserve.org/biodiversity-science/conservation-topics/biodiversity-indicators#:~:text=Biodiversity%20indicators%20help%20us%20measure,as%20the%20protection%20of%20important
https://www.natureserve.org/biodiversity-science/conservation-topics/biodiversity-indicators#:~:text=Biodiversity%20indicators%20help%20us%20measure,as%20the%20protection%20of%20important
https://www.natureserve.org/biodiversity-science/conservation-topics/biodiversity-indicators#:~:text=Biodiversity%20indicators%20help%20us%20measure,as%20the%20protection%20of%20important
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Ecological culture cannot be reduced to a series of urgent and partial responses to the immediate 
problems of pollution, environmental decay and the depletion of natural resources. There needs 
to be a distinctive way of looking at things, a way of thinking, policies, an educational resistance 
to the assault of the technocratic paradigm. Otherwise, even the best ecological initiatives can 

find themselves caught up in the same globalised logic. To seek only a technical remedy to each 
environmental problem which comes up is to separate what is in reality interconnected and to 

mask the true and deepest problem of the global system. 
(Pope Francis, 2015)

https://www.ces.vic.gov.au/reports/state-environment-2018
https://www.ces.vic.gov.au/reports/state-environment-2018
https://doi.org/10.1017/S003060531100024X
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Sustainability of natural resources implies a balance between their consumption and production. Various trends in the 
management of natural resources can be observed in recent decades, with the focus moving from ‘productivity’ to 
‘conservation’ to ‘sustainability’ to ‘resilience’ over time. Each of these focal points requires consideration when managing 
natural resources and each requires appropriate environmental indicators to objectively assess and monitor changes 
in the landscape. Whether one focus is given priority over another is largely a philosophical, if not political, decision. For 
example, attributes of three different natural resource management models are summarised in Table 20.1. While this 
specific example applies to rangeland environments, the succession of models from left to right reflects the increasing 
awareness of ecosystem values in land management in recent decades. 

Throughout recorded history, societal attitudes 
to nature have influenced the management of 
natural resources. An anthropocentric worldview 
characterises most ancient, medieval, and modern 
cultural beliefs, as stated by a wide range of authors, 
including: 

	§ Xenophon—“the gods have provided everything 
carefully for the benefit of man”;

	§ Aristotle—“Nature …. has made all animals for the 
sake of man”;

	§ Genesis—“be fruitful and multiply and replenish the 
earth and subdue it”;

	§ Calvin—God “created all things for man’s sake”; and 

	§ Bacon—“the world is made for man, not man for the 
world”. 

Development of the scientific method in the 
seventeenth century was used to justify these beliefs, 
with the reductionist approach being applied to 
nature:

	§ Descartes—“I do not recognise any difference 
between the machines made by craftsmen and the 
various bodies that nature alone composes”; and 
carried into economics 

	§ Carey—“the earth is a great machine, given to man 
to be fashioned to his purpose”. 

The Darwinism view of ‘survival of the fittest’ 
reinforced the outlook of humans struggling against 
nature to survive and control it. Freud wrote of the 
human need of “taking up the attack on nature, thus 
forcing it to obey human will, under the guise of 
science”. 

In addition to an anthropogenic worldview, in recent 
centuries the notion of ‘progress’ has emerged, 
which envisions science and technology continually 
improving the productivity of nature and increasing 
human potential. This perspective, however, is in 
stark contrast with ancient and medieval beliefs, 
which tended to view history either as an undirected 
sequence, or as a process of steady decay from a 
‘golden age’ or ‘paradise’ (Ponting, 1991). 

The Australian government’s budget for expenditure in 2018–19 was $488.6 billion. The environmental 
portfolio stands to receive about $1.5 billion—about one third of 1% of what we as Australians spend our 

money on. Is this an accurate representation of how much we value the environment? 
(Pollock, 2019)

Background image: Pansharpened SPOT-6 image over Uluru-Kata Tjuta National Park, NT, acquired on 17 October 2012. Source: © Airbus DS 2012
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Table 20.1  Comparison of natural resource management models

Attribute
Management model

Steady-state Ecosystem Resilience-based

Ecological models Succession-retrogression State-and-transition rangeland health
Multiple social-ecological systems/
novel ecosystems

Reference condition Historic climax plant community
Historic climax plant community, 
including historical range of variation

Landscapes with maximum options for 
ecosystem services

Role of humans Use ecosystems Part of ecosystems
Direct trajectories of ecosystem 
change

Ecosystem services Meat and fibre products Several ecosystem services Options for diverse ecosystem services

Management goals
Sustain maximum yield of 
commodities

Sustain multiple uses
Sustain capacity of social-ecological 
systems to support human wellbeing

Science-management 
linkages

Top-down from management 
agencies

Top-down from management 
agencies

Multi-scaled social learning institutions

Knowledge systems
Management experience and 
agricultural experiments

Multidisciplinary science and 
ecological experiments

Collaborative groups, spatially 
reference, updatable databases

Source: Bestelmeyer and Briske (2012) Table 2

While we are now reaching the limit of our global 
natural resources, the rate of material extraction 
continues to accelerate (see Figure 20.1). Clearly it is 
time to consider more broadly the sustainable role of 
humankind on Earth and how our resources should 
be managed into the future. In practical terms at 
a local scale, better natural resource management 
decisions are made when managers understand the 
problem, have the motivation to adopt a changed 
practice, and have the capacity to implement it 
(Gordon et al., 2001). Such decisions necessitate 
the involvement of land custodians and experienced 

scientists who understand the landscape firsthand, 
and can objectively track its processes, productivity, 
and vulnerabilities over time. 

Below we consider aspects of sustainability in 
Australia in Section 20.1 and suitable EO sensors for 
observing sustainability in Section 20.2. Assessment 
of ecosystem services is introduced in Section 20.3, 
the conundrum of sustainable development is 
reviewed in the context of EO in Section 20.4, then 
EO-based environmental-economic accounting is 
described in Section 20.5.

Figure 20.1  Global GDP versus global material extraction 1900 to 2005

1Accounting for NatureA scientific method for constructing environmental asset condition accounts

The natural environment matters because it affects the wellbeing of people 
directly, and because it underpins other things that people value.

Economists define wellbeing in terms of the total stock of capital – human, 
physical, social and natural – that is maintained or enhanced for current and future 
generations. It relates to all aspects of life, and encompasses much more than 
simple measures of economic activity.10

Economic growth over the past century has led to unprecedented advances in 
human, physical and social capital, for many people and for many nations. 

The massive increase in the consumption of materials and energy that has 
accompanied this growth is also driving the depletion of the world’s natural capital; 
polluting the atmosphere and degrading land, water and biodiversity assets, 
at scales that in many cases risk irreversible changes that could endanger two 
centuries of rising living standards (Figure 1).3

In the 2016 World Economic Forum’s Global Risk Survey the top four long-term 
global risks of highest concern to business were environment related. They rated 
biodiversity loss and ecosystem collapse, water and food crises, extreme weather 
events, and a failure of climate change adaptation and mitigation, as major risks 
facing the world.11

Natural capital is the stock of renewable and non-renewable natural resources  
(e.g. plants, animals, air, water, soils, minerals) that combine to yield a flow of 
benefits to people.12

Natural capital is degraded when these environmental assets lose their capacity to 
provide ecosystem services, now and in the future.

A sustainable society can create wealth without degrading its natural capital by 
using energy and materials more efficiently, and by ensuring that environmental 
assets maintain or enhance their capacity to provide these goods and services  
into the future.

Figure 1: Global GDP and Global Material Extraction, 1900–2005.13

Managing a sustainable economy requires an ability to measure the quantity of 
natural resources to understand how efficiently these resources are being used, 
and how economic activity affects the stocks of those assets.

It also requires an ability to measure the impact human activity is having on the 
biophysical condition of those environmental assets from which these resources 
are extracted and wastes are deposited (Figure 2).

The value of natural capital

“The first step towards the integration of sustainability into economic 
development is the... measurement of the crucial role of the environment as 
a source of natural capital and as a sink for by-products generated during the 
production of man-made capital and other human activities.” 9

− Rio Earth Summit, 1992

The Twin Pillars of Sustainable Development
A sustainable society creates wealth without degrading its natural capital, 
by:

1. Using energy and materials more efficiently; and

2. Ensuring that environmental assets maintain or enhance their 
capacity to provide goods and services that are valued by people 
today, and into the future.
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Figure 2: The twin pillars of sustainable development.

Source: WGCS (2016) Figure 1 (based on Krausmann et al., 2009)
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20.1  Sustainability in Australia
We like to think that the terrestrial landscape is both 
sustainable and resilient, but is that really the case? 
This section considers how EO is being used to assess 
sustainability in Australian landscapes. 

Australian jurisdictions have generated an impressive 
array of environmental legislation and policies in 
recent decades. While there is a growing trend to 
‘restructure’, ‘consolidate’, and ‘streamline’ their 
implementation, especially within politically expedient 
timeframes, are these changes achieving their 
intended goals of better management of natural 
resources?

Logically, in the absence of vested interests and 
predetermined ideologies, environmental policy 
is founded objectively on a well-established, 
scientific understanding of the environment. Such 
understanding should be derived from data that 
is appropriate and calibrated, and analysed using 
methods that are validated, consistent and repeatable 
(see Volume 2). The driver here is science, which is 
used to shape and inform policy. Once policy becomes 
widely accepted however, there is a tendency for 
policy to drive science, which clearly defeats the 
assumption of objectivity.

An accounting approach based on relevant economic, 
environmental, and social datasets, which are 
consistent through space and time, can be used 
to derive objective indicators to shape policy. A 
common base of data, accounts, and indicators will 
also ensure compatibility between policies and their 
implementation across jurisdictions and geographic 
regions. By linking socio-economic and environmental 
datasets, policy makers can:

	§ analyse both the impact of economic policies on 
the environment and the impact of environmental 
policies on the economy;

	§ use a quantitative basis for policy design;

	§ identify socio-economic drivers, pressures, and 
responses that will impact the environment;

	§ define environmental regulations and resource 
management strategies with greater precision; and

	§ establish integrated indicators for the relationships 
between the environment and the economy 
(DEWHA, 2010). 

The use of environmental accounting in Australia 
is introduced in BoM (2013). A global model for 
environmental-economic accounting has been 
developed by the System of Environmental 
Economic Accounting (SEEA; see Figure 20.2 and 
Excursus 20.4). The SEEA framework is typically 
applied at national, state, or regional scales, and links 
through to mainstream accounting systems such as 
the System of National Accounts (SNA; CoA, 2018). 
Implementation of systems such as SEEA need to be 
phased to “build practical understanding and political 
acceptance” by all concerned (Vardon et al., 2016). 
This system has been used by the Australian Bureau 
of Statistics (ABS) since 1996 to produce the 
Australian Environmental Economic Accounts (AEEA; 
ABS, 2018; see Section 20.5). 

Instead of seeing the environment as the foundation of human history, settled societies, especially modern 
industrial societies, have acted under the illusion that they are somehow independent from the natural 
world, which they have generally preferred to see as something apart which they can exploit more or 

less with impunity. Ever since the first great transition which began 10,000 year ago, and particularly in 
the last two centuries, humans have put increasing pressure on the earth’s environment—in defiance of 
basic ecological principles. They have destroyed climax ecosystems to create agricultural land leading 

to environmental damage such as widespread soil erosion. Through a combination of hunting and 
farming they have driven individual animals to extinction and severely reduced the population of others. 
Either deliberately or accidentally they have introduced new animals and plants and thereby disrupted 

ecosystems, often with unpredictable results. …. it is clearly far too soon to judge whether modern industrial 
societies, with their very high rates of energy and resource consumption and high pollution levels, and the 
rapidly rising human population in the rest of the world are ecologically sustainable. Past human actions 

have left contemporary societies with an almost insuperably difficult set of problems to solve. 
(Ponting, 1991) 
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Figure 20.2  System of Environmental Economic Accounting

The UN-based System of Environmental Economic Accounting (SEEA) provides “an integrated statistical framework for organizing 
biophysical data, measuring ecosystem services, tracking changes in ecosystem assets, and linking this information to economic and 
other human activity” (SEEA, 2020a).

Source: Vardon et al. (2018) 

20.2  EO Sensors for Sustainability
Various ecosystem properties that are indicative of 
ecosystem services can be derived from EO datasets, 
including definition of ecoregions, topography, 
hydrology, vegetation type and productivity, and 
changes in land use or climate (Andrew et al., 2015; 
see Table 20.4). Similarly, assessment of sustainable 
development criteria increasingly relies on EO-based 
data (see Section 20.4). Operational systems for 
environmental accounting and 

environmental‑economic accounting already derive 
data from EO time series datasets and as this field 
continues to expand, that reliance will also increase 
and become more standardised (see Section 20.5). As 
summarised in Table 19.3, sources of EO datasets that 
are relevant to assessing sustainability are primarily 
acquired at a regional to global scale, with in situ and 
higher resolution data being used to calibrate and 
validate the resulting products. 

Table 20.2  EO sensors relevant to sustainability

TIR: Thermal infrared; SAR: Synthetic Aperture Radar

Type Sensor Platform Relevance Advantages Disadvantages

Passive 
optical

Multispectral 
radiometer

Satellite or 
airborne

Vegetation cover and extent, 
biomass, biodiversity, and 
productivity

Land degradation 

Globally consistent and 
contiguous, local to national 
scale, recurrent coverage with 
high temporal frequency and 
extent, low cost

Cloud contamination, limited 
spectral discrimination 

TIR 
radiometer

Satellite or 
airborne

Soil/canopy temperature

Fire potential, severity, and 
extent

Drought conditions 

Regional hydrological changes

Highlight thermal anomalies
Low resolution, low signal to 
noise ratio

Passive 
microwave

Microwave 
radiometer

Satellite
Soil moisture, 

Climate variables

High temporal frequency. 
large spatial coverage, cloud 
penetration

Very low energy targets so 
very coarse spatial resolution

Active 
microwave

SAR
Satellite or 
airborne

Soil characteristics

Vegetation structure

Water dynamics

All weather, operates at night
Data availability, noisy data, 
complex processing



Earth Observation: Data, Processing and Applications.  Volume 3: Applications Volume 3A: Applications—Terrestrial Vegetation

20  Sustainability

455

20.3  Ecosystem Services
The concept of ecosystem services was developed 
to encourage an awareness of the societal benefits 
being derived from ecosystems and the importance 
of biodiversity conservation (Westman, 1977; Ehrlich 
and Ehrlich, 1981), with the intention of fostering a 
stewardship approach towards sustainable resource 
management by which those essential services would 
be maintained (Daily, 1997; Costanza et al., 1997, 2017). 
The Millennium Ecosystem Assessment (MEA, 2005) 
identified global categories for ecosystem services 
(see Excursus 20.1) that can be used to assess the 
sustainable use of ecosystems (see Section 20.5).

