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Abstract

This chapter reviews the Remote Sensing (RS) technologies that are par-
ticularly appropriate for marine and coastal ecosystem research and man-
agement. RS techniques are used to perform analysis of water quality in 
coastal water bodies; to identify, characterize and analyze river plumes; to 
extract estuarine/coastal sandy bodies; to identify beach features/patterns; 
and to evaluate the changes and integrity (health) of the coastal lagoon 
habitats. For effective management of these ecosystems, it is essential to 
have satellite data available and complementary accurate information 
about the current state of the coastal regions, in addition to well-informed 
forecasts about its future state. In recent years, the use of space, air and 
ground-based RS strategies has allowed for the rapid data collection, 
Image processing (Pixel-Based and Object-Based Image Analysis (OBIA) 
classification) and dissemination of such information to reduce 
vulnerability to natural hazards, anthropic pressures, and to monitoring 
essential ecological processes, life support systems and biological 
diversity.
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3.1	 �Introduction

The coastal areas are zones of primary impor-
tance from human and ecological perspectives. 
Nearly all of the maritime resource is on a narrow 
continental shelf which is affected by ecological 
pressures owing to a large-scale population 
increase in the coastal areas (half of the world’s 
population lives at least 60 km from a coast, and 
the proportion will be 70 % in 2020) (FAO 2014).

In recent years, a number of RS are available 
to resource managers for developing effective 
marine ecosystem management initiatives, 
including the use of information technology for 
analyzing and understanding an ecosystem as a 
whole and not simply the targeted resource or a 
specific area.

The wide applicability of RS techniques has 
allowed researchers and managers to take a 
broader view of coastal ecosystem assessment 
and management (Klemas 2011; Yang 2009). 
Ecological patterns, processes and changes in 
composition and structure of coastal ecosystems 
can be quantified using satellite imagery. When 
these RS tools for generating, organizing, stor-
ing, and analyzing spatial information are com-
bined with mathematical and data mining models, 
marine resource planners and managers have the 
means for accessing the impacts of natural events, 
anthropic and alternative management practices 
on pattern and process on coastal areas.

RS provide not only photographic representa-
tion of the coastal and marine surfaces, but also 
physical (absorbency, reflectance and emissivity) 
measurements of various properties of these eco-
systems. These spectral characteristics can be 
used to access the major factors affecting water 
quality in coastal water bodies (e.g. Total 
Suspended Matter (TSM) and dissolved organic 
matter (DOM)) (Vanhellemont and Ruddick 
2014; Tang et  al. 2013; Zhu et  al. 2013, 2014; 
Liew et al. 2011; Vantrepotte et al. 2011; Nechad 
et  al. 2010; Rodríguez-Guzmán and Gilbes-
Santaella 2009; Wang 2009; Teodoro et al. 2007a, 
b; Zhou et  al. 2006; Bustamante et  al. 2006; 
Ruddick et al. 2003); to identify, characterize and 
analyze river plumes (Mendes et  al. 2014; 
Guneroglu et  al. 2013; Gonçalves et  al. 2012; 

Rudorff et al. 2011; Teodoro et al. 2009a; Otero 
et  al. 2008); to extract estuarine/coastal sandy 
bodies (Teodoro and Gonçalves 2012; Chowdhury 
et al. 2011; Teodoro et al. 2011a, b; Silveira and 
Heleno 2009; Baptista et  al. 2008); to identify 
beach features/patterns (Teodoro 2015; Teodoro 
et al. 2009b, 2010, 2011b, c, 2013; Mujabar and 
Chandrasekar 2012; Harris et  al. 2011; Pais-
Barbosa et al. 2009); and to evaluate the changes 
and integrity (health) of the coastal lagoon habi-
tats (Gutierres 2014; McCarthy and Halls 2014; 
Bustamante et  al. 2013; Vahtmäe and Kutser 
2013; Urbański 2009; Kutser et al. 2006; Druon 
et al. 2004; Sousa et al. 2003, 2010, 2013; Kandus 
et al. 1999), at various scales. In fact, the RS cre-
ates new opportunities for identifying which 
parameters function as regulators of marine/cos-
tal ecosystems activity at local and regional lev-
els and how these variables differ across spatial 
and temporal scales.

Within the above context, this chapter is dedi-
cated to the development of RS for monitoring, 
synthesis and modeling in the Portuguese coastal 
environment. Specifically, this chapter concen-
trates on the following aspects:

•	 Reviews the types of satellite imagery and RS 
methods applied in the marine/coastal envi-
ronment management; and

•	 Examines some latest development in the use 
of RS for marine/coastal ecosystem assess-
ment with emphasis on estuaries and coastal 
zones, shorelines and coastal wetlands.

In addition to scientific research, the chapter 
has incorporated a management component that 
can be found in six case studies, discussing our 
understanding of the status, trends and threats in 
coastal ecosystems. The sections below describe 
in more detail the conceptual and technical issues 
of applying RS techniques in coastal environ-
ments; and the major findings of different 
research projects related to the development of 
RS techniques to identify ocean physical, optical, 
biological changes and coastal wetlands, using 
spectral and temporal signatures, supervised and 
unsupervised classification algorithms (pixel-
based or object-based) and data mining models.
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3.2	 �Status and Improvements 
for Assessment of Marine 
and Coastal Ecosystems

3.2.1	 �Remotely Sensed Data

Today, and given the numerous RS satellite imag-
ing systems available, it is a challenge to choose 
the most appropriate satellite images for observ-
ing marine/coastal ecosystems  – for technical 
details of the classification of remote sensors, 
readers can refer to see Klemas (2011). The digi-
tal systems can be grouped into four different 
types of resolution: spatial, spectral, radiometric, 
and temporal. The RS requirements for Open 
Ocean, Estuaries/Coastal lagoons and Land are 
presented in Table 3.1 (Klemas 2011). A list of 
the more relevant satellite sensors to the assess-
ment of marine ecosystems is shown in Table 3.2, 
where several multispectral images can be used 
for mapping concentrations of organic/inorganic 
suspended particles, dissolved substances in 
coastal waters; coastal features and patterns and 
for others applications (Teodoro and Gonçalves 
2011).

We highlighted some RS data that can be used 
in studies of marine/coastal ecosystems. 
Depending on the research to carry out it is 
important to consider the temporal or spatial 
characteristics of the RS satellite imagery used in 
each analysis. In the work developed by Teodoro 
et al. (2009a) and Teodoro and Gonçalves (2011), 
it was used the TSM concentration retrieved from 
MERIS scene, which allowed the extraction of 
objects corresponding to river plumes. The 
medium spatial resolution of MERIS data is 
enough to estimate the river plume size. MODIS 
has been providing atmospherically operational 
products since 2000 (Terra) and 2002 (Aqua) 
with different temporal frequencies. Moreover, 
the high temporal of MERIS data seems to be 
essential in monitoring river plume, subject to 
rapid changes due to extreme situations (e.g. pre-
cipitation, floods). According the same authors, 
the high spatial resolution of IKONOS-2 data 
seems to be a crucial factor in the sand spit area 
estimation.

Bustamante et  al. (2013) based on MODIS 
provides the most coherent data record at moder-
ate spatial resolution to study wetland dynamics 
included in the Spanish Ramsar Site Doñana, 
while LANDSAT family sensors (Multispectral 
Scanner  – MSS, Thematic Mapper  – TM, 
Enhanced Thematic Mapper Plus  – ETM+ and 
Operational Land Imager – OLI) have the longest 
temporal coverage (>30 years) with a higher spa-
tial resolution (30–90 m) but lower temporal fre-
quency (16 days) (see Roy et al. 2014).

Gutierres (2014) showed that LANDSAT sen-
sor has been an effective source for land cover 
data (see Fig. 3.1). Its 30 m resolution and spec-
tral bands have proved adequate for observing 
land cover changes in coastal lagoons on the 
Portuguese southwest coast. Figure 3.2 shows a 
land cover map of the Site of Community 
Importance (SCI) of the Sado Estuary derived 
from a LANDSAT-7 ETM+ image containing 13 
vegetation units (two wetland and three water 
classes), and also agricultural and urban classes.

Other similar satellites with medium-
resolution imagers, such as SPOT-4/5 can also be 
used for change detection in water and wetland 
environment. However, finer details such as wet-
land habitats and species cannot be reliably dif-
ferentiated at these resolutions. In this sense, 
several progresses is being made using high reso-
lution sensors (GeoEye-1 and WorldView-2), 
with spatial resolutions of 0.5–1  m. These sen-
sors have consistently demonstrated the ability to 
classify features at detailed levels. Thus 
Worldview-2 improves the segmentation and 
classification of land and aquatic features beyond 
any other space-based RS platform. According to 
Digital Globe (2010), the classification of water 
bodies is expected to improve from 85 to 90 % 
with traditional VNIR imagery (GeoEye-1 and 
similar) to between 95 and 98  % with 
Worldview-2. Also the bathymetric measure-
ments are substantially improved in depth and 
accuracy with the introduction of the Coastal 
Blue band (440–450 m); the addition of the Red-
Edge spectral band improve the accuracy and 
sensitivity of wetland plant studies; and the eight 
spectral bands and GSD are able to reveal signifi-
cantly more detail in the spectral changes of 
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Table 3.1  RS requirements for ocean, estuarine/coastal lagoons and land environments (Adapted from Klemas 2011)

Open ocean Estuaries/coastal lagoons Land surface

Spatial resolution 1–10 km 20–200 m 1–30 m
Coverage area 2,000 × 2,000 km 200 × 200 km 200 × 200 km
Frequency of coverage 1–6 days 0.5–6 h 0.5–5 years
Dynamic range Narrow Wide Wide
Radiometric resolution 10–12 bits 10–12 bits 8–10 bits
Spectral Resolution Multispectral Hyperspectral Multispectral (hyperspectral)

Table 3.2  Characteristics of some current satellite RS systems (Adapted from Klemas 2011)

Satellite/sensor Spectral range Bands GSD
Revisit 
time Swath width Application

AVHRR NOAA 
15/16

580–12,500 nm 6 1.1 km −12 h 2,400 km SST, turbidity, circulation

SeaWIFS 402–885 nm 8 1.1 km daily 2,800 km Ocean color, red products

MODIS Terra/
Aqua

620–14,385 nm 16VNIR 250 m–1 km daily 2,330 km SST, turbidity, circulation, 
ocean color4SWIR

16TIR
MISR Terra (9 
camera angles)

425–886 nm 4 275 m 9 days 360 km Ocean color, circulation

ASTER Terra 520–11,650 nm 3VNIR 15 m 16 days 60 km Bathymetry, vegetation, land 
use and land cover, change 
detection, circulation, 
geomorphology

6SWIR 30 m
5TIR 90 m

LANDSAT-7 450–2,080 nm 6VNIR 30 m 16 days 180 km Wide range of application on 
coastal resources (e.g. 
determining patterns and 
extent of turbidity) and land 
use and land cover and 
mapping (e.g. categorizing 
land capabilities)

10,420 nm 1TIR 60 m
1Pan 15 m

LANDSAT-8 433–2,300 nm 8VNIR 30 m 16 days 185 km
1,030–
1,250 nm

2TIR 100 m
1Pan 15 m

SPOT 1-2-4-5 500–890 nm 3MS 20 m 26 days 60 m Wide range of application 
(e.g. land cover and change 
detection, water temperature, 
salinity, phytoplankton, 
hydrology, shoreline 
changes, erosion, 
bathymetry and habitat 
mapping)

1Pan 10 m daily

(continued)

small ground features. These findings suggest 
that while traditional VNIR multispectral imag-
ery is very capable at classifying water types, the 
additional spectral bands of WordView-2 pro-
vides an incremental improvement in feature 
classification applications.

