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Abstract: Real-time embedded architectures consist of software and hardware parts. Meeting 

non-functional constraints (e.g., real-time constraints) greatly depends on the mappings from the 
system functionalities to software and hardware components. Thus, there is a strong demand for 
precise architecture and allocation modeling, amenable to performance analysis.  

The report proposes a model-driven approach for the assessment of the quality of allocations 
of the system functionalities to the architecture. We consider two technical domains: the UML 
domain for the definition of the model elements (for both description and analysis), and an 
analysis domain, external to UML, used for formal verification. This report defines three meta-
models—one for each domain—and provides automated transformations within and between 
these domains. A special attention is then paid to temporal property analysis, based on a particu-
lar analysis model: the Modular and Hierarchical Time Petri Nets.  
 

Keywords: Model transformation, UML2.0, Non-functional property analysis, Distributed  em-
bedded systems, Time Petri Net. 
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UML2.0 et Transformation de Modèles pour l’Analyse 

de Propriétés non Fonctionnelles 
 

 

Résumé: Les architectures embarquées sont composées de parties logicielles et matérielles. Le 
respect des contraintes non fonctionnelles, telles que les contraintes temporelles, dépend gran-
dement de la projection des fonctionnalités du système sur des composants qui peuvent être ma-
tériels ou logiciels. Aussi existe-t-il une forte demande des concepteurs pour modéliser précisé-
ment l’architecture et l’allocation et faire ensuite de l’analyse de performance. Ce papier pro-
pose une approche orientée modèle pour évaluer la qualité de l’allocation des fonctionnalités sur 
l’architecture. Deux domaines techniques sont considérés: le domaine UML pour la définition 
des éléments du modèle (de description et d’analyse), et le domaine d’analyse, externe à UML 
utilisé pour la vérification formelle. Ce rapport définit trois méta-modèles, pour chacun des do-
maines, et propose les règles de transformations entre modèles. Une attention particulière est 
portée sur l’analyse des propriétés temporelles en se basant sur le modèle des réseaux de Petri 
temporisés hiérarchiques et modulaires  
 
 

Mots clés: Transformation de Modèles, UML 2.0, Analyse de propriétés non fonctionnelles, 
systèmes embarqués répartis, Réseaux de Petri temporels. 
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1 Introduction 
Real-time embedded architectures consist of software and hardware parts. Meeting non-
functional constraints (e.g., real-time constraints) greatly depends on the mappings from the 
system functionalities to software and hardware components. Such a mapping—here called allo-
cation—includes temporal scheduling as well as spatial partitioning and communication synthe-
sis aspects. Thus, there is a strong demand for precise architecture and allocation modeling, 
amenable to performance analysis and that captures the heterogeneous nature of architectures 
and applications. 
This report addresses this problem and describes a model-based solution with a special focus on 
allocation and its impact on system operational properties. This implies defining domains, their 
associated metamodels and transformations. UML 2.0 [1] with its extension capabilities (pro-
files) is a good candidate for modeling. For real-time embedded applications—such as data and 
image processing, and automatic control—functionality and expected behavior are often speci-
fied by data flow models. This justifies our choice of the UML 2.0 activities for behavioral 
modeling. On the other hand, SysML [2][3] has introduced two concepts: block and allocation. 
A block is a modular unit that may include both structural and behavioral features. The term 
allocation denotes the organized mapping of elements within the various structures and hierar-
chies of a user model. The Deployment concept supported by UML is a special case of alloca-
tion.   
In our proposal, we reuse a subset of UML 2.0 and we provide extensions, often inspired from 
SysML. UML activities are extended to support the synchronous reactive model of computa-
tion [4] that is suitable for the kind of real-time applications we target: applications with pre-
dictable inputs, quasi periodic and where the use of a real-time operating system is forbidden by 
the small amount of resources available. UML activities enriched with allocation information 
are then transformed into a block-based model convenient for our property verification mecha-
nisms. Both models are defined by a metamodel that specifies well-formedness rules. Structural 
transformation rules are also provided. Thus, from a behavioral description of the application 
and information on the architecture and the potential deployments of operations, an analysis 
model can be automatically derived, by model transformations. In this report, several intermedi-
ate models are given for illustrative purpose. Most of them are purely internal representations, 
automatically generated by a chain of transformations. They should be used only by tools, and in 
no case drawn by the user. 
The semantics of the final model is beyond the scope of the UML. In this report, since timing 
properties are studied, we have chosen Time Petri Nets. The model interpretation and the prop-
erty verification techniques applied are relevant to the Petri Net Domain [5]. This domain is 
mathematically well-founded and dedicated property-checking tools are widely available. 
 
