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Abstract

In this work we address the problem of supporting the QoS requirements for appli�

cations while e�ciently allocating the network resources� We analyse this problem

at the source node where the tra�c prole is negotiated with the network and the

tra�c is shaped according to the contract�

We advocate VBR renegotiation as an e�cient mechanism to accommodate traf�

c �uctuations over the burst time�scale� This is in line with the Integrated Service

of the IETF with the Resource reSerVation Protocol 	RSVP
� where the negotiated

contract may be modied periodically�

In this thesis� we analyse the fundamental elements needed for solving the VBR

renegotiation�

A source periodically estimates the needs based on� 	�
 its future tra�c� 	�
 cost

objective� 	�
 information from the past� The issues of this estimation are twofold�

�� future tra�c prediction

�� given a prediction� the optimal change�

In the case of a CBR specication the optimisation problem is trivial� But with

a VBR specication this problem is complex because of the multidimensionality of

the VBR tra�c descriptor and the non zero condition of the system at the times

where the parameter set is changed� We� therefore� focus on the problem of nding

the optimal change for sources with pre�recorded or classied tra�c� The prediction

of the future tra�c is out of the scope of this thesis�

Traditional existing models are not suitable for modelling this dynamic situation

because they do not take into account the non�zero conditions at the transient

moments�

To address the shortfalls of the traditional approaches� a new class of shapers�

the time varying leaky bucket shaper class� has been introduced and characterised by

network calculus� To our knowledge� this is the rst model that takes into account

non�zero conditions at the transient time� This innovative result forms the basis of

Renegotiable VBR Service �RVBR��
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The application of our RVBR mathematical model to the initial problem of sup�

porting the applications� QoS requirements while e�ciently allocating the network

resources results in simple� e�cient algorithms�

Through simulation� we rst compare RVBR service versus VBR service and

versus renegotiable CBR service� We show that RVBR service provides signicant

advantages in terms of resource costs and resource utilisation� Then� we illustrate

that when the service assumes zero conditions at the transient time� the source could

potentially experience losses in the case of policing because of the mismatch between

the assumed bucket and bu�er level and the policed bucket and bu�er level�

As an example of RVBR service usage� we describe the simulation of RVBR

service in a scenario where a sender transmits a MPEG� video over a network

using RSVP reservation protocol with Controlled�Load service� We also describe

the implementation design of a Video on Demand application� which is the rst

example of an RVBR�enabled application�

The simulation and experimentation results lead us to believe that RVBR service

provides an adequate service 	in terms of QoS guaranteed and of e�cient resource

allocation
 to sources with pre�recorded or classied tra�c�
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Sommario

In questa tesi a�rontiamo il problema del supporto della qualit�a del servizio richiesta

dalle applicazioni a fronte di un�e�ciente allocazione delle risorse di rete� Questo

probleme viene analizzato al nodo sorgente� dove il prolo del tra�co 	tra�c prole


viene negoziato con la rete ed il tra�co viene reso conforme al contratto�

Sosteniamo che la rinegoziazione VBR �e un meccanismo e�ciente per la gestione

delle �uttuazioni del tra�co a livello burst� Questa visione �e in linea con le speciche

di Integrated Service di IETF con Resource reSerVation Protocol 	RSVP
� in cui il

contratto negoziato pu�o essere periodicamente modicato�

In questa tesi analizziamo gli elementi fondamentali necessari alla risoluzione

della rinegoziazione VBR�

Un nodo sorgente stima le risorse di cui ha bisogno basandosi su� 	�
 il proprio

tra�co futuro� 	�
 i costi� 	�
 le informazioni sul passato� Questa stima presenta

due problemi�

�� la predizione del tra�co futuro

�� data una predizione� trovare il nuovo valore ottimo da negoziare�

Il problema dell�ottimizzazione �e banale nel caso di specica CBR� ma risulta

complesso nel caso di specica VBR a causa della multidimensionalit�a del descrittore

del tra�co VBR e delle condizioni iniziali non nulle al momento di una transizione�

Per questo motivo ci concentriamo sul problema di trovare il nuovo prolo ottimo

di tra�co per sorgenti che lavorano con tra�co pre�recorded o classicato� La

predizione del tra�co futuro non fa parte degli obiettivi di questa tesi�

I modelli tradizionali non sono adatti alla modellizazione di questa situazione

dinamica� perch�e non considerano il fatto che� al momento della transizione� le

condizioni del sistema possono essere diverse da zero�

Per colmare la lacuna degli approcci tradizionali� introduciamo una nuova classe

di shapers che caratteriziamo con network calculus� la classe dei time varying leaky

bucket shapers� Per quanto ci �e dato sapere� questo �e il primo modello che tiene

conto di condizioni iniziali non nulle al momento di una transizione� Questo risultato

innovativo �e alla base del Renegotiable VBR Service �RVBR��
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L�applicare il modello matematico del servizio RVBR al problema del supporto

della qualit�a del servizio richiesta dalle applicazioni nel rispetto dell�allocazione ef�

ciente le risorse di rete porta� come risultato� ad algoritmi semplici ed e�cienti�

Per mezzo di simulazioni� paragoniamo innanzitutto il servizio RVBR con il

servizio VBR e con il servizio renegotiable CBR� dimostrando che il servizio RVBR

fornisce vantaggi signicativi in termini di costi e di utilizzazione delle risorse� In

seguito� facciamo vedere che� qualora un servizio si basi sulla supposizione che le con�

dizioni del sistema siano uguali a zero al momento della transizione� il nodo sorgente

pu�o subire delle perdite di tra�co a causa del policing� in quanto� in questo caso�il

nodo sorgente presuppone livelli di bu�er e buckets disponibili che non collimano

con i livelli che viengono controllati�

Come esempio di utilizzo del servizio RVBR� presentiamo la simulazione del

servizio RVBR in uno scenario dove un sorgente trasmette un �usso MPEG� su di

una rete che utilizza il protocollo di riservazione RSVP con il servizio Controlled�

Load� In seguito descriviamo il primo esempio di applicazione di Video on Demand�

che supporta il servizio RVBR�

I risultati della simulazione e della sperimentazione ci portano ad asserire che

il servizio RVBR o�re un servizio adeguato 	in termini di qualit�a del servizio e di

allocazione e�ciente delle risorse
 a sorgenti che lavorano con tra�co pre�recorded

o classicato�
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Chapter �

Introduction

Integrated services networks introduce support to current and future applications

that make use of di�erent technologies as voice� data� and video� These multimedia

applications require� in many cases� better service than a best e�ort service� This

service is generally expressed in terms of Quality of Service 	QoS
� whereas network

e�ciency depends crucially on the degree of resources sharing inside the network�

To achieve both the applications� QoS requirements and network resources e��

ciency is extremely important for several reasons� for instance� network dimensioning

or tra�c charging�

We analyse how to achieve these goals at the source node where a tra�c prole is

negotiated with the network and the tra�c is shaped according to the contract� The

reference conguration is shown in Figure ���� A shaper� fed with a bursty tra�c

described by R	t
�� shapes the tra�c to respect the tra�c prole established with

the network� using a bu�er of size X� A shaper is a system that stores incoming

bits in a bu�er and delivers them as early as possible while forcing the output R�	t


to be constrained with a given curve�

In order to allocate resources to satisfy the applications� QoS requirements� the

sources use a resource reservation mechanism� Networks as ATM ��� or IP with

RSVP ��� o�er a limited set of way for describing the reservation� namely�

� Constant Bit Rate 	CBR
� primary specied by a peak rate p

�R�t� represents the number of bits arrived at time t
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output R*

Source Node

Network

input R

shaping buffer = X

Figure ���� Shaping at a source node� using the shaping bu�er of size X� the input
tra�c R is shaped in order to respect the tra�c prole established with the network�
The output of the shaping is indicated by R��

� Variable Bit Rate 	VBR
� mainly characterised by a peak rate p and a sus�

tainable rate r and a burst size b�

� Renegotiated CBR 	RCBR
��� or VBR 	RVBR
���� where the tra�c parame�

ters of already active connections can be modied

A simple example is shown in Figure ���� A source S� as described in Figure ����

generates some bursty tra�c represented by the curve R� We illustrate the output

for CBR� VBR� RCBR and RVBR services�

When we attempt to satisfy the QoS requirements of S with a CBR service� the

output is limited by the peak p� This implies that� in order to guarantee the QoS� S

must request a very large p� This results� for bursty tra�c� in a very unsatisfactory

network utilisation� as illustrated in Figure ���	a
� at time v�� the source could have

sent up to p � v�� but it has sent only R
�	v�
 � R	v�
� The di�erence represents the

unutilised resources�

VBR service allows the burst to go through for a limited period� The situation

of unutilised resources is less frequent� However� even if VBR is more sophisticated�

it is still unable to adapt to many tra�c changes and� for long periods� the resources

can be used ine�ciently�
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The situation improves with RCBR� S renegotiates the peak p to match its tra�c

changes and in the second interval it reduces the peak from p� to p�� However� the

choice is still limited to a single parameter�

The performance of the RVBR service is the best� S can renegotiate the set of

parameters to adapt it to its tra�c and the multidimensional parameters set assures

�exibility on the interval time�scale� The gap between the resources requested and

the resources used is substantially reduced�

Therefore� we advocate VBR renegotiation as an e�cient mechanism to accom�

modate tra�c �uctuations over the burst time�scale� This is in line with the Inte�

grated Service of the IETF with the Resource reSerVation Protocol 	RSVP
� where

the negotiated contract may be modied periodically ����

In this thesis� we examine the system components that we need to put in place

in order to solve the VBR renegotiation�

A source periodically estimates the needs based on� 	�
 its future tra�c� 	�
 cost

objective� 	�
 information from the past� The issues of this estimation are twofold�

�� future tra�c prediction

�� given a prediction� the optimal change�

If we use a CBR specication� the second issue is straightforward� But with a

VBR specication the problem of nding the optimal change is complex because�

	a
 there are several parameters 	multidimensional tra�c descriptor
 and the op�

timal tradeo� is not obvious� We call this problem �the static VBR problem��

	b
 at the transition times 	where the parameter set is changed
 the initial con�

ditions in the leaky buckets and in the shaping bu�er are di�erent from zero�

We call this problem �the dynamic VBR problem��

We� therefore� focus on the problem of nding the optimal change for sources with

pre�recorded or classied tra�c� The prediction of the future tra�c is out of the

scope of this thesis� see for example ����
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�b� VBR service� R� is limited� in average� by the sustain�

able r� At time s� this limit is reached and S is forced to

send at r�

t1

R*

R

p1 p2
p1

sec

B
yt

e

�c� RCBR service� in the second interval S can reduce the

peak from p� to p��

t1

R*

R

r1

p1 p2

r2

b2

b1

B
yt

e

sec

�d� RVBR service� in the second interval S can reduce both

the peak from p� to p� and the sustainable from r� to r��

Figure ���� Services example� the four examples show the same input and resulting
output
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Example� the static and the dynamic VBR problems

As a simple example� let�s consider the tra�c generated by the source S� To

ensure the QoS� as shown in Figure ���	d
� the source attempts to shape the tra�c

conforming to renegotiable VBR tra�c specications� The shaping is done assuming

a shaping bu�er of capacity X�

The static VBR problem In the rst interval 	��� t��
 we encounter the problem

of optimising the network resources needed for supporting the tra�c generated by

S� With a CBR service this problem is trivial� we can compute the optimal peak p

as the deterministic equivalent capacity eX ���� which takes into account the shaping

done by the bu�er X� However� as we have seen� the simple CBR specication leads

to situations where the network resources are highly underutilised�

A VBR service allows the reduction of this e�ect with a multidimensional spec�

ication 	p� r� b
� The optimal peak rate p is still computed as the deterministic

equivalent capacity eX 	see Section ����� and ���
� whereas there is a tradeo� to be

made between the parameters of the leaky bucket 	r and b� see Figure ���
� For

example� one may choose a larger bucket size and a smaller bucket rate� or vice

versa� depending on the tra�c �ow and on the cost of the service� This is not an

obvious optimisation problem�

The dynamic VBR problem In the second interval 	�t�� t��
� we encounter an

additional problem� how to describe and take into account the fact that the leaky

bucket b and the shaping bu�er X can be non�empty when S requests to change the

service specication �time t�
� The bucket can be non�empty because it is reserved

by the tra�c that is going to be served� Some tra�c can be in the bu�er because

it did not nd service available when it arrived� In Figure ��� we plot the evolution

of the backlog w	t
 and the bucket level q	t
 in ��� t��� At time t� both the bucket b

and the bu�er X are non�empty 	q	t�
 � �� w	t�
 � �
�

When we ignore this aspect 	i�e� assume a zero bucket and bu�er level at the

beginning of the interval
 the source is very likely to experience losses in the case of

policing� This is due to the mismatch between the assumed bucket and bu�er level
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Figure ���� The static VBR problem� For a given input tra�c R�t�� there are several

connection descriptors that can carry it� At one end of the spectrum� it is possible to

give a large value to the bucket rate� at the limit� make it a CBR �curve V BR�� r� � p

and b� � ��� at the opposite end� a small rate �r� � ��� with a large bucket size is also

possible �curve V BR��� However� V BR� is not acceptable because� after time s� it would

be necessary a bu	er capacity larger than X� V BR� and V BR� are both valid and the

optimum depends by the costs we want to minimise�
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Figure ���� The evolution of the backlog w	t
 and the bucket level q	t
�

and the policed bucket and bu�er level� This is illustrated in Figure ����

Main Results of this Work

The main ndings in this thesis are

� analytical solutions to the static VBR problem 	see Chapter �
 and to the

dynamic VBR problem 	see Chapters � and �
�

� reports on the implementation of the renegotiable services�

� Renegotiable CBR service� implementation of the host side on Linux

	Arequipa
 	see Chapter �
�

� Renegotiable VBR service�

� implementation of the host side on the EXPERT testbed 	RM�R


	see Chapter �
�

� design of the host side 	Armida
 	see Chapter �
�
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Figure ���� The losses experienced by S when the non zero initial conditions were
ignored� the assumed bu�er and bucket level 	dashed lines
 are signicantly smaller
than the policed ones 	solid lines
�

Technical Approach

The two technical approaches taken in this thesis are�

� Denition of mathematical models�

� we use network calculus and min�plus algebra to dene an analytical

model in order to characterise the renegotiable VBR service� This results

in simple� e�cient algorithms to solve the dynamic VBR problem that

can easily be implemented in real applications� See Chapters � and ��

� Simulation and implementation in real cases�

� we show the validity of the solutions proposed by means of extensive

simulations� See Chapters � for the simulation of the static VBR problem

and � for the simulation of the dynamic VBR problem�

� we also prove the applicability of our solutions with implementation of

real cases� see Chapters �� �� ��
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Novelty of this Work

The time varying leaky bucket shaper class is characterised by network calculus�

To our knowledge� this is the rst mathematical model that takes into account non

zero conditions at the transient time� see Chapter ��

The demonstration of the renegotiable CBR is the rst example of an application

that is able to tune the network QoS 	ATM tra�c parameters
 at run time� see

Chapter ��

To our knowledge� the application described in Chapter � is the rst design of

an application using the renegotiable VBR service�

The results of this work have been published in several papers� see Appendix G

for a complete list�

Work Breakdown

Chapter � � We describe how Vic accomplished ATM tra�c parameters tun�

ing over the ATM WAN of SWISSCOM� transferring live video from Lausanne to

Basel and Z urich over switched� renegotiable ATM connections� For this purpose�

we have modied the popular Mbone tool Vic 	VIdeo Conferencing
 ��� to use Are�

quipa 	Application REQuested IP over ATM
 ���� The latter enables applications

and in particular Vic� to request a direct ATM connection for its exclusive use and to

directly control the tra�c parameters of this connection� We have also implemented

ATM Forum�s UNI��� signaling and ITU�T�s connection modication recommenda�

tion Q�������� on end�systems� as well as on switches� This implementation� coupled

with the Arequipa mechanism� allowed Vic to negotiate and renegotiate ATM band�

width at will and at run time� This work demonstrates the possibility of optimising

the network resources by QoS renegotiation� the CBR connection is renegotiated at

the source node in order to conform to the tra�c issued by the video conferencing

application� To our knowledge� this is the rst time any application has the capacity

to tune ATM tra�c parameters at run time�

Chapter � � We study the scenario where we have the multiplexing of several

VBR input connections over one VBR connection� The multiplexing connection is



��

called a VBR virtual trunk �VT� and has a multidimensional connection descriptor�

For a given aggregated input tra�c� there are several connection descriptors that

can carry it� Deciding among all these possibilities requires an additional criterion�

minimising a cost objective� Given a cost function for the VBR trunk and a connec�

tion admission control 	CAC
 method for the input connections multiplexed over

the VBR trunk� we focus on solving the static VBR problem� First� we show that

under reasonable assumptions on the cost function� this optimisation problem can

be reduced to a simpler one� Then we consider the homogeneous� loss�free case� for

which we give an explicit CAC method� In this case� we nd that� for all reasonable

cost functions� the optimal VBR trunk is either of the CBR type or is truly VBR�

with a burst duration equal to the burst duration of the input connections 	which

case is optimal depends on the cost function and the bu�er size X
� We take as an

example of cost function the equivalent capacity of the VBR trunk ���� and solve

the static VBR problem�

Then we design� simulate� implement and perform trials with the Resource Man�

agement and Routing 	RM�R
 architecture built upon the VT solution to the static

VBR problem and a dynamic resources management scheme ����� ����� ���� and �����

which estimates the changes in the tra�c�

This is a unique example of an advanced resource management and routing

architecture simulated and tested in a real ATM environment�

Chapter � � We use network calculus and min�plus algebra to dene an analytical

model in order to dene the renegotiable VBR service�

We rst characterise a leaky�bucket shaper system with non�zero initial condi�

tions in terms of input�output functions� Then� we study the class of time varying

shapers� A shaper is time varying if the condition on the output is given by a time

varying tra�c contract� We focus on the class of time varying shapers called time

varying leaky bucket shapers� Such shapers are dened by a xed number of leaky

buckets� whose parameters 	rate and bucket size
 are changed at specic transition

moments� We assume that the bucket levels are kept unchanged at those transition

moments 	�no reset� assumption
�

We dene the bucket level and the backlog for the time varying leaky�bucket
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shaper� By combining these results� we deduce a recursive input�output characteri�

sation of the time varying leaky�bucket shaper�

Before this work� there where no models suitable for the dynamic VBR problem�

Chapter � � We introduce the renegotiable VBR service 	RVBR
 that is charac�

terised by using the results on the time varying leaky�bucket shaper� A �ow using

the RVBR service is constrained by two leaky buckets� one denes the peak rate�

the other denes the sustainable rate and the burst tolerance� Renegotiable VBR

services are also studied in ��������������� the focus is on describing a given tra�c with

as few leaky buckets as possible and thus applies to the optimisation of a network

o�ering the RVBR service� Our approach� in contrast� focuses on the customer side

of the RVBR service and provides an analysis of the various tradeo�s that can be

made� Our work also di�ers by the systematic use of network calculus� We consider

a basic scenario where a fresh input tra�c is shaped in order to satisfy the leaky

bucket constraints� We further apply our mathematical model to solve the dynamic

VBR problem� assuming a perfect knowledge of future tra�c�

We provide some algorithms that solve this problem� when the knowledge of the

input tra�c is limited to the next interval 	local optimisation problem
 and when we

dispose of the complete input tra�c description 	global optimisation problem
� For

the local problem we propose two versions� one when the cost function is represented

by a linear cost function and the other when we compare two solutions in terms of

the number of connections with those parameters that would be accepted on a link

with capacity C and physical bu�er X�

Simulation experiments compare the local and global algorithms and show the

validity of the local approach� We illustrate the impact of the �no�reset� assumption

by analysing on some examples the losses that occur when the source chooses the

opposite approach� namely the �reset� approach� Furthermore we simulate the

RVBR service versus the renegotiable constant bit rate 	RCBR
 service and illustrate

that the RVBR approach can provide substantial benets� We also discuss the

impact of the size of the renegotiation interval on the e�ciency of the RVBR service�
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Chapter 	 � We show that the RVBR service is suitable for stored video sources�

We rst simulate RVBR in the RSVP with Controlled Load 	CL
 ���� service case�

In RSVP the sender sends a PATH message with a Tspec object that characterises

the tra�c it is willing to send� If we consider a network that provides a service as

specied for the CL service� the Tspec takes the form of a double bucket specica�

tion ���� as given by the RVBR service� With RSVP as reservation protocol� the

reservation has to be periodically refreshed� When the tra�c is known in advance�

the renegotiation can be done with the RVBR scheme� There is no additional sig�

naling cost in applying a Tspec renegotiation at that point� even if there is some

computational overhead due to the computation of the new parameters or to the

call admission control� etc�

We simulate this scenario with real video traces by using a ���� frame�long

sequence composed of several video scenes that di�er in terms of spatial and temporal

complexities� We evaluate the e�ectiveness of the RVBR algorithm for linear cost

function 	localOptimum�
 in terms of cost and backlog�

We also present the design of the implementation of the RVBR service in a Video

on Demand application called ARMIDA� This application uses RSVP as reservation

protocol and RVBR service to dynamically renegotiate the resources in the network�

We believe that this is the rst design of an application that uses the renegotiable

VBR service�

Conclusion and Appendices � In Chapter � we discuss our main ndings�

present the conclusion and possible future directions�

The Appendices B� C and D report on the architecture design� the simulation

and the trials performed with the Resource Management and Routing 	RM�R


architecture�

The Appendix E gives a technical overview of di�erent networking technologies�

such as the Internet� ATM and di�erent approaches of how to run IP on top of

an ATM network and assesses their potential to be used as an integrated services

network� This work evidences the relevance that QoS has in current and future

telecommunication technologies�
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Chapter �

Renegotiable CBR Service

This work in this chapter appeared in ����� ����� ����� ��	� and ��
��

��� Introduction

In this chapter� we study a real case where the source node shapes the tra�c

generated from a video conference application into a renegotiable CBR connection�

This is implemented and demonstrated on a public ATM network�

The ATM Forum and the ITU ���� ��� dene a large number of ATM connection

types� ranging from constant bit rate 	CBR
 to Available bit rate 	ABR
� In the

work reported here� we focus on the use of renegotiable CBR connections because

it provides a simple means to o�er a visible quality of service under explicit control

from the end�user� Renegotiable CBR connections are connections with a maximum

peak cell rate� which can be modied by the user at any time 	see Section ���
�

Arequipa or Application REQuested IP over ATM ��� ��� is a method for pro�

viding the quality of service of ATM to TCP�IP applications� assuming end�to�end

ATM connectivity exists� The Arequipa mechanism does not require any changes

in the network but two changes do need to be made at the end systems� First�

in order to implement Arequipa � some changes need to be made to the TCP�IP

protocol stack 	on the end systems
� Second� applications using Arequipa to obtain

QoS need to be modied slightly to make use of our simple extension to the socket

interface� The latter consists of just four calls for setting up� tearing down and
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Figure ���� Arequipa capable applications� data transmission is switched from the
default IP path 	�
 to a dedicated ATM connection	�
� An Arequipa connection
between two ATM attached hosts bypasses intermediate IP routers completely

modifying the tra�c parameters of connections� The applications then make use of

the end�to�end ATM connectivity and Arequipa to set up a direct switched virtual

channel connection 	SVC
 from the sender to the receiver application 	Fig� ���
�

The rst applications to be made Arequipa�capable were the Arena Web browser

and the CERN httpd Web server ��� ���� These were used to transfer live video across

a trans�european WAN from Lausanne to Helsinki with guaranteed QoS ����� Since

then we have partially implemented UNI��� signaling and the Q������� connection

modication capability on the end systems and on switches� Simultaneously we have

extended the Arequipa mechanism and API to include the connection modication

capability� With these an application can now modify the QoS parameters at run

time� after connection setup�

We demonstrate this in the case of the Mbone VIdeo Conferencing toolVic which

we have modied to be Arequipa�capable� Vic was used ���� to video conference

with QoS� in point�to�point mode� between Basel and Lausanne and also between

Z urich and Lausanne� We describe details of this demo which was done over the

ATM WAN of SWISSCOM� To our knowledge this was the rst time any application

had the ability to tune ATM tra�c parameters at run time�
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Arequipa only works in situations where end�to�end ATM connectivity exists� but

this assumption is not unrealistic in Europe where many countries have extensive

ATM already deployed� not only in the backbones but also in the LANs�

����� Chapter breakdown

The following section describes the main features of UNI��� signaling and Q�������

connection modication capabilities� Sections ��� and ��� describe Arequipa and

Vic respectively� while sections ��� and ��� describe details of implementation issues

and the demo�

��� Renegotiable CBR Connections

ATM signaling is used by applications to set up SVCs with prescribed QoS� As

mentioned in the introduction� we focus here on ATM connections of the CBR class

with renegotiation� which we call renegotiable CBR� We refer to renegotiation as the

connection modication capability dened in the ITU recommendation Q��������

The latter relates to modifying the tra�c parameter of an already active CBR

connection� The only connection characteristic that can be modied according to

Q������� is the peak cell rate 	PCR
�

In order to change the PCR of an active connection without renegotiation� the

only possibilities are to 	�
 open a new connection and to close the old one once the

new connection is available� or 	�
 to close the old connection rst and to open the

new one afterwards� In 	�
� the sum of the old and the new bandwidth is allocated

for a moment� which may cause the modication to be rejected� although the new

PCR alone would be acceptable� Also� data can reach the destination on two distinct

paths� so the sequence of cells is no longer guaranteed and some synchronisation is

required� In case 	�
� connectivity is interrupted for a short moment� and� if the

new PCR cannot be supported by the ATM network� the connection may be lost

entirely�

Renegotiation has neither of those drawbacks and also has shorter latency and

less processing� as the modication messages are small and the ATM network only
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Figure ���� Message sequence during bandwidth renegotiation

needs to perform connection admission control but no addressing� routing or other

processing required for call establishment�

The exchange of signaling messages during bandwidth renegotiation between two

applications is shown in Fig� ���� When an application requests a modication� a

MODIFY REQUEST is sent out to the called user provided local resources are avail�

able� Similarly a MODIFY ACKNOWLEDGE message is returned to the calling

user only if resources are available at the called user� The local resources at the

calling user are rechecked before the modication is considered to be agreed upon�

Then a conrmation is sent to the application and the peak cell rate is changed� A

renegotiation requesting a rate increase may fail� in which case the peak cell rate

remains at its previous value�

Connection modication is going to be an important capability in future com�

mercial broadband networks� where users will want to control the speed and quality

of the data stream because they will be charged for network usage 	e�g� bandwidth�

time
� Modication is especially suited for interactive multimedia applications where

bandwidth usage is likely to vary considerably over time�
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Renegotiable CBR service is used when we have changes during the connection

life time� on a large scale basis� In a video�conference one typical example is the

situation where a video moves from the image of a speaker to some presentation on

transparencies or on a board�

Note that renegotiation is di�erent from the initial QoS negotiation� The latter

capability 	dened in UNI ���
 takes place at call setup time� and consists in allowing

network nodes� or the called user� to negotiate the tra�c descriptor requested by

the calling user� Contrary to negotiation� re�negotiation occurs after the connection

is set up�

Renegotiable CBR connections also di�er from Available Bit Rate 	ABR
 con�

nections ����� With ABR connections� the maximum cell rate 	allowed cell rate
 is

also variable� but here the value of this rate is dictated by the network� not the user�

Also� with ABR connections� there is a concept of minimum cell rate� Extension of

our work to ABR connections would be interesting but still remains to be done�

At the same time renegotiable CBR service di�ers from VBR service� where the

VBR is better suited for bursty tra�c and the renegotiable CBR service is useful

when there are a small number of drastic changes on the QoS�

��� Arequipa

����� Overview of Arequipa

The rst step in running IP over ATM is to have a means to carry IP packets on

ATM� This is mainly an encapsulation issue� dened in RFC ���� ����� With this

alone� IP can be run over ATM using PVCs� For SVCs� a way to resolve IP addresses

to ATM addresses is needed� The IETF currently uses an approach called �classical

IP over ATM� 	CLIP
 that is based on an extension of ARP called ATMARP �����

The ATM Forum has dened a similar service called �LAN emulation� 	LANE
 ����

which tries to provide exactly the functionality one would obtain from a LAN� say

an Ethernet� Neither CLIP nor LANE are designed to allow applications to benet

from the inherent QoS selection features o�ered by the underlying ATM network

�����
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As described in section ���� Arequipa is a method for allowing ATM�attached

hosts that have direct ATM connectivity to set up end�to�end IP over ATM con�

nections� within the reachable ATM cloud� on request from applications and for the

exclusive use by the requesting application� These applications use both an IP and

an ATM stack to obtain direct ATM connections 	SVCs
 with guaranteed QoS� The

QoS is guaranteed by the fact that each of these SVCs is used exclusively for one

IP �ow identied by a pair of sockets 	eg� a TCP connection or a UDP stream
�

For simplicity� and because multicast transmissions are much less commonly

used than unicast transmissions� Arequipa presently only supports unicast 	point�

to�point
 operation� Extending Arequipa to support multicast would be straightfor�

ward� but it would burden the application with session management tasks if ATM

multicast modes other than leaf�initiated join were to be supported�

Arequipa does not require any modications in the networks 	routers� switches

etc�
 but as mentioned earlier� two important changes need to be made at the end�

systems� Some changes need to be made to the TCP�IP stacks at the end systems

	discussed brie�y in section ����� and in detail in ����
 and applications need to be

modied to use the Arequipa socket extensions� It is important to note that if an

application is to be QoS aware at all� some code needs to be added somewhere�

either in the applications themselves or in some proxies or gateways� We argue that

modifying Vic to use Arequipa is not more complex than modifying it for RSVP

��� ���� and certainly less so than modifying it for native ATM ����

Arequipa coexists with �normal� use of the networking stacks so that applications

not requiring Arequipa need not be modied and continue to function as normal�

����� Functionality

Arequipa adds four simple new functionalities at the socket layer� Applications

need to be modied to use just the following four calls in order to set�up� tear�down

or modify their ATM SVCs�

� arequipa preset�socket� atmaddr� qos�� establishing or preparing estab�

lishment of a new link�layer ATM connection to a given address with a given

ATM service and QoS� to make sure that further data sent on the specied
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socket� and only data sent on that socket� will use the new ATM connection�

arequipa preset sets up a bidirectional VCC� symmetric or asymmetric� and

is only applicable to connection oriented sockets 	eg� TCP or connected UDP

sockets
�

� arequipa expect�socket� ftrue� falseg�� preparing a socket to use an in�

coming Arequipa connection for all its outgoing tra�c� When a socket receives

data from an Arequipa connection and arequipa expect has been set to true�

the socket is set to send all its data over the Arequipa connection� Again�

arequipa expect is only applicable to connected sockets�

� arequipa close�socket�� implicit or explicit closing of Arequipa connections�

An Arequipa connection can be explicitly closed using arequipa close or

implicitly closed when the corresponding socket is closed�

� arequipa renegotiate�socket� newqos�� renegotiation of existingArequipa con�

nections� The QoS of an Arequipa connection can be modied 	increased or

decreased
 using arequipa renegotiate� The QoS is not modied until the

modication is agreed upon�

The arequipa preset and arequipa expect calls are usually made as soon as

the application opens sockets for network I�O� The arequipa renegotiate call

needs to be made every time the tra�c parameters of the Arequipa connection are

modied�

��� VIC

The Mbone ���� ��� VIdeo Conferencing tool Vic ���� has a �exible system archi�

tecture characterised� among other things� by network layer independence and an

extensible user interface� We have used these two features in order to enable Vic to

use Arequipa� The user interface has been modied to include elements for Are�

quipa control and a new network module has been added to set up the appropriate

Arequipa connections when necessary�
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The Vic distribution ��� contains three separate network modules for normal IP�

native ATM and RTIP 	Real�Time IP
� Only one of these can be linked at a time�

in the current version of Vic� The new �Arequipa � network module we have added

defaults to the normal IP module if Arequipa fails for any reason�

With Arequipa we only use Vic in the point�to�point mode using standard unicast

IP addresses� with connected UDP sockets� even though Vic was primarily intended

as a multi�party conferencing application on the Mbone� For such point�to�point

video transfer� both the sender and receiver of video need to know each others� IP

address and to agree on a port number� This is normally settled out of band� just

as in the case of the IP network module�

����� User Interface

The main window of Vic containing thumbnail views of the outgoing 	loop�

back
 video as well as the incoming video is shown on the left side of Fig� ����

Each thumbnail picture is accompanied by identication text� frame and bit rate

statistics� and a loss indicator 	in parenthesis
� The latter is inferred from sequence

numbers of the incoming packets� Packets are lost either due to network drops or

due to local socket bu�er over�ows resulting from CPU saturation� Fig� ��� is taken

in Basel� using the new �Arequipa � network module but before starting Arequipa�

It shows a loss rate of the incoming video from Lausanne 	over the Internet
 to be

well over ��!� even over relatively low bit rates�

Details of the Vic control panel 	obtained by clicking on the menu button in

the main window
 are shown on the right side of Fig� ���� We have extended the

menu by adding a section on top for Arequipa control� By design only the sender

of video can initiate an Arequipa session� by selecting the service category and the

bandwidth 	converted internally into PCR
 and clicking on the Arequipa button ��

In line with the spirit of keeping the visible QoS simple� the only user speci�

able tra�c parameter is the bandwidth and CBR�UBR the only choice of service

categories� Once an Arequipa connection is in place� it it not possible to change the

�note that the Arequipa mechanism itself does not carry any constraint as to which side can
initiate Arequipa�
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Arequipa
control

Figure ���� Main window and control panel of Arequipa capable Vic

service category 	e�g� from CBR to UBR
� but only to change the tra�c parameter�

Each time the content of the bandwidth entry is modied by the user� a call to

arequipa renegotiate is made automatically�

The capture 	and encode
 frame and bit rates are displayed above the QoS set�

tings� The close button only closes the Arequipa connection and video transmission

continues via the normal IP path� As in the unmodied Vic the release button has

to be used to stop video transmission�

Arequipa can be started any time during 	IP
 video transmission� e�g� when

picture quality deteriorates� If normal IP transmission has not already begun when

Arequipa is started then Vic rst starts it before switching over to Arequipa� Then�

if Arequipa fails for any reason� transmission reverts to the normal Internet path�

����� Networking

As described in detail in ���� Vic uses the Real�time Transport Protocol� RTP

����� which is realised completely within Vic itself� RTP is divided into two com�

ponents� the data delivery protocol and the control protocol RTCP� The former

handles the actual media transport and the latter manages control information like

sender identication� receiver feedback and cross�media synchronisation�

We have added a new network module which contains� apart from the normal
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IP module� procedures for the exchange of ATM addresses� for opening� closing and

renegotiating Arequipa connections� Note that in order to make the connection� the

arequipa preset call requires the knowledge of the ATM address of the peer ma�

chine 	section ������ Details of the implementation of a procedure for the exchange

of ATM addresses depends very much on the application itself e�g�� in the case of a

Web browser and a Web server we used HTTP for the address�exchange� see �����
�

In the demo version of Vic this exchange was done out of band� A newer version

contains a generic address�exchange module in which the exchange is performed over

TCP when Arequipa is rst requested� So far Arequipa connections have only been

set up for the data channel� We decided against using an Arequipa for control tra�c

too� because the latter� being low volume� would typically only benet from an Are�

quipa connection in extreme high�loss situations� e�g� caused by severe congestion�

which should be rare�

��� Implementation

ATM signaling support� including Arequipa and the connection modication ca�

pability at the end systems has been implemented for PC�s running the Linux oper�

ating system ����� Signaling and connection modication has also been implemented

on the ATMLightRing switch of ASCOM�

����� ATMLight Ring �ASCOM�

The ATMLightRing is a campus and metropolitan area backbone developed by

ASCOM� Physically� it consists of a dual�ber ring interconnecting a number of

Access Nodes across a campus or city area� Each node provides standard ATM and

non�ATM user interfaces to which various communication equipment with standard

interfaces can be connected�

Logically� an ATMLightRing is a high�speed transport backbone providing full

connectivity at each port� It appears to the network as a single distributed switch�

thereby greatly reducing system management complexity� It allows interconnection

of switches� routers� hubs� concentrators� servers� PBXs� workstations and WAN
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access devices�

For the experiments with renegotiable ATM connections� the control software

of the ATMLightRing was enhanced to support the UNI��� signalling capabilities

together with the Q������� connection characteristics negotiation and modication�

����� ATM on Linux

ATM on Linux is a comprehensive implementation of ATM�related protocols� in�

cluding the latest signaling as specied in ATM Forum UNI ���� This platform is also

used for the reference implementation of Arequipa 	see below
 and for experiments

with renegotiation as specied in Q��������

The ATM on Linux distribution containing full source code for kernel changes�

system programs and test application is available publicly �����

����� Arequipa

Arequipa has also been implemented in the Linux operating system and is part

of the ATM on Linux distribution ���� of ICA� For the establishment and the release

of ATM connections the signaling parts of classical IP over ATM have been reused�

A new virtual network device for Arequipa has been created and a few modications

have been made to the socket layer�

The implementation� detailed in ���� builds upon the route cache entry in the

socket descriptors� This entry stores a pointer to the interface to which all data

sent from a socket has to be forwarded� This is normally done to avoid doing an IP

route look�up every time a datagram is sent� By setting and locking this route cache

to point to the Arequipa device it is ensured that any further data sent from the

socket goes to the Arequipa device� An additional eld has been added to the socket

descriptor to store a pointer to the VCC on which the data should be transmitted�

When it receives a datagram from IP� the Arequipa device simply sends the datagram

on the VCC indicated in the socket descriptor�

arequipa preset is implemented as a library function which does the following�

First it asks the signalling demon to establish a VCC with a given destination and
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QoS� Then it enters a pointer to that VCC in the socket descriptor and makes the

