33 research outputs found

    Biomass Retrieval Algorithm Based on P-band BioSAR Experiments of Boreal Forest

    Get PDF
    A new biomass retrieval algorithm based on P-band multi-polarization backscatter has been developed and evaluated based on SAR and ground data over boreal forest. SAR data collections were conducted on three dates at a test site in southern Sweden (Remningstorp, biomass < 300 tons/ha; late winter to early summer 2007) and on a single date at a test site in northern Sweden (Krycklan, biomass < 200 tons/ha; fall 2008). The retrieval algorithm is a multiple linear regression model including the HV-polarized backscatter coefficient, the VV/HH backscatter ratio and the ground slope. Regression coefficients were determined from Krycklan data followed by algorithm evaluation using Remningstorp data. The results from the latter show that RMS errors vary in the range 29-42 tons/ha depending on date and stand type. The new algorithm is also compared with alternative algorithms and found to give significantly better performance. The developed model is a significant step towards an algorithm which gives consistent results across multiple sites and dates, i.e. when forest structure, topography and moisture conditions is expected to vary

    The role of remote sensing in the development of SMART indicators for ecosystem services assessment

    Get PDF
    Human beings benefit from a wide range of goods and services from the natural environment that are collectively known as ecosystem services. However, rapid natural habitat loss, overexploitation and climate change is causing accelerating losses of populations and species, with largely unknown consequences on ecosystem functioning and the sustainable provision of ecosystem services. It is crucial, therefore, to develop a suite of indicators of the health and status of ecosystems, to monitor and quantify services delivery and to facilitate policy responses to stop and reverse negative trends. An effective framework to facilitate the development of suitable indicators is by using the SMART approach, which defines five criteria that could be applied to set monitoring and management goals, which are Specific, Measurable, Achievable, Realistic and Time-sensitive. Remote sensing provides a useful data source that can monitor ecosystems over multiple spatial and temporal scales. Although the development and application of landscape indicators (vegetation indices, for example) derived from remote sensing data are comparatively advanced, it is acknowledged that a number of organisms and ecosystem processes are not detectable by remote sensing. This paper explores several approaches to overcome this limitation, by examining the strong affinity of species with dominant habitat structures and through the coupling of remote sensing and ecosystem process models using examples drawn from a number of important ecosystems

    Machine-Learning Applications for the Retrieval of Forest Biomass from Airborne P-Band SAR Data

    Get PDF
    This study aimed at evaluating the potential of machine learning (ML) for estimating forest biomass from polarimetric Synthetic Aperture Radar (SAR) data. Retrieval algorithms based on two different machine-learning methods, namely Artificial Neural Networks (ANNs) and Supported Vector Regressions (SVRs), were implemented and validated using the airborne polarimetric SAR data derived from the AfriSAR, BioSAR, and TropiSAR campaigns. These datasets, composed of polarimetric airborne SAR data at P-band and corresponding biomass values from in situ and LiDAR measurements, were made available by the European Space Agency (ESA) in the framework of the Biomass Retrieval Algorithm Inter-Comparison Exercise (BRIX). The sensitivity of the SAR measurements at all polarizations to the target biomass was evaluated on the entire set of data from all the campaigns, and separately on the dataset of each campaign. Based on the results of the sensitivity analysis, the retrieval was attempted by implementing general algorithms, using the entire dataset, and specific algorithms, using data of each campaign. Algorithm inputs are the SAR data and the corresponding local incidence angles, and output is the estimated biomass. To allow the comparison, both ANN and SVR were trained using the same subset of data, composed of 50% of the available dataset, and validated on the remaining part of the dataset. The validation of the algorithms demonstrated that both machine-learning methods were able to estimate the forest biomass with comparable accuracies. In detail, the validation of the general ANN algorithm resulted in a correlation coefficient R = 0.88, RMSE = 60 t/ha, and negligible BIAS, while the specific ANN for data obtained R from 0.78 to 0.94 and RMSE between 15 and 50 t/ha, depending on the dataset. Similarly, the general SVR was able to estimate the target parameter with R = 0.84, RMSE = 69 t/ha, and BIAS negligible, while the specific algorithms obtained 0.22 ≤ R ≤ 0.92 and 19 ≤ RMSE ≤ 70 (t/ha). The study also pointed out that the computational cost is similar for both methods. In this respect, the training is the only time-demanding part, while applying the trained algorithm to the validation set or to any other dataset occurs in near real time. As a final step of the study, the ANN and SVR algorithms were applied to the available SAR images for obtaining biomass maps from the available SAR images