While ecosystem functions and services are linked 
with biodiversity (see Section 19), one cannot be used 
to represent the other for several reasons:

	§ for many species, functional roles can only be 
observed at specific spatial and temporal scales;

	§ ecosystem services are identified and valued 
relative to social, cultural, and economic factors, 
which may vary at a local scale; and

	§ whether changes in ecosystem function or abiotic 
environments are beneficial to conservation goals or 
not requires a subjective judgment (Keith et al., 2013).

Some of the challenges and opportunities inherent 
in this approach to ecosystem assessment were 
defined by Birkhofer et al. (2015; see Table 20.3). 
These authors conclude that “ecosystem service 
research is challenging for ecologists, but developing 
a multifaceted understanding of how nature promotes 
human wellbeing is crucial for the sustainable use of 
the Earth’s resources. Ecosystem service research 
offers ecologists the unique opportunity to act as 
promoters for the understanding of how to conserve 
and sustain benefits gained from nature.” 

Ecosystem services are impacted by a range of 
natural and anthropogenic factors. Assessment 
of ecosystem services is based on relevant 
indicators selected using criteria that are specific, 
measurable, achievable, realistic and time-sensitive 
(Dawson et al., 2016). For example, Figure 20.3 depicts 
ecological processes and functions that generate 
provisioning, regulating, and habitat services in 
extensive agriculture from ‘ecological capital’. In this 
context, ecological capital comprises ecosystem 
assets, including productive assets (production herds 
that deliver progeny, grasslands and pastures for 
forage, and soils and soil biota to sustain vegetation) 
and supporting assets (trees and shrubs that offer 
shade, shelter, and habitat). Relevant regulating 
services include avoiding water pollution, maintaining 
soil productivity and structure, and sequestering 
carbon. All of these ecosystem services influence 
both the current and future production of crops 
and livestock, and the regenerative capacity of the 
ecological capital (Ogilvy, 2020).

Potential sources of data for ecosystem mapping are 
summarised in Andrew et al. (2015) and Pettorelli et al. 
(2017), including EO datasets (Alcaraz‑Segura et al., 
2014; de Araujo Barbosa et al., 2015; Andrew et al., 
2014; Ramirez-Reyes et al., 2019; see Table 20.4). 
Some of the challenges and opportunities associated 
with using EO in ecosystem modelling and 
assessment are considered by Ramirez-Reyes et al. 
(2019) and summarised in Figure 20.4. Methods to 
quantify uncertainty in EO-based assessments of 
ecosystem services are also being developed (Stritih 
et al., 2019). An integrated framework for using EO 
products with socio-cultural and economic datasets 
to assess ecosystem services was proposed by 
Cord et al. (2017). Integrated resource monitoring 
systems involving ecosystem services are further 
discussed in Section 20.5.

Biodiversity and associated ecosystem services can be thought of as natural capital. We also think 
about social capital, which is a measure of community intangibles such as networks, cultural pursuits, 

trust, commitment to local wellbeing and shared values, and physical capital, which is the result of past 
investments in the conversion of components of natural capital through construction and maintenance, 

such as infrastructure. The set of these types of capital forms the foundations of a nation’s wealth. 
(DEWHA, 2010)
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Excursus 20.1�—Millennium Ecosystem Assessment

Source: MEA (2005)

The consequences of ecosystem change for human 
wellbeing have been highlighted in recent years by 
the UN-funded Millennium Ecosystem Assessment 
(MEA, 2005), which defines four fundamental 
‘ecosystem services’:

	§ provisioning services for food, water, fibre, fuel and 
other commodities;

	§ supporting services for photosynthesis, primary 
productivity, oxygen production, soil formation, 
biodiversity conservation, water and nutrient 
cycling;

	§ regulating services for air quality, climate variables, 
seed dispersal, herbivory, water quality, water flow 
regulation, carbon sequestration, bioturbation, 
erosion control, pests and disease prevention, 
pollination; and

	§ cultural services for spiritual fulfillment, aesthetic 
enjoyment, heritage values, recreation, and 
education.

Changes in drivers that indirectly affect biodiversity, 
such as population, technology, and lifestyle can lead 
to changes in drivers directly affecting biodiversity, 
such as resource consumption. These result in 
changes to ecosystems and the services they provide 
thereby affecting human wellbeing. These interactions 
can take place at local, regional, and global scale and 
between these scales in short and long time intervals.

The MEA report also presents a scientific basis for 
sustainable use of ecosystems by assessing:

	§ What are the current conditions and trends of 
ecosystems, ecosystem services, and human 
wellbeing?

	§ What are plausible future changes in ecosystems 
and their ecosystem services and the consequent 
changes in human wellbeing?

	§ What can be done to enhance wellbeing and 
conserve ecosystems? What are the strengths 
and weaknesses of response options that can be 
considered to realise or avoid specific futures?

	§ What are the key uncertainties that hinder effective 
decision making concerning ecosystems?

	§ What tools and methodologies developed and 
used in the MEA can strengthen capacity to 
assess ecosystems, the services they provide, their 
impacts on human wellbeing, and the strengths and 
weaknesses of response options?

The four main findings from this assessment were:

	§ Over the past 50 years, humans have changed 
ecosystems more rapidly and extensively than in 
any comparable period of time in human history, 
largely to meet rapidly growing demands for food, 
fresh water, timber, fibre, and fuel. This has resulted 
in a substantial and largely irreversible loss in the 
diversity of life on Earth. 

	§ The changes that have been made to ecosystems 
have contributed to substantial net gains in human 
wellbeing and economic development, but these 
gains have been achieved at growing costs in 
the form of the degradation of many ecosystem 
services, increased risks of nonlinear changes, 
and the exacerbation of poverty for some groups 
of people. These problems, unless addressed, 
will substantially diminish the benefits that future 
generations obtain from ecosystems.

	§ The degradation of ecosystem services could 
grow significantly worse during the first half of this 
century and is a barrier to achieving the Millennium 
Development Goals.

	§ The challenge of reversing the degradation of 
ecosystems while meeting increasing demands 
for their services can be partially met under some 
scenarios that the MEA has considered, but these 
involve significant changes in policies, institutions, 
and practices that are not currently underway. 
Many options exist to conserve or enhance specific 
ecosystem services in ways that reduce negative 
trade-offs or that provide positive synergies with 
other ecosystem services.
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Table 20.3  Ecosystem services—challenges and opportunities

Land Management 
Practice

Impacts on Biodiversity Geographic Area

Understanding 
anthropogenically 
modified systems

Identifying human impact on service-providing units and 
ecosystem services

Consideration of relationships between biodiversity and 
ecosystem service provision and management interventions

Considering matrix effects in modified landscapes
Identifying effects of anthropogenic interventions on service-
providing units at different spatial scales

Assessing 
ecosystem services

Assessing relationships between services and measures 
usually quantified in ecological studies

Identifying ecological measures that are reliable indicators of 
ecosystem service provision

Accounting for dynamics and uncertainties in models of 
service provision

Evaluation of uncertainty, integration of evolutionary aspects 
and human impacts into process-based models and socio-
economic models

Analysing 
relationships 
between ecosystem 
services

Understanding if relationships between ecosystem 
services are indirect or direct

Performing studies that model direct and indirect effects, 
experimental test for relationships and developing mechanistic 
models

Solving issues with the visualisation and statistics tesing 
of relationships between multiple services

Accounting for non-linear relationships when visualising or 
analysing relationships between services

Considering 
appropriate spatial 
and temporal scales

Upscaling from experimental plots to scales relevant for 
management of most ecosystem services

Coupling research on mechanisms for service provision with 
conservation-oriented research

Understanding temporal dynamics of services provision 
to develop sustainable management and conservation 
strategies

Utilising existing long term studies and promoting the need for 
such research projects

Source: Birkhofer et al. (2015) Table 1

Figure 20.3  Ecosystem services in extensive agriculture

This conceptual diagram relates the inter- and intra-ecological functions and processes in extensive agriculture that generate 
ecosystem services. Degradation of the functions and processes within and between elements of ecological capital (or assets)  
invariably leads to decline in the capacity to capture, store and cycle free inputs from nature. The listed inputs and outputs only 
sample the larger sets of potential resources and outcomes.

Source: Ogilvy (2020) Figure 2
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Table 20.4  EO capabilities relevant to ecosystem services

Abbreviations: NDVI: normalised difference vegetation index; MODIS: moderate resolution imaging spectroradiometer; fAPAR: 
fraction of absorbed photosynthetically active radiation; NPP: net primary productivity, VI: vegetation index.

Ecosystem service or process EO product Potential EO data source

Plant traits

Pigment, dry matter, water, chemical 
content, leaf area index, leaf angle 
distribution

Spectral analysis or radiative transfer models

Roughness, height, vertical structure Lidar, radar, multiangle 

Life form Land cover classification 

Phenology Multi-temporal imagery

Species
Species map, 

Chemical or structural uniqueness, hyperspectral imaging, lidar, 
image texture

Habitat suitability map Varied (climate, topography, land cover, productivity, etc)

Biodiversity
Spectral diversity Range/variability of biochemistry, NDVI or reflectance 

Environmental surrogates Varied (productivity, topography, land cover, disturbance, etc)

Abundance of functional components Vegetation fraction, litter fraction Spectral unmixing, MODIS Continuous Fields

Biomass, carbon storage Canopy structure Lidar, radar, multiangle data

Photosynthesis, carbon sequestration Productivity fAPAR, photosynthetic efficiency, fluorescence, MODIS NPP

Disturbance

Change in biomass, 

plant traits, land cover
Multi-temporal imagery

Fire detection Thermal anomalies

Drought monitoring Water content, surface temperature, evapotranspiration

Plant stress Spectral indexes

Soil characteristics
Land form Digital Elevation Model

Soil texture, moisture, chemistry Radar, hyperspectral imaging

Evapotranspiration Evapotranspiration Thermal imagery, VIs, climate data

Hydrology variables

Precipitation Thermal imagery, VIs, climate data

Soil moisture Radar, passive microwave radar

Water, snow/ice extent Optical, radar, passive microwave, radar altimetry

Water level, Groundwater Gravity surveys, subsidence, surface water fluxes

Landscape structure Landscape metrics Land cover, quantitative heterogeneity patterns

Ecosystem classification Ecosystem classification Varied (productivity, climate, topography, land cover, etc)

Source: Andrew et al. (2014) Table 2

Land use policies and planning transform landscapes, affecting the long term mosaics of unmodified, 
modified, removed and replaced vegetation ecosystems. In turn, land use policies, planning instruments 

and decisions affect the viability of landscapes to generate publicly acceptable mixes of ecosystem 
services, including clean air, healthy crops, clean water, and parks and reserves for the protection of 

nature and recreation.  
(Thackway, 2018)
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Figure 20.4  EO in ecosystem service assessment

Ecosystem service models have been applied across scales, from local to global, to quantify ecosystem service supply and demand. 
Technical and conceptual barriers remain to creating models that effectively integrate social and biophysical systems that are 
comparable and transferable across geographies. EO data may reduce these barriers by providing new ways to measure ecosystem 
service drivers that are consistent across time and space. 

ecosystem services (Díaz et al., 2018; TEEB, 2010). Despite these inten-
tions, assessment of ecosystem services in decisionmaking remains lim-
ited (Guerry et al., 2015; Rieb et al., 2017). We attribute this to two
critical barriers (Fig. 1). First, the scale of decision-relevant information
is often mis-matched with existing research and assessment tools. Re-
search quantifying ecosystem services is frequently based on empirical
field data, biophysical modeling, economic assessment, or surveys un-
dertaken at the site scale. Using the resulting locally based ecosystem
service models in new locations or at different scales requires parame-
terization, calibration and validation that is often hindered by lack of
data. Second, evaluating not just the production of ecosystem goods
and services but also the benefits that accrue to specific and relevant
beneficiaries is challenging. Most studies of ecosystem services report
biophysical values (e.g., tons of sediment retained by vegetation or
changes in nutrient discharge) without linking to costs, emotional reso-
nance, health, or safety — information crucial for decision making
(Brauman, 2015). Evaluating benefits requires information on human
use of ecosystem services, human vulnerability, and access to substi-
tutes, information that biophysical scientists may not have and which
is time and labor intensive to collect (Wolff et al., 2015).

Earth observations (EO), collected via remote sensing as well as in
situ data, include imagery or raw data (e.g., radar or satellite imagery)
as well as products derived through substantial processing
(e.g., precipitation, chlorophyll content inwater). These data have enor-
mous potential to improve ecosystem service-based decision making,
which frequently requires up-to-date information that is globally com-
parable but locally relevant, because they provide data that are uniform
over large areas, available at regular time intervals, and relatively low
cost or even free (Cord et al., 2017; Pettorelli et al., 2017). In addition,
EO have the potential to improve parametrization of ecosystem service
models by providing relevant biophysical data and through fusion
with census and other statistical information to provide information
about the beneficiaries of ecosystem services. Recent reviews have
highlighted opportunities to use EO in ecosystem service assessment,
including providing summaries of satellite sensors and associated prod-
ucts that could be used to assess specific ecosystem services (see lists in

Andrew et al., 2014; Ayanu et al., 2012; Pettorelli et al., 2017; Xiaoming
et al., 2010). The potential value of EO for ecosystem service assessment
is also highlighted by several governments and intergovernmental or-
ganizations, which have established initiatives to include EO in ecosys-
tem service science (Table 1).