Also conventional color satellites sensors such 
as SeaWIFS and MODIS have proven to be use-
ful in retrieving water quality parameters in 

ocean waters (Liew et al. 2011). However, such 
sensors usually are low resolution, of about 1 km. 
This implies they are not suitable for inland and 
coastal waters due to land contamination. As pre-
viously discussed it is also important the use of 
high resolution satellite sensors to monitor the 
water quality of the ecosystems. In comparison to 
the conventional high resolution satellites such as 
LANDSAT, SPOT and IKONOS, the additional 
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spectral bands of WorldView-2 enable more 
accurate retrievals of water quality parameters 
from the reflectance values.

3.2.2	 �Object-Based and Pixel-Based 
Classifications

The literature regarding the discussion about the 
difference between Pixel-Based (Supervised and 
Unsupervised) and OBIA classification has been 
very active in the last years, and a large number 
of papers regarding the classification accuracy of 
this RS techniques have been published (Gutierres 
2014; Teodoro and Gonçalves 2011; Weih and 
Riggan 2010; Gao and Mas 2008; Lillesand et al. 

2008; Rahman and Saha 2008; Blaschke and 
Lang 2006; Hay and Castilla 2006; Hall et  al. 
2004; Hay et al. 2003; Lang and Blaschke 2003; 
Foody 2002; Baatz and Schäpe 2000).

The most popular techniques are those based 
on group pixels  – unsupervised and supervised 
image classifications  – to represent land cover 
features such as wetlands and beaches. There are 
different image clustering algorithms such as 
K-means and Iterative Self-Organizing Data 
Analysis Technique (ISODATA) (Lillesand et al. 
2008).

The supervised classification is based on the 
spectral signature defined in the training set. The 
most usual supervised classification algorithms 
are Maximum Likelihood (MLC), Minimum-

Satellite/sensor Spectral range Bands GSD
Revisit 
time Swath width Application

WorldView-2 450–1,040 nm 8MS 2 1.1–
2.7 days

16.4 km Bathymetry, vegetation, 
littoral processes, coastal 
geomorphology, digital 
elevation models

1pan 0.5
GeoEye-1 450–920 4MS 1.65 2.1–

8.3 days
15.2 km

1Pan 0.41
IKONOS 450–750 4MS 4 m 1–3 days 13 km

1Pan 1 m
Quick bird 2 450–900 nm 4MS 4 m <3 days 22 km

1Pan 1 m
Orbview 3 450–900 m 4MS 4 m <3 days 8 km

1Pan 1 m
Orbview 4 450–2,500 nm 200HS 8 m <3 days 5 km

450–900 nm 4MS 4 m
1Pan 1 m

ALIEO-1 400–2,400 nm 9MS 30 m 19 days 37 km Bathymetry, vegetation, land 
use and land cover, change 
detection, circulation, 
geomorphology

1Pan 10 m

Hyperion EO-1 400–2,400 nm 220 30 m 16 days 8 km Bathymetry, vegetation, 
littoral processes

NEMO/COIS 400–2,500 nm 210 30 m
MERIS 
ENVISAT-1

290–1,040 15 300 m <3 days 1,150 km Ocean color, circulation

ASAR 
ENVISAT-1

C-band 4 pol 2 30 m <3 days 50–100 km Circulation, waves

AMI 
ERS-2(SAR)

C-band V pol 1 25 m 28 days 100 km

RADARSAT-
1(SAR)

C-band H pol 1 6–100 m 1–4 20–500 km Oil spill, internal waves and 
altimetry

RADARSAT-
2(SAR)

C-band HV pol 1 3–100 m 20–500 km

Table 3.2  (continued)
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Fig. 3.1  Subset of LANDSAT-8 scenes from coastal 
lagoons on the Portuguese southwest coast. Image 
acquired in 25 May 2015 over ‘Santo André’ lagoon. (a) 
Natural color composite of the Operational Land Imager 
(OLI) red (0.64–0.67 μm), green (0.53–0.59 μm) and blue 
(0.45–0.51 μm). (b) Color infrared (vegetation) compos-
ite of the OLI near infrared (0.85–0.88 μm), red (0.64–

0.67  μm) and green (0.53–0.59  μm). (c) Land water 
composite of the OLI near infrared (0.85–0.88 μm), short-
wave infrared (1.57–1.65  μm) and red (0.64–0.67  μm). 
(d) Six hundred fifty four false color (vegetation analysis) 
composite of the OLI shortwave infrared (1.57–1.65 μm), 
near infrared (0.85–0.88 μm) and red (0.64–0.67 μm)

Distance-to-Means (MDM) and Parallelepiped 
classifiers.

According to Lillesand et al. (2008), the mixed 
pixels (includes more than one land cover type or 
feature on the ground) present a difficult problem 
for image classification, since their spectral 
characteristics are not representative of any sin-
gle feature. Spectral mixture analysis and fuzzy 

classification are two procedures designated to 
deal with the classification of mixed pixels. All of 
these pixel-based processing methods generate 
square classified pixels.

Instead, the OBIA classification generates 
objects of different shape and scale. Hay and 
Castilla (2006) defines OBIA as a sub-discipline 
of GIScience devoted to partitioning RS imagery 

F. Gutierres et al.

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271



Fig. 3.1  (continued)

into meaningful image-objects, and assessing 
their characteristics through spatial, spectral and 
temporal scale. At its most fundamental level, 
OBIA requires image segmentation, attribution, 
classification and the ability to query and link 
individual objects (segments) in space and time. 
Image segmentation is commonly divided into 
five categories: (a) point-based, (b) edge-based, 
(c) region-based; (d) combined – watershed and 
multi-resolution (Fig.  3.3) (Schiewe 2002; Baatz 
and Schäpe 2000; Pal and Pal 1993).

No matter which of the methods is applied, seg-
mentation produces homogeneous image objects by 

grouping pixels, and is typical used to locate objects 
and identify boundaries (Gutierres 2014; Teodoro 
and Gonçalves 2011; Hay and Castilla 2008; Lang 
2008). Several marine/costal studies require the seg-
mentation of natural spectral classes such as open 
water bodies (Lira 2006; McFeeters 1996; Daya-
Sabar et al. 1995), wetland habitats (Gutierres 2014), 
river plume size (Teodoro and Gonçalves 2011; 
Valente and da Silva 2009; Nezlin et al. 2005; Otero 
and Siegel 2004), physical differences (e.g. salinity) 
between the estuarine outflow and the ambient water 
(Dzwonkowski and Yan 2005), suspended sedi-
ments (Nechad et al. 2010; Teodoro et al. 2007a, b; 
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Lira et  al. 1997) and sand spits (Teodoro and 
Gonçalves 2011; Bird 2008). So these objects are 
more meaningful than the traditional pixel-based 
segmentation because they can be classified based 
on texture, context and geometry (Teodoro and 
Gonçalves 2011; Rahman and Saha 2008; Baatz 
et al. 2001) (Fig. 3.4).

Another advantage is the OBIA allows the use 
of multiple bands for the multiresolution 
segmentation and classification (e.g. automated 
vegetation mapping based on WorldView-2) 
(Fig. 3.5) (Gutierres 2014).

Weih and Riggan (2010) compared OBIA and 
Pixel-Based classification, and showed that when 

merging a high-spatial resolution color infrared 
digital orthophoto with multitemporal (winter 
and spring) medium-spatial resolution SPOT-5 
satellites images, an OBIA classification outper-
form both supervised and unsupervised Pixel-
Based methods. Also the OBIA clearly reduced 
the “salt and pepper” effect presented in Pixel-
Based classification, and may appear more visu-
ally attractive to the analyst.

The research developed by Gao and Mas 
(2008) has shown that with satellite imagery of 
four different spatial resolutions (SPOT-5, 
LANDSAT-7 ETM+ and MODIS), OBIA 
obtained higher accuracies than those of the 

Fig. 3.1  (continued)
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Pixel-Based one. Thus with the increase of the 
pixel size (10, 30 and 250 m), OBIA did not show 
more advantage over the Pixel-Based ones. The 
authors proved that OBIA has advantage over the 
Pixel-Based method but the higher accuracy only 
holds true for high spatial resolution images.

Gutierres (2014) applied a hybrid method (com-
bination of Pixel-Based classification and multi-
resolution segmentation) and found that the 
inclusion of image-objects for the Natura 2000 
habitat classification lead to higher accuracy 
levels.

In conclusion, it was recognized that Pixel-
Based image analysis reveals limitations because 
the following reasons:

•	 Image pixels are not true geographical objects 
and the pixel topology is limited;

•	 Pixel-Based image analysis largely neglects 
the spatial photo-interpretive elements such as 
texture, context and shape;

•	 The increased variability implicit within high 
spatial resolution imagery confuses traditional 
Pixel-Based classifiers accuracy (Hay and 
Castilla 2006).

Fig. 3.1  (continued)
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Fig. 3.2  Sado Estuary land cover classification based on LANDSAT-7 ETM+. Image acquired in 25 April 2010 over 
Site of Community Importance (SCI) of the Sado Estuary

Fig. 3.3  Multi-resolution segmentation of WorldView-2 image data: water bodies and wetland vegetation are of similar 
spectral values. Image acquired in 11 June 2011 over the fluvial-lagoon system of ‘Santo André-Monte Velho’



Instead, OBIA is centered on homogeneous 
objects produced by image segmentation and 
more elements can be use in classification. Thus 
object characteristics such as mean and standard 
deviation values of spectral bands, ratio, etc., can 
be calculated; besides there are shape and texture 
properties of the image objects available which 
can be used to differentiate marine and coastal 
features with higher accuracy than those pro-
duced by the Pixel-Based method.

3.2.3	 �What Needs to Be Improved

Recent advances in sensor design are making RS 
systems more attractive for assessment of marine 

and coastal ecosystems, such as open sea, wet-
lands, estuaries, and coastal lagoons. Generally, 
these ecosystems presents high spatial complex-
ity and temporal variability, their assessment can 
be improved from new satellite imagery and air-
craft, to allow getting better systematic, spatial, 
spectral, and temporal resolutions.