Related works 

Some aim at giving a more precise semantics to UML. The standard semantics of UML such as 
explained by Selic [6] is very general even though there were some attempts to give a more pre-
cise semantics [7]. When addressing a specific domain, a subset of UML is often sufficient but 
may require a formal semantics. For instance, in the UML specification, activities use an infor-
mal semantics inspired from Petri-Net. A formal definition of the semantics of the activities in 
terms of Petri-nets has been proposed [8] by introducing one-to-one structural transformations. 
When considering time behavior, the model needs further extensions. Such is the TURTLE 
(Timed UML and RT-LOTOS Environment) approach [9]. It proposes the expression of temporal 
requirements through extended UML2.0 interaction and sequence diagrams. TURTLE is specific 
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to real-time embedded systems design and provides a formal framework based on the RT-LOTOS 

language. The automatic generation of RT-LOTOS code allows for formal analysis of this design 
by using the RTL tools.  

The standardization of domain-specific extensions for UML has to follow a profile submission 
process. For instance, in the domain of real-time systems, the UML profile for Schedulability, 
Performance and Time defines standard paradigms of use for modeling of time, schedulability 
and time-related aspects [10]. This profile is being revised and should be merged into some fu-
ture extensions [11]. 

In this report, we attempt to define a mapping for a restricted-class of activity diagrams to Time 
Petri Nets. We do not aim at specifying a full simulation semantics for the activity but rather to 
provide a support for verifying non functional properties (like deadline information) on activi-
ties. Hence, as an example, we provide one-to-many transformation rules that only capture the 
temporal information extracted from the activity diagram and according to some allocation con-
straints. Other non functional properties would induce other transformation rules.  

The report structure reflects the chain of modeling and transformations. Section 2 presents an 
application specification. The next section introduces specialized UML activities for the behav-
ioral modeling and data flow representation. Section 4 defines our analysis metamodel and the 
transformation from activities to structure; the resulting model is annotated with information 
about potential allocations. Section 5 is devoted to an original property-checking technique: 
timing properties studied by the automatically derived Time Petri nets. 

2 Application Specification  

2.1 Algorithm/Architecture 

This example is a simplified version of a control and signal processing application. Operations 
stand for complex atomic data processing. This is a TLM (Transaction Level Model [12]) de-
scription where an operation may be an IP (Intellectual Property) such as an FFT, a convolution, 
a filtering… Usually these applications are executed in a cyclic and periodic way. During a cy-
cle, sensors are read, operations are performed and outputs are issued.  
This application consists of 4 input signals (M, A, B, C, from sensors), 3 output signals (W, Y, 
Z, to actuators) and 3 operations (oper1 to oper3). From the functional point of view, the system 
may operate in two modes (M1, M2) selected by the input M. Each mode is specified by a data 
flow model. A functional specification of the expected behavior is:  
 

1( )
if   1

2( )

3( 1( ), 2( )) otherwise

W oper C
M M

Z oper C

Y oper oper A oper B

= 
== 

=
 

The execution platform is given: 2 processors (P1 and P2) connected by a bidirectional channel. 
This example is often used as an illustration of the SynDEx AAA methodology [13] that focuses 
on the adequation between algorithm and architecture (timeliness and optimization). Even 
though the goal is the same, our approach is different because it follows the MDA (Model 
Driven Architecture) flow suggested by the OMG and use an UML activity as an input while 
SynDEx use its own  format. We rely on UML 2.0, existing profile (Schedulabitity, Perform-
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ance, and Time specification: SPT [10]) and forthcoming profiles (system engineering [14], 
Marte [11]).  

2.2 Non functional constraints 

Various non functional constraints are imposed. Deadline is such a constraint (a period of 40 
time units, equal to the deadline): whatever the mode, all operations must be executed within 
this deadline. Other constraints are related to deployment: some processing elements have fixed 
location; others have to be mapped onto physical resources so that real-time constraints are met.  
 

 

Figure 1: Execution durations for processing elements. 

