
The Renegotiable Variable Bit Rate Service

Silvia Giordano <Silvia.Giordano@epfl.ch>1 ,

Jean-Yves Le Boudec <Leboudec@epfl.ch>1

1EPFL ICA, Lausanne, Switzerland

Abstract: A shaper is a system that stores incoming bits
in a bu�er and delivers them as early as possible, while forc-
ing the output to be constrained with a given arrival curve.
A shaper is time invariant if the tra�c constraint is de-
�ned by a �xed arrival curve; it is time varying if the con-
dition on the output is given by a time varying tra�c con-
tract. This occurs, for example, with renegotiable variable
bit rate (RVBR) services. We focus on the class of time
varying shapers called time varying leaky bucket shapers;
such shapers are de�ned by a �xed numbers of leaky buckets,
whose parameters (rate and bucket size) are changed at spe-
ci�c transition moments. We assume that the bucket levels
are kept unchanged at those transition moments (\no reset"
assumption). Our main �nding is an input-output char-
acterisation for this class of time varying shapers. Then
we apply it to the tradeo� in optimising the RVBR service,
assuming that a perfect prediction of future tra�c can be
made. We provide an algorithm that solves the problem of
�nding, at any renegotiation, the parameters for a RVBR
service when the knowledge of the input tra�c is limited to
the next interval (local optimisation problem). We illustrate
the impact of the \no-reset" assumption by analyzing on
some examples the losses that occur when the source chooses
the opposite approach, namely, the \reset" approach.
Keywords: Shaping system, renegotiation, VBR parame-
ters, resources optimisation, RSVP.

1 Introduction

We consider the Renegotiable Variable Bit Rate (RVBR)
service, de�ned as a variable bit rate service whose parame-
ters are changed at periodic renegotiation moments. An ex-
ample for this service is the Integrated Service of the IETF
with the Resource reSerVation Protocol (RSVP), where the
negotiated contract may be modi�ed periodically [2]. A ow
using the RVBR service is constrained by two leaky buckets:
one de�nes the peak rate, the other de�nes the sustainable
rate and the burst tolerance. We consider a basic scenario
where a fresh input tra�c is shaped in order to satisfy the
leaky bucket constraints. Shaping is assumed to be done
using an optimal shaper, with a limited bu�er size X [3].
The input tra�c may be generated by one source, or it may
be an aggregate of sources, in which case the shaper mod-
els a service multiplexer. Using VBR in a shaper may be

(t) σi

shaping buffer = X

output R*input R

Figure 1: Reference Model for a time varying leaky-bucket
shaper. The tra�c shaping at time t 2 Ii is done at source
according to the service curve �i valid in Ii.

advantageous in all cases where the input tra�c is bursty
and the network is able to achieve a statistical multiplexing
gain on many such input ows [4].

In our model scenario, the RVBR parameters are renego-
tiated periodically; at every renegotiation, there is a trade-
o� to be made between the various parameters, which de-
�ne the two leaky buckets in the next interval. Our primary
goal in this paper is to analyse this tradeo�. In particular,
we propose a method to select, for the next interval, the
parameters that minimise a given linear cost function.

Time Varying Shapers

We analyse the RVBR service using a special class of time
varying shaper systems, which we call the time varying
leaky-bucket shapers. This is de�ned by a �xed num-
ber J of leaky bucket speci�cations with bucket rate rj

and bucket depth bj , where j = 1; : : : ; J and a shaping
bu�er of �xed capacity X . At speci�ed time instants ti,
i = 0; 1; 2; ::, the parameters of the leaky buckets are mod-
i�ed and Ii = (ti; ti+1] represents the i-th interval.

Inside each interval the system does not change. The pa-
rameters of the j-th leaky buckets valid in the interval Ii are
indicated by (rji ; b

j
i ). The combination of those parameters

takes the form of the shaping function �i in Ii, de�ned as

�i(u) = min
1�j�J

f�ji (u)g = min
1�j�J

frji � u+ b
j
ig

A time varying leaky-bucket shaper is completely de�ned by
the number J of leaky buckets; the time instants ti at which
the parameters changes; the buckets parameters (rji ; b

j
i ), for

each j and each interval Ii; the �xed shaping bu�er capacity
X .
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We call input tra�c function the function R(t) : R+ !
R
+ that represents the amount of tra�c that has entered in

the system in time interval [0; t]. R is the tra�c before the
shaping. R�(t) is the output function that represents the
number of bytes seen on the output ow in time interval
[0; t]. R� is the tra�c after the shaping. We assume to
know the input tra�c R(t) expected in the future either
because pre-recorded or by means of an exact prediction
function. However the tra�c prediction is not the focus
of this paper. We further assume that at time t0 = 0 the
system is idle (R(0) = 0).
To de�ne the time varying leaky-bucket shapers at the