Despite these efforts, the use of EO products in ecosystem service as-
sessments is limited in both number and variety. As of 2013, roughly 5%
of the peer-reviewed ecosystem service literature integrated remote
sensing and ecosystem services (De Araujo Barbosa et al., 2015), and
the EO products used were mostly limited to land use/land cover
(LULC) datasets. To a lesser extent, studies used vegetation indices, dig-
ital elevation models (DEMs), and surface temperature (Cord et al.,
2017; De Araujo Barbosa et al., 2015; Eigenbrod et al., 2010). Given
the potential and simultaneous lack of implementation, it is clear that
hurdles to integrating EO into ecosystem service assessment exist and
must be addressed if EO is to be used more extensively.

Here, we identify key challenges and opportunities for widespread
EO uptake in ecosystem service assessments. These challenges and op-
portunities were identified through a series of workshops (Jan–Jul
2018) bringing together EO scientists, ecosystem service researchers,
ecosystem service model users, and decision makers. We delineate
where in the process of ecosystem service assessment EO might be
used, then lay out a suite of associated challenges.We differentiate tech-
nical challenges that require systematic investment in model platforms
and data management from conceptual challenges requiring scientific
investment to provide solutions and tools relevant across applications.
Finally, we highlight frontiers in ecosystem service assessment enabled
with EO.

2. Using EO in the process of ecosystem service assessment

2.1. Ways EO can be integrated in ecosystem service modeling

Assessment of ecosystem services includes quantifying the current
and future supply of benefits from nature as well as human use of
those benefits (often referred to as “demand” in ecosystem service

Fig. 1. Opportunities for Earth observations to improve ecosystem service assessments. Ecosystem service models have been applied across scales, from local to global, to quantify
ecosystem service supply and demand. Technical and conceptual barriers remain to creating models that effectively integrate social and biophysical systems that are comparable and
transferable across geographies. Earth observation data may reduce these barriers by providing newways tomeasure ecosystem service drivers that are consistent across time and space.

1055C. Ramirez-Reyes et al. / Science of the Total Environment 665 (2019) 1053–1063

Source: Ramirez-Reyes et al. (2019) Figure 1

Ecosystem services have traditionally been valued 
in terms of market pressures, but some have been 
directly or indirectly undervalued or ignored in 
terms of ecosystem biodiversity and resilience (see 
Sections 7 and 19). In many regions of Australia, 
this undervaluing has resulted in unsustainable 
resource usage and environmental degradation (see 
Sections 11.4 and 15). Some of the major challenges 
in measuring the variety of ecosystem services in 
Australia include:

	§ lack of detailed information about ecosystem 
processes with most data being derived from models;

	§ key processes have differing cycle durations and 
complexity; and 

	§ research is not necessarily transferable across 
ecosystems—Australia’s size and diversity means 
that ecosystem services differ in terms of speed 
and sequence in different locations (DEWHA, 2010).

Traditional market measurement systems exist for 
some, but not all, ecosystem services. Hopefully, as 
new markets develop for ecosystem services, such as 
carbon trading (see Section 17), environmental water 
flows (see Volume 3B), and vegetation offsets (see 
Volume 2D—Excursus 14.3), their real economic value 
will become more apparent (see Section 21). 

Sustain (from) Latin, sub meaning ‘from below’ and 
tenere meaning ‘to hold’
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20.4  Sustainable Development
The word ‘sustainable’ is defined by the Merriam-
Webster Dictionary as meaning ‘of, relating to, or 
being a method of harvesting or using a resource 
so that the resource is not depleted or permanently 
damaged’. The word was originally coined in German 
from the concept of ‘sustained yield’ in forestry, that 
is, a balance between resource consumption and 
production. More recently, The Brundtland Report 
(1987) entitled ‘Our Common Future’, produced 
by several UN countries, defined ‘sustainable 
development’ as satisfying “the needs of the present 
without compromising the ability of future generations 
to meet their own needs” and signalled “a new era of 
economic growth—growth that is forceful and at the 
same time socially and environmentally sustainable’’ 
(Purvis et al., 2018). The elements of sustainable 
development were defined by Jacobs et al. (1987) as 
the:

	§ integration of conservation and development; 

	§ satisfaction of basic human needs; 

	§ achievement of equity and social justice; 

	§ provision for social self-determination and cultural 
diversity; and 

	§ maintenance of ecological integrity.

Of the wide range of models that have been proposed 
to represent the most critical components of 
sustainable development and their interrelationships 
(Brown et al., 1987; Kidd, 1992; Boyer et al., 2016; 
Purvis et al., 2018), Figure 20.5 shows one of the 
most popular depictions, in which three interrelated 
pillars—social, economic, and ecological—jointly 
impact the environment. The precise definitions of 
these three interest areas have varied depending 
whether they are seen as perspectives to consider, or 
systems to be balanced, integrated, or reconciled 

(Purvis et al., 2018; see Table 20.5). Accordingly, 
the relative importance of each pillar is weighted 
differently by different individuals, with the viability of 
continued economic growth being highly debatable. 
Moreover, Kidd (1992) argues that different “strains 
of thought” have adopted the term ‘sustainability’ 
to represent fundamentally different concepts, and 
some observers consider “the term ‘sustainable 
development’, like that of ‘sustainable growth’, to be 
an oxymoron (Redclift, 2005; Johnston et al. 2007; 
Brand, 2012)” (Purvis et al., 2018). In the face of 
limiting resources, however, conflicts over land 
management and resource distribution inevitably 
arise and this model enables analysis of competing 
demands. 

Figure 20.5  Three pillars of sustainability

Social

Economic Ecological

LivableEquitable

Sustainable

Viable

Environment

Human history cannot be understood in a vacuum. All human societies have been, and still are, 
dependent on complex, interrelated physical, chemical and biological processes. These include the 

energy produced by the sun, the circulation of the elements crucial for life, the geophysical processes 
that have caused the continental land masses to migrate across the face of the globe and the factors 

regulating climatic change. These constitute the essential foundations for the way in which the various 
types of plants and animals (including humans) form complex, interdependent communities. … Research 

in a wide variety of disciplines is increasingly making it clear that life on earth and all human societies 
depend on the maintenance of a number of delicate balances within and between a whole series of 

complex processes. The findings help us to understand the way in which the environment has influenced 
the development of human societies and, just as important, the human impact on earth. 

(Ponting, 1991)
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Table 20.5  Definitions of sustainabililty pillars

Citation Social Ecological Economic Goal

Brown et al. 
(1987)

Continued satisfaction of 
basic human needs

Continued productivity and 
functioning of ecosystems; 
protection of genetic resources 
and conservation of biological 
diversity

Limitations that a sustainable 
society must place on 
economic growth

Three distinct but interrelated 
perspectives

Barbier 
(1987)

Cultural diversity, 
institutional sustainability, 
social justice, participation

Genetic diversity, resilience, 
biological productivity

Satisfying basic needs 
(reducing poverty), equity-
enhancing, increasing useful 
goods and services

Maximise the goals across 
all these systems through an 
adaptive process of trade-offs

Munasinghe 
(1993)

Equity and participation
Preserve biological and physical 
systems

Maximise income whilst 
maintaining capital stock

Integration of competing ‘‘non-
comparable’’ objectives

Elkington 
(1997)

People Planet Profit
Triple bottom line (TBL) 
accounting method

Custance and 
Hillier (1998)

Social progress Protection of the environment
Maintenance of economic 
growth

Balance between three broad 
objectives

Source: Purvis et al. (2018)

Given the differing, and somewhat ambiguous, 
perceptions of sustainability, numerous methods 
have been proposed to implement sustainable 
development. Hugé et al. (2013) grouped these 
disparate interpretations into three broad ‘discourses’ 
on sustainable development (where discourse is 
defined as “a specific ensemble of ideas, concepts, 
and categorisations that are produced, reproduced, 
and transformed in a particular set of practices and 
through which meaning is given to physical and social 
realities”; Hajer, 1995):

	§ integration: pragmatically integrates development 
and environmental goals—relying on mostly 
anthropocentric frameworks, such as ecosystem 
services (see Section 20.3), and involves compromise 
and political consensus at a jurisdictional level;

	§ limitations: emphasises imposition of limits on 
human activities—based on ecological limits to 
population growth and resource availability, this 
approach requires strategies to manage resource 
scarcities and ethical constraints to ensure social 
justice, and embraces the concepts of resilience 
(see Sections 7 and 15 and Excursus 21.1), ecological 
footprints (see Excursus 20.3), and critical 
environmental capital (see Section 20.3); and

	§ process of change: this view sees change and 
uncertainty as an inherent continua in the 
development cycle, requiring transformation of society 
so that human lifestyles adapt to resource availability. 

One of the key requirements for monitoring sustainable 
development is the definition of operational indicators 
“that provide manageable units of information on 
economic, environmental, and social conditions” (Custance 
and  Hillier, 1998; Böhringer and Jochem, 2007). 

The 2030 Agenda for Sustainable Development 
identified 17 global goals that were explicitly based on 
the three pillars of sustainability shown in Figure 20.5 
(see Excursus 20.2). Progress towards these goals 
and their 169 targets is monitored using an agreed 
global indicator framework of 231 unique indicators 
(UN, 2019, 2020a). The Global Indicator Framework 
reports on progress towards indicators using available 
datasets (traditional national accounts, household 
surveys, and routine administrative data) and new 
data sources such as geospatial information, citizen 
science, and Big Data (GEO, 2020a). Geospatial 
datasets, including EO, are essential to make this 
process feasible, effective, and ongoing. For example, 
satellite-based EO data can:

	§ complement traditional data sources;

	§ provide spatially and temporally denser information 
on multiple scales;

	§ deliver wall-to-wall ecosystem coverage;

	§ improve frequency or richness of data;

	§ save money on traditional survey methods;

	§ provide the only viable option in relation to global 
indicators; and

	§ allow consistent and comparable measurements 
across different countries and regions (GEO, 2017).

Examples of EO-based monitoring programs working 
towards these sustainable development goals (SDG) 
are given in Section 21.3. The Global Footprint Network 
is a freely accessible, online system that monitors 
sustainability for nations, regions, and the collective 
world by comparing resource production with 
consumption. As detailed in Excursus 20.3, it paints a 
bleak picture for our sustainable future on planet Earth.
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Excursus 20.2�—Global Sustainable Development Agreements

Source: https://sustainabledevelopment.un.org

17	  Acknowledging that the United Nations Framework Convention on Climate Change is the primary international, intergovernmental forum for negotiating the 
global response to climate change.

The 2030 Agenda for Sustainable Development, 
adopted by all UN Member States in 2015, provides a 
shared blueprint for peace and prosperity for people 
and the planet, now and into the future. Based on 17 
Sustainable Development Goals (SDGs), this build on 
decades of work to attain global agreement to end 
poverty and conserve natural resources. Originating 
at the Earth Summit in Rio de Janeiro, Brazil, in 1992, 
where more than 178 countries adopted Agenda 21 
(a comprehensive plan of action to build a global 
partnership for sustainable development to improve 
human lives and protect the environment), global 
collaboration moved through various agreements and 
goals, including the Millennium Development Goals 
(MDG), and culminated in the UN Conference on 
Sustainable Development in Rio de Janeiro, Brazil, in 
June 2012, (“The Future We Want”) where a process 
was launched to develop a set of SDGs to build upon 
the MDGs.

Several major international agreements were adopted 
in 2015, including (see Section 20.6 for links):

	§ Sendai Framework for Disaster Risk Reduction 
(March 2015);

	§ Addis Ababa Action Agenda on Financing for 
Development (July 2015);

	§ Transforming our world: the 2030 Agenda for 
Sustainable Development with its 17 SDGs (adopted 
at the UN Sustainable Development Summit in New 
York, September 2015); and

	§ Paris Agreement on Climate Change (December 2015).

The 17 SDGs are:

Goal 1: End poverty in all its forms everywhere.

Goal 2: End hunger, achieve food security and improved 
nutrition and promote sustainable agriculture.

Goal 3: Ensure healthy lives and promote wellbeing for 
all at all ages.

Goal 4: Ensure inclusive and equitable quality 
education and promote lifelong learning 
opportunities for all.

Goal 5: Achieve gender equality and empower all 
women and girls.

Goal 6: Ensure availability and sustainable 
management of water and sanitation for all.

Goal 7: Ensure access to affordable, reliable, 
sustainable and modern energy for all.

Goal 8: Promote sustained, inclusive, and sustainable 
economic growth, full and productive employment 
and decent work for all.

Goal 9: Build resilient infrastructure, promote inclusive 
and sustainable industrialisation, and foster 
innovation.

Goal 10: Reduce inequality within and among 
countries.

Goal 11: Make cities and human settlements inclusive, 
safe, resilient, and sustainable.

Goal 12: Ensure sustainable consumption and 
production patterns.

Goal 13: Take urgent action to combat climate change 
and its impacts.17

Goal 14: Conserve and sustainably use the oceans, 
seas, and marine resources for sustainable 
development.

Goal 15: Protect, restore, and promote sustainable 
use of terrestrial ecosystems, sustainably manage 
forests, combat desertification, and halt and 
reverse land degradation and halt biodiversity loss.

Goal 16: Promote peaceful and inclusive societies 
for sustainable development, provide access to 
justice for all, and build effective, accountable, and 
inclusive institutions at all levels.

Goal 17: Strengthen the means of implementation and 
revitalise the global partnership for sustainable 
development.

In order to make the 2030 Agenda a reality, broad 
ownership of the SDGs must translate into a strong 
commitment by all stakeholders to implement the 
global goals. 

If you harvest a crop you are removing nutrients from that ecosystem— 
for sustainable production they need to be replaced.  

(Rattan Lal)

https://sustainabledevelopment.un.org
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Excursus 20.3�—Global Footprint Network

Source: GFN (2020)

The Global Footprint Network measures the 
sustainability of populations around the world in terms 
of two metrics that are standardised to units of global 
hectares (gha—biologically productive hectare with 
world average biological productivity for a given year):

	§ ecological footprint (EF)—their consumption of 
resources and absorption of waste products; and

	§ biocapacity (BC)—the productivity of their 
ecological assets (Borucke et al., 2013).

These metrics are used to generate several national, 
regional, and global accounts, including:

	§ ecological deficit—BC < EF, meaning that the 
population is not self-sufficient so relies on 
imported goods, liquidation of ecological assets, 
and/or CO2 emissions into the atmosphere;

	§ ecological reserve—BC > EF; and

	§ ‘Earth Overshoot Day’—the number of days in 
a given year that the biocapacity of Earth can 
support its population. When counted on from 
1 January, this has moved from 29 December in 
1970 (when global resource demand was about 
equal to supply) to 29 July in 2019 (when we are 
collectively overbudget; Wackernagel et al., 2019; 
GFN, 2020). 

