
ABSTRACTION: A NOTION FOR
REVERSE ENGINEERING

PhD Thesis

De Montfort University

Xiaodong Liu

September 1999

Abstract

The importance and popularity of software reengineering increase as more and more

successful computing systems become legacy systems. However, one prominent prob-

lem hinders software engineers from effective and efficient reengineering of legacy

systems, that is, the difficulty of comprehension of the original system.

This difficulty is due to constant system evolution and incomplete or obsolete doc-

uments which legacy systems tend to have. It is proved that the most or only reliable

information on a legacy system is source code itself. However, source code is difficult

to understand, especially when in a large amounf. Since program design or specifica-

tion is at a higher abstraction level, which is more concise and easier to understand,

successful extraction of semantics-oriented specification from legacy source code will

facilitate the comprehension and therefore reengineering of legacy systems greatly.

The thesis first proposes a unified approach for software reengineering based on

the characteristics of legacy systems. The approach is based on the construction of a

wide spectrum language, known as RWSL, which enjoys a sound formal semantics.

The architecture and working flow of the approach are proposed, and the structure of

RWSL is defined to provide a spectrum of abstractions of the reengineered system,

from source code to specification.

Based on this framework, the thesis then focuses on engaging abstraction technol-

ogy to extract formal specification from legacy source code. A taxonomy of abstraction

is developed to identify diverse kinds of abstractions. Monotonicity and relations be-

tween these abstractions are formally described. For practical reverse engineering, a

set of abstraction rules are developed to solve how to conduct abstraction. All these

rules are formally defined and proved sound. Healthiness obligations are developed as

axioms to guarantee correct and sensible abstraction during reverse engineering.

A formal notation is adopted widely to provide a solid unambiguous semantic foun-

ii

dation of the proposed approach. The extracted specification is set to be formal to give

the reengineered systems a rigorous description. An automatic tool would benefit from

the use of formalism. Due to its distinct advantage for both time critical and non-

time systems, Interval Temporal Logic (ITL) is adopted to be the specification layer

of RWSL, and to define formal semantics of other layers of RWSL. Furthermore, the

abstraction taxonomy and rules, monotonicity and relations between abstractions, and

healthiness obligations are all formally defined and proved sound (if applicable) within

ITL.

The proposed approach aims at time critical systems with parallelism as well as

sequential non-time systems. This is a particular challenging research area because

within such a system the functional behaviour and non-functional timing requirement

are combined, implicit and can be very difficult td recover.

A prototype tool is developed for three purposes: to test the approach, to speed and

to scale up reengineering based on the proposed approach. A number of case studies

are used for experiments with the approach and the prototype tool.

Conclusion is drawn based on analysis, which shows that the proposed approach is

feasible and promising in its domain. Further research directions are also discussed.

Acknowledgements

I wish to express my most profound thanks to my supervisors Dr. Hongji Yang and

Professor Hussein Zedan for their invaluable advice, support and encouragement dur-

ing my three year study. Without any of these, the work in this thesis would only be

impossible. There are so many intensive discussions that impressed me so much.

I also wish to thank Dr. Antonio Cau, for his innovative and valuable contribution

to the thesis, together with his excellent technical support of a highly efficient computer

environment.

Meanwhile, I would like to thank colleagues at Software Technology Research Lab-

oratory and Department of Computer Science in De Montfort University for their sup-

port and feedback, and for providing such a stimulating and friendly working atmo-

sphere. There are too many to list individually. The regular seminars provide us with a

good opportunity to communicate, discuss and co-stimulate.

I would also like to thank the Research Office in De Montfort University for their

outstanding management.

Finally, I must thank my wife and my parents for all their memorable support and

encouragement, which are too precious to forget.

Declaration

I declare that the work described within this thesis was originally taken by me between

the dates of registration for the degree of Doctor of Philosophy at De Montfort Univer-

sity, September 1996 to September 1999.

The thesis is written by me and has been produced using LAIIEX.

Contents

1 Introduction I

1.1 Purpose of Research and Overview of Problem 1

1.2 Scope of the Thesis and Original Contribution 3

1.3 Criteria for Success I........... 5

1.4 Thesis Structure

Software Reengineering with Formal Technology 8 r!). 7

2.1 Introduction 8

2.2 Software Evolution and Maintenance 9

2.3 Taxonomy of Software Reengineering 13

2.4 Possible Research Issues 16

2.5 Cur-rent State of Formal Methods in Reengineering 19

2.6 Classification of Formal Methods
21

2.6.1 Model-based Approach 22

2.6.2 Logic-based Approach
26

2.6.3 Algebraic Approach 34

2.6.4 Process Algebra Approach 36

2.6.5 Net-Based Approach 42

2.7 Criteria and Results
45

2.8 Analysis and Conclusion
50

CONTENTS vi

3 Related Work 53

3.1 Maintainer's Assistant 53

3.2 CStar and Elbereth 55

3.3 PRISME 56

3.4 AUTOSPEC 57

3.5 Other Related Software Reengineering Projects 58

3.6 Sources Retrieved 64

3.7 Conclusion 65

4 An Integrated Framework for Reengineering 66

4.1 Characteristics of Legacy Systems 66

4.1.1 Typical Problems 66

4.1.2 Structure and Data Dependency 67

4.2 The Approach 70

4.2.1 General Method 70

4.2.2 Architecture of RWSL 73

4.2.3 Working Flow of RWSL 75

5 Reengineering Wide Spectrum Language 78

5.1 Interval Temporal Logic 78

5.1.1 Syntax 79

5.1.2 Semantics 80

5.1.3 Specification 81

5.2 Timed Guarded Command Language 82

5.2.1 Syntax 82

5.2.2 Semantics 85

5.3 Object-Oriented Temporal Agent Model 86

5.3.1 Syntax 86

5.3.2 Semantics 88

5.4 Common Structural Language 89

CONTENTS

5.5 Common Object-Oriented Language 98

6 Abstraction: Taxonomy and Rules 100

6.1 Introduction 100

6.2 Definitions
101

6.2.1 Weakening Abstraction
102

6.2.2 fliding Abstraction
104

6.2.3 Temporal Abstraction
106

6.2.4 Structural Abstraction
107

6.2.5 Data Abstraction
log

6.3 Healthiness Obligation
ill

6.4 Monotonicity of Abstraction Relations
113

6.5 Relations between Abstractions
115

6.6 Elementary Abstraction Rules
116

6.6.1 Primitive Abstraction Rules
117

6.6.2 Compound Abstraction Rules
119

6.7 Further Abstraction Rules
13C

6.8 Demonstrative Examples
139

7 Reengineering Assistant: A Realisation 143

7.1 System Architecture
143

7.2 Embedding CSL and COOL in LISP
147

7.2.1 Syntax Check
147

7.2.2 CSUCOOL LISP Database
148

II 'I Prpttv Print Di-mlav
........................

150

7.3 Embedding Interval Temporal Logic in LISP

7.3.1 Tree Structure and Stepwise Abstraction

17 ') I TrT TTQD rN n tci lki L, 4%

151

151

Iý/III. II ff "a ei I fflcxlýý 153
I. -J. A..

7.3.3 Pretty Print Display
155

7.4 Realisation of Elementary Abstraction Rules
155

vii

CONTENTS

7.4.1 Constructing the Catalogue 155

7.4.2 Inference Process 156

7.5 Realisation of Further Abstraction Rules 161

7.5.1 Abstraction Patterns
161

7.5.2 Constructing the Catalogue
162

7.5.3 Inference Process 163

8 Case Studies 167

8.1 Introduction
167

8.2 Lexical Scanner
167

8.2.1 - Background
167

8.2.2 Extracting the Specification 168

8.2.3 Summary
183

8.3 Robot Control System
183

8.3.1 Background
183

8.3.2 Extracting the Specification
184

8.3.3 Summary
188

8.4 Task Farming System
189

8.4.1 Background
189

8.4.2 Extracting the Specification
189

8.4.3 Summary
197

8.5 Nfine Drainage System
197

8.5.1 Background
197

8.5.2 Extracting the Specification 199

8.5.3 Summary
203

9 Conclusion 204

9.1 Criteria for Success and Analysis
204

9.1.1 The approach
204

9.1.2 The Tool
207

viii

CONTENTS

9.2 Conclusion 211

9.2.1 Lessons Leamt 211

9.2.2 Our Approach and Existing Work 212

9.2.3 Conclusion 214

9.3 Future Directions 216

A Proofs 235

A. 1 Monotonicity of Abstractions 235

A. 2 Relations between Abstractions 238

A. 3 Further Abstraction Rules 240

B Code/Specification of Case Studies 249

B. 1 Lexical Scanner 249

B. 1.1 Source Code in PASCAL 249

B. 1.2 Translated CSL Code 260

B. 1.3 Extracted ITL Specification 270

B. 2 NIine Drainage System 278

B. 2.1 CSL Code Translated from Ada 278

B. 2.2 Extracted ITL Specification 283

ix

Chapter I

Introduction

1.1 Purpose of Research and Qverview of Problem

In the early days of computing, software reengineering attracted little attention. Nowa-

days it has become evident that old architectures severely constrain new designs, which

leads to demands for changes to existing software, for instance, fixing errors, adding

enhancements and making optimisations. However, the implementation of the changes

themselves often creates problems over and above those that are being rectified [10,

1487 1497 168,164].

The large cost associated with software reengineering is the result of the software

having proved difficult to reengineer. Early systems tended to be unstructured and ad

hoc, which makes it hard to understand their behaviour. System documentation is often

incomplete, or out of date. With current methods, it is often difficult to retest or verify

a system after a change has been made. Successful software will inevitably evolve, but

the process of evolution will lead to degraded structure, e. g., improper extension, and

yet greater complexity, e. g., enhancement of functionality.

The above situation leads to an increasing industrial demand to carry out mainte-

nance more efficiently, which triggered the research described in this thesis. Reengi-

neering consists of mainly two parts, reverse engineering and forward engineering,

1.1. PURPOSE OF RESEARCH AND OVERVIEW OF PROBLEM

where reverse engineering is the first step and forward engineering is the follow-on

step. It is natural to assume that the forward engineering part of reengineering can be

carried out by borrowing an existing suitable software development method which has

been well developed. Because it is believed that the main problems associated with

the forward engineering part of reengineering are to interface an existing well devel-

oped software development method, reengineering research should be focusing on the

reverse engineering part, i. e., how to understand an existing system or how to obtain

design and/or specification from an existing system.

Due to evolution and obsolete or incomplete documents, the most reliable source of

information on a legacy software is the code itself. This means that the extraction of the

program design or specification of legacy program code is a vital step where software

abstraction is apparently the key technique. Sudcessfully extracted specification can

facilitate the software engineer's understanding of the legacy system, both in efficiency

and accuracy, because of its conciseness and problem-oriented nature (in contrast with

code). The benefit is worth the cost, especially for critical legacy systems.

In this thesis, we are going to discuss how to tackle the abstraction problem in

reverse engineering, based on the following observations [110]:

e Most existing research/commercial reverse engineering approaches/tools can ba-

sically "restructure" existing code, and these operate at the same level of abstrac-

tion. Hence, abstraction methods are desperately needed for reverse engineering.

* Formal methods can provide a solid theoretical foundation for integrating both

restructuring and abstraction techniques in building a practical software reverse

engineering tool.

4o Object-Oriented techniques, which have been recognised as the best way cur-

rently available for structuring software systems, can help reengineering in group-

ing together data and operations performed on them, thereby encapsulating the

whole system behind a clean interface, and organising the resulting entities in a

hierarchy based on specialisation in functionalities.

2

1.2. SCOPE OF THE THESIS AND ORIGINAL CONTRIBUTION

* In an interrupt-driven, real-time program with time constraints, the functional

behaviour of this program and the non-functional timing requirements are com-
bined, implicit and can be very difficult to recover. Reverse engineering such a

program is a particular challenging research area.

The terms used in the chapter, such as software maintenance, reverse engineering,

abstraction, etc., will be defined in the following chapters. au

1.2 Scope of the Thesis and Original Contribution

In this thesis, a unified approach for software reengineering is proposed. The approach

is based on the construction of a wide spectrum language, known as RWSL, which en-

joys a sound formal semantics. The thesis concentrates on engaging abstraction tech-

nology to extract formal specification from legacy source code. The scope of research

includes:

9 The architectural design of the unified software reengineering approach: the ar-

chitecture and working flow of the approach are proposed, and the structure of

RWSL, and its formal and informal syntax and semantics, are defined.

* The formalisation of the notion of "abstraction": a taxonomy of abstraction is

developed, including definitions and relations of several kinds of abstractions.

And rules to conduct abstractions in the reverse engineering part of reengineering

are then developed aiming at extracting formal specification from legacy code.

* Implementation of a prototype tool and experimentation with case studies: a sys-

tern is developed to demonstrate the success of the proposed approach. Another

purpose of the prototype tool is to speed up and scale up the proposed approach.

A number of case studies are used for experiments with the approach and the

prototype system.

3

The original contribution of the thesis lies in three aspects:

1.2. SCOPE OF THE THESIS AND ORIGINAL CONTRIBUTION 4

9 Abstraction.

- Levels of abstraction. RWSL provides a spectrum of abstractions of the

reengineered system, from concrete code to specification. These abstrac-

tions are integrated and cooperate in a uniform manner. All the layers in

RWSL have fon-nal syntax and semantics, which gives the target system

unambiguous descriptions at various abstraction levels.

- Abstraction taxonomy and rules. In the proposed approach, reverse engi-

neering is carried out by extracting more concise system descriptions from

a less abstract level, e. g., code. This involves crossing levels of abstraction.

To achieve this, a taxonomy of abstraction is developed to answer "what

abstraction is", including definitions and relations of diverse abstractions.

Then, abstraction rules are developed to solve how to conduct abstractions.

All the abstraction rules are defined formally, which assures precise and

rigorous semantics. With these rules a satisfactory specification can be ex-

tracted from source code.

9 Real-time domain. At present, reverse engineering technology is mainly limited

to sequential and non-time systems no matter whether it adopts formal techniques

or ad hoc techniques [110]. The proposed approach treats time-critical systems

with parallelism as its specific application domain, together with normal sequen-

tial non-timed systems.

e Object orientation. The proposed approach supports the reverse engineering of

object-oriented systems, i. e., with the abstraction rules, an object-oriented pro-

gram can be abstracted into a formal specification.

The literature survey in Chapter 2 and 3 shows that there is not any reverse en-

gineering approach or tool dealing with the extraction of specification from code in

real-time or object-oriented domain through formally defined abstraction rules.

1.3. CRITERIA FOR SUCCESS

1.3 Criteria for Success

The following criteria are given to judge the success of the research described in this

thesis:

9 For a heavily modified legacy system which has never been developed in a well

structured or object-oriented method, how viable is it to extract a specification

from its source code with abstraction technology?

* Is the extracted specification consistent to the original design? Is it reliable to

perform redesign or re-specification on the base of the extracted specification?

* Is the extracted specification unambiguous and easy to understand?

A

What kind of legacy systems can the approach deal with? Besides sequential

non-time systems, can it tackle more complex and emergent-in-need but rarely

addressed systems, such as parallel and time critical systems?