    Estimating aboveground woody biomass change in Kalahari woodland: combining field, radar, and optical data sets

    Get PDF
    Maps that accurately quantify aboveground vegetation biomass (AGB) are essential for ecosystem monitoring and conservation. Throughout Namibia, four vegetation change processes are widespread, namely, deforestation, woodland degradation, the encroachment of the herbaceous and grassy layers by woody strata (woody thickening), and woodland regrowth. All of these vegetation change processes affect a range of key ecosystem services, yet their spatial and temporal dynamics and contributions to AGB change remain poorly understood. This study quantifies AGB associated with the different vegetation change processes over an 8-year period, for a region of Kalahari woodland savannah in northern Namibia. Using data from 101 forest inventory plots collected during two field campaigns (2014–2015), we model AGB as a function of the Advanced Land Observing Satellite Phased Array L-band synthetic aperture radar (PALSAR and PALSAR-2) and dry season Landsat vegetation index composites, for two periods (2007 and 2015). Differences in AGB between 2007 and 2015 were assessed and validated using independent data, and changes in AGB for the main vegetation processes are quantified for the whole study area (75,501 km2). We find that woodland degradation and woody thickening contributed a change in AGB of −14.3 and 2.5 Tg over 14% and 3.5% of the study area, respectively. Deforestation and regrowth contributed a smaller portion of AGB change, i.e. −1.9 and 0.2 Tg over 1.3% and 0.2% of the study area, respectively

    Power Sensitivity Analysis of Multi-Frequency, Multi-Polarized, Multi-Temporal SAR Data for Soil-Vegetation System Variables Characterization

    Get PDF
    The knowledge of spatial and temporal variability of soil water content and others soil-vegetation variables (leaf area index, fractional cover) assumes high importance in crop management. Where and when the cloudiness limits the use of optical and thermal remote sensing techniques, synthetic aperture radar (SAR) imagery has proven to have several advantages (cloud penetration, day/night acquisitions and high spatial resolution). However, measured backscattering is controlled by several factors including SAR configuration (acquisition geometry, frequency and polarization), and target dielectric and geometric properties. Thus, uncertainties arise about the more suitable configuration to be used. With the launch of the ALOS Palsar, Cosmo-Skymed and Sentinel 1 sensors, a dataset of multi-frequency (X, C, L) and multi-polarization (co- and cross-polarizations) images are now available from a virtual constellation; thus, significant issues concerning the retrieval of soil-vegetation variables using SAR are: (i) identifying the more suitable SAR configuration; (ii) understanding the affordability of a multi-frequency approach. In 2006, a vast dataset of both remotely sensed images (SAR and optical/thermal) and in situ data was collected in the framework of the AgriSAR 2006 project funded by ESA and DLR. Flights and sampling have taken place weekly from April to August. In situ data included soil water content, soil roughness, fractional coverage and Leaf Area Index (LAI). SAR airborne data consisted of multi-frequency and multi-polarized SAR images (X, C and L frequencies and HH, HV, VH and VV polarizations). By exploiting this very wide dataset, this paper, explores the capabilities of SAR in describing four of the main soil-vegetation variables (SVV). As a first attempt, backscattering and SVV temporal behaviors are compared (dynamic analysis) and single-channel regressions between backscattering and SVV are analyzed. Remarkably, no significant correlations were found between backscattering and soil roughness (over both bare and vegetated plots), whereas it has been noticed that the contributions of water content of soil underlying the vegetation often did not influence the backscattering (depending on canopy structure and SAR configuration). Most significant regressions were found between backscattering and SVV characterizing the vegetation biomass (fractional cover and LAI). Secondly, the effect of SVV changes on the spatial correlation among SAR channels (accounting for different polarization and/or frequencies) was explored. An inter-channel spatial/temporal correlation analysis is proposed by temporally correlating two-channel spatial correlation and SVV. This novel approach allowed a widening in the number of significant correlations and their strengths by also encompassing the use of SAR data acquired at two different frequencie