The balance between ecological footprint and 
biocapacity for Australia is shown in Figure 20.6. While 
we are still keeping our consumption head above the 
‘pool’ of available resources, the ecological reserve is 
decreasing with time.

In the Global Footprint Network, usage of the 
world’s productive surface area is represented by six 
categories (cropland, grazing land, fishing grounds, 
built-up land, forest area, and carbon demand on 
land), each of which is tracked to derive the ecological 
footprint for each population (city, nation, or state). 
The average area of biologically active surface per 
person globally is 1.6 gha. The total EF for selected 
countries in 2016 can be compared in terms of these 
productive surface area categories or relative to 
population, which paints a different picture. 

One measure of sustainable development compares 
the UN Human Development Index (HDI, based on 
average longevity, income, and access to education) 
for a population with its EF. An HDI over 0.8 is 
considered ‘very high’. In 2016 Australia had an HDI 
value of 0.94 versus an EF (in units of gha per person) 
of 6.64—a lucky country indeed!

Figure 20.6  Ecological Footprint and Biocapacity for Australia

Source: Global Footprint Network, 2021 National Footprint and Biocapacity Accounts: https://data.footprintnetwork.org/#/
countryTrends?cn=10&type=BCpc,EFCpc

https://data.footprintnetwork.org/#/countryTrends?cn=10&type=BCpc,EFCpc
https://data.footprintnetwork.org/#/countryTrends?cn=10&type=BCpc,EFCpc
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20.5  Environmental-Economic Accounting
When the social science of economics was 
introduced only a few centuries ago, it represented 
a shift in social organisation towards market-driven 
trading of land, labour, and capital, rather than 
the feudal bartering system that had operated 
for many centuries in most of the ‘civilised’ world 
prior to the industrial revolution. Investments, 
increased productivity, and individual wealth—
namely capitalism—were encouraged, with the 
expectation that economic gain would benefit society 
(Smith, 1776). However, classical economics, where 
the free market achieves balance between supply 
and demand (through the pursuit of individual self-
interest, division of labour, and freedom of trade), and 
more recent economic theories (including Keynesian 
and Marxist), where governments regulate demand 
to ensure full employment, all focus on production, 
assume resources are infinite, and regard labour 
as a commodity. They also ignore the social and 
environmental costs of producing goods, such as air, 
water, and soil pollution, and the direct and indirect 
impacts of these ‘externalities’ on the health and 
wellbeing of humans and other biota (Ponting, 1991). 

In any organisation that manages money, accounting 
is the process of tracking, analysing, and reporting 
the movement of finances and assets. The goal 
is generally to ensure that income is greater 
than expenditure, while complying with statutory 
regulations. Accounting has traditionally been limited 
to measuring and scrutineering the commodites of 
land, labour, and capital, but in the last few decades 
there have been attempts to also reckon the 
environmental costs of production, and the impact 
of current consumption on future production and 
sustainability (e.g. Schumacher, 1973; Henderson, 
1978).

The concepts and practices of ecosystem and 
environmental accounting were introduced in 
Volume 2D—Section 14.2.1. In a general sense, 
environmental accounting tracks relevant 
environmental attributes to monitor the condition of 
natural resources, whereas ecosystem accounting 
is defined as “a coherent framework for integrating 
measures of ecosystems and the flows of services 
from them with measures of economic and other 
human activity” (SEEA, 2020a). These approaches 
are complementary, with the latter having a greater 
focus on ecosystem integrity and “how individual 
environmental assets interact as part of natural 
processes within a given spatial area” (SEEA, 2020a). 

One example of an Australian environmental 
accounting system is OzWALD, a model-data 
fusion system that is heavily reliant on EO datasets 
(van Dijk et al., 2017; van Dijk and Rahman, 2019). 
OzWALD ingests a variety of datasets into a water 
balance model to estimate relevant parameters for 
vegetation, as well as energy, water, and carbon 
balance, and generates national annual reviews of 
the current status of, and relative changes in, the 
Australian environment (see Volume 2D—Excursus 
14.2). Examples of ecosystem accounting measures 
are given in Table 20.6 (see also Vallecillo et al., 2018). 
Bio-economic modelling approaches have also been 
developed in recent decades and used to determine 
the direct and indirect impacts of agricultural 
intensification on selected ecosystem services 
(Flichman and Allen, 2013; Kirchweger et al., 2020; 
Ogilvy, 2020). 

The measure of success is not whether you have a tough problem to deal with, 
but whether it’s the same problem you had last year. 

(John Foster Dulles)
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Table 20.6  Examples of ecosystem accounting measures

ABARES: Australian Bureau of Agricultural and Resource 
Economics; ABS: Australian Bureau of Statistics; BoM: Bureau of 
Meteorology

Ecosystem 
service

Example Accounting

Provisioning

Agricultural 
commodities

Annual statistics (ABARES, ABS)

Agricultural 
fertilisers

Patchy records by government and 
research agencies

Fresh water National Water Accounts (ABS, BoM)

Supporting

Native 
vegetation 
extent

National Vegetation Information 
System (NVIS)

Soil resources
Australian Soil Resources 
Information System (ASRIS)

Regulating

Carbon 
sequestration

National Carbon Accounting System 
(NCAS)

Pollination Bio-economic models

Water quality SEEA-Water

Cultural

Recreation Tourism statistics

Landscape 
aesthetics

Real estate value

The Accounting for Nature (AfN) framework develops 
biophysical accounts for environmental assets (such 
as vegetation, soils, biota, and waterways, including 
groundwater) using a common environmental 
condition index (Econd), based on reference condition 
benchmarks (WGCS, 2016). Such measures of 
environmental condition inform management decisions 
to improve, rather than degrade, natural capital. The 
AfN framework presents a standardised “system of 
rules and processes designed to ensure the integrity 
and transparency of environmental accounts, no 
matter the environmental asset being measured” 
(AfN, 2020). It is designed for local/regional scale 
applications, such as individual farms, which can be 
aggregated to national scale, and links through to 
enterprise microeconomic and accounting systems, 
including the option of independent certification of 
environmental accounts. AfN complements other 
systems for standards and compliance with the goal 
of promoting sustainability at the level of individuals 
and enterprises (see Section 20.6). It is also compatible 
with SEEA (see Excursus 20.4).

Environmental-economic accounting aims to 
understand both the condition of the environment and 
its relationship with the economy. SEEA, an accepted 
international standard for environmental-economic 
accounting, is described in Excursus 20.4. 

Since the full costs of any action anywhere in the world must be borne by someone, somewhere, 
sometime, it is important that our accounting system makes provision for this. We accept however, 
that ecological processes are so complex and can spread so far in space and time, that this will be 
exceptionally difficult. Nonetheless, given the truism that a satisfactory accounting system is one 
which supports and helps perpetuate the social system from which it derives, we must attempt to 

devise one which is fitted to a society based on a sober assessment of ecological reality and not on the 
anthropocentric pipe-dream that we can do what we will to all species, not excepting, it seems, future 

generations of our own. It is worth recalling Prof. Commoner’s dictum that since economics is the science 
of the distribution of resources, all of which are derived from the ecosphere, it is foolish to perpetuate 
an economic system which destroys it. Ideally (and as befits the etymology of the two words), ecology 
and economics should not be in conflict: ecology should provide the approach, the framework for an 
understanding of the interrelationships of social and environmental systems, and economics should 

provide the means of quantifying those interrelationships in the light of such an understanding, so that 
decisions on alternative courses of action can be made without undue difficulty. 

(Goldsmith and Allen, from A Blueprint for Survival #243, 1972)
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Excursus 20.4�—System of Environmental Economic Accounting

Source: SEEA (2018, 2020a)

The System of Environmental-Economic Accounting 
(SEEA) is an international statistical standard that 
uses a systems approach to bring together economic 
and environmental information to measure the 
contribution of the environment to the economy 
and the impact of the economy on the environment. 
It uses internationally agreed standard concepts, 
definitions, classifications, accounting rules and 
tables for producing internationally comparable 
statistics and accounts. The SEEA is produced 
and released under the auspices of the UN, the 
European Commission (EC), the Food and Agriculture 
Organisation of the UN (FAO), the Organisation for 
Economic Co-operation and Development (OECD), 
International Monetary Fund (IMF), and the World 
Bank Group (WBG).

The System of National Accounts (SNA) is a 
measurement framework that has been evolving since 
the 1950s to embody the pre-eminent approach to the 
measurement of economic activity, economic wealth, 
and the general structure of the economy. The SEEA 
framework follows a similar accounting structure 
and uses concepts, definitions, and classifications 
consistent with the SNA in order to facilitate the 
integration of environmental and economic statistics. 

SEEA Central Framework (SEEA CF) focuses on 
physical quantities of stocks and flows of goods and 
services, their monetary values, and tracking supply 
and use (see Figure 20.7). This central framework 
is very human-centric, for example harvesting of 
crops considers the value added to produce, then 
receive, goods and services. Without the human 
‘user’ to receive the goods and services, there is no 
‘transaction’ to link environmental economic accounts 
to the SNA (UN, 2014). SEEA CF is an accepted 
statistical standard that facilitates accounts in several 
thematic areas, including:

	§ Agriculture, Forests, and Fisheries—integrates 
information on the environment and the 
economic activities of these industries that 
impact and directly depend on the environment 
and its resources. Integrating information about 
agriculture, forestry, and fisheries facilitates 
understanding of the trade-offs and dependencies 
between these activities and their related 
environmental factors.

	§ Air Emissions—provide information on emissions 
released to the atmosphere by establishments and 
households as a result of production, consumption, 
and accumulation processes. The air emissions 
accounts record the generation of air emissions 
by resident economic units according to type of 
gaseous or particulate substance.

	§ Energy—supports analysis of the role of energy 
within the economy, the state of energy inputs, 
and various energy-related transactions of 
environmental interest. Energy information is 
typically presented in physical terms, but monetary 
valuations are also applied to various stocks and 
flows.

	§ Environmental Activity—provides information on 
transactions concerning activity undertaken to 
preserve, protect, and manage the environment. 
Understanding environmental activity is critical 
to understanding whether economic resources 
are being used effectively to reduce pressures on 
the environment and maintain the capacity of the 
environment to deliver benefits.

	§ Ecosystems—constitutes an integrated statistical 
framework for organizing biophysical data, 
measuring ecosystem services, tracking changes 
in ecosystem assets, and linking this information to 
economic and other human activity. 

	§ Land—provides information on land use and 
land cover, and can enable an assessment of 
the changing shares of different land uses and 
land covers within a country. Understanding 
these characteristics and changes is critical 
to understanding the impacts of urbanisation, 
the intensity of crop and animal production, 
afforestation and deforestation, the use of water 
resources, and other direct and indirect uses of land.

	§ Material Flow—provides an aggregate overview 
of material inputs and outputs in terms of inputs 
from the environment, outputs to the environment, 
and the physical amounts of imports and exports. 
Understanding economy-wide material flow is 
critical to understanding resource use by the 
economy and eco-efficiency.

	§ Water—an integrated approach to water 
monitoring, bringing together a wide range of water 
related statistics across sectors into one coherent 
information system. This serves as a conceptual 
framework and set of accounts which presents 
hydrological information alongside economic 
information in a consistent manner.
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Figure 20.7  Overview of SEEA Central Framework

Natural inputs from the environment to the economy include 
mineral, timber, and water resources. Within the economy, 
industries, households, and governments produce and consume 
goods and services, or products. Residuals from the economy to 
the environment include air emissions and return flows of water 
(see also Figure 20.3).

Adapted from: UN (2014)

While SEEA CF considers individual environmental 
assets and how those assets move between the 
environment and the economy (see Figure 20.7), 
SEEA Experimental Ecosystem Accounting (SEEA EA) 
views the perspective of ecosystems and determines 
how individual environmental assets interact as 
part of natural processes within a given spatial area 
(see Figure 20.8). This framework is still considered 
‘experimental’ but is currently undergoing a large, 
global revision process, with the aim of becoming 
a statistical standard. SEEA EA primarily accounts 
for the non-human elements of environmental-
economic accounts. Although it still emphasises the 
goods and services benefitting humans, it considers 
ecosystem extent and condition, and the future 
capacity to produce and provide goods and services. 
These considerations can relate to land use and 
management practices, environmental sustainability 
and degradation, progress towards achieving 
set targets, or other long term environmental 
interventions through monitoring and evaluation 
(CoA, 2018). Currently this framework comprises a set 
of accounts to quantify ecosystems in terms of:

	§ ecosystem extent—serves as a common starting 
point for ecosystem accounting, by organising 
information on the extent of different ecosystem 
types within a country in terms of area;

	§ ecosystem condition—measures the overall quality 
of an ecosystem asset, and captures, in a set of 
key indicators, the state or functioning of the 
ecosystem in relation to both its naturalness and its 
potential to supply ecosystem services;

	§ ecosystem services—measures their supply as well 
as their corresponding users and beneficiaries, 
classified by broad national accounting categories 
or other groupings of economic units;

	§ monetary asset—records the monetary value of 
opening and closing stocks of all ecosystem assets 
within an ecosystem accounting area and additions 
and reduction to those stocks; and 

	§ thematic—covers accounts for land, water, carbon, 
and biodiversity, which are standalone accounts on 
topics of importance in their own right for policy 
and analysis, but also of direct relevance in the 
compilation of ecosystem accounts.

The global revision process may see improved 
incorporation of environmental/ecosystem integrity, 
intrinsic values, biodiversity, and inter- and intra-
ecosystem service flows that support environmental/
ecosystem functioning into the SEEA EA 
(SEEA, 2020b).

Thus, an environmental-economic account, such as 
SEEA, presents information in physical and monetary 
terms regarding environmental stocks and flows 
between the environment and the economy as well 
as economic activity related to the environment. 
By providing a full picture of its connection to the 
economy, environmental-economic accounts can 
help make the case for protecting and conserving 
biodiversity (see Section 19). Ecosystem accounts 
used in combination with information on expenditures 
provide decision makers with a clear picture of the 
return-on-investment from biodiversity protection. 
Examples of the kinds of questions that the SEEA can 
help answer include:

	§ Who benefits and who is negatively impacted from 
natural resource use? What are the impacts on the 
state of the environment and on specific sectors of 
the economy?