Crossing levels of abstraction involves both semantics change/selection and trans-

formation in representation. How does the proposed approach solve this prob-

lem? Is the taxonomy of abstraction comprehensive enough and are the abstrac-

tion rules reliable?

9 Is the approach feasible for realisation? For example, is it possible to build a

practical tool based on the approach?

9 Is the approach capable for industri al. - scaled systems?

1.4 Thesis Structure

The thesis is organised as follows:

e Chapter I gives the background, motivation, scope and original contribution of

5

the thesis.

1.4. THESIS STRUCTURE

Chapter 2 provides an overview of the current state of software reengineering,

formal methods, and in particular, their intersection, that is, software reengineer-

ing adopting formal technology.

* Chapter 3 investigates the existing related work, especially those involving spec-

ification recovery, design recovery and usage of fonnal techniques. Conclusion

is drawn based on the investigation.

e Chapter 4 first discusses the characteristics of legacy systems, and then proposes

an integral framework together with a relevant approach for reengineering based

on a wide spectrum language which enjoys a formal semantics.

* Chapter 5 explores the proposed wide spectrum language in detail, including

syntax, formal and informal semantics of each layer.

e Chapter 6 is the gist of the thesis. A taxonomy of abstraction is developed, in-

cluding definitions of several abstractions, their relations and monotonicity. Ab-

straction rules to conduct specification extraction from legacy source code are

then developed. Demonstrative examples are given.

Chapter 7 is about realisation of the proposed approach by building a tool, namely,

Reengineering Assistant. The chapter covers the tool's general system architec-

ture, internal database, inference procedures and user interface.

e Chapter 8 deals with case studies, which include various legacy systems, from

sequential non-time system to real-time systems with parallelism and communi-

cation.

9 Chapter 9 discusses the proposed approach and the supporting tool according to

a set of criteria. Conclusion is drawn based on this discussion, and prospective

further work is also discussed.

9 Appendix A gives the proof of soundness of abstraction rules, monotonicity of

6

abstractions and relations between different kinds of abstractions.

1.4. THESIS STRUCTURE

9 Appendix B gives the results of case studies, including legacy code, RWSL code

7

and extracted specifications.

Chapter 2

Software Reengineering with Formal

Technology
*

2.1 Introduction

Any computing system, both hardware and software systems, will inevitable grow in

scale and functionality. Because of this complexity, the likelihood of subtle errors is

much greater. Moreover, some of these errors may cause catastrophic loss of money,

time, or even human life. Large systems are so complex that it is impossible for a single

individual to build and maintain all aspects of its design. A major goal of software en-

gineering is to enable developers to construct systems that operate reliably despite this

complexity [45,11,10,981. One way of achieving this goal is usingformal methods,

which are mathematically-based languages, techniques, and tools for specifying and

verifying such systems. Use of formal methods does not guarantee correctness, how-

ever, they can greatly increase our understanding of a system by revealing inconsisten-

cies, ambiguities, and incompletenesses that might otherwise go undetected [154].

The maintenance of large-scale computing systems is a crucial aspect of software

lifecycle. This is due to the fact that systems are continually evolving. Their evolution

is mainly due to three factors: a) change of original requirement, i. e. either increas-

2.2. SOFTWARE EVOLUTION AND MAINTENANCE

ing or decreasing functionality; b) adapting on different hardware platforms; and/or c)
improving its efficiency.

As a combination of reverse engineering and forward engineering, software reengi-

neering technology is a practical solution for the above problem of evolution of exist-
ing computing systems. Dynamic change management of software systems has been

largely performed by using ad hoc techniques which are normally rather expensive and
in some cases, impossible (if the designer has not documented or left the company).
There are at least two advantages of using formal methods as the foundation of soft-

ware reengineering. Firstly, formal methods can help software engineers acquiring a

rigorous and precise description of the system being reengineered, therefore greatly in-

crease the quality of the new system. Secondly, automation is one of the key goals of

reengineering. By applying formal methods, it mAy be possible to make the process of

reengineering more automated.

This chapter investigates the current situation of software reengineering and for-

mal methods. It proposes the basic criteria for formal methods applied in software

reengineering domain. Among the range of the application areas of software reengi-

neering, the thesis concentrates on real-time systems with parallelism. Based on the

criteria, investigation and assessment are made about the existing popular formal meth-

ods, especially those potentially suitable for software reengineering. In the last section,

conclusion is drawn up based on analysis results and discussions.

2.2 Software Evolution and Maintenance

Software Engineering As one of the most important areas of computer science, soft-

ware engineering had its origin as a solution to the first "software crisis". According to

the IEEE Standards, software engineering is defined as:

Software Engineering is the application ofa systematic, disciplined, quan-

tifiable approach to the development, operation and maintenance of soft-

ware; that is, the application of engineering to software [92].

9

2.2. SOFTWARE EVOLUTION AND MAINTENANCE

Software Evolution It is safe to say that from the day that a large software system

goes into service, functional, performance, operator and environmental requirements

will undergo changes. Moreover, the delivered software system will contain some la-

tent defects that were not detected during testing. These factors cause software systems
inevitably to evolve in scale, environment and functionality, especially those success-
ful enough to survive a long period [18,12]. Software evolution is regarded as being

divided into corrective actions to fix latent defects, adaptive actions to deal with chang-
ing environments, and perfective actions to accommodate new requirements. Software

evolution is the main cause of software maintenance activities.

Software Maintenance Software maintenance is attracting more and more attention.
As a tenninology, it is defined as:

Software Maintenance is the modification of a software product after de-

livery to correct faults, to improve performance or other attributes, or to

adapt the product to a changed environment [6].

According to the change types that software maintenance is required to meet, main-

tenance activities can be classified into three categories [153,23,24].

The first category is called corrective maintenance. There may be a fault in the

software, so that its behaviour does not conform to its specification. This fault may

contradict the specification, or it may demonstrate that the specification is incomplete

or inconsistent, so that the user's assumed specification is not sustained. Corrective

maintenance involves removing these faults.

Even if a software system is fault-free, the environment in which it operates will

often be subject to change, e. g., the upgrade of the computer hardware or moving a

system from a mainframe to a PC.

Modifications performed as a result of changes to the external environment are cat-

egorised as adaptive maintenance, e. g., the manufacturer may introduce new versions

of the operating systems, or remove support for existing facilities, and the software may

10

2.2. SOFTWARE EVOLUTION AND MAINTENANCE

be ported to a new environment, or to different hardware.

The third category of maintenance is called perfective maintenance. This is under-

taken as a consequence of a change in user requirements of the software. For example,

a payroll suite may need to be altered to reflect new taxation laws; a real-time power

station control system may need upgrading to meet safety standards.

The last category, preventive maintenance may be undertaken on a system in or-

der to anticipate future problems and make subsequent maintenance easier [19]. For

example, a particular part of a large suite may have been found to require sustained

corrective maintenance over a period of time. It could be sensible to re-implement this

part, using modem software engineering technology, in the expectation that subsequent

errors will be reduced.

Software Reengineering The process of reengineering computing systems involves

three main steps: restructuring, reverse engineering andforward engineering [21,24].

In the present survey, we take the following view:

Restructuring. It is the process of creating a logically equivalent system from the

given one. This process is performed at the same level of abstraction and does

not involve semantic understanding of the original system.

Reverse Engineering. It is the process of analysing a system in order to obtain and

identify major system components and their inter-relationships and behaviours.

It involves the extraction of higher level specifications from the original system.

Forward engineering. The process of developing a system starting from the re-

quirement specification and moving down towards implementation and deploy-

ment.

In essence the reengineering model takes the following form:

Re-engineering = Restructuring + Reverse engineering + Forward engineering.

11

2.2. SOFTWARE EVOLUTION AND MAINTENANCE 12

Abstraction Model of Software Life Cycle Bachman introduced a Reengineering

Cycle chart (Figure 2.1) [14], which features both forward and reverse engineering.

Reverse engineering, our focus here, begins at the bottom left with the definition of

existing applications and raises the applications to successively higher levels of ab-

straction. At the top, the design objects created by the reverse engineering steps are

enhanced and validated to become the revised design objects which may be used in

the forward engineering process. At the bottom, a new application system becomes an

existing application system at the moment that it goes into production.

To generalise this model, many software systems typically undergo the following

stages:

Specification -4 Design -+ Implementation -+ Design -* Specification

This represents a process whereby: before implementing a program, a specification

was written first; then a design was derived from the given specification; the program

was implemented and then operated for a period of time; when the program needed to

be maintained a design or specification (which may be different from the original one)

was obtained through reverse engineering (the design or specification can be used for

the purposes of maintenance, reengineering, etc.).

A specification specifies ". what" a program does; a design states both "what a pro-

gram does and how it does it", and the program itself implements "how to do the job"

Therefore the above process can be represented as follows:

what? -ý what1how? --+ how? -* what1how? -+ what?

A specification, a design and an implementation of a program are usually at different

levels of abstraction. To move from one stage (e. g., specification stage) to another

stage (e. g., design stage) involves a process of crossing levels of abstraction. Usually a

specification is more abstract than its implementation, therefore the above process can

be again represented as:

abstract -* less abstract -+ concrete -4 more abstract -ý abstract

2.3. TAXONOMY OF SOFTWARE REENGINEERING

This suggests that abstractness of software is an important feature when both for-

ward and reverse engineering are carried out and therefore conducting abstraction is

significant for both reverse and forward engineering.

Level Reverse Engineering Forward Engineering

Requirements Businesý Analyst

Specifications Data Analyst
System:: Analyst

Implementation Programmer
DEiA

O i E i ti A li ti N A lication perat on x s ng pp ca on ew pp

Figure 2.1: Bachman's Reengineering Cycle

2.3 Taxonomy of Software Reengineering

In this section, the following key terms and comparison provide a clear scope and tax-

onomy of the domain of software reengineering [45,11,10,7 1]:

Forward Engineering is the traditional process of moving from high-level abstrac-

tions and logical, implementation-independent designs to the physical implementation

of a system.

Reverse Engineering is the process of analysing a subject system to (i) identify the

system 7s components and their interrelationships and (H) create representations of the

system in another form or higher level of abstraction.

Redocumentation is the creation or revision of a semantically equivalent represen-

tation within the same relative abstraction level. The resulting forms of representation

are usually considered alternate views (for example, data flow, data structures, and con-

trol flow) intended for a human audience. Redocumentation is the simplest and oldest

13

2.3. TAXONOMY OF SOFTWARE REENGINEERING

fonn of reverse engineering, and can be considered to be an unintrusive, weak form of

restructunng.
Design Recovery is a subset of reverse engineering in which domain knowledge,

external information, and deduction or fuzzy reasoning are added to the observations

of the subject system to identify meaningful higher level abstractions beyond those

obtained directly by examining the system itself. Design recovery recreates design

abstractions from a combination of code, existing design documentation (if available),

personal experience, and general knowledge about problem and application domains.

Reverse Design is a synonym to design recovery.

Program Understanding or Program Comprehension is a related tenn to re-

verse engineering. Program understanding implies always that understanding begins

with the source code while reverse engineering ban start at a binary and executable

form of the system or at high level descriptions of the design. The science of program

understanding includes the cognitive science of human mental processes in program

understanding. Program understanding can be achieved in an ad hoc manner and no ex-

temal representation has to arise. While reverse engineering is the systematic approach

to develop an external representation of the subject system, program understanding is

comparable with design recovery because both of them start at source code level.

Restructuring is the transformation from one representation form to another at

the same relative abstraction level, while preserving the subject's system external be-

haviour, i. e. functionality and semantics.

Reengineering is the examination and alteration of a subject system to reconstitute

it in a new form and the subsequent implementation of the new form. The process

of reengineering computing systems involves three main steps: reverse engineering,

restructuring andforward engineering.

Reverse Specification is a kind of reverse engineering where a specification is ab-

stracted from the source code or design description. Specification in this context means

an abstract description of what the software does. In forward engineering, the specifi-

14

cation tells us what the software has to do. But this information is not included in the

2.3. TAXONOMY OF SOFTWARE REENGINEERING

source code. Only in rare cases, it can be recovered from comments in the source code

and from the people involved in the original forward engineering process.
Re-code is changes to implementation characteristics. Language translation and

control flow restructuring are source code level changes. Other possible changes in-

clude conforming to coding standards, improving source code readability, renaming

program items, etc.
Re-design is changes to design characteristics. Possible changes include restruc-

turing a design architecture, altering a system's data model as incorporated in data

structures, or in a database, improvements to an algorithm, etc.
Re-specify is changes to requirements characteristics. This type of change can

refer to changing only the form of existing requirements. For example, taking informal

requirements expressed in English and generatink a formal specification expressed in

a formal language such as Z. This type of change can also refer to changing system

requirements, such as the addition of new requirements, or the deletion or alteration of

existing requirements.

Figure 2.2 presents a general model of reverse engineering, and Figure 2.3 presents

a general model of reengineering.

Requ- Restructuring
m is

Reverse
ire ents;

Elngineering

(Abstraction) Reverse Specification /Design
Recovery)

Design
0

Restructuring

Reverse Specification

(Design Recovery)

P, -. -tio.
(3

Restructuring

Existing System

15

Figure 2.2: General Model for Reverse Engineering.

2.4. POSSIBLE RESEARCH ISSUES

Reverse

Engineering

(Abstraction)

Reengineering

(Alteration)

re-specify
Req-

uirements

re-design
Design

re-code Implementation

Existing System

Req-
orward

uireme. -\nts
Engineering

(Refinement)

Design

Implementation

Target System

Figure 2.3: General Model for Software Reengineering.

2.4 Possible Research Issues

Compared with forward engineering, reverse engineering has been poorly addressed

for many years. The approaches and tools of forward engineering are far more well

studied. In this section, possible research issues of reverse engineering are discussed .

Cognitive Processes in Human Program Understanding This research issue fo-

cuses on how a human reader can understand unknown source code. The study of

human cognitive processes can show where we can support human understanding ef-

fectively. It may, but need not, be a model of how automated understanding can work

[150,1391.

Intermediate Representation of Source Code In large programs, it is more efficient

to preprocess the source code and store the program information in an intermediate

representation that allows fast queries instead of querying the source code directly [5 1

There are two main topics in this research direction:

16

2.4. POSSIBLE RESEARCH ISSUES

9 Use of data & knowledge bases to store and retrieve source code infonnation.

Relevant artificial intelligence technologies can be used to facilitate and optimise

the process of reverse engineering [9,36,57,127,132,119,66].

9 Using graphs to represent source code infonnation [48,112,99].

Reverse Specification Reverse specification is intended to extract a description of

what the examined system does. The description is made in terms of application do-

mains [149,31,45,5 1].

On one hand, this process must be bottom-up, since the only reliable description

of the behaviour of software is its source code. To support this bottom-up process.,

methods and tools are useful which generate abstract models from the source code, e. g.

the formal description model of any other suitaýle formal languages. The technique

of software animation can be applied to visualise program behaviour or to animate

the generated models, since the underlying description, namely the source code, is

operational.

On the other hand, the result of reverse specification, i. e. the description model

derived from the source code, should be top-down structured. This is to comply with

the basic cognitive rules for a human to recognise complicated systems.