With the knowledge of the performances of the platform elements (processors and channels), a 
cost specification can be associated with pairs “processing, processor”, and “communication, 
channel”. For instance, the cost can be an execution time characterized by a time interval, possi-
bly reduced to a single value as in Figure 1. Additional allocation constraints can be specified 
such as uniqueness of deployment, expressed by the uniqueAllocation attribute. In our example, 
oper2 is potentially deployable on P1 or P2, but since uniqueAllocation is true, we may choose to 
allocate oper2 either on P1 or P2, but not both. 
Note that, in Figure 1 inpX (outpX) stands for the acquisition (actuation) processing of signal X. 
 

 

Figure 2: Execution durations for communication elements. 
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Inter processor communications have a duration that depends on the type of transmitted data 
(Figure 2, left-hand side). More generally, several channels (e.g., Ethernet and WiFi) may exist 
between two processors, associated with different costs (Figure 2, right-hand side). The commu-
nications may even be dissymmetric (e.g., ADSL where upstream and downstream communica-
tion costs are different). 

3 Data flow representation 

In UML 1.x activity graphs were just an informal specialization of state machines. Such a repre-
sentation was not convenient for systems engineers. To address this issue, explicit representation 
of data and control flows has been introduced through activity diagrams. Now, in UML 2.0, 
activities are first class concepts with their own diagrams. The semantics of activities is large 
enough to cover several domain-specific interpretations [6]. A more precise semantics can be 
given in profiles using the semantics variation points. In our case, the semantics is implied by 
the systematic structural transformations performed that lead to a mathematically well-founded 
model, the Time Petri nets.   
An activity is a UML behavior. It specifies a partial ordering of executions of subordinate be-
haviors, using control and data flow models. Activity diagrams support hierarchical description; 
subordinate behaviors are individual elements (actions) that can be invocation actions or struc-
tured activity nodes. The UML::Activities package consists of many packages. In order to provide 
automated transformations, we do not support all the activity model elements and constructs. 
Moreover, since our activities represent synchronous reactions, we consider only acyclic activi-
ties. These kinds of restrictions can be imposed by stereotyping. So, we define «sActivity», a 
stereotype of Activity. 

 

Figure 3: Activity Diagram (top-level). 

Figure 3 represents the application activity at the top level. Modes are selected by a Decision-

Node. A DecisionInput is a behavior attached to a decision node, which selects one of its outgoing 
edges.  
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Figure 4 : Refinement of the DecisionInput. 

 

The decision node is refined into an invocation action (decision), defined by its own activity 
diagram ( 
Figure 4). Here, an action is a UML CallBehaviorAction that directly invokes a behavior. In our 
approach, the behavior is either elementary (e.g., isEqual, and thus specified by an elementary 
operation given in a table, see Figure 1) or further refined as an activity diagram (e.g., isE-

qualM1). 
Access to information demands special actions, which can be resource and time consuming. We 
explicitly represent these accesses using two stereotypes of CallBehaviorAction: CallReadData for 
inputs and CallWriteData for outputs. They are defined in  
Figure 5. The “which” stereotype attribute refers to the entity that conveys the value. This is a 
constant reference, not implying any object flow, and assigned to a ValuePin. 

 

Figure 5: Data Access Stereotypes. 

Actions M1 and M2 are call behavior actions, specified in separate activity diagrams. Activity M1 
is described in Figure 6 and M2 in Figure 7. 
 

 

Figure 6: Activity Diagram (Mode M1). 
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Figure 7: Activity Diagram (Mode M2). 

Since activities are behaviors, their instances are UML executions. To be able to perform formal 
property verifications on our model we need a more precise semantics. We use a synchronous 
semantics such as defined in synchronous languages. This semantics is well adapted to the kind 
of applications we focus on.. This choice requires this approach to be restricted to applications 
with deterministic executions or at least to applications for which a valid deterministic behavior 
can be derived. A synchronous system evolves in a sequence of non overlapping reactions in a 
lock-step manner. A typical synchronous execution scheme consists of a read phase (input ac-
quisitions), a computation phase and finally, a write phase (actuation). The sequence of these 
three phases is called a reaction and must be performed in isolation. Moreover a synchronous 
execution is finite, it is loop-free and deterministic. Details about synchronous execution seman-
tics are beyond the scope of this report (see [15]). An important consequence of the synchronous 
execution hypothesis is that an SActivity diagram is a Directed Acyclic Graph (DAG). 

