
Mapping RT-LOTOS specifications into Time

Petri Nets

Tarek Sadani1,2, Marc Boyer3, Pierre de Saqui-Sannes1,2, and Jean-Pierre
Courtiat1

tsadani@ensica.fr, mboyer@enseeiht.fr, desaqui@ensica.fr,
courtiat@laas.fr

1 LAAS-CNRS, 7 av. du colonel Roche, 31077 Toulouse Cedex 04, France
2 ENSICA, 1 place Emile Blouin, 31056 Toulouse Cedex 05, France
3 IRIT-CNRS/ENSEEIHT, 2 rue Camichel, 31000 Toulouse, France

Abstract. RT-LOTOS is a timed process algebra which enables com-
pact and abstract specification of real-time systems. This paper proposes
and illustrates a structural translation of RT-LOTOS terms into behav-
iorally equivalent (timed bisimilar) finite Time Petri nets. It is therefore
possible to apply Time Petri nets verification techniques to the profit
of RT-LOTOS. Our approach has been implemented in RTL2TPN, a
prototype tool which takes as input an RT-LOTOS specification and
outputs a TPN. The latter is verified using TINA, a TPN analyzer de-
veloped by LAAS-CNRS. The toolkit made of RTL2TPN and TINA has
been positively benchmarked against previously developed RT-LOTOS
verification tool.

1 Introduction

The acknowledged benefits of using Formal Description Techniques (FDTs) in-
clude the possibility to verify a model of the system under design against user
requirements. These benefits are even higher for systems which are both concur-
rent and submitted to stringent temporal constraints.

In this paper, formal verification is addressed in the context of RT-LOTOS,
a timed extension of the ISO-based LOTOS [1] FDT. RT-LOTOS [2] shares
with LOTOS and other process algebras its capability to specify systems as a
collection of communicating processes. The paper proposes a transformational
approach from RT-LOTOS to Time Petri Nets (TPNs) which, by contrast, are
typical example of non compositional FDT. Therefore, it is proposed to embed
TPNs into so-called components that can be composed relying on different pat-
terns. The latters are carefully defined so as they ensure a very tight relation be-
tween the obtained composite TPN and its corresponding RT-LOTOS behavior.
This work can be seen as giving a TPN semantics to RT-LOTOS denotationally.
A prototype tool implements the translation patterns. It has been interfaced
with TINA [3], the Time Petri Net Analyzer developed by LAAS-CNRS. We
show that an automatically generated reachability graph of a TPN can be used
to reason about and check the correctness of RT-LOTOS specifications.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Open Archive Toulouse Archive Ouverte

https://core.ac.uk/display/12040536?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

The paper is organized as follows. Section 2 introduces the RT-LOTOS lan-
guage. Section 3 introduces the Time Petri net (TPN) model. Section 4 discusses
the theoretical foundations of RT-LOTOS to TPNs mapping. Section 5 addresses
practical issues, including tool development and verification results obtained for
well-established benchmarks. Section 6 surveys related work. Section 7 concludes
the paper.

2 RT-LOTOS

The Language of Temporal Ordering Specifications (LOTOS, [1]), is a formal
description technique, based on CCS [4] and extended by a multi-way synchro-
nization mechanism inherited from CSP [5]. In LOTOS, process definitions are
expressed by the specification of behavior expressions which are constructed by
means of a restricted set of powerful operators making it possible to express be-
haviors as complex as desired. Among these operators, action prefixing, choice,
parallel composition and hiding play a fundamental role.

RT-LOTOS [2] extends LOTOS with three temporal operators: a determinis-
tic delay (�t), a latency(Ωt) which enables description of temporal indetermin-
ism and a time limited offer g{t}. The main difference between RT-LOTOS and
other timed extensions of LOTOS lies in the way a non-deterministic delay may
be expressed. The solution developed for RT-LOTOS is the latency operator. Its
usefulness and efficiency have been proved in control command applications and
hypermedia authoring [6].

RT-LOTOS formal syntax: Let PV be the set of process variables and X
range over PV. Let GV be the set of the user-definable gates. Let g,g′1 . . . g′n ∈
GV, let also L be any (possibly empty) subset of GV noted L = g′1 . . . g′n and i
the internal action.

The formal syntax of RT-LOTOS is recursively given by:
P ::= stop | exit | X[L] | g;P | g{t};P | i{t};P | �tP | ΩtP | P [] P | P|[L]|P |

hide L in P | P � P | P[>P
The syntax of a process definition being ”process X[g′1 . . . g′n]:=PX endproc”.

Two alternative syntaxes have been defined for expressing time delays: delay(t)
which is identical to �t, and latencies, namely latency(t) meaning Ωt.

RT-LOTOS operational semantics in the classical Plotkin’s SOS style can be
found in [7].

3 Time Petri nets

Petri nets were, to our knowledge, the first theoretical model augmented with
time constraints [8, 9], and the support of the first reachability algorithm for
timed system [10, 11].

The basic idea of time Petri nets (TPN [8, 9]) is to associate an interval
Is(t) = [a, b] (static interval) with each transition t. The transition can be fired

if it has continuously been enabled during at least a time units, and it must fire
if continuous enabling time reaches b time units4.

[1,2][3,4] [5,5]

t0 t1 t2

Fig. 1. Priority from ur-
gency

[0,2] [0,2][1,1]

t0 t1
t2

Fig. 2. Synchronization

[1,1] [2,2]

t0 t1

Fig. 3. Continuous
enabling

Figure 1 is a first example: in the initial marking, only t0 and t1 are enabled.
After one time unit delay, t1 is firable. Because t1 reaches its upper interval
always before t0 becomes enable (3 > 2), then t0 can never be fired. t2 is fired
five time units after the firing of t1. Figure 2 illustrates the synchronization
rule: t0 (resp. t1) is fired at an absolute date θ0 ≤ 2 (resp. θ1 ≤ 2), and t2 is
fired at max(θ0, θ1)+1. Figure 3 illustrates another important point: continuous
enabling. In that TPN, transition t1 will never be fired, because, at each time
unit, t0 is fired, removing the token and putting it back immediately. Then, t1
is at most 1 time unit continuously enabled, never 2 time units.