The possible research issues in reverse specification includes [51,91,7,14,36,45,

48,55,149]:

* Domain Analysis, Domain Models.

e Description Model Generating, Software Animation. Software can be animated

to the maintainer to help him understand the program. This research can be

classified into the following sub-issues:

- Visualisation of Parallel and Distributed Programs.

- Visualisation for Program Understanding and Debugging.

17

- Visualisation for Object-Oriented Programs.

2.4. POSSIBLE RESEARCH ISSUES 18

- Algorithm Animation.

- Information Visualisation and Visualisation of Large Systems.

Requirement Traceability. Software maintainers often have to trace requirements

in old code. In other words, they need to answer the question: "In which parts of

9 this program is functionality X implementedT
.

Reverse Design, Design Recovery The objective of reverse design is to get a design

description out of the source code, i. e. to abstract from coding details [50,52,53].

There are two strategies to achieve this [81,91,159,147,104,146,87,1]:

* Tools present the source code in such a way that a maintainer can make the ab-

straction. Since the computer only retrieves information that is entirely included
i,

in source code this strategy is called fundamental.

* Tools make the abstraction on their own. They are analysing the source code in

using information from a knowledge base. This strategy is called knowledge-

based.

Here, we make out the most popular approaches in reverse design.

e Code Views. Code views are representations of source code which cover the

same information as the code or part of it but in a manner that accelerate the

comprehension process. Examples are program slices, call graphs, data flow,

definition-use-graphs, or control dependencies.

o Reformatting and Markup Languages. Reformatting is the functional equivalent

transformation of source code which changes only the structure to improve read-

ability. Markup languages are languages for annotations of source code to simply

improve the source code's appearance with the means of bold-faced key words,

slanted comments, etc.

e Hypertext. Hypertext methods and tools can be used to help browsing the source

code.

2.5. CURRENT STATE OF FORMAL METHODS IN REENGINEERING

* Source Code Analysis and Transformation Rules. This is the most important

method in reverse design. Concrete transformation rules and inference algo-

rithms are defined according to concrete source code language. By these rules

and certain form of knowledge & data bases, source code can be transformed

into a higher level of abstraction [112,5,42,44].

9 Data Centred Program Understanding. Instead of focusing on the control struc-

ture of a program, such as call graphs, control flow graphs and paths, data centred

program understanding focuses on data and data relationships [95,166].

e Program Slicing. A program slice is a fragment of a program in which some

statements are omitted that are not necessary to understand a certain property of

the program [71,281.

2.5 Current State of Formal Methods in Reengineering

The debate about the use and relevance of formal methods in the development of com-

puting systems has always attracted a considerable attention and is continually doing

so. One school of thought (the protagonists) claims that formal techniques offer a

complete solution to the problems of system development. Another school claims that

formal methods have little, or no, use in the development process (at least due to the

cost involved). There is a third view point, that we share, which states that formal

methods are both over-sold and under-used.

Nonetheless, whatever school of thought one prescribes to, it is important to realise

that as the complexity of building computing systems is continually growing, a disci-

plined, systematic and rigorous methodology is essential for attaining a "reasonable"

level of dependability and trust in these systems. The need for such a methodology

increases as "fatal" accidents are attributable to software errors.

in response to this, an intense research activity has developed resulting in the pro-

19

duction of formal development techniques together with their associated verification

2.5. CURRENT STATE OF FORMAL METHODS IN REENGINEERING 20

tools that have been successfully applied in forward engineering such systems. For

example, assertional methods, temporal logic, process algebra and automata, have all
been used with some degree of success.

In the area of reverse engineering, formal methods have also been put forward as a

means to

1. formally specify and verify existing systems in particular those already operating
in safety-critical applications;

2. introduce new functionalities and/or

3. take advantage of the improvement in systems design techniques.

We attempt to review a large class of formal methods that have been suggested in

the reengineering process of computing systems. We shall also discuss some of their

benefits and limitations. But first, it is necessary to lay some terminological ground-

work and to consider current practices.
The termformal methods is used to refer to methods with sound basis in mathemat-

ics. These should be distinguished from structured methods which are well defined but

do not have sound mathematical basis to describe system functionalities [67]. Formal

methods allows system functionalities to be precisely specified whilst structured meth-

ods permit the precise specification of systems structure. However, recently, there have

been substantial research activities to

* integrate formal and structured methods, for example the formal specification

language Z [3,152] has been integrated with the structured method known as

SSADM and

* extend some formal methods allowing the treatment of non-functional require-

ments such as timing and probability [39,124,125,38,80,144].

We take the view that a fon-nal method should consist of some essential components:

a semantic model, a specification language (notation), a verification system/refinement

calculus, development guidelines and supporting tools:

2.6. CLASSIFICATION OF FORMAL METHODS

1. The semantic model is a sound mathematical/logical structure within which all

terms, formulas and rules used have a precise meaning. The semantic model

should reflect the underlying computational model of the intended application.

2. The specification language is a set of notations which are used to describe the

intended behaviour of the system. This language must have a proper semantics

within the semantic model.

Verification systen-Llrefinement calculi are sound rules that allow the verification

of properties and/or the refinement of specifications.

4. Development Guidelines are steps showing the use of the method.

5. Supporting tools involve proof assistant, syntax and type checker, animator, and

prototyper.

Formal methods can be applied in two different ways.

1. The production of specifications which are then the basis for a conventional sys-

tem development. In this case, specifications are used as a precise documentation

medium which has the advantages of manipulability, abstraction and conciseness.

Consistency checks and automatic generation of prototypes could be performed

at this stage with the aid of the associated supporting tools.

2. The production of formal specification, as above, can then be used as a basis

against which the correctness of the system is verified or as a basis to derive the

verified system through correctness preserving refinement rules. This will give

the developed system a degree of certainty and trustworthiness.

2.6 Classification of Formal Methods

Formal methods can be classified into the following five classes or types, i. e., Model-

based, Logic-based, Algebraic, Process Algebra and Net-based (Graphical) methods.

21

2.6. CLASSIFICATION OF FORMAL METHODS

In the following subsections we will briefly discuss each of these approaches.

2.6.1 Model-based Approach

General A system is modelled by explicitly giving definition of states and opera-
tions that transform the system from a state to another. In this approach, there is no

explicit representation of concurrency. Non-functional requirements (such as temporal

requirement) can be expressed in some cases.

Examples

*Z [3,152]. With the first version proposed in 1979, the Z notion is based on

predicate calculus and Zermelo Fraenkel set theory. AZ specification is written

in terms of "schemas", each of which contains a signature part which declares

items of interest and a predicate part which places a logical constraint on them.

e VDM [97,30,96]. VDM (the Vienna Development Method) is a formal method

for rigorous computing system development. It is similar to Z in most aspects,

although not as popular as Z. VDM supports model composition and decompo-

sition, which facilitate both the forward and reverse engineering a lot.

Although the semantics and proofs in predicate calculus are complete and rather

complete in set theory, the functions, operations, compositions and decomposi-

tions in VDM makes its semantic and proof system much more complicated to be

"accomplished". Therefore, similar problems happen with Z and VDM: a com-

plete formal semantics does not exist yet, and as the consequence, the automated

support tools, such automated prover, do not exist yet. Moreover, lacking of for-

mal semantics will also limit the potentials for automation in the reengineering

approach which adopts Z or VDM as its formal foundation.

Time is not a part of VDM notation. When trying to apply VDM to real-time

22

domain, novel features have to be added to VDM. VDM also keeps developing:

2.6. CLASSIFICATION OF FORMAL METHODS

VDM++, as a new version of VDM integrated with object-oriented idea, is a

rather mature product now.

o B-Method [103,102,162]. The B-method uses the Abstract Machine Nota-

tion to support the description of the target systems. The most eminent success

of B method is that it already has a strong and quite mature tool B Toolkit, to

support and automate the development of application systems. The B-Method

is "complete" in the sense that it provides abstract machine specifications and

their proofs, refinements and their proofs, and compositions and their proofs.

The development method of B matches the typical top-down forward engineer-

ing well., A complete development may be performed and recorded. Changes

may be accommodated using the replay tools. Refinement, implementation and

composition steps have precise notions of correctness and mechanical generation

of proof obligations. By animator, test may be performed. The final implemen-

tation step may be mechanised for common languages (e. g. C and Ada) and for

some specification constructs.

In B-Method, no guidance is provided regarding (i) design decisions or their

recording, (ii) testing or inspection methodology, (iii) presentation of specifica-

tions. B toolkit is still evolving, not 'very' mature now. B method has no time

feature. Novel feature has to be added when using B for real-time systems. The

main users of B are found in LTK.

Sample Description Z is described as a sample here.

Syntax and Semantics. The conceptual basis of Z is typed set theory, and the

method is oriented to constructing models. Text and graphical representation are

used.

The basic elements of Z are types, sets, tuples and bindings. There is no univer-

23

sal set to which all elements belong, but a universe of disjoint sets called types

2.6. CLASSIFICATION OF FORMAL METHODS

(which contain basic types and composite types). A set in Z is an unordered col-
lection of different elements of the same type, and there is a concept of infinite

sets supported in Z. A tuple is an ordered collection of elements that are not nec-

essarily the same type. A binding is a finite mapping from names to elements,

not necessarily of the same type.

The main representational form is the "schema" which is a set of bindings de-

picted in a special "axiomatic box" syntactical form including a signature(or
Schema Name) and a property (made up of two parts-the declaration and ax-
iomatic constraints).

The semantics of Z is based on a version of Zermelo-Fraenkel set theory that

does not include the replacement and choice axioms.
A

e System Specification. Operations can be specified in several ways in Z. One way
is through the use of "axiomatic descriptions", which are unnamed schemas that

introduce one or more global variables, and constraints on those variables. These

specifications are called "loose specifications" by Z practitioners, who stress the

use of schemas to specify. A specifier uses these to indicate a function or constant

has certain properties without giving it a value.

AZ specification is basically composed of ordered collections of schema defini-

tions and axiomatic descriptions. There are complex scoping and naming rules,

but the most important specification structuring mechanism is called "schema in-

clusion". The name of a defined schema may be referred to in any other schema

of axiomatic description after its definition, but entities within that schema may

be referred to only if the schema is included in the signature of the following

schema or axiomatic description.

Analysis of Z specifications usually means performing consistency and com-

pleteness checks, which validate the specification for accuracy and completeness,

style, feasibility (sometimes called viability, seeing if a system state exists which

24

2.6. CLASSIFICATION OF FORMAL METHODS

satisfies the constraints specified in the initial condition), and expected proper-
ties. This analysis is performed by review by other specifiers who perform a
'(walk through" much like a code "walk through". Proofs are also used to anal-

yse aZ specification, which is primarily done by hand, as there is no reliable

automated prover for Z because a formal semantics does not exist yet.

e Assessment. Z is good at identifying errors that result from misconceptions in

the model of a system. Z supports designing through the use of constructing

models, and Z does support a refinement approach to developing systems. It

is good at determining and specifying relationships between different levels of

specification and design. There is also the ability to re-use Z schemas, especially

those that are generic. Since the principles and stages of refinement approach in

forward engineering are correspondent to those of abstraction approach in reverse

engineering, Z can be also competent in being a good formal foundation of a

reengineering approach.

As mentioned before, although the semantics of Z is based on a version of Zermelo-

Fraenkel set theory, it is not complete or sufficient for the whole Z notations when

including schemas, tuples, binding, etc. So, a formal semantics of Z does not ex-

ist yet. As a consequence, the automated support tools, such automated prover,

do not exist yet. Moreover, lacking of formal semantics will also limit the poten-

tials for automation in reengineering which adopts Z as formal foundation.

Time is not a part of Z notation. When trying to apply Z to real-time domain,

novel features have to be added to Z. However, because of the rich expressibility

of Z., Z has been used in a number of real-time applications, such as timed Z

[1141.

The main users of Z are found in UK and other European countries. Generally

speaking, Z has been applied to a large amount of applications, some of which

are rather large-scaled. It is one of the few formal methods that have been proved

successful in industrial applications.

25

2.6. CLASSIFICATION OF FORMAL METHODS

In recent years, some forms of improved Z with new technology such as object

orientation has been developed, for example, Z++ and Object-Z.

2.6.2 Logic-based Approach

General In this approach logics are used to describe system desired properties, in-

cluding low-level specification, temporal and probabilistic behaviours. The validity of

these properties is achieved using the associated axiom system of the used logic. In

some cases, a subset of the logic can be executed, for example the Tempura system

[125]. The executable specification can then be used for simulation and rapid prototyp-

ing purposes.

Logic can be augmented with some concrete programming constructs to obtain what
0

is known as wide-spectrum formalism. The development of systems in this case is

achieved by a set of correctness preserving refinement steps. Examples of these forms

are TAM [144] and the Refinement Calculus [142].

Examples

e ITL [39,124,125,38]. ITL (Interval Temporal Logic) has been developed in

[39,128]. This kind of logic is based on intervals of time, thought of as repre-

senting finite chunks of system behaviour. An interval may be divided into two

contiguous subintervals, thus leading to chop operator.

* Duration Calculus [40,4 1]. Duration Calculus was introduced in [40] as a logic

to specify and reason about requirements for real-time systems. It is an extension

of Interval Temporal Logic where one can reason about integrated constraints

over time-dependent and Boolean valued states without explicit mention of ab-

solute time. Several rather large-scale case studies have shown that Duration

Calculus provides a high level of abstraction for both expressing and reasoning

about specifications.

26

2.6. CLASSIFICATION OF FORMAL METHODS

9 Hoare Logic [83,84,85]. Hoare Logic has a long history; it may be viewed as

an extension of First-order Predicate Calculus [59] that includes inference rules

for reasoning about programming language constructs.

Hoare Logic provides a means of demonstrating that a program is consistent with

its specification. Hoare Logic is not capable of specifying a system at high levels,

however, it has distinct advantages in the low level specifications. These two fea-

tures make Hoare Logic a suitable means in the first stage of reverse engineering,

i. e., from source code program to an abstraction at very low level. Some research

has been done in this area, such as the development of the reverse engineering

tool AutoSpec [43,73].

There is no real-time feature in Hoare Logic. Some extension can be added to

make Hoare Logic more suitable for real-time domain. A Real-time Hoare Logic

has been proposed [881.

Hoare Logic is one of the mathematical pillars for program verification and for-

mal methods. Hoare Logic and its variants are used in numerous formal methods

tools.

e WP-Calculus [58,59]. Weakest Precondition Calculus was first proposed by E.

W. Dijkstra in 1976. A precondition describes the initial state of a program, and a

postcondition describes the final state. By using the semantics of predicate logic

and other suitable formal logics, V-YT-Calculus has been proven to be formalism

suitable for reverse engineering of source code, especially at the low abstraction

levels.