Currently we consider that the assessment of 
marine and coastal ecosystems can be improved 
considering the launch in June 2015 of the senti-
nel-2 satellite within Copernicus project of the 
European Space Agency (ESA). This will be an 
Earth Observation (EO) operational mission pro-
viding continuity to LANDSAT data. It has a 
global coverage of the Earth’s land surface every 
10 days with one satellite and 5 days with two 

Fig. 3.4  Spatial resolution of the imagery: Low ׀ Medium ׀ 
High. (a, b) Low-medium spatial resolution – pixels and 
objects are similar in scale. Traditional pixel-based and 
object-based image classification techniques perform 
well. (c) High spatial resolution – objects are made up of 
several pixels. In this case, object-based image analysis is 

superior to traditional pixel based classification. 
Orthophoto four bands (R, G, B and NIR) of the Tróia Spit 
acquired in 22 April 2007 (From General Directorate for 
the Territory (DGT), 2011, with permission)
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satellites that will able to monitor continuously 
the water quality and flood dynamics.

Further studies with new sensors must be 
developed for monitoring the marine and coastal 
areas. The usage of Sentinel-2 sensor, time series 
of very high resolution imagery (e.g. 
WorldView-2), hyperspectral sensors, airborne 
Light Detection and Ranging (LiDAR) systems, 
Thermal infrared scanners, microwave radiome-
ters, Radar images, scatter meters, altimeters, 
Unmanned Aerial Vehicle (UAV) and new data 
analysis techniques can provide the way forward 

for future prospects, such as, raise the accuracy 
of change detection in costal ecosystem health 
(e.g. wetland biomass change); detailed mapping 
of sea surface temperatures, salinity and soil 
moisture; deep analysis of sea surface winds, 
elevation, currents, wave fields and oil slicks; 
improvement of shoreline position analysis and 
beach erosion studies; and a better performance 
high-resolution three-dimensional measurements 
of biological and physical ocean features.

Also accurate field data collection approach 
using ships, buoys, and field instruments with a 

Fig. 3.5  Water bodies and 
vegetation units classification 
based on OBIA rule sets for 
the automatic analysis of 
remote sensing data. Image 
acquired in 11 June 2011 over 
the fluvial-lagoon system of 
‘Santo André-Monte Velho’

F. Gutierres et al.
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valid sampling scheme must be improved to 
calibrate and/or validate the remotely sensed 
information.

3.3	 �Management of Marine 
and Coastal Ecosystems 
through RS Applications

In this section were provided examples of using 
RS technologies in applications relevant to man-
agement of marine and costal ecosystems needs. 
Were presented and discussed six cases related to 
marine/coastal management and monitoring 
efforts in the Portuguese coast.

3.3.1	 �Landscape Scale Analysis 
of Coastal Wetlands Health 
and Land Cover Changes

Wetlands are ecologically sensitive and dynam-
ics ecosystems susceptible to climate and LULC 
changes, and support high levels of biodiversity. 
Over the last centuries its conservation status has 
been neglected, and in several cases have been 
forced to drainage and transformations. The first 
international convention on Wetlands of 
International Importance (formally, the Ramsar 
Convention was signed in 1971) aimed the con-
servation and sustainable utilization of wetlands, 
recognizing the fundamental ecological func-
tions of wetlands (such as water regulation, fil-
tering and purification) and their economic, 
cultural, scientific, and recreational value. The 
United Nations Millennium Ecosystem 
Assessment recognizes the global economic 
value of wetlands (at up 15 trillion USD in 1997) 
(Bustamante et  al. 2013). Such ecosystems 
include areas with biologically valuable vegeta-
tion, such as, peat bogs, marshes and tidal flats. 
An increasing number of wetlands have some 
kind of legal protection, such as National 
Reserves, Site of Community Importance (SCI), 
Special Protected Zones (ZPE) or Important 
Bird Areas (IBA)), and several coastal wetlands 
are constantly monitored and managed (Correia 
et al. 2012; Freitas et al. 2007).

RS provides useful information and tools to 
identify long-term trends and short-term varia-
tions, such as impact of rising sea levels and 
LULC changes on wetlands. For instance, 
Bustamante et al. (2013) mentioned that EO sat-
ellites can be used to delineate flooded areas, and 
can supply complementary information on wet-
land location, limits and extent. They can also be 
used to monitor changes in water quality (cyano-
bacterial blooms, trophic status, inputs of terres-
trial Carbon), to map habitat types, vegetation 
communities, to identify long-terms trends and 
subtle changes of biomass, or ecosystem services 
(Mücher et al. 2010; Kennedy et al. 2009).

Thus, RS can provide methods to monitor spe-
cific biophysical and biochemical indicators of 
ecosystem functioning (e.g. Leaf Area Index 
(LAI), Normalized Difference Vegetation Index 
(NDVI), chlorophyll content, fractional cover, 
phenology, vegetation height (Mücher 2009; 
Kerr and Ostrovsky 2003). Many of these param-
eters are currently mainly applied at large scales 
(global, continental), see e.g. the Core Services 
on Bio-Geophysical Parameters of the EC-funded 
Geoland project (GMES for Europe), which aim 
at facilitating policy-supporting applications in 
the fields of climate change (carbon fluxes), food 
security (crop monitoring), and global land cover 
change. The relation of such parameters with the 
more traditional habitat quality approach at the 
scale of the habitat patch is still to be 
investigated.

Changes in wetland vegetative cover, which 
can be expressed as NDVI, manifest as changes 
of species composition and productivity, are 
generally the result of dynamics processes and 
anthropic induced perturbation. Thus, the NDVI 
can be related to plant biomass or stress, since 
the NIR reflectance depends on the abundance 
of plant tissue and the red reflectance indicates 
the surface condition of the plant (Klemas 
2011). Frequently, these major transitions in 
wetland systems are preceded by gradual degra-
dations of native habitats. These modifications 
of existent habitats, while not always altering 
areal extent, can modify the functional health of 
coastal wetlands. Thus RS would be more use-
ful for wetlands research if it could include 
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some assessment of the functional health of the 
existing vegetation in addition to any changes in 
areal extent. The use of remotely sensed data, 
however, limits the number of possible indica-
tors that can be used to monitor the health con-
ditions of the wetlands. Fortunately, RS 
techniques have been successful in mapping one 
of the most practical indicators of wetland con-
ditions over large areas – vegetative abundance, 
i.e., biomass density (Kennedy et al. 2009).

In this context, Gutierres (2014) make an 
attempt to elaborate RS indicators of coastal 
wetlands integrity and trends in Santo André 
Lagoon. According to Correia et  al. (2012), 
Santo André is the largest lagoon (500  ha) on 
the Alentejo coastline, belongs to the Santo 
André and Sancha Natural Reserve, and repre-
sents an enclosed brackish water coastal lagoon 
with temporary connections to the sea by a man-
made channel. The existence of fresh and brack-
ish waters gives rise to a diverse set of aquatic 
ecosystems and riparian areas that include small 
marsh areas, willow plantations, rush and reed 
beds, bogs, heathland and wetland pastures. The 
exchange and mixture of saltwater and freshwa-
ter is irregular and the lagoon may show daily 
and seasonal fluctuations, but also long-term 
variation. Different benthic communities may 
be present along the annual cycle according to 
the magnitude of episodic freshwater and sea 
water inputs.

Therefore the goal of this investigation was 
to use remotely sensed data in a Geographical 
Information System (GIS) framework in order 
to integrate and evaluate Land Use and Land 
Cover (LULC) changes and wetland conditions 
indicators which are important for determining 
and managing wetland health. The specific 
objectives were:

•	 To determine whether environmentally 
stressed wetland areas can be identified 
through the analysis of a normalized time-
series (LANDSAT TM of 1989, 2000, 2007 
and 2010), namely by the combination of the 
NDVI (biomass) maps with ancillary LULC 
layers (Corine Land Cover (CLC) Changes 
1990–2000 and 2000–2006).

•	 To develop long-term monitoring techniques 
for evaluation of trends in wetland conditions 
and thus improve the management of wetland 
ecosystem.

•	 To determine if LULC and water quality data 
in the GIS database can be used to relate 
water quality changes to changes in sur-
rounding land use and nonpoint source pollu-
tion loadings.

The biomass abundance maps of Santo André 
lagoon, obtained through NDVI reclassified into 
five biomass density classes, revealed useful to 
identify the most fragile areas, where manage-
ment actions for conservation should focus on 
the future (Fig. 3.6).

Thus, were found that RS techniques can be 
used effectively in a GIS framework with ancil-
lary data to provide valuable information of the 
management of Santo André lagoon. The 
strength of RS is its ability to deliver quantita-
tive measures of such parameters in a standard-
ized manner with full coverage over larger 
wetland areas, whereas field surveys can only 
deliver this through point sample measurements 
and subsequent interpolation. The provision of 
such data by RS may open new ways of looking 
at quality of coastal wetlands. This becomes 
especially relevant as higher resolution, lower 
cost satellite data become available and RS 
techniques for analyzing spatial data set 
improve.

3.3.2	 �Integration RS in Natura 
2000 Habitat Monitoring

Monitoring and reporting on the conservation 
status at local level, Site of Community 
Importance (SCI), gained increasing impor-
tance in the European Union with the imple-
mentation of the Habitat Directive in 1992 
(Council Directive 92/43/EEC of 21 May 1992 
on the conservation of natural habitats and of 
wild fauna and flora) (Gutierres et  al. 2013; 
Vanden Borre et al. 2011). According to Article 
17 of the Directive, reporting the habitat con-
servation status requires detailed knowledge of 
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many aspects of Natura 2000 habitats at differ-
ent spatial scales (Evans 2006).

According Vanden Borre et al. (2011), RS is 
seen as an important tool to obtain and analyze 
synoptic data on Natura 2000 habitats, but cur-
rently reflects some limitations for monitoring 
and reporting purposes.

In fact, the application of RS tools for habi-
tat mapping and monitoring offers multiple 
advantages over traditional field mapping, like 
faster map production, insight into remote and 
inaccessible terrain such as coastal wetlands, 
and improved repeatability of the habitat map-
ping process (Blaschke et  al. 2008; Lengyel 
et  al. 2008; Groom et  al. 2006; Aplin 2005; 
Bock et al. 2005a, b; Keramitsoglou et al. 2005; 
Nagendra 2001; Buiten and Clevers 1990).

In the application field of Natura 2000 habi-
tat mapping and monitoring, the RS analysis is 
restricted to pilot studies (e.g. Mücher 2009; 
Diaz Varela et  al. 2008; Förster et  al. 2008; 

Bock et al. 2005a; Frick et al. 2005). According 
Bock et al. (2005b), in the past RS techniques 
fell short in mapping very detailed and particu-
lar biotopes like Natura 2000 coastal habitats, 
but RS capabilities is evolving rapidly, and new 
methodologies are opening up opportunities for 
innovative applications of RS data in habitat 
monitoring (Gross et  al. 2009; Aplin 2005; 
Turner et al. 2003).

Gutierres (2014) produced detailed Natura 
2000 habitat maps contained in the fluvial-
lagoon system of Santo André-Monte Velho 
(Fig. 3.7). This lagoon system is included in the 
‘Lagoas de Santo André and Sancha Natural 
Reserve’, which occupies a 15 km-wide coastal 
sector inland from the shoreline, on the Alentejo 
coastline in the municipalities of Sines and 
Santiago do Cacém. The Natural Reserve 
includes the Lagoa de Santo André (500  ha) 
and the Lagoa da Sancha (15 ha), a dune system 
(mobile and stabilized dunes), shrublands and 

Fig. 3.6  NDVI (Biomass) change analysis based on LANDSAT-7 ETM+ (1989–2010). Images acquired in 14 March 
1989, 24 June 2000, 22 July 2007 and 25 April 2010 over ‘Santo André’ coastal lagoon
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Pines formations and a small ponds system 
with peat bogs and humid shrublands (desig-
nated as “Poços”). Its protected status recog-
nizes the high ecological value of these two 
wetlands and their surrounding areas which 
also include the ridge of dunes that separates 
them from the ocean and the adjacent 
seashore.