IP route cache of the socket point to the Arequipa device�

arequipa expect simply sets a variable to indicate whether the application

wants to use an incoming Arequipa connection for its outgoing tra�c� Every time

a datagram is received on an Arequipa VCC� the variable is tested� If it is set� the

route cache is set to point to the Arequipa device�

arequipa renegotiate requests renegotiation for the VCC attached to the spec�

ied socket� using the common native ATM procedures� It blocks until the renegoti�

ation completes 	with or without success
� Other processes or threads can continue

sending and receiving on the socket while arequipa renegotiate is in process� Note

that there is no explicit notication for renegotiation initiated by the peer�

��� Demonstration over an ATM WAN

Vic was used to transfer live video from Lausanne to Basel and Z urich over

SWISSCOM�s public ATM network� The demo was a cooperative e�ort between the

Web over ATM project ���� of the EPFL and the ACTS�EXPERT project funded

by the European Commission� and was conducted on ��th October �����

��	�� Setup

The demonstration network consisted of three ATM equipped Linux terminals

located in Lausanne� Basel and Z urich� connected to a 	two node
 ATMLightRing

System at the EXPERT testbed in Basel� The three sites were interconnected by

the VP connection provided by SWISSCOM�s public network� The demonstration

network between Basel and Lausanne is illustrated in Fig� ���� None of the interme�

diate switches except the ATMLightRing supported the UNI��� and the Q�������

signaling capabilities� The VP connection from SWISSCOM provided seamless con�

nectivity between the end systems and the ATMLightRing�
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Figure ���� Topology of the network used in the demo



��

��	�� Observations

As shown by the loss indicator of the incoming video in Fig� ���� the loss rates over

the Internet can often be well over ��! even at relatively low bandwidth� Switching

over to Arequipa at such times results in a dramatic change in the quality of the

video� because then network losses in congested routers no longer occur� At low

bandwidths the loss rate drops to zero immediately� At much higher bandwidths

losses make their appearance once again� this time due to CPU saturation� The

threshold at which losses appear depend on the system conguration of course� but

also on the type of encoding being used�

��� Conclusion

We have shown that in areas where end�to�end ATM connectivity already exists�

there is a relatively simple way for IP applications to use the QoS of ATM� speci�

cally� by using Arequipa and its simple API� We have demonstrated this in the case

of Vic which also became the rst instance of an application to tune bandwidth at

run time�

We argue that in some cases� applications can benet from renegotiable CBR

service� especially when a single connection is used for video transfer where dis�

tinct sequences with di�erent QoS requirements are identiable� for instance� a

tele�teaching session where the image of the professor�s speech is followed by some

illustration 	e�g transparencies
�

If many changes in resources requirements occur frequently� then the renegotiable

CBR service is probably not the more appropriate service� from a pure billing point�

of�view�

With end�to�end ATM connectivity� there is an alternate way of providing hard

QoS guarantees to applications� This specically enables them to use ATM� resulting

in a so�called native ATM application� In the case of Vic� this has been done and

Vic can run on ATM using the FORE SPANS API� In general� the e�ort involved in

converting an IP application into a native ATM one can often be signicant� In the

case of Vic this was certainly so� The native ATM network module is completely
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di�erent from the normal IP module� whereas the Arequipa network module is merely

an extension of it� using the same sockets and so on�

The IETF way of providing quality of service 	QoS
 guarantees to the applica�

tions in IP networks today is to use the ReSerVation Protocol 	RSVP
 ���� As with

Arequipa and with native ATM� the applications need to be modied in order to

make them QoS sensitive� Vic ���� has also been RSVP enabled ���� and can provide

soft guarantees on the QoS� depending on the extent of RSVP deployment on the

intermediate routers� With the work reported here� we believe to have demonstrated

that presenting explicit quality of service to applications and their users is indeed

simple and can be deployed as soon as networks exist which support reservations�

Some other issues related to this chapter are discussed in next chapters� Among

them�

�� solutions for QoS renegotiation with VBR connections 	Chapters �� � and �
�

�� solutions for QoS renegotiation over heterogeneous networks 	e�g networks us�

ing ATM� RSVP or SRP protocols
 involving horizontal and vertical mapping

among the di�erent protocols used to obtain QoS� This is the aim of the work

of the ACTS�DIANA project ����� Part of this work is reported in the Section

��� of Chapter ��
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Chapter �

The static VBR problem

This work in this chapter appeared in �
��� �
�� �
��� �
�� and �
���

��� Introduction

In this chapter we solve the problem of negotiating an optimal VBR service for

the incoming tra�c by introducing the virtual trunk 	VT
 concept�

Then we present an architecture that aims to provide dynamic VBR service to

the input tra�c while using the proposed solution to the static VBR problem derived

with the VT concept� This is obtained by combining this solution with a dynamic

resources management scheme that estimates the changes in the tra�c� The result

is a virtual trunk that changes its own connection descriptor dynamically�

We summarised results and limitations of this architecture� The detailed archi�

tecture and the complete simulation and trials results are presented in Appendices

B� C and D�

����� VBR over VBR
 Multiplexing and Virtual Trunks

We consider the multiplexing of several variable bit rate 	VBR
 connections

	called �the input connections�
 over one variable bit rate connection 	called �the

VBR trunk�
� This occurs� for example� with ATM when a number of VBR virtual

channel connections 	VCCs
 are multiplexed over one virtual path connection 	VPC
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����� which is also of the VBR type� Another example is the multiplexing of several

IP �ows with reservations 	using a protocol such as RSVP ���� or ST�II ����
 over one

ATM VCC� A generalisation to any type of input tra�c is given in the introduction

of Chapter ��

We are interested in such multiplexing scenarios because we believe that reducing

the number of connections 	or reserved �ows if RSVP is used
 is a key feature that

will be needed in all large scale networks� This is because connection handling

costs� especially network management overhead� processing� and memory is not

negligible and increases almost linearly with the number of connections handled at

one point� One solution is to aggregate connections at all points where possible�

Connection aggregation simplies all aspects of connection handling� provided that

it is possible to dynamically change the attributes of the multiplexed connections

���� ����� Aggregation can take place� 	�
 at an ATM node performing aggregation

of VCCs over a VPC� 	�
 at an IP router aggregating several reserved �ows over

one ATM connection� 	�
 at an IP router aggregating several reserved �ows over

one reserved �ow 	tunnelling
� We call a Virtual Trunk 	VT
 the connection that

multiplexes a number of other connections� the word �trunk� refers to the fact

that those connections also have attributes of network internal links� as dened for

example with P�NNI ����� In case 	�
� VTs are VPCs� in case 	�
� VTs are VCCs� and

in case 	�
� they are IP tunnels with reserved resources� In this chapter we use mainly

ATM terminology� which applies strictly to case 	�
 only 	VT can thus be equated

to VPC
� Translation to cases 	�
 and 	�
 should nevertheless be straightforward�

We call a multiplexer the node that multiplexes several input connections on one

output VT�

Virtual trunks have traditionally been considered as Constant Bit Rate connec�

tions� though this restriction is not mandatory� In contrast� using other tra�c types

has obvious benets� In this chapter� we consider VTs of the VBR type� The ra�

tionale for using VBR VTs is the following� integrated services packet networks

provide resource reservation� however� they will not allocate its peak rate to ev�

ery individual connection� but perform resource overbooking� At the lowest level�

overbooking uses both bu�ering 	tra�c peaks are temporarily stored
 and statis�
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tical multiplexing 	based on the expectation that tra�c peaks do not all occur at

the same time
� ����� If only CBR VTs are used� then access or edge nodes that

multiplex small or medium numbers of connections are not able to perform a large

amount of statistical multiplexing because e�cient statistical multiplexing requires

a small ratio between connection rate and the VT bit rate ����� Furthermore� the

CBR VTs have to be allocated their peak rate by intermediate nodes that multiplex

them in turn� since such nodes do not have any information about the individual

input connections� With CBR VTs� overbooking is thus performed mainly by burst

absorption at the multiplexer� In contrast� if VBR VTs are used� then it is possible

to let bursts go through the multiplexer and count on statistical multiplexing inside

the network� where the number of connections and the trunk bit rates are larger�

Quantifying this statement is not simple� it requires the denition of a connection

admission control 	CAC
 method for connections over a VBR VT� it is beyond the

scope of this chapter�

In the rest of the chapter� we consider only VBR VTs and simply refer to them

as �VBR Trunks�� We consider only input connections of the VBR type 	which

includes CBR but leaves aside ABR or UBR connection types
� As explained in

detail later� we focus on the problem of how to dene the VBR trunk parameters in

order to admit VBR input connections while minimising the cost of the VBR trunk�

A virtual trunk is considered as a connection by the network supporting it and

as a trunk by the connections it supports� Two sets of parameters are associated to

virtual trunks� connection descriptor and trunk state�

� Connection descriptor is composed by the tra�c and class parameters that

describe the tra�c characteristic of the VT when it is considered as one single

connection� It is used by the supporting network to accept VTs�

� Trunk state 	also called metrics
 is the set of trunk state parameters re�ects

the static and dynamic characteristics of the VT� It is used for accepting

connections on the virtual trunk�

In this chapter� the connection descriptor for VBR VTs 	and for the VBR input

connections
 consists of the sustainable bit rate 	Mbit�s
� the burst tolerance 	s
�
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the peak bit rate 	Mbit�s
� and the cell delay variation 	s
 ����� herein referred with

the tuple 	m� �� R� CDV 
� in order to be compliant with the ATM simulation and

trials presented in the later in this chapter�

The trunk state depends on the CAC method used to accept input connections

on the virtual trunk 	we call this method �VT�CAC�
� In Section ���� we give a

VT�CAC for the homogeneous� loss�free case� based on �uid models� VT�CACs

for heterogeneous cases and for supporting statistical multiplexing with losses� are

summarised in Chapter � and presented in �����

����� The VBR�over�VBR Optimisation Problem

The reference conguration used in this chapter is shown on Figure ���� A

multiplexer� fed with a number of input connections of the VBR type� multiplexes

them into one VBR connection 	the VBR trunk
� using a bu�er of size X� There

is no explicit assumption� so far� on the service discipline for the bu�er� But we

assume that the bu�er output is regulated so that the resulting tra�c conforms to

GCRA	��R�� CDV�
 and GCRA	��m�� �� " CDV�
 �����

The connection descriptor is multidimensional� For a given mix of input connec�

tions� there are several parameter sets that can carry them� This problem already

exists for CBR virtual trunks� where several values of 	peak rate� cell delay variation

tolerance
 are possible ����� Here� we neglect cell delay variation tolerance issues and

focus on supporting burst tolerance� At one end of the spectrum� it is possible to

give a large value to the sustainable rate of the VBR trunk� at the limit� make it

a CBR trunk� at the opposite end� a small sustainable cell rate� with a large burst

tolerance is also possible� Lastly� the peak cell rate of the VBR trunk also in�uences

�from Section ��� we neglect CDV
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all other parameters� Deciding among all these possibilities requires an additional

criterion� minimising a cost objective� In our reference model� the cost objective

is given by a function of the VBR trunk connection descriptors only� Given a cost

function for the VBR trunk and a connection admission control 	called VT�CAC


method for the input connections multiplexed over the VBR trunk� our problem is

to nd the VBR trunk connection descriptor that minimises the cost function and

is able to accept a given set of input connections� We call this special case of the

static VBR problem the VBR�over�VBR optimisation problem and VT solution the

solution of this problem obtained by using the VT concept�

����� Dynamic Virtual Trunks

We assume that the multiplexer accepts incoming connection requests in real

time and is able to change its own VT connection descriptor dynamically 	by ne�

gotiation with the network supporting the virtual trunk
� An example of dynamic

virtual path connections that uses ABT�DT ���� for reserving resources in the CBR

VT case is dened in ����� As a result� we require that the computation of the

optimal VBR trunk connection descriptor be simple enough to be performed in real

time�

Therefore� we address the problem of providing a dynamic VBR service to the

input tra�c while using the VT concept� This is performed by coupling the VT

solution with a dynamic resources management scheme ����� ����� ���� and ����� which

estimates the changes in the tra�c� This results in a virtual trunk that changes its

own connection descriptor dynamically 	by negotiation with the network supporting

the virtual trunk
�

Here we present the design� simulation� implementation and trials performed

with the Resource Management and Routing 	RM�R
 architecture built upon this

combination of the VT solution and the dynamic resources management scheme�

To our knowledge� this is a unique example of an advanced resource management

and routing architecture that was simulated and tested in a real ATM environment�

In the reference ATM network� a VT is a virtual path connection 	VPC
 setup

by the network for reducing connection awareness at the transit nodes� A virtual



��

trunk is therefore considered as a connection by the network supporting it 	the

VP network
 and as a logical trunk by the connections supported� We have a

tunnelling scenario where a number of VBR Virtual Channel Connections 	VCCs


are multiplexed onto a VBR VPC at a node that acts as a general shaper and the

VBR VPCs are multiplexed on the network� This is called the VBR�over�VBR

approach� We compute the VPC tra�c descriptor according to the VT solution�

The simulation and trial results conrm the validity of the dynamic approach�

����� Chapter breakdown

In Section ���� we dene the VBR�over�VBR optimisation problem formally and

show how it can be simplied by identifying a subset that necessarily contains all

possible optimal solutions� This is true under reasonable assumptions for the cost

function� In order to further progress in the solution� we need a VT�CAC method�

in Section ���� as a starting point� we propose such a method for the simple case

where all input connections are identical and there are no losses� We study the

properties of this VT�CAC and apply the results of Section ���� We obtain that the

optimal VBR trunk in that case is either a CBR trunk or a VBR trunk with burst

duration equal to that of the input connections� We also obtain a simple relation

	Eq� ���
 that relates the total bu�er size at the multiplexer� the burst tolerance

of the input connections of the VBR trunk and the gain obtained by having a VT

sustainable cell rate higher than that of the aggregate input� In Section ���� we

complete the study in the case where the cost function is the equivalent capacity

���� of the VBR trunk 	considered as one connection
� The equivalent capacity is

one cost function that re�ects the cost of the VBR trunk to the supporting network�

We also give in Section ����� a complete example illustrating the various aspects

of the method presented in this chapter� In Section ��� we give an overview of

the architecture obtained by coupling the VT solution and the dynamic resources

management scheme� Its complete description is given in Appendix B� We report

on the simulation and trials result with this architecture�



��

��� Reduction of the VBR�over�VBR Optimisa�

tion Problem

Having given the motivation for multiplexing a set of VBR connections on a

single VBR connection we can now dene in more detail the problem we investigate

and then perform a rst reduction� For a VT trunk� we indicate with z its trunk

state and with y � 	m� �� R� CDV 
 its connection descriptor�

We assume that the VT�CAC for the trunk under consideration can be expressed

by a real valued function F 	y� z
� This function returns a non�negative value if the

trunk with descriptors y can accept the tra�c described by the trunk state z and a

negative value otherwise� We denote by c	y
 the cost function that gives the cost of

a connection with descriptors y� This function is given and we make the following

	common sense
 assumption on it�

�� c	y
 is non�decreasing with respect to all components of y� namely� if y � y�

then c	y
 � c	y�
�

The problem described in the previous section can be formalised as follows�

given trunk state z� we want to nd among all connection descriptors y for which

F 	y� z
 � �� the connection descriptor yopt which minimises c	y
� if it exists� Dene

the feasible region FR	z
 for every trunk state z as�

FR	z
 � fconnection descriptors y � F 	y� z
 � �g

We can now express our problem as follows�


nd yopt � FR	z
 � � y� � FR	z
c	y�
 � c	yopt
 	���


It is convenient to use the partial order on the set of connection descriptors dened

by�

y�	m� �� R�CDV
 � y��	m�� � �� R��CDV�
 i�

���������
��������

m � m�

� � � �

R � R�

CDV � CDV�



��

We now make the following 	common sense
 assumptions on the VT�CAC that�

together with the assumption that the cost function is non�decreasing� will allow us

to show that yopt can be found in a set much smaller than FR	z
�

Assumptions

�� the VT�CAC function F 	y� z
 is continuous with respect to y�

�� the set of connection descriptors y for which F 	y� z
 and c	y
 are dened is a

closed� convex subset of 	R�
d� with d equal to the number of coordinates of

the vector y� and it contains y� � y �y � FR	z
 for which F 	y�� z
 � ��

Now we can proceed with the reduction of the set of values for y where the

optimum is found� if it exists� Let us assume that there exists yopt that solves the

VBR�over�VBR optimisation problem ���� Assume that F 	yopt� z
 � �� Consider the

set A � f�ig� A � ��� �� such that F 	y� " �i	yopt 	 y�
� z
 � �� By the assumptions

on F � this set contains the value � since yopt is in the feasible region and� by the

assumptions on F � it is non�empty� closed and thus compact� Therefore� A has a

minimum value� call it a� If F 	y� " a	yopt 	 y�
� z
 � �� then necessarily a � �

because for a � � F 	y� " a	yopt 	 y�
� z
 � F 	y�� z
 � � for the second assumption

on F 	�� z
� By the continuity of F 	�� z
� we can nd some a� such that � � a� � a

and F 	y� " a�	yopt 	 y�
� z
 � �� we have a contradiction because a was assumed

to be minimum� Therefore F 	y� " a	yopt 	 y�
� z
��� Now by the non�decreasing

property of c� we have that c	y�" a	yopt	 y�

�c	yopt
� This is not possible because

yopt is assumed to be optimum� Therefore� if the optimum exists� then it is certainly

reached at a point y with F 	y� z
���

We further reduce the set of possible solutions by considering non dominated

points in FR	z
� We say that y � Y is non�dominated in the set Y if �y� � Y� y� �

y 
 y��y�

Let us assume again that there exists a tra�c descriptor yopt that solves the

VBR�over�VBR optimisation problem 	���
� Consider now the set E of connection

descriptors y� that are feasible and dominate yopt� namely� E�fy� � FR	z
 � y� �

yoptg� By the non�decreasing property of c� all points in this set are also optimal�

We now proceed with showing that at least one point in this set is non�dominated

in FR	z
� This set is closed and by the second assumption� E is non�empty and
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compact� Therefore� there exists at least one point y� in E that minimises the rst

coordinate� Indicate with pi	y
 the i
th coordinate of a tra�c descriptor y� Call E�

the set of all y� in FR	z
 that dominate y�� Obviously� E� � E and p�	y
�p�	y�


for all y � E�� By applying the same procedure recursively we build a sequence of

decreasing sets Ek and points yk� such that p�	y
�p�	yk
� � � � � pk	y
�pk	yk
� Ulti�

mately� when k equals d� we have Ed�fydg and thus yd is non�dominated in FR	z


and realizes the optimum for c�

In summary� we dene the set S	z
 	for Solution space
 by�

S	z
�fy � F 	y� z
�� and� y� � FR	z
 � y� � y 
 y��yg

We have shown that if there exists a solution to problem given in Equation 	���
�

then it is in the solution space S	z
� Our problem can thus be reformulated in the

following way�


nd yopt � S	z
 � � y
� � S	z
 � c	y�
 � c	yopt
 	���


This simplication is independent of the cost function� provided that the common

sense assumptions are satised� Under this form it is� in general� easier to nd yopt�

The solution space is a limited subset of the feasible region and it depends on a

smaller number of variables since at least one can be expressed as function of the

others from F 	y� z
��� The condition that the elements of S	z
 be non�dominated

in FR	z
 further restricts the solution space�

��� Homogeneous	 Loss�less VT�CAC
 General Re�

sults

Here we apply the reduction of the preceding section to the homogeneous case�

specically when all input connections are identical� We give an explicit function F

for that case� based on a loss�less 	or worst case
 CAC� We assume the worst case

tra�c of one input connection as the pattern consisting of a burst at the maximum

rate for the maximum allowed time� followed by a silent period 	ON�OFF
� We know
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that this is not the general worst case ����� ���� and ����� But in the homogeneous

case� it requires the same amount of resources than the e�ective worst case� and it

is easier to study�

This section clearly represents only a rst step towards the resolution of the

general case� however� it is complex enough to be worth investigating in detail�

First� we give an algorithm for VT�CAC� then we apply the results of Section ����

����� VT�CAC function for the Homogeneous
 Lossless Case�

requiredBuf

In this Section we present a deterministic CAC function to decide the acceptance

of VBR tra�c� regulated by a shaping bu�er with a xed bu�er size X under no

cell loss� We assume that the bu�ers are large compared to the size of the cells�

such that we can ignore the Cell Delay Variation Tolerance� We also assume that

the tra�c is homogeneous� meaning that all the input connections multiplexed on

the VBR trunk have the same connection attributes� m� � and R� The number of

input connections is indicated by N � The VT attributes are thus dened by�

� Trunk state� z � 	N�m� �� R


� Connection descriptor� y � 	m�� ��� R�
�

The VT tra�c is smoothed by the associated shaping bu�er such that it conforms

to GCRA	��m�� ��
� as shown in gure ����

We dene requiredBuf	y� z
 as the bu�er size required for accepting the input

tra�c on the VT with zero cell loss� Thus a connection can be accepted i�

X 	 requiredBuf	y� z
 � �

which denes the function F �

To avoid cell loss� we consider the worst case� the input connections are syn�

chronised and send data all together at the peak cell rate until the GCRA reacts�

At the beginning� the bu�er is assumed to be empty� We analyse the problem from

the aspect of the required bu�er size� identifying six di�erent situations� Two cases

are evident�
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� if Nm � m�� the bu�er length must be innite� requiredBuf�� 	CASE �


� if NR � m�� there is no need of bu�er� requiredBuf�� 	CASE �
�

Beyond these two cases� we examine the quantity of tra�c that can be absorbed by

the VT burst and we deduce the bu�er size required to bu�er the remaining tra�c�

The burst lengths are given ���� by�

tburst �
b��	T 	 ��R
 " �c

R

where T � ��m� We assume that the e�ect of integer cells 	the factor "� in the

numerator
� is negligible compared to the burst size� When NR � R�� the burst

length of the VT is considered for tra�c equal to NR� because this is the maximum

tra�c generated by input connections� Thus� the burst length of the VT is given

by�

t� � ��m��	NR 	m�


When NR � R�� the burst length of the VT is considered for tra�c equal to R��

because this is the maximum tra�c that the VT can absorb� Thus� in this case� the

burst length of the VT is given by�

t� � ��m��	R� 	m�


The burst length of the input connections is given by�

tc � �m�	R 	m


Either t� � tc or t� � tc� moreover� we have to consider NR � R� and NR � R��

� NR � R�� t� � tc 	CASE �� Figure ���


We see easily that�

requiredBuf � 	NR	m�
	tc 	 t�


� NR � R�� t� � tc 	CASE �


requiredBuf � �
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� NR � R�� t� � tc 	CASE �� Figure ���


Figure ��� shows that�

requiredBuf � 	NR	 R�
t� " 	NR 	m�
	tc 	 t�


� NR � R�� t� � tc 	CASE �� Figure ���


Figure ��� shows that�

requiredBuf � 	NR	 R�
	tc


RequiredBuf is thus dened by the following algorithm�

Algorithm �� � requiredBuf

if Nm � m� then requiredBuf �� CASE �

else if NR � m� then requiredBuf � � CASE �

else if NR � R� then

if t� � tc then requiredBuf � �NR�m���tc � t�� CASE �

else requiredBuf � � CASE �
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else if tc � t� then

requiredBuf � t��NR�R�� � �tc � t���NR �m�� CASE �

else requiredBuf � tc�NR�R�� CASE �

����� Analysis of the RequiredBuf Function

RequiredBuf has some interesting aspects that we discuss in this section� In

Figure ���� ��� and ���� we plot requiredBuf versus each of the three connection

attributes of the VT m�� �� and R�� Analysing the curves in Figure ���� we note

that R� a�ects the bu�er size only for values smaller than the rate of the input

connections burst 	NR � ���
 and the burst length of the VT smaller than the the

burst length of the input connections� In this case� requiredBuf decreases when R�

increases� The slope of the curve is �requiredBuf��R� � 	tc� constant and negative

for every value of m�� ��� In the other cases� requiredBuf remains constant for any

value of R�� therefore it is useless to increase R�� The slope of the curve is always

zero�

Note that R� must always be larger than or equal to m�� When R� � m� or

�� � �� the type of the VT connection is CBR� The bu�er has to absorb all the

bursts from the input connections exceeding m�� In these cases� requiredBuf only
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depends on m��

As shown by Figure ��� and Figure ���� m� and �� a�ect requiredBuf only for

cases in which t� � tc because m� and �� in�uence the burst length and not the

rate of the VT� For this reason� after having reached the equality between the

burst lengths� any increase of m� or �� is not signicant� In fact� for smaller input

connections burst lengths 	CASE � and CASE �
 �requiredBuf��	m�
 � 	tc	�� and

�requiredBuf���� � 	m� in both cases� In the other cases� �requiredBuf��	m�
��requiredBuf�������

The feasible region for a xed bu�er size B� VT connection descriptor y �

	m�� ��� R�
� N input connections with attributes fm� �� Rg� thus VT trunk state

z � 	N�m� �� R
� is given by�

FR	z
 � fy � B 	 requiredBuf	y� z
 � �g

In Section ��� we showed that� under some reasonable assumptions on the VT�

CAC and cost functions� the VBR�over�VBR optimisation problem can be simplied�

We will now try to apply this simplication and to nd the solution space when the

VT�CAC is requiredBuf�
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����� Solution Space S�z�

In Section ��� we used two common sense assumptions on F 	y� z
 to reduce our

optimisation problem� The assumption of continuity of requiredBuf is proven in

Appendix A� The other assumption� namely that there be a descriptor y� in the

denition domain of F 	�� z
 for which F 	y�� z
 � �� requires some special attention�

The domain of connection attributes for which requiredBuf is dened isR� � m� and

�� � � by denition and m� � Nm for reasons of stability� Depending on the value

of X and z it may happen that there is no y� for which F 	y�� z
 � �� Physically� this

is the case when the shaping bu�er is large enough to absorb all the bursts of the

input connections 	X � N�m 
� Any VT with a sustainable rate larger or equal to

Nm is thus su�cient to support the output tra�c without loss� F 	y� z
 � � for all

y of the denition domain of F 	�� z
 and the reduction is not applicable� However�

since all y satisfy the CAC function� yopt is simply the lower bound of the denition

domain of requiredBuf� Thus we have that for X larger than N�m� the optimal VT

connection descriptor is a CBR connection with a sustainable rate of Nm�

X � N�m
 yopt � 	Nm� �� Nm
 	CBR
 	���
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When X � N�m we can always nd a y� for which F 	y�� z
 � �� for example

	NR 	X�tc� �� NR	X�tc
� The assumptions of Section ��� are thus valid and we

can apply our reduction� the solution space S is a subset of FR and contains only

the non dominated y in FR for which F 	y� z
 � ��

From the equality B 	 requiredBuf	y� z
 � �� we can express one variable in

function of the others� We chose to express �� in function of m� and R� 	see ����
�

X 	 requiredBuf	y� z
 � �
 ��	m�� z
 �
NRtc 	X

m�
	 tc

We see that �� is independent of R� and can be expressed in function of m�

and the trunk state only� Furthermore we see that for m� � NR 	X�tc� ��	m�� z


must be negative and outside the denition domain of requiredBuf for F to be zero�

Physically this means that� for a value of m� above NR	X�tc� the part of the input

bursts which is above m� does not ll the shaping bu�er� The implication is that

for a connection descriptor y� m� must be less or equal to NR	X�tc for y to be in

the solution space S�

F 	y� z
 � �
 m� � NR 	X�tc

We also nd that� given m� and ��	m�� z
� F 	y� z
 is � for any value of R�

larger than NR	X�tc� as demonstrated in ����� The solution space is made of non

dominated elements of F 	y� z
 � �� thus R� must be NR 	X�tc� which dominates

all larger values of R�� Note that this value is always in the denition domain of

requiredBuf since m� is can not be larger than NR	X�tc�

We can thus express the solution space by the following equation�

S � f	m��
NRtc 	X

m�
	 tc� NR	X�tc
g 	���


with Nm � m� � NR	X�tc and X � N�m

Note that for m� being at its upper bound� the VT becomes a CBR connection�

Discussion� In this section we have seen that when the shaping bu�er exceeds

the size of the input bursts 	N�m
 the connection descriptors which minimise the
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the cost of the VT are simply those of a CBR connection with sustainable rate

equal to the sum of the sustainable rates of the input 	Nm
� If the shaping bu�er

is smaller than the input bursts� we can reduce feasible region of requiredBuf from

an open three�dimensional space to a limited one�dimensional solution space� The

condition that F 	y� z
 must be zero allows to express one variable 	��
 in function

of one other 	m�
� Furthermore� the condition that the solution space be made of

non�dominated elements allows to x the third variable 	R�
 to the lowest bound�

which is independent of the other two variables� One physical implication of this is

that R� being at the lowest bound� the duration of the burst at the output of the

multiplexer is at the highest bound� which is when the output burst has the same

duration as the input burst 	see Corollary � in ����
� From this property� we deduce

a simple equation which is valid for the optimal solution for any cost function that

conforms to the assumptions of Section ���� The equation relates the bu�er size at

the multiplexer� the burst tolerance of the input connections and of the VT and the

sustainable cell rate of the VT� thus for y�yopt�

X � N�m	 ��m� 	 	m� 	Nm
tc 	���


In particular� when m� � Nm� we have that the burst of the input tra�c is

completely absorbed by the bu�er and the burst of the VPT�

��� Homogeneous	 Loss�less VT�CAC
 c�y� equal

to Equivalent Capacity

In this section we continue the analysis of the homogeneous case with a specic

example as cost function� We consider a system that uses requiredBuf for the input

connection admission control over VTs� and the Equivalent Capacity function ����

for the cost function� We show how the computation is reduced and simplied by

applying the results of Section ����
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����� Cost Function� Equivalent Capacity

The cost function we use here is the Equivalent Capacity function dened in

����� It is dened as the the rate necessary for achieving a desired bu�er over�ow

probability �� on a given physical link� given a physical link bu�er size X l� Note

that X l is not related to the bu�er size� noted X� at the multiplexer� It the context

of this Section� it should be simply interpreted as a parameter of the cost function

that in�uences the cost of a given connection descriptor of the VT� If X l is very

large� then the cost is mainly in�uenced by the VT sustainable rate m�� if it is very

small� then it is mainly in�uenced by the peak rate R�� In contrast� X in�uences

the output of the requiredBuf function�

The equivalent capacity c�� for a VT connection descriptor y � 	m�� ��� R�
 is

given by�

c� � R�

Y� 	X l "
q
�Y� 	X�� " �X l	�Y�

�Y�
	���


where

Y� � ln	
�

�

��m� and 	� �

m�

R�
	���


We do not prove the monotonicity of Equivalent Capacity� We just argue that� as a

typical e�ective capacity function� EC must increase when any one of its parameters

increase�

����� Application of the Space Reduction

In Section ������ we have identied the solution space S	z
� We can now for�

mulate the general solution for in this specic case as an optimisation problem

depending on one single variable m�� as follows�


nd m� � �Nm�NR 	X�tc� that minimises g	m�
 	���


where g	m�
 is given by�

ln	�
�

	tc	NR 	m�
	X
	X l"q

�Xtcm�
B�NRtc

�B�tc�NR�m�����ln� �
�
��tc�NR�m���B�X���

�tc ln�
�

�
��tc�NR�m���B���B�tcNR�

	���
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This function is a non decreasing function� thus� in absence of constraints on m��

the solution of the VBR�over�VBR optimisation problem can be easily found for the

lower bound of m� 	m� � Nm
� as illustrated in the next section�

����� Numerical Example

Here we provide three numerical examples of the VBR�over�VBR optimisation

problem where the cost function used is equivalent capacity and also show the com�

plete interaction of the elements of the method dened in this chapter�

In the rst example� the parameters used for dening the equivalent capacity

function are X l � ��� Mb and the cell loss probability � � ���E���� The capacity

of the shaping bu�er at VT� is X � �Mbit and denes a feasible region FR �

frequiredBuf	y� z
 � �g� The current attribute values for the VT are�

z � 	N�m� �� R
 � 	�� �� ����� ��
�

y � 	m�� ��� R�
 � 	�������� ������� ��������
�

The equivalent capacity of the VT is thus ������� Mbit�sec�

Assume now that two new input connection requests arrive at the virtual trunk�

By accepting the two new connections� the trunk state z would become�

z� � 	N�m� �� R
 � 	��� �� ����� ��
�

This would move the trunk attribute out of the feasible region� 	requiredBuf	y �

z�
����� Mb
� Thus we want to nd a new connection descriptor such that the new

connections can be accepted� namely� the new VT connection attributes belong to

FR	z
 and the cost function on the links is minimised�

From Section ����� we know that our solution is the one that minimises g	m�
�

We set R� to its lower bound R� � NR 	 X�tc � ��������Mb�s� The resulting

solution space is plotted in Figure ���� Minimisation of g is found by minimising

m�� In this case� we nd that the minimum of cost is ������� Mb�s� it is obtained

for 	��� ������ ��������
� as shown on the dashed curve in Figure ����

In a second example� the tra�c input is the same� but we assume a larger value for

the parameter X l 	X l � ���Mb
 of the equivalent capacity function� which means
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Figure ���� The solution space S	z
 for the numerical example� The third parameter
R� is equal to NR 	X�tc ��������� Mb�s�

that the cost of a large burst tolerance is not as high as in the rst example� All

other parameters are kept unchanged� Thus we expect that the optimal solution will

have a smaller cost� The numerical result conrm this expectation� the minimum

	c � �������
 obtained for 	��� ������ ��������
 is smaller than before� This case is

represented by the dotted curve in gure ����

In the last case we assume a still larger value for X l 	X l � ����Mb
 with all

other parameters kept unchanged� As expected� the cost of the optimal solution

	��� ������ ��������
 still decrease and becomes very close to m� 	c � �������
� As

expected� in gure ���� the curve relative to this case� the solid curve� is an increasing

straight line�

��� The Resource Management and Routing ar�

chitecture

The solution to the static VBR problem� derived with the virtual trunk concept

	called VT solution
� is designed for use in a static way� specically at the initial
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Figure ���� The cost function on the solution set S	z
� for three di�erent values of
the cost function parameter X l� X l � ��� 	dashed curve
� X l � ��� 	dotted curve
�
X l � ���� 	solid curve
� Small values of X l give a high cost to VTs with large
burst tolerance� The optimal VT parameter is obtained for the minimum of the
sustainable bit rate 	�mean� on the gure
� If bursts are more expensive 	smaller
X l
 then the optimal virtual trunk with the same sustainable cell rate has higher
cost� The peak rate optimal value is xed by the results of Section ����

phase 	negotiation
� Although this performs better than a static CBR solution� we

argue that renegotiation is a mandatory feature�

Therefore� we consider the problem of providing dynamic VBR service to the

input tra�c while using the VT solution�

The scenario is an ATM network� a VT is a virtual path connection 	VPC


considered as a connection by the VP network supporting it and as a logical trunk

by the supported connections� VTs are of VBR type�

Here� for each VPC� we have a tunnelling scenario where a number of homo�

geneous VBR Virtual Channel Connections 	VCCs
 are multiplexed onto a VBR

VPC at a node that acts as a general shaper and the VBR VPCs are multiplexed

on the network� This� in line with the work in the previous sections� is called the

VBR�over�VBR approach� In the more traditional VBR�over�CBR approach� VBR

VCCs are multiplexed onto a CBR VPC� In this case� it is no longer possible to
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multiplex the VPCs on the network�

We use the VT solution for computing the VT connection descriptor for the next

period� To this aim we estimate the number N of homogeneous connection for the

next interval� This is performed with a dynamic resources management scheme �����

����� ���� and ����� which estimates the changes in the tra�c� The combination of

the VT solution and the dynamic resources management scheme results in a virtual

trunk that changes its own connection descriptor dynamically 	by negotiation with

the network supporting the virtual trunk
�

The Resource Management and Routing 	RM�R
 architecture is built upon this

combination of the VT solution and the dynamic resources management scheme�

The details of the RM�R are given in Appendix B� We simulate this architecture

and then implement it for performing trials on the EXPERT testbed located in

Basel�

To our knowledge� this is a unique example of an advanced resource management

and routing architecture simulated and tested in a real ATM environment�

By simulation� we compare the VBR�over�VBR approach to a more traditional

VBR�over�CBR approach� We nd that the novel approach using VBR VTs per�

forms better than the traditional one using CBR VTs� The gain in our example is

not very signicant� because of the rather ine�cient method 	Equivalent Capacity


used for calculating the e�ective bandwidth and the unsophisticated use of a static

allocation scheme to achieve a dynamic reallocation approach� The simulations are

reported in Appendix C�

In Appendix D we present the conceptual description of the implementation� as

well as relevant parts of its specication� Then we report on the trials performed on

a ATM network� The results show advantages of the bandwidth reallocation over

approaches that are limited to static allocation�

However� in both simulation and trials cases� the results were obtained under

special conditions� where basically no losses were experienced� Therefore� if� on one

hand� these results justify the choice of a dynamic resource management scheme�

on the other hand� they also highlight the necessity of a more sophisticated and

appropriated scheme for the renegotiation as presented in next chapters�



��

In fact� the RM�R architecture is based on the assumption that� at the moment

when the VPC tra�c descriptors are changed� there occur no losses if� for each VPC�

the shaping bu�er and the bucket are resetted� This is equivalent to assuming that�

at this moment� there is no tra�c into the bucket and into the shaping bu�er� In

this specic case� this assumption is valid� In fact� because of the approximation

introduced in the various algorithms� the VPC tra�c descriptors are always much

larger than the real optimum� Therefore� at the the transition moment� the VPC

has been transmitting for a long time at the sustainable rate 	or smaller rate
�

experiencing no losses when renegotiated�

Situations where there are losses could not be reproduced with our architecture�

because of the approximation introduced by the various algorithms� At the the

transition moments� the bu�ers and buckets were always empty producing no losses

when renegotiated�

In spite of that� it is clear that the usage of any solution to the static VBR prob�

lem in a dynamic scenario can potentially produce relevant losses in a system� which

is not a�ected by similar approximation problems as we demonstrate in Chapter ��

��� Conclusion

We analysed in this chapter one of the consequences of having VBR trunks in

an integrated services network� which we argued is an essential feature for reducing

connection handling costs� We have formalised the problem of determining optimal

VBR trunk connection descriptors� given a CAC method for accepting input connec�

tions on the VBR trunk 	VT�CAC
� We have shown how the optimisation problem

can be reduced to a simpler problem and applied the result to the homogeneous

case� For the specic case of a cost function equal to the equivalent capacity� we

derived a complete analysis� with simple� closed form formulas that can easily be

implemented for real time computation� We shown that� for the homogeneous case�

and for all reasonable cost functions� the optimisation problem can be reduced to a

one�dimensional problem�

Then we presented the Resource Management and Routing 	RM�R
 architecture
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that provides dynamic VBR service to the input tra�c� This architecture is obtained

by combining the VT concept with a dynamic resources management scheme that

estimates the changes in the tra�c� The result is a virtual trunk that changes its

own connection descriptor dynamically�

We summarised simulation and trial results� as well as the limitations of this

architecture� presented in detail in Appendices B� C and D�

As already mentioned� to our knowledge� this is a unique example of an advanced

resource management and routing architecture that was simulated and tested in a

real ATM environment�
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Chapter �

Time Varying Leaky Bucket

Shapers

This work in this chapter appeared in ��� and ����

��� Introduction

����� Network Calculus background

The network calculus theory 	����� ����� ����
 provides powerful tools to manage

guaranteed services� The concepts of an arrival curve and a service curve allows us

to characterise a shaper in terms of mathematical functions and min�plus algebra�

Consider a data �ow� described by the number of bits sent in ��� t� R	t
� Given

a wide�sense increasing function �	�
� we say that a �ow R	t
 has an arrival curve

of �	�
 i� for all s � t� R	t
	 R	s
 � �	t	 s
� for all s and t �����

Given a nondecreasing function 
	�
� we say that a system S o�ers to a �ow R	t


a service curve 
	�
 i�� for all t � �� there exists � � v � t such that R�	t
	R	t
 �


	t	 v
� where R�	�
 represents the output of the system ����� ����� �����

The min�plus convolution of R	�
 and 
	�
 is dened as 	R � 

	t
 � infvfR	v
 "


	v 	 t
g



��

a(t)

t

P
0

X

e
X

Figure ���� The static VBR optimisation problem seen with network calculus
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Time Invariant Shapers We can easily express the static VBR problem in terms

of network calculus concepts�

The class of shapers suitable for modelling this problem is the time invariant

shaper class� A shaper is time invariant if the tra�c constraint is dened by a xed

tra�c contract� Time invariant shapers are extensively studied in ���� and ����

The tunnelling scenario presented and solved in Chapter � can be reformulated

as follows�

� the input tra�c is expressed with an aggregated arrival curve �

� the time invariant shaper� which shapes the input tra�c into the virtual trunk

with arrival curve 
 � min	P�t�m�t " ��
� o�ers to the input tra�c a service

curve 
 	Theorem � of ���
�

As illustrated in Figure ���� the requirement on the service curve 
� given the

aggregate arrival curve � of the input tra�c is 	Theorem � of ���
�

min	P�t�m�t " ��
 "X � �	t
 �t � � 	���


That allows to derive the same results as in Section ��

Corollary � �Optimal P� for VBR Virtual Trunk� De�ned the arrival curve

of the input tra�c �	t
� independently from the cost function� the smallest value

for the peak cell rate of the VBR virtual trunk under bu�er constraint expressed by

Equation 
�� is P� � eX � with eX the deterministic equivalent capacity corresponding

to the arrival curve �	t
 assuming a bu�er size X�

eX � sup
t��

�	t
	X

t

Corollary � �Optimal Service Curve� Given �	t
� X� the constraints at equa�

tion �
��� and a cost function on the virtual trunk parameter c	�
� the service curve


	t
 for the virtual trunks which minimise c	�
 and are feasible with the bu�er re�

quirements is obtained by solving the problem with only one variable �m�� de�ned as

follows�

minimise cm�
	m�
 � c	m�� ��	m�
� eX
 	���




��

and the optimal solution is given by�

y� � 	m�� ��	m�
� eX
 	���


These equations are independent from the nature of the input tra�c that is

expressed in terms of its aggregated arrival curve �� Therefore� all the previous

results apply not only to homogeneous VBR tra�c� but to any tunnelling scenario

with a generic input tra�c with arrival curve � ����

However� time invariant shapers are not suitable for modelling the dynamic VBR

problem� In this case the input tra�c changes dynamically and the network re�

sources must change consequently� With time invariant shapers� it is not possible

to characterise the tra�c that is present in the shaper at the transient moments�

Therefore� in this chapter� we use network calculus concepts to model a class of

shapers suitable to dene the renegotiable VBR service� This class is a special class

of time varying shaper systems that we call the time varying leaky�bucket shapers�

����� Notation

A time varying leaky�bucket shaper is dened by a xed number J of leaky

bucket specications with bucket rate rj and bucket depth bj� where j � �� � � � � J

and a shaping bu�er of xed capacity X� At specied time instants ti� i � �� �� �� ���

the parameters of the leaky buckets are modied�

The observation time is thus divided into intervals and Ii � 	ti� ti��� represents

the i�th interval� For each t � � there exists an i � N such that t � Ii� The time

instants ti are given� but the length of the intervals can be variable as� for example�

in the case where it is estimated by means of some measurement�

Inside each interval the system does not change� The parameters of the j�th

leaky buckets valid in the interval Ii are indicated by 	rji � b
j
i 
� The combination of

those parameters takes the form of the shaping function 
i in Ii� dened as


i	u
 � min
��j�J

f
ji 	u
g � min
��j�J

frji � u" bjig

A time varying leaky�bucket shaper is completely dened by�

� the number J of leaky buckets
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(t) σi

shaping buffer = X

output R*input R

Figure ���� Reference Model for a time varying leaky�bucket shaper� The tra�c
shaping at time t � Ii is done at source according to the service curve 
i valid in Ii�

� the time instants ti at which the parameters changes

� the buckets parameters 	rji � b
j
i 
� for each j and each interval Ii

� the xed shaping bu�er capacity X

We call input tra�c function the function R	t
 � R�  R
� that represents the

amount of tra�c that has entered in the system in time interval ��� t�� R is the tra�c

before the shaping� R�	t
 is the output function that represents the number of bytes

seen on the output �ow in time interval ��� t�� R� is the tra�c after the shaping�

We assume to know the input tra�c R	t
 expected in the future either because pre�

recorded or by means of an exact prediction function� However the tra�c prediction

is not the focus of this work� We further assume that at time t� � � the system is

idle 	R	�
 � �
�

To dene the time varying leaky�bucket shapers at the transient times between

two adjacent intervals we could take two opposite approaches� either we reset all

the buckets and restart in the next interval from zero initial conditions 	�reset�

approach
� or we keep the level of the buckets and restart from that level at the

next interval 	�no reset� approach
� If we take the rst approach� the time varying

leaky�bucket shaper can be reduced to a sequence of independent shapers and studied

as described above ����� ���� However� as we described in Section ���� this approach

cannot guarantee the service�

Therefore� here we adopt the second approach� There are two more reasons for

this� First� in the special case where the time varying leaky�bucket is constant� we
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should nd a system identical to the ordinary� time invariant� leaky bucket shaper

����� ���� And this should be possible only with the second approach� Second� the �no

reset� approach is in line with the Dynamic Generic Cell Rate Algorithm 	DGCRA


used to specify conformance at the UNI for the available bit rate 	ABR
 service of

ATM ����� ����� We examine later in the chapter the practical implication of the

�no�reset� approach 	Section �����
�

Our class of time varying shapers is a special case of the general concept of time

varying shapers� dened in ����� A general time varying shaper can be dened as

follows� Given a function of two time variables W 	s� t
� the time varying shaper

forces the output R�	t
 to satisfy the condition

R�	t
 � R�	s
 "W 	s� t


for all s � t� possibly at the expense of bu�ering some data� This condition can

be expressed using the min�plus linear operator associated to W and dened as the

mapping S  S � W with 	S � W 
	t
 � infsfS	s
 " W 	s� t
g� The shaper is an

optimal shaper if it maximises its output among all possible shapers ����� A time

invariant shaper is a special case� it corresponds to W 	s� t
 � 
	t 	 s
� where 
 is

the shaping curve�

General results of min�plus algebra say that the input�output characterisation of

a time�varying shaper is given by

R� � R � #W

where function R is the input� R� the output and #W is the sub�additive closure of

W ���� ���� Another� equivalent� formulation is�

R�	t
 � inffR	t
� 	R �W 
	t
� 	R �W �W 
	t
� 	R �W �W �W 
	t
� � � � g

	���


Our class of time varying shapers ts in that general framework� It can be easily

shown that a time varying leaky bucket shaper corresponds to

W 	s� t
 � min
��j�J

f
Z t

s
rj	u
du " bj	t
g 	���


with rj	t
 and bj	t
 dened as the instantaneous bucket rate and depth at time

t� namely rj	t
 � rij and bj	t
 � bij for the index i such that ti � t � ti���
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����� Chapter breakdown

In this chapter� we want to obtain the input�output characterisation of the time

varying leaky bucket shapers� This is equivalent to computing #W � when W is

given by Equation 	���
� We could try to obtain #W from a direct application of

Equation 	���
� however this is not a very practical approach� Instead� we obtain #W

from a number of intermediate steps� which provide representations that can easily

be applied to a practical computation and give some insights about the system�

To this end� in Section ���� we study a shaper system dened by J unchanging

leaky buckets� but whose initial conditions 	initial bucket levels and initial bu�er

content
 are not zero� We call this model a leaky bucket shaper with non�zero initial

conditions� We nd the input�output characterisation of this model� for this we use

min�plus algebra 	����� ����� ���� ����
� Then we apply this iteratively to derive the

input characterisation of a time varying leaky bucket shaper 	Section ���
�

��� Leaky Bucket Shaper with Non�Zero Initial

Conditions Model

In this section we study a leaky�bucket shaper with non�zero initial conditions�

This system has the advantage that can easily be studied with network calculus�

We derive its input�output characterisation� which can be expressed in terms of the

shaping function 
 and the initial conditions� We rst dene the bucket level qj	t


and the backlog w	t
� Then we combine the results and we solve the time varying

leaky�bucket shaper model� The deriving input�output characterisation is recursive�

at each time t � Ii we can compute the output R�	t
 with the denition of the

system in Ii and the condition at time ti�

����� Leaky�Bucket Shaper with Non�Zero Initial Condi�

tions Model

The main result in this section is the characterisation of the leaky�bucket shaper

with non�zero initial conditions given in Theorem �� With non�zero initial conditions
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L0

S S*

rj

Figure ���� Reference Model for a leaky bucket� The tra�c S is leaky bucket
compliant i� the buckets does not over�ow�

we refer to the fact that both the bu�er and the buckets present an initial level

di�erent from zero� We solve these two cases separately and combine them at the

end� The rst step is to characterise a shaper system with non�zero initial bu�er

level� Then we study the case of a shaper system dened by a xed number J

of leaky bucket specications 	rj� bj
 and that at time t � � the buckets are non

empty� The initial bucket level for the j�th bucket is indicated with qj�� We call this

system a leaky�bucket shaper system with non�zero initial conditions� When a bit

enters the system it is put into the bucket� which is drained at rate rj� as illustrated

in Figure ���� A given �ow S is conform to a leaky bucket specication when the

bucket does not over�ow� If we denote with q	t
 the bucket level of the bucket at

time t� we recall the following characterisation� A �ow S is compliant to a leaky

bucket with a leaky bucket specication 	r� b
 when q	t
 � b �t � ��

We rst present a result that is valid for generic shaper systems�

Proposition � �Shaper with non�zero initial bu�er� Consider a shaper sys�

tem with shaping curve 
� Assume that 
 is sub�additive and 
	�
 � �� Assume the

initial bu�er content of the shaping bu�er is given by w�� The shaper system has no

memory of the past� Then the output R� for a given input R is

R�	t
 � 
	t
 � inf
��s�t

f	R
	s
 " w� " 
	t	 s
g �t � � 	���


The condition that 
 is sub�additive and 
	�
 � � is a technical assumption which

is not limiting in practice� since any shaping curve can be replaced by a function

satisfying the condition ���� ���� In particular� the shaping functions associated with

leaky buckets do satisfy these assumptions�
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Proof�

First we derive the constraints on the output of the shaper� 
 is the shaping function

thus� for all t � s � �

R�	t
 � R�	s
 " 
	t	 s


and given that the bucket at time zero is not empty� for any t � �� we have that

R�	t
 � R	t
 " w�

At time s � �� no data has left the system and this can be expressed with the burst

delay function �� dened as follow

��	t
 �

��
� � t � �

"� t � �

Thus� for all t � �

R�	t
 � ��	t


The output is thus constrained by

R� � 
 �R� �R " w� � ��

where � is the min�plus convolution operation� dened by 	f � g
	t
 � infs f	s
 "

g	t	s
� Since the shaper is an optimal shaper� the output is the maximum function

satisfying this inequality� We know from min�plus algebra ���� ��� that the solution

is given by

R� � 
 � �	R " w�
 � ���

� �
 � 	R " w�
� � �
 � ���

� �
 � 	R " w�
� � 


which after some expansion gives the formula in the proposition� �

In practice this proposition says that� whenever a bu�er contains some tra�c� this

has to be considered as a peak arriving at time t � �� The e�ect of the peak is the

factor 
	t
 in the representation of the output� An easy derivation is the following

corollary�
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Figure ���� Flow R� compliance is assured at all J leaky buckets�

Corollary � �Backlog for a shaper with non�zero initial bu�er� The backlog

of a �ow S into a bu�er drained at rate r with initial level equal to L� is given by

L	t
 � max

�
�� sup

��s�t
fS	t
	 S	s
	 r � 	t	 s
g

�S	t
	 r � t " L��

�
�	 t � � 	���


De�nition � A given tra�c S is compliant to the speci�cation of a leaky�bucket

shaper system with non�zero initial conditions if it is compliant to all J leaky buckets�

From Proposition � this results in the following corollary�

Corollary � �Compliance to J leaky buckets with non�zero initial bucket levels�

A �ow S is compliant to J leaky buckets with leaky bucket speci�cations 	rj� bj
�

j � �� � � � � J and initial bucket level qj� i�

S	t
	 S	s
 � min
��j�J

�rj � 	t	 s
 " bj� �� � s � t

S	t
 � min
��j�J

�rj � t" bj 	 qj�� �t � �

Now we proceed to characterise a leaky�bucket shaper system with non�zero initial

bucket levels�

Proposition � �Leaky�Bucket Shaper with non�zero initial bucket levels�

Consider a shaper system de�ned by J leaky buckets 	rj� bj
� with j � �� � � � � J �leaky�

bucket shapers�� Assume that the initial bucket level of the j�th bucket is given by
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qj�� The initial level of the shaping bu�er is equal to zero� The output R� for a given

input R is

R�	t
 � min�
�	t
� 	
 � R
	t
� �t � � 	���


where 
 is the shaping function


	u
 � min
��j�J

f
j	u
g � min
��j�J

frj � u" bjg

and 
� is de�ned as


�	u
 � min
��j�J

frj � u" bj 	 qj�g

Proof�

The output is compliant to all the J leaky buckets� From Corollary �� this is

R�	t
	 R�	s
 � 
	t	 s
 �� � s � t

R�	t
 � 
�	t
 �t � �

Considering that 
�	u
 � 
	u
 we have that we can extend the validity of the rst

equation to s � �� Additionally the system is conservative

R�	t
 � R	t
 �t � �

Thus we have the following constraints�

R�	t
 � R	t
 �t � �

R�	t
	 R�	s
 � 
	t	 s
 �� � s � t

R�	t
 � 
�	t
 �t � �

Given that the system is a shaper� R�	�
 is the maximal solution satisfying those

constraints� Using the same min�plus result as in Proposition �� we obtain�

R�	t
 � �	
 � R�
 � 	R � 
�
�	t


It derives that R� is given by

R�	t
 � �
 � 	R � 
�
�	t


as 
 is sub�additive �

� 
 � 	R � 
�
	t


� �
 � 
��	t
 � �
 � R�	t


as 
�	u
 � 
	u
� this is

� �
� � 	
 � R
�	t




��

�

Finally we derive the characterisation of a leaky�bucket shaper that starts with

non�zero initial conditions�

Theorem � �Leaky�Bucket Shaper with non�zero initial conditions� Consider

a shaper system de�ned by J leaky buckets 	rj� bj
� with j � �� � � � � J �leaky�bucket

shaper�� Assume that the initial bu�er level of the shaping bu�er is given by w� and

the initial bucket level of the j�th bucket is given by qj�� The output R� for a given

input R is

R�	t
 � minf
�	t
� w� " inf
u��
fR	u
 " 
	t	 u
gg �t � � 	���


with


�	u
 � min
��j�J

	rj � u" bj 	 qj�


Proof�

The proof comes directly from Propositions � and �� �

An intuitive interpretation that generalises Equation 	���
 is to say that any shaper

system starting with non�zero initial conditions o�ers a service that is either the

service o�ered by an ordinary leaky�bucket shaper� taking into account the initial

level of the bu�er� or� if smaller� a service imposed by the initial conditions� indepen�

dently from the input� For the class of the leaky�bucket shaper with non�zero initial

conditions� we are also able to dene the service imposed by the initial conditions

as function of the buckets level�

����� Example

Assume to have a leaky�bucket shaper with non�zero initial conditions dened

by � leaky buckets

� leaky bucket LB� with 	r� � �� b� � �


� leaky bucket LB� with 	r� � �� b� � �


� leaky bucket LB� with 	r� �
�
�
� b� � �
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Figure ���� Functions 
 and 
� resulting from LB�� LB� and LB� leaky bucket
specication and the initial conditions�

and a shaping bu�er of capacity X � �� Assume the initial conditions are as follows�

� the level of the bucket LB� is zero

� the level of the bucket LB� is equal to �
�

� the level of the bucket LB� is equal to �

� the initial level of the shaping bu�er is w� � �

The shaping function 
 and the function 
� are illustrated in Figure ���� Then we

analyse the cases of input �ows S� and S��

Case �� In the beginning the amount of tra�c issued with S� is not very large and

the buckets can handle it without using the bu�er anymore� regardless of the

initial bucket levels and the initial level of the bu�er� Indeed� the quantity of

input is smaller than the output� thus the bu�er empties� At time t � � the

�ow S� arrives with a large amount of tra�c� For this reason� after this time�

the buckets cannot handle all the tra�c and the bu�er starts to ll again� At
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0
σ

S1* =

S1

σ
S1) + w

(

0

�a� Output of S�

σ0

S2

S2*
σ( S2) + w0

�b� Output of S�

Figure ���� Output S�� and S�� of a shaper system with non�zero initial conditions
for S� and S��

time t � � the bu�er is full� Every time the output coincides with the function


�� This case is illustrated in Figure ���	a
� With respect to Equation 	���
�

S�� is computed as 
�	t
 for any t� This means that the constraint imposed

by the initial conditions is always more strong than the action of the shaping

function on S��

Case �� The �ow S� presents always a quantity of tra�c that can be absorbed by the

leaky buckets without using the bu�er� even considering the initial conditions�

The output coincides with 
� in the beginning and with the �ow 	S��

"w�

for t � �� to the end� For t � ��� ���� S�� � 	
�
	t
 for t � �� The shaping

bu�er empties at time t � �� varies for � � t � ��� empties again at t � ��

and remains empty after that time� Figure ���	b
 shows S� and S��� This is

an example of a case where the shaping done by 
 is sometimes more relevant

than the constraint imposed by the initial conditions�

��� Time Varying Leaky�Bucket Shaper Model

In this section� we model the time varying leaky�bucket shaper� we solve this

model� This is used in Chapter � to deduce the input�output characterisation of
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the RVBR service� As introduced in Section ���� the time varying leaky�bucket

shaper is dened by a xed number J of leaky buckets and a shaping bu�er of xed

capacity X� The parameters of the leaky buckets are not constant� but change at

time instants ti� Consequently the shaping function of this system depends on the

time interval and� for each interval Ii� is given by


i	u
 � min
��j�J

	rji � u" bji 


As also mentioned in the introduction� the buckets are not reset and we take into

account the tra�c present at the transient periods� At the time instant ti� where

the leaky bucket parameters are changed� we keep the leaky bucket level qj	ti


unchanged�

qj	t
 can be seen as the backlog of a bu�er with a variable rate rji � therefore can

be computed from Corollary ���� in terms of the output R�	s
 for all ti � s � t�

the rate of the shaper rji 	�
 in the interval of t and the bucket level qj	ti
 at the

beginning of this interval�

Proposition � �Bucket Level� Consider a time varying leaky�bucket shaper� The

bucket level qj	t
 of the j�th bucket is

qj	t
 � max

�
�� sup

ti�s�t
fR�	t
	 R�	s
	 rji � 	t	 s
g�h

R�	t
	 R�	ti
	 rji � 	t	 ti
 " qj	ti

i
�
�	 t � Ii

	����


Proof�

This is a direct application of Corollary � after a shift in time� Let us introduce the

following notation

� for t � Ii let � � t	 ti

� for s � Ii� s � t let s� � s	 ti

� x�	t 	 ti
 � R�	t
 	 R�	ti
 is the amount of tra�c that enters the bucket in

�ti� t��
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With this notation we recast qj	t
 as the backlog of a �ow x� into a bu�er drained

at rate rji with initial level equal to qj	ti
� Thus� from Corollary � we have

L	�
 � max

�
�� sup

��s���
fx�	�
	 x�	s�
	 rji � 	� 	 s�
gh

x�	�
	 rji � � " qj	ti

i

�
�	 � � �

Hence� reintroducing the original notation� we obtain

qj	t
 � max

�
�� sup

��s�t
fR�	t
	 R�	ti
 "R�	ti
	 R�	s
	 rji � 	t	 ti " ti 	 s
gh

R�	t
	 R�	ti
	 rji � 	t	 ti
 " qj	ti

i

�
�	 t � �

that gives Equation 	����
� �

We can now characterise a time varying leaky�bucket shaper in the interval Ii by

using the input�output characterisation given for a leaky�bucket shaper with non�

zero initial conditions� The initial conditions are represented by qj	ti
 and w	ti
�

which are respectively the bucket level and the backlog that are found by the tra�c

arriving in the interval Ii� Consequently� we also derive the backlog at any time

t � Ii in terms of the input R	s
 for all ti � s � t� the shaping function 
i	�
�the

bucket level and the backlog at the beginning of this interval Ii� q
j	ti
 and w	ti
�

respectively�

Theorem � �Time Varying Leaky�Bucket Shapers� Consider a time varying

leaky�bucket shaper with shaping curve 
i in the interval Ii� The output R� for a

given input R is

R�	t
 � min



�
i 	t	 ti
 "R�	ti
� inf

ti�s�t
f
i	t	 s
 "R	s
g

�
	����


where 
�
i is de�ned as


�
i 	u
 � min

��j�J

h
rji � u" bji 	 qj	ti


i

The backlog at time t is

w	t
 � max

�
�� sup

ti�s�t
fR	t
	 R	s
	 
i	t	 s
g�

R	t
	 R	ti
	 
�
i 	t	 ti
 " w	ti


�
�	 t � Ii 	����




��

Proof�

To demonstrate it we recall the time shift with the notation used in Proposition �

and we add

� x	t	 ti
 � R	t
	R	ti
 that is the amount of tra�c that entered in the system

in �ti� t��

With this notation we recast the time varying leaky�bucket shaper as a leaky�bucket

shaper with non�zero initial conditions� In this case the initial bucket level of the

j�th bucket is equal to qj	ti
 as given in Equation 	����
 and the bu�er level is equal

to w	ti
� The input�output characterisation of this system is given by Equation

	���
� thus

x�	�
 � 
�
i 	�
 � �
i � x��	�


where

x�	�
 �

��
�

x	�
 " w	ti
 � � �

x	�
 � � �

Hence� reintroducing the original notation� we obtain

R�	t
	 R�	ti
 �



�
i 	t	 ti
 � inf

ti�s�t
f
i	t	 s
 "R	s
	 R	ti
 " w	ti
g

�

thus

R�	t
 �


�
�

i 	t	 ti
 "R�	ti
� � � inf
ti�s�t

f
i	t	 s
 "R	s
	R	ti
 " w	ti
g"R�	ti
�
�

that gives Equation 	����
�

Consequently� the backlog at time t results

w	t
 � R	t
	 R�	t
 t � �

� R	t
	min



�
i 	t	 ti
 "R�	ti
� inf

ti�s�t
f
i	t	 s
 "R	s
g

�

� max

�
�� sup

ti�s�t
fR	t
	R	s
	 
 � 	t	 s
g

�R	t
	 R�	ti
	 
� � 	t	 ti
�

�
�	 t � �

that is Equation 	����
� �

In practice� for the class of time varying leaky�bucket shapers� this theorem gives

the closure of W discussed in the introduction� Even this result has an intuitive
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interpretation that can be generalised for the class of time varying shapers� The

output of a time varying shaper in any interval is either driven by 
� as combination

of the shaping function and the past history� or is computed by taking into account

the level of the shaping bu�er at the beginning of the interval� This denition is

evidently recursive because it depends on the output and on the past history� which

are themselves computed with the same formulas� For a discussion on linear time

varying shapers see �����

��� Conclusion

Time invariant shapers are not suitable for modelling a situation where tra�c

changes dynamically and the network resources changes consequently and� thus� for

modelling the dynamic VBR problem� This happens because� with time invariant

shapers� it is not possible to take into account the tra�c that is present in the shaper

at the transient moments�

To model such a situation we introduce a class of time varying shapers that we

call time varying leaky�bucket shapers�

For the class of time varying leaky�bucket shapers� we have found an explicit

representation of the output in terms of the input function 	input�output character�

isation
� This is obtained by iterating the input�output characterisation we derive

for the class of leaky�bucket shapers with non�zero initial conditions� Before this

work� there where no models suitable for the dynamic VBR problem� This innova�

tive result forms the basis of the RVBR service� described in the next chapter�
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Chapter �

Application to the Dynamic VBR

Optimisation Problem�

Renegotiable VBR Service

This work in this chapter appeared in ���� ���� ���� and �����

��� Introduction

We recall the Renegotiable Variable Bit Rate 	RVBR
 service� as dened in the

Introduction� RVBR is specied as a variable bit rate service whose parameters

are changed at periodic renegotiation moments� An example of this service is the

Integrated Service of the IETF with the Resource reSerVation Protocol 	RSVP
�

where the negotiated contract may be modied periodically ����

����� RVBR characterisation as time varying leaky bucket

shaper

As already mentioned� a �ow using the RVBR service is constrained by two leaky

buckets� one denes the peak rate� the other denes the sustainable rate and the

burst tolerance� We consider a basic scenario where a fresh input tra�c is shaped

in order to satisfy the leaky bucket constraints� Shaping is assumed to be done
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using an optimal shaper� with a limited bu�er size X ����� The input tra�c may

be generated by one source� or it may be an aggregate of sources� in which case the

shaper models a service multiplexer� Using VBR in a shaper may be advantageous

in all cases where the input tra�c is bursty and the network is able to achieve a

statistical multiplexing gain on many such input �ows �����

In certain other work� video tra�c is carried by networks using Renegotiated

CBR service ���� ����� Contrary to RCBR� with RVBR at any renegotiation time the

sources must select three parameters and not just a peak rate� However� the VBR

specication better matches the intrinsic characteristics of video sources without

requesting high bu�ering delay ����� In RCBR service� the selection of parameters�

limited to one single parameter� can still lead to very poor resource usage� As�

sume� for example� that a source not�tolerant to large delays or losses is expected

to transmit very bursty tra�c� With a simple peak specication� the only option is

to request a large peak rate�

Renegotiable VBR services are also studied in ��������������� the focus is on de�

scribing a given tra�c with as few leaky buckets as possible� and thus applies to the

optimisation of a network o�ering the RVBR service� Our approach� in contrast�

focuses on the customer side of the RVBR service and provides an analysis of the

various tradeo�s that can be made� Our work also di�ers by the systematic use

of network calculus� This results in simple� e�cient algorithms that can easily be

implemented in real applications�

In our model scenario� the RVBR parameters are renegotiated periodically� at

every renegotiation� there is a tradeo� to be made between the various parameters

that dene the two leaky buckets in the next interval� For example� one may choose

a larger burst tolerance and a smaller sustainable rate� or vice versa� depending on

the predicted tra�c �ow and on the cost of the service� This is in contrast with the

renegotiated constant bit rate 	CBR
 service� where only one rate has to be chosen�

Our primary goal in this chapter is to analyse this tradeo�� In particular� we propose

a method to select� for the next interval� the parameters that minimise a given linear

cost function� This is the dynamic VBR problem described in the Introduction� We

analyse the RVBR service using the time varying leaky�bucket shapers� We derive
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the input�output characterisation of the RVBR service as a special case of the time

varying leaky bucket shaper� An RVBR source is a time varying leaky�bucket shaper

with two renegotiable leaky buckets 	J � �
� one with rate ri and depth bi and the

second with rate pi and depth always equal to zero� plus a bu�er of xed size X�

In real life� examples of this service are tra�c shaping done at the source sending

over VBR connections as dened in ��� and Internet tra�c that takes the form of

IntServ specication with RSVP reservation ���� ����� In the next chapter� we show

that the RVBR service indeed can be used to renegotiate resource reservation for

Internet tra�c with RSVP�

The denition of the RVBR service is straightforward as a special case of time

varying leaky�bucket shapers� as dened in Chapter �� where J � �� Therefore� in

the Equations 	����
 and 	����
� 
i and 
�
i are given by


i	u
 � min	pi � u" b�i � ri � u" b�i 
 	���



�
i 	u
 � min	pi � u" b�i 	 q�	ti
� ri � u" b�i 	 q�	ti

 	���


In conclusion of this section� we recall that the DGCRA is an example of time

varying leaky�bucket shapers� We only mention that the output of a node regulated

by the DGCRA is equivalent to the output of a time varying leaky�bucket shaper

with J � �� The obvious proof is left to the reader�

����� Chapter breakdown

In next section� we solve the dynamic VBR problem with the RVBR service�

For the RVBR service� this is equivalent to the problem of computing the RVBR

parameters for the next interval�

We provide two approaches to this problem� when the knowledge of the input

tra�c is limited to the next interval 	local optimisation problem� or simply local

problem�
 and when we dispose of the complete input tra�c description 	global

optimisation problem� or global problem
� For the local problem we propose two

versions� one� when the cost function is represented by a linear cost function and

the other� when we compare two solutions in terms of the number of connections
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with those parameters that would be accepted on a link with capacity C and physical

bu�er X� For the two versions of the local problem and for the global problem we

provide an algorithm�

In Section ���� we compare the two resulting algorithms and show the validity of

the local approach by simulation� We simulate the RVBR service versus the rene�

gotiable constant bit rate 	RCBR
 service and illustrate that the RVBR approach

can provide substantial benets� We also discuss the impact of the size of the rene�

gotiation interval on the e�ciency of the RVBR service� Finally� we illustrate the

impact of the �no�reset� assumption by analysing on some examples the losses that

occur when the source chooses the opposite approach� namely the �reset� approach�

��� RVBR Service
 the Dynamic VBR Problem

In this section� we analyse the problem of computing leaky bucket parameters

for the RVBR service� because we want to use RVBR service for RSVP with CL

service scenario� Therefore� we study the case of a source that wants to reserve

the resources for the next interval� For the RVBR service� this is equivalent to the

problem of computing the RVBR parameters for the next interval�

The parameters optimisation for the RVBR service is not a trivial problem� For

example some input tra�c could be specied from a large ri and a small bi� as well

as from a small ri and a large bi� This problem can be reduced to an optimisation

problem by introducing a cost function that associates a cost to each feasible choice

of 
i� We can approach this optimisation problem in di�erent ways� We can minimise

the cost of 
i at each interval Ii given the status of the system at ti and the input

function R	t
 in Ii 	local optimisation problem
� Alternately� we can minimise the

cost of the global sequence of 
i given the complete input function R	t
 	global

optimisation problem
� The solution of the local optimisation problem is a sequence

of local optimal 
i� The result of the global optimisation problem is the optimal

sequence of 
i� The local optimisation problem and the global optimisation problem

require di�erent information� In the rst case we only need the information related

to the next interval and for special cost functions� we can provide mathematical
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formulas to solve it�

The global optimisation problem requires the knowledge of the whole tra�c

prole and an approach similar to the one used for the local optimisation problem

is prohibitive� Hence� we develop a Viterbi�like method to solve it� A solution to

the global optimisation problem can be seen as a theoretical limit to the solution to

the local one�

For the rst version of the local problem we show the application of the local

scheme to tra�c conforming to the CL service with RSVP reservation protocol�

����� Local Optimisation Problem

We consider the problem of computing the bucket specications for the next

interval� In particular� referring to the Equations 	���
 and 	���
� b�i is assumed to

be xed and in order to simplify the notation� equal to zero� Therefore we indicate

the RVBR parameters at the interval Ii with pi� ri and bi�

General results

From the previous chapter� we know that we can formalise this problem in terms

of the system conditions at time ti and the input in the interval Ii� namely�

� the output R�	ti


� the bucket level q	ti


� the input R	ti


� the input R	t
 for t � Ii

We want to nd the shaping function 
i	u
� We also assume that qj	t
 � bi for t � Ii

holds and that we guarantee the service� namely w	t
 � X� From Equation 	����


of Proposition �� we obtain

R	t
	 R	s
 � 
i	t	 s
 "X t � Ii� ti � s � t

R	t
	 R	ti
 � 
�
i 	t	 ti
	 w	ti
 "X t � Ii



��

That can be rewritten as

pi	t	 s
 "X � R	t
	 R	s
 t � Ii� ti � s � t

pi	t	 ti
 "X 	 w	ti
 � R	t
	 R	ti
 t � Ii

ri	t	 s
 " bi "X � R	t
	 R	s
 t � Ii� ti � s � t

ri	t	 ti
 " bi "X 	 w	ti
	 q	ti
 � R	t
	R	ti
 t � Ii

The equations give a necessary and su�cient condition for a minimum pi

pi � max

�
sup
t�s�Ii

R	t
	R	s
	X

t	 s
� sup
t�Ii

R	t
	 R	ti
	X " w	ti


t	 ti


	���


In analogy to the work in ��� this can be seen as the deterministic equivalent capacity

of the arrival stream in Ii taking in account the backlog at time ti�

This means that� given that pi is computed independently from ri and bi� the

problem of nding a complete optimal parameter set 	pi� ri� bi
 for the RVBR service

is reduced to the problem of nding the optimal parameters ri and bi� This is an

important aspect of RVBR service� In fact the deterministic equivalent capacity

pi is also the minimal peak rate selection for RCBR service� Therefore the two

parameters ri and bi can only lead to better performance�

We assume that ri and bi are limited not to exceed some maximum value that

is xed over time 	thus valid for all i
� that we indicate with rmax and bmax�

We dene with �i a function that� for each s � I � ��� ti�� 	 ti�� computes the

maximum amount of tra�c sent over the any interval of size s� taking in account

the conditions at time ti�

�i	s
 � max

�
B� sup

��v�ti���ti�s
fR	v " s
	 R	v
g

R	s" ti
	 R	ti
 " w	ti
 " q	ti


�
CA

Therefore at each interval Ii� our problem is to minimise a cost function c	�
 in the

acceptance region dened by

� � ri � rmax

� � bi � bmax

bi " ri � s "X 	 �i	s
 � � �s � I

	���




��

where I � ��� ti�� 	 ti�� One important condition that must be respected ���� ��� is

bmax � sup
s�I
f�i	s
	 rmax � s	Xg 	���


otherwise there are no feasible solutions for ri and bi and this must be true at any

interval�

As stated in ���� the feasible region can be simplied� in order to facilitate the

computation of the optimum� At each interval Ii we apply

x � ri

y � bi "X

with this change of variable the problem can be rewritten as

� � x � min	rmax� pi


� � y 	X � bmax

y � 	 $�i	x


	���


where $�i is the concave conjugate of �i

$�i	x
 � inf
s�I
fxs	 �i	s
g

We note that �i is sub�additive because can be seen as the minimum arrival curve

of the function

f	t
 �

��
� R	t
 t � 	ti� ti���

R	ti
 " w	ti
 " q	ti
 t � ti
	���


Additionally� if x � maxs�I
�i�s�
s

then 	 $�i	x
 � �i	�
 therefore we have that 	 $�i is

wide�sense decreasing�

Now� following the resolution scheme described in ���� we study the optimisation

region dened by Equation 	���
 as intersection of two regionsR� and R� respectively

given by

R� �

��
� � � x � rmax

� � y 	X � bmax

��
�

R� � fy � 	 $�i	x
g

The optimum� as illustrated in Figure ���� is found at the intersection of regions
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Figure ���� Local problem version �� the optimum is found at the intersection of
regions R� and R�

R� and R�� If the cost function is non decreasing in x and y the optimum is on

the border of R�� given that any other point has higher cost� Then� if we dene the

points A and B that delimit the border of R�

A �

����
���

xA � sup
s�I�s��

�i	s
	X 	 bmax

s

yA � bmax "X

and

B �

����
���

xB � sup
s�I�s��

�i	s
	X

s

yB � X

Now to derive an optimal value for ri and bi we need to know the optimality criterion

used by the network to evaluate the costs of allocating given ri and bi� For a generic

cost function c	ri� bi
 we have

minimise c	x�	 $�i	x

 in the region xA � x � min	xB� rmax� pi
 	���


We apply two di�erent cost functions� obtaining two versions of this problem�

The rst one� where we assume that the cost to the network is given by a linear cost
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function� is intended for applications� In Section ������ we show that the resulting

algorithm can be used by an application that uses RSVP as the reservation protocol

and species the tra�c conforming to CL service� The second version is introduced

in order to compare the sequence of local optimal solutions that results from the

local problem to the one from the global optimisation problem� In fact this is

used in Section ������ where we compare the solutions to the local and the global

optimisation problem�

First Version� Linear cost function

In this rst version we assume that the choice of the network is driven by a

linear cost function� When the cost function is linear the optimisation problem is

to minimise c	ri� bi
 � u � ri " bi� for xed values of u� Given that c	�
 is linear� as

stated above� the optimum is on the border of R��

The problem of Equation 	���
 becomes

minimise ux	 $�i	x
 in the region xA � x � min	xB� rmax� pi
 	���


In this problem if u is non�positive the minimisation function is wide�sense decreasing

and in this case the solution is given by minfxB�min	rmax� pi
g� If u � � and the min�

imum x� of the minimisation function is in the interval �xA�minfxB�min	rmax� pi
g�

the optimum is for x�� In particular� if �i	�
 is concave� x� � sup
s�I

�i	s
	 �i	u


s	 u
� If

x� is not feasible for the region dened in Equation 	���
 we can have x� � xA and

in this case the optimum is found at xA� Otherwise x� � min	xB�min	rmax� pi

 and

therefore the optimum is min	xB�min	rmax� pi

�

Finally� we can summarise these results in the algorithm localOptimum� that

nds the optimal solution as described above� The algorithm is given for �i	�


concave� When this does not hold it is substituted by � �i	�
� which it is a concave

arrival curve of f	t
 as given in Equation 	���
�

As mentioned above� pi is independent and can be computed as the deterministic

equivalent capacity of R	t
 in this interval�

Algorithm �� localOptimum�	X� fR	t
gt�Ii� bmax� rmax� u� w	ti
� q	ti
� ti��


if bmax � sup
s�I

f�i�s�� rmax � s�Xg then there is no feasible solution�
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else f

pi � max

�
sup
t�s�Ii

R�t��R�s��X

t� s
� sup
s�Ii

R�ti��R�s��X � w�ti�

ti � s



if u � � then f

x� � min�rmax� pi��

g

else f

x� � sup
s�I

�i�s�� �i�u�

s� u
�

xA � sup
s�I�s��

�i�s��X � bmax

s
�

xB � sup
s�I�s��

�i�s��X

s
�

if �x� � min�xB � rmax� pi�� then x� � min�xB � rmax� pi��

else if �x� � xA� then x� � xA�

g

ri � x��

bi � sup
s�I

f�i�s��X � s � x�g�

g

Second Version� maximum number of accepted connections

In this second version we take a di�erent approach� In fact here� for any so�

lution 	pi� bi� ri
 we compute the number Ni of homogeneous connections� specied

by 	pi� bi� ri
� acceptable by a link with xed capacity C and bu�er with xed size

B � The cost of each solution is represented by the reciproc of Ni� therefore the

minimum is obtained for the maximum number of connection accepted��

As illustrated in Figure ���� the number of connection accepted has to be such

that

Ni � 	min	pit� rit" bi

 � C � t"B �t � �

and this is equivalent to

Ni �
C
pi

Ni �
C
ri

�In reality Ni should be an integer� but given that we use it only for computing the cost of a
tra	c descriptor� we accept that Ni takes any positive real value
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Figure ���� Local problem version �� the optimum is found either at the intersection
between y� � C � t"B and y� � r � t" b or for B

b

Given that the second one is more restrictive� we simply have that

Ni �
C

ri
	����


Moreover� at limit� y� � C � t"B intersects y� � N	r � t" b
 at the point

D �

���
��

xD � bi
�pi�ri�

yD � Nipibi
�pi�ri�

Therefore we derive that

Nipibi
	pi 	 ri


� C �
bi

	pi 	 ri

"B

That gives

Ni � max

�
B � 	pi 	 ri
 " biC

bipi
�
C

ri


	����


and thus� from Equation 	����
 the cost for the solution 	pi� bi� ri
 is

min

�
bipi

B � 	pi 	 ri
 " biC
�
ri
C


	����


This is equivalent to say that we associate to each accepted connection with tra�c

descriptor equal to 	pi� bi� ri
 a leaky bucket specication with rate equal to

%r �
Cbipi

B � 	pi 	 ri
 " biC
	����
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cost
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�a� Evolution of the cost function for


xed y

cost

p/C

b

�b� Evolution of the cost function for


xed x

Figure ����

and a bucket size equal to

%b � bi �
	pi 	 %r


	pi 	 ri

	����


We observe that this function is increasing in both x and y� as illustrated by

Figures ���	a
 and 	b
�Thus the optimum is on the border of R�� The problem of

Equation 	���
 becomes

minimise min

�
	 $�i	x
	X
pi

B � 	pi 	 x
 " C � 	 $�i	x
	X

�
x

C


in the region xA � x � min	xB� rmax� pi


	����


When the system evolves we have to take in account the evolution of the physical

bu�er of capacity B� At at time ti it contains some tra�c from the past� Hence we

do not dispose of the complete capacity B� but only of part of it� indicated by Bi�

Bi is the di�erence between the bu�er size and the backlog at that time

Bi � B 	W 	ti


whereW 	ti
� indicated withNi�� the number of connections accepted at the previous

interval� is computed with a modied version of Equations 	����
 as follows

W 	ti
 � max

�
�� sup

ti���s�ti

fNi�� � 	R
�	ti
	 R�	s

	 C � 	ti 	 s
g�

Ni�� � 	R
�	ti
	R�	ti��

C � 	ti 	 ti��
 "W 	ti��


�
�	

	����




��

Algorithm �� localOptimum�	X� fR	t
gt�Ii� bmax� rmax� u� w	ti
� q	ti
� ti��� C� B�W 	ti



if bmax � sup
s�I

f�i�s�� rmax � s�Xg then there is no feasible solution�

else f

pi � max

�
sup
t�s�Ii

R�t��R�s��X

t� s
� sup
s�Ii

R�ti��R�s��X � w�ti�

ti � s



if u � � then f

x� � min�rmax� pi��

g

else f

x� that minimise min
�

� ��i�x��X�pi
B��pi�x��C�� ��i�x��X�

� xC

�
�

xA � sup
s�I�s��

�i�s��X � bmax

s
�

xB � sup
s�I�s��

�i�s��X

s
�

if �x� � min�xB � rmax� pi�� then x� � min�xB � rmax� pi��

else if �x� � xA� then x� � xA�

g

ri � x��

bi � sup
s�I

f�i�s��X � s � x�g�

g

We are aware that this second algorithm does not consider any statistical multi�

plexing� However� it is only used to compare the sequence of local optima with

the sequence resulting as solution to the global optimisation problem� as dened in

Section ������ The comparison results are give in Section ������

����� Global Optimisation Problem

In Section ����� we illustrate how to build a complete solution with the local

algorithm as a sequence of local optima� This solution is not necessarily the optimal

sequence� In fact a sequence of local optimal solutions is very likely to cost more

than an optimal sequence�

Assume that at a certain interval we nd a solution that optimises the network

resources but at the cost of a very large bu�er occupancy� At a later interval� because

of the lack of bu�er space� there might not be feasible solutions 	see Equation 	���

�
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or the optimal solution might have a very high cost� It is clear that an algorithm

for nding the optimal sequence is too expensive in terms of time and memory

occupation and we argue that such an algorithm can be useful only for evaluating

other schemes� In order to have a theoretical optimum to compare with the solution

of the local scheme� we studied an algorithm based on a Viterbi�like algorithm

���� ���� A similar study is presented in ��� for RCBR service�

We keep valid all previous assumptions and the RVBR service is still renegotiated

at every interval Ii � 	ti� ti���� i � N � The xed set S � fsl� l � �� �� � � �K�g

contains the possible RVBR service parameter sets we can select at each interval� A

RVBR service parameter set sl is described as

sl �

�
�����
ph

rk

bj

�
����	 h� k� j � ��� K�

We note that the peak ph can reasonably assume values that are di�erent from the

deterministic equivalent capacity at Equation 	���
� because a larger peak in the

interval Ii can lead to a minor utilization of the bu�er and this could permit the

reduction of the cost at the next intervals� The linear cost function introduced for

the local problem in Section ������ c	ph� rk� bj
 � u � rk " bj� is based on the fact

that there is only one solution for the peak� thus it is not usable� It is evident that

it is not possible to nd any function to give a global cost comparison� Therefore

we adopt a �call admission control� approach� We compare the two algorithms in

terms of the number of connections that would be accepted on a link with capacity

C and physical bu�er of size B� Given a parameters selection sl we indicate with

N l
i the number of homogeneous connections with parameters sl accepted at interval

Ii in localOptimum� as dened in Section ������

In the Viterbi�like algorithm a node of the trellis represent a state encountered

by the system� Here we need to distinguish two states whenever they are reached

with di�erent cost or usage of network resources� The trellis diagram is also spread

over time thus a node is represented by a ��tuple n � 	i� w	ti
� q	ti
� Ntot�W 	ti

� i

indicates that this state is reached at time ti� w	ti
 and qj	ti
 are computed with

Equations 	����
 and 	����
 respectively� W 	ti
 is computed with Equation 	����




��

and Ntot indicates the sum of the number of accepted connections as computed in

Equation 	����
 for each state traversed to reach n

Ntot �
Xi

j��
Nj

A transition from a node n � 	i� wn	ti
� qn	ti
� 	Ntot
n�Wn	ti

 to node m � 	i "

�� wm	ti��
� qm	ti��
� 	Ntot
m�Wm	ti��

 happens whenever there exists an element

sl � fph� rk� bjg in S such that m derives from n by serving the tra�c over the

interval Ii with a RVBR service described by sl

wm	ti��
 � max

�
B� sup

ti�s�ti��

�R	ti��
	 R	s
	 
i	ti�� 	 s
��

R	ti��
	 R	ti
	 
�
i 	ti�� 	 ti
 " wn	ti


�
CA

with


i	u
 � minfph � u� rk � u" bjg

and


�
i 	u
 � minfph � 	u
� rk � u" bj 	 qn	ti
g

and

qm	ti��
 � max

�
B� sup

ti�s�ti��

fR�	t
	R�	s
	 rk � 	ti�� 	 s
g�

R�	ti��
	 R�	ti
	 rk � 	ti�� 	 ti
 " qn	ti


�
CA

and

Wm	ti��
 � max

�
B� sup

ti�s�ti��

fNi � 	R
�	ti��
	 R�	s

	 C � 	ti�� 	 s
g�

Ni � 	R
�	ti��
	 R�	ti

	 C � 	ti�� "Wn	ti


In this case we have an edge from n to m and the associated number of accepted

connections is

N l
i � max

�
Bi � 	ph 	 rk
 " bjC

bjph
�
C

rk



Note that we do not keep track of the used tra�c parameter s sets� because we

use this algorithm only for comparison purpose� That way the format of the node

do not need to include the tra�c parameter selection information�

We call path the sequence of edges from the initial node n� � 	�� �� �� �� �
 to a

node n� The goal is to nd the path able to accept the largest number of connections
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cost

td1

tdj
tdK

pruned path:
higher cost

non feasible paths: 
constraints violation

w

period

X

Figure ���� An example of the trellis� some path is not added to the trellis and some
other is eliminated�

over the time among all paths from n� to a nal node� i�e� a node that represents a

status of the system when the input tra�c stops�

We dene a node n � 	i� w	ti
� q	ti
� Ntot�W 	ti

 to be feasible if the constraints

are respected for all t � ti

� � w	t
 � X

� � q	t
 � bj

An edge from a feasible node n to node m is feasible if m is feasible�

We also dene a node n � 	i� wn	ti
� qn	ti
� 	Ntot
n�Wn	ti

 to be non optimal

when there exists a node m � 	i� wm	ti
� qm	ti
� 	Ntot
m�Wm	ti

 such that

wn	ti
 � wm	ti


qn	ti
 � qm	ti


	Ntot
n � 	Ntot
m

Wn	ti
 � Wm	ti


All the paths to a non optimal node n are non optimal�

We limit the exponential growing of the trellis rst by creating only feasible

edges and nodes and then by pruning the paths and the nodes that are not optimal�

Consequently at each interval some path is not added to the trellis 	because it is not

feasible
 and some other is eliminated 	because it is not optimal
� as represented in

Figure ���� At the end we select one of the paths that reaches one of the nodes with

the greatest number of accepted connections Ntot�



��

This can be resumed in the following algorithm

Algorithm �� globalOptimum	X� fR	t
g� fslg� C� B


n� � ��� �� �� �� ��

for �i � � i � I� i��� then f

for �l � � l � K�� l ��� then f

create all the feasible edges corresponding to sl from nodes at i to nodes at

i� �

prune all non optimal nodes and edges�

g

g

select one path ending in a node with the greatest Ntot�

where I denotes the index of the last renegotiation time tI �

��� Evaluation of the RVBR Service

In this section we apply the previous algorithms to discuss a number of issues

related to the RVBR service� The simulation scenario corresponds to the real case

of a MPEG� video�trace transmitted over a network with RSVP as reservation

protocol� This scenario is described and analysed more in detail in next chapter�

Here we are not interested to implementation details that are� therefore� omitted�

The trace is a ���� frame�long sequence� composed of several video scenes that

di�er in terms of spatial and temporal complexities� The tra�c generated by the

video is transported by a trunk regulated by a RVBR service 	p� r� b
 with shaping

bu�er X� The video� with a total size of ��� Mbits� is transmitted in ��� seconds

	�� frames pro second
� without any scheduling�

����� Comparison of the Local and Global Algorithms

Here we simulate the localOptimum� algorithm as dened in Section ����� against

the globalOptimum algorithm proposed in Section ����� to give a measure of the

optimality of the former in terms of cost� We ignore the renegotiation cost� because

this cost is the same in both the local and the global case� The algorithm proposed

for the global problem� the Viterbi�like algorithm� works with a discrete set of values



��

whereas the algorithm proposed in Section ����� for the local problem can result in

any value� For reason of comparison� we forced the local algorithm 	localOptimum�


to work with the same discrete set of values� The two resulting complete sequences

are comparable because the two algorithms select the optimum as the set sl � S that

permits the acceptance of the largest number of connections on a link of capacity C

with associated bu�er size B�

In Figures ������� we illustrate the behaviour of the two schemes in terms of the

number of connection accepted for the optimal solution� Again for reason of space

we only show the following scenarios�

Scenario �� X � �� Mbits� B � �� Mbits� C � �� Mbps

Scenario �� X � � Mbps� B � �� Mbits� C � �� Mbps

Scenario �� X � ��� Mbits� B � �� Mbits� C � �� Mbps

In the local scheme� an incorrect renegotiation a�ects the future� This is even

more valid in the example illustrated here� because the input tra�c is signicantly

bursty for large periods� Despite this� our algorithm does not deviate signicantly

from the theoretically optimal one� We can see that even for high numbers of

renegotiations 	i�e� short renegotiation periods� sub�gures 	a
 and 	b

 it presents

a behaviour not too far from the optimum� while for larger renegotiation periods

the two solutions are frequently the same� It is important to notice that there is

no relation between the behaviour experienced during two di�erent renegotiation

periods� This is evident when we analyse the renegotiation at �� and �� seconds�

and it is due to the fact that the solution is optimal inside the interval�

In terms of bu�er usage we observe even a better result for the local algorithm�

The average occupation percentage we obtain when using the local algorithm is

always very close to that of the optimal algorithm for all the renegotiation periods

we analysed�
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Figure ���� Number of connections accepted by a link of capacity C � ��� Mbits
and physical bu�er size B � �� Mbits for the RVBR service 	solid curve
 and the
RCBR one 	dashed curve
 at di�erent renegotiation period�

����� Renegotiable VBR Service versus Renegotiable CBR

Service

In this section we simulate the local scheme based on renegotiable VBR service

against a renegotiable CBR service� In the CBR case we can renegotiate only the

peak rate� i�e� a constant rate� for each interval� We simulate the two services for

di�erent renegotiation periods and we show the benets of the VBR approach in

terms of connection accepted as described in Equation 	����
� Again� we ignore

the renegotiation cost� because it is equal for both services� Looking at Figure ����

we observe that the reduction of the number of connection accepted for the RCBR

service is signicant� This can be easily explained by the di�culty of shaping bursty
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Figure ���� Bu�er utilisation for a quite small renegotiation period of �� seconds�
the RVBR service approach 	on the right
 is clearly better than the CBR approach
	on the left
�

tra�c with a simple rate specication ����� Obviously this fact is more evident when

we do not renegotiate frequently� Therefore� the larger di�erence is present in the

larger renegotiation period cases� For the same reason� in Figure ��� and ���� we see

that the the bu�er in the CBR case is really under�used� Thus� as expected� there

are obvious benets in using the RVBR service instead of the RCBR one�

����� Discussion on the Impact of the Renegotiation Inter�

val Size

One factor we varied� in order to analyse di�erent results� is the renegotiation

period� The renegotiation period can range from instantaneous renegotiation 	�

second in our case
 to no renegotiation� The analysis of some intermediate points

permits the study of the evolution in terms of this factor� We use in this analysis

the local problem algorithm� with the MPEG� input tra�c used in the previous

sections� Figure ���� illustrates an example of the di�erent costs we obtained with

di�erent renegotiation periods�

As expected� in general it happens that the larger the renegotiation period is� the

higher the cost of the tra�c specication� With a local approach this is not always

true� In fact the local optimum of a larger period is less expansive than the sum of

the cost for a smaller renegotiation period on the same interval� In fact the optimum

is local inside the interval� This e�ect is better illustrated in Figure ����	b
� Here
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Figure ����� Bu�er utilisation for more large renegotiation periods� the RCBR
service 	on left
 is unable to use the bu�er� The peak selected is to high and in
those cases the bu�er results always empty�
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Figure ����� Evolution of the cost versus renegotiation period�
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the curve representing the cost of reallocating every �� seconds is often above most

of the other curves�

The curves presented until now do not includes any cost for the renegotiation

in terms of signalling� etc� When we consider� as part of the problem� having a

renegotiation cost� we nd a tradeo� between the advantage of the renegotiation

and its cost� This issue cannot be universally solved because it depends on the

input tra�c�

Here we discuss certain aspects of this problem� If we assume a xed renegotia�

tion cost  and indicate with %pj� %rj and %bj the average values for the peak� the rate

and the bucket renegotiating j times� we can represent the optimal renegotiation

period with

Tn �
�
T

n

�

where T represents the lifetime of the input tra�c and

n � fm � N � �m � 	 " u � %rm "%bm
� is minimumg

However� given that ri and bi are computed on the basis of the tra�c expected in the

next interval it is evident that n depends not only on � but also on the input tra�c

prole� Moreover� the problem of dening the optimum xed renegotiation period

requires the knowledge of the complete reallocation sequence for each m� This is in

contrast with the local approach we propose�

By applying the Viterbi�like algorithm presented in Section ����� with an instant

renegotiation period and with additional cost for renegotiating 	as it is done� for

example� in ���
� it is possible to derive an optimal frequency of the renegotiation� In

this case the renegotiation scheme and the method for dening when to renegotiate

are combined and based on the complete knowledge of the input tra�c�

If the tra�c is known in advance� one approach could be to change the renegoti�

ation period based on the tra�c prole� For instance� if the prediction for the next

interval of �� seconds gives a very bursty prole� we could consider to renegotiate

the resources more often inside that interval� One factor that can be used to this

purpose is the variance of the expected tra�c� in general if it is large� we can also

foresee a non optimal usage of the resources� This approach� contrary to the one
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Figure ����� Percentage of losses in the reset approach

based on the Viterbi�like algorithm is still based on a local approach� However� in

both cases� the result is a variable renegotiation period�

����� �Reset versus �No Reset Approach

As described previously� we choose to use the �no reset� approach instead of

the simpler �reset� one� In this section we study the losses occurring in the �reset�

approach� We want to show that this approach is not valid for tra�c with strict

loss constraint�

It is trivial that� in terms of costs� the �reset� approach is better because it

always restarts from a zero initial condition and considers the lost tra�c as sent�

First we point out that the network must use the �no reset� approach because it

must ensure to any input tra�c� exactly the same service when tra�c specication

is always renegotiated with the same 
i � 
 and when the tra�c specication is

equal to 
 and is not renegotiated� This is not possible if the network resets the

buckets level at every renegotiation time�

In principle� at the source both approaches are valid� However� when we reset

the buckets we must accept to experience some loss due to the fact that the network

does not apply any reset� This means that the upper bound to those losses is given

by the maximum size of the bucket 	bmax
 times the number of times we apply the



��

renegotiation� Therefore an upper bound for the percentage of losses is given by

min
i

bmax � i

R	ti

	����


It is already clear that this upper bound can be not acceptable for many types of

tra�c� In practice this limit is easily reached� unless bmax is very small� Only in

this case� where we have that bmax
R�ti�

is close to zero for any value of i� the impact of

the reset does not a�ect the system behaviour� Evidently we can assume that this

condition should not occur� because it corresponds to a bad network planning�

To evaluate how close we get to this upper bound we simulate the two approaches

in the same scenario described in Section ������ where we use IntServ services with

RSVP reservation protocol�

We use again the same MPEG� ���� frame�long sequence as input� We measure

the percentage of losses� that obviously depends on bmax� For the renegotiation at

every �� seconds� we experience a percentage of losses from �!� for bmax very small�

up to ��!� Obviously� for a xed bmax� the percentage of losses grows with the

decrease of the renegotiation period� For very small renegotiation periods can be

enormous�

In Figures ���� and ���� we illustrate the losses for an average bmax 	compared

to the input tra�c� bmax � � Mbits
 for di�erent renegotiation periods� We observe

that for most of these cases the percentage of losses is not acceptable� It is di�erent

in the case of renegotiation at ��� seconds because here the renegotiation is quite

infrequent�

��� Conclusion

In this chapter we characterised the RVBR service in terms of the time varying

shaper model introduced in Chapter ��

Then we used this result to study two aspects of the RVBR service� leaving aside

the problem of tra�c prediction�

� The rst problem 	local optimisation
 is to nd the optimal parameters 	rates

and bucket sizes
 in one interval Ii� for two particular cost functions� given
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that we know the expected tra�c in that interval� The solution are Algorithms

� 	Section �����
 and � 	Section �����
�

� The second problem 	global optimisation
 is to nd the optimal parameters

	rates and bucket sizes
 over a complete sequence of intervals interval Ii� for

one particular cost function� given that we know the expected tra�c over

the whole sequence� We propose a solution based on a Viterbi�like algorithm

	Algorithm � in Section �����
�

Apart from the obvious consideration in terms of time and memory and�or com�

putational cost� we showed that it is e�ective to use the local algorithm� In fact�

in the examples we considered� the sequence of optima produced by the local algo�

rithm is very close to the optimal sequence produced by the global algorithm� In

particular� when the renegotiation period is not very small 	i�e� � �� seconds
� in

most of the cases the sequence of local optima is equal to the optimal sequence� as

illustrated in Figures ��������

In the cases we analysed� we found that the RVBR service is more e�cient than

the RCBR service in terms of the number of connections that can be accepted on a

link with xed capacity and bu�er size� This is illustrated in Figures �������� and

discussed in details in Section ������

We illustrated that� if some inconsistency exists between network and user sides

about the use of the �reset� or �no�reset� approach� then this may result in unac�
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ceptable losses 	or service degradation
 due to policing� We gave an upper bound

to the percentage of losses and we noticed that� in general� this upper bound is not

acceptable� especially for small renegotiation periods� We also found� in the cases

we analysed� that this limit can be easily approached� Some simulation results are

given in Figure ���� in Section ������

We also discussed the impact of the renegotiation period on the renegotiation

cost� as one factor that can a�ect the renegotiation�



���
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Chapter �

RVBR for RSVP

This work in this chapter appeared in ���� ���� ����� ���� and �����

��� Introduction

In this Chapter we show that RVBR can be e�ciently used to renegotiate re�

source for the Internet tra�c that takes the form of IntServ specication with RSVP

reservation ���� �����

In the next section we give a short description of certain aspects of RSVP relevant

to this work and focus on the use of RSVP with Controlled�Load and Guaranteed

QoS control service� In Section ���� we present the simulation of RVBR in a scenario

where a sender transmits a MPEG� video over a network using RSVP reservation

protocol with Controlled�Load service� Finally� in Section ���� we describe the im�

plementation design of a Video on Demand application� which is the rst example

of application RVBR�enabled�
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��� RSVP with the Controlled�Load and Guaran�

teed QoS

	���� Resource ReSerVation Protocol

Resource ReSerVation Protocol 	RSVP
 ��� addresses the problem of resource

reservation in the Internet� It operates on top of IP and relies on standard Internet

routing� Here we deal only with details directly related to the QoS specication�

Other details on the RSVP specication can be found in Section E���� in the Ap�

pendix�

RSVP allows the reservation of resources for a �ow� seen as a sequence of data�

grams� The �ow descriptor� carried in the resource reservation message� contains

the FLOWSPEC� This information is a combination of the tra�c characteristic and

the available resources in the network� therefore� is the receiver who is responsible

for initiating the reservation�

The sender sends the characteristics of the tra�c in the Tspec tra�c descriptor�

contained in the PATH message� The receiver establishes a resource reservation by

issuing a RESV message upstream following exactly the inverse path of the PATH

message� The RESV message creates a reservation state in each RSVP capable

router along the path from the receiver to the sender�

The resource reservation request indicated in the RESV message has to pass

admission control and policy control modules in all RSVP equipped routers and

hosts on its way� The reservation is accepted if it passes these two checks� �ow

related parameters are set in the packet classier and packet scheduler� If either of

the checks fail� an error notication is returned� The packet scheduler is responsible

for negotiation with the link layer in order to reserve the transmission resources� It

is here that mapping� from the �ow level QoS to the link layer QoS� takes place�

RSVP uses soft state for the reservation� The reservation is periodically refreshed

	suggested refresh period is currently �� seconds
� i�e� the PATH and the RESV

messages are reissued� The soft state does not imply that resources are renegotiated�

because the tra�c parameter specication can be reissued without changes� In fact�

the original role of the soft state mechanism is to simplify the status management
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in the routers� but it can be easily used and without additional costs� for expressing

dynamic reservation changes in a straightforward way and thus can be easily used

to support resource renegotiation� as we illustrate in Section ����

	���� Controlled�Load Service

Controlled�load service provides the client data �ow with a quality of service

closely approximating the QoS that the same �ow would receive from an unloaded

network element� but uses capacity 	admission
 control to assure that this service is

received even when the network element is overloaded �����

The end�to�end behaviour o�ered by the controlled�load service to an application�

under the assumption of a correct functioning of the network� is expected to provide

little or no delay and congestion loss� In this respect� the application may expect

to experience a high percentage of successfully delivered packets by the network to

the receiving end�nodes� without exceeding a certain minimum transit delay�

The sender provides the information of the data tra�c it will generate in the

Tspec� The parameters specied by the Tspec are� a peak rate p and a leaky

bucket specication with rate r and bucket size b� In addition� there is a minimum

policed unit m and a maximum packet size M � The service o�ered by the network

ensures that adequate network resources will be available for that tra�c� In the

presence of non�conforming packets arriving 	falling outside of the region described

by the Tspec parameters
� the QoS provided by the network to that �ow may exhibit

characteristics indicative of overload� including large numbers of delayed or dropped

packets� In fact� the excess tra�c is very probably forwarded as best�e�ort or

dropped�

The controlled�load service is well suited to those applications that can usefully

characterise their tra�c requirements and are not too sensible to eventual delay or

loss�

	���� Guaranteed Service

Guaranteed service provides rm 	mathematically provable
 bounds on end�to�

end datagram queueing delays� This service makes it possible to provide a service
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that guarantees both delay and bandwidth �����

This is obtained by guaranteeing the queueing delay� The queueing delay is a

function of the Tspec parameters that express the tra�c characteristic and of the

Rspec that describe the desired service� The Tspec has the same form as for the

controlled�load service� i�e a peak rate p� a leaky bucket specication with rate r

and bucket size b� a minimum policed unit m and a maximum packet size M � The

Rspec is composed by a rate R and a slack term S� where R � r and S � �� The

slack term may be used inside the network to adjust the local reservations�

The sender provides the information of the data tra�c it will generate in the

Tspec� The receiver� on the basis of the target delay and the resources available in

the network� starts the reservation adding the Rspec information� The service o�ered

by the network guarantees that the requested network resources will be available for

that tra�c� In the case of non�conforming tra�c� the excess tra�c is very probably

forwarded as best�e�ort or dropped�

Inside the network� the tra�c can be reshaped� in order to restore its conformity

to the Tspec� This is obtained with the use of the reshaping bu�er� The amount

of bu�ering required to reshape any conforming tra�c back to its original token

bucket shape is b " Csum " 	Dsum � r
� where Csum and Dsum are the sums of

the parameters C and D between the last reshaping point and the current reshaping

point� The parameter D is intended to limit the variability in non�rate�based delay�

C expresses the data backlog resulting from the deviation from a strict bit�by�bit

service�

This service is intended for applications that need a rm guarantee on delay�

	���� RSVP resource reservation protocol with CL and GS

control services

RSVP resource reservation protocol does not dene the internal format of the

QoS object� because it is designed to be used with a variety of QoS control services�

The FLOWSPEC object carries information necessary to make reservation re�

quests from the receiver	s
 into the network� i�e� an indication of which QoS control

service is being requested and the parameters needed for that service� The Tspec
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carries tra�c information usable by either the Guaranteed or Controlled�Load QoS

control services and it carries information about tra�c parameters of the desired

reservation� The Rspec is only specied for Guaranteed service and it carries infor�

mation to obtain the desired bandwidth and delay guarantees�

The information about the QoS control capabilities and requirements of the

sending application and the network elements are carried in the ADSPEC� In the

case of Guaranteed service� the ADSPEC carries data needed to compute the C and

D terms passed from the network to the application�

��� RVBR Simulation

RVBR service uses the knowledge of the past status of the system and the prole

of the tra�c expected in the near future� which can be either pre�recorded or known

by means of exact prediction� This scheme suits perfectly the dynamics of the tra�c

generated by multimedia applications� Moreover it naturally integrates with the soft

state mechanism of RSVP� which allows for renegotiating the resources�

	���� Simulation Scenario

As described in Chapter �� an RVBR source is a time varying leaky�bucket

shapers with two renegotiable leaky buckets 	J � �
� one with rate ri and depth bi

and the second with rate pi and depth always equal to zero� plus a bu�er of xed

size X� This suits perfectly with the service requested by a source sending Internet

tra�c that takes the form of IntServ specication with RSVP reservation ���� �����

We show that the RVBR service can be used to renegotiate a resource reservation for

Internet tra�c with RSVP� where the sender sends a PATH message with a Tspec

object that characterises the tra�c it is willing to send� If we consider a network

that provides a service as specied for the Controlled Load service 	CL
 ����� the

Tspec takes the form of a double bucket specication ���� as given by the RVBR

service� There is a peak rate p and a leaky bucket specication with rate r and

bucket size b� Additionally there is a minimum policed unit m and a maximum

packet size M � In this simulation� we ignore m and M � which are assumed to be



���

xed� Following the RSVP specication� where a refreshing period of �� seconds

is suggested� we set the renegotiation interval size to this value� As dened with

RVBR� p� r and b are recomputed at each renegotiation time� hence a new Tspec is

issued� There is no additional signaling cost in applying a Tspec renegotiation at

this point� even if there is some computational overhead due to the computation of

the new parameters� or to the call admission control� etc� It is important to note

here that� contrary to the negotiation of a new connection� with the renegotiation

the reservation is never interrupted�

If the requested tra�c specication cannot be supported by the network� the old

tra�c specication is restored and the network may not be able to accommodate

the next tra�c� Mechanisms to prevent this failure from occurring are still under

study� Here we assume that the Tspec is accepted all over the network as well as at

the destination� such that the source can transmit conforming to its desired tra�c

specication�

To apply the RVBR service in this scenario� we assume that at any time ti � ���i

the application knows 	because pre�recorded or predicted
 the tra�c for the next

�� seconds� We further assume to know the cost to the network of the Tspecs

	indicated by the cost function u � r " b
 and the upper bound to the bucket size

bmax and to the bucket rate rmax� The backlog w	ti
 and the bucket level q	ti
 can

be measured in the system� Then� with the RVBR service� we compute the Tspec

that the sender will send at the next renegotiation time� The basic architecture of

the sender node is described in Figure ���� In this context we do not consider delay

issues 	delay incorporation� as well as the extension to Guaranteed Service ����� is

matter of further study
�

	���� Simulation results

In this section we describe how we use the local algorithm� dened in Section

������ to simulate a typical real case� transmission of MPEG��encoded video using

the IntServ Controlled Load service with the RSVP reservation protocol�

The basic architecture of the sender node is described in the introduction and

illustrated in Figure ����
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Figure ���� A basic architecture to support the usage of the local scheme for RSVP
with CL service reservation� each �� seconds R	t
 is predicted and used to compute
the optimal p� r and b to generate the new Tspec�

In our simulations� we use a ���� frame�long sequence that conforms to the ITU�

R ��� format 	������� at �� fps
� The sequence is composed of several video scenes

that di�er in terms of spatial and temporal complexities� It has been encoded in an

open�loop variable bit rate 	OL�VBR
 mode� as interlaced video� with a structure of

�� images between each pair of I�pictures and � B�pictures between every reference

picture� For this purpose� the widely accepted TM� video encoder ���� has been

utilised� The evolution of the input tra�c is given in Figure ����

The tra�c generated by the video is transported by a trunk regulated by a

RVBR service 	p� r� b
 with shaping bu�er X� In this context we do not consider any

scheduling issues� which is the subject of ongoing work� Therefore we assume that

the video� with a total size of ��� Mbits� is transmitted in ��� seconds 	�� frames

pro second
� The cost function is linear with u� We illustrate three scenarios�

Scenario �� X � �� Mbits� rmax � � Mbps� bmax � � Mbps and u � �

Scenario �� X � �� Mbps� rmax � � Mbps� bmax � �� Mbits and u � �

Scenario �� X � �� Mbits� rmax � � Mbps� bmax � �� Mbps and u � �

The initial conditions are� q	�
 � � and w	�
 � �� The le is pre�recorded and�

given that we do not enter in scheduling matters� we know R	t
 for all t� At time ti
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Figure ���� Tra�c evolution of the sequence used as input in the simulation�

we know R�	t
 for t � ti� we measure w	ti
� q	ti
 and compute �i	t
� as indicated by

Equation ��� in Chapter �� We obtain the optimal shaper parameters by applying

the algorithm localOptimum� at Section ����� that we use to generate the Tspec that

the sender will send at the next renegotiation time�

Backlog evolution with and without renegotiation

In Figure ��� we plot the backlog for the three scenarios in both cases where

we apply the renegotiation and where we do not renegotiate �� In order to better

distinguish the two approaches� the area of the curve representing the case without

renegotiation is coloured�

We observe that in the beginning the curves representing the two approaches do

not di�er much� This is because the tra�c is very heavy in the rst �� seconds and

both tra�c specications conform to this tra�c�

After that period the tra�c rate decreases� The case without renegotiation has

to keep the tra�c specication negotiated at time t � �� even if it is no longer

adequate for the current demand� The resources allocated in the network are so

large that it is possible to empty the bu�er and thereafter the bu�er is rarely used�

�Even in this case we compute the optimal tra	c speci
cation as introduced in ���
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Figure ���� Comparison of the shaping bu�er used with renegotiation 	white area

and without renegotiation 	black area
 for the three scenarios

The curve for the case where we used the RVBR service shows that the bu�er is

much better utilised� because the tra�c specication decreases in the next intervals�

Therefore� in the approach where we apply the renegotiation with the RVBR

service� the resources in the network are much better used� In fact� when the bu�er

is almost always lled the output is conforms to the tra�c specication and this

means that all the resources in the network are optimally used�

In the rst scenario the usage of the bu�er with renegotiation is ��!� while

without renegotiation it is ��!� In the second scenario the percentages are ��! and

��!� in the last one they are ��! and ��!� In any case we have to remember that

the optimisation is done for the worst case� and this explains why� when we do not

renegotiate� the bu�er never lls completely�

Cost evolution with and without renegotiation

In the graphs in Figure ��� we compare the two approaches in terms of the cost

of the tra�c specication to the network�

The cost of the tra�c specication is given in terms of the linear cost function

used by the RVBR service in order to compute the optimal tra�c parameters� In

the previous section we showed� for the case where we renegotiate the tra�c spec�

ication� a better utilisation of the shaping bu�er� which coincides with a better

allocation of all the resources into the network� The additional result we derive
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Figure ���� Comparison of the cost of allocating a renegotiated tra�c specication
and a tra�c specication without renegotiation for di�erent scenarios� The cost of
the tra�c specication is given in �millions of unit of cost� 	M�unit of cost
 and
computed with the linear cost function used for the optimisation�

from these other gures is that there is also a substantial advantage from the cost

point of view in reallocating� because the cost of the tra�c specications is in general

smaller�

Tra�c speci�cation parameters evolution with and without renegotiation

Figures ��� and ��� illustrate the fact that with renegotiation we can optimise

the resources requested to the network and therefore at the end the total r and b

allocated in this case are in general smaller� We also notice that inside an interval

the RVBR service might allocate a Tspec that is larger than the one used when not

renegotiating� This occurs when the tra�c is very bursty and the bu�er is full from

the previous interval� For scenario � this situation occurs also at the forth interval

	��	 ��� seconds
� as illustrated in Figure ���� This happens because the bu�er is

full and the bucket is not su�cient to absorb the burstiness of the input tra�c� It

does not take place in scenario � and �� because there is more bucket available and

therefore the application can request a larger bucket b�
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Figure ���� Comparison of the evolution of the rate r with renegotiation and without
renegotiation for di�erent scenarios
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Figure ���� Generic MPEG�� terminal architecture