9 Modal Logic [117,46]. Modal logic is the study of context-dependent proper-

ties such as necessity and possibility. In modal logic, the meaning of expressions

depends on an implicit context, abstracted away from the object language. Tem-

poral logic can be regarded as an instance of modal logic where the collection of

contexts models a collection of moments in time. A modal logic is equipped with

27

2.6. CLASSIFICATION OF FORMAL METHODS

modal operators through which elements from different contexts can be com-
bined. Two most popular modal operators are the necessity operator El and the

possibility operator 0. There are several approaches to the semantics of modal
logic, such as 'neighbourhood' semantics. Until now, there is no application of

modal logic in software reverse engineering area.

e Temporal Logic [1381. Temporal logic has its origins in philosophy, where it

was used to analyse the structure or topology of time. In recent years, it has

found a good value in real-time application.

In physics and mathematics, time has traditionally been represented as just an-

other variable. First order predicate calculus is used to reason about expressions

containing the time variable, and there is thus apparently no need for a special

temporal logic.

However, philosophers found it useful to introduce special temporal operators,

such as C1 (henceforth) and 0 (eventually), for the analysis of temporal connec-

tives in languages. The new formalism was soon seen as a potentially valuable

tool for analysing the topology of time. Various types of semantics can be given

to the temporal operators depending on whether time is linear, parallel or branch-

ing. Another aspect is whether time is discrete or continuous [115].

Temporal logic is state-based. A structure of states is the key concept that makes

temporal logic suitable for system specification. Mainly, the types of temporal se-

mantics include interval semantics, point semantics, linear semantics, branching

semantics and partial order semantics [115].

The various temporal logics can be used to reason about qualitative temporal

properties. Safety properties that can be specified include mutual exclusion and

absence of deadlock. Liveness properties include termination and responsive-

ness. Fairness properties include scheduling a given process infinitely often, or

requiring that a continuously enabled transition ultimately fire.

28

2.6. CLASSIFICATION OF FORMAL METHODS

Various proof systems and decision procedures for finite state systems can be

used to check the correctness of a program or system.

In real-time temporal logics, quantitative properties can also be expressed such

as periodicity, real-time response (deadline), and delays. Early approaches to

real-time temporal logics were reported in [131,25]. Since then, real-time logics

have been explored in great detail.

9 TAM [145,144,143]. TAM (Temporal Agent Model) aims to be a realistic

software development method for real-time systems. It has striven to support a

computational model which is amenable both to analysis by run-time execution

environment software, and to efficient implementation. In doing so, TAM has

not shared any of the simplifying assumptions that other techniques promote,

e. g., the maximum parallelism hypothesis, and the instantaneous communication

assumption.

The TAM real-time logic is used both as a language in which to express require-

ments specifications, and as a formalism in which to define the semantics of the

TAM language. It is constructed as a conservative extension to first-order pred-

icate logic, and this enables the developer to use the standard first-order proof

system. The logic formalise the concept of a timed variable which are used to

represent real-time program variables and shunts. Time is represented by positive

integers, and a timing function is used to represent the values found in variables

and shunts at a specific time. Specifications are therefore constrains on the rela-

tionship between time-stamps and values found in shunts during the lifetime of

the system. Additional free variables are also provided which represent the re-

lease and termination time of the system; these variables may be predicated over

in the usual way and therefore provide a mechanism for specifying duration.

Concurrency and communication are also provided to describe multi-tasking sys-

tems. However, there is no attempt to apply TAM in reverse or reengineering field

29

yet.

2.6. CLASSIFICATION OF FORMAL METHODS

9 RTTL [129,130]. RTTL (Real-Time Temporal Logic) uses a distinguished tem-

poral domain, the ESM (Extended State Machine) state variables, and the set

of ESM transitions to form temporal formula. These are then proven using an

axiornatisation of the system's ESM trajectories.

RTTL has a complex and non-compositional proof system. All of the ESMs have

to be designed before any theorems that may be proved about them. There is

a decision procedure for finite ESMs but due to the undecidability of predicate

logic, a procedure for infinite ESMs can never be found. There is a method for

RTTL, but it is basic and contains informal steps. Time is global and there is no

maximum parallelism model.

Perhaps more importantly, RTTL has a very "expressive" syntax, the user can

choose either temporal domain expressions or operators. This flexibility may

result in "cleaner" specifications.

No special development method is proposed in RTTL or required by RTTL. If

applied to reverse engineering area, RTTL has a flexibility to fit different method-

ologies.

9 RTL [94]. RTL is a real-time logic with four basic concepts: actions which may

be composite or primitive, state predicates which provide assertions regarding

the physical system state, events which are markers on the (sparse) time line, and

timing constraints which provide assertions about the timing of events.

Work is presently being carried out on finding an efficient general decision proce-

dure for RTL formulas, presently it is a time consuming exercise to verify safety

and liveness assertions using standard deductive proofs. Also, a design method is

mentioned which may provide an environment for the engineering of large real-

time systems, Jahanian and Mok suggest that RTL may form a unified basis for a

theory of decomposition.

30

RTI: s event occurrence function allows for a rich expression of periodic and non-

2.6. CLASSIFICATION OF FORMAL METHODS

periodic real-time properties. However, unstricted RTL is undecidable. It does

not treat data structures or infinite state systems. RTL formulas impose a partial

order on computational actions which is useful for representing high level timing

requirements.

RTL has been used with some success in industrial applications and it is also

being used in a major IBM project called "ORE" which is integrating RTL with a

real-time programming language. There is a feeling of confidence with RTL due

to its pragmatic nature.

9 TPCTL [80]. Timed Probabilistic Computation Tree Logic (TPCTL) deals with

real-time constraints and reliability. Formulas of TPCTL are interpreted over a

discrete time extension of Nfilner's Calculus of Communication Systems called

TPCCS. Probabilities are introduced by allowing two types of transitions, one

labelled with actions and the other labelled with probabilities.

The semantics of TPCTL is defined over the reactive transitions of TPCCS pro-

cesses. TPCTL is a logic essentially extending the branching time modalities

of CTL [49] with time and probabilities. Since formulas are interpreted over

TPCCS processes, which are observed through actions that label transitions, the

semantics of TPCTL is defined in terms of transitions rather than states.

TPCTL is one of the few logics that can express both hard and soft real-time

deadlines, and it is possible to represent levels of criticality in TPCTL.

Because of the action-based nature of TPCTL, it is difficult to specify state-based

properties such as "henceforth, if the train is at the crossing then the gate must

be down". Propositions such as "the gate is down" must be encoded indirectly

through actions that change the state of the model, in which case the specification

becomes unnecessarily complicated.

TPCTL has no special development method. However, no practice has been car-

ried out that using TPCTL as an independent tool to specify real-time systems.

31

2.6. CLASSIFICATION OF FORNIAL METHODS

Sample Description ITL is used as a sample here.

* Syntax and Semantics. An interval is considered to be a (in)finite sequence of

states, where a state is a mapping from variables to their values. The length of an

interval is equal to one less than the number of states in the interval (e. g., a one

state interval has length 0). The syntax of ITL is defined as following, where i is

a constant, a is a static variable (does not change within an interval), A is a state

variable (can change within an interval), va static or state variable, g is a function

symbol, p is a predicate symbol.

Expressions:

exp :: =iIaIAIg (expl,
..., exp,,) I za :

Fonnulae:

f :: = p(expl, ...) eXPn) I -"f IA 1ý f2 JVvef I skip lfl; f2 If *

The informal semantics of the most interesting constructs are as following:

- za : f: the value of a such thatf holds. If there is no such an a then za :f

take an arbitrary value from a's range.

-Vv-f: for all v such that f holds.

- skip: unit interval(length 1).

-
fl; f2: holds if the interval can be decomposed("chopped") into a prefix and

suffix interval, such thatf, holds over the prefix andf2 over the suffix, or if

the interval is infinite andf, holds for that interval.

- f*: holds if the interval is decomposable into a finite number of intervals

such that for each of them f holds, or the interval is infinite and can be

decomposed into an infinite number of finite intervals for whichf holds.

The formal semantics is as followings: Let X be a choice function which maps

32

any nonempty set to some element in the set. We write a -, a' if the intervals a

2.6. CLASSIFICATION OF FORMAL METHODS

and a' are identical with the possible exception of their mapping for the variable
V.

- jvý -ao (V)
A

S, ýg(expj,... exp,)j =9 (, 60-ýexpjj,
... i

So- ýffPný)

x (U) if u: A 0

X(Vala) otherwise
where u=f u'(a) IU 'a 071A MaVý ttl

A

- M, ýp(expj,..., exp,)l = tt iff P (S, ýexplj,..., Sjexp, j)

- A4 0, ý-Ifý = tt iff A4 a Lfý =

- A4, Vj Af2j = tt iff MVjý -- tt and M, V21 = tt

-M, tt iff for all a' s. t. a . j, a, M
01
VI = tt

- M, ýskipj = tt iff Ia 1= I

-Mo,
Vl; f2l tt iff

(exists a k, s. t. A4oo f= tt and ... O'k
Ld

((a is infinite and M O'k...
V21 = tt) or

(o, is finite and k <I o, I and A4 CTk ... alal
V21 = tt)))

or (a is infinite and M, Viý)

- A4, v*l = tt iff

if a is infinite then

(exist 10, ---, 1, s. t. lo -0 and

AA OIn--*Vý = tt and

for all 0<i<n, 1i < 1j+j and tt)

or
(exists an infinite number of li s. t. 10 and

for all 0<i<n, 1i < Ij+j and Lfý = tt)

else
(exist lo, ..., 1,, s. t. lo =0 and 1,, =1 aI and

33

for all 0<i<n, 1i < 1j+j and Vý = tt)

2.6. CLASSIFICATION OF FORMAL METHODS

* Assessment. ITL was first proposed by Moszkowski [124]. ITL avoids the pro-
liferation of time variables in specifications, as do all temporal logics. ITL is

sufficiently general to express any discrete computation. An executable subset of
ITL, called Tempura [125], is well developed. Zedan and Cau proposed a set of

new refinement rules for ITL [38], which gives ITL a strong ability to describe

all the popular possible features of real-time systems. Since ITL has an exe-

cutable subset Tempura, its verification and simulation can be largely facilitated.

The development method of ITL fits popular reengineering methodologies well.

Generally speaking, ITL is a formal logic with enough expressibility of real-time

systems and suitable for reengineering methodologies.

2.6.3 Algebraic Approach

General In this approach, an explicit definition of operations is given by relating the

behaviour of different operations without defining states. Similar to the model-based

approach, there is no explicit representation of concurrency.

Examples

e OBJ[75,76]. OBJ is a wide spectrum first-order functional language that is

rigorously based on equational logic. This semantics basis supports a declarative,

specificational style, facilitates program verification, and allows OBJ to be used

as a theorem prover.

o LARCH [79]. The Larch family of algebraic specification languages was de-

veloped at NUT and Xerox PARC to support the productive use of formal spec-

ifications in programming. One of its goals is to support a variety of different

programming, including imperative languages, while at the same time localising

programming language dependencies as much as possible. Each Larch language

is composed of two components: the interface language which is specific to the

particular progranu-ning language under consideration and the shared language

34

2.6. CLASSIFICATION OF FORMAL METHODS

which is common to all programming languages. The interface language is used

to specify program modules using predicate logic with equality and constructs to

deal with side effects, exception handling and other aspects of the given program-

ming language. The shared language includes specification-building operations

inspired by those in CLEAR, although these are viewed as purely syntactic oper-

ations on lists of axioms rather than as semantically non-trivial as in CLEAR.

Sample Description OBJ is used as a sample here.

OBJ [75] is a broad spectrum algebraic specific ation/programming language based

on order sorted equational logic. It is a specification language in which an algebra is

defined using objects. Objects are carrier sets along with operations, and equational

theories which are treated by the OBJ interpreter as re-write axioms. Each object is

built from primitive sorts and enrichments of existing objects.

Proofs of equivalence are achieved automatically in OBJ by rewriting processes into

their normal forms and testing for syntactic equivalence.

There are now a number of enhanced OBJ interpreters, including OBJI, OBJ2 and

OBB. Here we prefer using the most up-to-date one: OBJ3.

OBJ3 is based on order sorted equational logic, which provides a notion of sub-

sort that rigorously supports multiple inheritance, exception handling and overloading.

OBJ3 also provides parameterised programming, which gives powerful support for

design, verification, reuse, and maintenance. This approach uses two kinds of module:

objects to encapsulate executable code, and in particular to define abstract data types by

initial algebra semantics; and theories to specify both syntactic structure and semantic

properties for modules and module interfaces. Each kind of module can be parame-

terised, where actual parameters are modules. For parameter instantiation, a view binds

the formal entities in an interface theory to actual entities in a module, and also asserts

that the target module satisfies the semantic requirements of the interface theory.

35

2.6. CLASSIFICATION OF FORMAL METHODS

2.6.4 Process Algebra Approach

General In this approach, explicit representation of concurrent processes is allowed.
System behaviour is represented by constraints on all allowable observable communi-
cations between processes.

Examples

* CSP [82,86]. The Communicating Sequential Processes (CSP) formal specifi-

cation notation for concurrent systems was first introduced in [82]. Since this

original proposal did not include a proof method, a complete version of CSP was

proposed in [86].

e CCS [121,123]. Calculus of Communicafing Systems (CCS) was proposed by

Milner in 1989. It is a formalism similar to CSP. CCS is also suitable for dis-

tributed and concurrent systems. At present, several variations of CCS has been

developed, which forms a CCS family. CCS family includes CCS, CCS+, CCS*,

SCCS, TCCS and TPCCS [64].

Two underlying concepts of CCS are agents and actions. A CCS model consists

of a set of communicating processes (agents in CCS terminology). CCS adopts

operational semantics.

CCS is a successful formalism to build system models with respect to concur-

rency and distribution. Compared with CSP, the emphasis of CCS is on defining

a series of equivalencies (bi simulations), each equivalence defining a different

model of concurrency. Thus certain processes that might be considered identical

in CSP, would be different in CCS. CCS has a form of modal logic to specify the

observable behaviours of processes. CSP has a richer set of laws than CCS allow-

ing for optimising design and implementations. CCS concentrates on a minimal

set of operators needed for the full expression of non-deterministic concurrency

and its resulting equivalences.

36

2.6. CLASSIFICATION OF FORMAL METHODS

CCS is not a real-time formalism either. Some extensions of CCS with real-time

feature have been developed, such TCCS, SCCS, and TPCCS.

* ACP [26,15]. Algebra of Communicating Processes (ACP) was proposed by J. A.

Bergstra in 1984. Until now, a rather large variety of ACP has been proposed,

such as Real Time ACP(ACPp), Discrete Time ACR ACP is also an action-based

process algebra, which may be viewed as a modification of CCS. However, ACP

is an executable formalism. ACP is equipped with a process graph semantics,

and adopts bisimulation proof system. ACP allows a variety of communication

paradigms, including ternary communication, through the choice of the commu-

nication function.

* LOTOS [93,113]. LOTOS (Language Of Temporal Ordering Specification)

was developed to define implementation-independent formal standards of OSI

services and protocols. LOTOS has two very clearly separated parts. The first

part provides a behavioural model derived from process algebra, principally from

CCS but also from CSP. The second part of LOTOS allows specifiers to describe

abstract data types and values, and is based on the abstract data type language

ACT ONE.