4 Translation definition

This section gives the translation from RT-LOTOS terms into TPNs. This map-
ping can also be understood as the definition of an alternative TPNs semantics
of RT-LOTOS. It is well known that process algebras (e.g. RT-LOTOS) heavily
rely on the concept of compositionality, whereas Petri nets (and their timed ver-
sions) lack of compositionality at all. To make the translation possible, a core
idea behind our approach is to view a TPN as a composition of number of TPN
components. The following section introduces the concept of TPN Component
as basic building block.

4.1 Time Petri net Component

A Component encapsulates a labeled TPN which describes its behavior. It is
handled through its interfaces and interactions points. A component performs an
action by firing the corresponding transition. A component has two sets of labels:
Act which is the alphabet of the component and T ime = {tv, delay, latency}.
These three labels are introduced to represent the intended temporal behavior of
a component. The tv (for “temporal violation”) label represents the expiration
of time limited-offering. A delay or latency label represents the expiration of a
deterministic delay or a non deterministic delay, respectively.

4 This urgency when the deadline is reached is called “strong semantics”.

Fig. 4. Component example

Fig. 5. The exit pattern

A component is graphically represented by a box containing a TPN. The
black-filled boxes at the component boundary represent interaction points. For
instance, the component CP in the Figure 4 is built from a RT-LOTOS term
P. During its execution, it may perform the observable action a. The ini (ini-
tially marked places) represent the component input interface, and the out place
denotes its output interface. A token in the out place of a component means
that the component has successfully completed its execution. A component is
activated by filling its input places. A component is active if at least one of its
transitions is enabled. Otherwise, the component is inactive.

Definition 1 (Component).
Let Act = Ao ∪ Ah ∪ {exit} be an alphabet of actions, where Ao is a set of

observable actions (with i �∈ Ao, exit �∈ Ao), Ah = {i} × Ao is the set of hidden
actions (If a is an observable action, ia denotes a hidden action).

Formally a component is a tuple C = 〈Σ, Lab, I, O〉 where

– Σ = 〈P, T, Pre, Post, M0, IS〉 is a TPN.
– Lab : T → (Act ∪ T ime) is a labeling function which labels each tran-

sition in Σ with either an action name (Act) or a time-event (T ime =
{tv, delay, latency}). Let T Act (resp. T Time) be the set of transitions with
labels in Act (resp. T ime).

– I ⊂ P is a non empty set of places defining the input interface.
– O ⊂ P is the output interface of the component. A component has an output

interface if it has at least one transition labeled by exit. If so, O is the
outgoing place of those transitions. Otherwise, O = ∅.

The following invariants apply to all components:

H1 There is no source transition in a component.
H2 The encapsulated TPN is 1-bounded (cf. safe nets in [12]). H2 is called the

”safe marking” property. It is essential for the decidability of reachability
analysis procedure applied to TPNs.

H3 If all the input places are marked, all other places are empty (I ⊂ M ⇒
M = I).

H4 If the out place is marked, all other places are empty (O �= ∅ ∧ O ⊂ M ⇒
M = O).

H5 For each transition t such that Lab(t) ∈ Act, if the label is an observable
action (Lab(t) ∈ A0), its time interval is [0,∞), otherwise5, it is [0, 0].

4.2 Translation patterns

RT-LOTOS behaviour expressions are inductively defined by means of algebraic
operators acting on behaviour expressions. Since the translation is meant to be
syntax driven we need to endow TPNs with operators corresponding to RT-
LOTOS ones, so as to allow one to construct a composite TPN. In the following,
we first define components corresponding to nullary algebraic operators (stop
and exit) and, given each RT-LOTOS operator and its operands (i.e. behaviour
expressions), we inductively describe how to obtain a new component starting
from the one corresponding to the given RT-LOTOS behaviour expressions. The
resulting component corresponds to the RT-LOTOS behaviour expression com-
puted by applying the operator to the given operands.

Due to lack of space, the formalization of some patterns is skipped. A com-
plete formal definition can be found in the extended version of this paper [13].

Notation and definition f ′ = f ∪ (a, b) defines the function f ′ : A ∪ {a} �→
B ∪ {b} such that f ′(x) = f(x) if x ∈ A and f ′(a) = b otherwise.

Definition 2 (First actions set). Let C be a component. The set of first
actions FA (CP) can be recursively built using the following rules6:

FA (
Cstop

)
= ∅ FA (Cexit) = {texit}

FA (Ca;P) = {ta} FA (CµX.(P;X)) = FA (CP)

FA (
Ca{d}P

)
= {ta} FA (

Cdelay(d)P

)
= FA (CP)

FA (
Clatency(d)P

)
= FA (CP) FA (CP;Q) = FA (CP)

FA (CP|[A]|Q) = FA (CP) ∪ FA (CQ) FA (CP>>Q) = FA (CP)
FA (CP[]Q) = FA (CP) ∪ FA (CQ) FA (CP[>Q) = FA (CP) ∪ FA (CQ)

FA (Chide a in P) = ha (FA (CP))

Low level Petri net operations The formal definition of the translation patterns
uses the following low level Petri nets operators: ∪, \,�.