transient times between two adjacent intervals we could
take two opposite approaches: either we reset all the buck-
ets and restart in the next interval from zero initial condi-
tions (\reset" approach), or we keep the level of the buckets
and restart from that level at the next interval (\no reset"
approach). If we take the �rst approach, the time varying
leaky-bucket shaper can be reduced to a sequence of inde-
pendent shapers and studied as in [5], [6]. Here we adopt
the second approach. There are two reasons for this. First,
in the special case where the time varying leaky-bucket is
constant, we should �nd a system identical to the ordinary,
time invariant, leaky bucket shaper [5], [6]. In other words,
this is true only with the second approach. Second, the \no
reset" approach is in line with the Dynamic Generic Cell
Rate Algorithm (DGCRA) used to specify conformance at
the UNI for the available bit rate (ABR) service of ATM [7],
[8]. We examine later in the paper the practical implication
of the \no-reset" approach (Section 4).
Our class of time varying shapers is a special case of

the general concept of time varying shapers, de�ned in [9].
A general time varying shaper can be de�ned as follows.
Given a function of two time variables W (s; t), the time
varying shaper forces the output R�(t) to satisfy the con-
dition

R�(t) � R�(s) +W (s; t)

for all s � t, possibly at the expense of bu�ering some
data. This condition can be expressed using the min-plus
linear operator associated toW and de�ned as the mapping
S ! S �W with (S �W )(t) = infsfS(s) +W (s; t)g. The
shaper is an optimal shaper if it maximises its output among
all possible shapers [9]. A time invariant shaper is a special
case; it corresponds to W (s; t) = �(t � s), where � is the
shaping curve.
General results of min-plus algebra say that the input-

output characterisation of a time-varying shaper is given
by

R� = R � �W

where function R is the input, R� the output and �W is the
sub-additive closure of W [10, 11]. Another, equivalent,
formulation is:

R�(t) = inffR(t); (R �W )(t); (R �W �W )(t); : : : g
(1)

Our class of time varying shapers �ts in that general
framework. It can be easily shown that a time varying
leaky bucket shaper corresponds to

W (s; t) = min
1�j�J

f

Z t

s

rj(u)du + bj(t)g (2)

with rj(t) and bj(t) de�ned as the instantaneous bucket
rate and depth at time t, namely rj(t) = rij and bj(t) = bij
for the index i such that ti < t � ti+1.
In this paper, we want to obtain the input-output char-

acterisation of the time varying leaky bucket shapers. This
is equivalent to computing �W , when W is given by Equa-
tion (2). We could try to obtain �W from a direct appli-
cation of Equation (1), however this is not a very practical
approach. Instead, we obtain �W from a number of interme-
diate steps, which provide representations that can easily be
applied to a practical computation and give some insights
about the system.
To this aim, we �rst study a shaper system de�ned by

J unchanging leaky buckets, but whose initial conditions
(initial bucket levels and initial bu�er content) are not zero.
We call this model a leaky bucket shaper with non-zero ini-
tial conditions. We �nd the input-output characterisation
of this model; for this we use min-plus algebra ([12], [13],
[6], [11]). Then we apply this iteratively to derive the in-
put characterisation of a time varying leaky bucket shaper
(Section 2).

The RVBR Service and its application to

RSVP

We derive the input-output characterisation of the RVBR
service as a special case of the time varying leaky bucket
shaper. An RVBR source is a time varying leaky-bucket
shapers with two renegotiable leaky buckets (J = 2); one
with rate ri and depth bi and the second with rate pi and
depth always equal to zero, plus a bu�er of �xed size X .
In real life, examples of this service are tra�c shaping done
at source sending over VBR connections as de�ned in [14]
and Internet tra�c that takes the form of IntServ speci�-
cation with RSVP reservation [15], [16]. Indeed, we show
that the RVBR service can be used to renegotiate resource
reservation for Internet tra�c with RSVP. In RSVP the
sender sends a PATH message with a Tspec object which
characterises the tra�c it is willing to send. If we consider
a network that provides a service as speci�ed for the Con-
trolled Load service (CL) [17], the Tspec takes the form of
a double bucket speci�cation [18] as given by the RVBR
service. There is a peak rate p and a leaky bucket speci-
�cation with rate r and bucket size b. Additionally there
is a minimum policed unit m and a maximum packet size
M . We ignore m and M , which are assumed to be �xed.
With RSVP as reservation protocol, the reservation has to
be periodically refreshed. The suggested period is 30 sec-
onds. Therefore p, r and b need to be reissued at each



renegotiation time. There is no additional signaling cost in
applying a Tspec renegotiation at that point, even if there
is some computational overhead due to the computation of
the new parameters, or to the call admission control, etc. It
is important to note here that, contrary to the negotiation
of a new connection, with the renegotiation the reservation
is never interrupted.
If the requested tra�c speci�cation cannot be supported