	§ How does depletion of natural resources affect 
measures of the real income of a nation? What 
extracting industries and owners of natural 
resources are responsible for depletion?

	§ To what extent is decoupling between resource use 
and economic growth taking place? Which sectors 
have the highest water productivity or are most 
energy intensive?

	§ How is the wealth of nations, specifically its natural 
capital, developing over time?

	§ Are the expenditures on environmental protection 
effective?

	§ To what extent is the tax system greening? What 
economic instruments are in place? And what is the 
impact of new instruments?
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	§ What is the size of environmental investment in the 
economy? How many green jobs is the economy 
generating?

	§ Are current trends in production and consumption 
of resources sustainable? Is the amount of waste 
generated increasing or not; how much of this is 
being recycled in what economic sectors?

	§ What is the carbon footprint or water footprint of 
the nation?

	§ Which ecosystem services are being generated, 
who is benefiting from them, and where are they 
located?

Over 80 countries, including Australia, maintain 
active environmental-economic accounting programs 
based on SEEA. This is an ongoing project with 
updates, extensions, and resources being undertaken 
in several areas, including biodiversity and SDG 
(see Sections 19.3 and 20.4 respectively).

Figure 20.8  Environmental accounts versus environmental-economic accounts

Adapted from: CoA (2018) page 3 

Economics has enthroned some of our most unattractive predispositions: material acquisitiveness, 
competition, gluttony, pride, selfishness, shortsightedness, and just plain greed. 

(Henderson, 1978)

In Australia, the SEEA framework is used to generate 
the Australian Environmental Economic Accounts 
(AEEA) for the themes of water, energy, waste, and 
greenhouse gas emissions (ABS, 2019a). Some 
data used in AEEA is sourced externally, such as 
the National Carbon Accounting System (NCAS), 
that reports Australia’s national and international 
greenhouse gas emissions (see Section 17). Other 
jurisdictions and private organisations have 
also applied this approach for specific areas of 
environmental accounting. Examples of Australian 
environmental economic accounts based on SEEA are 
listed in Table 20.7, some of which are derived from EO 
data sources (CoA, 2018).

A national plan entitled ‘Environmental Economic 
Accounting—A Common National Approach: 
Strategy and Action Plan’ (CoA, 2018) has the vision 
that the “Australian community understands the 
environment’s contribution to our quality of life, and 
its condition and value are accounted for in decision 
making for a prosperous and healthy society”. The 
Strategy is hoping to set up a level of consistency 
across the applications of SEEA within Australia, 
and is assisting in bringing together expertise and 
experience towards this purpose from federal, state, 
and territory government agencies, the private sector 
and academia (CoA, 2018). 
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This collaborative effort between the Australian 
Department of Agriculture, Water and the 
Environment (DAWE; formerly Department of 
Environment and Energy), its state and territory 
counterparts, and the ABS compiles data from various 
jurisdictions and agencies, with the aim of presenting 
an integrated perspective at a range of scales within 
Australia: national, single and multi-state/territory, 
regional, local, and farm. For example, a recent 
iteration of the ABS waste accounts (ABS, 2019b) was 
developed and released under this strategy. Current 
projects under the Strategy include:

	§ an experimental national land account (see 
Section 3.3.4);

	§ case studies of experimental ecosystem accounts; 
and

	§ pilot studies of ocean accounts (see Volume 3B).

ABS and the Bureau of Meteorology (BoM) have also 
collaborated to produce an integrated water account 
for the ACT (ABS, 2019c). These pilot accounts use 
the Australian Water Accounting Standard (AWAS; 
BoM, 2012) and SEEA frameworks to integrate two 
complementary Australian environmental-economic 
accounting approaches, namely the: 

	§ ABS Water Account, Australia (WAA), which 
defines the:

	w flows of water from the environment to the 
water supply industry and other economic 
activities;

	w flows of water from the water supply industry to 
households and businesses; and the

	w monetary values associated with water supplied 
and used in the economy; and the 

	§ BoM National Water Account (NWA), which 
defines the:

	w volume of water in the environment and its 
availability; and the

	w rights to abstract water and the actual 
abstraction over time (ABS, 2019c; 
see Excursus 10.2).

This collaboration produced a range of water 
accounts for the ACT in terms of water assets and 
liabilities, water condition and quality, as well as the 
physical and monetary supply and use of water. Such 
integrated, quantitative information is valuable for 
reporting and managing water resources for both the 
economy and the environment.

Table 20.7  Australian environmental economic accounts based on SEEA

These accounts quantify environmental resources in terms of the available assets and their supply and usage in both the 
environment and the economy. (ABS: Australian Bureau of Statistics; DEE: Department of Environment and Energy; DELWP Victorian 
Department of Environment, Land, Water and Planning; BoM: Bureau of Meteorology)

Account name Agency Subject Scale Measurement units Frequency

Water Account, Australia ABS Water supply and use within the economy
National, 
state/territory 

Megalitres, dollars Annual

Energy Account, Australia ABS Energy supply and use within the economy National Petajoules, dollars Annual

Waste Account, Australia ABS/DEE
Waste generation by industry and 
households

National Megatonnes, dollars Annual

National Greenhouse Accounts DEE Greenhouse gas emissions
National, 
state/territory, 
industry

Tonnes of carbon 
equivalent

Annual

National Water Account BoM
Availability and usage of water resources 
in the environment

National, 
regional

Megalitres Annual

Natural Capital Finance Alliance
Natural 
Capital 
Coalition

Business dependencies on natural capital Business Varies Varies

Land Account ABS Land use, land cover, and value 
Regional, 
state/territory

Area (ha), dollars Experimental

Experimental Ecosystem 
Accounts for the Great Barrier 
Reef Region

ABS Ecosystem goods and services Regional Area, dollars Experimental

Victorian Experimental 
Ecosystem Accounts

DELWP Ecosystem extent and services indicator
State,  
regional

Area per unit time 
(e.g. ha/year)

Experimental

Integrated Water Accounts for 
the Canberra region 

ABS/BoM
Water assets, supply, usage, and quality for 
society and environment 

Territory Megalitres, dollars Pilot

Source: CoA (2018) Tables 1 and 2 and ABS (2019c)
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SEEA requires time series data to establish the 
opening and closing stocks for the accounting period. 
It also requires the ability to undertake change 
detection for tracking flows, or reasons for change 
that can be linked to human use/management or to 
natural processes and disturbance regimes. 

As introduced in Section 3.2, the Earth Observation 
Data for Ecosystem Monitoring (EODESM; Lucas and 
Mitchell, 2017; EcoPotential, 2021) constructs land 
cover categories for different points in time according 
to the Food and Agriculture Organisation (FAO) Land 
Cover Classification System (LCCS, Version 2; see 
Excursus 3.1) and has been advanced to include an 
evidence-based change framework that integrates 
the Drivers-Pressures-State-Impacts-Response 
framework (DPSIR; see Section 11.2) and a globally 
relevant taxonomy of change (Lucas et al., in prep).  
This combined capability was implemented within 
Digital Earth Australia (DEA; see Volume 2D—Section 
11.2) to generate continental maps of land cover and 
change dynamics for 2010 and 2015, that were subset 
for four test areas in eastern Australia (Lucas et al., 
2019) and used to support accounting under SEEA as 
demonstration. 

Change detection requires consistency in data 
over time, not just availability (see Volume 2D). To 
effectively inform the decision making process, the 
frequency of the time series dataset is important. 
Some of the reasons for change will occur at short 
timescales at finer resolutions, while others are only 
visible in longer timescales at coarser resolutions. It 
is a balancing act to determine the range of end user 
requirements for environmental-economic accounts 
and match those requirements through to the correct 
spatial and non-spatial environmental, economic, and 
socio-cultural data and indicators (Vardon et al., 2016).

As detailed in Sections 11–19 above, EO datasets, 
being timely, objective, repeatable, and relatively 
inexpensive, are appropriate for various environmental 
mapping, monitoring, and modelling studies (see 
Sections 8–10) in a wide range of applications 
involving terrestrial vegetation. Many global 
organisations, such as the UN Global Working Group 
on Big Data for Official Statistics (UN, 2020b), the 
Global Strategy to Improve Agricultural and Rural 
Statistics (GSARS, 2015, 2017), and GEO Earth 
Observations for Ecosystem Accounting (EO4EA; 
GEO, 2020b), are exploring the viability of deriving 
official statistics from a range of spatial data sources 
including EO, with methodological, legal, security, and 
privacy ramifications (UN, 2015). EO4EA “envisions 
a future where EO systems enable environmental 
transparency and the value of ecosystems is 
incorporated into conventional economic accounts 
and decision making, leading to an important shift 
in the valuation of natural resources and the use of 
that information for policy and programmatic decision 
making” (GEO, 2019). Some relevant guiding questions 
to assess the suitability of using EO data products for 
these purposes are given in García et al. (2016) and 
Murray et al. (2018).

The adoption of agriculture was the most fundamental change in human history. Not only did it produce 
settled societies for the first time, it also radically changed society itself. Gathering and hunting 

groups were essentially egalitarian, but sedentary communities, almost from the beginning, resulted in 
increasing specialisation within society and the emergence of religious, political and military elites and a 
state with the power to direct the rest of society. At the root of these social changes was a new attitude 
to the ownership of food. Gathering and hunting groups generally regarded plants and animals not as 

things ‘owned’ by individuals but as available to all. Plants and animals are taken from the wild and there 
are normally strong social conventions on how food must be shared between all members of the group. 
Agriculture introduced the idea of ownership of food either by individuals or larger organisations. The 
move to growing crops in fields and the practice of herding and breeding flocks of animals opened the 
way to viewing resources used and the food produced as ‘property’ and the far greater degree of time 

and effort involved compared with gathering and hunting encouraged this trend.  
(Ponting, 1991)
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20.6  Further Information

Sustainable Development (UN)
Sustainable Development Goals: https://

sustainabledevelopment.un.org

Sendai Framework for Disaster Risk Reduction 
2015–2030: https://sustainabledevelopment.un.org/
frameworks/sendaiframework

Addis Ababa Action Agenda of the Third International 
Conference on Financing for Development: https://
sustainabledevelopment.un.org/frameworks/
addisababaactionagenda

Transforming our world: the 2030 Agenda 
for Sustainable Development: https://
sustainabledevelopment.un.org/post2015/
transformingourworld

United Nations Sustainable Development Summit 
2015: https://sustainabledevelopment.un.org/
post2015/summit

Paris Agreement: https://sustainabledevelopment.
un.org/frameworks/parisagreement

Division for Sustainable Development Goals: https://
sustainabledevelopment.un.org/about

High-Level Political Forum on Sustainable 
Development: https://sustainabledevelopment.
un.org/hlpf

GEO: Earth Observation for Sustainable Development: 
https://eo4sd.esa.int/

https://www.earthobservations.org/documents/
publications/201703_geo_eo_for_2030_agenda.pdf

https://www.earthobservations.org/documents/
publications/201704_geo_unggim_4pager.pdf

Ecosystem Services
Intergovernmental Science-Policy Platform on 

Biodiversity and Ecosystem Services (IPBES): 
https://ipbes.net/

Environmental-Economic/Ecosystem 
Accounting
UN Framework: System of Environmental-Economic 

Accounting (SEEA): https://seea.un.org/

Earth Observation for Ecosystem Accounting 
(EO4EA): https://www.eo4ea.org/

Wealth Accounting and the Valuation of Ecosystem 
Services (WAVES): https://www.wavespartnership.
org/

Australian Environmental-Economic 
Accounts
ABS: https://www.abs.gov.au/Environmental-

Management

Australian Environmental Information 
Systems
NEII (National Environmental Information 

Infrastructure): http://neii.gov.au/data-viewer

Accounting for Nature (AfN) Framework: https://www.
accountingfornature.org/

OzWALD: 

Australia’s Environment: http://wald.anu.science/
data_services/data/continuous-and-comprehensive-
national-environmental-reporting-australias-
environment/

Australia’s Environmental Explorer: www.ausenv.
online 

State of Environment: SOE 2016: https://www.
environment.gov.au/science/soe 

State-based Environmental Monitoring
Statewide Landcover and Trees Study (SLATS, 

Queensland): https://www.qld.gov.au/environment/
land/management/mapping/statewide-monitoring/
slats

Ground cover monitoring (Queensland): https://www.
qld.gov.au/environment/land/management/mapping/
statewide-monitoring/groundcover

SLATS NSW: https://www.environment.nsw.gov.au/
topics/animals-and-plants/native-vegetation/reports-
and-resources

Habitat Hectares (Victoria): https://www.environment.
vic.gov.au/native-vegetation/native-vegetation/
biodiversity-information-and-site-assessment