The study was carried out with Very High 
Spatial Resolution Satellite (VHSR) Imagery – 
GeoEye-1 and WorldView-2 covering Santo 
André-Monte Velho lagoon system. Table  3.3 
lists the detailed specifications of GeoEye-1 
and WorldView-2 satellite images.

In addition to the standard panchromatic and 
multispectral blue, green, red (visible) and Near 
InfraRed (NIR1) bands the WorldView-2 sen-
sor has:

	(a)	 A shorter wavelength blue band, Coastal 
Blue, planned for bathymetric studies, can 
be used for water color analyses and sub-

stantially influenced by atmospheric 
scattering;

	(b)	 A Yellow band can be used for the assess-
ment of the Yellowness of vegetation both 
on land and water;

	(c)	 A Red Edge band, centered at the onset of 
the high reflectance portion of vegetation 
response to potentially significant in the 
measurement of plant health;

	(d)	 A longer wavelength Near InfraRed band 
(NIR2), partially overlapping the NIR1 was 
sensitive to atmospheric water vapor 
absorption.

Two different approaches were used in order 
to mapping the Natura 2000 habitats:

	1.	 Based on GeoEye-1 image was developed a 
spectral separability study and application of 
the combined approach (spectral and spatial 
domains), based on pixel-based classification 
and OBIA (hybrid method).

Fig. 3.7  Mapping the local variability of Natura 2000 habitats with WorldView-2 image data (Image acquired in 11 
June 2011 over the fluvial-lagoon system of ‘Santo André-Monte Velho’)

F. Gutierres et al.
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	2.	 The second methodological approach was 
based on producing habitat maps through 
Segmentation-based Supervised Classification 
of the WorldView-2 image data, instead of the 
pixel-based classification approach.

The detailed methodologies of the hybrid 
approach and supervised OBIA procedures are 
presented and compared in Gutierres (2014). The 
accuracy of the classification maps was estimated 
using a set of test fields randomly selected on the 
ground truth map.

This analysis showed that the eight-band sen-
sor is extremely useful to better discriminate dif-
ferent spectral sub-signatures corresponding to 
the same habitat category. This means that the 
major capability of the new sensor resides in the 
capacity of investigating the ground diversity 
underlying the apparent homogeneity of conven-
tional habitat map. From the Segmentation-based 
Supervised Classification approach, it was possi-
ble to detect changes in the bathymetry for the 
Sea Water classes by using the Coastal Blue 
band; moreover, the lowest wavelength band 
appears to be significant for the recognition of 
mixed patterns of water and terrain. The Yellow 

band appears significant to elicit terrain composi-
tion, as characterized by a certain degree of yel-
lowness. The Red Edge and the NIR2 bands were 
useful for a better discrimination of ground sites 
characterized by a mixing of water and vegeta-
tion. The increase in thematic accuracy was 
15 %, passing from the traditional four band pro-
vided by GeoEye to the new eight-band 
WorldView-2 sensor. In fact, the overall 
separability of vegetation classes and water bod-
ies was improved with WorldView-2 and 
significantly after the training data depuration 
process of coastal habitats. The results obtained 
proved that the VHSR integration can contribute 
to the area (location and size) monitoring and 
also to assess the structure and function (particu-
larly regarding structural features) of the Natura 
2000 coastal habitats at local scale.

Concluding, the production of coastal habitat 
distribution maps, at various scale levels, consti-
tutes a promising new area for the development 
of RS applications, as Vanden Borre et al. (2011) 
indicated. The emergence of hyperspatial and 
hyperspectral sensors will enhance the analysis 
of related habitat types at very fine scales (see 
Haest et  al. 2010; Lechner et  al. 2009; Mehner 

Table 3.3  High-resolution satellite parameters and spectral bands (Satellite Imaging Corporation 2015)

Parameter Spectral band GeoEye-1 WorldView-2

Date launched September 2008 October 2009
Spatial resolution (m) Panchromatic 0.41 0.5

Multispectral 1.65 2
Spectral range (nm) Panchromatic 450–800 450–800

Coastal blue n/a 400–450
Blue 450–510 450–510
Green 510–580 510–580
Yellow n/a 585–625
Red 655–690 630–690
Red edge n/a 705–745
NIR 780–920 770–1,040
NIR1 770–895
NIR2 860–1,040

Swath width (Km) 15.2 16.4
Off nadir pointing ±30° ±45°
Revisit time (days) 2.1–8.3 1.1–2.7
Orbital altitude (Km) 681 770
Image acquisition dates 15th June 2011 at 11:35 

AM
11th June 2011 at 11:55 
AM
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et al. 2004). The researchers need such RS-based 
habitat mapping for estimating range and area of 
coastal habitats, but also to achieve a better defi-
nition and constant updating of the sampling 
frame for Natura 2000 habitats survey. Indeed, 
RS technologies represent an important opportu-
nity for harmonizing Natura 2000 habitat map-
ping throughout Europe.

3.3.3	 �Quantification of the Total 
Suspended Matter (TSM) 
Concentration in Case-2 
Waters

Major factors affecting water quality in water 
bodies across the landscape are suspended sedi-
ments, algae, chemicals, DOM, thermal releases, 
aquatic vascular plants, pathogens, and oils. 
Satellite sensors with different spectral, spatial, 
and temporal resolutions have been used to eval-
uate chemical pollutants, suspended solids, and 
chlorophyll abundance (Godin et al. 1993).

The dominant optically active constituent in 
the open sea (case-1 waters) is the chlorophyll, 
whereas in the coastal waters (case-2 waters), 
sediments and DOM often dominate the spectral 
signal of chlorophyll (Myint and Walker 2002). 
The study of suspended matter has an ecological 
importance, because the suspended matter is the 
main carrier of various inorganic and organic 
substances and becomes the main substrata for 
biochemical processes (Doeffer et al. 1989). The 
TSM concentration affects ocean/coastal produc-
tivity, water quality, navigation, and coastal 
defense. The TSM concentration and distribution 
in the coastal zone varies with several hydrody-
namic factors, such as tidal condition, currents 
direction and velocity, river discharges, and wind 
stress (Teodoro et al. 2007b). The discrimination 
of TSM from water reflectance is based on the 
relationship between the scattering and absorp-
tion properties of water and its constituents. In 
the visible and NIR region, most of the scattering 
is caused by suspended sediments, and the 
absorption is controlled by chlorophyll-a and col-
ored DOM.  These absorptive in-water compo-
nents decrease the reflectance in a substantial 

way. However, these absorptive effects occur 
generally for wavelengths less than 500  nm 
(Myint and Walker 2002). The visible and NIR 
regions are the most adequate to estimate the 
TSM concentration.

Several works have demonstrated that 
remotely sensed data can be used to retrieve TSM 
concentration from turbid coastal waters (e.g. 
Nechad et  al. 2010; Ouillon et  al. 2008; Miller 
and Mckee 2004). Moreover, various studies 
have been carried out combining in situ measure-
ments and satellite data in order to relate spectral 
properties of seawater and TSM concentration 
(e.g. Chen et al. 2014; Teodoro et al. 2008). Many 
TSM models based on empirical methods have 
been used in operational satellite RS systems. 
These models were developed on the basis of sta-
tistical relationships between TSM concentra-
tions and single-bands or multi-bands reflectance. 
For instance, Doxaran et al. (2002), Islam et al. 
(2001), Forget and Ouillon (1998), and Ritchie 
et  al. (1974) established empirical relationships 
between reflectance of visible and NIR bands of 
satellite data and TSM concentration. Aguirre-
Gomez (2000) investigates the linear relationship 
between in situ measurements of TSM concen-
tration, collected by ship, and remotely sensed 
data provided by AVHRR.  Although empirical 
models may be effectively applied to satellite 
images concurrent with the calibration dataset, 
their accuracy may be reduced outside the condi-
tions of the calibration dataset because of the 
empirical basis (Nechad et al. 2010). Therefore, 
semi-analytical models which combine physical 
methods with statistical methods were proposed 
for several authors in order to retrieve the TSM 
concentration (e.g. Chen et  al. 2014, 2013; 
Ouillon et al. 2008).

Teodoro et al. (2007b) retrieve the TSM con-
centration from multispectral satellite data 
(LANDSAT TM, SPOT HRVIR and ASTER) by 
multiple regression and Artificial Neural 
Networks (ANN) for a very dynamic area of 
coastal zone: the breaking zone. In this work, a 
part of the northwest coast of Portugal, around 
Aveiro city, was chosen as a study site. This area 
is limited to the North by the Douro River mouth 
and to the South by Mira Lagoon (Fig.  3.8). 
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The  total extension of this area is about 80 km 
with an orientation NNE-SSE. The littoral drift 
current act principally in the North-south direc-
tion. The wave climate has medium significance 
with wave heights from 2 to 3  m and periods 
ranging from 8 to 12 s. Tides are of semidiurnal 
type, reaching a range of 2–4 m for Spring tides. 
Meteorological tides are not significant.

There is a general consensus that, in cases 
when waves are breaking, the sediment transport 
tends to be directed offshore due to the seaward-

directed undertow generated by wave breaking 
and radiation-stress decay (Aagaard et al. 2002). 
This fact presents a huge challenge for the 
researches. Over the last decades, the phenome-
non of coastal erosion had been increasing pro-
gressively almost in all world coastal areas. The 
main causes of this serious environmental prob-
lem have been identified as a coastal response to 
the weakening of the river basin sediment sources 
and river-sediment transport, the mean sea-level 
rise, the human occupation of the waterfront, and 
dune destruction. Therefore, the determination of 
the TSM concentration around the breaking zone 
would provide meaningful information to esti-
mate the sedimentary balance in this area.

Two different approaches were followed in 
order to relate the TSM concentration with the 
spectral response of the breaking zone water: 
field surveys and satellite images. In the field 
work different techniques were tested: maritime 
platforms, aerial platforms, simulations on the 
beach, and water samples collection in the break-
ing zone. It was very difficult get water samples 
and simultaneous radiometric measurements in 
the breaking zone. Therefore an evaluation of the 
range of TSM values, typically found in this area, 
need to be obtained through simulations on dif-
ferent beaches of the study area (Teodoro et al. 
2007a, 2008; Teodoro and Veloso-Gomes 2007). 
In these simulations the bubbles and turbulence 
presented in the breaking zone were considered. 
A FieldSpec FR spectroradiometer was used to 
determine the seawater reflectance. Figure  3.9 
shows the reflectance spectra (R(λ)) obtained for 
a range of TSM concentration with values 
between 14 and 449  mg/l. After, the seawater 
reflectance measured by the spectroradiometer 
was converted for the seawater reflectance 
recorded from ASTER, SPOT HRVIR, and 
LANDSAT TM in the visible and NIR bands. All 
satellite-image bands from visible and NIR were 
first calibrated for radiance values and, subse-
quently, for reflectance values. The atmospheric-
correction procedure was based on an improved 
DOS technique (Chavez 1988). All satellite 
images were geometrically corrected using the 
ground-control points (GCPs) provided in the 
image header and further adjusted with GCPs 

Fig. 3.8  Study area located between the River Douro 
mouth and Mira Lagoon (Teodoro and Veloso-Gomes 
2007)
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collected in the field. The Root Mean Square 
(RMS) error was, for all the images, less than 
1 pixel.

