1,275 research outputs found

    A Model for Dynamic QoS Negotiation Applied to an MPEG4 Applications

    Get PDF
    The traffic generated by multimedia applications presents a great amount of burstiness, which can hardly be described by a static set of traffic parameters. The dynamic and efficient usage of the resources is one of the fundamental aspects of multimedia networks: the traffic specification should first reflect the real traffic demand, but optimise, at the same time, the resources requested. This chapter presents: a model for dynamically renegotiating the traffic specification (RVBR), how this can be integrated with the traffic reservation mechanism RSVP, and an example of application able to accommodate its traffic to managing QoS dynamically. The remaining of this chapter is focused on the technique used to implement RVBR) taking into account problems deriving from delay during the renegotiation phase and on the performance of the application with MPEG4 traffic

    Theories and Models for Internet Quality of Service

    Get PDF
    We survey recent advances in theories and models for Internet Quality of Service (QoS). We start with the theory of network calculus, which lays the foundation for support of deterministic performance guarantees in networks, and illustrate its applications to integrated services, differentiated services, and streaming media playback delays. We also present mechanisms and architecture for scalable support of guaranteed services in the Internet, based on the concept of a stateless core. Methods for scalable control operations are also briefly discussed. We then turn our attention to statistical performance guarantees, and describe several new probabilistic results that can be used for a statistical dimensioning of differentiated services. Lastly, we review recent proposals and results in supporting performance guarantees in a best effort context. These include models for elastic throughput guarantees based on TCP performance modeling, techniques for some quality of service differentiation without access control, and methods that allow an application to control the performance it receives, in the absence of network support

    Asymptotic Identity in Min-Plus Algebra: A Report on CPNS

    Get PDF
    Network calculus is a theory initiated primarily in computer communication networks, especially in the aspect of real-time communications, where min-plus algebra plays a role. Cyber-physical networking systems (CPNSs) are recently developing fast and models in data flows as well as systems in CPNS are, accordingly, greatly desired. Though min-plus algebra may be a promising tool to linearize any node in CPNS as can be seen from its applications to the Internet computing, there are tough problems remaining unsolved in this regard. The identity in min-plus algebra is one problem we shall address. We shall point out the confusions about the conventional identity in the min-plus algebra and present an analytical expression of the asymptotic identity that may not cause confusions

    Advances in Internet Quality of Service

    Get PDF
    We describe recent advances in theories and architecture that support performance guarantees needed for quality of service networks. We start with deterministic computations and give applications to integrated services, differentiated services, and playback delays. We review the methods used for obtaining a scalable integrated services support, based on the concept of a stateless core. New probabilistic results that can be used for a statistical dimensioning of differentiated services are explained; some are based on classical queuing theory, while others capitalize on the deterministic results. Then we discuss performance guarantees in a best effort context; we review: methods to provide some quality of service in a pure best effort environment; methods to provide some quality of service differentiation without access control, and methods that allow an application to control the performance it receives, in the absence of network support

    Renegotiable VBR service

    Get PDF
    In this work we address the problem of supporting the QoS requirements for applications while efficiently allocating the network resources. We analyse this problem at the source node where the traffic profile is negotiated with the network and the traffic is shaped according to the contract. We advocate VBR renegotiation as an efficient mechanism to accommodate traffic fluctuations over the burst time-scale. This is in line with the Integrated Service of the IETF with the Resource reSerVation Protocol (RSVP), where the negotiated contract may be modified periodically. In this thesis, we analyse the fundamental elements needed for solving the VBR renegotiation. A source periodically estimates the needs based on: (1) its future traffic, (2) cost objective, (3) information from the past. The issues of this estimation are twofold: future traffic prediction given a prediction, the optimal change. In the case of a CBR specification the optimisation problem is trivial. But with a VBR specification this problem is complex because of the multidimensionality of the VBR traffic descriptor and the non zero condition of the system at the times where the parameter set is changed. We, therefore, focus on the problem of finding the optimal change for sources with pre-recorded or classified traffic. The prediction of the future traffic is out of the scope of this thesis. Traditional existing models are not suitable for modelling this dynamic situation because they do not take into account the non-zero conditions at the transient moments. To address the shortfalls of the traditional approaches, a new class of shapers, the time varying leaky bucket shaper class, has been introduced and characterised by network calculus. To our knowledge, this is the first model that takes into account non-zero conditions at the transient time. This innovative result forms the basis of Renegotiable VBR Service (RVBR). The application of our RVBR mathematical model to the initial problem of supporting the applications' QoS requirements while efficiently allocating the network resources results in simple, efficient algorithms. Through simulation, we first compare RVBR service versus VBR service and versus renegotiable CBR service. We show that RVBR service provides significant advantages in terms of resource costs and resource utilisation. Then, we illustrate that when the service assumes zero conditions at the transient time, the source could potentially experience losses in the case of policing because of the mismatch between the assumed bucket and buffer level and the policed bucket and buffer level. As an example of RVBR service usage, we describe the simulation of RVBR service in a scenario where a sender transmits a MPEG2 video over a network using RSVP reservation protocol with Controlled-Load service. We also describe the implementation design of a Video on Demand application, which is the first example of an RVBR-enabled application. The simulation and experimentation results lead us to believe that RVBR service provides an adequate service (in terms of QoS guaranteed and of efficient resource allocation) to sources with pre-recorded or classified traffic