by the network, the old tra�c speci�cation is restored and
the network may not be able to accommodate the next traf-
�c. Mechanisms to prevent this failure from occurring are
still under study. Here we assume that the Tspec is ac-
cepted all over the network as well as at the destination,
such that the source can transmit conforming to its desired
tra�c speci�cation.
To apply the RVBR service in this scenario we assume

that at any time ti = 30 � i the application knows (because
pre-recorded or predicted) the tra�c for the next 30 sec-
onds. We further assume to know the cost to the network
of the Tspecs (indicated by the cost function u � r + b) and
the upper bound to the bucket size bmax and to the bucket
rate rmax. The backlog w(ti) and the bucket level q(ti) can
be measured in the system. Then, with the RVBR service,
we compute the Tspec that the sender will send at the next
renegotiation time. In this context we do not consider de-
lay issues (delay incorporation, as well as the extension to
Guaranteed Service [19], is matter of further study).

Previous results and work breakdown

Recent research has introduced an output characterisation
of shaper systems in terms of the network calculus theory
[20] and [11]. This was used in several papers to characterise
the VBR service [13] and [6]. The optimisation problem for
the VBR service was studied in [5], [6].
Renegotiation was �rst speci�ed in ATM networks for

CBR class service [21] and only very recently to VBR class
service [14]. In the reservation protocol for Integrated Ser-
vices Internet networks, namely RSVP, a source is requested
to refresh the reservation at given times. However, this is
not intended as a mechanism for modifying the reservation
parameters only, but rather as the general approach for
managing the reservation state in routers and hosts [15].
Renegotiable VBR services are also studied in

[22],[23],[24]; there the focus is on describing a given
tra�c with as few leaky buckets as possible, and thus
applies to the optimization of a network o�ering the RVBR
service. In contrast, our approach focuses on the customer
side of the RVBR service, and provides an analysis of the
various tradeo�s that can be made. Our work also di�ers
the systematic use of network calculus. This results in
simple, algorithms that can easily be implemented in real
applications.
As already mentioned, the parameters optimisation for

the RVBR service is not a trivial problem. This problem
can be reduced to an optimisation problem by introducing a

cost function that associates a cost to each feasible choice of
�i. We can approach this optimisation problem in di�erent
ways. We can minimise the cost of �i at each interval Ii
given the status of the system at ti and the input function
R(t) in Ii. The result is a sequence of local optimal �i.
Alternately, we can minimise the cost of the global sequence
of �i given the complete input function R(t). The result is
the optimal sequence of �i. The latter, studied in [28], can
be seen as a theoretical limit to the previous one and is not
presented here.
In the next section, as our �rst �nding, we characterise

a leaky-bucket shaper system with non-zero initial condi-
tions in terms of input-output functions. Second, we de-
�ne the bucket level and the backlog for the time varying
leaky-bucket shaper. Hence, by combining these results,
we deduce a recursive input-output characterisation of the
time varying leaky-bucket shaper. Finally we introduce the
RVBR service, which is characterised by using the previous
results.
In Section 3, we extend the previous work on the VBR

shaper [5], [6] for solving the local problem. The cost func-
tion is represented by a linear cost function and we are able
to provide an algorithm.
As the main application of the RVBR service is the Tspec

renegotiation, we simulate RVBR in the RSVP with CL
service case. We evaluate the e�ectiveness of the RVBR
algorithm for linear cost function (localOptimum1) in terms
of cost and backlog. We also compare the output of this
algorithm with the solution obtained when resetting the
buckets at each transient time.

2 Input-Output Characterisation

of the Time Varying Leaky

Bucket Shaper

The class of leaky-bucket shaper with non-zero initial con-
ditions has the advantage that can easily be studied with
network calculus. We derive its input-output characterisa-
tion, which can be expressed in terms of the shaping func-
tion � and the initial conditions. Then, in Section 2.2, we
derive recursively the characterisation of the time varying
leaky-bucket shaper. At the end of the section, we give
the input-output characterisation of the RVBR service as
special case of the time varying leaky-bucket shaper. The
RVBR input-output characterisation will be used in the rest
of the paper.

2.1 Leaky-Bucket Shaper with Non-Zero

Initial Conditions

The main result in this section is the characterisation of the
leaky-bucket shaper with non-zero initial conditions given
in Theorem 1. With non-zero initial conditions we refer to
the fact that both the bu�er and the buckets present an



initial level di�erent from zero. The initial bucket level for
the j-th bucket is indicated with q

j
0. When a bit enters the

system it is put into the bucket, which is drained at rate
rj . A given ow S is conform to a leaky bucket speci�ca-
tion when the bucket does not overow. If we denote with
q(t) the bucket level of the bucket at time t, we recall the
following characterisation. A ow S is compliant to a leaky
bucket with a leaky bucket speci�cation (r; b) when q(t) � b

8t � 0.
We �rst present a result that is valid for generic shaper

systems.