4 From Data flow to Structure 

Activity diagram focuses on the execution with a strong flow flavor and applies well to engi-
neering systems. An activity expresses what to do but little where to do it. Furthermore an activ-
ity is not very well suited to represent communications. Activity partitions (and swimlanes) are 
helpful in indicating responsibilities in a system. They could also be used to indicate where ac-
tions take place. However, this approach is not convenient to express multiple potential alloca-
tions. A block-based description is a better solution. SysML has adopted such a point of view 
with its blocks (formerly named assemblies). A block diagram is a modular description that 
combines both structure and (data and control) flows.  
As communication is essential in distributed systems, we choose to reify it as a specialized 
communication block, thus making explicit communication media induced by the distribution. 
This departs from the classical representation of communication as activity edge in activity dia-
grams, or as connector in composite structure diagrams. We propose an analysis model made of 
blocks and allowing for modular descriptions. This facilitates automated transformations and 
reuse of components from libraries.  
In what follows, the diagrams that illustrate the model transformations are not to be drawn by 
the user. They are just diagrammatical representations of an XMI file used by tools. 

4.1 Analysis Metamodel 

Figure 8 contains the Analysis metamodel. Analysis blocks are UML structured classes that own 
analysis ports (a stereotype of UML ports). Ports are connected by UML connectors. An analy-
sis port is either an input port or an output port (according to the value of its direction attribute). 
An analysis model is made of processing blocks; one of them is the top. A processing block is a 
flat assembly of nodes: elementary processing nodes, control nodes, and reference nodes. Even 
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if a processing block is a flat representation, the model allows for hierarchical descriptions 
through the use of references. Note that an analysis block owns analysis ports, not standard 
ports, what is expressed by the required constraint on the extension association. The observer 
nodes mentioned in the AnalysisModel package are associated with properties. They instrument 
analysis models and are used in Section 5. 

 

 

Figure 8: Analysis metamodel. 

4.2 Structural Transformation 

Figure 9 represents a processing block automatically generated from the top-level activity 
(named application). It results from the model transformation described below. ibd stands for 
internal block diagram, phrase borrowed from SysML. 
Thanks to the limitations imposed to activity models (SActivity), the transformation from Activ-
ity into Analysis models is one-to-one for most of model elements (Table 1). In this table, Scat-
ter and Gather are subclasses of AnalysisModel::ControlNode. They have an attribute named 
mode taking values in {or, and}. The type Ctrl is a predefined type, standing for control. There 
are the block counterparts of fork, decision, join and merge nodes. 
 

 
Activity model element Analysis model element 
SActivity ProcessingBlock 
ActivityEdge Connector 
Fork, Decision Scatter 
Join, Merge Gather 
InitialNode AnalysisPort {type=Ctrl} 
ActivityParameterNode AnalysisPort 

Table 1: Model element transformation. 

Some model elements require adding explicit communications. Communications are represented 
as a subclass of ElementaryProcessingNode named CommunicationNode. In processing block dia-
grams, communications are drawn as pipes. Communications must explicitly appear when they 
may have a cost. To avoid duplication, communications are systematically inserted before the 
use of the item flow by a processing element, represented as a subclass of ElementaryProcessing-

Node named ProcessingNode. 
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An elementary operation is transformed into a ProcessingNode (denoted «pn»), preceded by a 
communication for each of its input ports. Other operations, whose behavior is defined in a 
separate activity diagram, are transformed into reference nodes (denoted «refn» and drawn with a 
dashed outline). No communication is inserted for a ReferenceNode. Its ports are virtual (the is-

Virtual attribute is asserted) and communication costs are paid only when used by processing 
nodes defined within the referenced processing block. 
An ActivityFinalNode also needs a special transformation. It is always translated into an output 
control analysis port. A communication is inserted only for the top-level processing block.  
 
Remark 1: To sum up, communications are present only before processing nodes, and before 
the output port of the top-level processing block. 
 
Remark 2: An SActivity diagram is a directed acyclic graph. Our transformation preserves 
directedness that is manifested by port direction, and acyclicity. Therefore, an ibd can be consid-
ered as a DAG. 
 
Figure 9 and Figure 10 illustrate this transformation for the top-level activity (named applica-
tion), and for activity M1 (M2 is similar and has been omitted). Remind that these diagrams are 
not to be drawn by the user. There are just diagrammatical representations of XMI files used by 
tools. 