��� An example of RVBR�enabled application

The ACTS�DIANA project ���� is implementing a rst prototype of a multimedia

application supporting RVBR� The selected application is Applications Retrieving

Multimedia Information Distributed over ATM 	ARMIDA�
 �����

ARMIDA is a video on demand application initially designed 	ARMIDA�
 �����

according to the DAVIC ���� model� to support the transmission of MPEG� videos

directly over AAL��ATM as specied by ATM Forum �����

The current release 	ARMIDA�
 is the evolution of the previous one and provides

features to support MPEG��MPEG��MPEG� over a generic transport network us�

ing IP as Internetworking protocol�

This new release has been designed according to the ISO�IEC MPEG architec�

ture dened for MPEG� ����� ARMIDA� provides features to display online several

remote multimedia data �ows improving the previous release by the MPEG� add�on�

MPEG� supports di�erent data �ows� as video� audio� images �D or �D etc� that

are multiplexed and managed by the same MPEG� client displaying all together on

the same end�system� A �ow of homogeneous data is called Elementary Stream�

The boundary between the Compression Layer and the Systems Layer is named

Elementary Stream Interface 	ESI
 and its minimum semantic is specied in ISO�IEC

�supported in the the project by Finsiel partner�



���

DAI

DNI

DMIF Filter

Deamon Deamons

Other
Protocols

ATM OtherRSVP
Deamon Deamon

TCP/IP

TCP/IP
ProtocolProtocol

RSVP
Protocol
ATM

Client or Server

Figure ���� ARMIDA� Architecture

������� 	MPEG�� Systems
 �����

The boundary between the System Layer and the Delivery Layer is named

DMIF�Application Interface 	DAI
 and its minimum semantic is specied in ISO�IEC

������� 	Delivery Multimedia Integration Framework
 �����

The Compression Layer is responsible for media encoding and decoding� Audio

	MPEG�� part �
 and Video 	MPEG�� part �
� both Synthetic and Natural� are

dealt with at this layer� The Delivery Layer 	MPEG�� part �
 ensures transparent

access to MPEG�� content irrespective of the Delivery technology 	Delivery technol�

ogy is a term used to refer to a transport network technology �e�g� the Internet� or

an ATM infrastructure�� as well as to a broadcast technology or local storage tech�

nology
� The Systems Layer 	MPEG�� part �
 interprets the scene description and

manages Elementary Streams and their synchronisation and hierarchical relations�

their composition in a scene� It is also meant to deal with user interactivity�

	���� ARMIDA Architecture

A rough idea of ARMIDA� architecture is given in Figure ���� In the ARMIDA�

architecture we can nd the same layers dened in the MPEG� model� conrming
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compliance to the standard� The DAI makes the upper layers independent from the

specic network providing transport capabilities�

Multiple QoS� DMIF

The main goals of DMIF are�

� To hide the delivery technology details

� To manage real time QoS sensitive channels

� To allow service providers to log resources per session for usage accounting�

gathering information on data transfer� etc ���

� To ensure interoperability between end�systems

DMIF denes a communication architecture that hides the details of delivery tech�

nologies below an interface that is exposed to the application� called DMIF Applica�

tion Interface 	DAI
� Delivery technologies include transport network technologies

	e�g� ATM� Internet� etc���
 as well as broadcast or multicast technologies� DAI

separates the delivery aware and delivery unaware layers of the ISO�IEC ����� ����

terminal architecture� It is a semantic API they allows the development of applica�

tion irrespectively of the delivery support� DMIF provides QoS management aspects

and mechanisms to gather information about data transfer and resources utilisation

opening to the implementation of billing policies� All these features are supported

via the DDSP 	DMIF Default Signalling Protocol
� that makes the intermediate

layer between the signalling network protocol 	e�g� Q����� in ATM or RSVP over

general IP networks
�

QoS Management

The QoS is managed directly at the application layer and it is bound to the data

�ow� A client selects a set of data �ows 	Elementary Stream
� e�g� video and image

and then contacts the server for receiving data� The related QoS required from

selected �ow is stored together with data� in this phase the application layer reads

the QoS required and gives this information to DMIF via DAI� DMIF� activates
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the RSVP sending a PATH containing a Tspec compiled with parameters tting

required QoS�

The following parameters are passed to DMIF�

� AVG BitRate

� MAX BitRate

� MAX AU SIZE

� Priority 	for future architectures


� Max Delay

� Service Constraint 	GS or CL


The negotiation phase corresponds to PATH message sending� The RSVP mod�

ule� before starting the negotiation phase� builds up the QoS according to IntServ

specication and ts the Tspec for the PATH message on this basis�

On the server side� depending on the Service Constraint value� the data sending

starts only if the negotiation phase succeeds� The application can be considered

signalling aware� i�e� totally controlled by the related signalling�

For example� if a Guaranteed Service is required ���� the application cannot start

if the negotiation does not succeed�

ARMIDA� behaviour

ARMIDA� provides MPEG� data transfer supporting multimedia information

according to MPEG� specication�

The multimedia data� MPEG� coded� are stored in a Data Server together with

information about QoS requirements� The user asks for one or more services 	e�g

a video service
 via an HTML interface� In each le of requested data several

Elementary Streams are stored� each one with its QoS descriptor� The server sends

all the information about the requested data to the DMIF that attempts to set�up

the necessary communications� The DMIF reads the QoS descriptors building�up

the QoS needed for these communications� Then it translates them according to
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Figure ���� ARMIDA� Client�Server conguration

the available delivering network and starts the negotiation� If the negotiation phase

nishes successfully� the data transfer starts and the user can consume the request

data� The conguration of ARMIDA� is illustrated in Figure ����

RVBR enabling

The introduction of RVBR within ARMIDA� makes an impact on three layers�

�� Application Layer� several QoS descriptors must be handled� The current

standards dene that only a single QoS descriptor can be associated to an

Elementary Stream� In order to introduce the renegotiation� it is necessary

to dene the association between several QoS descriptors and an Elementary

Stream� Additionally� the structure for maintaining and managing several QoS

descriptors for the same data �ow� It means that a data �ow must store more

than one QoS descriptor and a reference to the related portion of data�

�� DMIF layer� at each renegotiation� it must provide the new QoS descriptors

to RSVP� The DMIF level must be able� rst� to identify when an old QoS
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expires to start a new QoS and� second� to interact repetitively with the RSVP

demon�

�� RSVP layer� several renegotiation phases must be managed The RSVP must

modify the Tspec sent with the PATH message asking for a new reservation�

Implementation issues�

� Data stream Fragmentation� input data stream must be segmented in several

intervals each one maintaining its QoS descriptor� Problems related to the

dimension of each interval must be analysed�

� Synchronisation between the renegotiation phase and the data sending� the

reallocation must be performed according to data sending to guarantee that

resources are available when needed�

� Renegotiation signalling implementation� the PATH message� in most of ex�

isting RSVP packages are automatically generated from the system� in this

case the server should be able to send a new PATH message with a di�erent

Tspec without tearing down the existing connection

� Recovery in case of renegotiation failure

The implementation of ARMIDA� RSVP and RVBR enabled is the subject of

ongoing work�

��� Conclusion

We illustrated how the RVBR service can be applied to the RSVP Path message

generation� This is based on the algorithm proposed for the local optimisation

problem in Chapter �� A numerical example of this is given in Section ������ where

we also compare the performance of transmitting a MPEG� video trace both with

and without renegotiation� The results of our simulation 	see Figures ��� � ���


suggest that renegotiation allows better use of network resources and that with
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protocols as RSVP� where there is no additional cost for signaling 	or so we mainly

assume
� it is better to renegotiate�

These results demonstrate that the RVBR service can be easily and e�ciently

adopted by video applications requiring guaranteed service� In this respect� we in�

troduced the design of a video on demand application RVBR�enabled� which also

became the rst instance of an application that renegotiates RSVP tra�c specica�

tion�



���

Chapter �

Conclusion

In this work we have shown that a dynamic allocation of the network resources

allows us to reach an optimal usage of them and guarantee the QoS requirements

of the applications� The thesis has shown through mathematical model� simulation

and implementation that a renegotiable VBR service results in a signicant benet

in terms of resource optimisation while guaranteeing the QoS requirements� Our

work allows us to make the following statements�

� QoS renegotiation on the customer side can be simple� We have shown that in

areas where end�to�end ATM connectivity already exists and there is support

for renegotiation� there is a relatively simple way for IP applications to use the

QoS of ATM� specically� by using Arequipa and its simple API� We demon�

strated this in the case of Vic that became the rst instance of an application

that is able to tune bandwidth at run time�

� The static VBR problem can be solved� We have shown that� for all reasonable

cost functions� the static VBR problem can be reduced to a one�dimensional

problem� Furthermore� for the specic case of a cost function� it possible to

derive algorithms that can easily be implemented for real time computation�

� VBR is only bene�cial in respect to CBR� We have given a characterisation

of the optimal tra�c descriptor of a VBR trunk under bu�er constraint� as�

suming to know the input tra�c� In particular� the optimal peak rate for the
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VBR trunk results equal to the peak rate of the CBR 	the deterministic equiv�

alent capacity eX
� In this sense� the VBR� with the additional parameters

	sustainable rate and burst size
� is only benecial�

� The renegotiation can be analytically modelled� Existing models are not suit�

able for modelling a situation where the tra�c changes dynamically and con�

sequently the network resources changes� This is because they do not take into

account the tra�c that is present in the shaper at the transient moments� We

have modelled such a situation with a class of time varying shapers that we

have called time varying leaky�bucket shapers� The time varying leaky bucket

shaper class is characterised by network calculus� To our knowledge� this is

the rst model� which takes into account non�zero conditions at the transient

time� This innovative result forms the basis of the RVBR service�

� The time varying leaky�bucket shaper model can be applied to characterise the

RVBR service and the mathematical model proposed for the RVBR service is

suitable to solve the dynamic VBR problem� We have derived the input�output

characterisation of the RVBR service as a special case of the time varying leaky

bucket shaper� An RVBR source is a time varying leaky�bucket shaper with

two renegotiable leaky buckets 	J � �
� one with rate ri and depth bi and

the second with rate pi and depth always equal to zero� plus a bu�er of xed

size X� For the RVBR service� the dynamic VBR problem is equivalent to the

problem of computing the RVBR parameters for the next interval� Therefore�

as well as for the static VBR problem� assuming an objective function� the

dynamic VBR problem can be solved�

� The application of our mathematical model to the dynamic VBR problem re�

sults in simple� e�cient algorithms� Using the RVBR mathematical model�

we have provided explicit algorithms that solve the dynamic VBR problem�

when the knowledge of the input tra�c is limited to the next interval 	lo�

cal optimisation problem
 and when we dispose of the complete input tra�c

description 	global optimisation problem
� For the local problem we have pro�

posed two versions� one� when the cost function is represented by a linear cost



���

function and the other� when we compare two solutions in terms of the number

of connections 	with those parameters
 that would be accepted on a link with

capacity C and physical bu�er B� This second cost function was also used for

dening an algorithm for the global problem�

� The renegotiation is e�ective� it is valid to use the local algorithm and the

�no reset� approach is essential for a lossless service We have simulated the

RVBR service versus a VBR service and illustrated that there are indisputable

advantages with the RVBR service�

� It is valid to use the local algorithm By simulation� we found that the sequence

of optima produced by the local algorithm is very close to the optimal sequence

produced by the global algorithm and� in several cases� is even equal to it�

� The �no reset� approach is essential for a lossless service The �reset� approach

would be easier to implement� However� simulation has shown that if the

renegotiation does not take into account the bucket conditions at the transient

moment the source is very likely to experience losses due to policing�

� RVBR performs better than RCBR� We have simulated the RVBR service

versus the renegotiable constant bit rate 	RCBR
 service and illustrated that

the RVBR approach can provide substantial benets�

� The size of the renegotiation interval a�ects on the e�ciency of the RVBR

service� In general� we expect that the larger the renegotiation period is� the

higher the cost of the tra�c specication� We have shown that with a local

approach this is not always true� We have found that the local optimum of

a larger period can be less expansive than the sum of the cost for a smaller

renegotiation period on the same interval� We have also shown that this is

highly related to the input tra�c�

� The algorithms provided for solving the dynamic VBR problem with the RVBR

service can easily be implemented in real applications� RVBR service uses the

knowledge of the past status of the system and the prole of the tra�c expected

in the near future� which can be either pre�recorded or known by means of exact
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prediction� This scheme suits perfectly the dynamics of the tra�c generated

by multimedia applications that handle pre�recorded or classied video tra�c�

Moreover it naturally integrates with the soft state mechanism of RSVP� which

allows for renegotiating the resources� We have presented the implementation

design of ARMIDA� as a rst example of application that renegotiates RSVP

tra�c specication with RVBR�

Future work on RVBR service includes trials with real application RVBR enabled

and study on the renegotiation period� as well as the integration of the network delay

and the application to Guaranteed Service�

We argue that� if the experimentation with real application RVBR enabled are

positive� this service should be proposed as a possible service for applications and

networks that use RSVP as reservation protocol�

In this respect� the development of mechanisms to prevent the failure occurring

because the requested change to the tra�c specication cannot be supported by the

network is essential�

In further work our results for the class of time varying leaky�bucket shapers will

be used to model network resources renegotiation in other scenarios� as� for instance�

in the video smoothing case �����
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Appendix A

Proofs of propositions in Chapter

�

Proposition � �Continuity of RequiredBuf� RequiredBuf�y� z� is continuous

with respect to y�

Proof� Inside each case the function is continue� Thus� we must demonstrate that

there are no discontinuity point passing from one case to another� It is su�cient to

compute the limiting values at each end point� which reduces the problem to taking

limits with respect to single variables�

CASE � When m� becomes smaller than NR� then we pass in CASE � or in CASE ��

In both cases� limm��NR requiredBuf	y�� z�
 � ��

CASE � � When R� becomes larger than NR� then we pass in CASE �� In this case�

limR��NR t�	NR 	 R�
 " 	tc 	 t�
	NR	m�
 � 	NR 	m�
	tc 	 t�
�

� When tc becomes smaller than t�� then we pass in CASE �� In this case�

limt��tc	NR 	m�
	tc 	 t�
 � ��

CASE � When R� becomes larger than NR� then we pass in CASE �� In this case�

limR��NR tc	NR 	R�
 � ��

CASE � When t� becomes larger than tc� then we pass in CASE �� In this case�

limt��tc t�	NR 	R�
 " 	tc 	 t�
	NR 	m�
 � tc	NR 	 R�
�

Thus� given that requiredBuf is continue in all limits� it is continue�
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Proposition � �Upper bound of Peak Cell Rate of y� � S	z
� The Peak Cell

Rate of the elements of S	z
 is smaller than or as large as NR�

Proof�

If y� � CASE �� or CASE � it is evident�

Assume y� � CASE ��

Let R� � NR�


 y�� � 	NR� ��� NR
 � y�� y
�
� � CASE ��


 requiredBuf	y��� z�
 � requiredBuf	y�� z�
 � �� 
 y� �� S	z
� because y
�
� �

y��

Assume y � CASE ��

Let R� � NR�


 y�� � 	m�� ��� NR
 � y� y�� � CASE ��


 requiredBuf	y��� z�
 � 	NR	m�
	tc	t�
 � 	NR	m�
	tc	t�
 � requiredBuf	y�� z�
�

not possible because y � S	z
�

Assume y � CASE ��

Let R� � NR�


 y�� � 	m�� ��� NR
 � y�� y
�
� � CASE ��


 requiredBuf	y��� z�
 � requiredBuf	y�� z�
 � �� not possible because y� �

S	z
�

Proposition 	 �Lower bound of Peak Cell Rate of y� � S	z
� The Peak Cell

Rate of the elements of S	z
 is larger than or as large as NR 	X�tc�

Proof� If m� � NR 	X�tc� then is evident� Otherwise�

If R� � NR 	X�tc� thus we are in CASE �� or in CASE ��

Assume we are in CASE �� m� � R� 
 m� � R� 	 a� From the value of

requiredBuf in CASE �� we derive that �� �
NRtc�X��R��a�tc

R��a
� Thus�

t� � ��m��	R� 	m�
 �
NRtc�X��R��a�tc

a
� tc " 	NR 	X�tc
	tc�a
 � tc

Thus this value of y is not in CASE �� but in CASE �� This implies that

� in CASE �� there are not solution in S	z
 for R� � NR 	X�tc�
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If we are in CASE �� to belong to S	z
� R� must be equal to NR	X�tc�

This implies that � even in CASE �� there are not solution in S	z
 for

R� � NR 	X�tc�

Proposition � �Optimal value for peak cell rate� The optimal value for peak

cell rate is the lower bound�

NR 	X�tc�

Proof�

tc � t� X � 	NR 	R�
tc 
 R� � NR	X�tc�

tc � t� X � 	NR	R�
t�"	NR	m�
	tc	t�
 � NRtc	m�	��"t�
 that is independent

by R�� For this reason we must set it to its lower bound 
 R� � NR	X�tc�

Proposition � � Solution Space for RequiredBuf� The Solution Space for re�

quiredBuf is given by�

S � fy� � 	m��
NRtc�X�m�tc

m�
� NR	X�tc
g�

Nm � m� � NR 	X�tc�

Proof�

Assume that exists y�� � requiredBuf�� and y�� � y�

Let y�� � CASE ��

We de�ne S� � S	z

T
CASE��

NR � m� � R�� For Proposition � R� � NR�
y�
�
�S�

 NR � m� � R�� requiredBuf	y

�
�� z�
 does not depend on ��� that is thus

equal to ��

y�� � 	��NR� �� NR


Assuming y�� � CASE �� we assumed that X � �� thus y�� � y�R��NR�m��NR�X����

Let y�� � CASE ��

NR � R�� For Proposition � R� � NR�
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y�
�
�S�

 NR � R� � requiredBuf	y��� z�
 � X 
 �� �

NRtc�X�m�tc
m�

thus y�� � y�R��NR��

Let y�� � CASE ��

NR � R� � t� � tc� For Proposition � R� � NR�
y�
�
�S�

 NR � R� � t� � tc 
 �� �

NRtc�X�m�tc
m�

�

Assuming y�� � CASE �� we assumed that X � �� thus y�� � y�R��NR�X����

Let y�� � CASE ��

R� � NR � tc � t��
y�
�
�S�

 requiredBuf	y��� z�
 � X 
 �� �

NRtc�X�m�tc
m�

thus y�� � y��

Let y�� � CASE ��

R� � NR�tc � t��
y�
�
�S�

 R� � NR 	X�tc � tc � t�


 �� �
NRtc�X�m�tc

m�
thus y�� � y�R��NR�X�tc��

Corollary � �Optimal burst time of VT� The optimal burst time of VT is given

by t� � tc�

Proof�

If R� � NR 	X�tc� then t� � ��m��	R� 	m�
 �
�NR�m��tc�X
NR�X�tc�m�

� tc�
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Appendix B

RM�R Architecture

This work in this chapter appeared in �
�� �
��� �
�� and �
���

In this appendix we describe the architecture design of the Resource Manage�

ment and Routing 	RM�R
 architecture build upon the VT solution and a dynamic

resources management scheme� which estimates the changes in the tra�c�

B�� Resource Management Scheme used in com�

bination with the VT solution

The purpose of this architecture is to allocate bandwidth to the VPCs following

the changes in the tra�c� This architecture is built upon the VT solution and

assumed to work in a ATM network�

A VT is a virtual path connection 	VPC
 setup by the network in order to reduce

connection awareness at the transit nodes� A virtual trunk is therefore considered

as a connection by the network supporting it 	the VP network
� and as a logical

trunk by the connections supported� In this context� VTs are considered to be VBR

connections�

The VT solution is combined with a dynamic resources management scheme �����

����� ���� and ����� which estimates the changes in the tra�c� The integration of the

VT solution and the dynamic resources management scheme results in a virtual

trunk that changes its own connection descriptor dynamically 	by negotiation with
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the network supporting the virtual trunk
�

Here� for each VPC� we have a tunnelling scenario where a number of VBR

Virtual Channel Connections 	VCCs
 are multiplexed onto a VBR VPC at a node

that acts as a general shaper and the VBR VPCs are multiplexed on the network�

This is called the VBR�over�VBR approach� In the more traditional VBR�over�CBR

approach� VBR VCCs are multiplexed onto a CBR VPC� In this case� it is no longer

possible to multiplex the VPCs on the network�

We note that these approaches assume that at each period the resources 	shaping

bu�er� maximum burst tolerance
 are completely available� like at the initial time�

This is� of course� not true in a real scenario� but we believe that� in the scenario

under consideration� we can make this assumption� In fact� we introduce several

factors of overestimation� the input �ows are described by means of their arrival

curves 	VBR tra�c descriptors
� which are upper bounds to the generated input

tra�c� the VT is described by means of its service curve 	a CBR or a VBR tra�c

descriptor
� which is a lower bound to the service o�ered� and� nally� we use a

worst case approach to optimise the VT parameters� All these steps add some

approximation to the algorithms�

B���� Dynamic
 periodic bandwidth allocation scheme

In this centralised resource management 	RM
 method� VPC bandwidths are

reallocated at periodic intervals� In the sequel� the updating interval is denoted by

tu� The objective is to allocate for each VPC only as much bandwidth as needed

to satisfy the stationary blocking probability target� which may be class�specic�

Thus� it may happen that not all the capacity of the physical links is allocated to

VPCs� The original references are ����� ����� ���� and ����� The method is based

on the knowledge of the number of active connections per VPC� In addition� the

average call arrival intensities and the mean holding times for all tra�c streams

are needed� We use this method in conjunction with the static VBR optimisation

scheme in order to achieve an optimal renegotiation of the VPC�

The RM method includes the following three phases�
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�st phase

Allocation is rst made for each VPC separately� Consider a VPC� Let n denote

the number of active VCC connections conveyed by the VPC� Denote by � and

T the arrival rate and the mean holding time of such VCC connection requests�

respectively� In the simulations� the two statistical parameters � and T are assumed

to be known� Let 	 � �T �

First is calculated the maximum number N of connections the VPC should

support during the next updating interval in order that the blocking probability

during the interval be less than ����� where � is the target blocking probability for

the class� For this we need the following function�

N � transientErlangRequirement	n� 	� ���� tu�T 
 	B��


In principle� there are precise numerical methods to implement this function

����� However� these methods are far too time�consuming for our purposes� Thus

a simple approximation is needed� In the simulations� the following 	rather crude


approximation is used��

N � np	tu�T 
 "N�	�	 p	tu�T 

 	B��


where

p	t
 � exp		t


and

N� � stationaryErlangRequirement		� ���


The function stationaryErlangRequirement utilises the ordinary Erlang blocking

formula�

stationaryErlangRequirement		� ���
 � minfN&Erlang	N� 	
 � �g

�The �vague� heuristic behind this is as follows� the upper limit N� for N is chosen so that the
proportion of time when there are N� active connections is �approximately� ���� In this state� all
the incoming connection requests are rejected� On the other hand� when there are less than N�
active connections� the proportion of time for which is �� ���� the dimensioning is made so that
the proportion of rejected connection requests would be ���� Thus� the overall blocking probability
becomes �approximately��

�According to the simulations made� this dimensioning formula seems to function when tu�T is
great enough� say �� However� with smaller values� the allocations seem to be too small�
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�nd phase

In the second phase� an allocation is made for each physical link separately�

Consider a physical link� Let C l denote its capacity 	bandwidth
and denote by K

the number of VPCs conveyed� The VPCs are indexed by k�

As the result of the rst phase we have the maximum number Nk of connections

to be supported by each individual VPC k� This is converted into a bandwidth

requirement Ck� For this we need the CAC function called requiredBandwidth 	see

Section B����
�

Ck � requiredBandwidthk	Nk


After the bandwidth requirements are calculated we have to check whether the

link capacity is su�cient� i�e� X
k

Ck � C l

If this is true� we can step into the nal phase� Otherwise the allocations must be

adjusted not to exceed the capacity available� In the latter case� we rst calculate

the bandwidth requirements ck of the existing connections� For this we need the

number nk of active connections and 	again
 the CAC function requiredBandwidth

	see Section B����
�

ck � requiredBandwidthk	nk


The remaining capacity is denoted by R�

R � C l 	
X
k

ck

It is shared as fairly as possible� the fair share for VPC k dened by

Ck 	 ckP
iCi 	 ci

Thus� we have the following adjusted capacities�

'Ck � ck "R
Ck 	 ckP
iCi 	 ci

Note that X
k

'Ck � C l
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By using the 	inverse
 CAC function called allowedNrCalls 	see Section B����
�

we may calculate the adjusted maximum number of connections to be supported by

VPC k�

'Nk � allowedNrCallsk	 'Ck


After this� the 	real
 capacity allocations are as follows�

''Ck � requiredBandwidthk	 'Nk


which is less than or equal to 'Ck� Thus� there may still remain some capacity left

over� namely

R � C l 	
X
k

''Ck

This remaining capacity may still be utilised by tra�c classes with lower bandwidth

demands�

�rd phase

Finally� VPC bandwidths are adjusted at the network level� However� since in

our setting each VPC traverses exactly one physical link� no more adjustments are

needed�

B���� CAC functions� use of the VT solution

The purpose of the CAC functions is to calculate the required bandwidth given

the number of homogeneous connections and their class or to calculate the allowed

number of homogeneous connections given the bandwidth available and the tra�c

class� The former function is called requiredBandwidth and the latter one allowedNr�

Calls� To this purpose we use the results obtained in Sections ����� and ��� for the

VT solution� Below we describe the two approaches to the connection admission

control used� We rst present the traditional VBR�over�CBR approach and then

the VBR�over�VBR approach� resulting from the solution given in Section ����
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Figure B��� CBR Node Reference Conguration

VBR�over�CBR approach

This is a modied peak rate allocation method that takes into account the shap�

ing bu�ers of VPCs when available� The node reference conguration used in the

simulation is shown in B��� A multiplexer� fed with a number of input connec�

tions of VBR type� multiplexes them into one CBR virtual trunk� using a shaping

bu�er of the size B� The shaper guarantees that the bu�er output conforms to

GCRA	��R�� �
�

Denote by N the number of homogeneous VBR VCC connections 	with peak

rate R� sustainable cell rate m and maximum burst length t
 sharing the VPC� The

connection between the maximum burst length t and the burst tolerance � is� as

dened above�

t � �m�	R 	m


Denote further by C the bandwidth available for the VPCand by X the size of

the shaping bu�er connected to the VPC� The VT attributes are dened by�

� Trunk state z � 	N�m� �� R


� Connection descriptor� y � 	R�


To obtain the the trunk state z� we assume that all the VBR sources are of the

deterministic on�o� type with active and idle periods of length t and � � respectively�

The worst case is that the active periods of the sources start at the same time� As

a consequence� we have at time s

WorstCase	s
 �

��
�

NR	s	 k�
 s � �k	t " �
� k	t" �
 " t


NR	k " �
t s � �k	t" �
 " t� 	k " �
	t" �



Note that this is smaller than

minfNRs�Nm	� " s
g
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Otherwise� the service o�ered by the simple shaper at time s to the input �ow

is as follows�

Now it follows� from Equation ���� that

R� � maxf
NR 	X

t
�Nmg

This is the minimum value of R� that guarantees no losses with a shaping bu�er

of size X� Finally we conclude that the two CAC functions needed in the bandwidth

allocation are as follows�

requiredBandwidth	N�R�m� t�X
 � maxf
NR 	X

t
�Nmg

allowedNrCalls	C�R�m� t�X
 � maxfn such that maxf
NR 	X

t
�Nmg � Cg

Note that by omitting the shaping bu�er 	X � �
 we obtain the ordinary peak

rate allocation method�

VBR�over�VBR approach

This is an advanced allocation method that takes into account both the shaping

bu�ers of VPCs and the link bu�ers of physical links when available� In addition�

the target cell loss probability is needed� The node reference conguration used in

the simulation is shown in Figure ���� A multiplexer� fed with a number of input

connections of the VBR type� multiplexes them into one VBR connection 	the VBR

trunk
 using a bu�er of size X� The shaper used in the simulations is not a bu�ered

leaky bucket regulator but a simple shaper guaranteeing that the bu�er output

conforms to GCRA	��R�� �
� However� due to the regulated nature of the input

�ow� it is possible to nd parameters m� and �� such that the output conforms also

to GCRA	��m�� ��
�

Denote by � the target cell loss probability� In addition� let Bl denote the size

of the link bu�er� In this case the VT attributes are dened by�

� Trunk state z � 	N�m� �� R


� Connection descriptor� y � 	m�� ��� R�
�
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As above� to get the aggregate arrival curve � corresponding to the trunk state z� we

assume that the VCC connections are of the same deterministic on�o� type� Thus�

WorstCase	s
 �

��
� NR	s	 k�
 s � �k	t " �
� k	t" �
 " t


NR	k " �
t s � �k	t" �
 " t� 	k " �
	t" �



Since we used a simple shaper plus a bu�ered leaky bucket regulator in the

simulations� the service o�ered to the input tra�c is as follows�

minfR�s�m�	�� " s
g

So� again� from Equation ���� we have that

R� � maxf
NR 	X

t
�Nmg

Since we assumed that the service rate of the shaping bu�er is R� and all the

bursts of the underlying VCC connections start at the same time� lasting the max�

imum time t� the output from the shaper looks like another deterministic on�o�

source with sustainable rate m� and burst length t��

The triple 	R�� m�� t�
 is further mapped to an equivalent capacity needed for the

bandwidth allocation by using the function equivalentCapacity originally dened in

���� as in Equation ���

equivalentCapacity	R�� m�� t�� X
l� �
 � R�

Y 	X l "
q
	Y 	X l
� " �XYm��R�

�Y
	B��


where

Y � ln	�
t�	R� 	m�


This is the rate necessary for achieving a desired bu�er over�ow probability � on a

given physical link� given a physical link bu�er of size Bl and the tra�c descriptor

	R�� m�� t�
� From that we derive�

m� � Nm

t� � NRt�R�
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And

�� � t�	R� 	m�
�m�

Thus� the two CAC functions are in this case as follows�

requiredBandwidth	N�R�m� t�X�X l� �
 � equivalentCapacity	R�	N
� m�	N
� t�	N
� X l� �


allowedNrCalls	C�R�m� t�X
 � maxfn such that equivalentCapacity	R�	n
� m�	n
� t�	n
� X
l� �
 � Cg

Here R�	N
 and R�	n
 correspond to peak rates calculated from the previous

formula by assuming that the number of active connections is N and n� respectively�

The same is true also for the functions m� and t�� Note that by omitting the

link bu�er 	Bl � �
� we obtain the same CAC functions as in the CBR�over�VBR

approach described above�



���
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Appendix C

RM�R Simulation

This work in this chapter appeared in �
�� �
�� and �
���

Here we report the simulation performed for the RM�R based upon the VT

solution and the dynamic resource management scheme presented in ����� ����� ����

and �����

C���� Simulation scenario

The simulation scenario consists of two overlaid networks� the physical network

and the logical 	VP
 network� The underlying physical network is assumed to consist

of nodes 	ATM�switches
� which are completely connected by identical physical links�

The physical links are characterised by giving the capacity 	bandwidth
 of the link

and the size of the link bu�er� In the simplest case� there are three nodes connected

together as a triangle� see Figure C���

All the tra�c is modelled to arrive from regulated VBR sources� Each connec�

tion is assumed to be symmetric 	with identical tra�c parameters for forward and

backward streams
 belonging to one of the tra�c classes� Each tra�c class is char�

acterised by its tra�c descriptor 	including PCR� SCR and BT
 and the statistics

characteristics 	the mean holding time� the arrival rate of connection requests
� The

latter are used for the generation of tra�c� The tra�c sources are regulated so that

they conform to GCRA	��PCR��
 and GCRA	��SCR�BT
� The VCC connection

requests are assumed to arrive according to a stationary Poisson process� Thus� no
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node x node z

node yVP class2
VP class1
physical link

Figure C��� Three nodes connected together as a triangle�

transient e�ects due to variations in the tra�c load are taken into account� The

holding times are sampled independently from an exponential distribution� In ad�

dition� the tra�c pattern is thought to be even� i�e� the source and the destination

of a VCC connection request are sampled from a uniform distribution�

Each tra�c class is assumed to be served by its own logical network consisting

of VPC links� Thus� we have taken the tra�c separation approach� Also the logical

networks are modelled to be completely connected� So� each VPC traverses through

exactly one physical link� and each physical link conveys as many VPCs as there

are di�erent tra�c classes� In Figure C��� there are two tra�c classes and thus� two

logical triangle networks� The structure of the logical networks is assumed to be

stable� Thus� no new VPCs are established nor any of the existing VPCs are torn

down during the simulation�

The following two simulation trials were performed�

� Simulation Trial �� the novel VBR�over�VBR approach was compared to the

traditional VBR�over�CBR approach�

� Simulation Trial �� the length of the updating interval was varied� Two dif�

ferent 	albeit rather articial
 tra�c classes were considered� one with a high
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Parameter class � class �
peakCellRate ���� ���
sustainableCellRate ��� ���
burstTolerance �� ��
maxBurstLength �� ��
blockingThreshold ���� ����
cellLossThreshold ������� �������
meanHoldingTime � �

Figure C��� Table �� The two tra�c classes used in the simulations�

bandwidth demand and the other with a low bandwidth demand� The con�

stant parameters of the two classes are given in Table ��

In particular� we see from the denitions below that the maximum burst length

	with full cell rate
 is �� cell level time units� for both classes� During a burst of a

connection belonging to class �� cells may arrive at maximum rate �� cells per cell

level time unit� implying that the maximum burst size is ��� cells� For class � the

corresponding values are � cell per cell level time unit and �� cells� Note further

that the mean holding time� which is the average length of a connection� is chosen

to be � call level time unit � for both classes�

The network considered consists of three nodes connected together with identical

physical links as a triangle� In fact� the network conguration is as already presented

in Figure C��� The capacity 	bandwidth
 of physical links is assumed to be ��� cells

per cell level time unit in every case�

In the simulations we used the dynamic� periodic bandwidth allocation scheme

by Mocci et� al� described earlier� In addition� all connection requests accepted

were routed along the direct paths� which implies that� in fact� the results of the

simulations are independent of the size of the network�

In each simulation trial� multiple simulation runs were performed with varying

o�ered tra�c loads� The tra�c load of each class was taken to be equal� The

following parameters were considered as a result of each simulation run�

�The cell level time unit can be chosen freely� e�g� a millisecond�
�Also� the call level time unit can be chosen freely� e�g� a minute� In particular� it does not

need to be the same as the cell level time unit�
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Parameter VBR�over�CBR VBR�over�VBR
no shaping shaping no shaping shaping

shapingBu�er � ��� � ���
linkBu�er � � ���� ����

Figure C��� Table �� Parameters for the four alternatives in simulation trial ��

� the percentage of average free capacity 	i�e� the part of the capacity of physical

links not allocated to VPCs
 in the physical network�

� the percentage of rejected calls 	from all calls o�ered
 for each tra�c class�

In next Section� where the results of the simulation runs are given� these param�

eters are presented as a function of the o�ered tra�c load� By the tra�c load we

mean the ratio of the tra�c o�ered 	from all classes together
 to a physical link and

the capacity of a physical link 	expressed in percents
� Thus� if the o�ered tra�c

load is said to be ��� it means that� on the average� the tra�c o�ered requires half

of the capacity in each physical link� In these gures� the percentage of average free

capacity is plotted in a normal linear scale� whereas the percentage of rejected calls

is presented in a log�linear scale�

C���� Simulation Trial �� VBR�over�VBR vs� VBR�over�

CBR

In this simulation trial the novel VBR�over�VBR approach was compared to

the traditional VBR�over�CBR approach� In both approaches we further studied

the e�ect of a shaping bu�er� Thus we had four alternatives to compare� The

parameters of these alternatives are given in Table ��

Shaping bu�ers are assumed to be identical for all VPCs� Correspondingly� link

bu�ers are assumed to be identical for all physical links� The bu�er sizes are given

in number of cells� Note that a shaping bu�er of ��� cells can include � burst of

class � or �� bursts of class �� Similarly� a link bu�er of ���� cells can include �

bursts of class � or �� bursts of class �� In the simulations we used the dynamic�
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periodic bandwidth allocation scheme by Mocci et� al� described earlier in section

��� with updating interval � call level time unit�

The results of the simulations are presented in Figure C����� As expected� the

VBR�over�VBR approach gives a better performance� However� the di�erence be�

tween the two approaches does not seem to be very signicant� This is partly due to

the rather ine�cient method for calculating the e�ective bandwidth� By introduc�

ing more advanced methods� better results may be achieved by the VBR�over�VBR

approach�

Whereas� by introducing shaping bu�ers it is possible to increase remarkably the

performance of both approaches� However� this requires that the tra�c shaped not

be critical for delays�

In addition� the simulations show that the dynamic bandwidth allocation method

functions as expected� With a light or medium tra�c load� the blocking probability

is in the target area varying from ���! to �!� The deviation from the exact target of

� ! is partly due to random variations� which could be diminished by having longer

simulation runs� Note that the stability in the blocking probability is achieved by an

increasing use of network resources� the percentage of the average free capacity falls

from ���! down to �! when the tra�c load is increased� With a heavy tra�c load�

the blocking probability naturally grows because of the lack of network resources�

C���� Simulation Trial �� Varying updating interval of VPC

capacities

In this simulation trial� the length of the updating interval of VPC capacities�

which relates to the dynamic� periodic bandwidth allocation scheme by Mocci et� al��

was varied� The comparison was made between three di�erent values of the length

parameter 	updatingInterval
� ���� ��� and ��� call level time units� All connection

requests accepted were routed along the direct paths� The results of the simulations

are presented in Figure C����� The results show clearly that the approximative

method for the bandwidth allocation used in the simulations functions only if the

updating interval is great enough 	� call level time unit or greater
� With smaller

values� the allocations are too small�
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�b� Percentage of average free capacity vs� tra	c load

�both classes��

�c� Percentage of rejected calls vs� tra	c load �class

���

�d� Percentage of rejected calls vs� tra	c load �class

��
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�f� Percentage of average free capacity vs� tra	c load