Proposition 1 (Shaper with non-zero initial bu�er)
Consider a shaper system with shaping curve �. Assume
that � is sub-additive and �(0) = 0. Assume the initial
bu�er content of the shaping bu�er is given by w0. The
shaper system has no memory of the past. Then the output
R� for a given input R is

R�(t) = �(t) ^ inf
0�s�t

f(R)(s) + w0 + �(t� s)g 8t � 0

(3)

The condition that � is sub-additive and �(0) = 0 is a
technical assumption which is not limiting in practice, since
any shaping curve can be replaced by a function satisfying
the condition [3, 20]. In particular, the shaping functions
associated with leaky buckets do satisfy these assumptions.
Proof:
First we derive the constraints on the output of the shaper.
� is the shaping function thus, for all t � s � 0

R�(t) � R�(s) + �(t� s)

and given that the bucket at time zero is not empty, for any
t � 0, we have that

R�(t) � R(t) + w0

At time s = 0, no data has left the system and this can be
expressed with the burst delay function �0 de�ned as follow

�0(t) =

�
0 t � 0
+1 t > 0

Thus, for all t � 0
R�(t) � �0(t)

The output is thus constrained by

R� � � 
R� ^ R+ w0 ^ �0

where 
 is the min-plus convolution operation, de�ned by
(f
g)(t) = infs f(s)+g(t�s). Since the shaper is an opti-
mal shaper, the output is the maximum function satisfying
this inequality. We know from min-plus algebra [3, 10] that
the solution is given by

R� = � 
 [(R+ w0) ^ �0]
= [� 
 (R+ w0)] ^ [� 
 �0]
= [� 
 (R+ w0)] ^ �

which after some expansion gives the formula in the propo-
sition. 2

In practice this proposition says that, whenever a bu�er
contains some tra�c, this has to be considered as a peak
arriving at time t = 0. The e�ect of the peak is the factor
�(t) in the representation of the output. An easy derivation
is the following corollary.

Corollary 1 (Backlog for a shaper with non-zero ini-
tial bu�er)
The backlog of a ow S into a bu�er drained at rate r with
initial level equal to L0 is given by

L(t) = max

"
sup

0<s�t
fS(t)� S(s)� r � (t� s)g

[S(t)� r � t+ L0]

#
t � 0

(4)

De�nition 1 A given tra�c S is compliant to the speci�-
cation of a leaky-bucket shaper system with non-zero initial
conditions if it is compliant to all J leaky buckets.

From Proposition 1 this results in the following corollary.

Corollary 2 (Compliance to J leaky buckets with
non-zero initial bucket levels)
A ow S is compliant to J leaky buckets with leaky bucket
speci�cations (rj ; bj), j = 1; 2 : : : J and initial bucket level
q
j
0 i�

S(t)� S(s) � min
1�j�J

[rj � (t� s) + bj ] 80 < s � t

S(t) � min
1�j�J

[rj � t+ bj � q
j
0] 8t � 0

Now we proceed to characterise a leaky-bucket shaper sys-
tem with non-zero initial bucket levels.

Proposition 2 (Leaky-Bucket Shaper with non-zero
initial bucket levels)
Consider a shaper system de�ned by J leaky buckets

(rj ; bj), with j = 1; 2 : : : J (leaky-bucket shapers). Assume
that the initial bucket level of the j-th bucket is given by qj0.
The initial level of the shaping bu�er is equal to zero. The
output R� for a given input R is

R�(t) = min[�0(t); (� 
R)(t)] 8t � 0 (5)

where � is the shaping function

�(u) = min
1�j�J

f�j(u)g = min
1�j�J

frj � u+ bjg

and �0 is de�ned as

�0(u) = min
1�j�J

frj � u+ bj � q
j
0g

Proof:
The proof, which is not given here, comes by applying to



Corollary 2 the same min-plus result as in Proposition 1.
The formal proof is given in [28]. 2

Finally we derive the characterisation of a leaky-bucket
shaper that starts with non-zero initial conditions.