Spatial data for Victoria: https://www2.delwp.vic.gov.
au/maps?_ga=2.6531511.420315026.1549698228-
873342548.1549698228

https://sustainabledevelopment.un.org
https://sustainabledevelopment.un.org
https://sustainabledevelopment.un.org/frameworks/sendaiframework
https://sustainabledevelopment.un.org/frameworks/sendaiframework
https://sustainabledevelopment.un.org/frameworks/addisababaactionagenda
https://sustainabledevelopment.un.org/frameworks/addisababaactionagenda
https://sustainabledevelopment.un.org/frameworks/addisababaactionagenda
https://sustainabledevelopment.un.org/post2015/transformingourworld
https://sustainabledevelopment.un.org/post2015/transformingourworld
https://sustainabledevelopment.un.org/post2015/transformingourworld
https://sustainabledevelopment.un.org/post2015/summit
https://sustainabledevelopment.un.org/post2015/summit
https://sustainabledevelopment.un.org/frameworks/parisagreement
https://sustainabledevelopment.un.org/frameworks/parisagreement
https://sustainabledevelopment.un.org/about
https://sustainabledevelopment.un.org/about
https://sustainabledevelopment.un.org/hlpf
https://sustainabledevelopment.un.org/hlpf
https://eo4sd.esa.int/
https://www.earthobservations.org/documents/publications/201703_geo_eo_for_2030_agenda.pdf
https://www.earthobservations.org/documents/publications/201703_geo_eo_for_2030_agenda.pdf
https://www.earthobservations.org/documents/publications/201704_geo_unggim_4pager.pdf
https://www.earthobservations.org/documents/publications/201704_geo_unggim_4pager.pdf
https://ipbes.net/
https://seea.un.org/
https://www.eo4ea.org/
https://www.wavespartnership.org/
https://www.wavespartnership.org/
https://www.abs.gov.au/Environmental-Management
https://www.abs.gov.au/Environmental-Management
http://neii.gov.au/data-viewer
https://www.accountingfornature.org/
https://www.accountingfornature.org/
http://wald.anu.science/data_services/data/continuous-and-comprehensive-national-environmental-reporting-australias-environment/
http://wald.anu.science/data_services/data/continuous-and-comprehensive-national-environmental-reporting-australias-environment/
http://wald.anu.science/data_services/data/continuous-and-comprehensive-national-environmental-reporting-australias-environment/
http://wald.anu.science/data_services/data/continuous-and-comprehensive-national-environmental-reporting-australias-environment/
http://www.ausenv.online
http://www.ausenv.online
https://www.environment.gov.au/science/soe
https://www.environment.gov.au/science/soe
https://www.qld.gov.au/environment/land/management/mapping/statewide-monitoring/slats
https://www.qld.gov.au/environment/land/management/mapping/statewide-monitoring/slats
https://www.qld.gov.au/environment/land/management/mapping/statewide-monitoring/slats
https://www.qld.gov.au/environment/land/management/mapping/statewide-monitoring/groundcover
https://www.qld.gov.au/environment/land/management/mapping/statewide-monitoring/groundcover
https://www.qld.gov.au/environment/land/management/mapping/statewide-monitoring/groundcover
https://www.environment.nsw.gov.au/topics/animals-and-plants/native-vegetation/reports-and-resources
https://www.environment.nsw.gov.au/topics/animals-and-plants/native-vegetation/reports-and-resources
https://www.environment.nsw.gov.au/topics/animals-and-plants/native-vegetation/reports-and-resources
https://www.environment.vic.gov.au/native-vegetation/native-vegetation/biodiversity-information-and-site-assessment
https://www.environment.vic.gov.au/native-vegetation/native-vegetation/biodiversity-information-and-site-assessment
https://www.environment.vic.gov.au/native-vegetation/native-vegetation/biodiversity-information-and-site-assessment
https://www2.delwp.vic.gov.au/maps?_ga=2.6531511.420315026.1549698228-873342548.1549698228
https://www2.delwp.vic.gov.au/maps?_ga=2.6531511.420315026.1549698228-873342548.1549698228
https://www2.delwp.vic.gov.au/maps?_ga=2.6531511.420315026.1549698228-873342548.1549698228
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Nature is not a place to visit, it is home. 
(Gary Snyder)
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One generation passes and another comes, but the world forever stays. 
(Ecclesiastes 1:3)
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Background image on previous page: Sentinel-2A image acquired on 14 October 2020 showing Lake Gordon (northern waterbody) and Lake Pedder 
(southern waterbody) in southwest Tasmania. Lake Gordon was formed by damming the Gordon River and Lake Pedder was enlarged by damming the 
Huon and Serpentine Rivers, both for hydroelectric power in the early 1970s. This image is displayed using bands 4, 5, 2 as RGB. Source: Norman Mueller, 
Geoscience Australia
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21  The Road Ahead

A growing range of EO technologies is supplying more data—in more detail and more quickly—over the 
whole Earth, which, with appropriate analysis, can help us to use our finite resources for the maximum benefit 
of current and future populations. But exactly how will EO impact the stewardship of Australian terrestrial 
vegetation into the future? In these final sub-sections, we consider:

18	  1 ZB (Zettabyte) = a billion TB (Terabytes) = 1,000,000,000,000,000,000,000 bytes

	§ smart technology to help the environment (see 
Section 21.1);

	§ an objective outlook on global problems (see 
Section 21.2); 

	§ the benefits of EO-based solutions to society 
(Section 21.3); and, in conclusion,

	§ the attitudinal change required to share a 
sustainable future (see Section 21.4). 

21.1  The Smart Environment
The Internet of Things (IoT) and Integrated ‘Smart’ 
Systems were introduced in Volume 1B—Section 10. 
The IoT is defined as “the network of physical objects 
that contain embedded technology to communicate 
and sense or interact with their internal states or the 
external environment” (Gartner, 2020). The projected 
development of this technology over time is summarised 
in Figure 21.1. 

Smart systems integrate sensing technologies 
with cognitive functions. These systems are being 
implemented in a wide range of industrial, scientific, 
agricultural, medical, educational, environmental, and 
infrastructure applications. Advances continue at an 
accelerated pace for both urban and rural populations 
with the potential uses of these ubiquitous 
technologies being literally limited by imagination.

Forecasts from the International Data Corporation 
(IDC) suggest that the many billions of devices 
connected to the IoT will generate a staggering 80 ZB 
of data by 2025 (Futureiot, 2019)18. These sensors 
build on a wide variety of technologies that have 
become established around the globe, including 
rapid telecommunications, accurate positioning (see 
Volume 2B), artificial intelligence (see Volume 2E), 
high speed computing, and data integration 
(see Volume 2D). IoT is measuring and remotely 
controlling ‘things’ that had not been connected with 
previous technology, thus reaching more individuals, 
communities, and locations (WEF, 2020a).

Towns and cities can also be viewed as modified, human-dominated ecosystems that require flows 
of resource inputs from which energy, water and materials are extracted and used to support human 

wellbeing and culture, while producing concentrated waste streams that are detoxified and absorbed by 
nature. Efforts to increase the reuse and recycling of waste materials can be seen as shifting ecosystems 

into a more cyclic form, closer to the pattern of natural ecosystems. 
(DEWHA, 2010)

Background image: Sentinel-2B image acquired on 14 February 2019 showing the Diamantina River, Queensland, in full flood, with flood waters cutting Springvale 
Road, near Diamantina Lakes. This image is displayed using bands 4, 8, 2 (red, NIR and blue) as RGB. Source: Norman Mueller, Geoscience Australia
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Figure 21.1  The Internet of Things technology roadmap
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Source: SRI Consulting Business Intelligence/National Intelligence Council, Wikimedia Commons. (Retrieved from https://commons.wikimedia.org/wiki/
File:Internet_of_Things.svg) 

The IoT for Sustainable Development project by 
the World Economic Forum (WEF) is encouraging 
the use of IoT for rapid implementation of the UN 
Sustainable Development Goals (SDG; WEF, 2020b; 
see Excursus 20.2). This project is analysing over 640 
existing IoT system deployments in terms of their 
social value. The five key peformance indicators for 
IoT systems are:

	§ scale of project—what is the impact of this system 
on individuals, social sectors and geographic region 
and extent?

	§ target penetration—how many SDG targets are 
benefitted by each system?

	§ influence of targets—what is the potential 
effectiveness of each system towards each target?

	§ scalability and replicability—is the system 
structurally scalable to improve the benefits to 
target and can the system be replicated to achieve 
other targets?

	§ focus on vulnerable groups—does the system 
significantly focus on vulnerable, underdeveloped, 
or underserved groups?

Results thus far indicate that 84% of the IoT systems 
currently being used can benefit SDGs and that three-
quarters of these systems focus on just five SDGs 
(ordered in terms of decreasing target impact—see 
Excursus 20.2): 

	§ SDG-9—industry, innovation, and infrastructure; 

	§ SDG-11—smart cities and communities; 

	§ SDG-7—affordable and clean energy; 

	§ SDG-3—good health and wellbeing; and 

	§ SDG-12—responsible production and consumption. 

Many of these projects monitor resources with direct 
impact on vulnerable communities, such as water 
quality, air pollution, or energy usage. 95% of current 
IoT projects were found to be small to medium scale, 
so one challenge will be to improve the scalability of 
these projects in the future. While various forms of 
technology have directly contributed to environmental 
degradation, this may be one area where digital 
technology can help to resolve the global challenges 
of resource shortages, waste management, and 
environmental pollution.

Anyone who thinks that you can have infinite growth in a finite environment is either a madman or an economist. 
(David Attenborough)

https://commons.wikimedia.org/wiki/File:Internet_of_Things.svg
https://commons.wikimedia.org/wiki/File:Internet_of_Things.svg
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Smart systems simplify data collection and analysis, 
reduce maintenance costs, and improve performance. 
Current environmental applications include 
monitoring the quality and other properties of air, 
water, and soil in real time (Aitkenhead et al., 2013). 
For environmental applications, some questions to 
ponder when deploying smart technologies are:

	§ Is the observer changing the observed? How would 
we know?

	§ Who can access the data? Does access to some 
data sources need to be limited for security, 
privacy, or commercial reasons?

	§ How would the system recover from sabotage, 
accidents, or malfunctions?

	§ Many EO and smart sensor applications involve 
implicit reliance on international goodwill, but how 
enduring is this? 

As detailed in previous sections, calibrated and 
validated EO datasets have many well-established 
benefits for the mapping, monitoring, and modelling 
of terrestrial vegetation, including consistency over 
space and time, locational accuracy with global 
coverage, and ready integration with other spatial 
datasets. Selection of the most appropriate data 
and processing options for specific applications is 
described in Volume 2D—Section 2. Recent advances 
in freely available, web-based access to calibrated 
time series datasets and Analysis Ready Data (ARD, 
such as DEA, see Volume 2D—Section 11.2) simplify 
usage of these enormous archives. 

For example, since 2002, the intergovernmental 
Group on Earth Observations (GEO) has been 
encouraging member governments to coordinate 
projects, strategies, and investments in EO for the 
benefit of both public and private users (GEO, 2020). 
A key component of its mission is to build the Global 
Earth Observation System of Systems (GEOSS), a 
set of coordinated, independent data and processing 
systems based on EO, that are accessible and 
interoperable, with identified quality and provenance 
(GEOSS, 2017). The goal of GEOSS is to deliver the 
data and information necessary to:

	§ bring qualitative improvements in our 
understanding of the Earth system (see 
Volume 1A—Section 4); and 

	§ enhance the ability to make global policies and 
decisions that promote the environment and human 
health, safety, and welfare. 

Advanced algorithms for processing massive 
data volumes are now being tailored for EO data 
and packaged for non-specialised users, with 
increasing reliance on web-based workflows 
(Sudmanns et al., 2019). The ‘traditional’ approach to 
producing EO-based information required that the 
complete dataset be downloaded, analysed locally, 
then transformed into a map, which is delivered to 
the end user along a one-way path (see Volume 1B—
Section 9.3). This traditional model is progressively 
being replaced by an online workflow, where the data 
provider generates ARD in a cloud environment in 
which EO analysts can access and process them. 
The end product would also reside within the cloud 
environment, to be accessed by the end user.

Thus, the distinction between smart technologies and 
EO-based systems is blurring over time, with both 
being reliant on the IoT, advanced analytical tools, and 
accessible, interactive interfaces, including virtual 
reality and augmented reality (Lymburner et al., 2019). 
Selected examples of integrated, EO-based systems 
for managing natural resources include:

	§ Terrestrial Observation and Prediction System 
(TOPS)—integrates ecosystem models with satellite 
and surface weather observations to produce 
ecosystem nowcasts and forecasts for natural 
resources management, public health, and disaster 
management (Nemani et al., 2009; NASA, 2020);

	§ Digiscape Future Science Platform (CSIRO)—uses 
EO data with environmental models to improve 
profitability and environmental outcomes from 
Australian agriculture (see Section 21.5); and

	§ Google Earth Engine and associated applications 
that rely on cloud computing, such as remap—online 
mapping platform to map and report the status of 
ecosystems (remap, 2020; see Section 19.4).

Our contemporary culture, primed by population growth and driven by technology, has created problems 
of environmental degradation that directly affect all of our senses: noise, odours and toxins, which bring 

physical pain and suffering, and ugliness, barrenness, and homogeneity of experience, which bring 
emotional and psychological suffering and emptiness. In short, we are jeopardizing our human qualities 
by pursuing technology as an end rather than a means. Too often we have failed to ask two necessary 

questions: First, what human purpose will a given technology or development serve? Second, what 
human and environmental effects will it have? 
(U.S. Senate Public Works Committee, 1969)
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21.2  An Objective Worldview
Sections 11 to 20 above describe the mapping, 
monitoring, and modelling of terrestrial vegetation for 
different applications. Despite advanced technologies 
such as EO, which can accurately track environmental 
degradation, the scale of the devastation is not being 
reduced. A glance at history confirms that this is 
not a new problem (see Excursus 11.2). However, the 
extent of problems relating to food security, various 
forms of pollution, soil fertility and erosion, landscape 
degradation, deforestation, carbon emissions, 
biodiversity loss, overpopulation, and excess 
consumption have grown markedly in the past few 
decades. For example, the human appropriation of net 
primary production (HANPP)—human usage of global 
NPP for food, timber, and fuel—is now estimated as 
13–25%, which is double the estimate for a century 
ago (Krausmann et al., 2013). Other estimates such 
as the Global Footprint Network, which monitors 
sustainability (see Excursus 20.3), suggest that we are 
already substantially eating into the environmental 
capital of future generations.

One of the greatest dangers in environmental 
management is to allow current decisions to maximise 
the gains of the current population (or part thereof) 
to the detriment of future populations. A glance at the 
legislative control measures introduced to manage 
the Australian—and other—terrestrial environments 
provides numerous examples of the underlying 
principle of human manipulation of well-intended 
policy. This phenomenon is captured in Goodhart’s 
Law and Campbell’s law, that is:

Any observed statistical regularity will tend to 
collapse once pressure is placed upon it for control 

purposes. 
or 

When a measure becomes a target, it ceases to be a 
good measure. 

(Charles Goodhart—Goodhart’s Law)

and

The more any quantitative social indicator is used for 
social decision-making, the more subject it will be to 
corruption pressures and the more apt it will be to 

distort and corrupt the social processes it is intended 
to monitor. 

or 
Evidence-based policy tends to morph into policy-

based evidence. 
(Donald T. Campbell—Campbell’s law)

The world is now facing significant environmental 
problems that have been derived from a long term, 
subjective, and blinkered view of global resources 
in the face of accelerating population growth (see 
Sections 19 and 20). At this juncture, it would 
be prudent to step back and take an objective 
view of human societies—past and present—and 
their interactions with their environments (see 
Excursus 11.2). To avoid further degradation, we 
need to identify the existing environmental problems 
and their major drivers, then understand the 
interconnections between the different drivers and 
different problems. To achieve an objective view of 
the world, indicators based on science—untainted by 
vested interests and ideologies—need to be defined 
and consistently tracked for each major driver on a 
global basis. While the technology to support this 
approach exists, the objectivity of many accepted 
indicators has already been questioned (Böhringer 
and Jochem, 2007). 