Three different approaches were considered in 
order to quantify the TSM concentration through 
seawater reflectance. First, single band models 
were proposed, and equations of linear, polyno-
mial, logarithmic, power, and exponential models 
were applied for all equivalent satellite-image 
bands. The linear and polynomial models pre-
sented higher determination coefficient 
(R2 > 0.96) than logarithmic, power, and expo-
nential models (0.63 < R2 < 0.94). However, the 
same linear models presented a Mean Absolute 
Error (MAE) values ranging from 20.68 to 
29.28 mg/l.

After, several multiple regressions were estab-
lished for the three sensors tested. The values of 
the dependent (TSM concentration) variable and 
the independent (visible and NIR reflectance, in 
percent) variables were used to estimate the 
model coefficients. The combination of the green 
and red bands presented high correlation coeffi-
cient values for all sensors, so this combination 
was discarded. The RMS error was too high, 

around the same TSM concentration values 
expected for the breaking zone (between 20 and 
30  mg/l). Considering the previous results and 
the apparent non nonlinearity verified between 
the reflectance and TSM concentration, an ANN 
were implemented. Gan et al. (2004) have already 
used artificial neural networks (ANNs) to retrieve 
the seawater optically active parameters from 
multispectral and hyperspectral data. The train-
ing set of this paper consists of 11 values of 
reflectance of the visible and NIR channels for 
each sensor (inputs) and their corresponding 
TSM concentration values (output), already con-
sidered for the two previous methodologies. An 
ANN is a parallel-distributed processor that 
resembles the human brain by acquiring knowl-
edge through a learning process and, then, stores 
the knowledge in the connection strength between 
computational units called neurons, and com-
prises several layers: an input layer; an output 
layer; and one or more hidden layers between 
them. The weights of the ANN based on the 
back-propagation algorithm and the leave-one-
out method of error estimation. More information 
could be founded in Haykin (1999). Three ANN 
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were implemented (one for each sensor). The 
training set of this paper consists of 11 values of 
reflectance of the visible and NIR channels for 
each sensor (inputs) and their corresponding 
TSM concentration values (output). The hidden 
layer contains ten neurons. The algorithm stops 
when the RMS error is not greater than 2E-03 mg/l 
(an acceptable error). The final RMS errors were 
1.5E-03, 4.2E-04, and 2.0E-03, for ASTER, 
SPOT HRVIR, and LANDSAT TM.  The best 
results were found for ASTER and SPOT HRVIR 
images. In the Fig.  3.10 is presented the TSM 
concentration values estimated for the SPOT 
HRVIR image. The results are very satisfactory, 
as can be showed, with the discrimination 
between cases 1 and 2 waters and the identifica-
tion of rip currents.

Concluding, the analysis of the RMS errors, 
achieved by both linear and nonlinear models, 
supports the hypothesis that the relationship 
between seawater reflectance and TSM concen-
tration is clearly nonlinear. The ANNs have been 
shown to be useful in estimating the TSM con-
centration from the reflectance of visible and 
NIR bands from ASTER, SPOT HRVIR, and 

LANDSAT TM sensors, with better results for 
ASTER and SPOT HRVIR sensors. The nonlin-
earity verified between the reflectance and TSM 
concentration could also be related to the accu-
racy of the satellite-derived water leaving reflec-
tance (atmospheric correction and calibration 
procedure) and also from the natural variability 
of water leaving reflectance from factors not 
directly related to TSM, such as DOM absorption 
or phytoplankton absorption. The accuracy of 
this work can be improved by enlarging the data 
set, synchronizing the simulations on the beach 
and satellite images.

3.3.4	 �Identification, 
Characterization and Analysis 
of River Plumes

River discharge into the coastal ocean represents 
a major link between terrestrial and marine sys-
tems. River plumes are an important phenome-
non in coastal regions. In areas with high rates of 
river discharge, plumes clearly influence coastal 
dynamics. River plumes are a mixture of fresh 

Fig. 3.10  TSM concentration estimated by the ANN implemented, considered the SPOT HRVIR image
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water and river sediment load, with some dilution 
caused by currents. The river plumes are distin-
guished from surround marine waters by their 
high concentration of total TSM which changes 
the color of the ocean surface. Since the TSM 
concentration can be associated with nutrients, 
pollutants and other materials, it is of crucial 
importance to remotely survey their dispersal in 
order to assess the environmental quality of the 
regions surrounding river mouths.

Satellite RS can provide frequent, large scale, 
near-surface views of the coastal ecosystem. 
High quality ocean color products over global 
open oceans are currently being produced for 
researchers and scientists to study and under-
stand ocean physical, optical, and biological 
changes and their effects on the climate pro-
cesses. However, due to physical, bio-optical, 
and environmental complexities of the coastal 
turbid waters, satellite-derived ocean color data 
from standard products are often biased in coastal 
ocean regions.

The most commonly used satellite data for 
river plume observations/quantification included 
data from AVHRR (e.g. Otero et  al. 2009), 
SeaWiFS (e.g. Son et  al. 2012; Mertes and 
Warrick 2001), MODIS (Fernández-Nóvoa et al. 
2015; Mendes et al. 2014; Ondrusek et al. 2012; 
Shi and Wang 2009; Warrick et al. 2007), MERIS 
(Teodoro et  al. 2009a) or combining data from 
different sensors (e.g. Jiang et al. 2009; Hendiarti 
et al. 2004; Warrick et al. 2004; Hu et al. 2003).

Some work has also been done using satellite 
sensors with higher spatial resolutions such as 
LANDSAT TM and ETM plus images (e.g. 
Guneroglu et  al. 2013; Rudorff et  al. 2011; 
Hellweger et al. 2004; Lira et al. 1997) or SPOT 
data (e.g. Doxaran et  al. 2002; Ouillon et  al. 
1997). Although the increased spatial resolution 
provides vastly greater structural detail within the 
plume signatures, the low temporal resolution 
(approximately 2 weeks), makes image availabil-
ity after a storm event a major limitation.

The Douro river is one of the longest rivers in 
the Iberian Peninsula and represents the most 
important freshwater input into the Atlantic 
Ocean in the north western Portuguese coast. The 
Douro river is a granitic drowned valley river, 

draining to the N-W shore of Portugal, and its 
basin is the largest hydrographical basin in the 
Iberian Peninsula. This estuary is located on the 
Western Portuguese coast and is subject to North 
Atlantic meteorological and hydrodynamic con-
ditions. The narrow Douro estuary is limited 
21.6 km upstream by the Crestuma dam.

Several studies address coastal upwelling and 
the dynamics of the Western Iberian Buoyant 
Plume under several scenarios (e.g. Otero et al. 
2008, 2009). Mendes et al. (2014) develop an ad-
hoc methodology to observe and characterize the 
Douro plume and its spatial and temporal vari-
ability by using MODIS long-term ocean-color 
satellite data (2003–2011) and concurrent in situ 
wind, tidal and river discharge data. However, 
little attention has been given to the influence of 
the Douro Estuary (Fig.  3.11) input into the 
coastal adjacent areas. A preliminary study on 
the modeling of the Douro River Plume (DRP), 
Douro River, Porto, Portugal, size obtained 
through image segmentation of MERIS data has 
been performed based on 21 MERIS scenes cov-
ering approximately 2  years (Teodoro et  al. 
2009a). More recently, a similar study of the river 
plume size with a larger dataset of more recent 
images (the hydrological year starting at October 
2008) was also performed (Teodoro and Almeida 
2011; Teodoro and Gonçalves 2011). Gonçalves 
et al. (2012) presents a work where a fully auto-
matic method for the identification of the Douro 
river plume is proposed, as well as a more com-
plete characterization of the river plume, through 
several attributes associated with shape and TSM 
concentration. The MERIS images comprise a 
band with the TSM concentration values, which 
are retrieved through an algorithm carried out by 
an ANN, trained to emulate the inverse model 
(Schiller and Doerffer 2005). In previous works 
on the same study area, it was found that the 
TSM concentration values provided by MERIS 
may be considered valid, despite the lack of in 
situ validation (Teodoro et  al. 2009a; Teodoro 
and Almeida 2011). MERIS images from the 
year of 2009 were considered to analyze the TSM 
concentration. Among the 133 available images 
covering the study area, only 71 MERIS FR 
scenes (level 2 data) were considered valid for 
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the identification of the plume (the others were 
discarded due the presence of clouds or other 
atmospherics effects).

Two approaches were employed in order to 
identify the DRP: manual and automatic. The 
manual identification of a river plume may 
become a quite subjective task due to the high 
degree of subjectivity of human intervention. In 
order to achieve a basis of comparison and prove 
the high degree of subjectivity of this approach, a 
manual identification of the river plume was 
independently performed by two experienced 
operators in a GIS environment.

The automatic identification of the DRP was 
performed through a segmentation approach. In 
previous works on this subject, it was evidenced 
that image segmentation methods based on the 
image domain (pixel values) are more appropri-
ate to extract the river plume from MERIS data 
than feature-based methods (Teodoro et  al. 
2009a; Teodoro and Almeida 2011). The region-
based approach proposed in Teodoro et  al. 
(2009a) indicated fixed values for the seed (S) 
and threshold (T) parameters, as they were appro-
priate for MERIS images with a clear saturation 
of TSM values in the plume region. In this work, 
a fully automatic method was considered. 

Initially, the MERIS images with original TSM 
concentration values are taken. The advantage of 
considering the TSM concentration values 
instead Log10 (TSM) relies on a better discrimi-
nation of the plume with respect to its surround-
ing pixels, since the logarithm reduces the 
separability between the plume and surrounding 
concentration values. The first step is based on 
thresholding the image based on a certain cutoff 
(TSMcutoff), which is associated with the highest 
correlation between the size of the obtained 
object (river plume) with the river discharges. It 
was found that a TSMcutoff equal to 2 is adequate 
for the study area and its current environment. 
For other study areas and conditions, a sensitivity 
analysis on the variation may be performed in 
order to find the most appropriate value. More 
details about the sensitivity analysis performed 
could be founded in Gonçalves et  al. (2012). 
After the thresholding operation, the segmenta-
tion result is refined by filling the holes of the 
detected objects. Finally, the river plume is con-
sidered to be the object with the largest area.