Let N = 〈P, T, Pre, Post, M0, IS〉 be a TPN.
Adding a place Let p be a new place (p �∈ P), Prep and Postp two sets of

transitions of T . Then N ′ = N ∪ 〈Prep, p, Postp〉 is the TPN augmented with
place p such that •p = Prep and p• = Postp.

Adding a transition: Let t be a new transition (t �∈ T), I its time interval,
Pret and Postt two sets of places of P . Then N ′ = N ∪ 〈Pret, (t, I), Postt〉 is
the TPN augmented with transitions t such that •t = Pret and t• = Postt.

Similarly, \ is used to remove places or transitions from a net (and all related
arcs), and � denotes the free merging of two nets.
5 Lab(t) ∈ Ah ∪ {exit}
6 where ta is transition labelled by a. ha(α) = α if α �= a and ha(a) = ia

Basic components The Cstop component is simply the empty net (no place,
no transition). Cexit is a component which performs a successful termination. It
has one input place, one output place, and a single transition labeled with exit
and a static interval [0, 0] (Fig.5).

Patterns applying to one component Let us consider the component CP of
Fig. 4. Fig. 6 depicts different patterns applied to CP.

(a) a;P (b) a{d}P (c) delay(d)P (d) latency(d)P

Fig. 6. Patterns applying to one component

– Ca;P (Fig. 6(a)) is the component resulting from prefixing CP with action a.
Ca;P executes a then activates CP.
Ca;P = 〈Σa;P, Laba;P, {in}, OP〉 where the TPN Σa;P is obtained by adding a
place in and a transition t0 to ΣP, Laba;P associates a to transition t0.

Σa;P = (ΣP ∪ 〈∅, (t0, [0,∞)), IP〉) ∪ 〈∅, in, t0〉
Laba;P = LabP ∪ (t0, a)

– Ca{d};P (Fig. 6(b)) is the component resulting from prefixing CP with a lim-
ited offer of d units of time on action a. If for any reason, a cannot occur
during this time interval, the tv transition will be fired (temporal violation
situation) and Ca{d};P will transform into an inactive component.

Ca{d};P = 〈Σa{d};P, Laba;P ∪ {(t1, tv)} , {in} , OP〉
Σa{d};P = Σa;P ∪ 〈{in} , (t1, [d, d]), ∅〉

– Cdelay(d)P (Fig 6(c)) is the component resulting from delaying the first action
of P with a deterministic delay of d units of time. This is exactly the same
pattern as Ca;P except that the added transition has a delay label and a
static interval equal to [d, d].

Cdelay(d)P = 〈Σdelay(d)P, LabP ∪ {(t0, delay)} , {in} , OP〉
Σdelay(d)P = (ΣP ∪ 〈∅, (t0, [d, d])), IP〉) ∪ 〈∅, in, t0〉

– Clatency(d)P (Fig 6(d)) is the component resulting from delaying the first
actions of CP with a non deterministic delay of d units of time.
Like the delay operator, latency is defined by connecting a new transition
to the input interface of CP. But this time, we add a static interval equal
to [0, d]. The definition of the latency translation pattern must handle the
“subtle” case where one (or several) action(s) among CP’s first actions is
(are) constrained with a limited offer (this set is denoted by FAlo). For
instance, in Fig 6(d), action a is offered to the environment during dx units
of time. The RT-LOTOS semantics states that the latency and the offering of
a start simultaneously, which means that if the latency duration goes beyond
dx units of time, the offer on a will expire. To obtain the same behavior, we
add the input place in0 of a to the input interface of the resulting component
Clatency(d)P. In the definition of the pattern, we denote Ilo the set of these
input places (Ilo ⊂ IP). Thus t1 and t are enabled as soon as the component
is activated (all its input places being marked). Clatency(d)P is able to execute
a (fire t0) if t0 is enabled (i.e if in0 and p are marked) before t1 is fired (at
dx). Therefore, action a is possibly offered to the environment for no more
than dx units of time, hence conforming to the RT-LOTOS semantics.
Let FA (CP) be the set of transitions associated to the first actions of P7,
and FAlo (CP) be the set of first actions constrained by a time limited offer:

FAlo (CP) =
{
ta ∈ FA (CP) tv ∈ (•ta)•

}
Ilo = •FAlo (CP)

Clatency(d)P = 〈Σlatency(d)P, LabP ∪ {(t, latency)} , Ilo ∪ {in} , OP〉
Σlatency(d)P = ΣP ∪

⋃
ta∈FAlo(CP)

〈t, pta , ta〉 ∪ 〈∅, in, ∅〉

∪
〈
{in} , (t, [0, d]), (IP\Ilo) ∪

⋃
ta∈FAlo(CP)

{pta}
〉

– CµX.(P;X) The recursion operator translation is mainly an untimed problem
(relying on fixpoint theory). It is not presented in this paper, focused on
timed aspects.

– Chide a in P is the component resulting from hiding action a in CP. Hiding
allows one to transform observable (external) actions into unobservable (in-
ternal) actions, then making the latter unavailable for synchronization with
other components. In RT-LOTOS, hiding one or several actions induces a
notion of urgency on action occurrence. Consequently, a TPN transition cor-
responding to a hidden action will be constrained by a time interval equal
to [0, 0]. This implies that as soon as a transition is enabled, it is candidate
for being fired.

7 Its formal definition can be found in Def. 2, Sect. 4.2.

Patterns applying to a set of components Each of the following patterns
transforms a set of components into one component.