By combining the two fon-nalism, CCS/CSP and ACT ONE integrally, LOTOS

has a strong ability to describe both the "data" and "control" of the systems,

i. e., ACT ONE for the data part and CCS/CSP-based language for the control

part. LOTOS is able to capture a relatively complex temporal pattern of events,

involving non-determinism, concurrency and synchronisation, by means of small

algebraic expression built by using few conceptually simple operators [156].

LOTOS has formally defined syntax, static semantics and dynamic semantics.

The static semantics are defined by an attributed grammar [93] and the dynamic

semantics are described operationally in terms of inference rules.

37

Since LOTOS has an operational semantics, it is possible to implement these

2.6. CLASSIFICATION OF FORMAL METHODS

semantics in an interpreter. LOTOS has "a number of" various support tools,

which are although not mature or narrow-aspected, do have some successful

points [157].

LOTOS does not support real-time specifications. Although a Timed LOTOS has

been proposed, it is not proven a suitable formalism for real-time systems.

LOTOS has problems in specifying distributed systems - it does not support dy-

namic reconfiguration which is an important and interesting characteristics in

those systems. Its model of concurrency is based in the known "interleaved se-

mantics" in which an observer can see one event a time and concurrency is rep-

resented sequentially. Many models based on "true concurrency semantics" have

been proposed although it seems that none of them will be present in the next ver-
6

sion of LOTOS. This is a weak point in represent distributed processing where

in many situations things happen simultaneously and no ordering between events

can be established. Also, LOTOS has weak data specification mechanisms and

cannot express time explicitly.

* TCSP [136]. Timed CSP is an extension of Hoare's CSP, with a dense tem-

poral model providing a global clock. A delay operator is included along with

some extended parallel operators. There is an assumption of a minimum delay

between any two dependent action occurrences, but no minimum delay on any

two independent actions. The semantics of TCSP is given by timed traces, and a

specification relation sat is provided for verifying predicates over traces.

Processes in Timed CSP are built from sequences of communication actions. The

semantic model of TCSP is based on observation and refusal timed traces.

it is important in specification languages for real-time systems that the temporal

relationships between actions are maintained through the manipulation of the

specification. In a non-real-time process algebra, the concurrency operators are

usually conservative, i. e., they degenerate into non-deterministic interleaves of

38

2.6. CLASSIFICATION OF FORMAL METHODS

the constituent processes' actions. In TCSP, the concurrency operators are non-

conservative, they do not degenerate. Instead, the algebraic rules for concurrent

processes define the effect of composition on the temporal domain. For example,

in the process where there is concurrent composition of two WAIT processes, the

result is a process that waits for the maximum of two delays.

There exist no tools for the manipulation of specifications written in TCSP.

* TPCCS [80]. Timed Probabilistic Calculus of Communicating Systems (TPCCS)

[80] is essentially an extension of Nfilner's CCS with discrete time and prob-

abilities. To increase the description ability, a logic named Timed Probabilis-

tic Computation Tree Logic (TPCTL) is proposed to describe the logic of and

between TPCCS processes. Therefore TPCCS, together with TPCTL, forms a

framework for specification and verification of real-time and reliability in dis-

tributed systems. TPCCS, as a process algebra, is used for modelling the op-

erational behaviour of distributed real-time systems; and TPCTL, as a logic, is

used for expressing properties of the systems. A verification method for automat-

ically proving that a system described in TPCCS satisfies properties formulated

in TPCTL, is also well defined [80].

The main advantage of TPCCS is that it has a powerful description ability for

real-time distributed systems. TPCCS can reason about both time and probabili-

ties in distributed systems. In particular, TPCCS

- extends CCS with probabilities by adding a probabilistic choice operator

and by introducing a probabilistic transition relation,

- adds discrete time to the extended CCS where the timing model is based on

a minimal delay assumption, i. e., communications must occur as soon as

possible,

- defines, a strong bisimulation equivalence for which a sound and complete

39

axiornatisation is given.

2.6. CLASSIFICATION OF FORMAL METHODS

TPCCS has very formally defined syntax and semantics, which bring lots of con-

venience in the automation of specification and verification. However, the cal-

culation of probabilities is not mentioned in TPCCS and TPCTL. A tool named

Timing and Probability Workbench (TPWB) has been developed. TPWB Par- t:)
tially supports automatic verification of TPCCS.

Sample Description CSP is used as a sample here.

Syntax and Semantics of CSP A CSP specification is a hierarchy of processes.

A complete specification can be viewed as a single process which is composed

of sub-processes, each of which is decomposed into component processes.

The CSP notation has three primitive proce§ses for input, output and assignment:

ke Output the value e over channel A;

B? x From channel B input to x;

x:: =e Assignx the value e.

A number of operators exist for combining processes, for example:

PJJQ Processes P and Q operate in parallel;

PF1Q Either P or process Q operates. The choice is non-deterministic;

P; Q Process P operates followed by Q.

The basic concept in CSP considers a process as a mathematical abstraction of in-

teractions between the system and its environment. Recursion is used to describe

long lasting processes. The second feature is to use traces to record the sequence

of actions a process has carried out. The abstract description is then given a more

concrete explanation using algebraic law, and the last step is the implementation.

The notation for CSP usesfirst order logic symbols plus some additional symbols

for traces, functions, etc.

There is a family of increasingly sophisticated models for providing CSP speci-

fication semantics. These computational models include the counter model, the

40

trace model, the divergences model, the readiness model and the failure model.

2.6. CLASSIFICATION OF FORNUL METHODS

o Assessment of CSP

The main contribution of CSP is as a programming language for parallel process-
ing, principally in the area of synchronising communications.

CSP supports an event model that enables the description of entities that have

properties and relationships that vary over time. It allows us to model a dynamic

reality, to specify systems that perform various actions in particular orderings,

and to express timing constraints between these actions and on the synchronisa-

tion of various system components.

CSP specifications may be viewed quite simply as a system of processes execut-

ing independently, communicating over unbuffered unidirectional channels, and

synchronising on particular events.

Specifications may be manipulated through the application of a number of alge-

braic laws, and combined by means of a small number of operators which are

known to be sound. Various semantic models allow proposed properties to be

proven, and to demonstrate that particular requirements have been satisfied.

These features make CSP a suitable formalism in the area of concurrency. How-

ever, like many other methods/languages, timing constraints associated with real-

time operations cannot be handled, or have to be in a clumsy and inefficient way.

CSP is not good at handling asynchronous events, such as interrupts.

Tools for CSP keep emerging. The Occarn Transformation System developed

by Oxford University's Programming Research Group is an automated tool to

assist in carrying out algebraic transformation. Since Occam follows the main

principles of Hoare's CSP, this tool may bring some convenience to CSP, too.

FDR (Failures-Divergence Refinement) was the first commercially available tool

for CSP and played a major role in driving the evolution of CSP from a black-

board notation to a practical language. As a prover tool, FDR allows the check-

ing of a wide range of correctness conditions of finite state systems, including

deadlock and livelock freedom as well as general safety and liveness properties.

41

2.6. CLASSIFICATION OF FORMAL METHODS

When these conditions are not satisfied, the reasons can be investigated. FDR

is a product of Formal SYstems, a consultancy firm specialising in the industrial

application of formal methods.

2.6.5 Net-Based Approach

General Graphical notations are popular notations for specifying systems as they are

easier to comprehend and, hence, more accessible to non-specialists. In this approach,

graphicallanguages with a formal semantics are used, which bring special advantages it:) C,

in system development and reengineering.

Examples

Petri Net [137,133]. Petri Net theory is one of the first fonnalisms to deal with

concurrency, nondeterminism and causal connections between events. According

to [122], it was the first unified theory, with levels of abstraction, in which to

describe and analyse all aspects of computer in the context of its environment.

Petri nets provide a graphic representation with formal semantics of system be-

haviour. Until now, a large amount of varieties of Petri Net Theory has been

proposed. Generally, petri nets can be classified into ordinary (classic) petri nets

and timed petri nets.

e Timed Petri Net [118,63,27,29,105,135]. Petri Net theory was the first con-

current formalisms to deal with real-time. Two basic timed versions of Petri nets

have been introduced: Timed Petri Nets [134] and Time Petri Nets [118]. Both

have been used in recent work [63,27,29,105,135]. There are two questions

that arise when time is introduced to net theory: (i) the location of the time de-

lays(at places or transitions) and (ii) the type of delay (fixed delays, intervals or

stochastic delays).

Timed Petri Nets are derived from classical Petri nets by associating a finite firing

duration (a delay) with each transition of the net. The transition is disabled from

42

2.6. CLASSIFICATION OF FORMAL METHODS

occurrence for the delay period, but is fired immediately after becoming enabled.
These nets are used mainly in performance evaluation.

Time Petri Nets (TPNs) are more general than Timed Petri Nets. A Timed Petri

Net can be simulated by a TPN, but not vice versa. Both a lower and an upper

bound are associated with each transition in a TPN. A state in the reachability

graph is a tuple consisting of a marking, and a vector of possible firing intervals

of enabled transitions in that marking.

e Statecharts [89,90]. Statecharts provides an abstraction mechanism based on
finite state machine. It represents an improved version of the structured meth-

ods. A graphic tool called "Statemate" [4] exists to implement the formalism.

Methods similar to that of Statecharts may be found in [68].

Statecharts have been proved to be at least as expressive as state machines, and

the succinct justification for them is provided by the following "equation":

Statecharts = state-transitions + depth + orthogonality + broadcast communication.

In statecharts, conventional finite state machines are extended by AND/OR de-

composition of states, interlevel transitions, and an implicit intercomposition

broadcast communication. Statecharts denote composition of state machine into

super-machines which may execute concurrently. The state machines contain

transitions which are marked by enabling and output events. It is assumed that

events are instantaneous, and a global discrete clock is used to trigger sets of con-

current events. Statecharts are hierarchical, and may be composed into complex

charts. The semantics of Statecharts is given by maximal computation histories.

An axiomatic system is presented.

Statecharts supports typical structural top-down system development method. it

does not fit the procedures of reverse engineering, which abstracts specifications

from source code. Real time is incorporated in Statecharts by having an implicit

clock, allowing transitions to be triggered by timeouts relative to this clock and C

43

2.6. CLASSIFICATION OF FORMAL METHODS

by requiring that if a transition can be taken, then it must be taken immediately

[151].

Sample Description Petri Net is used as a sample here.

* Syntax and Semantics of Petri Nets

The classic Petri Nets model is a 5-tuple (P, T, 1,0, M). P is a finite set of places

(often drawn as circles), representing conditions. T is a finite set of transitions

(often drawn as bars), representing events. I and 0 are sets of input and output

functions mapping transitions to bags of places(the incidence functions). M is

the set of initial markings.

Places may contain zero or more tokens (often drawn as black circles). A marking

(or state) of the Petri nets is the distribution of tokens at a moment in time, i. e.

M: P -ý N where N is the non-negative integers. Tokens in Petri nets model

dynamic behaviour of systems. Markings change during execution of the Petri

nets as the tokens "travel" through the net.

The execution of the Petri nets is controlled by the number and distribution of the

tokens (the state). A transition is enabled if each of its input places contains at

least as many tokens as there exists arcs from that place to the transition. When

a transition is enabled it may fire. When a transition fires, all enabling tokens

are removed from its input places, and a token is deposited in each of its output

places.

Given an initial state (distribution of tokens), the reachability set is the set of all

states that result from executing the Petri net. Properties such as boundness, live-

ness, safety and freedom from deadlock can be checked by analysing the reacha-

bility graph. The reachability graph is usually constructed using an interleaving

operational semantics.

In Petri nets causal dependencies and independencies in some set of events are

44

explicitly represented. It is therefore easy to provide a non-restrictive partial or-

2.7. CRITERIA AND RESULTS

der semantics. Events which are independent of each other are not projected onto

a linear time scale. Instead a non-interleaving partial order relation of concur-

rency is introduced.

* Assessment of Petri Nets

The advantages of using Petri nets are numerous. They are easy to comprehend

due to their graphical form, they can be used to model hardware, software and

human behaviour, and they allow formal reasoning of system behaviour. Some

experts suggest using both Petri nets and formal logic for developing systems and 1=0
the former to model the system, the latter to verify it.

Ordinary Petri nets have been criticised for not being able to deal with fairness

and data structures, e. g. the data in a measure header, although the number of to-

kens at a particular place in the net can simulate a local program variable. Struc-

turing mechanisms such as composition operators are not inherently part of the

theory, and there is no calculus to transform a net into a real-time programming

language. Unlike state machine, a "place" in a Petri net cannot easily be identi-

fied with a place in the corresponding program code. A further problem is that

the reachability graph suffers from state explosion as Petri nets become larger,

thus impacting on the ability to scale up analysis to larger systems. Ordinary

Petri nets are still an object of intense research aimed at putting Petri nets the-

ory on firm mathematical ground. However, practically speaking, such standard

nets are not up to the task of modelling complex systems. For this reason, higher

level nets (coloured nets) and stochastic nets have been introduced to extend the

modelling power of Petri nets.

2.7 Criteria and Results

In this section, we summanse a wide spectrum of existing formal methods from the

45

point of view of software reengineering. Generally speaking, some of them already

2.7. CRITERIA AND RESULTS

have a rather good advantage in certain aspects, such as ITL for real-time systems, and 0
TPCCS & TPCTL for systems with reliability and probabilities. However, all of them

have certain flaws or weakness in some aspects as described in section 2.6.

We list our findings through the review in forms of tables according to the following

criteria:

e Temporal Model - Temporal model is the model of time used by the formal

methods. A sparse model has discrete instances of time and there is a minimum

granularity. A dense model is not discrete, between any two instances in time

there is an infinite number of other instances.

9 Automated Tools - This criterion refers to whether the formal method has rele-

vant automated tools to support its development, such as checking syntax, veri-

fying semantics and auto-execution.

* Reliability - This criterion refers to the reliability of the formalism.

o Proof System - This refers to whether there is any proof system and what the

type of the system is (when there is one).

e Industrial Strength - This criterion refers to the potential of the formal method

for large-scale/industrial applications.

9 Methods of Verification - This criterion refers to the existing methods of veri-

fication of the formal method. Normally, there are two types of the methods of

verification: model checking and theorem proving.

e Concurrency - This criterion refers to the explicit representation and reasoning

of conctirrency.

e Communication - This criterion refers to the explicit representation and reason-

46

ing of communication.

2.7. CRITERIA AND RESULTS

9 Reverse Engineering - This criterion refers to whether the formal method has Z:)

been applied in any reverse engineering domain.

L. Criteria z VDM B
Temporal Model none none none
Automated Tools a few none good

Reliability good good good
Proof System semi-axiomatic semi-axiomatic axiomatic

Industrial Strength great some great
Methods of Veri. model-checking model-checking both

Concurrency none none none
Communication none none none

Reverse Eng. yes no no

Table 2.1: Model/State-B ased Fonnalisms
0

Criteria HL VYT-Calc. TL
Temporal Model none none dense/sparse none
Automated Tools some some some or few few

Reliability good good good good
Proof SYstern. axiomatic axiomatic axiomatic axiomatic

Industrial Strength some some great great
Methods of Veri. theorem proving theorem proving both both

Concurrency none none norm exist none
Communication none none norm exist none

Reverse Eng. yes yes no no

Table 2.2: Logic-Based Fonnalisms

The above five categories are cor-responding to subsections of section 2.6. We be-

lieve we should use the sixth category in order to better summarise those so-called

"combined" approaches.