 

Figure 9: Processing Block (top-level) 

 

Figure 10: Processing Block (M1). 

4.3 Potential Allocation 

Processing and communication costs are related to a pair “elementary processing element, host”. 
A host can be either a processor or a channel. In our metamodel (Figure 11), this is represented 
as an association class named PotentialAllocation. An elementary processing node, associated with 
an elementary operation, can be potentially deployed onto several targets. This target is a set of 
processors represented by the pTgt association end. For instance, oper3 can be deployed on proc-
essors P1 or P2. Respective costs are given in tables from Figure 1. Analysis ports are associated 
with a set of potential allocations on processors (i.e., a set of sets of processors). The cost asso-
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ciated with a processing block results from a semantic transformation that propagates allocation 
information. This process is explained below. 
 

AnalysisPort

 uniqueAllocation:Boolean=false

ElementaryProcessingNode

UML::CompositeStructures

::StructuredClasses

::Class

 concurrencyDegree:Integer=1

Host

+/target

{union}

+/source

{union}
*

*

PotentialAllocation

CostSpecification

cost

*

1

UML::Classes::

Kernel::ValueSpecifcation

{ inv: 

if source.isCommunication then

         oclIsTypeOf(Channel) else

         oclIsTypeOf(Processor) endif

}

PotentialAllocations

Processor

Channel

ProcessingNode

CommunicationNode

1..*

*
+pSrc

{subsets source}

+pTgt

{subsets target}

*

*
+cSrc

{subsets source}

+cTgt

{subsets target}

Location

*

*

* *

 

Figure 11: Potential Allocation. 

4.4 Full characterization of potential allocations 

Objective: Given the potential allocations for all elementary operations, derive all potential 
communications from the analysis model.  

Let P be the set of processors of the application. A location L is a set of sets of processors: 

( )L P⊂℘ . For instance, for { }1 2 3 4, , ,P P P P P= , { } { }{ }1 2 3, ,l P P P L= ∈ . Location l is 

interpreted as: either P3 or (P1 and P2 together). We define two operations on L: the disjunctive 
and the conjunctive products:    

{ }

{ }

k=n

k=1

k=n

k=1

: such that | , 1..

: such that  | , 1..

n

k k

n j j

k k k k

k

L L l s s l k n

L L l s s l k n

⊕ → = ∈ =

 ⊗ → = ∈ = 
 

⊕

⊗ ∪

 

For { } { }{ } { }{ }1 1 2 3 2 1 3, , and ,l P P P l P P= = , { } { } { }{ }1 2 1 2 3 1 3, , , ,l l P P P P P⊕ =  and 

{ } { }{ }1 2 1 2 3 1 3, , , ,l l P P P P P⊗ =   

The notation of locations as set of sets is especially clumsy. Henceforth, we denote them as for-
mal sums. For instance, l1 and l2 of the above example are denoted 1 1 2 3l P P P= +i  and 

1 32l P P= i , respectively, and 1 2 1 2 3 1 3l l P P P P P⊕ = + +i i , 1 2 1 2 3 1 3l l P P P P P⊗ = +i i i . 

In our metamodel a communication node owns one input port (Pi) and one output port (Po). Let 
Li=Pi.location and Lo=Po.location. The Cartesian product Li×Lo yields the set of pairs (source, des-
tination) of sets of processors. Each pair is associated with a set of channels.  
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( ){ }2
1 2 1 2: such that , | , 1..2k kL L l l s s s l k× → × = ∈ =  

To respect these rules the following constructive process is proposed. The full characterization 
of potential allocations is done by a traversal of the processing blocks, starting with the top 
level, and exploring nodes according to an order obtained by performing a topological sorting 
on each processing block. Remark 2 of Section 4.2 ensures that the topological order always 
exists. The user gives the locations for the initial and the terminal ports of the top-level process-
ing block. While traversing the graph, port locations are propagated in a consistent way with 
some invariant relations (Table 2). Non respect of these rules will result in an ill-formed analysis 
model. Figure 12 and Figure 13 display the resulting allocations for the processing block M1 and 
the Application processing block (allocation for M2 has been omitted).These figures take into 
account allocation constraints expressed in Figure 1 and Figure 2. From the Cartesian products 
associated with the communication nodes we deduce potential allocations: c13 onto {Ch1_1, 
Ch1_2}, and c23 onto {Ch1_1, Ch1_2, Ch2_1, Ch2_2}. If there were several channels between 
two processors (as in Figure 2, right-hand side), the potential allocation for c13 will be {Ch1_1, 
Ch1_2.w, Ch1_2.e}. 