A comprehensive characterization of the 
plume was performed through a set of attributes, 
which take into account not only the shape of the 
river plume, but also (Fig.  3.12): size of the 

Fig. 3.11  TSM concentration 
retrieved from first MERIS 
scene of 8 March 2003 for the 
study area
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Fig. 3.12  Time-series of the river plume shape attributes 
Size, Perimeter, ellipsemajor, elippseminor, the ratio between 
ellipsemajor and elippseminor (ARat) and orientation (θ) per-
taining to the manual identification of operator A (.), man-

ual identification of operator B (x) and automatic 
identification (o) of the river plume (Gonçalves et  al. 
2012)

[AU3]
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plume; perimeter (in number of pixels); the major 
and the minor axis length of the ellipse adjusted 
to the river plume; and the orientation, (in 
degrees). With respect to the TSM concentration 
values of the pixels within the river plume, the 
following attributes were considered: average, 
standard-deviation, maximum, and the sum of all 
pixel concentrations. Also, in order to relate the 
plume attributes with environmental parameters, 
the Douro river discharges (at nearest dam  – 
Crestuma dam), the tide level at Leixões (tide 
gauge closest to the study area), wind instanta-
neous speed and wind direction values were con-
sidered for the same time.

The results of the manual and automatic pro-
cedures are presented and compared. The statisti-
cal analysis was based on the bi-dimensional 
analysis of the variables of this study, and relied 
on the computation of the Pearson correlation 
coefficient.

Regarding, the manual identification, the 
results obtained by the two operators were simi-
lar. Among the considered environmental vari-
ables, the river discharges presented correlation 
values above 0.5 with several attributes of the 
plume. Although moderate, a negative and sig-
nificant correlation was also found between wind 
speed and minor axis length of the ellipse 
adjusted to the river plume, and also between 
wind speed and the average TSM concentration 
of the plume.

Considering the automatic plume identifica-
tion, it was observed that more significant corre-
lation are obtained between environmental 
variables and river plume attributes than what 
was observed with the manual procedure. In par-
ticular, a moderate yet significant and negative 
correlation was found between wind speed and 
perimeter, as well as between wind speed and the 
major and minor axis of the adjusted ellipse. A 
high correlation of 0.719 was found between the 
size of the river plume and the river discharges. 
The results previously presented suggest that 
important considerations regarding sedimentary 
balance can be pointed. It can be observed that 
the higher river discharges are associated with 
plumes oriented toward the NW-N direction (cor-
responding to the range to −45° to −90°). The 
higher river discharges throw the plume of sedi-

ments with more intensity towards east, which 
then reaches the poleward current and move 
towards north. The plumes with positive orienta-
tion in the range 45–90° (towards the SW-S 
direction) are mostly associated with lower river 
discharges and are pushed by the littoral drift cur-
rent (north-south direction). Focusing on the 
range of river discharges above 500  m3/s, the 
relation between the orientation attribute and the 
river discharges appear to present a negative 
exponential decay. These are important consider-
ations which should be taken into account in 
coastal studies on sedimentary balance and may 
have important consequences on the natural sup-
ply of sediments to feed the beaches of the study 
area.

Concluding, although MERIS data showed to 
be a useful data source for the spatio-temporal 
analysis of the Douro river plume and present a 
high temporal covarage, other sources of RS data 
may also be considered in the future. Furthermore, 
it is necessary to calibrate the reflectance values 
for TSM concentration values through complex 
algorithms and also to perform in situ validation. 
Due the construction of two breakwaters at the 
mouth of the Douro River (between 2004 and 
2008), it is clearly visible that the output of sedi-
ments into the sea is quite narrower, which means 
that the TSM concentration values found in the 
plume are smaller. The objectives of this study 
were the development of a method for the auto-
matic identification of the Douro river plume 
from MERIS data, a comprehensive 
characterization of the river plume, and the spa-
tio-temporal analysis of the river plume and its 
relation with some environmental variables. The 
advances in the field achieved by the present 
work support the interest of further research on 
this topic, namely the employment of more com-
plex statistical methods and variables to explore 
other important considerations in this thematic.

3.3.5	 �Extraction of Estuarine/
Coastal Sandy Bodies

A sand spit is a deposition landform along coasts, 
mainly caused by dominant littoral drift and wave 
action. A sand spit does not present a well-
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defined topographic boundary, and its boundary 
is not static in time, as the majority of the water 
bodies. Moreover, sand spits are influenced by 
tides, waves and wind. The extraction of a sand 
spit from a water environment (e.g. an estuary) is 
a complex task due the presence of bubbles and 
foam, caused by the breaking waves and the tur-
bidity of the water, which difficult an accurate 
extraction of the boundary.

One of the major applications of remotely 
sensed data is change detection. Change detec-
tion involves the ability to quantify temporal evo-
lution using multi-temporal data sets. Several 
works related to the extraction estuarine/coastal 
landforms from satellite data were referred in the 
literature. Frihy et  al. (1997) used LANDSAT 
images and topographic maps to study the 
Damietta promontory of the Nile delta. However, 
in these works the identification of the coastal 
landforms was based in visual inspection and 
false color composition images. Specifically 
relate to dunes identification/characterization 
several works were also referred in the literature 
(e.g. Chowdhury et al. 2011; Sanjeevi 1996). A 
number of problems in RS require the segmenta-
tion of specific spectral classes such as water 

bodies (e.g. Lira 2006). However, very few works 
related to the extraction of estuarine/coastal 
sandy bodies from a water environment from sat-
ellite data through segmentation techniques were 
done. Oliveira et al. (2008) study the geomorpho-
logic evolution of the coastal zone of the Restinga 
of Marambaia (Brasil) using multitemporal satel-
lite images. The images were segmented by a 
region growth algorithm and submitted to an 
unsupervised classification. Silveira and Heleno 
(2009) proposed an approach for water/land sep-
aration in SAR images that uses region-based 
level sets and adopts a mixture of lognormal den-
sities as the probabilistic model for the pixel 
intensities in both water and land regions. 
Teodoro et  al. (2011a) and after Teodoro and 
Gonçalves (2012) present a work that aims to 
develop and implement an effective and auto-
matic monitoring technique, based on remotely 
sensed data (IKONOS-2 images) and image pro-
cessing techniques, in order to accurately extract 
the sand spit boundary and consequently estimate 
the sand spit area. The study area selected for this 
study was the Cabedelo sand spit located in the 
Douro river estuary (Fig. 3.13). Two thirds of the 
Douro river mouth is protected by the Cabedelo 

Fig. 3.13  Cabedelo sand spit (Teodoro and Gonçalves 2012)
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sand spit, creating a micro-ecosystem of great 
biological interest. Cabedelo is a very dynamic 
morphologic structure and is influenced by sev-
eral dynamic agents such as waves, tides, and 
wind speed and direction; and acts as a barrier, 
protecting the estuary banks from waves, espe-
cially during storms. In the last decades the pro-
tection function of the sand spit has been reduced, 
especially due to the retreatment to the interior of 
the estuary. In order to counteract this situation, 
two breakwaters were constructed to stabilize the 
river mouth, between 2004 and 2008.

The methodology proposed in Teodoro and 
Gonçalves (2012) consists in the application of a 
semi-automatic approach based on segmentation, 
called GThE (Global Thresholding refined 
through detected Edges). In order to access the 
performance of this new approach, the results of 
the GThE method were compared with pixel-
based and OBIA classification algorithms already 
applied in Teodoro et al. (2011a). It is a require-
ment of the GThE method that the input image 
should only comprise, as much as possible, the 
sand spit and its surroundings. The first step of 
the GThE methodology is to apply the Otsu’s 
method, which is a nonparametric and unsuper-
vised method of automatic threshold selection for 
image segmentation (Otsu 1979). The sand spit is 
frequently still linked to other regions of the 
image, or to spurious pixels. Therefore, there is 
the need to perform a refinement on the result of 
the global thresholding, separating the sand spit 
from other parts of the image. The second stage 
of the GThE methodology then consists on the 
application of the Canny edge detector (Canny 
1996). The Canny edge detector, with a standard 
deviation of the Gaussian filter equal to 0.5, pre-
sented better performance. The edges computed 
by the Canny edge detector are then used on a 
clipping operation of the previously segmenta-
tion obtained on global thresholding. As a final 
segmentation step, the segmentation is improved 
by filling the holes of the segmented object 
(Fig. 3.14).

The GThE methodology is applicable to a 
single band image. Regarding the IKONOS-2 
sensor, the NIR and the panchromatic bands are 
the most adequate for this approach. The NIR is 

the spectral band which provides better discrimi-
nation between water and land, whereas the use 
of panchromatic band increases the spatial reso-
lution, and consequently allow for a more accu-
rate delineation of the sand spit boundary. In 
order to evaluate the performance of the GThE, a 
pixel-based (supervised classification) and an 
OBIA classification algorithm were also applied 
to the six IKONOS-2 images used. The perfor-
mance of the supervised classifications methods 
was evaluated through the error matrix and the 
discrete multivariate Kappa statistic (Story and 
Congalton 1986; Bishop et  al. 1975). The best 
result was found for the MLC for all the 
IKONOS-2 images, with an Overall Accuracy 
(OA) higher than 96.4  % and a kappa-statistic 
higher than 0.93. The results regarding the OBIA 
approach were similar to the MLC (pixel-based 
classification). However, these apparently good 
results are associated with the pixel classifica-
tion, which do not necessarily imply an accurate 
sand spit delineation. One of the main problems 
addressed in this paper is how to determine the 
end of the spit. Through the algorithms previ-
ously applied the boundary between the main 
land and the sand spit is well defined both for 
pixel-based and OBIA classification, as expected. 
However, a new class (not sand or water) that 
defines the boundary between the sand spit and 
the estuary/sea. This fact is justified not only by 
the presence of bubbles and foam, as well as by 
the high turbidity of water and consequently a 
high concentration of TSM, which changes the 
spectral response of the sea water. This fact justi-
fies the development of this new approach 
(GThE) in order to accurately extract the sand 
spit boundary. As already referred, the applica-
tion of the GThE method has generally led to 
considerable better results with the panchromatic 
band. However, it was verified if the fusion of the 
NIR and panchromatic bands allows for better 
results. An improvement of the obtained results 
was verified only for two images (December 
2001 and June 2004). However, the remaining 
images presented a worst performance, which 
may be explained by the selection of the interpo-
lation method in the fusion process. This aspect 
deserves further research. The Otsu’s method 
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comprises the computation of an effectiveness 
metric. A higher separability between the classes 
of the histogram is associated with a higher 
between-class variance, and consequently higher 
values of this effectiveness metric. More details 
about this metric could be founded in Teodoro 
and Gonçalves (2012).