Through reading these tables, we can draw the following conclusions of the current

situation of fon-nal methods for reengineering:

41 Some formalisms are rather good in certain aspects of software development

47

while others are good in other aspects. For example, ITL has a strong ability

2.7. CRITERIA AND RESULTS

Criteria j - ITL -T DC TAM RTTL RTL
Temporal Model sparse dense sparse sparse sparse
Automated Tools few none none few none

Reliability good good good good good
Proof System axiomatic axiomatic axiomatic axiomatic axiomatic

Industrial Strength great some great some some
Methods of Veri. theorem prov. theorem prov. theorem prov. theorem prov. theorem prov.

Concurrency par. comp. none exist interleaved interleaved
Communication sync. /async. none exist sync. none

Reverse Eng. no no no no no

Table 2.3: Logic-Based Fonnalisms

Criteria OBJ La-r-ch---]
Temporal Model none none
Automated Tools few some

Reliability good good
Proof System axiomatic axiomatic

Industrial Strength some great
Methods of Veri. theorem prov. theorem prov.

Concurrency interleaved interleaved

Communication sync. sync
Reverse Eng. no no

Table 2.4: Algebraic Formalisms

for representing and reasoning of most features of real-time systems. TPCCS &

TPCTL is good at dealing with systems with reliability and probability features.
Z:)

Z is capable for large-scale industrial applications. B has a comprehensive auto-

mated toolkit. DC has advantages for its ability of dealing with dense temporal

models. Various process algebras are excellent for their abilities of represent-

ing and reasoning of concurrency and communication. Finally, the most impor-

tant features of net-based formalisms are their graphical representations: concise,

easy to understand, and very clear.

48

9 Only a very few formalisms have been applied as the theoretical foundation of

2.7. CRITERIA AND RESULTS

Criteria CSP CCS ACP LOTOS TC
Temporal Model none none none none dense
Automated Tools some none good some none

Reliability good good good good good
Proof System axiomatic bisimulation bisimulation bisimulation axiomatic

Industrial Strength some some some great some
Methods of Veri. both both both model-checking both

Concurrency interleaved interleaved interleaved interleaved both
Communication sync/async. sync. sync. sync. sync.

Reverse Eng. no no no no no

Table 2.5: Process Algebra Fonnalisms

Criteria Petri Nets Timed Petri Nets S tatecýa-rt-s-]
Temporal Model none dense/sparse sparse
Automated Tools some none none

Reliability good good good
Proof System reachability reachability axiomatic

Industrial Strength some some some
Methods of Veri. model-checking model-checking- model-checking

Concurrency interleaved interleaved exist
Communication sync. sync. sync.

Reverse Eng. yes no no 77ý

Table 2.6: Graphic-Based Fonnalisms

reverse engineering;

e Although some formalisms are suitable for certain stages of reverse engineer-

ing, there is not any formalism covering all reverse engineering stages. For ex-

ample, Hoare Logic can cope with the low-level abstraction of program source

code, but not high level abstraction. This also happens to the formalisms such as

Wp-Calculus and predicate logic. Therefore, a new wide spectrum formalism is

needed for the reengineering process, e. g., an ITL-based wide spectrum language

with real-time features.

49

It is not hard to see that most existing formal methods were not designed for reverse

2.8. ANALYSIS AND CONCLUSION

Criteria TPCCS + TPCTL - F-Petri Nets + Pred
Temporal Model sparse sparse/dense
Automated Tools none none

Reliability good good
Proof System axiomatic reach. ps axiom.

Industrial Strength some unknown
Methods of Veri. theorem proving model-checking

Concurrency interleaved interleaved
Communication sync. sync.

Reverse Eng. no no

Table 2.7: Table 6: Combined Formalisms

engineering as well as reengineering. This urges that research into suitable fonnal 4-ý

methods for reengineering should be established..

2.8 Analysis and Conclusion

This review is conducted in the view of developing a practical approach for the reengi-

neering of existing system including real-time critical application. Reengineering gen-

erally consists of three stages, i. e., restructuring, reverse engineering and forward en-

gineering. Because most existing formal approaches were developed for forward engi-

neering, whether a fonnal approach has been used for reverse engineering is specially

used as a criterion.

Through the review, we found that using formal methods in reverse engineering

existing systems (real-time systems, in particular) is still a research area that has not

been addressed properly, because (1) there are formal methods for reverse engineering;

(2) a new wide spectrum formalism supporting various abstraction levels is needed

for the reengineering process, and (3) even if a formal method can cope with reverse

engineering well, it is still a problem whether this formal method can be inte rated with
Cý

9

an existingy matured forward engineering formal method.

50

Graphical notations are also popular notations for reverse engineering (understand-

2.8. ANALYSIS AND CONCLUSION

ing) existing systems. The Petri Net is useful for building a graphical model for reengi-

neering.

Another factor that should be taken into consideration when reengineering com-

puting systems is recent rapid development of object-oriented technology. We believe

that an approach that integrates formal methods, particular system domain features and

object-oriented techniques can contribute to improve reengineering:

existing software can be easily understood and reengineered with the help of a C)

successfully extracted semantics-oriented specification. An approach with a full

consideration about the features of the system being reengineered will be more

effective and efficient.

* object-oriented techniques, which have beeh recognised as the best way currently

available for structuring software systems, can help maintenance in grouping to-

gether data and operations performed on them, thereby encapsulating the whole

system behind a clean interface, and organising the resulting entities in a hierar-

chy based on specialisation in functionalities;

formal methods can provide a solid theoretical foundation for the correctness and

unambiguity of the approach, meanwhile give more potentials to the automation

of the approach, hence, a practical software maintenance and reengineering tool

becomes feasible.

Therefore our goal is to devise a uniform coherent semantic theory that enables

a comprehensive formal understanding of reengineering model when applied to the

analysis and the development of complex computing systems in real applications. This

should allow diverse kinds of formalisms to be developed and integrated.

The unified theory provides a fonnal basis within which an object-oriented fonnal

notation will be developed that unifies existing widely-used formalisms. In addition,

sound transformational calculi together with verification and validation techniques will

51

be developed. Our approach to this is to build a wide spectrum language in which

2.8. ANALYSIS AND CONCLUSION

concrete and abstract (e. g. specification statement) system notations could be easily
intermixed. The developed calculi will then allow us to transfer from one form of

specific ati on/program to another.

The novel aspects of this proposal are in the incorporation of the outcome of exten-

sive research in a number of key areas of software maintenance into a formally unified

semantic model.

We intend to use a wide spectrum language approach to the proposed formal reengi-

neering of existing computing systems, particularly real-time systems. Our extensive

experience with the design and use of the Wide Spectrum Language (WSL) [22,167,

47] and TAM [145,38,170] have illustrated the practical use of such an approach. In

our next research stage, we therefore aim to:
0

develop a single "wide spectrum" language in which both abstract specifications

written in our extended logic and executable code may be intermixed in the rep-

resentation of the target system;

2. define a refinement and abstraction relation on specifications and programs de-

scribed in the language;

3. develop a family of sound refinement and abstraction calculi to serve for both

forward and backward refinement, and

52

4. treat real-time systems with parallelism as specific domain.

Chapter 3

Related Work

3.1 Maintainer's Assistant

The project, as the main part of a larger project the ReForm project funded by IIBM and

the DTI/SERC, addresses the reengineering of installed software to bring it to a state

in which modem software engineering techniques can be applied via the application of

formal transformations. Maintainer's Assistant is developed in Software Maintenance

Center in Durham University, UK [163,160]. The structure of the system is shown in

the figure below:

The aim of the ReForm project is to create a code analysis tool-the Maintainer's

Assistant [163,160,32,33], aimed at helping the maintenance programmer to under-

stand and modify a given program. Program transformation techniques are employed

by the Maintainer's Assistant both to derive a specification from a section of code, and

to transform a section of code into a logically equivalent form. The aim is to provide a

tool with features such that:

It acts, initially, on existing program code as a tool to aid comprehension (possi-

bly by producing specifications);

e Only the program code is required;

3.1. MAINTAINER'S ASSISTANT

Transformation

Library

Source

File

Program
Transformer

Translator

Internal
Stnicture Representation
Editor of WSL code

Edit
Select

View

101-05
X-Windows
Front End

ASCH

High-Level Low-Level
Browser WSL to
Interface WSL to Z Source

The Maintainer

J,

Figure 3.1: Maintainer's Assistant System Architecture.

9 The system can work with any language by first translating, i. e., with a stand-

alone translator into WSL;

* Changes are made to the WSL program by means of transformation; cý

e The system incorporates a large, flexible catalogue of transformations;

e The applicability of each transformation is tested before it can be applied;

* The system is interactive and incorporates an X-Windows front end and pretty-

printer called the Browser;

e The system includes a database structure to store information about the program

being transformed, such as the variables assigned to within a given piece of code;

54

9 The system includes a facility to calculate metrics for the code being transformed.

3.2. CSTAR AND ELBERETH

One of the most important successes of Maintainer's Assistant is that it is based

on a wide spectrum language whose syntax and semantics are formally defined. Main-

tainer's Assistant is a successful case of applying wide spectrum languages in reengi-

neering area. However, Maintainer's Assistant focused on transformations rather than

abstraction. It involved very little in how to use multi-leveled abstractions and relevant

abstraction rules to reach a good system reengineering, especially reverse engineering.
The Wide Spectrum Language in Maintainer's Assistant is sequential and non-timed,

which limits its application in domains such as real-time systems.

3.2 CStar and Elbereth

Both CStar [77] and Elbereth [77,78] are the results of the research conducted at the

Software Engineering Laboratory of University of California at San Diego.

Elbereth is a Java Reengineering Tool based on Star Diagrams. It provides powerful

ways to view all the uses of a variable, method or class in the context in which it is used.

It also supports the recording and recall of plans for system-wide changes, meaning that

the tool not only provides visualisations of a program, but of a programmer's work as

well.

CStar is aC Reengineering Tool based on Star Diagrams. It provides much the

same functionality as Elbereth, but for C. It is more mature in some ways, supporting

capabilities such as building a star diagram for all variables of a particular type.

The work at the Software Engineering Laboratory, Department of Computer Sci-

ence and Engineering, University of California at San Diego, is one of the representa-

tive examples of research that are related to our work. They based their approach to

reverse engineering on abstraction, and identified three kinds of abstractions: problem

domain, structural, and logical. Problem domain abstractions correspond to concepts

from a program's application area. Structural abstractions are used to eliminate imple-

mentation details and redundant information. Logical abstractions are properties that

can be logically derived from code. The goal in logical abstraction is not to generate

55

3.3. PRISME

abstract program description, but to be able to determine the validity of specified prop- C)
erties of a program's context/action pairs. Logical abstractions can be thought of as

properties that can be derived from the adopted event/state model (ESM).

A method for generating functional specifications is described, which incorporates Z: >

the abstraction techniques. It has been applied to a variety of COBOL programs and

been found to generate 'natural' abstract program descriptions. An analysis tool is be- ZI)

ing constructed that will be used to help verify the approach and to assess its complexity

and computational requirements [91]. A prototype system of program understanding

and reverse engineering called Function And Context Extraction Tool was under con- Z: ý

struction.

However, the work at University of California at San Diego is based on the action1context

paradigm rather than wide spectrum languages, ahd as a consequence, the approach is

not formalised, and there do not exist consistent multiple abstraction levels with an

integrated formal semantics. These limit the accuracy and power of their approach. Al-

though a comprehensive and general description was given about their approach [91],

more actual work needs to be carried out, especially abstraction rules, i. e., rules to reach

the proposed abstraction.

3.3 PRISME

PRISMEE is a reverse engineering tool based on functional abstraction developed in the

Department of Information Technology, University of Paris [17,16]. The developers

propose to re-document programs with outlines. The interest of outlines is that they

allow to contract, as in a zoom, the amount of information necessary to understand

programs, easing walking through them to localise given computations or to identify the

role of a piece of code. As a first stage toward a framework of program outlines, a model

is defined which is suitable to the representation of computations performed within

loops. The main feature of the outlines is that they are both formal and conceptual: they

are represented within frames which are semantically equivalent to the outlined loops

56

3.4. AUTOSPEC 57

and help understanding what is computed by revealing how this is computed. PRISME

is a system for program re-documentation, it is able to automatically construct outlines C
of a subset of Lisp looping functions.

However, the abstraction in PRISME is function-based instead of semantic s-based.

PRISME does not involve wide spectrum languages. It does not engage a mature

formal method to specify the target system, therefore, PRISME can only extract simple

6signatures' as pieces of outline description of the system, no complete specification

can be extracted in PRISME. Moreover, the notations in PRISME lack of integrated

semantic foundation.

PRISNEE does not contain any abstraction rule to carry out its proposed abstraction

for re-documentation, and consequentially, it involves no forinal definition of abstrac-

tion and relevant rules. 6

PRISMEE is only capable for a narrow subset LISP looping functions, not for a

variety of real computing systems, both procedural and object-oriented.

PRISMEE does not consider any real-time or object-oriented systems.

3.4 AUTOSPEC

In the Software Engineering Research Centre (SERC) of the Department of Computer

Science, Michigan State University, efforts of using formal methods to reverse engi-

neering and reengineering have been made [42,43,44,74,72,73].

The project involves a two-phase approach to reverse engineenng that integrate a

process for abstracting formal specifications from program code with a technique for

identifying candidate objects in program code. Thus far, a set of procedures for ab-

stracting formal specifications from program code by translating basic programming

constructs into equivalent formal representations (predicate logic) has been developed.

Specially, they have developed procedures to handle assignments, alternatives and it-

eratives. In all the cases, the weakest precondition (wp) as defined by Dijkstra and

Gries is used in the abstraction process. For all programming statements, there is a wp

3.5. OTHER RELATED SOFTWARE REENGINEERING PROJECTS 58

predicate transfon-ner that is used to define the semantics of the statement with respect
to a postcondition R. The wp is the set of all states in which a given statement S can
begin execution and upon termination, postcondition R is true. The abstraction process
begins with the programming statement S and seek the postcondition R using WP defini-

tions to guide the derivation. Until now, a preliminary prototype AUTOSPEC has been

developed to apply these procedures to program code.
Apparently, this project only deals with the first abstraction step of reverse engi-

neering, i. e. it only extracts an abstraction at the lowest level of specification, in the
form of predicate logic as a notation of the source code. Therefore, AutoSpec only

considered the initial step in the whole process of reversing source code into a system

specification. There is no multiple levels or high levels of abstraction in AutoSpec.

3.5 Other Related Software Reengineering Projects

Here we list some other software reengineering projects we have found, however, none

of these project are directly related with formal methods.

Chopshop Project The Chopshop project is carried out in the School of Computer

Science, Carnegie Mellon University. It aims at providing practical analysis and visu- C)

alisation tools to assist with real software engineering task. Chopshop is guided by a

number of aspirations:

e To focus on commonly-used programming languages.

e To provide analysis that are efficient even when applied to very large systems.