CP CQ

 CP|[a]|Q

Fig. 7. Parallel synchronization pattern

CP

CQ

CP>>Q

Fig. 8. Sequential composition pattern

– CP|[a]|Q (Fig.7)
In Petri nets, a multi-way synchronization is represented by a transition with
n input places. This transition can fire only if all its input places contain a
token (cf. Fig. 2). At the PN level, the synchronization operation is achieved
through transition merging. While in untimed Petri nets, the operation of
transitions merging is straightforward, it turns to be a rather tricky issue in
Time Petri nets. Indeed, it requires explicit handling of the time intervals
assigned to the transitions to be merged. Possible incompatibility of these
time intervals leads to express global timing constraints as a conjunction of
intervals whose consistency is not guaranteed. This problem is not solved in
[14] where each transition is assigned a time interval.
To solve this problem and make transitions merging operation always pos-
sible, we avoid assigning time intervals to actions transitions. Instead, the
timing constraints are assigned to conflicting transitions (cf. time limited
offer pattern). The advantage of this solution is twofold:
1) To allow an incremental combination of timing constraints. Fig-
ure 7 depicts synchronization between two components CP and CQ on action
a. Our goal is to define a compositional framework, where each component
involved in this synchronization may add timing constraints with respect to
the occurrence of action a, such that the global timing constraint on a in
CP|[a]|Q will be the conjunction of several simpler constraints. This implies
that when component CP is ready to execute a, it is forced in the absence of
alternative actions, to wait for CQ to offer a. This may lead for example to
the expiration of a limited temporal offer on a in CP. This goal is achieved

without explicitly handling time intervals, and the synchronization is mod-
eled as a straightforward transition merging as in untimed Petri nets.
2) Relaxing the TPN’s strong semantics. In TPNs the firing of tran-
sitions is driven by necessity. Thus an action has to be fired as soon as its
upper bound is reached (except for a transition in conflict with another one).
Like process algebras in general, RT-LOTOS favors an interaction point of
view, where the actual behavior of a system is influenced by its environ-
ment. Thus, an enabled transition may fire within its enabling time window
but it cannot be forced to fire. A wide range of real-time systems work on
that principle. In particular, soft real-time systems are typical examples of
systems that cannot be forced to synchronize with their environment. This
behavior would not be possible if the actions transitions were assigned time
intervals, because their firing would be driven by necessity. To model ne-
cessity in RT-LOTOS we use the hide operator. Its combination with the
’temporal limited offering’ and the ’latency’ operators gives an interesting
flexibility in terms of expressiveness.
The synchronization on a of CP and CQ is achieved by merging each a tran-
sition in CP with each a transition in CQ, thus creating n∗m a transitions in
CP|[a]|Q (n and m being respectively the number of a transitions in CP and
CQ).
Let T a

X be the set of transitions labelled with a in CX.

T a
X = {t ∈ TX LabX(t) = a} T A

X =
⋃
a∈A

T a
X

The net ΣP|[A]|Q is obtained by replacing each transition tp in CP with label
a ∈ A by a set of transitions (tp, tq) such that tq is also labelled by a, with
•(tp, tq) = •tp ∪ •tq and (tp, tq)

• = tp
• ∪ tq

•.
A [0,∞) temporal interval is associated with the newly created transition
(cf. H5).
Note that the two components have to synchronize on exit transition to
conform to RT-LOTOS semantics. The two output interfaces are merged:
Out = {out} if OP �= ∅ ∧ OQ �= ∅, Out = ∅ otherwise.
Let us denote merge(tp, tq) = 〈•tp ∪ •tq, ((tp, tq), IS(tp)), tp• ∪ tq

•〉; A′ =
A ∪ {exit}; PreOut = T exit

P × T exit
Q if OP �= ∅ ∧ OQ �= ∅, PreOut = ∅

otherwise.

CP|[A]|Q = 〈ΣP|[A]|Q, LabP|[A]|Q, IP ∪ IQ, Out〉
ΣP|[A]|Q =

(
ΣP\T A’

P \OP

) � (
ΣQ\T A’

Q \OQ

) ∪ ⋃
tp∈T A’

P ,tq∈T A’
Q

merge(tp, tq) ∪ 〈PreOut, Out, ∅〉

LabP|[A]|Q(t) =

{
LabX(t) if t ∈ TX, X ∈ {P, Q}
a if t = (tp, tq) ∧ tp ∈ T a

P

– CP>>Q (Fig. 8) depicts a sequential composition of CP and CQ which means
that if CP successfully completes its execution then it activates CQ. This kind

of composition is possible only if CP has an output interface. The resulting
component CP>>Q is obtained by merging the output interface of CP and the
input interface of CQ, and by hiding the exit interaction point of CP.

CP>>Q = 〈ΣP>>Q, Labhide exit in P ∪ LabQ, IP, 0Q〉
ΣP>>Q = 〈PP\OP ∪ PQ, Thide exit in P ∪ TQ, P reP ∪ PreQ, PostP>>Q, ISP ∪ ISQ〉
PostP>>Q = (PostP\ {(t, OP) t ∈ •OP}) ∪ {(t, inQ) inQ ∈ IQ ∧ t ∈ •OP} ∪ PostQ