Theorem 1 (Leaky-Bucket Shaper with non-zero
initial conditions)
Consider a shaper system de�ned by J leaky buckets

(rj ; bj), with j = 1; 2 : : : J (leaky-bucket shaper). Assume
that the initial bu�er level of the shaping bu�er is given by
w0 and the initial bucket level of the j-th bucket is given by
q
j
0. The output R� for a given input R is

R�(t) = minf�0(t); w0 + inf
u>0

fR(u) + �(t � u)gg 8t � 0

(6)

with
�0(u) = min

1�j�J
(rj � u+ bj � q

j
0)

Proof:
The proof comes directly from Propositions 1 and 2. 2

An intuitive interpretation that generalises Equation (6) is
to say that any shaper system starting with non-zero initial
conditions o�ers a service that is either the service o�ered
by an ordinary leaky-bucket shaper, taking into account the
initial level of the bu�er, or, if smaller, a service imposed
by the initial conditions, independently from the input. For
the class of the leaky-bucket shaper with non-zero initial
conditions, we are also able to de�ne the service imposed
by the initial conditions as function of the buckets level.

Example Assume to have a leaky-bucket shaper with
non-zero initial conditions de�ned by 3 leaky buckets: leaky
bucket LB1 with (r1 = 2; b1 = 0); leaky bucket LB2 with
(r2 = 1; b2 = 1); leaky bucket LB3 with (r3 = 1

2 ; b3 = 3);
and a shaping bu�er of capacity X = 4. Assume the ini-
tial conditions are as follows: the level of the bucket LB1 is
zero; the level of the bucket LB2 is equal to 1

2 ; the level of
the bucket LB2 is equal to 1; the initial level of the shaping
bu�er is w0 = 2. The shaping function � and the function
�0 are illustrated in Figure 2(a). Then we analyse the cases
of input ows S1 and S2.

Case 1: In the beginning the amount of tra�c issued with S1
is not very large and the buckets can handle it with-
out using the bu�er anymore, regardless of the initial
bucket levels and the initial level of the bu�er. Indeed,
the quantity of input is smaller than the output, thus
the bu�er empties. At time t = 3 the ow S1 arrives
with a large amount of tra�c. For this reason, after
this time, the buckets cannot handle all the tra�c and
the bu�er starts to �ll again. At time t = 6 the bu�er
is full. Every time the output coincides with the func-
tion �0. This case is illustrated in Figure 2(b). With
respect to Equation (6), S1� is computed as �0(t) for

any t. This means that the constraint imposed by the
initial conditions is always more strong than the action
of the shaping function on S1.

Case 2: The ow S2 presents always a quantity of tra�c that
can be absorbed by the leaky buckets without using
the bu�er, even considering the initial conditions. The
output coincides with �0 in the beginning and with the
ow (S2
�)+w0 for t > 11 to the end. For t 2 [4; 11],
S2� = (�0)(t) for t � 5. The shaping bu�er empties
at time t = 4, varies for 4 � t � 11, empties again at
t = 11 and remains empty after that time. Figure 2(c)
shows S2 and S2�. This is an example of a case where
the shaping done by � is sometimes more relevant than
the constraint imposed by the initial conditions.

2.2 Time Varying Leaky-Bucket Shaper

Model

As introduced in Section 1, at the time instant ti, where
the leaky bucket parameters are changed, we keep the leaky
bucket level qj(ti) unchanged. We can apply the results in
Section 2.1 to a sequence of intervals. We obtain (Proposi-
tion 3 of [28]) that the bucket level qj(t) of the j-th bucket
is, for t 2 Ii

qj(t) = max

2
4 sup

ti<s�t

fR�(t)�R�(s)� r
j
i � (t� s)g;h

R�(t)�R�(ti)� r
j
i � (t� ti) + qj(ti)

i
3
5
(7)

We can now characterise a time varying leaky-bucket shaper
in the interval Ii by iterarting Theorem 1. The initial con-
ditions are represented by qj(ti) and w(ti), which are re-
spectively the bucket level and the backlog that are found
by the tra�c arriving in the interval Ii.

Theorem 2 (Time Varying Leaky-Bucket Shapers)
Consider a time varying leaky-bucket shaper with shaping
curve �i in the interval Ii. The output R� for a given input
R is

R�(t) = min

�
�0i (t� ti) +R�(ti); inf

ti<s�t
f�i(t� s) +R(s)g

�
(8)

where �0i is de�ned as

�0i (u) = min
1�j�J

h
r
j
i � u+ b

j
i � qj(ti)

i
The backlog at time t is

w(t) = max

"
sup

ti<s�t

fR(t)� R(s)� �i(t� s)g;

R(t)�R(ti)� �0i (t� ti) + w(ti)

#
t 2 Ii

(9)

Proof:
The demonstration is given in [28]. 2

In practice, for the class of time varying leaky-bucket
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Figure 2: Output S1� and S2� of a shaper system with non-zero initial conditions for S1 and S2.