In order to evaluate the performance of the 
three methods used in the estimation of the sand 
spit area pixel-based, OBIA and GThE, two sets 
of reference values were used. The first reference 
set, called manual reference, was based on a 
manual digitalization on a GIS environment of 
the sand spits on the IKONOS-2 image, followed 
by the computation of the non-regular polygon 
area in the shapefile. The second approach was 
based on field surveys through differential Global 
Positioning System (dGPS) processing tech-

niques. The dataset considered in this study con-
sists of six dGPS surveys of discrete points 
(Baptista et  al. 2008). The outland profile net-
work limit is the shoreline defined by the contact 
between the wave swash and the foreshore. The 
values were later processed in a GIS environment 
and linearly interpolated for different tide levels 
(0, 1 and 2 m). These values were used to esti-
mate the correspondent sand spit area, for the tide 
level correspondent to each IKONOS-2 image. 
Analysing the results presented in Table 3.1, the 
GThE method presented slightly better results 
than the other methods, with a clear advantage of 
a considerable faster performance, beyond requir-
ing a minimum operator intervention. Moreover, 
the GThE method presents consistently better 
results than considering only the pixel-based or 
OBIA methods. The relative error decreases from 

Fig. 3.14  GThE steps. (a) Global thresholding of the 
IKONOS-2 image of June 2004 through the Otsu’s 
method. (b) Edges of the same image obtained through 
the Canny edge detector. (c) Final extraction of the sand 

spit, through the refinement of the global thresholding in 
(a) through the edges represented in (b) (Teodoro and 
Gonçalves 2012)
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2.4 ± 2.0 to 1.8 ± 1.5 (average ± Stdv) if the image 
from June 2004 was discarded, where the NIR 
band was considered instead of the panchromatic 
band (Table 3.4).

In order to provide a more complete evalua-
tion of GThE performance, three additional attri-
butes were computed on the extracted sand spit: 
the perimeter, which is obtained by calculating 
the distance between each adjoining pair of pix-
els around the border of the sand spit; the ratio 
between the major and the minor axis length of 
the ellipse adjusted to the sand spit (ARat); and 
the fractal dimension (Db) which considers the 
particular complexity nature of an object shape. 
Considering the Spearman correlation coefficient 
and p-value of the nonparametric Mann-Whitney 
statistical test, it was founded that for the attri-
butes Area and ARat, the GThE method pre-
sented similar values to the manual reference. 
Significant differences were found between 
GThE and the manual reference regarding the 
attribute perimeter. Regarding the attribute Db, 
only significant differences were found between 
GThE and the manual reference with 4 m pixel 
size. Significant differences were also found 
between the manual references with different 
pixel sizes, both for perimeter and Db attributes, 
despite presenting high correlation values.

The Cabedelo sand spit responds dynamically 
to the seasonality of the hydrodynamic cycles 
with the lower area values occurring in the Winter 
and the higher area values occurring in Summer 
(Baptista et al. 2008). However, as in this study 
the dataset was considerably small, it did not 
allowed for a time-series analysis and the season-
ality tendency could not be proved. However, 
other important studies may also be performed, 

namely by investigating the relation of the sand 
spit instantaneous area with hydrodynamic and 
agitation variables such as the tide level (TL), 
wind speed (WS), wind direction and river dis-
charge at the nearest dam (RD) and the signifi-
cant wave height (Hs). However, in this work, 
only six images were available, which is a small 
number to perform a robust statistical study. 
Therefore, the non-parametric Spearman correla-
tion coefficient was computed between the sand 
spit area and TL, WS, RD and Hs parameters. 
The higher correlation coefficient was found 
between the sand spit area and RD (r = 0.429, 
p = 0.397), where the lack of statistical signifi-
cance is probably related to the small number of 
available images. This may be due to the fact that 
the Crestuma dam (nearest dam) controls the 
fresh water flow into the estuary when the natural 
flow is less than 7000 m3/s.

Concluding, the GThE method proposed in 
this study presented slightly better performance 
than the two supervised approaches (pixel-based 
and OBIA classification). Moreover, it presents 
the advantage of being a fast procedure and with 
a high potential for a fully automation. This 
would allow for a more consistent analysis of the 
sand spit behaviour and evolution across the 
time. The GThE approach has also the advantage 
of avoiding in situ surveys, and allows for assess-
ment of historical records through archived 
satellite data. The extraction of sand spits from 
remotely sensed data has the disadvantage of 
being an area estimated for the image instant 
acquisition. In order to make an effective analy-
sis of the sand spit area evolution with more 
data, it will be necessary to take into account the 
hydrodynamic and agitation parameters that 
influence the Cabedelo area, such as the river 
discharge, tide level or the significant wave 
height. Nevertheless this research allows for 
obtaining data in a simple way, currently non-
existent for the Cabedelo sand spit and offers an 
effective and accurate methodology for monitor-
ing the Cabedelo sand spit size. This work could 
also, in the future, contribute to evaluate the 
behaviour of Douro river mouth breakwaters 
related with coastal defence and sand spit 
stabilization.

Table 3.4  Average and standard-deviation (Stdv) of the 
relative errors (in %), regarding the three methods applied, 
considering the manual and dGPS reference values

Manual reference DGPS reference

Average Stdv Average Stdv

Pixel-baseda 4.1 3.2 6.4 7.4
Object-based 2.5 1.2 4.7 5.9
GThE 2.4 2.0 4.2 5.0

aConsidering the Maximum Likehood Classification 
(MLC) algorithm
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3.3.6	 �Beach Features/Patterns 
Identification

Evaluation of beach hydromorphological behav-
iour and its classification is highly complex. This 
complexity results from the interaction between 
wave climate and solid boundaries (beaches, 
groins, seawalls, among others), occurrence of 
dynamic events, nonlinearity of phenomena and 
interactions, different temporal scales (from sec-
onds to hundreds of years), and difficulty on get-
ting historical data (hydrodynamic, 
geomorphologic and topographic) reliable and 
continuous in time. Interface zone (sea/land) 
presents huge challenges in terms of data collec-
tion and monitoring. Beach morphological clas-
sification was mainly established for Australian 
and American microtidal sandy environments, 
where several beach morphologic and classifica-
tion models were presented (e.g. Short 1991, 
1999, 2006, 2012). These models were mainly 
based on in situ data (wave, tidal and sediment 
parameters). Parameters such as those are usually 
unavailable/non-existent for the Portuguese 
coastal zone. Therefore, without these parame-
ters, the morphologic analysis remotely sensed 
data seems to be a good approach to identify and 
to classify beach morphologies.

RS in general is a very powerful tool for beach 
monitoring and investigation, since it allows col-
lection of spatially continuous information over a 
vast area in a short time frame. Cracknell (1999) 
and subsequently Malthus and Mumby (2003) 
provided an overview of the capacities of RS for 
estuarine and coastal zone studies. While the 
focus in these review articles is mainly on low-
resolution RS, Mumby and Edwards (2002) 
investigated the additional value of VHSR data 
(IKONOS) and hyperspectral data. More recently, 
Harris et al. (2011) implemented a methodology 
in order to classify and map beach morphody-
namic types from satellite imagery in order to 
map beach biodiversity using Google Earth data 
and SPOT-5 images. Mujabar and Chandrasekar 
(2012) employed an integrated approach com-
prising visual image interpretation and MLC 
supervised classification to classify the coastal 
landforms features along the southern coastal 

Tamil Nadu (India) through IRS data. Rodríguez-
Martín and Rodríguez-Santalla (2013) used 
ASTER images to detect the sand bars in the 
Ebro delta coast. McCarthy and Halls (2014) 
used WorldView-2, QuickBird, and IKONOS 
satellite sensors and unsupervised and supervised 
methods using a variety of spectral band combi-
nations. Light Detection and Ranging (LiDAR) 
elevation and texture data pan sharpening, and 
spatial filtering were also tested in order to map-
ping the coastal area of Masonboro Island (North 
Carolina, USA).

Pais-Barbosa et al. (2009) presented a meth-
odology to identify, measure and classify hydro-
forms and hydromorphologies, as well as to 
classify beach morphological stage on the 
Portuguese northwest coast, based on the visual 
analysis of vertical aerial photographs datasets in 
a GIS environment. However, there are some dis-
advantages associated to this methodology, such 
as the time consumption, the subjectivity intro-
duced by the operator, and the impossibility of 
evaluating the accuracy of the visual analysis. In 
order to complement and improve the work 
developed by Pais-Barbosa et al. (2009). Teodoro 
et al. (2009b, c) presented a new approach where 
a pixel based classification (supervised or unsu-
pervised) and OBIA approaches were employed. 
The area selected for this analysis is located on 
the Portuguese northwest coast. This coastal 
stretch represents a dynamic and fragile physical 
and biological environment, which is constantly 
changing in response to natural processes and 
human activities. The dataset is composed by two 
aerial photographs (1996 and 2001) and one 
IKONOS-2 image (2004). Five training classes 
were defined: Sea, Rip Currents, Breaking Zone, 
Beach Face and Beach. All the classes presented 
a very good separability (>1.9). Three supervised 
classification algorithms (parallelepiped with 
MLC as tie breaker, minimum distance and 
MLC) and two unsupervised classification algo-
rithms (K-Means and ISODATA) were applied to 
the dataset in order to identify morphological 
features and hydrodynamic patterns. The same 
supervised and unsupervised classification algo-
rithms were applied to the IKONOS-2 image. 
The performance of the OBIA classification for 
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the aerial photographs was very good, and 
allowed to identifying several interest classes, as 
sea, rip currents, breaking zone, beach face and 
beach (Fig. 3.15). For the two aerial photographs 
the best results were found for the MLC, with an 
OA of 99.28 % and 99.25 % and Kappa coeffi-
cient of 0.993 and 0.988 for 1996 and 2001, 
respectively. Regarding with the IKONOS-2 
image the results archived were not so good. The 
best result was achieved for the 1996 aerial pho-
tograph, with an OA of 79.75 % and Kappa coef-
ficient value of 0.728. This fact reduces the OBIA 
classification performance, classifying objects 
with similar characteristics in different classes. 
These results were compared with the visual 
identification performed by Pais-Barbosa et  al. 
(2009), showing a good agreement between the 
visual identification and the “automatic” classifi-
cation (Teodoro et al. 2009b, c).

Later, in order to improve and develop new 
methodologies to identify coastal features/pat-
terns, Teodoro et  al. (2011b) presented a new 
approach based on Principal Components 
Analysis and Histogram segmentation (PCAH) 
aiming to identify and analyze morphological 
features and hydrodynamic patterns, only applied 
to the IKONOS-2 image. The main concept relies 
on Principal Component Analysis (PCA), which 
allows the information on the n available spectral 
bands from the image to be combined into an 
equal number n of principal components 

(Gonzalez and Woods 2008). In this way, each 
component is obtained from a linear combination 
of the n spectral bands, and consequently con-
tains information on all of the spectral bands. A 
pre-processing stage is performed prior to the 
PCA, which allows for an enhancement of the 
image. The pre-processing comprises histogram 
equalization, followed by Wiener filtering (Lim 
1990) using a 3 × 3 window. The filtering step 
enables not only a reduction in the spiky aspect 
of the histogram induced by the histogram equal-
ization but also a slight smoothing of the different 
hydrodynamic forms/patterns present on the 
image. Following the pre-processing stage and 
the principal components computation, a mean-
ingful segmentation of each principal component 
can be performed independently, using histogram-
based segmentation. The segmentation can be 
performed either manually or automatically. The 
manual procedure is based on visual identifica-
tion of classes on the histogram, complemented 
by visual inspection of the principal component 
values. The automatic identification of classes in 
a histogram mainly consists of the detection of 
significant transitions from positive to negative 
values in a sequence formed by the consecutive 
slopes of the histogram. Both manual and auto-
matic approaches were tested in this work. The 
proportion of variance explained by principal 
components 1, 2, 3 and 4 were, respectively, 
94.5 %, 3.9 %, 1.3 % and 0.3 % (Fig. 3.16).