– CP[]Q (Fig. 9) is the component which behaves either as CP or CQ.
We do not specify whether the choice between the alternatives is made by
the component CP[]Q itself, or by the environment. Anyway, it should be
made at the level of the first actions in the component. In other words, the
occurrence of one of the first actions in either component determines which
component will continue its execution and which one must be deactivated.
The problem can be viewed as a competition between CP and CQ. These
two components compete to execute their first action. As long as the that
action has not yet occurred, CP and CQ age similarly, which means that T ime
transitions (labeled by tv, delay or latency) may occur in both components
without any consequence on the choice of the wining component. Once one
first action has occurred, the control is irreversibly transferred to the winning
component, the other one being deactivated, in the sense that it no longer
contains enabled transitions. The choice operator is known to cause trouble
in presence of initial parallelism. [15] defines a choice operator where each
alternative has just one initial place. Therefore, none of the alternative allows
any initial parallelism. We think that it is a strong restriction. We do not
impose any constraint on the choice alternatives.
The solution we propose to define a choice between two components is as
follows: to obtain the intended behavior, we introduce a set of special places,
called lock places. Those places belong to the input interface of component
CP[]Q. Their function is to undertake control transfer between the two compo-
nents. For each first action of CP we introduce one lock place per concurrent
first action in CQ (for instance a has one concurrent action in CQ: c, while
c has two concurrent actions in CP: a and b) and vice versa. A lock place
interacts only with those transitions representing the set of initial actions
and the time labeled transitions they are related with (delay for a and tv
for b). T ime transitions restore the token in the lock place, since they do
not represent an action occurrence, but a time progression which has not
to interfere with the execution of the other component (as long as the first
action has not occurred, the two components age similarly). The occurrence
of an initial action of CP (respectively CQ) locks the execution of CQ (re-
spectively CP) by stealing the token from the lock places related to all CQ’s
(respectively CP’s) first actions.
A unique out place is created by merging the out places of CP and CQ.

– CP[>Q (Fig. 10) is the component representing the behavior where component
CP can be interrupted by CQ at any time during its execution. It means that
at any point during the execution of CP, there is a choice between executing

Fig. 9. Choice between CP and CQ

CP [>Q

CP CQ

Fig. 10. The disrupt pattern

one of the next actions from CP or one of the first actions from CQ. For
this purpose, CQ steals the token from the shared place named disrupt
(which belongs to the input interface of CP[>Q), thus the control is irreversibly
transferred from CP to CQ (disrupt is an input place for CQ first action
and exit transition of CP, it is also an input/output place for all the others
transitions of CP). Once an action from CQ is chosen, CQ continues executing,
and transitions of CP are no longer enabled.

4.3 Formal proof of the translation consistency

We prove that the translation preserves the RT-LOTOS semantics and that
the defined compositional framework preserves the good properties (H1–H5) of
the components. This is done by induction: assuming that some components
C1, ..., Cn are respectively equivalent to some RT-LOTOS terms T1, ..., Tn, and
given a RT-LOTOS operator Op, we prove that the pattern applied to C1, ..., Cn

gives a component which is equivalent to the term Op(T1, ..., Tn) (the behavior
over time must be accounted for).

The proof is carried out in two steps:

– we first define a more informative RT-LOTOS semantics, which does not
introduce any new operation, but explicitly acquaints the occurrence of time-
events. A time-event represents the expiration of an RT-LOTOS temporal
operator. As an illustration, let us consider the rule of the limited offering
as it appears in the original semantics of RT-LOTOS. In the following rule,
any delay d′ > d will silently transform a process a{d};P into stop.

a{d};P d′−→ stop (1)

In the augmented RT-LOTOS semantics, a ”tv” transition is introduced to
denote the limited offer expiration (cf 2).

a{d};P d−→ a{0};P tv−→ stop
d′−d−−−→ stop (2)

A delay d′ > d is of course still allowed from a{d};P, but it is splited into
three steps: a delay d, a “temporal violation” (tv), and a delay d′ − d.
it is easy to define a branching bisimulation8 which abstracts from the oc-
curence of the newly added time-event transitions and show that the new
semantics of RT-LOTOS is branching bisimilar to the original semantics of
RT-LOTOS.

– We then prove that the semantic model of the components is strongly timed
bisimilar to this more informative RT-LOTOS semantics. Intuitively an RT-
LOTOS term and a component are timed bisimilar [16] iff they perform the
same action at the same time and reach bisimilar states. For each opera-
tor, we prove that, from each reachable state, if the occurrence of a time
progression (respectively an action) is possible in an RT-LOTOS term, it
is also possible in its associated component, and conversely. Therefore, we
ensure that the translation preserves the sequences of possible actions but
also the occurrence dates of these actions. It is worth to mention that dur-
ing the execution of a component the structure of the encapsulated TPN
remains the same; only the markings are different, while the structure of an
RT-LOTOS term may change through its execution. As a result, the TPN
encapsulated in a component may not directly correspond to an RT-LOTOS
behavior translation but is strongly bisimilar with a TPN which does corre-
spond to an RT-LOTOS expression translation (The same TPN and current
state without the unrechable structure).

Let us illustrate the template of the proof on the parallel synchronization.

Notation A paragraph starting with R−→ proves that each time progression which
applies to the RT-LOTOS term is acceptable in its associated component. Con-
versely, R←− denotes the opposite proof. Similarly a−→ and a←− are used for the proof
on actions occurrences.

Proof of the synchronization pattern (Fig. 7)

R−→: A time progression is acceptable in CP|[A]|Q iff it is acceptable for each
enabled transition.
By construction, TP|[A]|Q = (TP\T A’

P)∪ (TQ\T A’
Q)∪E, with E the set of newly

created transitions: E =
⋃

tp∈T A’
P ,tq∈T A’

Q
merge(tp, tq).

8 Our temporal branching bisimulation looks like the weak bisimulation of CCS which
abstracts the internal actions. The difference with ours is that the time-event tran-
sitions do not resolve the choice and the disabling contrary to the internal actions
of CCS.

Let t be an enabled transition of CP|[A]|Q.
If t is in (TP\T A’

P), by construction this time progression is acceptable for t
since its initial timing constraint in CP has not been changed, and it is not
involved in the synchronization. The same applies if t is in (TQ\T A’

Q).
If t is in E, we show that Lab(t) �= exit. Let us assume that Lab(t) = exit.
By construction, it exists tp and tq such that t = (tp, tq) and Lab(tp) =
Lab(tq) = exit. exit is a special urgent action (cf. H5), its execution is
enforced as soon as it is enabled. By construction •t = •tp ∪ •tq: if t is
enabled, then tp is enabled in CP and tq is enabled in CQ. The enabling of
tp and tq precludes any time progression. By induction, it precludes time

progression in P and Q and then in P|[A]|Q (� R−→).
From H5, we have that all non exit transitions in E are associated with a
time interval equal to [0,∞). Therefore, time progression is also acceptable
in CP|[A]|Q.