shapers, this theorem gives the closure of W discussed in
the introduction. Even this result has an intuitive interpre-
tation that can be generalised for the class of time varying
shapers. The output of a time varying shaper in any in-
terval is either driven by �0 as combination of the shaping
function and the past history, or is computed by taking into
account the level of the shaping bu�er at the beginning of
the interval. This de�nition is evidently recursive because
it depends on the output and on the past history, which
are themselves computed with the same formulas. For a
discussion on linear time varying shapers see [29].
The de�nition of the RVBR service comes straightfor-

ward as a special case of time varying leaky-bucket shapers,
where J = 2. Therefore, in the Equations (8) and (9), �i
and �0i are given by

�i(u) = min(pi � u+ b1i ; ri � u+ b2i ) (10)

�0i (u) = min(pi � u+ b1i � q1(ti); ri � u+ b2i � q2(ti))
(11)

In conclusion of this section, we recall that the DGCRA is
an example of time varying leaky-bucket shapers. We only
mention that the output of a node regulated by the DGCRA
is equivalent to the output of a time varying leaky-bucket
shaper with J = 2. The easy proof is left to the reader.

3 RVBR Service: the Local Opti-

misation Problems

3.1 Optimisation Algorithm

So far we have assumed that at each interval the bucket
speci�cations are given. In this section, we analyse the
problem of computing leaky bucket parameters for the
RVBR service, because we want to use RVBR service for
RSVP with CL service scenario. Therefore, we study the
case of a source that wants to reserve the resources for the
next interval. For the RVBR service, this is equivalent to

the problem of computing the RVBR parameters for the
next interval. In particular, referring to the Equations (10)
and (11), b1i is assumed to be �xed and in order to sim-
plify the notation, equal to zero. Therefore we indicate the
RVBR parameters at the interval Ii with pi, ri and bi.

We assume that qj(t) � bi for t 2 Ii holds and that
we guarantee the service, namely w(t) � X . From Equa-
tion (9) of Proposition 2, we obtain

R(t)�R(s) � �i(t� s) +X t 2 Ii; ti < s � t

R(t)�R(ti) � �0i (t� ti)� w(ti) +X t 2 Ii

The equations give a necessary and su�cient condition for
a minimum pi

pi = max

0
BB@

sup
t;s2Ii

R(t)�R(s)�X

t� s
;

sup
t2Ii

R(t)�R(ti)�X + w(ti)

t� ti

1
CCA (12)

In analogy to the work in [6] this can be seen as the e�ective
bandwidth of the arrival stream in Ii taking in account the
backlog at time ti.

This means that, given that pi is computed independently
from ri and bi, the problem of �nding a complete optimal
parameter set (pi; ri; bi) for the RVBR service is reduced
to the problem of �nding the optimal parameters ri and
bi. This is an important aspect of RVBR service. In fact
the e�ective bandwidth pi is also the minimal peak rate
selection for RCBR service. Therefore the two parameters
ri and bi can only lead to better performance.

We assume that ri and bi are limited not to exceed some
maximum value that is �xed over time (thus valid for all i),
that we indicate with rmax and bmax.

We de�ne with �i a function that, for each s 2 I =
[0; ti+1� ti], computes the maximum amount of tra�c sent
over the any interval of size s, taking in account the condi-
tions at time ti.

�i(s) = max

 
sup

0�v�ti+1�ti�s
fR(v + s)�R(v)g

R(s+ ti)�R(ti) + w(ti) + q(ti)

!



When the cost function is linear the optimisation problem
is to minimise c(ri; bi) = u � ri + bi, for �xed values of u.
Therefore at each interval Ii, our problem is to minimise
u � ri + bi in the acceptance region de�ned by

0 � ri � rmax

0 � bi � bmax

bi + ri � s+X � �i(s) � 0 8s 2 I

(13)

where I = [0; ti+1� ti]. One important condition that must
be respected [5, 13] is

bmax � sup
s2I

f�i(s)� rmax � s�Xg (14)

otherwise there are no feasible solutions for ri and bi and
this must be true at any interval.
As stated in [28] the feasible region can be studied as

intersection of two regions. This, given that the cost func-
tion is non decreasing, reduces the problem to the prob-
lem of �nding the optimum on the border of the inter-

section, delimited by xA = sup
s2I;s>0

�i(s)�X � bmax

s
and

xB = sup
s2I;s>0

�i(s)�X

s
. The optimisation problem be-

comes

minimise ux� ��i(x) in the region xA � x � min(xB ; rmax; pi)
(15)

In this problem if u is non-positive the minimisation func-
tion is wide-sense decreasing and in this case the solution is
given by minfxB ;min(rmax; pi)g. If u > 0 and the min-
imum x0 of the minimisation function is in the interval
[xA;minfxB ;min(rmax; pi)g] the optimum is for x0. In par-

ticular, if �i(�) is concave, x0 = sup
s2I

�i(s)� �i(u)

s� u
. If x0 is

not feasible for the region de�ned in Equation (15) we can
have x0 � xA and in this case the optimum is found at xA.
Otherwise x0 � min(xB ;min(rmax; pi)) and therefore the
optimum is min(xB ;min(rmax; pi)).
Finally, we can summarise these results in the algorithm

localOptimum1 that �nds the optimal solution as described
above. The algorithm is given for �i(�) concave. When this
does not hold it is substituted by �0i(�), as described in [28].