�both classes��

�g� Percentage of rejected calls vs� tra	c load �class

���

�h� Percentage of rejected calls vs� tra	c load �class

���
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Appendix D

RM�R Trials

This work in this chapter appeared in �
�� and �
���

Here we report the trials performed for the RM�R based upon the VT solution

and the dynamic resource management scheme presented in ����� ����� ���� and �����

This was integrated in the the EXPERT testbed ����� in order to support the

trials� A major problem that was encountered was the lack of �open� and standard�

ised control programming interfaces in the switches of the experimental testbed�

Therefore� in order to establish and release the connections� several switch�specic

modules had to be implemented� The heterogeneity of the testbed�s equipment pre�

vented the operation of the platform on a great number of actual switches� However�

experiments with many switches were conducted in �simulation� mode in order to

evaluate the scalability of the platform�

To our knowledge this is a unique example of an advanced resource management

and routing architecture that was simulated and tested in a real ATM environment�

D�� Trial Platform

The trial network conguration consists of � ATM switches and � links inter�

connecting them� Three di�erent classes of service are assumed that the network

supports� Di�erent logic networks� constructed by the Network Elements 	NEs


interconnected by VPCs specic to a class of service have been dened�

The platform architecture is shown in Figure D��� The system is distributed and
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Figure D��� The Trial Platform Architecture

consists of several components that may reside on the same or di�erent machines�

The communication between the modules is performed by means of TCP�IP sockets�

The system consists of the following modules�

� The Call Generator module 	CG
 emulates calls of a particular Class of Service

	CoS
 from a Terminal connected to an end�user side to the another Terminal

with the same CoS that is connected on another end�user side� It is assumed

that the end�user sides are connected directly to the switches of the network�

The Call Generator is not aware of the architecture of the Network� The

Call Generator has knowledge only for the end�user side and the number of

Terminals that the end�user may have� as well as the CoSs that each terminal

supports and also the call characteristics of these CoS 	inter�arrival and holding

times
� The Call Generator generates calls for all terminals of all end�users

simultaneously� The Master Controller 	MC
� is the centre of the system� In

addition� the Master Controller has a better view of the network topology

itself� concerning links� VPCs and CoS supported by every VPC�

� The Algorithmic Component is the algorithm that the platform tests 	such as

Resource Management 	RM
 and Routing
�

� The Connection Handlers 	CH
 are responsible for establishing and releasing

connections� The Connection Handlers reside on the sub�system controllers

that control the NEs�
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� The Monitoring Component polls the Master Controller and gets statistical

information during the experiment� The Monitoring component can use this

information for either representing at run time the results in a graphical way�

or by saving the results to a log

The centre of the platform is the Master Controller Module� As the communication

takes place at di�erent machines and the components communicate to each other by

means of TCP�IP sockets� every other component has to register with the Master

Controller� By registering� every component reports its location 	the IP address of

the machine where it resides as well as the port where it will listen
 to facilitate

communications with the MC module� The Master Controller has all the knowledge

of the network and can been seen� in this sense� as a conguration manager� Further�

more� the CAC components and the Route Selection Algorithm operate within this

component� The other components of the platform communicate with the Master

Controller 	a
 to test if the Master Controller is up and running� and 	b
 to permit

to the Master Controller the co�ordination of the trial by providing the necessary

information�

In Figure D��� an example of how this communication takes place is shown� We

used a single connection handler in order to simplify the example�

As evidenced� the CH� the CG and the RM register with the Master Controller�

After that� the Call Generator generates a connection request� The MC generates a

route for the call and then it contacts CH for a call�setup request� In this example�

there is only one CH� but typically a number of CH�s are involved� The CH makes the

connection and noties the MC of the connection id� When the CG generates a call�

release for that call 	each call is uniquely identied by a call ID� and this is used in

the call release phase
� it requests the MC to release this call� which in turn contacts

the CH for the Call release� The CH replies back with an ACK or NACK message�

which is propagated back to the CG� At any time throughout the experiment the

monitoring component may request from the MC statistical information such as

the number of Active calls� rejected calls� allocated bandwidth etc� All the above

messages are implemented by means of well�dened TCP�IP messages between each

module�
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Figure D��� Example of communication between the modules� the messages sent
between the modules are numbered� The messages are numbered in the order in
which they are generated�
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We do not report here the complete internal architecture� but only the part of

the Algorithmic Component relevant to the resource management� which is called

the Resource Management Module�

D�� The Resource Management Module

The Resource Management 	RM
 module covers the logical management of the

VP network� following the scheme dened in Sections B���� and B�����

D���� Network Con�guration

The considered conguration consists of two networks�

� the physical network�

� the logical network

The physical network consists of nodes 	ATM�switches
 connected by unidirec�

tional physical links� The physical links are characterised by link capacity 	band�

width
 indicated by C and link bu�er size� indicated by X� The logical network

consists of logical nodes connected by unidirectional Virtual Path Connections� VPs

are characterised by VP tra�c parameters 	tra�c descriptor� PCR�� SCR�� BT��

and the VP shaping bu�er B�
� topology parameters 	the underlying links
� and

parameters that describes the tra�c multiplexed on this VP� Tra�c is classied in

a tra�c class� Each tra�c class is characterised by call tra�c parameters 	tra�c

descriptor� PCR� SCR and BT
 and call statistics parameters 	mean holding time

and arrival rate
� A separate logical network consisting of VPs serves each tra�c

class� thus each VP transports only homogeneous tra�c� The structure of the logical

networks is assumed to be stable and only the tra�c parameters of VPs changes�

D���� Bandwidth Reallocation

VP tra�c parameters are reallocated at periodic intervals� We assume that a VP

can be either a VBR or a CBR connection� even if the former is a CBR connection
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with a logical VBR tra�c descriptor parameters� The objective is to allocate for

each VP su�cient bandwidth as needed to satisfy the stationary blocking probability

target� which are class�specic� This is done by using the method� described in

Section B��� already used in the simulation that predicts the number of calls 	N


in the next interval T� 	updatinginterval
� This result is used to compute the

corresponding bandwidth and� thus� the tra�c parameters for each VP in the logical

network� Finally� this information is sent to the MC module� which� in conjunction

with the CHs� takes care of and physically manages the logical network�

D���� RM Phases

The conceptual behaviour of the Resource Management module can be described

by the following phases�

� Initialisation phase�

���
 receive external target parameters�

���
 contact the MC and receive the initial physical and logical congurations�

���
 build the operating conguration�

� Operational phase�

���
 wait for timer expires�

���
 contact the MC and receive the current logical congurations�

���
 compute the logical network reallocation and compare it with the old

logical network conguration�

���
 send to the MC the new logical network conguration�

���
 go back to ����

D���� RM Pseudo�code

Initialisation phase� init��

PHASE ���
 The init�� process receives from external the socket information to commu�

nicate with the MC and the statistical target information� the updating time
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	T�
 and the target blocking probability 	�
�

PHASE ���
 init�� contacts MC 	by using the SendMessageToServerRM��
 to get the

physical and logical congurations and receives them�

PHASE ���
 These two congurations are kept in memory and accessed by two pointers

pt�PNCS and pt�LNCS� that always point to the current conguration� Also

the updating time and the target blocking probability are put into global

variables� T� and � of type integer and float� respectively�

Thus� init�� has the following structure�

int

init�fd� net� conf� s� name� �� phase ��� ��

�

SendMessageToServerRM �mc� msg�	 �� phase ��
 ��

pt�PNCS�msg�physicalnet	 �� phase ��� ��

pt�LNCS�msg�logicalnet	

�

After init�� the RM has the current conguration�

struct PhysicalNetworkConfigStruct �pt�PNCS	

�� the pointer to the physical configuration �links� ��

struct LogicalNetworkConfigStruct �pt�LNCS	

�� the pointer to the logical configuration �VPs� ��

int T�	 �� the updating time �secs� ��

float epsilon �� the target blocking probability ��

char �host �� the host name where the CM is running ��

int portnum �� the port number used to communicate with CM ��

Thereafter the code of the subroutine Realloc���

int

Realloc�net� conf� VParr�

�
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for �i���	 i � nrVPs	 i���

�

for �j���	 j � linksofVP	 j���

�

tmp�bw�k��Max�tmp�bw�k��ComputeBW�tmp�N�nrVPs��R�m�t�X�X�l�losspb��	

�	

�	

for �i���	 i � nrlinks	 i���

�

for �j���	 j � VPsonlink	 j���

�

reqbw�i��reqbw�i��tmp�bw�VPid�j��	

�

if �reqbw�i�  linkcap�

nok�i���	

�

if �nok����

for �i���	 i � nrlinks	 i���

�

if �nok�i�����

for �j���	 j � VPsonlink	 j���

�

k�VPid�j�	

availbw�k��min�FairlyShareCapacity�reqbw�k��tmp�bw�k��

linkcap�� availbw�k��	

�

�

for �i���	 i � nrVPs	 i���

�

k�VPid�i�	

R��PCR�min�availbw�k��tmp�bw�k���	

m��SCR�min�availbw�k��tmp�bw�k���	

t��BurstLenght�min�availbw�k��tmp�bw�k���	

�

�

Operational phase

PHASE ���
 After the initialisation phase� RM enters in the operational phase� where it

reallocates the logical network 	if needed
 every T� seconds� RM is in an

innite loop where it waits that the timer T� 	which lives for T� seconds�
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expires and then restarts
 expires�

PHASE ���
 Then sends a message to the MC 	again by using the SendMessageToServerRM��

and the CreateUpdateRMRequestMessage��
processes
 to get the current net�

work conguration� The current conguration substitutes in memory the old

one� thus is accessed by pointer pt�LNCS� that always point to the current

conguration�

PHASE ���
 The current conguration is used to predict the next logical network congu�

ration� The next logical conguration substitutes the current conguration�

PHASE ���
 If current and next conguration di�er� RM sends the next conguration to

MC�

PHASE ���
 It returns to the beginning of the loop� Thus� db�update�� has the following

structure 	phase ���� ���� ��� and ��� are in main��
�

db�update�s� mc� net� conf� name� �� phase 
�
 ��

�

msg�SendMessageToServerRM �mc� CreateUpdateRMRequestMessage���	

pt�LNCS�msg�logicalnet	

�

Thus� rm�� has the following structure�

int

rm��

�

fd�fopen��rm�conf���r��	

mc�addr�init�fd� net� conf� s� name�	

while�err���� �� phase 
�� ��

�

sleep�conf�timer�	

err�db�update�s� mc� net� conf� name�	

� �� phase 
�� ��

�
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The communication between MC and RM� after the initialisation phase� requires

always the transmission� from MC� of the logical network conguration at the time

when the MC receives the request from RM� The remaining part of this protocol is

acknowledge messages�

Realloc��

realloc�� is used in phase ��� to predict the next logical conguration and

to check whether the physical conguration 	i�e the links capacity
 is su�cient to

support it� It is divided in two steps�

Step�
 given the current logical network� for each VP is computed the function

transientErlangRequirement�n� 	� ���� T��T 
� where n�	active�calls "

rejected�calls�in�last�interval
 on this VP� T is the holding time of the

class of call supported by this VP and 	 � � �T � with � being the arrival rate

of the class of call supported by this VP� This predicts the maximum number

N of connections that the VP should support in the next interval�

Step�
 From this value � by using the same algorithm used by CAC� it is computed

the requiredBandwidth Cvp needed to support N connections� The sum of

the Cvp for all VPs sharing a same link must be smaller than or equal to the

capacity of the link itself� If this is true� next logical conguration is updated

with the values of Cvp for all VPs� otherwise the available capacity on the link

is fairly shared by all the VPs�

D���� RM Structures

RM uses � structures for the data�

Struct�
 The Physical Network Conguration 	PhysicalNetworkCongStruct
 is imple�

mented as an array of links LinkLineStruct�

typedef struct LinkLineStruct

�

int linkid	 �� unique link identifier ��
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int capacity	 �� link capacity �fixed� ��

int physicalbuffer	 �� link physical buffer capacity ��

float losspb	 �� wished loss probability on that link ��

int numberofVPonlink	 dimension of next structure ��

int �listofVPonlink	 �� list of VPs ids on this link ��

int SourcePort	 �� The link is attached to a Source Switch Port ��

int DestPort	 �� The link is attached to a Dest Switch Port ��

� LinkLine	

Struct�
 The Logical Network Conguration 	LogicalNetworkCongStruct
 is seen as

an array of virtual paths VPLineStruct�

typedef struct VPLineStruct

�

int VPid	 �� unique VP identifier ��

int VPtype	 �� � for CBR� � for VBR ��

int classid	 �� Call class supported by that VP ��

int activecall	 �� number of call active on that VP ��

int rejectedcall	 �� number of call active on that VP ��

int PCR�	 �� VP Peak Cell Rate ��

int SCR�	 �� VP Sustanaible Cell Rate �� if CBR���

float bursttolerance�	 �� VP Burst Tolerance �� if CBR���

float burstlength�	 �� VP Burst Length ��

int VPcapacity	 �� VP allocated capacity �requiredBandwidth���

int VPbuffeR	 �� VP shaping buffer ��

int VPListDim	 �� Number of element of the following list ��

int �listoflinkusedbyVP	�� list of links used by that VP ��

int i�SourceNode �� number of the source node ��

int i�SourcePort	 �� number of the source port ��

int i�DestNode	 �� number of the dest node ��

int i�DestPort	 �� number of the destination port ��

int i�LastAllocatedVCI	 �� number of the last allocated VCI ��

float arrivalrate	 �� call arrival rate ��

� VPLine	

Struct�
 The set of Call Class of Service 	CallClassStruct
 is an array of class of service

ClassLineStruct�
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typedef struct ClassLineStruct

�

int classid	 �� Call class identifier ��

int PCR	 �� Call Peak Cell Rate ��

int SCR	 �� Call Sustanaible Cell Rate ��

float bursttolerance	 �� Call Burst Tolerance ��

float arrivalrate	 �� Statistical Call Arrival Rate ��

int holdingtime	 �� Statistical Call Holding Time ��

�

Struct�
 The Network Conguration 	NetConf
 is a record of all of them�

typedef struct NetConf�

NetDim �dim	

LinkLine ��PhysNet	

VPLine ��LogNet	

ClassLine ��Class	

�

D�� Trial Results

The trial conguration used for the purpose of collecting the presented results�

is a simple one� This was a deliberate choice motivated from the major objectives

of the trials� Specically� these trials aimed at�

� demonstrating the use and the benets of the Resource Management scheme�

� evaluating known e�ects of the scheme� in a realistic environment�

� conrming the architecture design and the simulation results�

� comparing bandwidth allocation with static bandwidth allocation and network

planning� regarding their overall e�ect on the network utilisation�

The trial conguration� consists of two switching nodes connected with a ���Mbit�s

cell based link� There are two distinct logical conguration instances�
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VP5-CoS0
VP6-CoS1

node x node z

Figure D��� The Logical Conguration with two classes

Tra�c Class PCR �Mbits�sec� SCR �Mbits�sec� Burst Tolerance Holding Time �sec�
CoS� �� � ��� ��
CoS� � � ��� ��

Figure D��� Table �� Tra�c Classes initially dened for the resource management
Trial�

During the rst instance� which is depicted in Figure D�� two tra�c classes were

considered between the two switches� namely CoS� and CoS�� The characteristics

of these two classes are shown in Table �� CoS� has a peak cell rate 	PCR
 of

��Mbits�s� whereas CoS� features a �Mbits�s PCR� These parameters are crucial

for the VBR�over�CBR CAC� Two VPs were set up between the switches� VP�

was dedicated to serving CoS� calls� while VP� was exploited by CoS�� Having

established this trial context� the trial ran several times� with di�erent inter�arrival

times for each one of the two tra�c classes� Thus� the inter�arrival times for each

one of the two tra�c classes constituted variables that imposed di�erent loads on

the network during di�erent repetitions of the trial� This allowed the evaluation of

the scheme under di�erent loads� through corresponding measurements�

D���� E�ectiveness of the Dynamic RM

The initial objective of the trials was to verify the appropriate function of the

periodic bandwidth allocation scheme by proving that the trial results are in accor�

dance to the analytical description of the scheme� As already stated� this algorithmic

scheme attempts to allocate for each VPC su�cient bandwidth as is needed to satisfy

the stationary blocking probability target� This target probability may be di�erent
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Figure D��� Network load ��!�

for each dened tra�c class� In order to indicate that this basic concept is met in

the implementation of the algorithm� the previously described trial conguration

was exploited� The resource management algorithm was activated and the band�

width of each VPC was updated periodically 	with a period equal to � seconds
�

The call blocking probability gure� which was set as a target was �!� With these

parameters and the characteristics of the two tra�c classes 	as described in Table

�
� the trial ran � times� Each run featured di�erent inter�arrival times for each

class� Thus� each trial repetition imposed a di�erent load on the network� The

parameters were selected with a view to attaining loads ranging from a light ��! to

a heavy ���! load that rendered the system non�ergodic� The theoretic function of

the algorithm was veried as the trials exposed the algorithm�s e�ort to conform to

the demand of every class with the overall goal of minimising the probability for call

rejections� This fact is depicted in the following diagrams that show the bandwidth

demand 	Used B�W
 and the corresponding bandwidth 	AllocB�W
 assigned by

the bandwidth management algorithm� Each of the following diagrams corresponds

to a specic tra�c class� Furthermore� the fact that the algorithm tries to keep up

with the classes� demand is veried for the whole range of tra�c loads� Figures D���

D�� and D�� illustrate the trials results for di�erent network load values�
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Figure D��� Network load ��!�

Figure D��� Network load ���!�
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Figure D��� Network load ��!�

D���� Bene�ts of the Dynamic RM

Then we focused on evaluating the benets of the resource management strategy�

Therefore� the same trials were performed� with the bandwidth allocation algorithm

deactivated� The deactivation of the bandwidth allocation algorithm was based on

the update interval� Specically� an interval that exceeded the duration of all trials

was dened� As a result� no bandwidth reallocation occurred during any of these

experiments�

We deactivated the allocation of bandwidth to each class� In particular� tra�c

assigned an amount of bandwidth on the link� which was in proportion to its pre�

dicted needs� The predictions were based on the call characteristics of each class 	i�e

inter�arrival times and holding times
� as well as on the PCR for the class� This is

the parameter that is used by the CAC algorithm in the CBR�over�VBR approach�

Moreover� the static allocation assigned the full capacity of the link exclusively to

the two classes� The rationale behind this approach was an attempt to achieve

the lowest possible call blocking ratio� However� it eliminates any free capacity on

the link� The following diagrams illustrate results obtained during these trials� for

network load equal to ��!�
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D�� Results analysis

The trials on Resource Management� have demonstrated the advantages of band�

width reallocation over approaches that involve static allocation� A direct conclu�

sion� is that the selected resource management scheme features an acceptable re�

sponsiveness� Specically� it was clearly seen that the algorithm maintains a low

call blocking ratio� even in cases where bursts of call arrivals occur� It is noteworthy

that the algorithm managed to respond to the demand of the various CoSs in condi�

tions of high load� However� the call acceptance drops dramatically once the system

is overloaded 	load � ���!
� but this is an expected result� The e�ciency of the re�

source manager in allocating the required resources was also demonstrated� Results

showed that the resource management algorithm produced similar call blocking g�

ures with a static assignment scheme with prediction� while at the same time making

more e�cient use of the network resources�

Similar trials were held with three tra�c classes and demonstrated that the

introduction of a third class does not cause any serious deviation from the two

classes example� as far as the function of the bandwidth allocation algorithm and

its e�ect on network utilisation is concerned� The static allocation of bandwidth�

which is based on the prediction of the load imposed by each class� still produces

satisfactory results� Furthermore� the dynamic bandwidth allocation algorithm does

not have any di�culty responding to the �uctuations in the overall link utilisation

imposed by the third class� Moreover� the needs for bandwidth are satised through

bandwidth reallocation that �saves� link capacity� to be used for other demands�
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Appendix E

IP and ATM 	 current evolution

for integrated services

This work in this chapter appeared in �	
�� ���� and ������

This appendix gives a technical overview on the competing integrated services

network solutions� such as IP� ATM and the di�erent available and emerging tech�

nologies on how to run IP over ATM� and attempts to identify their potential and

shortcomings�

E�� Introduction

For many years� ATM based Broadband�ISDN has generally been regarded as the

ultimate networking technology that could integrate voice� data� and video services

and was suitable for LANs and WANs� both private and public�

ATM has been around for several years and� contrary to the expectations� it was

not the foreseen success in in the public WAN area� Although ATM products are

broadly available today� public network operators hesitate with the deployment of

public ATM based networks� In contrast to this� ATM had quite an impact in the

private LAN area� where ATM is mainly deployed as a high�speed backbone network

interconnecting legacy LAN equipment� driven by the need to increase transmission

speed�

With the recent tremendous growth of the Internet� the future role of ATM seems
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to be less clear than it used to be� WWW based use of multimedia applications on

the Internet is widespread� By o�ering not only typical data services but even real

time voice and video applications 	though with poor quality
� the Internet is entering

the typical target market of ATM at service level� Furthermore the Internet Society

is quite drastically loosening their policy of shared resources and free usage and

deeply investigating on how to introduce resource reservation and charging support

in the Internet to provide better support for multimedia applications and service

providers�

The dominance of IP based networks in the WAN and LAN area has also led

to proposals for ATM deployment that considerably di�er from the traditional view

of public telecom operators� such as using ATM only as a high speed transmission

system�

The discussions about whether IP or ATM is the better technology for an inte�

grated services network are ongoing and reached almost the state of a �war� between

advocates of the two technologies�

This appendix gives a technical overview of the di�erent technologies today and

makes a neutral assessment of their feasibility for an integrated services network�

In order to be able to compare di�erent solutions� we establish the requirements

for an integrated services network in section �� These requirements depend on

the perspectives of di�erent actors and contain more than just the requirement

for quality of service 	QoS
� Then we focus on the main competitors� the Internet

protocols 	section �
 and the ATM technology 	section �
� In section � we discuss

several of today�s and tomorrow�s solutions for IP support on top of ATM networks�

Of each presented technology the advantages and disadvantages are assessed in the

corresponding section� Section � compares the technologies and tries to guess about

their applicability and the role they are going to play in the future�

E�� Integrated Services Networking Requirements

In this section� some of the most important requirements are listed for the com�

parison of integrated services networking technologies� Criteria for a broad accep�
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tance of such a technology are established� The requirements can be categorised as

follows�

� Requirements from the user�s perspective

� Requirements from the service provider�s perspective

� Requirements from the network provider�s perspective

Note that we do not list them in a priority order� even if users satisfaction was often

the key of the success of most of the winner technologies�

E���� User�s Perspective

Because the acceptance and success of a technology is dependent on user require�

ments� it is essential that these requirements are met by the technology� A user�s

major concerns are performance� ease of use� cost� universal availability and security

of services�

� Guaranteed support of an appropriate minimal performance� Each service

should be o�ered with the appropriate minimal performance� It is important

to note here that from the user�s perspective not all services have to be o�ered

with very high performance� However there are considerable di�erences in per�

formance requirements depending on the kind of service� and on its pricing�

An audio phone service with today�s POTS performance imposes high quality

requirements on a networking technology� whereas an e�mail service could be

acceptable with as basic a quality requirement as reliable delivery� In order

to be generally acceptable to the user� services using a new networking tech�

nology should be o�ered with equal or better performance and at the same or

even lower price than those commonly available today� A Cost�Performance

compromise has to be taken into account and it can be argued that the nal

decision for such a compromise ideally should be delegated to the user� This

requires some degree of Cost�Performance transparency�

� Ease of Use 	and conguration
 is important and the availability of simple and

cheap terminal equipment is a must� This naturally calls for Integration of
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services� An acceptable networking technology should integrate the full range

of services to satisfy all of today�s and tomorrow�s communication needs�

� Universal connectivity is a growing requirement� Users would like to have

the possibility of reaching any other user over the same access technology�

Flexibility features such as personal mobility should be supported as users

wish to have access to their subscribed services from any terminal equipment�

� Security� An acceptable networking technology should support security fea�

tures such as authentication and privacy� Authentication limits service access

to authorised users only� e�g� eliminating the risk of users accessing a service

without paying for it� Privacy means encryption of data so those eavesdrop�

pers are not able to interpret the received data� allowing for example credit

card numbers to be exchanged over the network�

E���� Service Provider�s Perspective

With deregulation in the public telecommunication market and the transition

towards integrated services networks� it is expected that there will be a clear func�

tional separation between network providers� who operate network infrastructure

and provide network connectivity� and service providers� who provide services on

top of that network infrastructure� In today�s public networks� both network pro�

visioning and service provisioning is typically under the control of the same legal

entity 	e�g� PNO
� but in the future we expect a high number of independent service

providers to enter the market� who will run their business separately from network

providers ������ The requirements for an integrated services networking technol�

ogy are not identical for service providers and network providers� This section lists

the requirements from the service provider�s perspective� Service provider�s require�

ments also include requirements imposed by the provided services themselves� It has

to be noted here that a �service� in this context is not restricted to new multimedia

services�

Service provider requirements are mainly in the area of universal connectivity

and tra�c support� network and service separation support� service management
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and security�

� Universal connectivity and universal tra�c support are essential to maximise

the market size for a service� An integrated services networking technology

should be able to cope with any tra�c type� as tra�c characteristics pro�

duced from di�erent services vary considerably� This calls for high bandwidth

availability so that service providers are able to o�er any kind of service� It

also requires end�to�end transmission quality guarantee in order to be able to

provide services with the user�requested performance� Addressing �exibility

is needed� as many services require more than just normal unicast 	point�to�

point
 addressing� The networking technology should o�er the �exibility to

support the full range of addressing types such as unicast� multicast� broadcast

and anycast�

� Service charging support� In an integrated services network there should be

support for service charging as service providers are expected to prefer to

charge for their services independent from network providers�

� Security� In addition to the security related requirements from the user�s per�

spective 	i�e� authentication and privacy
� service providers require support of

non�repudiation� Non�repudiation means that once a user has committed to

pay for a service� the payment can not be refused�

� Network and service separation support and ease of service management are

not taken into account in this chapter� as these issues are not primarily de�

pendent on the underlying network technology�

E���� Network Provider�s Perspective

Even though deregulation in the telecommunication market will allow for new

network providers� the group of network providers is the smallest group of actors

in an integrated services network� Nevertheless their requirements must not be

neglected because they build� operate and own the networks� The main focus of

network providers is on manageability� network availability� scalability� chargeability

and 	of course
 low costs�
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� Scalability� A future�proof networking technology should be able to scale to

an unlimited number of endpoints and to ever increasing resource demands�

� Support of network charging� Charging of network usage is an essential re�

quirement of network providers� In integrated services networks it will not

be su�cient to have a �at�rate usage charging but rather a usage charging

based on tra�c size and quality� Without this tra�c based charging� network

overload situations will become the norm� Tra�c based charging can only be

achieved if a networking technology provides the functionality to monitor the

tra�c�

� Low cost� The infrastructure as well as the operating costs for a networking

technology should be low� Protection of investment is an important factor�

Given the enormous investments in existing networking infrastructure 	e�g�

POTS� Cable TV
� the ability to be run on top of parts of this existing in�

frastructure is very essential for a new networking technology in the opinion

of network operators� This holds especially true in the customer access area

where investments for physical connections are huge� Furthermore a new net�

working technology should allow for a smooth migration� making use of large

parts of existing telecommunication infrastructure for the short term and allow

for successive replacement with new infrastructure for the medium and long

term�

� Network management support and network availability are not taken into ac�

count in this chapter� as these issues are not primarily dependent on the un�

derlying network technology�
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E�� Internet Technology

E���� IPv�

General Overview

The Internet Protocol 	IP� or IPv�
 is the central part of the Internet protocol

suite� IP 	RFC ��� ������ RFC ���� �����
 o�ers a connectionless packet delivery

service on top of which the transport level protocols i�e� TCP and UDP build their

functionality� IP is a datagram oriented protocol that treats each packet indepen�

dently� Therefore each packet must contain complete addressing information� It nei�

ther guarantees delivery nor integrity� because the protocol does not use checksums

to protect the content of the packet and there is no acknowledgement mechanism to

determine whether the packet has reached its destination or not�

The IP protocol together with a set of supporting protocols 	ARP� RARP or

BootP� ICMP
 denes the format of the Internet datagram� addressing� address

resolution� packet processing� routing� and error reporting mechanisms� As described

in RFC ���� any host running the IP protocol suite typically also supports the

following protocols� Address Resolution Protocol 	ARP� RFC ��� �����
 and Internet

Control Message Protocol 	ICMP� RFC ���� �����
� The following gure summarises

how the IP protocol is related to the other protocols in the Internet stack� As shown

in the gure� IP can be run over a variety of data link layers� because IP hides the

underlying technologies from its users�

The IP datagram structure

The IPv� datagram is variable in length with a theoretical maximum of ������

octets� However� in practice the size of a datagram is limited by the size of the data

link layer or the physical layer as a whole datagram has to t into a single frame of

the underlying layer� For example� Ethernet limits the datagram sizes to ���� octets�

This limitation to the datagram size imposed by the underlying technology is called

the �maximum transfer unit�� MTU� However� in a heterogeneous environment with

varying MTUs� the datagram may need to be fragmented into smaller pieces� IP

therefore supports fragmentation�
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Figure E��� IP in the Protocol Stack�

Figure E��� IP datagram format�

The coding of an IP datagram format is shown in the following gure�

� Version� identies the protocol version 	i�e� � for IPv�


� Internet Header Length 	IHL
� the length of the header in �� bit words

� Type of Service 	TOS
� indicates possible priority and the type of transport

the datagram desires 	options are low delay� throughput� reliability


� Total Length� the length of the datagram measured in octets up to ������

octets
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� Identication� a value assigned by the sender to aid in assembling the frag�

ments of a datagram

� Flag bits� control the fragmentation 	e�g� don�t fragment� may fragment���


� Fragment o�set� indicates the place in the original datagram where this frag�

ment belongs

� Time to Live� indicates the maximum hop number that the datagram is al�

lowed to pass in the network

� Protocol� indicates the next layer protocol that was used to create the user

data 	e�g� TCP� UDP


� Header Checksum� a �� bit checksum over the header

� Source�Destination address� �� bit IP addresses to identify the sender and

receiver

� Options eld� carry information for network control� debugging� routing and

measurements�

IP Addressing and Routing

In IPv� the IP address space is limited to �� bits� An address begins with a

network number used for routing� followed by a local� network internal address� IP

addresses are classied in four classes according to the size of the network portion

of the address�

� Class A� where the high order bit is zero� the next � bits are for the network�

and the rest for the local address

� Class B� the high order two bits are one�zero� the next �� bits are for the

network and the rest for the local address

� Class C� the high order three bits are one�one�zero� the next �� bits are for

the network and the last � for the local address�
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� Class D� this is for multicasting� the high order four bits are one�one�one�zero

followed by multicasting address

As can be seen from the above address classes IP supports multicasting 	in

subnetworks
� Broadcasting is also supported 	RFC ��� �����
�

The IP addressing builds upon the notion of �network�� which is fundamental

for routing in the Internet� There are two types of equipment at the IP level� hosts

and routers� Hosts are any end�user computer system that connect to a network�

Hosts know 	or learn during the boot phase
 their network address and local address�

This forms the host address� A physical host may have several local addresses and

a single network address� A multi�homed host is a host that is attached to two

di�erent networks as a host� however this is a special case� A router is a 	dedicated


computer that attaches to two or more networks and forwards packets from one

to the other based on the network portion of the destination IP address� Routers

exchange network addresses as reachability information between them using various

routing protocols 	e�g� EGP� OSPF
 depending on where in the network hierarchy

the routers are located�

IP tra�c within the same network can be delivered directly from host to host�

whereas IP tra�c to another network always passes one or several routers�

Assessment

The roots of IP are in the early ���s� Since then processing power and memory

size of computers and the nature of applications have changed considerably� IPv�

has the following restrictions� some of which have led to the recent redesign of the

IP protocol 	IPv�� see section ���
�

� The xed size address space of �� bits is a limiting factor for the predicted

Internet growth 	B class addresses exhausted� supernetting of C class addresses

is only a short term solution
�

� New types of address hierarchy are needed to make the protocol more �exible�

� No support of an anycast addressing concept�
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� Per packet computational load is not optimal and can be improved� resulting

in a more e�cient datagram delivery�

� No support of multimedia type of streaming 	�ows
�

� No support of guaranteed QoS� just plain� best e�ort� connectionless packet

delivery�

� Potentially ine�cient routing 	all IP packets of a persistent data �ow are

routed independently


� Potentially ine�cient transmission 	IP header is too big� especially for short

packages


If only the mandatory set of the IPv� protocol suite 	as described in �����
 is

supported� the following restrictions also apply�

� No plug and play type of address autoconguration and re�numbering�

� No network layer security support�

� No mobility support�

However� there are additional RFCs� which cover these features�

Despite these restrictions IP is widely deployed today and with the current boom

of the Internet it will become even more important among the network layer proto�

cols� Apart from its wide deployment o�ering almost universal connectivity� there

are some other advantages of IP�

� There is an unmatched variety of services and applications available that build

on IP

� IP can be run over a big variety of physical layers

� IP is a working solution and its performance has been well tuned over the

years

� IP equipment is cheap for network providers as well as for users
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� IP based applications do not have to know their bandwidth demand in ad�

vance and can easily adapt to the encountered tra�c level along the traversed

network path�

� Separating network and service provisioning is a reality in the Internet archi�

tecture

E���� IPv	

Why IPv	

Mainly triggered by the fear of the approaching address space exhaustion and to

solve some of the shortcomings of IPv� 	see section ���
� the IETF started working

on IPv� 	or IPng
 in ����� By ���� version � of the Internet Protocol was specied�

IPv� is not a radical change to IPv�� it is rather an evolutionary step and co�

existence between Ipv� and Ipv� is possible for a transition phase ������ Except for

the larger address space and some autoconguration features� all new functionality

could also have been tted into IPv�� Nevertheless� after over �� years of building

and enhancing the Internet protocol stack� it is necessary to clean and consolidate

the functionality of the very central IP layer and make it a ready platform which

will be able to cope with new Internet functionality required in the near future�

The IPv	 protocol suite

The IPv� protocol suite is not dened in a single specication but comes in a

whole collection of RFCs� the most important of which are listed below�

� IPv� 	RFC���� �����
� IPv� Addressing 	RFC ���� �����


� ICMPv� 	RFC ���� �����
 Internet Control Message Protocol� including ad�

dress resolution

� Authentication Extension 	RFC ���� �����
� ESP Extension 	RFC ���� �����


All higher layer protocols in hosts 	UDP� TCP� Web� DNS���
 need to be en�

hanced to be able to use the new functionality of IPv�� There are Internet drafts
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available on how to enhance the IPv� API 	socket interface
 in order to bring the

IPv� functionality to the application layer�

New addressing and routing

IPv� uses �� byte addresses and improves addressing �exibility through the de�

nition of unicast� multicast and anycast addresses� Furthermore IPv� supports plug

and play features such as automatic IP address conguration and re�numbering�

Scalability was introduced to IPv� multicast routing by using address scopes�

In general� IPv� routing is almost identical to CIDR of IPv�� based on the route

selection of longest matching address prex� With very little modication� all of

IPv��s routing mechanisms can be used to route IPv��

Source routing is used in IPv� to ease future implementation of new functionality

such as terminal mobility and provider selection�

IPv	 packet structure

The IPv� packet�s base header is a streamlined IPv� header� reducing the pro�

cessing cost of packet handling and limiting the packet size by removing some of the

elds and options� Some of the options removed from the old header and some new

options of IPv� are now supported through an arbitrary number of extension head�

ers following the base header� each of them indicating in its Next Header eld the

type of the next following extension header� Examples for such extension headers

are the source routing extension header� the fragmentation header and the authen�

tication header� Extension headers are normally only examined or processed by the

destination node� The use of extension headers introduces high modularity in the

IP packets and easily allows future options or extensions to be integrated� The data

follows the last extension header� The structure of the IPv� base header and of an

IPv� packet is given in Figure E���

New features of IPv	

IPv� introduces �ow labelling capabilities 	Flow Label eld in base header
�

which allows packets belonging to the same �ow to be labelled� The sender can
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Figure E��� the IPv� packet structure�

request special handling of a �ow by the routers� such as non�default quality of

service or �real�time� service� Routers can cache �ow information obtained from

processing the rst packet of a �ow and thus speed up processing for following

packets of the same �ow�

The Priority eld in the base header allows the desired delivery priority of a

packet to be specied� but this is only relative to the priority of other packets from

the same source�

IPv� introduces network layer security dened in the authentication and the ESP

extension header� Authentication is used to guarantee the packet sender�s identity

and ESP means the encapsulation of security payload so that a third party can not

read it�

IPv� supports source routing capabilities dened in another extension header�

IPv� allows only restricted fragmentation� i�e� fragmentation is only allowed at

the packet source but NOT at intermediate IPv� routers� This is achieved by either

using the minimumMTU guaranteed by all delivery systems 	��� octets
 or by using

ICMPv� messages for path MTU discovery�
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Transition from IPv� to IPv	