R←−: The proof is similar to R−→.
a−→: Assuming P|[A]|Q

a−→, is this action acceptable for CP|[A]|Q?
Two cases must be discussed: either action a is a synchronization action
between P and Q (a ∈ A’), or it is not.
Case a∈A’: A synchronization action a is possible in P|[A]|Q iff it is pos-

sible in P and in Q. By induction, it exists transitions tp and tq labelled
by a firable in CP and in CQ.
That is to say, marking •pt ⊆ MP, and the same for Q. By construction,
we have •(tp, tq) = •tp ∪ •tq, then the marking MP|[A]|Q enables (tp, tq).
After the firing, the marking of CP|[A]|Q can be seen as the union of the
one of CP’ and CQ’ because (tp, tq)

• = tp
• ∪ tq

•.
Case a/∈A’: If action a occurs in P|[A]|Q it either is an action of P or an

action of Q. By induction hypothesis, it is either a firable transition in
CP or in CQ. Since this transition is not modified in CP|[A]|Q, it is firable
in CP|[A]|Q.

a←−: Similarly to a−→.

5 Tools and experiments

5.1 Tools

RTL. The Real-Time LOTOS Laboratory developed by LAAS-CNRS [17], takes
as input an RT-LOTOS specification and generates either a simulation trace or
a reachability graph. RTL generates a minimal reachability graph preserving the
CTL9 properties.

TINA. (TIme petri Net Analyzer [3]) is a software environment to edit and
analyze Petri nets and Time Petri nets.

TINA offers various abstract state space constructions that preserve specific
classes of properties of the concrete state space of the nets. Those classes of
9 Computational Tree Logic

properties include general properties (reachability properties, deadlock freeness,
liveness), and specific properties.

RTL2TPN. is a translator prototype, which implements the translation pattern
of Sect. 4. It takes as an input an RT-LOTOS specification and outputs a TPN in
the format accepted by TINA. RTL2TPN reuses RTL’s parser and type-checker.

5.2 Case studies

Fig. 11. RT-LOTOS specification of the Multimedia scenario

Multimedia scenario. The author of this multimedia scenario wants to present
3 medias named A, B and C, respectively. The duration of these medias are
respectively defined by the following time intervals [3,6], [3,5] and [3,8]. This
means that the presentation of the media A will last at least 3 sec and at most
6 sec. From the author’s point of view, any duration of the media presentation
is acceptable, as long as it belongs to the specified time interval. Besides, the
author expresses the following global synchronization constraints:

1) The presentation of medias A and B must end simultaneously.
2) The presentation of medias B and C must start simultaneously .
3) The beginning of the multimedia scenario is determined by the beginning

of A and its termination is determined by the end of A and B, or by the end of
C (cf Fig. 12(a)).

Fig. 12(b) depicts the associated TPN generated by RTL2TPN. For this
example TINA builds a graph of 230 classes and 598 transitions.

The scenario is potentially consistent because it exists a path starting by
action sA (sA characterizes the beginning of the scenario) and leading to the
end of scenario presentation (occurrence of either eAB or eC).

Dinning philosophers. We use one well known multi-process synchronization
problem: the Dinning philosophers to check the robustness of the solutions pro-
posed in the paper while facing a state explosion situation. We propose a timed
extension of the problem which goes like this: A certain number of philosophers,

(a) The MM constraints .44

(b) The component

sitting around a round table spend their lives thinking and eating. Each of them
has in front of him a bowl of rice. Between each philosopher and his neighbor is
a chopstick. Each philosopher thinks for a while, then gets hungry and wants to
eat. In order to eat, he has to get two chopsticks. Once a philosopher picks his
left chopstick, it will take him between 0 and 10 seconds to take the right one.
Once he possesses two chopsticks, he can begin eating and it will take him 10 to
1000 seconds10 to finish eating, then he puts back down his left chopstick and
the right one in a delay between 0 to 10 seconds.

Fig. 12. RT-LOTOS specification of the dinning philosophers

The RT-LOTOS specification of the problem consists in the parallel syn-
chronization of different instances of processes Philosopher and Chopstick11 (cf
Fig 12).

10 delay and latency may be expressed together by a single syntactic construct de-
lay(dmin, dmax)meaning delay(dmin)latency(dmax-dmin)

11 All the experiments described in this paper have been performed on a PC with 512
Mo memory and a processor at 3.2 GHz.

Timed Milner scheduler. This is a temporal extension of Milner’s scheduler prob-
lem [18]. The interesting point about this example is that the timing constraints
as introduced in the system, do not increase the state space (compared to the
untimed version of the problem). However they complicate the computation of
the system’s state space.

Fig. 13. RT-LOTOS specification of the timed Milner scheduler

Let us consider a ring of n process called Cyclers. A Cycler should cycle
endlessly as follows: (i) Be enabled by predecessor at gi, (ii) after a non deter-
ministic delay between 0 and 10 units of time, receive initiation request at ai,
(iii) after a certain amount of time between 10 and 100 units of time, it receives
a termination signal at bi and enables its successor at gi+1(in either order).

Table 1. Performance comparison of RTL2TPN+TINA vs RTL

The reachability algorithm implemented in RTL is exponential in number of
clocks. As the number of philosophers (respectively Cyclers) grows RTL does

not challenge TINA’s runtime performances. However the size of state space
generated by RTL for the RT-LOTOS specifications is more compact than the
one generated by TINA for the associated TPNs issued by RTL2TPN. This is due
to a useful but however expensive minimization procedure carried out in RTL.
This minimization adapted from [19] permits to consider regions larger than the
ones required from a strict reachability point of view, thereby minimizing the
number of regions.