 

Connector 
The locations for the input port and the output port are the 
same 

ProcessingNode 
For all ports: location is equal to the pTgt of the Processing-
Node 

Scatter 
All output ports have the same locations as the input port 

Gather {or} 
The location of the output ports is the disjunctive product of 
the locations of all input ports 

Gather {and} 
The location of the output ports is the conjunctive product of 
the locations of all input ports 

ProcessingBlock 
For each reference node, the location of each virtual port 
determines the location of the related ProcessingBlock port 

Table 2: Invariants. 
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Figure 12: Potential allocation (for M1). 

 

Figure 13: Potential allocation (for Application). 

5 From Structure to Temporal Analysis  

5.1 Hierarchical and Modular Time Petri Nets 

Our main goal is to formally verify some non functional properties of the application. In this 
report, we focus on time properties. For this purpose, we need to fulfill three requirements. First, 
give a formal semantics to the intended behavior of each analysis node. Second, compute the 
behavior of processing blocks by composing the behavior of contained nodes. Third, express 
properties to be verified.  
To address the first requirement, Time Petri nets [16] have been preferred to the UML State 
Machines and Activities. Petri nets have well-established mathematical foundations (semantics) 
and offer rich analysis capabilities. Contrary to UML state machines, Petri nets support true 
concurrency. As for UML2.0 activity diagrams, though they are inspired from Petri nets, they 
lack a formal semantics.  



14 C. André, F. Mallet, M-A Peraldi-Frati 

INRIA 

 

Figure 14: Modular Time Petri Net Model. 

Modular and hierarchical Place/Transition nets (MHTPN) meet the second requirement, mak-
ing it possible to compose behaviors. The Petri Net community is working on a model generic 
enough to cover all Petri Net formats (namely, the Petri Net Markup Language [17]). In the con-
text of our work a less general model—closer to our previous UML-based models—is sufficient 
(Figure 14). This hierarchical model is built upon the classical flat model of Petri nets (Figure 
15). In this latter model, timing information (a special kind of cost specification) is attached to 
transition (Time Petri Net).  

 

To satisfy the last requirement, we choose an observer node or a special control node (Figure 8); 
the former for properties like deadline, the latter for constraints. 
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PetriNet PNObject

 labelNode: EString[1..1]

Node

 capacity:EInt[0..1]

 tokenLoad: EInt[1..1]

Place

Transition

 kind: ArcKind[1..1]

 weight: EInt[1..1]

Arc

 pre

 post

<<enumeration>>

ArcKind
 includesMin: EBoolean[1..1]

 includesMax:EBoolean[1..1]

 lowerBound:EInt[1..1]

 upperBound:Eint[1..1]

TimeInterval

pNObjectnet

1 0..*

arc

place

1
0..*

0..*
1

transition

arc

timeInterval

0..1

PNCore

 

Figure 15: Time Petri Net Core Model. 

 The Petri Net analysis tool named Tina [16] supports both timed and untimed nets. However, it 
does not support hierarchical descriptions. We have built a tool that allows for graphical compo-
sition of Petri Net modules. It exports flattened modules into a Tina-compatible format. 

 

 

Figure 16: Petri net elements library. 

 

5.2 Model Transformation 

The goal is to derive a MHTPN from an analysis model and additional information (e.g., con-
straints, properties). This transformation is made easier by the use of blocks, each of which be-
ing transformed into a module. Table 3 contains mapping rules. 
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Analysis model element PN model element 
ProcessingBlock (toplevel) PetriNet 
ProcessingBlock (others) Module 
AnalysisNode ModuleInstance 
Host Place 

Host::concurrencyDegree Place::tokenLoad 
Place::capacity 

Port Port 
PotentialAllocation::cost TimeInterval 

Table 3: Analysis model element transformation. 

We have defined a library of modules that are instantiated (as ModuleInstance). Table 4 shows 
examples of mappings from analysis nodes to Petri net library modules. Modules are parameter-
ized and can be specialized in so as much as the interface is preserved. 

 

Analysis nodes PN Library Modules 
ElementaryProcessingNode ProcessingElement (PE) 
Scatter Fork, Choice 
Gather Join, Merge 
ObserverNode  ObservingElement (OE) 

Table 4: Petri net library elements. 