Algorithm 1 localOptimum1
if bmax < sup

s2I

f�i(s)� rmax � s�Xg then there is no feasible

solution;
else f

pi = max

0
B@ sup

t;s2Ii

R(t)�R(s)�X

t� s
;

sup
t2Ii

R(t)�R(ti)�X + w(ti)

t� ti

1
CA

if u � 0 then f
x0 = min(rmax; pi);

g
else f

x0 = sup
s2I

�i(s)� �i(u)

s� u
;

xA = sup
s2I;s>0

�i(s)�X � bmax

s
;

xB = sup
s2I;s>0

�i(s)�X

s
;

if (x0 � min(xB; rmax; pi)) then x0 =
min(xB; rmax; pi);
else if (x0 � xA) then x0 = xA;

g
ri = x0;
bi = sup

s2I

f�i(s)�X � s � x0g;

In [28] we analyse a second version of the optimisation prob-
lem, not given here, where the cost of each solution is rep-
resented by the reciproc of the number Ni of homogeneous
connections, speci�ed by (pi; bi; ri), acceptable by a link
with �xed capacity C and bu�er with �xed size B .

3.2 Simulation results

In this section we describe how we use the local algorithm
to simulate a typical real case: transmission of MPEG2-
encoded video using the IntServ Controlled Load service
with the RSVP reservation protocol.
In our simulations, we use a 4000 frame-long sequence

that conforms to the ITU-R 601 format (720 � 576 at 25
fps). The sequence is composed of several video scenes that
di�er in terms of spatial and temporal complexities. It has
been encoded in an open-loop variable bit rate (OL-VBR)
mode, as interlaced video, with a structure of 11 images
between each pair of I-pictures and 2 B-pictures between
every reference picture. For this purpose, the widely ac-
cepted TM5 video encoder [30] has been utilised.
The tra�c generated by the video is transported by a

trunk regulated by a RVBR service (p; r; b) with shaping
bu�er X . In this context we do not consider any schedul-
ing issues, which is the subject of ongoing work. Therefore
we assume that the video, with a total size of 550 Mbits,
is transmitted in 163 seconds (25 frames pro second). The
cost function is linear with u. For space reason, we limit to
illustrate here only one scenario. Other scenarios are given
in [1] and [28]. Here we have that X = 40 Mbits, rmax = 5
Mbps, bmax = 9 Mbps and u = 1. The initial conditions
are: q(0) = 0 and w(0) = 0. The �le is pre-recorded and,
given that we do not enter in scheduling matters, we know
R(t) for all t. At time ti we know R�(t) for t � ti, we
measure w(ti), q(ti) and compute �i(t). We obtain the op-
timal shaper parameters by applying the algorithm localOp-
timum1 at Section 3 that we use to generate the Tspec the
sender will send at the next renegotiation time.
In Figure 3(a) we plot the backlog for the scenario in

both cases where we apply the renegotiation and where we
do not renegotiate 1. We observe that in the beginning the
curves representing the two approaches do not di�er much.
This is because the tra�c is very high in the �rst 30 seconds
and both tra�c speci�cations conform to this tra�c.

1Even in this case we compute the optimal tra�c speci�cation as
introduced in [6].
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Figure 3: Comparison between the renegotiation case and the case without renegotiation of the shaping bu�er, the cost of
the tra�c speci�cation and the evolution of the rate r. The cost of the tra�c speci�cation is given in \millions of unit of
cost" (M-unit of cost).

After that period the tra�c rate decreases. The case
without renegotiation has to keep the tra�c speci�cation
negotiated at time t = 0, even if it is no longer adequate
for the current demand. The resources allocated in the
network are so large that it is possible to empty the bu�er
and thereafter the bu�er is rarely used.

The curve for the case where we used the RVBR service
shows that the bu�er is much better utilised, because the
tra�c speci�cation decreases in the next intervals.

Therefore, with the RVBR service the resources in the
network are much better used. In fact, when the bu�er is
almost always �lled the output is conforms to the tra�c
speci�cation and this means that all the resources in the
network are optimally used. The usage of the bu�er with
renegotiation is 58%, while without renegotiation it is 13%.