IPv� and IPv� are similar but all the same are distinct protocols� To allow for an

incremental upgrade of IPv� equipment to IPv�� during which both protocols can

coexist� it is crucial that there is both a way to interwork between the two protocols

and to tunnel IPv� through a cloud of IPv�� Given today�s vast installed base of

IPv� equipment this was a key issue during IPv� protocol design�

To address the transition problem� there is RFC ���������� which denes a set of

mechanisms that IPv� hosts and routers should implement in order to be compatible

with IPv� hosts and routers� The proposed solution is based on dual IP layer nodes�

tunnelling� and DNS support�

� Dual IP layer node is a host or router that implements both IPv� and IPv�

All such nodes need an IPv� and an IPv� address� For this purpose the �IPv�

compatible IPv� address� was dened� which uses the IPv� address in its lower

� bytes and all zeros for the �� higher bytes�

� Tunnelling denes how IPv� packets have to be encapsulated within IPv�

datagrams� so that they can be carried over IPv� routing infrastructure� and

addresses the tricky issues of fragmentation and ICMP error message mapping�

� DNS is used to provide IPv� and IPv� addresses for a machine name�

It is very important to note here that this is only a short�term solution� which

will work as long as the IPv� address space is not exhausted� as all dual layer nodes

need IPv� and IPv�� Other� much more complex solutions� such as real address

translations� will have to be dened after the address space exhaustion�

State and availability of IPv	

Work on the IPv� protocol has been nished though there is still some remaining

work on higher and lower layers� such as to support IPv� in all routing protocols

over all di�erent media and enhance the API for IPv��

There is already a variety of router and host implementations available from

di�erent vendors and for di�erent architectures� A global IPv� based backbone

	�bone
 is operational and growing�
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Assessment

IPv� is a neat new version of IP� cleaning up old functionality and adding some

new functionality to make it a stable and future proof network layer� It comes as a

SW upgrade to current IPv� equipment and o�ers an incremental transition phase�

minimising costs for new equipment and protecting past investments�

A very important new feature of IPv� is its basic support of QoS at the network

layer through �ow labels and priority indication� This does not mean however� that

IPv� alone can guarantee real end�to�end quality of service as there is no way to make

network resource reservations� But IPv� provides the network layer functionality

which allows end�to�end quality of service to be provided when used together with

protocols for network resource reservation like RSVP 	see section ���
� IPv� basic

QoS support also provides the basic functionality for a future� tra�c based charging�

The larger address space overcomes the current limits of the Internet growth and

has the potential to provide worldwide� universal connectivity� The big challenge

for IPv� was thought for its transition to be completed before IPv� routing and

addressing break� If this can not be achieved� very complex address translation

solutions would have to be used to be able to keep the Internet paradigm of universal

connectivity alive� However� on the basis of the NAT protocol 	Network Addressing

Translation �����
 that introduces the concept of globally non�unique addresses� the

limitation of the current addressing scheme is no more an urgent problem� In fact

many organisations do need any more a large number of unique addresses� because

they can use a limited set for the accessible hosts� and give to the hosts are on their

internal network� globally non�unique addresses� because they do not necessitate

to be known outside� Therefore the pressure on nishing standardisation work is

reduced and the deployment of IPv� is slowing down�

The security features of IPv� support authentication and privacy� They also

provide the basic functionality for service charging�

With its new plug and play features� IPv� networks are much easier to congure

and maintain�

All higher layer protocols and applications need to be ported to be able to make

use of the new functionality provided by IPv��
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E���� Resource ReSerVation Protocol �RSVP�

Motivation

IP provides best e�ort datagram delivery that is su�cient for most of the con�

ventional applications such as e�mail� WWW and le transfer� However� a new class

of application 	e�g� multimedia
 is emerging that requires guaranteed resources from

the network in order to function properly� Typically such requirements for resource

guarantees are related to stringent real time requirements�

To address the problem of resource reservation in the Internet� the IETF formed

the Integrated Services working group� This working group with the goal of �e�cient

Internet support for applications that require service guarantees� is dening an

Integrated Services framework� of which RSVP is an integral part�

It has to be noted here that RSVP is enhancing IP based networks to support

end�to�end quality of service� it is however not related to ATM�

RSVP is a signalling protocol for the Internet�

Protocol overview

Resource ReSerVation Protocol� RSVP ��������� has been proposed to be the

protocol that allows applications to reserve network resources in an IP network such

as the Internet� RSVP operates on top of IP 	either IPv� or IPv�
 and it relies on

standard Internet routing� It is used both in hosts and routers to reserve resources

for a simplex 	uni�directional
 data stream� called a �ow� A �ow is a sequence

of datagrams identied either by the IP destination address 	either multicast or

unicast address
� or by the IP protocol ID and optionally by a destination port�

The requested QoS for the �ow is described by a �owspec together with a lter

spec� These two form a �ow descriptor that is carried in the resource reservation

message�

RSVP is designed for both unicast and multicast communication in a hetero�

geneous network� where receivers may have di�erent characteristics and multicast

membership is dynamic� These requirements lead to a solution� where the receiver

is responsible for initiating the resource reservation�
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Figure E��� RSVP �ow descriptor�

Figure E��� RSVP message exchange in the multicast tree�

The message �ow for the establishment of a network reservation for a multicast

communication is shown in Figure ��

It is assumed that a multicast group already exists 	created by Internet Group

Management Protocol� IGMP �����
� The sender S� sends a Path message to a

multicast group announcing the characteristics of the �ow it is going to send� The

Path message contains a Tspec� describing the maximum tra�c characteristics of

its data �ow� and a Filter Spec� describing the packet format of the �ow� When the

receivers� R� and R�� want to make a resource reservation� they will send a Resv

message upstream following exactly the inverse path of the Path message� The Resv

message contains the desired reservation style 	see Figure E��
 and �ow descriptor�

The Resv message creates reservation state in each RSVP capable router along the

path from the receiver to the sender� In a multicast situation as the one shown

in Figure E�� there are nodes that will receive two or more Resv messages from
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Figure E��� RSVP in hosts and routers�

di�erent branches of a multipoint tree� These nodes merge the received reservations

and forward only one merged reservation request upstream� containing the most

demanding 	maximum
 �owspec�

The resource reservation request indicated in the Resv message has to pass ad�

mission control and policy control modules in all RSVP equipped routers and hosts

on its way� These check if the reservation can be accepted� Admission control deter�

mines whether the node has su�cient resources and policy control ����� deals with

administrative issues such as accounting and access rights� If the reservation passes

these two checks� �ow related parameters are set in the packet classier and packet

scheduler� If either of the checks fail� an error notication is returned� The packet

scheduler is responsible for negotiation with the link layer to reserve the transmis�

sion resources� It is here that mapping from the �ow level QoS to the link layer QoS

takes place�

The treatment of RSVP reservations in routers depends on the reservation style

indicated by the Resv message� The di�erent styles and attributes are listed in the

following gure�

The reservation styles indicate either if there should be a separate reservation for

each sender of a session 	Fixed�Filter
� or if the reservation can be shared among the

named senders of the session 	Shared�Explicit
� or if the reservation can be shared by

all the senders 	Wildcard�Filter
� Fixed�Filter� Shared�Explicit and Wildcard�Filter

style are mutually incompatible� This results in rules for merging the reservations�

For example� merging of shared reservations with distinct reservations is prohibited�
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Figure E��� RSVP reservation attributes and styles�

RSVP uses soft state for the reservation� This means when a reservation is made�

it must be periodically refreshed 	suggested refresh period is currently �� seconds
�

Refreshing is accomplished by sending Path and Resv messages� The advantage of

using soft state for the reservation is that the route of the connection can be changed

dynamically inside the network and the reservation will be re�established when the

new Path and Resv messages has passed through the new route� Soft states also

help to allow for dynamic multicast group membership�

In addition to Resv and Path messages RSVP has messages for tearing down

the reservation state� The PathTear message is sent from the sender to tear down

the path and thus the reservation state and ResvTear is sent from the receiver�

A sender can request reservation conrmation to its Resv message� the sender or

a router that is merging the reservation to another reservation sends a ResvConf

message to conrm the reservation�

Assessment

RSVP denes an e�cient� �exible and robust solution for setting up resource

reservations in IP based networks� but it does not scale well for large number of �ows�

RSVP is especially tailored for the need of multicast connections in heterogeneous

networks�

With the support of resource reservation in the network application requested

end�to�end QoS becomes possible� However it remains unclear� how routers are

going to map the resource reservations to internal settings for the packet classier
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and scheduler and how reliably they are going to support the requested reservation�

Furthermore end�to�end QoS can only be guaranteed if all the routers and hosts

along the routed path are running RSVP software� because tunnelling through non�

RSVP clouds destroys all end�to�end QoS�

The fact that RSVP sets up reservations in the upstream direction of a pre�

established multicast tree makes it impossible that QoS information is used for

routing decisions�

The use of RSVP in the Internet may provide input for tra�c based charging�

There is an IETF RSVP Working Group that is in charge of evolving the RSVP

specication� The RSVP�WG also coordinates its work with the parallel IETF

working group that is considering the service model for integrated service� in order

to have RSVP compliant with the overall integrated service architecture and the

requirements of real�time applications� The RSVP�WG also coordinates its work

with the IPng�related working groups�

E���� Current research directions in IETF

Current resource reservation architectures for multimedia networks in IETF 	e�g�

RSVP
 don�t scale well for a large number of �ows� This complicates the use of those

architectures in network backbone areas� and the utilisation of RSVP is strongly

limited by this scarce scalability� The e�ort to nd a solution to this problem con�

verged to methods that do not depend 	at least completely
 on a per �ow resource

reservation� There are two interesting approaches recently presented in IETF� Dif�

ferentiated Services and SRP�

Di�erentiated Services

In the Internet world is commonly dened a Di�erentiated Services mechanism

any simple mechanism that does not depend entirely on a per �ow resource reser�

vation and allows providers to di�erentiate the service pro user base� However

di�erential services is still far to be stabilised� even the exact coverage of the de�

nition di�erentiated services is still font of debate� because of the several proposal

under investigation�
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Two of those possible approaches are described in ����� and ������ Both methods

distinguish traditional best�e�ort tra�c from tra�c that requires�wants a better

service� The global network is therefore seen as divided in two 	independent
 virtual

networks� the current Internet and a �contracted network�� The contracted network

is monitored and the tra�c that exceeds its prole is dropped or not assured� Note

that this is di�erent from priority schemes where� under congestion� lowest priority

tra�c is discarded even if it respects its contract� here tra�c is discarded only if it

does not respect the contract� In ����� the prole is statistically provisioned� while

in ����� it is given on the base of the expected capacity�

The contracted network is transparent to best�e�ort tra�c� which is transmitted

as in the current Internet�

SRP

SRP 	Scalable Reservation Protocol
 ����� proposes a new architecture that ag�

gregates �ows on each link in the network� Therefore� the network has no knowledge

of individual �ows� and scalability even for very large numbers of �ows results� Ad�

mission decisions are performed by routers independently and on a per�packet basis�

Routers estimate the current level of reservation by continuously measuring reserved

tra�c and accepted requests�

Contrary to traditional approaches� routers learn about 	aggregate
 �ow be�

haviour by monitoring and therefore only need to know the type of each packet

	reserved� request� or best e�ort
 and no explicit signalling or globally known clas�

sication of possible tra�c patterns is needed� Furthermore� a feedback protocol is

used by the destination to report end�to�end reservation status to the source� This

protocol is transparent to routers�

Resource management functions traditionally implemented in the network 	such

as �ow acceptance control
 are delegated to hosts� Conformance of sources and

intermediate systems can be controlled in a hierarchical structure by monitoring

aggregated �ows at routers�
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E�� ATM Technology

E���� Introduction

Asynchronous Transfer Mode 	ATM
 is a cell�based� connection�oriented switch�

ing technology that is designed to support a wide variety of services� including cell

relay� frame relay� SMDS� and circuit emulation� ATM transmits all information

using small 	�� byte
 xed length cells over broadband or narrowband transmission

facilities� It is asynchronous because the cells carrying user data are not required

to be periodic� The asynchronous and multimedia characteristics of ATM are what

makes it possible for ATM networks to carry both circuit and packet types of tra�c

simultaneously� with complete transparency to the applications� ATM was designed

to provide large amounts of bandwidth economically and on�demand� When a user

does not need access to a network connection� the bandwidth is available for use by

another connection that does need it�

The ATM technology was dened by the ITU�T� mainly formed by the repre�

sentatives of public network operators� The rather slow development of standards

in ITU�T was sped up by the ATM Forum 	founded in ����
� a growing group of

companies focusing on private network and data communication�

The term ATM can be interpreted in a variety of ways� In fact� it is true to

say that there is no single denition� It takes on many forms� encompasses both

hardware and software� and can run on several types of digital transmission facilities�

ATM can refer to a physical interface 	the ���byte cell
� a switching technology� or

a unifying network technology that provides integrated access to multiple services�

There is a broad consensus that ATM will rst be implemented within wide

area networks primarily as a switching technology to support existing services in

private WANs and in public service networks� ATM excels primarily as a backbone

technology� because it is in this context that most of the benets of cell relay are

realised�
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E���� Virtual Paths and Virtual Channels

Each ATM cell contains a two�part address� a Virtual Path Identier 	VPI
 and a

Virtual Channel Identier 	VCI
� in the cell header� This address uniquely identies

an ATM virtual connection on a physical interface� The physical transmission path

	such as DS� or DS�
 contains one or more virtual paths� and each virtual path can

contain one or more virtual channels� The VPI and VCI are tied to an individual link

on a specic transmission path� and have local signicance only to each switch� The

VPI and VCI addresses are translated at each ATM switch in the network connection

route ( each switch maps an incoming VPI and VCI to an outgoing VPI and VCI�

Therefore� these addresses can be reused in other parts of the network as long as

care is taken to avoid con�icts� ATM can perform switching on a transmission path�

a virtual path� or a virtual channel�

E���� Permanent Virtual Circuits and Switched Virtual Cir�

cuits

ATM provides two virtual circuit communications services� Switched Virtual

Circuits 	SVCs
 and Permanent Virtual Circuits 	PVCs
� SVCs establish short�

term connections that require call setup and teardown� while PVCs are similar to

dedicated private lines because the connection is set up on a permanent basis� Users

establish PVCs either by requesting them from a public carrier providing the frame

relay or ATM service� or from the WAN administrator of the private network� ATM

virtual connections can operate at a constant bit rate 	CBR
 for voice and video

tra�c� at a variable bit rate 	VBR
 for bursty tra�c and at available bit rate 	ABR


or unspecied bit rate 	UBR
 for best e�ort tra�c� Each virtual connection has its

own set of parameters 	Minimum Cell Rate 	MCR
� Sustained Cell Rate 	SCR
�

Peak Cell Rate 	PCR

� that determine the amount of bandwidth� priority� Quality

of Service 	QoS
� etc�
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Figure E��� ATM network architecture and interfaces�

E���� ATM Signalling
 Routing and Addressing

ATM Signalling Protocols vary by the type of ATM link � ATM UNI signalling

is used between an ATM endsystem and an ATM switch across an ATM UNI� ATM

NNI signalling is used across NNI links�

The current standard for UNI signalling is described in the ATM Forum UNI���

specication ����� which is an enhancement to the earlier UNI��� and provides some

kind of alignment to the recommendations for public UNIs specied by ITU�T�

Besides the basic call set up and tear down functionality UNI��� denes point�to�

multipoint operation� address registration and extended QoS support� An overview

of UNI signalling capabilities can be found in ������

ATM switches are interconnected via one of three NNIs� P�NNI in private ATM

networks� B�ISUP in public networks and B�ICI between di�erent public networks�

NNI interfaces dene not only signalling procedures but also routing� P�NNI de�

ned by the ATM Forum ����� supports not only signalling procedures similar to

UNI��� but also topology discovery via the distribution of reachability information�

hierarchical routing and addressing and QoS�

Whereas ITU�T has long settled upon the use of telephone number�like E����

addresses for public ATM networks� the ATM Forum dened a private address

format based on the syntax of an OSI Network Service Access Point 	NSAP
 address

to be used in private networks�

Application Programmer Interfaces 	APIs
 for ATM are still under denition�
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The industrial standard WinSock� 	for Windows based applications
 is becoming

available now�

E���� Assessment

The most signicant advantages of pure ATM solutions are�

� ATM supports end�to�end QoS guarantees on a per virtual connection basis�

ATM virtual connections allow users to expect a guaranteed minimum amount

of bandwidth for each connection� ATM supports several Quality of Service

	QoS
 classes to accommodate the di�ering delay and loss requirements for

each type of tra�c�

� ATM uses statistical multiplexing� which allows bandwidth to be shared among

many users� Bandwidth is only provided when it is needed �on demand�� thus

reducing the cost of network resources�

� ATM supports multiple services� ATM can be used to transport literally any

kind of information and can simultaneously support a broad range of user

interfaces� Only ATM WANs can provision frame relay� SMDS� native ATM�

voice� video� and existing leased circuit services 	circuit emulation
 over the

same wide area circuits�

� ATM provides high performance�

� ATM enables tra�c based charging�

On the other hand� ATM has got some disadvantages that may interfere with

widespread deployment� ease of high�speed implementation or present architectural

concerns�

� ATM technology is very complicated and the control software is extensive and

complex�

� Connection establishment times may be prohibitive for short duration data

�ows�
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� Applications have to know their QoS demands in advance and can not easily

adapt to changing network load�

� No multipoint�to�multipoint support

� Currently there are hardly any applications available that run directly on top

of ATM and can exploit its benets� ATM APIs are only emerging now and

today�s TCP�IP based applications will have to be changed considerably to

be adapted to ATM and make subtle use of resources�

� ATM does not provide security� This will have to be handled in higher layers�

� As public ATM network deployment is still very slow� the connectivity in the

public WAN area is bad today�

� ATM generates quite a lot of overhead 	 �� !
�

E�� IP�ATM Co�Existence

Given the vast installed base of LANs today� the variety of LAN based appli�

cations and the network layer protocols operating on these networks� the key to

the success of ATM in the short and medium term will be its ability to allow for

interoperability between itself and these technologies� To enable the connectivity

between ATM and existing LANs it is essential to use the same network layer pro�

tocols 	such as IP� IPX
 to provide a uniform network view to higher level protocols

and applications�

Today� there are two standards available to run the predominant IP protocol over

ATM� ATM Forum�s LAN�Emulation 	LANE
 and IETF�s �Classical IP over ATM��

Both use the so�called overlay model� where IP addresses are mapped to ATM

addresses� ATM is only used as a very fast packet transmission system and neither

LANE nor Classical IP over ATM can therefore exploit ATM�s QoS support as the

IPv� layer hides all the good features of ATM from higher layers� Moreover both

technologies can establish ATM end�to�end VC connections only inside a �subnet�

	LIS or VLAN
 and require IP routers for tra�c across �subnets�� with the routers
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becoming potential performance bottlenecks� LANE and Classical IP over ATM are

presented in Section ����

There are also several ongoing activities in the ATM Forum and the IETF to

enhance their overlay protocols to make better use of ATM� NHRP and MPOA are

discussed in Section ����

However there are solutions available already today� which can bring QoS to IP

based applications by supporting end�to�end ATM VC connections on a per �ow

basis and across subnet borders� Section ��� introduces Arequipa� providing appli�

cation requested end�to�end ATM connections with QoS for IP based applications�

and some of the approaches that combine the label switching technology of ATM

with network layer routing 	IP Switching� Tag Switching
 while avoiding the usage

of ATM addressing� routing and signalling altogether�

E���� Co�Existence without QoS Support

There are two fundamentally di�erent ways of running network protocols over

ATM networks� One method is the native mode operation� where network layer

addresses are mapped directly to ATM addresses and network layer packets are sent

directly across the ATM network� the other method is LAN Emulation�

LAN Emulation �LANE�

General overview

The ATM Forum specied LAN Emulation 	LANE
 in order to accelerate the

deployment of ATM in the local area while native mode operation is still under

denition� LANE o�ers a solution to the problem of running predominant local

area protocols like Ethernet and Token Ring transparently over an ATM network�

The version of LANE that is implemented in most of the products available on the

market can be found in ������ and is the one we refer thereafter�

LANE emulates a bridged LAN on top of an ATM network by o�ering a service

interface to network layer which is identical to that of existing LANs 	e�g� IEEE

����� Ethernet or ����� Token Ring
 and it sends data across the ATM network using
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appropriate LAN MAC encapsulation� In brief� LANE makes an ATM network look

and behave like an Ethernet or Token Ring� albeit a fast one� The big advantage of

emulating a LAN is� that all network layer protocols and applications can be used

without any modications�

Today� LANE protocol software is widely available on ATM hosts 	either imple�

mented in the operating systems or on ATM network interface cards 	NIC

 and on

LAN Switching Equipment� ATM switches are transparent for the operation of the

LANE protocol� They do not need to be modied for the use of LANE� although

some of the LANE server components could be implemented on them�

The main issues on emulating a LAN technology like Ethernet on an ATM net�

work is address resolution� broadcast and data encapsulation� Address resolution

fromMAC to ATM addresses is solved by using a special protocol called LE ARP be�

tween hosts and a special LANE entity known as the LES 	LAN Emulation Server
�

Broadcasting is emulated by sending packets to another LANE entity known as the

BUS 	Broadcast and Unknown Server
 which distributes the packets to all hosts�

The LAN packets 	e�g� Ethernet frames
 are encapsulated in AAL��

Architecture

In the upper part of Figure E��� the architecture of a standard bridged LAN en�

vironment is shown� On a shared medium LAN 	such as Ethernet
 all packets sent

by one station travel to all other stations on the medium� Bridges are intelligent

repeaters 	layer �
 which try to avoid unnecessary forwarding of packets� The func�

tionality of a LAN segment can be emulated by an ATM network running LANE

	lower part of Figure E��
� This emulated LAN segment is called an Emulated LAN

	ELAN
� Together with the remaining old LAN infrastructure it forms a virtual

LAN 	VLAN
�

For the operation of LANE the following entities are needed�

� LEC 	LAN Emulation Client
 A LEC runs on every host� It provides a stan�

dard LAN interface to upper layers� The LEC issues address resolution re�

quests and performs data encapsulation and forwarding�

� LES 	LAN Emulation Server
 There is a single LES per ELAN� It registers
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Figure E��� Classical LAN and Emulated LAN architecture�
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Figure E���� ATM connections for LANE�

the mapping of MAC to ATM addresses and replies to or forwards address

resolution requests�

� BUS 	Broadcast and Unknown Server
 There is a single BUS per ELAN� It

emulates broadcasting by forwarding packets to all known ATM addresses on

the ELAN�

� LECS 	LAN Emulation Conguration Server
 There is a single LECS per

domain� used for the conguration of several ELANs�

Several Virtual Channel Connections are needed between these entities� Figure

E�� shows the VCCs in a � host ELAN�

All these VCCs are established by signalling 	SVCs
� The VCCs are either UBR

or ABR�

LANE procedures

LANE Conguration�

� LEC establishes the Conguration Direct VCC to LECS�

� LEC learns from LECS the ATM address of LES over the Conguration Direct

VCC�
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� LEC sets up the Control Direct VCC to LES and registers its ATM and MAC

address in LES�

� LES adds LEC as a leaf to its point�to�multipoint Control Distribute VCC�

� LEC learns ATM address of BUS by using LE ARP to LES for the MAC

broadcast address�

� LEC sets up the Multicast Send VCC to BUS�

� BUS adds LEC as a leaf to its point�to�multipoint Multicast Forward VCC�

LANE Operation�

� LEC� wants to send to LEC�� but only knows its MAC address�

� LEC� uses LE ARP request to LES to map LEC��s MAC address to its ATM

address�

� While waiting for the reply� LEC� sends packets to BUS� which �oods it to all

connected LECs�

� After receiving the LE ARP response LEC� sets up the Data Direct VCC to

LEC��

� Before sending on the Data Direct� LEC� has to send a �ush to BUS to make

sure that all packets previously sent to LEC� over BUS were delivered 	to

preserve frame ordering
�

Assessment

LANE is a good solution to interconnect legacy LAN equipment in a private

network� exploiting ATM�s fast transmission speed with minimal changes to LAN

equipment and no changes at all to higher layer protocols and applications� Its a

working solution for today and allows for a smooth integration from LAN to ATM

in a corporate network�

LANE even introduces enhanced conguration �exibility and improved manage�

ment compared to standard LANs with its concept of virtual LANs�
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However LANE can not be the ultimate solution for a modern integrated services

network because of the following limitations�

� LANE totally hides the QoS support of ATM with its emulation of a connec�

tionless shared media technology�

� LANE is unable to run protocols in native mode�

� LANE is limited to a logical subnet 	VLAN
�

� All inter�VLAN tra�c has to pass through routers even if direct ATM connec�

tivity would be possible� These routers are likely to become bottlenecks�

� LANE address translation is very ine�cient because addresses are translated

from Layer � addresses to MAC addresses to ATM addresses� using two dif�

ferent address resolution mechanisms�

� LANE operation needs a lot of connections� limiting the number of stations

that can be attached to an emulated LAN

� LANE has not recovery mechanisms for the server� thus it does not foresee the

possibility to dene backup LES and BUS to manage the VLAN in emergency

conditions�

� LANE has limit on the MTU size� Currently LANE has been split in LUNI

	LANE User Network Interface
 and LNNI 	LANE Network to Network In�

terface
� For LUNI it exists the version ��� ������

CLassical IP over ATM �CLIP�

General description

A solution to overlaying IP networks on ATM networks is the so�called Classi�

cal IP over ATM� specied by the IP�Over�ATM working group of the IETF and

described in detail in RFC ���� ������

The Classical IP model refers to a network where hosts are organised in subnet�

works sharing a common IP address prex� where the ARP is used for IP address to
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Figure E���� Classical IP over ATM network architecture�

MAC address resolution and where communication across subnetworks goes through

routers� Preserving the classical IP model on ATM means that ATM is used as a di�

rect replacement for the �wires� and local LAN segments connecting IP end�stations

	�members�
 and routers operating in the �classical� LAN�based paradigm�

The Classical IP over ATM specication denes classical IP and ARP in an ATM

network environment congured as a Logical IP Subnetwork 	LIS
 as illustrated in

Figure E���� It does not describe the operation of ATM Networks in general�

It is the goal of RFC ���� to allow compatible and interoperable implementations

for transmitting IP datagrams and ATM Address Resolution Protocol 	ATMARP


requests and replies over the ATM Adaptation Layer � 	AAL�
�

Data transmission in Classical IP over ATM is based on the virtual connection

	VC
 switched environment provided by ATM networks� The VCs can either be

established by management 	PVCs
 or by signalling 	SVCs
� Each VC is directly

connecting two IP members within the same LIS and carries all IP data �ow between

them�

The ATM connections could in principle be of any type 	CBR� UBR� VBR�

ABR
� but only CBR and UBR is used in today�s implementations�

Encapsulation of IP Datagrams

IP packets are transmitted using AAL� with a maximum packet size 	MTU


of ���� bytes� Additionally� when using SVCs� IP packets must be encapsulated

with LLC�SNAP ���� and the SETUP signalling messages to establish these SVC

must carry Lower Layer Information 	BLLI
 indicating that the packets should be
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delivered to the LLC entity ������

Address Resolution Mechanisms

When SVCs are used for transmission� special address resolution mechanisms are

needed to map IP addresses to ATM addresses and vice versa� Similar to classical

IP networks where ARP ����� and InARP ����� are used to map between IP and

MAC addresses� Classical IP over ATM denes ATMARP and InATMARP services

to map between IP and ATM addresses� For example� if Host A wishes to send IP

datagrams to Host B it needs to have the ATM address of Host B to be able to

establish a switched VC using signalling� For this IP to ATM address resolution�

the ATMARP service is used� The originating host sends an ATMARP request to

a special network entity� the dedicated ATMARP server of the LIS� The ATMARP

server� knowing the IP and ATM addresses of all hosts and routers in its LIS 	see

below
� maps the provided IP address of Host B to the corresponding ATM address

and sends it back to Host A� Host A can then establish an SVC to Host B using

normal signalling procedures� Host B then uses InATMARP procedures on this

newly established connection to learn the IP address of Host A�

When hosts are connected by PVCs� they may use a precongured table to map

IP addresses to VCs but they have a mechanism for resolving VCs to IP addresses

via InATMARP for new VCs�

Each host must know its own IP and ATM address	es
 and must respond to

address resolution requests appropriately� It must also be congured with the ATM

address of an ATMARP server 	for SVCs only
 located within the LIS 	there is only

one server per LIS
� At power�up a host establishes a connection to the server� On

each new incoming connection the ARMARP server send an InATMARP request

and registers the reply� The reply contains the information for the ATMARP server

to build its ATMARP table cache� This information is used to generate replies to

the ATMARP requests it receives�

Because ATM does not support broadcast addressing� there is no mapping from

IP broadcast addresses to ATM broadcast services� This is currently also true of

multicast address services� although an Internet draft for multicast support already
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Figure E���� routing for tra�c across LIS borders�

exists ������

All hosts as well as the server must maintain an ATMARP table� A table entry

contains the IP address� ATM address and VCI�VPI of a connection together with

encapsulation information and a timestamp� Hosts must refresh the entries at least

every �� minutes and the server must refresh the entries at least every �� min�

Connections are released after a certain idle period�

It is important to stress the fact that the address resolution mechanisms of

Classical IP over ATM can only be used inside a single LIS and not across LIS

borders�

Routing

Classical IP over ATM uses exactly the same end�to�end routing architecture

as the classical IP network� As the classical IP network uses ARP protocols and

tables for the routing inside of the subnetwork� so does Classical IP over ATM use

ATMARP protocols and tables for the routing inside of a LIS� For communication

across LIS borders routers are needed in the same way as when crossing subnet

borders in classical IP networks� This leads to the necessity of using several hops

over IP routers across an ATM networks for tra�c between hosts in di�erent LIS

	see Figure E���
�
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Assessment

The main advantage of using Classical IP over ATM is its full compatibility with

normal IP� enabling the vast set of higher layer protocols and applications to run

transparently over ATM while making use of ATM�s high bandwidth availability�

Another advantage is that Classical IP over ATM allows easy integration of IP

based services with other ATM services 	e�g� voice
�

The major shortcoming of Classical IP over ATM is that it can not benet from

ATM�s inherent end�to�end QoS guarantees for the following reasons�

� Direct ATM connections can only be established inside a LIS but not across

LIS borders� Because of using the classical IP routing mode 	address resolution

is limited to a LIS
 IP tra�c between hosts on di�ering LISs always �ows via

one or more intermediate IP routers who can only provide best e�ort delivery

on IP level� This results in a concatenation of ATM connections even though it

may be possible to open a direct ATM connection between the two hosts� thus

pre�empting end�to�end QoS� In other words� IP packets across LIS borders

hop several times through the ATM network instead of using one single hop�

� All IP data �owing between two hosts shares the bandwidth of a single VC�

Having only one shared VC between two hosts makes it impossible for indi�

vidual applications to get a QoS guarantee for their specic data �ow�

Other shortcomings of Classical IP over ATM are that neither multicast nor

anycast is supported� that IP layer implementations need to be adapted to interface

with ATM directly and that it is necessary to deploy routers with ATM interfaces

in every LIS� Furthermore there is no default path to forward IP datagrams before

a connection is established� resulting in a high delay for the passing of the rst

datagram�

Unlike LANE Classical IP over ATM does not allow to use much of the old legacy

LAN equipment� but it o�ers a more appropriate MTU size 	larger
�
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E���� QoS Support by Emerging Standards

Both the IETF and the ATM Forum are aware of the shortcoming of their

respective solutions of running IP over ATM 	CLIP� LANE
 and try to solve them

by dening new additional standards� NHRP� under denition in IETF� tackles

the extra�hop problem 	router hops are required for tra�c across LIS instead of

direct ATM connections
 to provide end�to�end ATM connectivity and bring the

QoS features closer to IP based applications while generalising on Layer � 	IP over

any layer �
� MPOA� under denition in the ATM Forum� denes a way to emulate a

routed protocol over ATM and also addresses the extra�hop problem but generalises

on Layer � 	any layer � over ATM
�

Next Hop Resolution Protocol �NHRP�

General description

The IETF is generalising its approach to support IP 	and other internetworking

protocols
 not only over ATM but over all kinds of Non�Broadcast Multiple�Access

	NBMA
 networks� such as ATM� Frame Relay or X���� For this purpose� the

IP over NBMA 	ION
 working group was formed as a successor of the Routing on

Large Clouds 	ROLC
 and the IP over ATM 	ipatm
 working groups� The Next Hop

Resolution Protocol 	NHRP
 was dened by ION as a key element of supporting IP

over NBMA� NHRP is currently only an Internet Draft ������

NHRP addresses one of the key problems in NBMA networks� namely the prob�

lem of stations communicating over a Non�Broadcast Multiple�Access 	NBMA
 sub�

network� that are not on the same LIS� The NHRP protocol allows the internetwork�

ing layer addresses and NBMA addresses of suitable �NBMA next hops� toward a

destination station to be determined�

As we already pointed out in the description of Classical IP over ATM 	see

section �����
� the address solving problem arises when the stations are in the same

NBMA network� but not in the same LIS� In fact� in this scenario� classical address

resolution as described in RFC���� ����� and RFC���� ����� does not work� because

it can only discover a router that is a member of multiple LISs� and packets can hop
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Figure E���� the Local Address Group 	LAG
 concept�

several times through the NBMA network instead of using one single hop� NHRP

solves this problem with the denition of an inter�LIS address resolution mechanism�

providing the source station with a �short�cut� routing� that allows to communicate

through the NBMA network without having to involve intermediate routers�

In this sense NHRP is not a routing protocol� but just an inter�LIS address res�

olution mechanism that makes use of network layer routing in resolving the NBMA

address of the destination� Therefore NHRP does not replace existing routing pro�

tocols� that are still used to determine the source path 	other means than routing

can be used to do it� for example� static congurations
 �

NHRP replaces the concept of LIS with the concept of Local Address Groups

	LAGs
� LAGs were introduced in ����� to extend IP architecture that limits direct

communication between hosts with the same subnet� to large data network� LAGs

are identied by an IP address prex� and group hosts and routers with di�erent

subnet� As described in ������ for NHRP the essential di�erence between using the

LIS or the LAG models is that while with the LIS model the outcome of the �lo�

cal�remote� forwarding decision is driven purely by addressing information� with the

LAG model the outcome of this decision is decoupled from the addressing informa�

tion and is coupled with the Quality of Service and�or tra�c characteristics� This

implies that two stations that are on the same NBMA� but that are not necessary on

the same LIS� can directly communicate being part of the same LAG� as illustrated

in Figure E����
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Protocol overview

For NHRP operation there has to be one Next Hop Server 	NHS
 in every LIS�

All hosts on a LIS register their NBMA and internetwork layer 	e�g� IP
 address

with their NHS when booting�

Assume a Host S wants to send an internetwork layer packet 	e�g� IP
 to Host

D which lies outside its LIS� To resolve the NBMA address of D� S sends a next

hop Resolution Request to its NHS� The NHS checks whether Host D lies in the

same LIS 	is served by the same NHS
� If the NHS does not serve Host D� the NHS

forwards the request to the next NHS along the routed path� Using this algorithm

the request is passed on from NHS to NHS and eventually arrives at the NHS that

serves Host D� This NHS can resolve Host D�s NBMA address and sends it back

to Host S in a next hop Resolution Reply either along the routed path or directly�

If it is sent back along the routed path� intermediate NHSs can optionally store

the address mapping information for Host D contained in the Resolution Reply to

answer subsequent Resolution Requests� Using this mechanism NHRP provides S

with the NBMA address of D� if D is directly attached to the NBMA� or in the other

case the address of an egress router at the edge of the NBMA which has connectivity

to D� Host S and Host D may choose to cache the address mapping�

Host S can choose to either drop the packet triggering NHRP� retain it until the

arrival of the Resolution Reply or forward the packet along the routed path towards

Host D�

Use of NHRP

Issuing an NHRP request would be an application dependent action ������ in

particular because NHRP allows the special features provided by the NBMA to be

used� Thus� when a �cost� is associated with NBMA connections� there is an evident

advantage in using NHRP short cuts� i�e� only one connection across the NBMA�

For example� when the NBMA network is ATM and the application requests QoS

guarantees� the short�cut routing of NHRP helps to establish a direct VC in the

ATM domain across several IP subnets� allowing the application to benet from the

QoS features of ATM�
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Figure E���� NHRP established direct ATM connection across LIS borders�

For this reason� the Multiprotocol Over ATM 	MPOA
 Working Group of the

ATM Forum has decided to use NHRP for resolving the ATM addresses of MPOA

communications where the destination does not belong to the same Internetwork

Address Sub�Group of the source ������ as illustrated in Figure E����

Assessment

The main advantage of NHRP is that it can solve the multiple�hop problem

through NBMA networks by o�ering inter�LIS address resolution� thus enabling

the establishment of a single�hop connection through the NBMA network� If the

NBMA network is ATM� this means that by using NHRP a single direct VC can be

established across several LIS� bringing QoS to the IP data �ow between the VCs

endpoints� But NHRP can only achieve this if the routed path lies entirely within

the NBMA network and only under the conditions that NHRP is supported on all

routers along the routed path� Furthermore it is also important to note� that even if

a direct connection can be established through the NBMA network� it will be shared

by all IP tra�c between the two endpoints� which means that it does not bring QoS

to an individual application�

Another problem with NHRP is that stable routing loops may occur� if NHRP
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initiating and responding stations are routers� which are additionally connected over

another network� Avoiding these routing loops imposes restrictions on the network

conguration� But there is already work in progress ����� to augment NHRP to

solve this problem�

Another negative e�ect that could arise with NHRP Resolution Request is the

domino e�ect� This occurs when a router originates a NHRP Resolution Request

for a transit packet 	a packet arriving over one of its NBMA attached interfaces
�

If the router forwards this data packet without waiting for an NHRP transit path

to be established� then the next transit router receiving the packet can originate its

own NHRP Resolution Request and forward the packet� and so on� One solution

proposed to solve this problem is that a router does not generate NHRP Resolution