6 Related work

Much work has been done on translating process algebras into Petri Nets, by
giving a Petri net semantics to process terms [20, 15, 21]. [21] suggests that a
good net semantics should satisfy the retrievability principle, meaning that no
new ”auxiliary” transitions should be introduced in the reachability graph of
the Petri net. [20, 15] do not satisfy this criterion. In this paper, we define a
one-to-one mapping which is compliant with this strong recommendation.

Untimed models A survey of the literature indicates that proposals for LOTOS
to Petri net translations essentially deal with the untimed version of LOTOS
[22–27]. The opposite translation has been discussed by [26] where only a subset
of LOTOS is considered, and by [28] where the authors addressed the transla-
tion of Petri nets with inhibitor arcs into basic LOTOS by mapping places and
transitions into LOTOS expressions. [25] demonstrated the possibility to verify
LOTOS specifications using verification techniques developed for Petri nets by
implementing a Karp and Miller procedure in the LOTOS world.

Among all these approaches, [22, 27] is the only one operating a complete
translation of LOTOS (it handles both the control and data parts of LOTOS).
Moreover, it just considers regular LOTOS terms, and so do we. The LOTOS
to PN translation algorithms of [22, 27] were implemented in the CAESAR tool.
Besides the temporal aspects addressed in this paper, a technical difference with
[22, 27] lies in the way we structure TPNs. Our solution is based on TPNs com-
ponents. In our approach, a component may contain several tokens. Conversely,
[22, 27] structures Petri nets into units, each of them containing one token at
most. This invariant limits the size of markings, and permits optimizations on
memory consumption. The counterpart is that [22, 27] use ε-transitions. The
latter introduces non determinism. They are eliminated when the underlying
automaton is generated (by transitive closure). The use of ε-transitions may be
inefficient in some particular cases, such as the example provided in [29].

The major theoretical study on taking advantage of both Petri nets and
process algebras is presented in [12]. The proposed solution is Petri Box Calculus
(PBC), a generic model that embodies both process algebra and Petri nets. The
authors start from Petri nets to come up with a CCS-like process algebra whose
operators may straightforwardly be expressed by means of Petri nets.

Timed models [30] pioneered work on timed enhancements of the control part of
LOTOS inspired by timed Petri nets models. [31] defined a mapping from TPNs
to TE-LOTOS which makes it possible to incorporate basic blocks specified as
1-bounded TPNs into TE-LOTOS specifications. However, because of the strong
time semantics of TPNs (a transition is fired as soon as the upper bound of its
time interval is reached unless it conflicts with another one) a direct mapping
was not always possible.

A Timed extension of PBC has been proposed in [14]. Although the compo-
nent model proposed in this paper is not a specification model but an intermedi-
ate model used as gateway between RT-LOTOS and TPNs, we find it important
to compare our work with [14].

Of prime interest to us is the way [14] introduces temporal constraints in
his framework by providing each action with two time bounds representing the
earliest firing time and latest firing time. This approach is directly inspired by
TPNs, where the firing of actions is driven by necessity. However, a well known
issue with this strategy is that it is badly compatible with a compositional and
incremental building of specifications. The main difficulty is to compose time
intervals when dealing with actions synchronization. The operational semantics
of [14] relies on intervals intersection to calculate a unique time interval for a
synchronized transition. However, this approach is not always satisfactory (see
[13]).

7 Conclusion

Search for efficiency in RT-LOTOS specification verification is the main moti-
vation behind the work presented in this paper. We propose a transformational
approach between RT-LOTOS, which is a compositional FDT, and Time Petri
Nets, which are not. The semantics of the two FDTS are compared. In order
to bridge the gap between RT-LOTOS and TPNs, the latter are embedded into
components that may be composed. RT-LOTOS-to-TPN translation patterns
are defined in order to match the RT-LOTOS composition operators. The trans-
lation has been formally proved to be semantics preserving. The patterns have
been implemented in a prototype tool which takes as input an RT-LOTOS spec-
ification and outputs a TPN in a format that may be processed by TINA [3].
The benchmarks provided in Section 6 demonstrate the interest of the proposed
approach.

One major contribution of the paper is to give RT-LOTOS an underlying
semantics expressed in terms of TPNS and to clarify the use of RT-LOTOS
operators, in particular the latency operator. Discussion in this paper is never-
theless limited to the control part of the RT-LOTOS FDT defined in [2]. We
have recently extended our work to the data part of RT-LOTOS. RT-LOTOS
specifications will be translated into the new format supported by TINA: Pred-
icates/Actions Time Petri nets. The latter enhance the modelling capabilities
of TPNs with global variables associated with the nets together with predicates
and actions associated with transitions.

The verification approach developed for RT-LOTOS is being adapted to
TURTLE, a real-time UML profile based on RT-LOTOS. We thus expect to
develop an interface between the TURTLE toolkit [32] and TINA.

