194 research outputs found

    Mapping RT-LOTOS specifications into Time Petri Nets

    Get PDF
    RT-LOTOS is a timed process algebra which enables compact and abstract specification of real-time systems. This paper proposes and illustrates a structural translation of RT-LOTOS terms into behaviorally equivalent (timed bisimilar) finite Time Petri nets. It is therefore possible to apply Time Petri nets verification techniques to the profit of RT-LOTOS. Our approach has been implemented in RTL2TPN, a prototype tool which takes as input an RT-LOTOS specification and outputs a TPN. The latter is verified using TINA, a TPN analyzer developed by LAAS-CNRS. The toolkit made of RTL2TPN and TINA has been positively benchmarked against previously developed RT-LOTOS verification tool

    Effective representation of RT-LOTOS terms by finite time petri nets

    Get PDF
    The paper describes a transformational approach for the specification and formal verification of concurrent and real-time systems. At upper level, one system is specified using the timed process algebra RT-LOTOS. The output of the proposed transformation is a Time Petri net (TPN). The paper particularly shows how a TPN can be automatically constructed from an RT-LOTOS specification using a compositionally defined mapping. The proof of the translation consistency is sketched in the paper and developed in [1]. The RT-LOTOS to TPN translation patterns formalized in the paper are being implemented. in a prototype tool. This enables reusing TPNs verification techniques and tools for the profit of RT-LOTOS

    From RT-LOTOS to Time Petri Nets new foundations for a verification platform

    Get PDF
    The formal description technique RT-LOTOS has been selected as intermediate language to add formality to a real-time UML profile named TURTLE. For this sake, an RT-LOTOS verification platform has been developed for early detection of design errors in real-time system models. The paper discusses an extension of the platform by inclusion of verification tools developed for Time Petri Nets. The starting point is the definition of RT-LOTOS to TPN translation patterns. In particular, we introduce the concept of components embedding Time Petri Nets. The translation patterns are implemented in a prototype tool which takes as input an RT-LOTOS specification and outputs a TPN in the format admitted by the TINA tool. The efficiency of the proposed solution has been demonstrated on various case studies

    A Hierarchical Petri Net Model for SMIL Documents

    Get PDF

    Distributed systems : architecture-driven specification using extended LOTOS

    Get PDF
    The thesis uses the LOTOS language (ISO International Standard ISO 8807) as a basis for the formal specification of distributed systems. Contributions are made to two key research areas: architecture-driven specification and LOTOS language extensions. The notion of architecture-driven specification is to guide the specification process by providing a reference-base of pre-defined domain-specific components. The thesis builds an infra-structure of architectural elements, and provides Extended LOTOS (XL) definitions of these elements. The thesis develops Extended LOTOS (XI.) for the specification of distributed systems. XL- is LOTOS enhanced with features for the formal specification of quantitative timing. probabilistic and priority requirements. For distributed systems, the specification of these ‘performance’ requirements, ran be as important as the specification of the associated functional requirements. To support quantitative timing features, the XL semantics define a global, discrete clock which can be used both to force events to occur at specific times, and to measure Intervals between event occurrences. XL introduces time policy operators ASAP (as soon as possible’ corresponding to “maximal progress semantics") and ALAP (late as possible'). Special internal transitions are introduced in XL semantics for the specification of probability, Conformance relations based on a notion of probabilization, together with a testing framework, are defined to support reasoning about probabilistic XL specifications. Priority within the XL semantics ensures that permitted events with the highest priority weighting of their class are allowed first. Both functional and performance specification play important roles in CIM (Computer Integrated Manufacturing) systems. The thesis uses a CIM system known as the CIM- OSA lntegrating Infrastructure as a case study of architecture-driven specification using XL. The thesis thus constitutes a step in the evolution of distributed system specification methods that have both an architectural basis and a formal basis

    Non-functional property analysis using UML2.0 and model transformations

    Get PDF
    Real-time embedded architectures consist of software and hardware parts. Meeting non-functional constraints (e.g., real-time constraints) greatly depends on the mappings from the system functionalities to software and hardware components. Thus, there is a strong demand for precise architecture and allocation modeling, amenable to performance analysis. The report proposes a model-driven approach for the assessment of the quality of allocations of the system functionalities to the architecture. We consider two technical domains: the UML domain for the definition of the model elements (for both description and analysis), and an analysis domain, external to UML, used for formal verification. This report defines three meta-models, one for each domain, and provides automated transformations within and between these domains. A special attention is then paid to temporal property analysis, based on a particular analysis model: the Modular and Hierarchical Time Petri Nets

    Abstraction : a notion for reverse engineering.

    Get PDF

    System specification and performance analysis

    Get PDF

    Specification and implementation of computer network protocols

    Get PDF
    A reliable and effective computer network can only be achieved by adopting efficient and error-free communication protocols. Therefore, the protocol designer should produce an unambiguous specification meeting these requirements. Techniques for producing protocol specifications have been the subject of intense interest over the last few years. This is partly due to the advent of an international standard for networking. A variety of methods have been employed, some of which are described in detail in this thesis. [Continues.

    Non-functional property analysis using UML2.0 and model transformations

    Get PDF
    Real-time embedded architectures consist of software and hardware parts. Meeting non-functional constraints (e.g., real-time constraints) greatly depends on the mappings from the system functionalities to software and hardware components. Thus, there is a strong demand for precise architecture and allocation modeling, amenable to performance analysis. The report proposes a model-driven approach for the assessment of the quality of allocations of the system functionalities to the architecture. We consider two technical domains: the UML domain for the definition of the model elements (for both description and analysis), and an analysis domain, external to UML, used for formal verification. This report defines three meta-models, one for each domain, and provides automated transformations within and between these domains. A special attention is then paid to temporal property analysis, based on a particular analysis model: the Modular and Hierarchical Time Petri Nets
    corecore