To provide analyses with firm theoretical foundations-the results of the analyses

should be translated into claims about the behaviour of analysed programs.

To present results at different levels of abstraction appropriate for the task at hand.

3.5. OTHER RELATED SOFTWARE REENGINEERING PROJECTS 59

A proaram slicing tool Chopshop has been built, which computes the dataflow de- Zn
pendencies of C code and displays them using a variety of abstraction mechanisms.
Chopshop is a reverse engineering tool to help programmers understand unfamiliar C

code. A new dataflow analysis technique is developed, which is a modular general-
isation of static program slicing. It gives more understandable results than standard
formulations of slicing. The user can select several sources and sinks of information,

and Chopshop shows how data flows from the sources to the sinks.

DARPA EDCS project [60] The Evolutionary Design of Complex Software (EDCS)

Program, sponsored by the Defence Advanced Research Projects Agency (DARPA),

USA, addresses the need for military systems to evolve over extended lifetimes. The

program is based on the observation that the most likely way to make an existing sys-

tem adapt to changes in its operational environment is through changing its software.

The program examines the ways that software can be created to be more easily evolved,

defines methods for incremental adaptation of systems through software changes, and

seeks ways to migrate the currently installed base of military systems to more evolu-

tionary systems.

Rigi project [120,155] This project is carried out at the University of Victoria,

Canada. Rigi is a Software Engineering project being conducted by researchers in

the Department of Computer Science at the University of Victoria. The current focus

of the group is visualisation support for the understanding and reverse engineering of

legacy systems. This support is embodied in the form of a general Rigi graph model

and realised in an editor called RigiEdit. Inherent in the model is the notion of nested

subsystems that encapsulate detail and provide high level overviews of software sys-

terns. Recent work has generalised both the model and the tool to allow the use of the

graph editor in other domains and to allow user defined extensions to the built-in Rigi

Command Library (RCL).

3.5. OTHER RELATED SOFTWARE REENGINEERING PROJECTS 60

The RevEngE program understanding project [35,126] The objective of this

three-year project, carried out at University of Victoria in conjunction with EBM Canada

Ltd. 's Centre for Advanced Studies (CAS), is to develop an integrated environment of-

fering tools for subsystem identification and discovery to support reverse engineering

processes, using a common software repository. In particular, the project addresses is-

sues in the areas of software analysis technology, algorithms to extract system abstrac-

tions, integration technology applicable to CASE, user-interface technology to model,

browse, and search large collections of software artefacts and reverse engineering pro-

cess models interactively.

The objectives for the first year of the project are two-fold: to design and build a

prototype environment for reverse engineering consisting of a software repository and

a set of reverse engineering tools, and to investigdte specific reverse engineering prob-

lem domains. These goals have been met: the three systems on display by McGill

University, the University of Toronto, and the University of Victoria highlight the con-

tributions made by the research partners, both individually and collectively, towards

addressing the challenges of reverse engineering.

PURE project [8,65] The Program Understanding and Reengineering (PURE) project

is at IRST, Italy. The goal is to develop technologies to analyse software systems or

sub-systems, either at a fine-grained level (control and data dependencies) or at a more

coarse grained level (systems' high level structure and behaviour, i. e. software archi-

tecture), aiming at evaluating system characteristics, supporting user-assisted migration

or restructuring, and more generally increasing software artefacts quality.
Z: ý

First code analysis activity is focused on supporting program understanding, main-

tenance, quality evaluation and assurance. The main effort will be in the area of inter-

procedural analysis among which data dependence, control dependence, slicing, point-

ers and arrays are analysed. An intermediate language representation allows being in-

dependent from the source programming language, given a front-end which translates

the code in the intermediate language. Results can be saved in textual form, or a user

3.5. OTHER RELATED SOFTWARE REENGINEERING PROJECTS

interaction with the analyses is supported by a customised version of the text editor
EMACS.

Analysis of source code at the architectural level is motivated by the fact that the

first activity performed by maintenance programmers when approaching the task of

understanding a system is often trying to discover its high level structure, that is, iden-

tifying its subsystems and their relations: in few words, the software architecture of

the system. First, software architecture goal is to identify architectural patterns and

styles for distributed and object-oriented systems and to develop technologies to iden-

tify components and relations according to the defined patterns, evaluate the quality

of extracted design and to support sound architecture recovery and migration across

different architectural styles.

Type-based analysis of C programs The research is carried out at the program

analysis group at Microsoft Research, USA. One of the goals is to investigate whole-

program analysis of large programs, which mean industrial size large programs rather

than academic size large programs. The research aims at programs consisting of around

a million lines of C or C++ code.

The project has found that flow-sensitive inter-procedural data-flow based analysis

algorithms often do not scale well. The current state-of-the-art algorithms are not able

to compute results for large programs in reasonable time given reasonable memory

constraints, even given generous definitions of reasonable.

The project is currently investigating type inference based methods as an alternative

to data-flow methods. Several results for performing points-to analyses (or alias anal-

yses) by type inference methods has been achieved. The research is still under active

investigation. However, there are not publishable results yet. Z)

RENAISSANCE project The RENAISSANCE project at Lancaster University is

an ESPRIT funded research project into software reengineering and software evolu-

61

tion. The principle business objectives of the RENAISSANCE partners are to improve

3.5. OTHER RELATED SOFTWARE REENGINEERING PROJECTS 62

their capability to offer commercial services in the area of system evolution and to in-

crease their return on investment in their software assets. To meet these objectives, the

RENAISSANCE project has established the following technical objective:

o Support application evolution from centralised to distributed client-server archi-

tectures.

* Support the recovery of system family designs and subsequent evolution using

existing CASE tools.

* Support evolution through the reuse of sub-systems recycled from existing sys-

tems.

e Provide a method for project managers to assess the costs, risks and benefits of

evolution options.

o Integrate all of this support into a systematic method to support system evolution.

An integrated RENAISSANCE evolution method is proposed to guide the process

of system evolution. This will be distinguished from other reengineering projects by its

focus on architectural evolution and the recovery of designs of system families in 4GLs

rather than the more common COBOL or FORTRAN.

Grasp project [54,56] The development of GRASP has been supported by re-

search grants from NASA Marshall Space Flight Centre, the Department of Defence

Advanced Research Projects Agency (ARPA) and the Defence Information Systems

Agency (DISA). The GRASP Project has successfully created and prototyped a new

algorithmic level graphical representation for Ada software: the Control Structure Di-

agram (CSD). The primary impetus for creation of the CSD was to improve the com-

prehension efficiency of Ada source code and, as a result, improve software reliability

and reduce software costs.

3.5. OTHER RELATED SOFTWARE REENGINEERING PROJECTS 63

GRASP provides the capability to generate CSDs from Ada 95 source code in both

a reverse and forward engineering mode with a level of flexibility suitable for profes-

sional application. As of release 4.3, GRASP has been integrated with GNAT, GNU's

Ada 95 compiler. This has resulted in a comprehensive graphical based development

environment for Ada 95. The user may view, edit, and print, and compile source code

as CSDs with no discernible addition to storage or computational overhead.

TAMIPRproject TAMPR is a transformation system developed by the Software Reengi-

neering Group at Queen's University, U`K. The objective of the Reverse Engineering Z: ý
tool developed at Queen's University is to translate COBOL into a structured notation,

called Standard Form. The transformations used to achieve that translation are applied

by the TANTR transformation system. Each transformation is a rewrite rule, consisting

of a pattern and a replacement defined using a wide-spectrum grammar.

CORET and ARES Both the projects belong to the reuse and reverse engineering

group at the Vienna University of Technology, Austria.

9 ESPRIT IV Project: ARES [61,13]. The Architectural Reasoning for Embedded

Systems (ARES) project enables software developers to explicitly describe, as-

sess, and manage architectures of embedded software families. To reach this goal

they select, extend or develop a framework of methods, processes and prototype

tools for incorporating architectural reasoning along the life-cycle of embedded

software families. Results of this project will help to design reliable systems with

embedded software, that satisfy important quality requirements, evolve grace-

fully and may be built in-time and on-budget. Partners are Nokia, Philips, ABB,

Imperial College, and Technical University of Madrid.

e FWF Project: CORET [69,70]. The FVVF-funded project Object-Oriented Re-

verse Engineering (CORET) ai sforming old data processing software
1: 1

ims at tran

systems to a modem, object-onented architecture. It focuses on guiding such a

3.6. SOURCES RETRIEVED

transformation process by different kinds of patterns on different levels of ab-

straction thereby integrating human expertise in order to overcome typical limits

of automated reverse engineering methods. The feasibility and the effectiveness

of the approach will be evaluated by building a prototype toolset.

The TXL language work TXL developed at Queens University, Canada is a pro-

gramming language and rapid prototyping system specifically designed to support trans- 11 4-

formational programming, . The basic paradigm of TXL involves transforming input

to output using a set of structural transformation rules that describe by example how

different parts of the input are to be changed into output. Each TXL program defines

its own context free grammar according to which the input is to be structured, and rules

are constrained to preserve grammatical structure in order to guarantee a well-formed

result.

3.6 Sources Retrieved

e The following journals of most recent six years (January 1993 to January 1999)

are searched manually:

1. IEEE Transaction on Software Engineering

2. EEEE Software

3. ACM Transaction on Software Engineering and Methodology

4. ACM Software Engineering Notes

5. Software Maintenance: Research and Practice

o BIDS database, including:

1. Science Citation Index(SCI), which includes all the intemational and im-

64

portant national journals of most recent six years.

3.7. CONCLUSION

2. Index to Scientific and Technical Proceedings, which includes all the pro-

ceedings of international conferences of the most recent five years. Z..)

Internet. Internet is searched thoroughly through the following agents: Z)

1. Excite

2. Infoseek

3. Lycos

4. Yahoo

3.7 Conclusion

Although significant work has been carried out on many aspects of reverse engineering,

using formal abstraction rules to extract formal specifications from source code is rarely

addressed, especially in real-time domain. Maintainer's Assistant [163,160], PRISME

[17,16], AUTOSPEC [42,43,44,74,72,73] and the work of the Software Engineering

Laboratory, University of California at San Diego [91] solved some closely-related

problems, such as transformation and part of informal abstraction. However, none of

them engages in extracting semantic s-oriented formal specifications from source code

through abstraction. Formal abstraction rules for reverse engineering have never been

developed.

65

Chapter 4

An Integrated Framework for

Reengineering

4.1 Characteristics of Legacy Systems

Typical Problems

Legacy systems present a fundamental challenge to those who own and operate them:

those systems have begun to age but continue to provide vital services [141,148]. They

were designed to follow requirements and an implementation approach that existed ear-

lier in the organisation's life cycle. Then they were released into environments possibly

different from those planned or changed significantly over years. Presently, though

years and decades later, they are still expected to operate efficiently, solve problems,

and incorporate changes in technology and business practices for many years to come

[2].

Because legacy software systems are so critical to an organisation's survival, they

are not retired or substituted with newly developed systems without compelling reasons.

Major changes require huge investment in new technology, with significant risk that

the new systems may fall to deliver the required services. Therefore, organisations

maintain functionality, correct defects, and upgrade legacy systems to keep up with

4.1. CHARACTERISTICS OF LEGACY SYSTEMS

changing business or technical conditions.
Legacy systems share many negative characteristics, or in another word, problems.

Some of the worst, and lamentably typical ones are as follows:

e Legacy systems are large, with hundred thousands or even millions of lines of

codes.

e They are geriatric, often more than ten years old. Z:)

9 They are written in a legacy language like COBOL.

* They are built around a legacy environment, e. g., IBM's IMS (a DBMS from

IBM).

They are autonomous. Applications operate independently, with little or no in-

terface with other applications. If interfaces are present, they are often badly

designed, haphazard at best according to present criteria. For example, some

interfaces were based on export/import models or lack of data consistency.

To complicate matters, these legacy systems are often mission-critical, i. e., essential to

the organisation's business and must be operational at all time.

4.1.2 Structure and Data Dependency

A legacy system is, under most circumstances, composed of nested procedures and

functions. In what follows, we use the term 'component' to mean procedure or func-

tion. If the system is monolithic, then we apply various re-structuring techniques. Ac-

cording to the nested structure, these components have different visibility (scope) levels.

The components which nest at the top layer (i. e., components with no parent, such as

maino in C programs) are assumed to have the highest visibility level 0. This means

that those components are in a most general position in the whole system. Similarly,

the direct sub-procedures and sub-functions of a level 0 component have the visibility

level 1. And for a component of level i, the visibility level of its direct sub-procedures

67

4.1. CHARACTERISTICS OF LEGACY SYSTEMS

and sub-functions is level i+1. A depiction of visibility levels is given in Figure 4.1.

All data items are associated with the same component's visibility (scoping) level at

which they were first declared. Therefore, the top global components and their data

items have the highest visibility level which is marked level 0, and those at the nth t)

nested layer have the n-1 visibility level. In ideal cases, a component at level i only has

direct access to components at level i+1. Components distributed over several levels

can be treated as a system composed of sub-components at different levels.

level 0 top global components & their variables

level I direct sub-components & their variables

level 2 direct sub-components
& their variables

level n

Figure 4.1: Visibility Levels of System Components and Their Data Items.

The functional effect of a component can be interpreted as changing part or all of

the data items at a higher level than this component (i. e., relative global variables to

this component) into new values with the aid of data items belonging to this compo-

nent (i. e., this component's local variables). Therefore, a component can be viewed

as a mapping function between the new and the original values of its relative global

data items. The effect of a component is embodied in the change of its relative global

variables. Figure 4.2 shows this mapping relation. The rectangle with rounded comers

represents a component, the circles represent local variables of the component, and

the rectangles represents global variables to the components. Variables at the left side

68

4.1. CHARACTERISTICS OF LEGACY SYSTEMS

are the original states and those at the right are the new states after invocation of the

component.

For an object-oriented system, the data fields of an object and those accessible to the

object can be considered as global data items, and other data items used by its methods

are local ones of the object.

global data items
global data items

I.,

local data items local data items

one or more 1-1 : modified data item
A

input I: combination between A and B

B

Figure 4.2: Functional Mapping of a System Component.

Based on the above concepts of visibility level and mapping function, Figure 4.3

shows the typical structure and data dependency of a legacy system. Here, primary

data items are the global data items with visibility level 0, and secondary data items

are those data items whose visibility level is deeper than 0. The primary data items at

the top are initial states of the legacy system, and those at the bottom are the final states.

Those in the middle are intermediate states. The nested rectangles are the components

at various visibility levels in the legacy system.

69

4.2. THE APPROACH

Ofi. -inal states

Final states

[--] : Primary data item 0: Secondary data item

Figure 4.3: Global and Local Data Dependency.

4.2 The Approach

4.2.1 General Method

Using Wide Spectrum Language

The study in previous chapters has shown [110] that using a wide spectrum language

is the most suitable and efficient approach to the reengineering of computing systems

because of its various abstraction levels and the integrity of these levels.