The field of environmental-economic accounting 
is relatively new but holds promise for considering 
the environmental impacts of economic activities 
(see Section 20.5). In most nations—including 
Australia—the primary metric for the economy is gross 
domestic product (GDP), which does not account for 
environmental degradation, natural resource depletion, 
or loss of biodiversity (Obst, 2017). A key challenge 
for improving environmental visibility in our national 
decision making process is to demonstrate how 
the environment contributes to the prosperity and 
wellbeing of all Australians. Effective implementation 
of environmental-economic accounting will require 
identification of the most critical environmental 
costs and benefits in the Australian landscape and 
waterscape, then appropriate legislation to change 
the accepted accounting practices in all jurisdications. 
Current projections suggest that the integration of 
these changes with existing environmental reporting 
activities will be progressive over several years (see 
Figure 1 in CoA, 2018).

GEO has promoted the concept of ‘essential variables’ 
(EVs), which identify those with a “high impact, high 
feasibility and relatively low cost of implementation” 
(GEO, 2019a; see Section 11.2). The first set of EVs 
to be proposed were the Essential Climate Variables 
(ECV; see Volume 1A—Section 1.5). More recent 
examples include Essential Biodiversity Variables (see 
Section 19.3), Essential Ocean Variables, and Essential 
Water Variables (see Volume 3B). EVs are currently 
being used to monitor SDGs (see Excursus 20.2), 
with plans to develop and review more, particularly 
those with relevance to Societal Benefit Areas (SBA; 
see Section 21.3). This emphasis on the benefits of 
technology to society is a step in the right direction.
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21.3  Societal Benefit Areas
While the benefits of EO are many and varied, it is 
easy to become beguiled by their direct technological 
advances and economic gains rather than their more 
indirect benefits to human societies. Both social and 
environmental systems differ from physical systems in 
their complexity and response to disturbance. These 
differences are important when contemplating ways 
to improve human living standards and ecosystem 
sustainability—both with and without technologies 
like EO. 

Excursus 21.1 summarises the concept of social-
ecological resilience and the attitudinal changes 
required to restore functional ecosystems and 
promote genuinely sustainable societies. 

In recent years the focus of global EO usage has 
moved from maximising its economic advantages 
to promoting its societal benefits, particularly in 
less affluent regions of the world. For example, GEO 
(Group on Earth Observation; see Section 21.1) work 
programmes focus on eight domains that demonstrate 
the benefits of EO to society (GEO, 2017). These 
SBA align with several SDG and other international 
agreements on sustainability (see Excursus 20.2) to 
advance the use of EO for:

	§ Biodiversity and Ecosystem Sustainability: 
strengthens conservation, restoration, and 
sustainable management of ecosystems by using 
EO data sources;

	§ Disaster Resilience: aims to achieve a substantial 
reduction in losses of life and property from natural 
disasters through EO-based disaster mapping and 
better mitigation and response;

	§ Energy and Mineral Resource Management: since 
the use of fossil fuel energy accounts for more than 
two thirds of greenhouse gas emissions, EO-based 
mapping can help to increase the global share of 
renewable energy sources, such as solar and wind 
power;

	§ Food Security and Sustainable Agriculture:  
EO, with other agricultural data, contributes to crop 
monitoring to counter food insecurity (SDG 2);

	§ Infrastructure and Transportation Management:  
EO supports planning, monitoring, and 
management of infrastructure (dams, roads, rail, 
ports, and pipelines) and transportation (air, 
land, and sea) to meet and measure SDG 9, build 
resilient infrastructure, promote sustainable 
industrialisation, and foster innovation;

	§ Public Health Surveillance: provides alerts on air 
quality, weather extremes, water-related illness, 
vector-borne disease, and assessments of access 
to health facilities, all derived from EO-related 
datasets (SDG 3);

	§ Sustainable Urban Development: promotes equity, 
welfare, and shared prosperity for all levels of 
human settlement by using EO to develop and 
assess urban footprints, foster national urban 
planning, and show land change over time; and

	§ Water Resources Management: uses EO 
technologies to support accessibility to, and 
sustainable management of, water resources, and 
sanitation via sound science-based public policies, 
modelling, and data integration. 

Some of the specific flagships and initiatives being 
undertaken by GEO that have particular relevance 
to Australian terrestrial vegetation are summarised 
in Table 21.1. In addition, GEO Community Activities 
include GEO Citizen Science, GEO Essential Variables, 
GEO Global Ecosystems, Global Agricultural Drought 
Monitoring, Global Crop Pest and Disease Habitat 
Monitoring and Risk Forecasting, Global Ecosystems 
and Environment Observation Analysis Research 
Cooperation (GEOARC), and Global Land Cover 
(GEO, 2019b). With an emphasis on societal benefits, 
early warning systems are being developed for a 
range of natural disasters, such as droughts, so 
that they can be managed to minimise their social, 
environmental, and economic impacts (e.g. GEOGLAM 
Crop Monitor or GEOGLAM-RaPP; see Excursus 11.1). 
This approach encompasses prudent insurance 
schemes for vulnerable communities, such as Index-
Based Livestock Insurance (ILRI, 2020) and crop 
area yield index Insurance, which not only provide 
short-term relief but help to conserve soil, seed, 
and livestock resources for future use (Barnett and 
Mahul, 2007; Carter et al., 2007; see Section 11.4).

Although change is part of the working of complex systems, the speed with which human activity has 
developed contrasts with the naturally slow pace of biological evolution. Moreover, the goals of this rapid 

and constant change are not necessarily geared to the common good or to integral and sustainable 
human development. Change is something desirable, yet it becomes a source of anxiety when it causes 

harm to the world and to the quality of life of much of humanity. 
(Pope Francis, 2015)
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Excursus 21.1�—Social-ecological Resilience

Source: Walker (2019, 2020)

Humanity has become remarkably adept at understanding how to mitigate countless conventional risks 
that can be relatively easily isolated and managed with standard risk management approaches. But 

we are much less competent when it comes to dealing with complex risks in systems characterised by 
feedback loops, tipping points and opaque cause-and-effect relationships that can make intervention 

problematic. .... Just as a piece of elastic can lose its capacity to snap back to its original shape, repeated 
stress can lead systems—organisations, economies, societies, the environment—to lose their capacity 
to rebound. If we exhaust our capacities to absorb disruption and allow our systems to become brittle 

enough to break, it is difficult to overstate the damage that might result (WEF, 2018). 
(Foran et al., 2019)

In Physics, resilience denotes “the capacity of an 
elastic body to absorb energy then release that 
energy as it springs back to its original shape”. The 
Merriam-Webster Dictionary also defines resilience as 
“an ability to recover from or adjust easily to change”. 
This term is now used in a wide variety of contexts, 
including psychology, engineering, and agriculture. 

Environmental resilience commonly refers to the 
capacity of the environment to maintain ‘equilibrium’ 
when subject to natural or anthropogenic influences 
and disturbances (DEWHA, 2010), and fundamentally 
derives from biodiversity at the species and 
ecosystem levels (Folke et al., 2004). Walker (2019) 
emphasises that the resilience of any system (person, 
ecosystem, enterprise, or settlement) is the ability 
“to absorb disturbance and reorganise so as to keep 
functioning in the same kind of way—to have the 
same ‘identity’…. In essence it is about learning how to 
change in order not to be changed”. 

Resilience can be seen as a combination of the:

	§ internal dynamics of adaptive change—which 
can be described in terms of four phases: growth, 
conservation, collapse, and reorganisation. 
While the growth and conservation phases are 
mostly predictable, the phases of collapse and 
reorganisation are not, especially if a system stays 
in the conservation phase too long; and 

	§ threshold dynamics in response to disturbances—
unpredictable, external changes. 

Ecosystems and societies are not physical systems 
and do not behave like them and their diversity is 
often maintained by unpredictable variations and 

chance events. In these systems, the flexibility to 
respond to change by reorganising actually enhances 
resilience. Characteristics of resilient societies 
include anticipation of potential problems, power to 
respond to problems (which is based on quality and 
trust in social networks), support systems for social 
infrastructure that will be safe after failure, and an 
adaptive approach to the future (Walker, 2019). In 
societies, individuals, and ecosystems, studies of 
low resilience often focus on the scale of a specific 
problem rather than the extended, interconnected 
environment, which invariably operates at multiple 
scales with cross-scale interactions. 

While humans like to reduce uncertainty, this can 
lead to unnatural rigidity in lifestyles, societies, and 
ecosystems, which ultimately undermines their 
preparedness for, and the likelihood of recovery 
from, major perturbations. Conversely, resilience 
to disturbances in any system is increased by the 
attributes of diversity, access to reserves, rapid 
response ability, and connectivity. Resilient behaviour 
in any social-ecological system can be encouraged by 
wise governance and social norms, and an awareness 
of the consequences of inflexibility.

Resilience necessarily involves testing boundaries, 
with the goal of not crossing ones that lead to 
undesirable outcomes. When this does happen 
the goal becomes one of crossing back if possible, 
otherwise reorganising into a new system with a 
similar function and purpose—all of which sounds a 
lot like parenting. In short, Walker (2019) advocates 
that we—as individuals, societies, and globally—
should celebrate change, embrace uncertainty, and 
not shoot for utopia. 
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Table 21.1  GEO projects

GEO 
Project

Description Focus Approach

GEO-BON 
(Flagship)

Biodiversity 
Observation 
Network

Global Essential Biodiversity Variables 
(EBV)

Reinforce existing or develop new 
Biodiversity Observation Networks 

Provide sustained and interoperable data, information, and 
knowledge on ecosystem services that derive from diverse 
communities of living organisms, to contribute to the development of 
effective conservation actions, mitigation, and adaptation strategies 
that help ensure the sustainable use of resources

GEOGLAM 
(Flagship)

Global 
Agricultural 
Monitoring

Increase market transparency

Improve food security

Produce and disseminate relevant, timely, and actionable information 
on agricultural conditions and outlooks of production at national, 
regional, and global scales

GFOI 
(Flagship)

Global Forest 
Observations 
Initiative

Coordinate EO-based forest monitoring 
activities

Develop methods and guidelines for estimating future carbon stocks 
to support countries in their effort to build national forest monitoring 
systems

GEO-
DARMA 
(Initiative)

Data Analysis 
for Risk 
Management

Support operational disaster risk reduction 
activities

Raise awareness of EO benefits in all phases 
of disaster risk management

Establish an inclusive, comprehensive process to address local 
disaster risk reduction requirements by using EO technologies 
efficiently

EO4EA 
(Initiative)

Earth 
Observations 
for Ecosystem 
Accounting

Further the development and use of EO for 
natural capital accounting, consistent with 
the set of standards and guidelines put 
forth by the UN SEEA and specifically the 
Ecosystem Accounts

Document, pioneer, develop, and test the methods and tools that 
will allow EO technology to more effectively enable the widespread 
adoption of ecosystem accounting

EO4SDG 
(Initiative)

Earth 
Observations 
for Sustainable 
Development 
Goals

Improve the quality, coverage, and 
availability of data to support the 
implementation of the development agenda 
at all levels

Package reproducible EO integrated methodologies and guidelines, 
in partnership with its end users, encompassing all relevant EO 
datasets, available tools and platforms, training material, as well as 
use cases and national experiences per SDG target and indicator 
supported EO

GEO 
Human 
Planet 
(Initiative)

Human Planet

Generate the global scale data and 
knowledge needed to advance our 
understanding of societal processes and 
their impact on Earth systems

Generate useful indicators to inform policy

Develop a new generation of measurements and information 
products that provide new scientific evidence and more integrated 
understanding of the human presence on planet Earth in support 
of global policy processes with agreed, actionable and goal-driven 
metrics

GEO-LDN 
(Initiative)

Land 
Degradation 
Neutrality

Enhance national capacities to measure and 
map degraded lands 

Identify the most appropriate interventions

Facilitate the provision of space-based information and in situ 
measurements for improved land management and planning

GUOI 
(Initiative)

Global Urban 
Observation 
and 
Information

Improve urban monitoring and assessment 
by developing a series of satellite-based 
essential urban variables and indicators 
of sustainable cities through international 
cooperation and collaboration

Generate various data products of global urban areas using EO data, 
provide EO-based urban data services through various systems and 
tools, develop new models and algorithms to assess and monitor 
urban environments, create a better knowledge of cities, and develop 
essential urban variables and indicators for sustainable cities for 
SDG 11

GWIS 
(Initiative)

Global Wildfire 
Information 
System

Provide harmonised information on wildfires 
that could be used at different scales, from 
national to global

Provide information on fire danger, active fires, burned areas, 
emissions, as well as reports on wildfire regime and statistics at 
national, regional, and global level and integrate with existing EO-
based fire monitoring products

Source: GEO (2019b)

It is an exciting time that we live in, as we are charged with no less than finding solutions  
to one of the greatest threats our species has ever faced. 

(Pollock, 2019)
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21.4  Stewards of Tomorrow
Quite simply, the Earth is our home, the only one 
we have. We all share the planet and its very finite 
resources. 

Describing environmental concerns in pastoral leases 
in southwest WA, Pollock (2019) observed that “…. 
the problem with the Southern Rangelands at its 
most fundamental is not a landscape problem. It is 
a human problem—a problem within our culture and 
our psyche, a problem we must fix within ourselves, 
for ourselves. Humans have a long history of abusing 
their resources, but we are getting to the pointy end 
of the stick now. If we don’t develop a new culture 
around responsible use and restoring the ecological 
balance, we are going to be in big trouble. Perhaps we 
already are.” 

This conclusion is not new. Many philosophers, 
historians and scientists have expressed this view 
down the ages, with increasing frequency in the past 
century (see Table 21.2). Overexploitation of finite 
resources has seen past civilisations collapse (see 
Excursus 11.2) and modern civilisation is not immune 
to this possibility, especially given the widespread, 
environmental impacts of industrialisation and 
urbanisation. 