In the graphs in Figure 3(b) we compare the two ap-
proaches in terms of the cost of the tra�c speci�cation to
the network. The cost of the tra�c speci�cation is given
in terms of the linear cost function used by the RVBR ser-
vice in order to compute the optimal tra�c parameters.
The additional result we derive here is that there is also a
substantial advantage from the cost point of view in real-
locating, because the cost of the tra�c speci�cations is in
general smaller.

Figure 3(c) illustrates the fact that with renegotiation we
can optimise the resources requested to the network and
therefore at the end the total r and b allocated in this case
are in general smaller. We also notice that inside an interval
the RVBR service might allocate a Tspec that is larger than
the one used when not renegotiating. This occurs when the
tra�c is very bursty and the bu�er is full from the previous
interval, i.e. at the forth interval (90� 120 seconds).

4 \Reset" versus \No Reset" Ap-

proach

It is trivial that, in terms of costs, the \reset" approach is
better because it always restarts from a zero initial condi-
tion and considers the lost tra�c as sent.
First we point out that the network must use the \no

reset" approach because it must ensure to any input tra�c,
exactly the same service when tra�c speci�cation is always
renegotiated with the same �i = � and when the tra�c
speci�cation is equal to � and is not renegotiated. This is
not possible if the network resets the buckets level at every
renegotiation time.
In principle, at the source both approaches are valid.

When we reset the buckets we must accept to experience
some loss due to the fact that the network does not apply
any reset. This means that the upper bound to those losses
is given by the maximum size of the bucket (bmax) times
the number of times we apply the renegotiation. Therefore
an upper bound for the percentage of losses is given by

min
i

bmax � i

R(ti)
(16)

It is already clear that this upper bound can be not accept-
able for many types of tra�c. In practice this limit is easily
reached, unless bmax is very small. Only in this case, where
we have that bmax

R(ti)
is close to zero for any value of i, the

impact of the reset does not a�ect the system behaviour.
Evidently we can assume that this condition should not
occur, because it corresponds to a bad network planning.
To evaluate how close we get to this upper bound we

simulate the two approaches in the same scenario described
in Section 3.2, where we use IntServ services with RSVP
reservation protocol. We measure the percentage of losses,
that obviously depends on bmax. For the renegotiation at
every 30 seconds, we experience a percentage of losses from
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Figure 4: Percentage of losses in the reset approach

5%, for bmax very small, up to 60%. Obviously, for a �xed
bmax, the percentage of losses grows with the decrease of the
renegotiation period. For very small renegotiation periods
can be enormous.

In Figures 4 we illustrate the losses for an average bmax

(compared to the input tra�c, bmax = 6 Mbits) for dif-
ferent renegotiation periods. We observe that for most of
these cases the percentage of losses is not acceptable. It is
di�erent in the case of renegotiation at 100 seconds because
here the renegotiation is quite infrequent.

5 Conclusion

For the class of time varying leaky-bucket shapers we have
found an explicit representation of the output in terms of
the input function (input-output characterisation). This is
obtained by iterating the input-output characterisation we
derive for the class of leaky-bucket shapers with non-zero
initial conditions.

Then we use this result to study the local optimisation
aspects of the RVBR service, leaving aside the problem of
tra�c prediction. The solution is the Algorithms 1 (Section
3).

Furthermore we illustrate how the RVBR service can be
applied to RSVP Path message generation. This is based
on the algorithm proposed for the local optimisation prob-
lem. A numerical example of this is given in Section 3.2,
where we also compare the performance of transmitting a
MPEG2 video trace both with and without renegotiation.
The results of our simulation (see Figure 3) suggest that
renegotiation allows to better use of network resources and
that in protocols as RSVP, where there is no additional
cost for signaling (or so we mainly assume), it is better to
renegotiate. Future work on RVBR service includes both
the possible integration in a real application and study on
the renegotiation period, as well as the integration of the
network delay and the application to Guaranteed Service
[19].

We have also illustrated that, if some inconsistency exists
between network and user sides about the use of the \reset"
or \no-reset" approach, then this may result in inacceptable

losses (or service degradation) due to policing. We give an
upper bound to the percentage of losses and we notice that
in general this upper bound is not acceptable, especially for
small renegotiation periods. We also found, in the cases we
analysed, that this limit can be easily approached. Some
simulation results are given in Figure 4 in Section 4.

The results we obtained shows that the RVBR service
can be easily and e�ciently adopted by video applications
requiring strict guaranteed service. In further work our
results for the class of time varying leaky-bucket shapers
will be used to model network resources renegotiation in
other scenarios, as, for instance, in the video smoothing
case [31].

In [28] we cover some other related issue like the compar-
ison of the local approach against a global approach based
on Viterbi-like algorith to give a measure of the optimality
of the former in terms of cost, as well as the comparison
of renegotiable VBR service against a renegotiable CBR
service. We also discuss certain aspects related to the de�-
nition of the optimal renegotiation period.
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