 

5.3 Software environment  

We have started to implement a tool suite in Java that supports all transformations. To be con-
sistent with UML models, usually described in XML using the XMI format, all our models (in-
cluding transformation models) are described in XML. The grammars of our XML files are de-
scribed using XML Schema (whereas the original PNML format is specified in a RelaxNG 
schema). Java provides technologies for managing XML and XML schema, for applying model 
transformations, and for binding XML schema elements to Java classes. Unfortunately, there are 
three technological limitations that still prevent us from having a fully integrated tool suite. 
First, these technologies are evolving very quickly and are not always consistent with each oth-
ers. Second, we have not yet found a model transformation technology that really allows for 
semantics transformation, most of technologies only work with simple syntactic transformations. 
Third, since we use features of UML2.0, we need the XMI description of the UML2.0 meta-
model (at least the subset that includes everything we use plus our own extensions). It is almost 
impossible to find, in the public domain, an XMI description of the UML2.0, each tool vendor 
apparently using its own specialized description. Finally, we do not aim at producing a complete 
tool suit, we only build simple academic tools to demonstrate the feasibility of our mechanisms. 
Thus, our tool suite is not yet complete and some steps are still performed manually. 
Nevertheless, the manipulation of modular and hierarchical time Petri nets is operational. We 
use the Java Architecture for XML Binding 2.0 (JAXB) for binding XML schemata to Java 
classes and the Java Architecture for XML Processing 1.3 (JAXP) for processing XML docu-
ments and applying model transformations.  
Our tool expands MHTPNs to a flat model, which is a prerequisite for the time Petri net ana-
lyzer (Tina). Tina generates various state space abstractions for Time Petri nets (state class 
graphs) and reports dead transitions. Our Petri net library modules are devised so as dead transi-
tions reveal property violations or structural inconsistency. For example, we can identify impos-
sible allocations, or check whether or not the deadline constraints are met. The analysis is able 
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to assert that there is no valid allocation with a deadline constraint less than 38 time units. To 
meet the strong deadline of 38 time units, oper2, oper3 and outpY must be executed on P2, while 
inpC can be executed either on P1 or P2. To meet the weaker deadline constraint of 40 time units, 
oper2 must be executed on P2 but there is no constraint for other potential allocations.    

6 Conclusion  

This report has shown a way to use UML and model transformations to derive an analysis model 
from a UML functional description. First, the functionality of the application is expressed as a 
stereotyped UML activity diagram tailored for synchronous reactive execution.. Following the 
model-driven approach, this model passes through a series of transformations resulting in a 
model amenable to formal analyses. Intermediate models are well-formed in accordance with the 
UML metamodels defined in this report.     
For property analysis the semantics of UML 2.0 is not sufficiently precise (many semantic varia-
tion points, no formal definition). This is a deliberate choice, as explained by B. Selic in his 
paper on the semantic foundation of Standard UML 2.0 [5]. This report focuses on the temporal 
correctness of potential allocations from operations to hardware/software execution supports. 
Since our system has concurrent evolutions, we have chosen Petri Nets as the analysis domain 
and especially, modular and hierarchical time Petri nets.  
Diagram interchanges and model transformations have been implemented in Java. Temporal 
properties are analyzed by Tina, a time Petri net analyzer. Reachability analysis tools of Tina 
establish the existence of a valid allocation meeting temporal constraints. 
Several extensions of this approach are possible. First, more complex properties (expressed us-
ing Linear Time Logic–LTL, for instance) could be formally analyzed by a model checker; Tina 
supplying the behavioral graph. For instance, with the given parameters, a manual graph analy-
sis has shown that oper2 must necessarily be allocated to the processor P2 in order to meet the 
deadline. This leads to a reduction of the possible allocations to be explored. Such a procedure 
would benefit from being automated. Once the adequate solutions are better characterized, we 
may export pertinent information, extracted from UML, to other analysis tools. For instance, we 
could easily export the algorithm and architecture models to SynDEx  for further optimization 
and generation of the real-time distributed code. 
Second, we have demonstrated how to associate time Petri nets with our library elements. We 
could have used other formalisms instead. In the future, to make the best of the underlying syn-
chronous hypotheses, we intend to use the industrial synchronous language Esterel [18] and its 
validation tools, or the Polychrony platform [19]. 
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