Fig. 3.15  Results of: (a) parallelepiped (with MLC as tie breaker); (b) K-Means; and c object-based classification, for 
the aerial photograph of 1996 (Adapted from Teodoro et al. 2009b)
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The visual aspect of the principal components 
is slightly different from what would be expected 
because of the pre-processing stage that is per-
formed in the PCAH method. The histograms 
(with both manual and automatic analysis) and 
resulting segmentations of the principal compo-
nents obtained were analysed. It was observed 
that each principal component allows for differ-
ent identifications of the considered classes. 
Using the training classes defined for the pixel-
based supervised classification, the proportion of 
correctly classified pixels considering the second 
principal component were 98 %, 92 %, 43 % and 
99 %, for the classes ‘sea’, ‘sediments + breaking 
zone’, ‘beach face’ and ‘beach’. Combining these 
proportions of agreement with the visual analysis 
shows that the PCAH method is a promising 
methodology regarding the identification of 
beach hydromorphological patterns/forms 
through remotely sensed data. More details about 
this method could be founded in Teodoro et  al. 
(2011b).

More recently, Teodoro et  al. (2010, 2011c, 
2013) and Teodoro (2015) explore the conjuga-
tion of high-resolution spatial data combined 
with data mining techniques to identify/classify 
beach features/patterns. Different data mining 
techniques, such as ANN and Decision Trees 
(DT) have been broadly applied in the field of RS 
(e.g. Shridhar and Alvarinho 2013; Song et  al. 
2012). The ANNs have a number of advantages 
over traditional statistical methods (Wassermann 
1989). The ANN can solve nonlinear problems of 
almost infinite complexity and is more robust in 
handling noisy and missing data than traditional 
methods. This is especially desirable for satellite 
data from visible and infrared sensors that often 
have a considerable portion of the image not vis-
ible because of clouds. Related to ANN, and in a 
coastal area context, ANN has been used to pro-
duce “fuzzy” maps of LULC changes in Mexico 
(Mas 2004) and wetland vegetation coverage in 
Florida (Filippi and Jensen 2006). ANN, utilizing 
a layered thematic classification approach, has 

Fig. 3.16  The first (a), second (b), third (c) and fourth (d) principal components of the pre-processed IKONOS-2 
image (R, G, B and NIR bands) (Teodoro et al. 2011b)
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also been used to map coastal Argentina (Kandus 
et al. 1999) and to examine coastal areas of the 
Gulf of Mississippi (O’Hara et al. 2003).

The DT algorithm is one of the most popular 
data mining techniques and has also been applied 
with success to extract forms/patterns from dif-
ferent types of satellite data. A DT is a classifier 
expressed as a recursive partition of the instance 
space. The DT consists of nodes that form a 
rooted tree, meaning it is a directed tree with a 
node called root that has no incoming edges. DT 
learning algorithm is superior to other algorithms 
in many aspects. It is computationally fast, makes 
no assumption on data distribution, can attain 
nonlinear mapping and easily interpretable rules, 
and has an embedded ability for feature selection 
(Wang and Li 2008). Saran et  al. (2009) pre-
sented different approaches to obtain an optimal 
LULC map based on RS imagery (ASAR and 
ASTER) for a Himalayan watershed in northern 
India. A digital classification using MLC and a 
DT classifier was applied. The results obtained 
from the DT were better and even improved after 
post classification sorting. Jin and Mountrakis 
(2013) performed a case study in Denver 
(Colorado, USA), where probabilities of urban 
change generated from two existing urban pre-
diction models (based on DT and logistic regres-
sion) are combined as additional information 
content with a LANDSAT TM scene. Teodoro 
(2015) developed a recent work related to the 
application of data mining techniques, particu-
larly ANN and DT, to an IKONOS-2 image (18 
September 2008) in order to identify and classify 
beach features and their geographic patterns and 
to compare the performance of the ANN and DTs 
in a particular stretch of the northwest coast of 
Portugal (limited to the north by the Douro River 
mouth (Porto city) and to the south by a small 
fishing village (Aguda), with an extension of 
approximately 9.5  km). Despite the fact that 
ANN and DT are well-known classifications 
methods in the classification of VHSR data, they 
are not usually applied in the identification/clas-
sification of beach features/patterns. Based on the 
knowledge of the coastal features (Teodoro et al. 
2011b) the same five training classes were con-
sidered: Sea (S), Suspended-Sediments (SS), 

Breaking-Zone (BZ), Beach Face (BF), and 
Beach (B). The dataset was composed of 13 
775 pixels unequally comprising the five classes 
(Teodoro et  al. 2010). Each pixel is associated 
with the reflectance of each spectral band (blue, 
green, red, and NIR) and the corresponding class. 
The dataset was randomly divided into training 
(70 % of each class) and validation (30 % of each 
class) subsets.

The ANN used in this study consisting of four 
input nodes, ten hidden nodes (one hidden layer), 
and five output nodes. The weights of the ANN 
were estimated based on the back-propagation 
algorithm (Haykin 1999). The nnet package 
(Ripley and Venables 2014) available in R soft-
ware (R Core Team 2013) was used. The network 
performance was assessed by estimating the 
accuracy with which the validation data were 
classified. The OA was equals to 98.6 % and the 
Kappa coefficient equals to 0.97.

The DT used in this work was implemented 
through the rpart package found in the R soft-
ware (R Core Team 2013), that includes a set of 
routines related to many of the ideas found in the 
Classification And Regression Tree (CART) 
book and programs implemented by Breiman 
et  al. (1984). The tree is built by the following 
process: first the single variable which best splits 
the data into two groups is found. After the data 
are separated, then this process is applied sepa-
rately to each subgroup, and so on recursively 
until the subgroups either reach a minimum size 
or until no improvement can be made. The sec-
ond stage of the procedure consists of using 
cross-validation to trim back the full tree. Cost-
complexity pruning of the rpart routines deter-
mines a nested sequence of subtrees of the 
supplied rpart object by recursively snipping off 
the least important splits based on the threshold 
complexity parameter (cp). More information 
about the rpart package can be found in Therneau 
and Atkinson (1997). Two DT were developed. 
The first DT (unpruned) obtained comprises a 
total of 32 nodes. The OA and Kappa coefficient 
obtained were very good, presented values higher 
than 98  % and 0.97  %, respectively. The class 
that presented the lowest value of the producer 
accuracy was the “BZ,” which was already 
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expected due to its high spectral variability. A 
second DT was obtained after pruning the origi-
nal tree, resulting in seven nodes. After pruning 
the classifier loses some accuracy and sensibility 
(OA and Kappa values of 96.9 % and 0.950 %, 
respectively). It is also important to note that for 
the DT unpruned, the “BF” class presents a user 
accuracy of 89.5 %, which is the lowest value.

The beach features/patterns identification 
through an ANN presented accuracies identical 
to DTs (without pruning the tree), with an OA of 
98.6 %. The ANN presented a classification more 
sensitive to rip currents where pixels belonging 
to the class “SS” are not incorrectly classified as 
“S” class. This is visible in the images presented 
in Fig. 3.17.

The accurate identification of rip currents 
location, spacing, persistence, and size is of 
extreme importance for coastal and marine 
researchers. The data mining algorithms 
employed in this work (DT and ANN) conduced 
to better results than the traditional classification 
methodologies. For the same dataset, the best 
result for the supervised classifications was 
achieved with the parallelepiped classifier, with a 
value of 97 % for OA (Teodoro et al. 2011b). The 
better result using an OBIA approach was found 
for the pan-sharpened true colour imagery with 
an OA not higher than 66 %. Moreover, the rip 
currents were not clearly identified. This research 

demonstrated that the association of remotely 
sensed high-spatial resolution data and data min-
ing algorithms is an effective methodology to 
identify beach patterns/forms.

3.4	 �Discussion

Different methods in RS for determining the 
effect of spatial resolution on marine and coastal 
ecosystems using different spatial, spectral and 
temporal resolution images can be applied. The 
case studies presented here address three main 
image classification techniques (Pixel-Based 
(Supervised and Unsupervised) and OBIA clas-
sification) and data mining algorithms to evaluate 
the changes and integrity (health) of the coastal 
lagoon habitats; to mapping the spatial distribu-
tion of natural habitats; to retrieve the TSM con-
centration; to identify and characterize river 
plumes; to extract estuarine/coastal sandy bodies; 
and to identify beach features/patterns.

Making the right decision about which spatial 
resolution is optimal for the assessment of marine 
and coastal ecosystems is not an easy matter. 
First, high spatial resolution images are more 
detailed than the low spatial resolution images. 
Second, some features can be identified clearly in 
high special resolution whereas some features 
can be recognized in low or moderate spatial res-

Fig. 3.17  Beach patterns/forms identification and two zoomed areas obtained through: (a) DT without pruning; (b) DT 
with pruning (cp = 0.01 e xval = 5); (c) ANN (Teodoro 2015)
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olution much clearer. Finally, the coverage using 
high spatial resolution is smaller than the cover-
age that introduced by using low spatial resolu-
tion images. Therefore, the definition of a precise 
spatial and temporal resolution depends on the 
objectives of the research.

As stated before, the advantage of OBIA over 
pixel-based image analysis is clear when images 
with high spatial resolution are used. Indeed, in 
such a case, the increase of the number of spec-
tral bands creates uncertainty in traditional pixel-
based classifiers, while by OBIA it was possible 
to group pixel with similar spectral information 
into objects. In the case of imagery with medium 
to low spatial resolution, these enclose lower 
spectral variability and so are easily handled by 
pixel-based methods.

For instance, several factors which influence 
classification accuracy must be considered, such 
as image data quality, the reliability of training 
and testing data and the accuracy assessment 
method. Enhanced efforts are required on the 
investigation of advanced algorithms and pro-
mote a higher usage of hyperspectral imagers and 
calibrated ship samples to identify accurately the 
effect of spatial resolution on the accuracy of the-
matic classifications, and support a better defini-
tion of the optimal resolution of remotely-sensed 
digital data for marine and coastal ecosystems.

3.5	 �Conclusions

This chapter has illustrated several characteris-
tics of the RS of marine and coastal ecosystems, 
including its challenges. RS is presented as a 
powerful marine and costal assessment tool for 
the shortcoming and future, generating vast 
quantities of data on spatial and temporal scales 
heretofore unimaginable, and allowing the devel-
opment of new image processing algorithms. It 
now appears that RS needs, cost and technology 
are converging in a way that will prove practical 
and cost-effective for marine and costal manag-
ers and researchers. Finally, to draw conclusions 
about marine and coastal assessment, it is essen-
tial to develop both a near real-time RS system, 
which includes more accurate ground truth infor-

mation, for the marine and coastal areas and a 
structure for the distribution of the gathered 
information (e.g. as Copernicus services) to man-
agers and researchers. Even with these draw-
backs, marine and coastal RS’s future is 
promising.
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