Request for transit packets� but only for packets on its non NBMA interfaces�

Deployment of seamless NHRP functionality require s additional software on all

hosts and routers connected to the NBMA network�

The current NHRP specication works only for unicast communication� it does

not suit a broadcast or multicast setting�

NHRP is only a draft and is far from being generally deployed�

Multiprotocol over ATM �MPOA�

Motivation

The ATM Forum�s Multiprotocol Over ATM 	MPOA
 subworking group is den�

ing an approach to support seamless transport of layer � protocols across ATM net�

works� Multiple layer � protocols are to be supported� such as IP� IPX� Appletalk�

etc�

MPOA is extending the VLAN beyond what was dened in LANE based VLANs�

addressing the well known shortcomings of LANE that router hops are required for

VLAN interconnection and its inability to run protocols in native mode� which

could exploit ATM�s QoS features� In other words� MPOA tries to o�er transparent

emulation of routed protocols over ATM network� much the same as LANE o�ers

transparent emulation of a LAN protocol over ATM network� MPOA provides end�

to�end Layer � connectivity between hosts attached to the ATM fabric and hosts
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attached to legacy subnetwork technology� MPOA operates at layer � and �� but

uses LANE for layer � forwarding�

MPOA was built with the following design goals in mind�

� Allow MPOA devices to Establish Direct ATM connections

� No signicant changes to installed Bridges� Routers and Hubs

� Integrate with LAN emulation

� Support Network Layer Multicast and Broadcast

� Support Auto Conguration at ATM hosts

� Separate Switching from Routing

Much as the IP oriented IETF is trying to run only IP over all underlying tech�

nologies 	ATM being only one of them
� the ATM Forum tries to run all kind of

Layer � 	IP only one of them
 protocols over only ATM� Where �IP over ATM� is

concerned the two standardisation bodies converge and the IP version of MPOA can

be considered the unication of Classical IP over ATM 	together with MARS and

NHRP extensions
 and LANE�

So far the ATM Forum produced a MPOA Baseline document ������

The MPOA reference model

The basic unit of organisation within MPOA is the Internetwork Address Sub�

Group 	IASG
� It is dened as a range of internetwork layer addresses summarised

into an internetwork layer routing protocol� In the case of IP this is essentially a

subnet�

An IASG will contain a number of devices acting as MPOA servers and clients

as described in the MPOA reference model 	Figure E���
� Servers are those devices

providing layer � co�ordination� address resolution� route distribution and broad�

cast�multicast forwarding� Clients are users of the MPOA services�

MPOA Clients are�
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Figure E���� MPOA reference model�

� MPOA Hosts� hosts that are directly attached to ATM� running MPOA pro�

tocol stack

� Edge Devices� physical devices that are capable of forwarding packets be�

tween legacy LAN interfaces and ATM interfaces at both Layer � and Layer

�� However they do not run layer � routing protocols to get the information

for the Layer � packet forwarding� but they query the Route Server for this

information�

The services o�ered by MPOA Servers can be classied in the following func�

tional groups�

� ICFG 	IASG Coordination Functional Group
� coordinates the distribution of

an IASG across multiple traditional LAN ports and�or ATM connected hosts�

it is responsible for the conguration of the IASG

� RSFG 	Route Server Functional Group
� runs layer � routing protocols� pro�

vides address resolution and route distribution

� DFFG 	Default Forwarder Functional Group
� forwards tra�c within an IASG
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if no direct client to client connection exists and performs the Multicast Server

Function 	MSF
 within the IASG

� RFFG 	Remote Forwarder Functional Group
� forwards tra�c between IASGs

MPOA architecture

Typically the MPOA server functionality is split among two physical entities� the

Route Server and the IASG Coordinator� The IASG Coordinator provides ICFG

and DFFG functionality� The Route Server provides RSFG and RFFG functionality�

MPOA Hosts have direct VCs to the IASG Coordinator and to the Route Server�

Edge Devices� Bridges and LANE Hosts connect to the server entit ies over LANE�

implying that the MPOA servers and these devices all run a LEC�

MPOA procedures

Procedures in MPOA are highly complex� Nevertheless a simplied description

is given which relates to Figure E����

When initialising� all MPOA Hosts and Edge Devices announce their own Layer

� and ATM addresses and the layer � addresses reachable through them to the

IASG Coordinator and the Route Server� In parallel normal LANE initialisation

takes place�

When a MPOA host desires to know how to contact another host over ATM it

issues an address resolution query to ICFG� If the destination host is a MPOA host

within the same IASG� ICFG can reply with its ATM address� If the destination

host is in another IASG� the request will be passed among the RSFGs across IASG

borders� In the destination host�s IASG a RSFG�ICFG knows the ATM address of

the destination host and can reply to the address resolution query� In either cases

the source host can then establish a direct ATM connection to the destination host�

Note that this functionality is identical to NHRP and indeed MPOA relies on this

protocol� But in addition to the functionality of establishing a direct ATM connec�

tion� MPOA o�ers the passing of packets before the ATM connection is established

by sending it from the source host over DFFG and several RFFG to the destination

host along the routed path�



���

Figure E���� MPOA architecture�

Now consider an Edge Device trying to send packets to another host over ATM�

The edge device rst looks at the MAC destination address� If it is not the MAC

address of a router within the IASG� it has to remain inside the IASG and the Edge

Device uses LANE either to send it directly if it knows the MAC to ATM address

mapping 	e�g� destination is a LANE host
 or to send it to ICFG for forwarding�

If the MAC address is the MAC address of a router� the Edge Device looks at

the internetwork address contained in the packet� If it knows the internetwork to

ATM address mapping 	e�g� destination is a MPOA host
 the Edge Device can

forward it directly� If the internetwork address is unknown� the Edge Device asks

the Route Server for an internetwork to ATM address resolution� In the latter

case the Edge Device has the same behaviour like the MPOA host described in the

previous paragraph�

Assessment

MPOA is a very complex technology and the work in the ATM Forum has only

started and is far from being completed� IP might be worth the complexity because

it is so widely used� but it can be doubted if this holds true for other layer � protocols

as well �
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Nevertheless� the MPOA model is a very promising technology providing the

following benets�

� MPOA provides the connectivity of a fully routed environment� supporting

even multicast and broadcast at layer ��

� MPOA takes maximum advantage of ATM�

� because it o�ers direct ATM connection between MPOA devices� without in�

termediate hops

� because it supports Native ATM� exposing QoS to layer � protocol stacks

� MPOA reduces infrastructure costs by dening a new network architecture�

Instead of deploying common routers with both the functionality of switching�

which is very cheap as it can be done in hardware� and route computation�

which is rather expensive as it needs to run on a high performance platform� the

switching is distributed in Edge Devices and there is only a single� centralised

router

� MPOA provides an universal approach for layer � protocols over ATM

� MPOA easily integrates with LANE

Apart from its complexity� a disadvantage of MPOA is that host protocol stacks

have to be changed�

E���� QoS Support with Existing Technologies

This section discusses some of the solutions available today to bring ATM�s high

speed and QoS support to IP based applications� Most of these solution were born

as proprietary solutions of router vendors or educational institutions and then put

forward to the IETF to make them standards 	RFC
�

Section ����� discusses Arequipa� an extension to Classical IP over ATM� which

allows applications to request their own SVC with guaranteed QoS by bypassing the

IP layer during connection establishment�



���

The rest of Section ��� discusses two of the various solutions of how to use the

fast Layer � label switching of ATM in conjunction with network layer routing�

The basic idea behind all of these technologies is to increase the packet forwarding

performance of routers by replacing slow and expensive network layer forwarding

decisions with fast� low cost Layer� label�swapping based forwarding 	cut�through

packet forwarding
 while at the same improving routing functionality� scalability and

�exibility� If these technologies are seamlessly deployed in an ATM based network�

end�to�end ATM VC connection with guaranteed QoS can be established for IP

tra�c� without having to use ATM addressing� routing and signalling like in the

overlay model� The IETF Working Group MPLS 	Multiprotocol Label Switching
 is

currently working on unifying and generalising the di�erent approaches which vary in

such things as the type of used labels� the trigger event for label binding� the way how

labels are distributed in the networks and the protocols they support� Section �����

introduces the concept of IP Switching because this was the rst proposal in this

area and Section ����� presents Tag Switching� which is probably the most advanced

solution in this area today� Other related approaches like Cell Switch Router 	CSR�

Toshiba
� Aggregate Route�Based IP Switch 	ARIS� IBM
 or Switching IP Through

ATM 	SITA� Telecom Finland
 are not discussed here�

Arequipa extension to Classical IP over ATM

General description

The Arequipa 	Application REQuested IP over ATM
 protocol is a mechanism

which allows IP based applications to request their own SVCs with guaranteed

QoS� It was developed by EPFL 	a member of the ACTS�EXPERT project
 as an

extension to CLIP� and is described in RFC���� ����

Arequipa is a mechanism which allows applications to establish end�to�end ATM

connections under their own control� and to use these connections at the lower

protocol layer to carry the IP tra�c of specic sockets� as illustrated in Figure E����

Unlike the connections set up by Classical IP over ATM or by LANE� which

are shared by the entire IP tra�c �ow between the connection endpoints� Arequipa

connections are used exclusively by the applications that requested them� The
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Figure E���� Arequipa established VCs across LIS borders�

applications can therefore exactly determine what QoS will be available to them�

Figure E��� illustrates that Arequipa connections are end�to�end� despite the

LISs topology� in line with the extensions to IP architecture described in ������ It

shows also that each �ow has its own connection with QoS requirements�

In its broadest sense� Arequipa o�ers the means to use properties of a network

technology that is used to transport another network technology 	e�g� IP on ATM


without requiring the explicit design and deployment of sophisticated interworking

mechanisms and protocols�

Traditional protocol layering typically only allows access to functionality of lower

layers if upper layers provide their own means to express that functionality� This

approach can introduce signicant complexity if the semantics of the respective

mechanism are dissimilar� Also� if the upper layer fails to provide that interface� no

direct access is possible and the lower layer functionality may be wasted or used in

an ine�cient way 	e�g� if using heuristics to decide on the use of extra features
�

This is apparent in the case with the QoS functionality of ATM which is hidden

by the IP layer when IP is run on top of ATM� Arequipa enables applications to

exploit the hidden properties of lower layers by allowing applications to control them

directly�

It is important to note that Arequipa coexists with �normal� use of the network�

ing stacks� i�e� applications not requiring Arequipa do not need to be modied and

they will continue to use whatever other mechanisms are provided� Moreover� al�

though tra�c between applications using Arequipa does not pass the normal routed
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IP path anymore� general IP connectivity may still be necessary� e�g� for ICMP

messages or for tra�c of other applications�

Protocol overview

Arequipa provides two new socket primitives to applications�

� Arequipa preset	
� opens an end�to�end SVC and sends all data from the

socket over that connection

� Arequipa expect	
� allows incoming Arequipa connections in the reverse di�

rection

Typically the server side of the application opens and binds a socket and then

calls Arequipa expect	
� preparing the socket for incoming Arequipa connections�

The client side opens a socket� calls Arequipa preset	
 with the desired QoS and the

server�s ATM address and port number and then connects the socket�

Note that in order to establish the direct VC connection� the ATM address and

port number of the server has to be known�

In the protocol stack Arequipa can be seen as a device� Figure E��� shows the

protocol stack for Arequipa and the interaction for a Arequipa preset call�

Applicability

Arequipa is applicable� for IP and ATM� if the following two conditions are met�

� applications can control �native� connections over the lower layer communi�

cation media� that is that there has to be a signaling API which can be used

by an application

� both IP and ATM allow communication between the same endpoints 	or they

share at least a useful common subset of reachable endpoints


The next two conditions do not have to be met� but without them the use of

Arequipa may be questionable�

� all IP tra�c between a pair of hosts typically shares the same ATM SVC
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Figure E���� Arequipa in the protocol stack�

� multiple lower layer connections are possible between a pair of endpoints

In order to simplify interaction with the protocol stack� Arequipa assumes that

data sent to destinations for which no Arequipa lower layer connection has been

established will be delivered by some default mechanism�

Note that despite its name 	Application REQuested IP over ATM
� Arequipa is

not only limited to IP and ATM� The upper layer is typically IP or some similar

protocol 	e�g� IPX
� The lower layer can be ATM� Frame Relay� N�ISDN� etc�

Application changes

TCP�IP based applications have to be slightly changed in their socket opening

behaviour to enable them to run over Arequipa� Basically all that has to be changed

is the calling of new socket functions Arequipa preset	
 and Arequipa expect	
�

There are already two Arequipa based applications publicly available to demon�

strate the power of the Arequipa approach� A Web�over�ATM application and an
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Arequipa�enabled version of Vic 	video conferencing Mbone tool
 both written by

EPFL� which allows HTML pages to be downloaded with QoS guarantees�

Assessment

Arequipa has the following advantages�

� Arequipa enhances CLIP to allow IP based applications to make full use of

ATM�s QoS guarantees by allowing them to set up and control their own VC

connections�

� Arequipa is a rather light software that only needs to be run on hosts and

needs no network support like NHRP or RSVP�

� By establishing direct end�to�end connections routing overhead can be avoided�

� Arequipa is a solution that works and is available today�

� Arequipa is co�existent with the normal CLIP stack allowing �normal� and

�Arequipa enhanced� applications to run simultaneously�

The only disadvantage in using Arequipa can be seen to be the fact that existing

IP applications need to be �Arequipa enhanced� to be able to take full advantage

of its features� though software changes are only minimal�

IP Switching

General Overview

An IP Switch is a hybrid between an ATM Switch and a gigabit router� Datagram

forwarding is handled by an ATM switching fabric 	as opposed to a router backplane


and routing is performed by traditional router software on an IP switch controller

	Figure E���
�

By using the high performance� low cost switching hardware of ATM together

with the simple� well tuned IP software for addressing and routing� IP Switching

combines the strength of both technologies 	Figure E���
�
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Figure E���� IP Switching Architecture�

Figure E���� IP Switching concept�



���

IP Switching uses �ow classication to optimise the load on the IP switch con�

troller� A �ow is an extended IP conversation� More specically� a �ow is a sequence

of IP packets sent from a particular source to a particular destination sharing the

same protocol type 	such as UDP or TCP
� type of service� and other characteristics�

as determined by information in the packet header� The switch controller identies

longer duration �ows� as these can be optimised by cut�through switching in the

ATM hardware� The rest of the tra�c continues to receive the default treatment �

hop�by�hop store�and�forward routing�

Flow Classi�cation

The main task of the �ow classication process is to select those �ows that are

to be switched in the ATM switch� and those that should be forwarded packet by

packet by the IP switch controller� The decision to switch �ows directly through

the ATM switch is called short�cut routing� Long duration �ows are well adapted

for such a short�cut routing� Short duration �ows should be handled directly by the

forwarding engine of the IP switch controller� Application information provides an

approximate indication for �ow duration� Multimedia tra�c 	voice� image� video�

conferencing
 is an example of long duration �ows� whereas name server queries� are

typically of short duration�

For the �ows selected for short�cut routing� a VC must be established across the

ATM switch and the association of �ow and VCI label has to be communicated to

the upstream IP switch in order that this switch can use a short�cut route� The

Ipsilon Flow Management Protocol is a means to communicate this information�

another solution would be to use RSVP�

Ipsilon Flow Management Protocol �IFMP�

IFMP ���������� enables communications between multiple IP Switches or be�

tween hosts and IP Switches� It associates IP �ows with ATM virtual channels

and denes the format for �ow�redirect messages and acknowledgements� IFMP is

implemented in end stations� such as routers� shared�media hubs� LAN switches� or

TCP�IP hosts equipped with an ATM NIC to connect directly to an IP Switch� On
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Figure E���� From default routing to cut�through ATM connection�

ATM links it uses a default VC 	VPI �� VCI ��
� The ATM VCI for a specic IP

�ow is selected by the receiving end of the link� All packets of �ows that have not

been switched are forwarded hop�by�hop between IP switch controllers using the

default VC�

At system start�up� each IP node sets up a virtual channel on each of its ATM

physical links to be used as the default forwarding channel� IP data tra�c from

existing network devices �ows into an upstream host� edge router� or IP Switch

gateway equipped with an ATM network interface card 	NIC
 and IP Switching

software�

An ATM input port inside the IP Switch receives incoming tra�c from the up�

stream device on the default channel and sends it to the intelligent routing software

of the IP Switch Controller 	�
� The ATM switch hardware functions simply as a

high speed I�O extension of the routing software� The IP Switch Controller for�

wards the packet in the normal manner over the default forwarding channel� It also

performs �ow classication� a decision�making process that enables IP Switches to

optimise data tra�c� Once a �ow is identied� the switch controller asks the up�

stream node via IFMP to label that tra�c using a new virtual channel 	�
� If the

upstream node concurs� it selects a new virtual channel and the tra�c starts to �ow

on this virtual channel 	�
� Independently� the downstream node can also ask the IP
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Switch Controller to set up an outgoing virtual channel for the �ow 	�
� When the

�ow is isolated to a particular input channel and a particular output channel 	�
�

the IP Switch Controller instructs the switch to make the appropriate port mapping

in hardware� bypassing the routing software and its associated processing overhead

	�
� This design allows IP Switches to forward packets at rates limited only by the

aggregate throughput of the underlying switch engine� First�generation IP Switches

support up to ��� million PPS throughput� Further� because there is no need to re�

assemble ATM cells into IP packets at intermediate IP Switches� throughput remains

optimised throughout the IP network�

General Switch Management Protocol �GSMP�

The control protocol used between the IP switch controller and the ATM switch

is the General Switch Management Protocol 	GSMP
 ������ This allows IP switching

to be used with ATM switches from di�erent suppliers� Di�erent ATM switches are

designed with di�erent size� cost and functionality trade�o�s� so a choice has to

be made� GSMP can also support a standard ATM Forum control protocol stack

instead of the IP switch controller software� Thus� a choice of network control

software is possible for the same hardware�

GSMP is a simple master�slave� request�response protocol� and the switch issues

a positive or a negative response� when the operation is complete� Unreliable trans�

port is assumed between controller and switch for speed and simplicity� All GSMP

messages are acknowledged� and the implementation handles its own retransmission�

GSMP runs on the default VC 	VPI �� VCI ��
 over AAL � with LLC�SNAP

encapsulation� The most frequent messages 	connection management
 are designed

to t into single cell AAL � packets� An adjacency protocol is used to synchronise

states across the control link and to discover the identity of the entity at the far end

of the link� There are ve types of message� conguration� connection management�

port management� statistics� and events�

GSMP has been implemented on at least eight di�erent ATM switches� The code

for the GSMP slave is about ���� lines� A reference implementation is available� The

measured performance of the GSMP slave on Ipsilon�s IP switch is just under ����
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connection setups per second� This could be improved by hardware SAR support�

Assessment

IP Switching is describing an optimised and scalable way of supporting IP over

ATM� It makes use of the strength of both ATM and IP to increase the throughput

of the Internet� ATM hardware o�ers fast speeds at relatively low prices� IP rout�

ing is much simpler than the complicated ATM addressing� routing and signalling

protocols dened by the ATM Forum 	UNI� P�NNI
� Persistent �ow tra�c 	e�g� le

transfer
 is typically worth the connection establishment delay and ATM overhead

because once the direct VC is established only fast cell switching is performed by the

network node without having to reassemble and analyse IP datagrams for routing�

On the other hand� the delay and overhead of establishing an ATM connection does

not make sense for short duration� non�persistent data �ows 	e�g� DNS lookup
�

which consists only of a few datagrams� where normal IP datagram routing is much

better suited�

End�to�end QoS can in principle be achieved in a homogeneous� IP Switching

equipped network� However QoS is only expressed with a priority for a �ow and not

with the usual ATM parameters for QoS� Furthermore it is important to note here�

that it is not the application itself but the network that initiates the connection

setup� This means that an application has no means to request a special QoS�

Tag Switching

Tag Switching is a proprietary proposal by CISCO ������ ������ Its objective is to

increase router performance in WANs 	for example in the global Internet or in the

backbone of ISPs
 by reducing the complexity of packet forwarding while providing

better scalability and richer functionality to network layer routing� Unicast packet

forwarding in an IP router involves searching in a table of IP address prexes 	called

network layer reachability entries
 for the prex� which has the longest match� Tag

switching aims at replacing this operation as much as possible by a simple xed

length label lookup in hardware� exactly as is done with ATM or Frame Relay� This

improves packet forwarding performance and introduces new functionality� increased
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Figure E���� A tag forma�

scalability and more �exibility in the network layer routing�

Tag Switching consists of two components� the forwarding component� that uses

the tag information in the packets and the Tag Information Base in the switch to

perform fast packet forwarding� and the control component which is responsible for

tag creation and distribution�

Tag Switching is not restricted to use IP as network layer protocol and ATM

on Layer � but is a general approach applicable to any network layer and Layer �

protocol�

Tags

Tags are short� xed length labels� enabling Tag Switches to do simple and fast

table lookups in hardware� Tag Switching does not dene its own packet format it

only adds a tag to an existing packet format� The tag information can be carried in

a packet in a variety of ways� For example a ���bit tag is added in front of a network

layer package� which could be IPv�� IPv�� Appletalk or another format� Figure E���

shows this tag format� A tagged packet is carried on any layer � mechanism 	e�g��

Ethernet� ATM
 and is identied by a layer � protocol type 	i�e�� there would be

an Ethertype dening unicast tagged packets� and another Ethertype for multicast

packets
� A minor di�erence compared to the �tags� used in ATM and Frame Relay

is the presence of a time�to�live eld� which allows using normal IP routing for tag

distribution�

Given the variety of ways to carry tag information enables the use of Tag Switch�
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Figure E���� Stacked tags�

ing over any kind of media�

Tags may optionally be stacked� This enables aggregation of tra�c �ows� It can

be used to speed up packet processing in backbones� and also to scale reservation

mechanisms� Figure E��� shows a possible use of stacked tags in the Internet� Tag

switch R� adds an IGP tag to a BGP tagged packet to route it inside the domain�

Tag switch R� makes its forwarding decision solely on the IGP tag� Tag switch R��

the egress router of the domain� removes the IGP tag�

Forwarding Component

The forwarding component of a tag switch is based on the notion of label swap�

ping� Every tag switching node maintains a Tag Information Base 	TIB
� which is

similar to ATM label swapping tables� If an incoming packet is tagged� then the

Tag Information Base is searched for an exact matching entry� If one is found� then

the Tag Information Base entry indicates the outgoing interface to which the packet

should be forwarded� and the value of the new tag to be used� Unlike with ATM

switching� if no entry is found� then the network layer information contained in the

packet is used�

It is important to note that the forwarding component of Tag Switching is net�

work layer independent�
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Control Component

The control component of a tag switch is responsible for creating and distributing

the tag binding information among tag switches�

In contrast to IP Switching where tag bindings are triggered by the detection of

a persistent data �ow 	data tra�c driven
 Tag Switching uses topology driven tag

binding� which means that a tag switch is populating its TIB with incoming and

outgoing tags for all routes to which it has reachability�

Tag Switching supports a wide range of forwarding granularities to supports a

wide range of forwarding granularities to provide good scaling characteristics and

accommodate diverse routing functionality� at one extreme a tag could be bound

to a group of routes� at the other extreme a tag could be bound to an individual

information �ow�

There are three permitted methods for tag allocation and TIB management�

� downstream tag allocation

� downstream tag allocation on demand

� upstream tag allocation

In downstream allocation a switch is responsible for creating tag bindings that apply

to incoming data packets and receives tag bindings for outgoing packets from its

neighbours 	see Figure E��� 	top

� Upstream allocation is the other way round�

There are two families of methods for tag distribution� namely tag distribution

by explicit reservations and tag distribution based on destinations�

In tag distribution by explicit reservation� tags are distributed along with the

reservation mechanism� if RSVP is used� then the value of the tag is part of the

RESV message� This is very similar to the connection setup mechanism of ATM�

In tag distribution based on destination� the tags are distributed by the routing

protocol� For this purpose� the tag switches also have to be routers for the protocols

they support 	IPv�� IPv�� Appletalk� etc�
� Routing protocols are used to write the

prex entries� which are then associated with tags� Routing updates may piggyback

the tags 	distance or path vector protocols
� or the tags may be distributed by
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Figure E���� Tag distribution by routing updates 	top
 and forwarding of tagged
packets 	bottom
�

a separate protocol called Tag Distribution Protocol ����� 	link state protocols
�

Binding tag distribution together with routing is much simpler than using the overlay

model 	like in IP over ATM
� The presence of the TTL eld in the tag avoids

problems of temporary loops�

Figure E��� shows an example of tag distribution with a distance vector protocol

and IPv� address formats� It also shows the resulting Tag information Bases and

the forwarding of tagged packets�

Tag Switching with ATM

The characteristics of ATM switches require some specialised procedures and

conventions to support tag switching 	see �����
�

� Tags can be carried in the VCI eld of ATM cells� or if two levels of tagging

are needed in the VCI and VPI elds�

� The downstream on demand tag allocation procedure is used�
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� ATM switches need to implement the control component of Tag Switching�

have to actively participate as a peer in the network layer routing protocol

and may need to support network layer forwarding�

� ATM tag switches are only allowed to be interconnected over conventional

ATM switches if VP connections are used 	only one level of tagging
�

� To avoid cell interleaving an ATM tag switch needs to have several tags allo�

cated with one route�

� The existence of the tag switching control component on an ATM switch does

not preclude the ability to support the ATM control component dened by the

ITU and ATM Forum on the same switch and the same interfaces� The two

control components� tag switching and the ITU�ATM Forum dened� would

operate independently�

Assessment

Tag Switching is a very powerful way of integrating the fast forwarding of cell�

switching technologies with the simple addressing and routing of frame�switching

technologies� The simplicity of the Tag Switching forwarding paradigm improves

forwarding performance� while maintaining competitive price�performance� By as�

sociating a wide range of forwarding granularities with a tag � a wide variety of

routing functions 	destination based routing� multicast routing� QoS�based routing�

hierarchy of routing knowledge
 can be supported�

Tag Switching di�ers from IP Switching in that tags are never allocated based on

�ow analysis but based on the network topology� Because the network topology is

quite static� topology�based tag allocation has a performance advantage over �ow�

based allocation� Another di�erence to IP Switching is that Tag Switching is a

multiprotocol technology� which is neither bound to a particular network layer nor

to a particular data link layer

If Tag Switching is used with IP and ATM� the whole huge ATM control plane as

dened by the ATM Forum or ITU 	UNI� P�NNI� etc�
 can be replaced by the much

simpler control component of IP Switching� A drawback of using Tag Switching with
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ATM is that the ATM tag switches have to participate as a peer in the network layer

routing protocol and may even need to support network layer forwarding� If ATM

Tag Switching is used in conjunction with a reservation protocol like RSVP it is

possible to provide VC connections with guaranteed end�to�end QoS for IP �ows or

even applications in a homogeneous network�

Tag Switching is mainly a backbone technology� which is well suited for Inter�

net Service Providers to e�ciently route their Internet tra�c across a high speed

switching technology such as ATM�

Security and charging issues were not yet addressed in Tag Switching but they

depend heavily on the used protocols�

Tag Switching is dened in a series of RFC and IETF drafts and is one of today�s

hottest topics in networking� Cisco announced the availability of a commercial

implementation of Tag Switching by autumn ���

E�� Summarising Table

The following table summarises some of the technical details of the discussed

technologies�

Table � can be used to compare the potential of the discussed technologies to

satisfy the requirements of an integrated services technology�

E�� Conclusion

In this chapter we gave a technical overview on the competing integrated ser�

vices network solutions� such as IP� ATM and the di�erent available and emerging

technologies on how to run IP over ATM networks� and identied their potential

and shortcomings of being a solution for an integrated services network�

It remains the question� which role these networking technologies will play in

the future� We try to answer this question for the short term and the medium�long

term�
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Figure E���� Table �� Technological details�
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Figure E���� Table �� Meeting the requirements of an integrated services network�
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E���� Short term

Due to its wide di�usion� IP is keeping its leading position on the network layer

and ATM is only going to be used as a transport network because of the following

reasons�

� There is a vast base of Internet equipment deployed in WAN and LAN area

� ATM deployment is scarce and mainly concentrated in the campus� back�

bone�WAN area

� There is an unmatched variety of applications based on IP

� There are hardly any applications available that make full use of the superior

ATM features

In particular for the users the migration overhead and cost are very relevant�

This means� that the overlay model solutions like LANE and CLIP are playing

an important role in the deployment of ATM in LANs and backbones� Especially

LANE�s excellent potential of interconnecting and thus re�using legacy LAN equip�

ment will make it the rst choice of corporate network providers and ISPs who are

willing to introduce ATM�

Using LANE or CLIP means� that there is no quality of service supported at the

application layer� as the IPv� layer hides all features of the underlying ATM network

from higher layers� Only the high speed of ATM is exploited by these technologies�

On the other hand� Internet does not o�er today any protocol that permits

to obtain QoS� because RSVP is still in a sperimental phase� If QoS support is

requested by IP based applications today� a proprietary solution like Arequipa has

to be used� Arequipa demonstrated to be a simple solution to access the ATM QoS

from IP applications ����� at a minimum cost considering that the necessary software

only has to be deployed in the hosts and not in the entire network�

E���� Medium�Long term

Despite the proceeding work of standardisation organisations 	ATM Forum� ITU�

ETSI
� it is not evident whether ATM will ever become an end�to�end solution
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because of various reasons�

� IP is extensively deployed 	hardware and software


� ATM software for signalling� routing� management and services is growing very

complex and expensive

� Too much overhead to establish VC connections for short duration data �ows

� Applications have to be changed considerably to use native ATM

� Full replacement of legacy LAN equipment needed to run end�to�end ATM

It is not clear how much a user is willing to pay in terms of bill for the network

usage� complexity of reservation� hardware�software� etc�� to have a better service

then that best e�ort� In many cases they are happy to live with that� In any case

it appears very clear that in the future the application will be IP and not many

applications that are able to use directly the ATM signalling will be written�

Moreover� IETF�s Integrated Services framework 	RSVP� ��
 is catching up very

fast with the ATM technology by introducing reservation� security and charging�

and will probably push more and more ATM in a role of transport technology to

assume the role of primary network technology�

On the other hand it is not clear when and how QoS support will be introduced

in IP� For several people best�e�ort Internet works perfectly and multimedia appli�

cations can be supported by simply increasing the physical capacity of the network�

We can imagine that IP and ATM will have several roles in the future�

� applications will mainly run over IP 	with or without QoS


� ATM will be one of the transmission technologies on the WAN�backbone�

but not a networking technology� as well as pure RSVP will be not used� It

is in fact more likely� that Label Switching technologies 	i�e� IP Switching�

Tag Switching
 or di�erential services mechanisms or even some more simple

technology will be used in WANs�backbones because they can replace the huge

control plane of ATM or the RSVP complexity with much simpler mechanisms�

� RSVP will probably be the main protocol in LAN�campus networks�
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� ATM will be a networking technology used with CLIP or LANE inside some

private LAN�campus� MPOA could potentially be used in the medium�long

term� replacing LANE and CLIP which do not scale very well to large networks

and can not o�er end�to�end connections� assuming that the highly complex

MPOA standard will ever be broadly accepted and implemented�

� ATM will be the networking technology for some niche solution that necessi�

tates imperiously hard service guarantees� In fact the directions followed by

IETF is more for a �good�service 	something better than best�e�ort
 than for

guaranteed services�
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Appendix F

Abbreviations

AAL� ATM Adaptation Layer �

ABR Available Bit Rate

ACTS Advanced Communications Technologies and Services

API Application Programmer Interface

ARIS Aggregate Route�Based IP Switch

ARP Address Resolution Protocol

Arequipa Application REQuested IP over ATM

ATM Asynchronous Transfer Mode

BGP Border Gateway Protocol

B�ICI Broadband Inter Carrier Interface

B�ISUP Broadband ISUP

BLLI Broadband Low Layer Information

BUS Broadcast and Unknown Server

CBR Constant Bit Rate

CIDR Classless Inter�Domain Routing

CLIP CLassical IP over ATM

CSR Cell Switched Router

DFFG Default Forwarder Functional Group

DNS Domain Name System

DS�� Digital Signal Level �

DS�� Digital Signal Level �
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EGP Exterior Gateway Protocol

ELAN Emulated LAN

EPFL Ecole Polytechnique Federale de Lausanne

ESP Encapsulating Security Payload

GSMP General Switch Management Protocol

HTML Hypertext Markup Language

IASG Inter Address Sub�Group

ICFG IASG Coordination Functional Group

ICMP Internet Control Message Protocol

IEEE Institute of Electrical and Electronic Engineers

IETF Internet Engineering Task Force

IFMP Ipsilon Flow Management Protocol

IGP Interior Gateway Protocol

IHL Internet Header Length

InARP Inverse ARP

ION IP over NBMA

IP Internet Protocol

IPng IP next generation

IPv� IP version �

IPv� IP version � 	�IPng


ISP Internet Service Provider

ITU International Telecommunication Union

LAG Local Address Group

LAN Local Area Network

LANE LAN Emulation

LE ARP LAN Emulation ARP

LEC LAN Emulation Client

LECS LAN Emulation Conguration Server

LEC LAN Emulation Client

LIS Logical IP Subnetwork

LLC Logical Link Control
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LNNI LANE Network to Network Interface

LUNI LANE User to Network Interface

MAC Media Access Control

MARS Multicast Address Resolution Server

MCR Minimum Cell Rate

MPOA Multi Protocol Over ATM

MPLS Multiprotocol Label Switching

MSF Multicast Server Function

MTU Maximum Transfer Unit

N�ISDN Narrowband ISDN

NAT Network Addressing Translation

NBMA Non�Broadcast Multiple�Access

NHRP Next Hop Resolution Protocol

NHC Next Hop Clients

NHS Next Hop Server

NIC Network Interface Card

NNI Network�Node Interface

NSAP Network Service Access Point

IGMP Internet Group Management Protocol

ISDN Integrated Services Digital Network

ISUP Integrated Services User Part

IPX Internetwork Packet eXchange

OS Operating System

OSPF Open Shortest Path First

PCR Peak Cell Rate

PNNI Private NNI

PNO Public Network Operator

POTS Plain Old Telephone System

PVC Permanent VC

QoS Quality of Service

RARP Reverse ARP
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RFC Request For Comments

RFFG Remote Forwarder Functional Group

RSFG Route Server Functional Group

RSVP Resource reSerVation Protocol

SAR Segmentation and Reassembly

SCR Sustained Cell Rate

SITA Switching IP Through ATM

SMDS Switched Multimegabit Data Service

SNAP Sub Network Access Point

SRP Scalable Reservation Protocol

SVC Switched VC

TDP Tag Distribution Protocol

TIB Tag Information Base

TCP Transmission Control Protocol

TOS Type Of Service

UBR Unspecied Bit Rate

UDP User Datagram Protocol

UNI User�Network Interface

VBR Variable Bit Rate

VC Virtual Connection

VCC Virtual Channel Connection

VCI Virtual Channel Identier

VLAN Virtual LAN

VoD Video on Demand

VPI Virtual Path Identier

WAN Wide Area Network

WWW World Wide Web
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� � � � � � � �
��� The losses experienced by S when the non zero initial conditions

were ignored� the assumed bu�er and bucket level 	dashed lines
 are
signicantly smaller than the policed ones 	solid lines
� � � � � � � � � �

��� Arequipa capable applications� data transmission is switched from
the default IP path 	�
 to a dedicated ATM connection	�
� An Are�
quipa connection between two ATM attached hosts bypasses interme�
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��� Bu�er lling when NR � R�� t� � tc 	CASE �
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��� The solution space S	z
 for the numerical example� The third pa�
rameter R� is equal to NR	X�tc ��������� Mb�s� � � � � � � � � � ��

��� The cost function on the solution set S	z
� for three di�erent values of
the cost function parameter X l� X l � ��� 	dashed curve
� X l � ���
	dotted curve
� X l � ���� 	solid curve
� Small values ofX l give a high
cost to VTs with large burst tolerance� The optimal VT parameter is
obtained for the minimum of the sustainable bit rate 	�mean� on the
gure
� If bursts are more expensive 	smaller X l
 then the optimal
virtual trunk with the same sustainable cell rate has higher cost� The
peak rate optimal value is xed by the results of Section ���� � � � � � ��

��� The static VBR optimisation problem seen with network calculus � � ��

��� Reference Model for a time varying leaky�bucket shaper� The tra�c
shaping at time t � Ii is done at source according to the service curve

i valid in Ii� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��
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��� Flow R� compliance is assured at all J leaky buckets� � � � � � � � � � ��

��� Functions 
 and 
� resulting from LB�� LB� and LB� leaky bucket
specication and the initial conditions� � � � � � � � � � � � � � � � � � ��

��� Output S�� and S�� of a shaper system with non�zero initial condi�
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��� Local problem version �� the optimum is found either at the intersec�
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 and the global Viterbi�based 	dashed curve
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��� Scenario�� comparison of the number of connection accepted by the
local scheme 	solid curve
 and the global Viterbi�based 	dashed curve
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��� Scenario�� comparison of the number of connection accepted by the
local scheme 	solid curve
 and the global Viterbi�based 	dashed curve

scheme for di�erent renegotiation period� � � � � � � � � � � � � � � � � ��

��� Number of connections accepted by a link of capacity C � ��� Mbits
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curve
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��� Bu�er utilisation for a quite small renegotiation period of �� seconds�
the RVBR service approach 	on the right
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CBR approach 	on the left
� � � � � � � � � � � � � � � � � � � � � � � � ��

���� Bu�er utilisation for more large renegotiation periods� the RCBR
service 	on left
 is unable to use the bu�er� The peak selected is to
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 is predicted
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��� Tra�c evolution of the sequence used as input in the simulation� � � � ���
��� Comparison of the shaping bu�er used with renegotiation 	white area


and without renegotiation 	black area
 for the three scenarios � � � � ���
��� Comparison of the cost of allocating a renegotiated tra�c speci�

cation and a tra�c specication without renegotiation for di�erent
scenarios� The cost of the tra�c specication is given in �millions
of unit of cost� 	M�unit of cost
 and computed with the linear cost
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D�� The Trial Platform Architecture � � � � � � � � � � � � � � � � � � � � � ���
D�� Example of communication between the modules� the messages sent

between the modules are numbered� The messages are numbered in
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E�� RSVP in hosts and routers� � � � � � � � � � � � � � � � � � � � � � � � ���
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E��� MPOA architecture� � � � � � � � � � � � � � � � � � � � � � � � � � � � ���
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