    Power Sensitivity Analysis of Multi-Frequency, Multi-Polarized, Multi-Temporal SAR Data for Soil-Vegetation System Variables Characterization

    Get PDF
    The knowledge of spatial and temporal variability of soil water content and others soil-vegetation variables (leaf area index, fractional cover) assumes high importance in crop management. Where and when the cloudiness limits the use of optical and thermal remote sensing techniques, synthetic aperture radar (SAR) imagery has proven to have several advantages (cloud penetration, day/night acquisitions and high spatial resolution). However, measured backscattering is controlled by several factors including SAR configuration (acquisition geometry, frequency and polarization), and target dielectric and geometric properties. Thus, uncertainties arise about the more suitable configuration to be used. With the launch of the ALOS Palsar, Cosmo-Skymed and Sentinel 1 sensors, a dataset of multi-frequency (X, C, L) and multi-polarization (co- and cross-polarizations) images are now available from a virtual constellation; thus, significant issues concerning the retrieval of soil-vegetation variables using SAR are: (i) identifying the more suitable SAR configuration; (ii) understanding the affordability of a multi-frequency approach. In 2006, a vast dataset of both remotely sensed images (SAR and optical/thermal) and in situ data was collected in the framework of the AgriSAR 2006 project funded by ESA and DLR. Flights and sampling have taken place weekly from April to August. In situ data included soil water content, soil roughness, fractional coverage and Leaf Area Index (LAI). SAR airborne data consisted of multi-frequency and multi-polarized SAR images (X, C and L frequencies and HH, HV, VH and VV polarizations). By exploiting this very wide dataset, this paper, explores the capabilities of SAR in describing four of the main soil-vegetation variables (SVV). As a first attempt, backscattering and SVV temporal behaviors are compared (dynamic analysis) and single-channel regressions between backscattering and SVV are analyzed. Remarkably, no significant correlations were found between backscattering and soil roughness (over both bare and vegetated plots), whereas it has been noticed that the contributions of water content of soil underlying the vegetation often did not influence the backscattering (depending on canopy structure and SAR configuration). Most significant regressions were found between backscattering and SVV characterizing the vegetation biomass (fractional cover and LAI). Secondly, the effect of SVV changes on the spatial correlation among SAR channels (accounting for different polarization and/or frequencies) was explored. An inter-channel spatial/temporal correlation analysis is proposed by temporally correlating two-channel spatial correlation and SVV. This novel approach allowed a widening in the number of significant correlations and their strengths by also encompassing the use of SAR data acquired at two different frequencie

    Regression-Based Retrieval of Boreal Forest Biomass in Sloping Terrain using P-band SAR Backscatter Intensity Data

    Get PDF
    A new biomass retrieval model for boreal forest using polarimetric P-band synthetic aperture radar (SAR) backscatter is presented. The model is based on two main SAR quantities: the HV backscatter and the HH/VV backscatter ratio. It also includes a topographic correction based on the ground slope. The model is developed from analysis of stand-wise data from two airborne P-band SAR campaigns: BioSAR 2007 (test site: Remningstorp, southern Sweden, biomass range: 10-287 tons/ha, slope range: 0-4 degrees) and BioSAR 2008 (test site: Krycklan, northern Sweden, biomass range: 8-257 tons/ha, slope range: 0-19 degrees). The new model is compared to five other models in a set of tests to evaluate its performance in different conditions. All models are first tested on data sets from Remningstorp with different moisture conditions, acquired during three periods in the spring of 2007. Thereafter, the models are tested in topographic terrain using SAR data acquired for different flight headings in Krycklan. The models are also evaluated across sites, i.e., training on one site followed by validation on the other site. Using the new model with parameters estimated on Krycklan data, biomass in Remningstorp is retrieved with RMSE of 40-59 tons/ha, or 22-33% of the mean biomass, which is lower compared to the other models. In the inverse scenario, the examined site is not well represented in the training data set, and the results are therefore not conclusive
    corecore