Preceding sections indicate that one species in the 
global ecosystem, Homo sapiens, has been pushing 
past the boundaries of social-ecological resilience 
(see Excursus 21.1) for quite some time. History 
supplies many examples of human civilisations 
engineering their own demise by overusing available 
resources (Ponting, 1991). The key to sustainability 
and resilience in any landscape is good stewardship of 
the environment, which will require a cultural shift in 
attitude to land, ownership and lifestyle. 

Nature favours those organisms which leave the 
environment in better shape for their progeny to 

survive. (James Lovelock)

While many technologists prefer to believe that 
technology will solve all environmental problems, 
there is little precedent for the view that the very 
factors that cause problems can finally solve them. 
But, perhaps, with the right attitude and sufficient 
goodwill, EO technologies will be an exception.

When we speak of the ‘environment’, what we really mean is a relationship existing between 
nature and the society which lives in it. Nature cannot be regarded as something separate from 
ourselves or as a mere setting in which we live. We are part of nature, included in it and thus in 

constant interaction with it. Recognising the reasons why a given area is polluted requires a study 
of the workings of society, its economy, its behaviour patterns, and the ways it grasps reality. 

Given the scale of change, it is no longer possible to find a specific, discrete answer for each part 
of the problem. It is essential to seek comprehensive solutions which consider the interactions 
within natural systems themselves and with social systems. We are faced not with two separate 
crises, one environmental and the other social, but rather with one complex crisis which is both 

social and environmental. Strategies for a solution demand an integrated approach to combating 
poverty, restoring dignity to the excluded, and at the same time protecting nature. 

(Pope Francis, 2015)
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Table 21.2  Recommended reading

Reference Focus

Essay on the Principle of 
Population  
(Malthus, 1798)

Describes a continuous historical cycle from increasing human population numbers until the available food 
supply is exceeded, resulting in widespread famine and disease which reduce the population until it is in balance 
with food production.

The Tragedy of the Commons:  
(Hardin, 1968)

The population problem has no technical solution; it requires a fundamental extension in morality.

The Limits to Growth  
(Meadows et al., 1970)

Man can create a society in which he can live indefinitely on Earth if he imposes limits on himself and his 
production of material goods to achieve a state of global equilibrium with population and production in carefully 
selected balance.

A Blueprint for Survival  
(Goldsmith and Allen, 1972)

If current trends are allowed to persist, the breakdown of society and the irreversible disruption of the life-
support systems on this planet are inevitable—possibly by the end of the century, certainly within the lifetimes 
of our children. 

Small is Beautiful: Economics as 
if people mattered 
(Schumacher, 1973)

Advocates that government effort must be concentrated on sustainable development to evolve a more 
democratic and dignified system of industrial administration, a more humane employment of machinery, and a 
more intelligent utilisation of the fruits of human ingenuity and effort.

Creating Alternative Futures: 
The End of Economics 
(Henderson, 1978)

Explains misleading assumptions in national economics, which distort the goal of human development 
worldwide, and redefines health, wealth, and progress for humanity’s long term survival.

A Green History of the World  
(Ponting, 1991)

Overviews human history in the context of natural resource management.

Dirt: The Erosion of Civilisation 
(Montgomery, 2007)

Argues that we are—and have long been—using up Earth’s soil. Once bare of protective vegetation and exposed 
to wind and rain, cultivated soils erode bit by bit, slowly enough to be ignored in a single lifetime but fast enough 
over centuries to limit the lifespan of civilisations.

Laudato Si’  
(Pope Francis, 2015)

On care for our common home—reviews current ecological crises and offers guidance for human development 
to achieve a more coherent commitment to the environment.

Finding Resilience  
(Walker, 2019)

A current analysis of how ecosystems, societies, and individuals cope with disturbance and adversity.

For the first time in history, the shape of the world that is unfolding expresses collective materialism 
rather than prescribed religion. In the advanced countries, the individual is evolving his own personal 

beliefs within his own home. The greatest threat to his existence may not be commercialism, or war, or 
pollution, or noise, or consumption of capital resources, or even the threat of extinction from without, 

but rather the blindness that follows sheer lack of appreciation and the consequent destruction of those 
values in history that together are symbolic of a single great idea. 

(Jellicoe and Jellicoe, 1995)
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21.5  Further Information

Smart Technologies
UNEP ‘Why does technology matter’: https://www.

unenvironment.org/explore-topics/technology/why-
does-technology-matter

Smart Cities: SMURBS/ERA-planet: https://smurbs.eu/
the-project/#summary

IoT Australia (2019). IoT Facts and Forecasts 18 
October 2019, IoT Australia website: https://
www.iotaustralia.org.au/2019/10/18/iot-facts-and-
forecasts/gartner-tips-surveillance-cameras-to-be-
top-5g-iot-application-but-not-for-long/

Digiscape
https://research.csiro.au/digiscape/
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Glossary

Selected terms used in this sub-volume are defined below. Further details for each entry can be found in the 
sub-volume(s) indicated by parentheses after the term definition.

ABARES—Australian Bureau of Agricultural and 
Resources Economics and Sciences (3A)

ABS—Australian Bureau of Statistics (3A)

ACRIS—Australian Collaborative Rangelands 
Information System (3A)

ACT—Australian Capital Territory (3A)

active sensors—lidar and radar sensors that generate 
their own energy source then detect its ‘echo’ (1A)

AET—Actual ET (3A)

AGB—Above Ground Biomass (3A)

ALOS—Advanced Land Observing Satellite (1, 3)

ALS—Airborne Laser Scanning (1A, 3A)

ALUM—Australian Land Use and Management 
classification system (3A)

ANPP—Above ground NPP (3A)

ANU—Australian National University (1, 3)

APAR—Absorbed Photosynthetically Active Radiation 
(3A)

APSIM—Agricultural Production Systems sIMulator 
(3A)

ARD—Analysis Ready Data (2D)

ASRIS—Australian Soil Resource Information System 
(3A)

ASTER—Advanced Spaceborne Thermal Emission 
and Reflectance Radiometer (1A)

AUSLIG—Australian Surveying and Land Information 
Group (3A)

AVHRR—Advanced Very High Resolution Radiometer 
(1A)

AWRA—Australian Water Resources Assessment (3A)

BA—Basal Area (3A)

BC—BioCapacity (3A)

BoM—Bureau of Meteorology

BR—Bowen Ratio (3A)

CAI—Cellulose Absorption Index (3A)

cal/val—calibration and validation (2D, 3A, 3B)

CAM—Crassulacean Acid Metabolism (3A)

CASI—Compact Airborne Spectrographic Imager (3A)

CCCI—Canopy Chlorophyll Content Index (3A)

CLUM—Catchment scale Land Use Management data 
for Australia (3A)

CSIRO—Commonwealth Scientific and Industrial 
Research Organisation 

CSM—Crop Simulation Model (3A)

CSR—Crown Separation Ratio (3A)

CWSI—Crop Water Stress Index (3A) 

DBH—Diameter at Breast Height (3A)

DEA—Digital Earth Australia (2D, 3A, 3B)

DEM—Digital Elevation Model (2D, 3A)

DLCD—Dynamic Land Cover Dataset (3A)

DSS—Decision Support System (3A)

EAV—Essential Agricultural Variables (3A)

EBV—Essential Biodiversity Variables (3A)

ECV—Essential Climate Variables (1A, 3A)

EF—Ecological Footprint (3A)

EMR—ElectroMagnetic Radiation (1A)

ENSO—El Niño-Southern Oscillation (3A)

EO—Earth Observation (1A)

ER—Ecosystem Respiration (3A)

ET—EvapoTranspiration (3A)

EV—Essential Variables (1A, 3A, 3B)

EVI—Enhanced Vegetation Index (2C, 3A)

EWS—Early Warning Systems (3A)

EWT—Equivalent Water Thickness (3A)

FAO—UN Food and Agriculture Organisation (3A)

fAPAR—fraction of Absorbed Photosynthetically 
Active Radiation (3A)

FC—Fractional Cover (3A)

FMC—Fuel Moisture Content (3A)

FPC—Foliage Projective Cover (3A)

GA—Geoscience Australia (1, 3)

GAB—Great Artesian Basin (3A)

GCM—General Circulation Model (3A, 3B)

GDP—Gross Domestic Product (3A)

GEO—Group on Earth Observation (1A, 3A)

GEOBIA—GEographic Object-Based Image Analysis 
(2A, 3A, 3B)
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GEOBON—GEO Biodiversity Observation Network 
(3A)

GEOGLAM RaPP—GEO Global Agricultural Monitoring 
Rangeland and Pasture Productivity (3A)

GEP—Gross Ecosystem Productivity (3A)

GPP—Gross Primary Productivity (3A)

GPS—Global Positioning System (1B, 3A)

HSI—Hue Saturation Intensity (2A, 2C, 2X)

IBLI—Index-Based Livestock Insurance (3A)

IBRA—Interim Biogeographic Regionalisation of 
Australia (3A)

IGBP—International Geosphere-Biosphere Program 
(3A)

IMU—Inertial Measurement Unit (3A)

IoT—Internet of Things (1B, 3A)

IR—InfraRed (1A, 1B)

IUCN—International Union of Conservation of Nature 
(3A)

LAI—Leaf Area Index (3A)

LCCS—Land Cover Classification System (3A)

LDMC—Leaf Dry Matter Content (3A)

LMM—LInear Mixture Model (2E, 3A)

LST—Land Surface Temperature (3A)

LUE—Light Use Efficiency (3A)

MARS—Monitoring Agricultural ResourceS (3A)

MDB—Murray-Darling Basin (3A)

MERIS—MEdium Resolution Imaging Spectrometer 
(1A)

METRIC—Mapping Evapotranspiration at High 
Resolution with Internal Calibration (3A)

MIR—Middle InfraRed (1A)

ML—Machine Learning (2E, 3A)

MODIS—Moderate Resolution Imaging 
Spectroradiometer (1A)

MVG—Major Vegetation Groups (3A)

NBP—Net Biome Productivity (3A)

NBR—Normalised Burn Ratio (3A)

NCAS—National Carbon Accounting System (3A)

NCST—National Committee on Soil and Terrain (2D, 
3A)

NDRE—Normalised Difference Red Edge index (3A)

NDTI—Normalised Difference Temperature Index (3A)

NDVI—Normalised Difference Vegetation Index (2C, 
3A)

NDWI—Normalised Difference Water Index (3A)

NEE—Net Ecosystem Exchange (3A)

NEP—Net Ecosystem Productivity (3A)

NFI—National Forest Inventory (3A)

NIR—Near InfraRed (1A, 1B)

NLWRA—National Land and Water Resources Audit 
(3A)

NPP—Net Primary Productivity (3A)

NRM—Natural Resource Management (3A)

NSW—New South Wales (3A)

NT—Northern Territory (3A)

NUE—Nitrogen Use Efficiency (3A)

NVIS—National Vegetation Information System (2D, 
3A)

NWA—National Water Account (3A)

OCO-2—Orbiting Carbon Observatory 2 (3A)

PAR—Photosynthetically Active Radiation (3A)

passive sensors—radiometers, spectroradiometers 
and spectrometers that detect reflected EMR in 
optical wavelengths and emitted EMR in thermal 
wavelengths (1A)

PCA—Principal Components Analysis (2C, 2X)

PEM—Production Efficiency Model (3A)

PfS—Pastures from Space (1A, 3A)

PFT—Plant Functional Types (3A)

PGR—Pasture Growth Rate (3A)

PRI—Photochemical Reflectance Index (3A)

REDD—Reducing Emissions from Deforestation and 
forest Degradation (3A)

red edge—transition from low red reflectance to high 
NIR reflectance in green leaves (~680–780 nm)

RFS—Rural Fire Service (3A)

RLE—Red List of Ecosystems (3A)

RMSE—Root Mean Square Error (3A)

RN—Reynolds Number (3A)

RTM—Radiative Transfer Model (1B, 3A, 3B)

RUE—Radiation Use Efficiency (3A)

RWC—Relative Water Content (3A)

SA—South Australia (3A)

SAIL—Scattering by Arbitrary Inclined Leaves model 
(3A)

SAR—Synthetic Aperture Radar (1A, 1B)

SCORPAN—Soil properties, Climate properties, 
Organisms, Relief setting, Parent material, Age, and 
the spatial coordinate N (3A)

SDG—Sustainable Development Goals (3A)
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SEB—Surface Energy Balance model (3A)

SEBAL—Surface Energy Balance Algorithm for Land 
(3A)

SEEA—System of Environmental Economic 
Accounting

SIF—Solar-Induced chlorophyll Fluorescence (3A)

SILO—Scientific Information for Land Owners (3A)

SLA—Specific Leaf Area (3A)

SLATS—Statewide Landcover and Trees Study (2D, 
3A)

SLGA—Soil and Landscape Grid of Australia (3A)

SMA—Spectral Mixture Analysis (2E, 3A)

SNA—System of National Accounts (3A)

SOC—Soil Organic Carbon (3A)

SOFR—State Of the Forests Report (3A)

STF—SpectroTransfer Functions (3A)

STM—State-and-Transition Model (3A)

SVAT—Soil-Vegetation-Atmosphere Transfer model 
(3A)

SVTM—NSW State Vegetation Type Mapping (3A)

SWIR—Short Wave InfraRed (1A)

TEM—Terrestrial Ecosystem Model (3A)

TERN—Terrestrial Ecosystem Research Network (2D, 
3A)

TIR—thermal infrared (1A, 1B)

TLS—Terrestrial Laser Scanning (1A, 3A)

UNEP—United Nations Environment Programme (3A)

UAV—Unmanned Aerial Vehicle (1A)

UV—UltraViolet (1A, 1B)

VARI—Visible Atmospherically Resistant Index (3A)

VAST—Vegetation Assets, States and Transitions (3A)

VCI—Vegetation Condition Index (3A)

VHI—Vegetation Health Index (3A)

VI—Vegetation Index (2C, 3A)

VPD—Vapour Pressure Deficit (3A)

VQA—Vegetation Quality Assessment (3A)

VRT—Variable Rate Technologies (3A)

WEF—World Economic Forum (3A)

WA—Western Australia (3A)
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