    Performance Analysis in IP-Based Industrial Communication Networks

    Get PDF
    S rostoucím počtem řídicích systémů a jejich distribuovanosti získávájí komunikační sítě na důležitosti a objevují se nové výzkumné trendy. Hlavní problematikou v této oblasti, narozdíl od dřívějších řídicích systémů využívajících dedikovaných komunikačních obvodů, je časově proměnné zpoždění měřicích a řídicích signálů způsobené paketově orientovanými komunikačními prostředky, jako např. Ethernet. Aspekty komunikace v reálném čase byly v těchto sítích již úspěšně vyřešeny. Nicméně, analýzy trendů trhu předpovídají budoucí využití také IP sítí v průmyslové komunikaci pro časově kritickou procesní vyměnu dat. IP komunikace má ovšem pouze omezenou podporu v instrumentaci pro průmyslovou automatizace. Tato výzva byla nedávno technicky vyřešena v rámci projektu Virtual Automation Networks (virtuální automatizační sítě - VAN) zapojením mechanismů kvality služeb (QoS), které jsou schopny zajistit měkkou úroveň komunikace v reálném čase. Předložená dizertační práce se zaměřuje na aspekty výkonnosti reálného času z analytického hlediska a nabízí prostředek pro hodnocení využitelnosti IP komunikace pro budoucí průmyslové aplikace. Hlavním cílem této dizertační práce je vytvoření vhodného modelovacího rámce založeného na network calculus, který pomůže provést worst-case výkonnostní analýzu časového chování IP komunikačních sítí a jejich prvků určených pro budoucí použití v průmyslové automatizaci. V práci byla použita empirická analýza pro určení dominantních faktorů ovlivňujících časového chování síťových zařízení a identifikaci parametrů modelů těchto zařízení. Empirická analýza využívá nástroj TestQoS vyvinutý pro tyto účely. Byla navržena drobná rozšíření rámce network calculus, která byla nutná pro modelování časového chování používaných zařízení. Bylo vytvořeno několik typových modelů zařízení jako výsledek klasifikace různých architektur síťových zařízení a empiricky zjištěných dominantních faktorů. U modelovaných zařízení byla využita nová metoda identifikace parametrů. Práce je zakončena validací časových modelů dvou síťových zařízení (přepínače a směrovače) oproti empirickým pozorováním.With the growing scale of control systems and their distributed nature, communication networks have been gaining importance and new research challenges have been appearing. The major problem, contrary to previously used control systems with dedicated communication circuits, is time-varying delay of control and measurement signals introduced by packet-switched networks, such as Ethernet. The real-time issues in these networks have been tackled by proper adaptations. Nevertheless, market trend analyses foresee also future adoptions of IP-based communication networks in industrial automation for time-critical run-time data exchange. IP-based communication has only a limited support from the existing instrumentation in industrial automation. This challenge has recently been technically tackled within the Virtual Automation Networks (VAN) project by adopting the quality of service (QoS) architecture delivering soft-real-time communication behaviour. This dissertation focuses on the real-time performance aspects from the analytical point of view and provides means for applicability assessment of IP-based communication for future industrial applications. The main objective of this dissertation is establishment of a relevant modelling framework based on network calculus which will assist worst-case performance analysis of temporal behaviour of IP-based communication networks and networking devices intended for future use in industrial automation. Empirical analysis was used to identify dominant factors influencing the temporal performance of networking devices and for model parameter identification. The empirical analysis makes use of the TestQoS tool developed for this purpose. Minor extensions to the network calculus framework were proposed enabling to model the required temporal behaviour of networking devices. Several exemplary models were inferred as a result of classification of different networking device architectures and empirically identified dominant factors. A novel method for parameter identification was used with the modelled devices. Finally, two temporal models of networking devices (a switch and a router) were validated against empirical observations.

    The Renegotiable Variable Bit Rate Service

    Get PDF
    A shaper is a system that stores incoming bits in a buffer and delivers them as early as possible, while forcing the output to be constrained with a given arrival curve. A shaper is time invariant if the traffic constraint is defined by a fixed arrival curve, it is time varying if the condition on the output is given by a time varying traffic contract. This occurs, for example, with renegotiable variable bit rate (RVBR) services. We focus on the class of time varying shapers called time varying leaky bucket shapers, such shapers are defined by a fixed numbers of leaky buckets, whose parameters (rate and bucket size) are changed at specific transition moments. We assume that the bucket levels are kept unchanged at those transition moments (``no reset`` assumption). Our main finding is an input-output characterisation for this class of time varying shapers. Then we apply it to the tradeoff in optimising the RVBR service, assuming that a perfect prediction of future traffic can be made. We provide an algorithm that solves the problem of finding, at any renegotiation, the parameters for a RVBR service when the knowledge of the input traffic is limited to the next interval (local optimisation problem). We illustrate the impact of the ``no-reset`` assumption by analyzing on some examples the losses that occur when the source chooses the opposite approach, namely, the ``reset`` approach

    Network emulation focusing on QoS-Oriented satellite communication

    Get PDF
    This chapter proposes network emulation basics and a complete case study of QoS-oriented Satellite Communication

    A Study of Quality of Service Communication for High-Speed Packet-Switching Computer Sub-Networks

    Get PDF
    In this thesis, we analyze various factors that affect quality of service (QoS) communication in high-speed, packet-switching sub-networks. We hypothesize that sub-network-wide bandwidth reservation and guaranteed CPU processing power at endpoint systems for handling data traffic are indispensable to achieving hard end-to-end quality of service. Different bandwidth reservation strategies, traffic characterization schemes, and scheduling algorithms affect the network resources and CPU usage as well as the extent that QoS can be achieved. In order to analyze those factors, we design and implement a communication layer. Our experimental analysis supports our research hypothesis. The Resource ReSerVation Protocol (RSVP) is designed to realize resource reservation. Our analysis of RSVP shows that using RSVP solely is insufficient to provide hard end-to-end quality of service in a high-speed sub-network. Analysis of the IEEE 802.lp protocol also supports the research hypothesis
    corecore