References

1. ISO - Information processing systems - Open Systems Interconnection: LOTOS
- a formal description technique based on the temporal ordering of observational
behaviour. ISO International Standard 8807:1989, ISO (1989)

2. Courtiat, J.P., Santos, C., Lohr, C., Outtaj, B.: Experience with RT-LOTOS, a
temporal extension of the LOTOS formal description technique. Computer Com-
munications 23(12) (2000)

3. Berthomieu, B., Ribet, P., Vernadat, F.: The TINA tool: Construction of abstract
state space for Petri nets and time Petri nets. Int. Journal of Production Research
42(14) (2004)

4. Milner, R.: Communications and Concurrency. Prentice Hall (1989)
5. Hoare, C.: Communicating Sequential Processes. Prentice-Hall (1985)
6. Courtiat, J.P.: Formal design of interactive multimedia documents. In H.Konig,

M.Heiner, A., ed.: Proc. of 23rd IFIP WG 6.1 Int Conf on Formal Techniques for
Networked and distributed systems (FORTE’2003). Volume 2767 of LNCS. (2003)

7. Courtiat, J.P., de Oliveira, R.: On RT-LOTOS and its application to the formal
design of multimedia protocols. Annals of Telecommunications 50(11–12) (1995)
888–906

8. Merlin, P.: A study of the recoverability of computer system. PhD thesis, Dep.
Comput. Sci., Univ. California, Irvine (1974)

9. Merlin, P., Faber, D.J.: Recoverability of communication protocols. IEEE Trans-
actions on Communications COM-24(9) (1976)

10. Berthomieu, B., Menasche, M.: Une approche par énumération pour l’analyse des
réseaux de Petri temporels. In: Actes de la conférence IFIP’83. (1983) 71–77

11. Berthomieu, B., Diaz, M.: Modeling and verification of time dependant systems
using Time Petri Nets. IEEE Transactions on Software Engineering 17(3) (1991)

12. Best, E., Devillers, R., Koutny, M.: Petri Net Algebra. Monographs in Theoretical
Computer Science: An EATCS Series. Springer-Verlag (2001) ISBN: 3-540-67398-9.

13. Sadani, T., Boyer, M., de Saqui-Sannes, P., Courtiat, J.P.: Effective representation
of regular RT-LOTOS terms by finite time petri nets. Technical Report 05605,
LAAS/CNRS (2006)

14. Koutny, M.: A compositional model of time Petri nets. In: Proc. of the 21st Int.
Conf. on Application and Theory of Petri Nets (ICATPN 2000). Number 1825 in
LNCS, Aarhus, Denmark, Springer-Verlag (2000) 303–322

15. Taubner, D.: Finite Representations of CCS and TCSP Programs by Automata
and Petri Nets. Number 369 in LNCS. Springer-Verlag (1989)

16. Yi, W.: Real-time behaviour of asynchronous agents. In: Proc. of Int. Conf on
Theories of Concurrency: Unification and Extension (CONCUR). Volume 458 of
LNCS. (1990)

17. RT-LOTOS: Real-time LOTOS home page. (http://www.laas.fr/RT-LOTOS/)
18. Milner, R.: A calculus of communication systems. Volume 92 of LNCS. (1980)
19. Yannakakis, M., Lee, D.: An efficient algorithm for minimizing real-time transition

system. In: Proc. of f the Conf. on Computer-Aided Verification (CAV). Volume
697 of LNCS., Berlin (1993)

20. Goltz, U.: On representing CCS programs by finite Petri nets. In: Proc. of Int.
Conf. on Math. Foundations of Computer Science. Volume 324 of LNCS. (1988)

21. Olderog, E.R.: Nets, Terms, and formulas. Cambridge University Press (1991)
22. Garavel, H., Sifakis, J.: Compilation and verification of LOTOS specifications.

In Logrippo, L., et al., eds.: Protocol Specification, Testing and Verification, X.
Proceedings of the IFIP WG 6.1 Tenth International Symposium, 1990, Ottawa,
Ont., Canada, Amsterdam, Netherlands, North-Holland (1990) 379–394

23. Barbeau, M., von Bochmann, G.: Verification of LOTOS specifications: A Petri
net based approach. In: Proc. of Canadian Conf. on Electrical and Computer
Engineering. (1990)

24. Larrabeiti, D., Quelmada, J., Pavón, S.: From LOTOS to Petri nets through expan-
sion. In Gotzhein, R., Bredereke, J., eds.: Proc. of Int. Conf. on Formal Description
Techniques and Theory, application and tools (FORTE/PSV’96). (1996)

25. Barbeau, M., von Bochmann, G.: Extension of the Karp and Miller procedure to
LOTOS specifications. Discrete Mathematics and Theoretical Computer Science
3 (1991) 103–119

26. Barbeau, M., von Bochmann, G.: A subset of LOTOS with the computational
power of place/transition-nets. In: Proc. of the 14th Int. Conf. on Application and
Theory of Petri Nets (ICATPN). Volume 691 of LNCS. (1993)

27. Garavel, H., Lang, F., Mateescu, R.: An overview of cadp 2001. European Asso-
ciation for software science and technology (EASST) Newsletter 4 (2002)

28. Sisto, R., Valenzano, A.: Mapping Petri nets with inhibitor arcs onto basic LOTOS
behavior expressions. IEEE Transactions on computers 44(12) (1995) 1361–1370

29. Sadani, T., Courtiat, J., de Saqui-Sannes, P.: From RT-LOTOS to time Petri nets.
new foundations for a verification platform. In: Proc. of 3rd IEEE Int Conf on
Software Engineering and Formal Methods (SEFM). (2005)

30. Bolognesi, T., Lucidi, F., Trigila, S.: From timed Petri nets to timed LOTOS.
In: Protocol Specification, Testing and Verification X (PSTV), Proceedings of the
IFIP WG6.1 Tenth International Symposium on Protocol. (1990) 395–408

31. Durante, L., Sisto, R., Valenzano, A.: Integration of time Petri net and TE-LOTOS
in the design and evaluation of factory communication systems. In: Proc. of the
2nd IEEE Workshop on Factory Communications Systems (WFCS’97). (1997)

32. Apvrille, L., Courtiat, J.P., Lohr, C., de Saqui-Sannes, P.: TURTLE : A real-
time UML profile supported by a formal validation toolkit. IEEE Transactions on
Software Engineering 30(4) (2004)