Based on the characteristics of legacy systems, a unified approach for software

reengineering is proposed. The approach is based on the construction of a wide spec-

trum language, known as RWSL, which enjoys a sound formal semantics. An integrated

70

4.2. THE APPROACH

framework for reengineering built to support the proposed approach.
As the reverse engineering part, we endeavour to extract a formal specification from

the legacy source code. There are several reasons to support this idea:

* Specification is more compact than source code, it is expressed in a more problem-

oriented notation and is easier for the software engineer to understand. There-

fore the extracted specification could greatly facilitate software engineers' un-
derstanding of the legacy system, both in efficiency and accuracy, and therefore 10
facilitate further re-design and re- specification of the original system. The benefit

is worth the cost, especially for critical legacy systems.

9 From the new specification, executable code can potentially be generated auto-

matically or semi -automatically. Using fortnal notations could assure more pre-

cise system description and increase the automation of the whole reengineering

process.

In this section, we discuss the architecture and working flow of RWSL- the main

points of our approach are object extraction rules and abstraction rules [109,106,108,

107,168,111]. Object extraction rules deal with the transformation of legacy systems

at code level to object-onented systems. And abstraction rules help to extract system

specifications from the code.

Using Abstraction

Central to our approach is the notion of abstraction and its rules ('information'

hiding; a precise definition of which will be given in chapter 6). In our approach, Z-ý

abstraction is performed systematically at both data and structural levels in such a way

that the underlying computation is not disturbed whilst functional abstraction is also

performed, that is, some functionality considered "trivial" is abstracted away from the

code.

71

4.2. THE APPROACH

The approach firstly identifies all data items and their 'visibility' levels, where vis-
ibility level 0 is the highest. Thereafter it makes the subject system more abstract by

removing some data items (those of visibility level > 0) whilst expressing their contri-

bution to the overall functional behaviour of the system with the remaining data items.

Such a contribution will be expressed (encoded) within the specification statement of

RWSL, which is in ITL formulae (see next chapter for detail).

The approach therefore can be described as follows:

1. Identify all components in a system. There is an obvious correlation between the

structure of the legacy code and the structure of the resulting formal specification.

The more structured the formal specification is, the easier it is to understand, to

improve, and to be used as an appropriate starting point for forward engineering.

If the system is very monolithic or unstructured, then engage existing restruc-

turing techniques [20,78,100] to decompose the system into subsystems and

structure them. For example, [78] proposed a meaning-preserving program re-

structuring tool.

2. Associate 'visibility' levels for each component (e. g., the ith component has level

1j). These levels reflect the nesting structure in the system, see Figure 4.1.

3. All data-items are associated with the same component's visibility level at which

they were first declared.

4. Identify the central data structure and items of the system (i. e. those with level

1).

5. For each ith-level component and i>0 do

Identify all data items local to the component

(b) Record the effect of the data item, identified in step (a), on any data items

in levels Q with Q<i, in a specification statement of RWSL, introduce a

procedure definition if necessary. Elementary abstraction rules are mostly

72

4.2. THE APPROACH

used, and the procedure name should reflect the functionality of the pro-

cedure as exact as possible. Avoid introducing new procedures whenever

possible.

(c) Abstract away unnecessary implementation details and trivial functional-

ity description within the generated specification. This will be done with

corresponding further abstraction rules. Z:)

The correctizess is achieved through the soundness of the applied abstraction rules.

Abstraction Pattern

Abstraction is a process of generalisation, removing restrictions, eliminating detail

and removing nonessential information [158]. Unlike transformation which keeps the

semantics unchanged, abstraction endeavours in weakening the original semantics of

system implementation. Thus the abstractions cannot be applied without a clear idea

of which information contained in the program refers simply to the implementation,

and not to the function of the program. In general case, this information cannot be

determined automatically within the system, so user guidance is needed at this stage.

To solve this problem, a set of abstraction patterns are proposed based on the de-

veloped further abstraction rules as an efficient means to let the software reengineer

inform the computer system about his/her observations of the legacy system. And then

the computer system will perform abstraction with the aid of these observations and

the relevant abstraction rules. These abstraction patterns appear in RWSL and the sup-

porting tool as abstraction pattern assertions. Details are described in Chapter 6 and

Chapter 7.

4.2.2 Architecture of RWSL

RWSL is a multi-layered wide spectrum language with sound formal semantics. Due

73

to the distinct advantage of Interval Temporal Logic (ITL) [124,125,39,38,170], we

4.2. THE APPROACH

use it as the semantic foundation of RWSL.

New 00 systems

versal
ansiator

Common Object-Oriented Language (COOL)

Object Tempoml Agent Model (ObTAM)

Interval Temporal Logic (ITL)

Timed Guarded Command Language (TGCL)

Common Structural Languaget(CSL)

versal
slator

Legacy structual
systenis

Legacy 00 systems

/
universal =slator

versal 1ý
lator

RWSL
New structural

systems

Figure 4.4: RWSL: General Architecture.

Figure 4.4 shows the architecture of RWSL. The top part is the object-oriented sec-

tion, which includes three layers, namely ITL Specification, Object-Oriented Temporal

Agent Model (ObTAM) and Common Object-Oriented Language (COOL). ObTAM is

an extension of Temporal Agent Model (TAM) language [144,142,145] with object-

oriented features. The most concrete layer of the object-oriented section is Common

Object-Oriented Language, which provides structures as those in an ordinary 00 lan-

guage.

The bottom part is the structural (procedural) section, which also includes three

layers: ITL Specification, Timed Guarded Command Language (TGCL) and Common

Structural Language (CSL). TGCL is an extension of Dijkstra's Guarded Command
C)

Language [58,591 with time and concurrency feature. Both TGCL and CSL are at the

code level, while in CSL operators and concepts are implemented in common program-

74

4.2. THE APPROACH

mincy elements, such as shunts. Zý

Both the object-oriented and procedural systems will be specified with ITL formu-

lae. The semantics of other layers of RWSL, together with the abstraction and object

extraction rules will be defined in ITL.

4.2.3 Working Flow of RWSL

...
Specification Level

...
Specification Level

ITL re-specify ITL

(Specification) (Specification)

...
abstract abstract refine refine

............. * --------------------- ----------- *
Code Code
Level Level

ObTAM improve ObTAM
(Object-oriented TAM

extract

TGCL
(Timed GCL)

trans form/abstract trans form/abs tract

Common Common
Structural 00

tý t,
Language Lanauaae F

..........................
..................

translate translate

Legacy Systems Legacy Systems
in procedural code: in object-oriented code:

e. g., C, Pascal Modula e. g., Ada, C++

(Object-oriented T

TGCL
(Timed GCL)

transform

Common
Structural
Language

transform

Common
00

Language

tr ans lat e translate *
New Systems New Systems

in procedural code: in object-oriented code:
e. g., C, Pascal, Modula e. g., Ada, Java, C++

Figure 4.5: RWSL: Working Process in Reengineering.

Figure 4.5 shows the possible process when using RWSL to reengineer legacy sys-

tems. The approach may be used as follows: the source code of a procedural or object-

75

4.2. THE APPROACH

oriented lecracy system is first translated into CSL or COOL through a translator'. Such

a translation ensures standardisation, since legacy systems may have come in various

languages, such as C, C++, Modula or COBOL. This is followed by transformation to

TGCL or ObTAM through successive application of correctness-preserving transfor-

mation rules.

There are three possible paths for reengineering (Figure 4.5):

1. TGCL and ObTAM code can be improved/extended by adding the required ex-

tra functionalities. The TGCL and ObTAM code can be then transfonned into

an equivalent programming language (either through transformation or straight

forward translation). In this path, the procedural nature of a procedural legacy

system is kept.
a

2. If the object-oriented paradigm is sought, object extraction is performed to ob-

tain an equivalent ObTAM code from the procedural TGCL code. Then the Ob-

TAM code is extended/improved. Subsequently, this is transformed to an object-

oriented language, such as ADA, JAVA and C++.

3. If high level of abstract specification is needed, then following the construction
Z-

of TGCL code or/and ObTAM code, the semantics calculation is performed to

produce an ITL specification. The reason for this step is that specification is

more compact than code and is expressed in a more problem-oriented notation,

and therefore easier for software engineers to understand. The benefit is worth the

cost, especially for critical legacy systems. The specification will be subsequently

used as a basis for forward engineering through refinement.

ITL Specification is abstract enough for the software maintainer to do re-design and

re-specification of the target system. Therefore, at the specification level improvements

'The "universal translator", as shown in Figure 4.4, translates between a source/target language

to/from RWSL a COBOL-to-RWSL Translator [101]). This translator must be written for each

source/target language and is simply a one-to-one mapping, to ensure semantics equivalence.

76

4.2. THE APPROACH

(e. g., addition of new functions/services) will be introduced to make the legacy system

more 'suitable' for the new requirements. After these improvements, forward engineer-

ing can be carried out, i. e., using refinement rules to refine the new target system into a tn

new concrete form, for example, in ADA.

77

Chapter 5
I

Reengineering Wide SPectrum

Language

5.1 Interval Temporal Logic

ITL forms the most abstract and logical layer in our language. It is used to give a spec-

ification oriented semantics for TGCL and ObTAM. Furthermore, all transformation,

object extraction, abstract and refinement relations and rules are precisely described

and proved within ITL. The choice of ITL is based on a number of reasons. It is a

flexible notation for both propositional and first-order reasoning about periods of time

found in descriptions of hardware and software systems. Unlike most temporal log-

ics, ITL can handle both sequential and parallel composition and offer powerful and

extensible specification and proof techniques for reasoning about properties involving

safety, liveness and projected time. Timing constraints are expressible and furthermore

most imperative programming constructs can be viewed as formulae in a slightly mod-

ified version of ITL [38]. Tempura [125], an executable subset of ITL, provides an

executable framework for developing, analysing and experimenting with suitable ITL

specifications.

In addition, Zedan and Cau have provided a refinement calculus for ITL [38], which

5.1. INTERVAL TEMPORAL LOGIC

takes ITL to calculate a refined concrete portion in Tempura.

Syntax

An interval a is considered to be a (in)finite sequence of states UOUI..., where a state ai

is a mapping from the set of variables Var to the set of values Val. The length IaI of

an interval o7o ... or, is equal to n (one less than the number of states in the interval, i. e., a

one state interval has length 0).

ITL syntax is defined as follows, where i is a constant; a is a static variable (doesn't

change within an interval); A is a state variable (can change within an interval); va

static or state variable; g is a function symbol and p is a predicate symbol.

*

Expressions:

exp :: =iIaIAI g(expl,..., exp,) I za :

Formulae:

f :: =p (exp 1, .. -7 eXPn) If If, Af2 IVv-f I skip lfl; f2 I f*

The informal semantics of the most interesting constructs are as following:

9 za : f: the value of a such thatf holds. If there is no such an a then za :f take an

arbitrary value from a's range.

eVv-f: for all v such that f holds.

9 skip: unit interval(length 1).

fl; f2: holds if the interval can be decomposed("chopped") into a prefix and suffix

interval, such thatf, holds over the prefix andf2over the suffix, or if the interval

79

is infinite andf, holds for that interval.

5.1. INTERVAL TEMPORAL LOGIC

* f*: holds if the interval is decomposable into a finite number of intervals such
that for each of them f holds, or the interval is infinite and can be decomposed
into an infinite number of finite intervals for whichf holds.

Frequently used abbreviations are listed in table 5.1.

Table 5.1: Frequently used abbreviations
Of skip; f next
more 0 true non-empty interval
empty more empty interval
inf true ; false infinite interval
isinf V) inf Af is infinite
finite inf finite interval
iýfin (f) finite Af is finite
Of finite ;f sometimes
Of -10-ýf always
ef -I 0-, f weak next
<i>f f; true some initial subinterval
[Df -f) all initial subintervals
Of finite ;f; true some subinterval
I! gf -(0 -f) all subintervals
0f O(more A f)

Bf :. ` -(0 -f)
halt f O(empty =_f) terminate interval when
keep f CE (skip #> f) all unit subintervals
fW isinf (isfin (f) infinite chopstar
0 exp ta: O(exp a) next value
fin exp za: fin (exp a) end value
A := exp 0A= exp assignment
stable exp exp gets exp stability

5.1.2 Semantics

The formal semantics is as followings: Let X be a choice function which maps any

nonempty set to some element in the set. We write o, -, o, ' if the intervals a and a' are

identical with the possible exception of their mapping for the variable v.

0 S, Tvý = go (V)
A

So-ýg(expj, --XXPn)ý ýg VoleXPII
....

eo, jeXPnj)

X(U) if u SAza: A =
X(Val,,) otherwise

where it o, '(a) IU 'a (71 1'ý Mo, VI =--=: ttl

80

5.1. INTERVAL TEMPORAL LOGIC

ýP (e,
'PI i eXPn) tt iff P (S, ýexp 11 eu ýeXPn

9 All o- ý--, fl = tt iff A4 o. Vý =

e A4, Lf, A f2l
= tt iff AljVjý = tt and MV2ý = tt

A4, IV v -fý = tt iff for all a' s. t. a,, a', MTý = tt

o M, ýskipý = tt iff Ia I-- I

* Mo-Efl; Aý : ---::
tt iff

(exists a k, s. t. M, o ... O'k Vjý = tt and

((a is infinite and M O'k...
V2] = tt) or

(a is finite and k <I or I and
M

lk ... alal
V2ý = tt)))

or (a is infinite and A4

0 mo. V*l = tt iff
if u is infinite then

(exist 10, ..., 1,, s. t. lo =0 and

A4 o, In� H= tt and

for all 0<i<n, 1i < 1j+j and ýfj = tt)

or
(exists an infinite number of li s. t. 10 and

for all 0<i<n, Ii < 1j+j and A4,1,,
...)Oli+l

H= tt)

else

(exist 10,
...,

1, s. t. 10 =0 and 1, =1 aI and

for all 0<i<n, 1i < Ij+j and A4,,
..... ,, +,

[fý = tt)

5.1.3 ' Specification

Let W be a set of state variables then frame(W) denotes that only the variables in W

can possibly change, i. e., the variables outside the frame do not change. The semantics

81

is defined as follows:

5.2. TIMED GUARDED COMM. AND, LANGUAGE

- ýframe(W)ý = tt iff for all vE Var - W, M, ýstable(v)]

The syntax of specification statement is W: f where W is a set of variables andf

an ITL formula. The specification statement represents a blackbox description of the

behaviour of the required system. When we specify agents that require a minimum

execution interval, care must be taken as regard to the feasibility of the specification.

This is to ensure that the written specification indeed conforms with whatever restricted

computational (executable) model chosen.

The semantics of the specification statement is simply given as

W: f =
A frame (W) Af

5.2 Timed Guarded Command Language

Based on the basic structures of Dijkstra's Guarded Command Language [58,581,

Timed Guarded Command Language introduces time, concurrency, and communica-

tion. This gives TGCL the necessary power for tackling time critical concurrency sys-

tems.

5.2.1 Syntax

Let A denotes a TGCL program, x denotes a variable, e denotes an expression, then the

syntax of TGCL is as the following:

:=e

I A; A1

if F] gi then Ai fi
iEI

while g do A' od
I (XI Y) ý-

82

Ix
-+

5.2. TIMED GUARDED COMMAND LANGUAGE

1T= {xi: Til

i x: T

1 proc P(In pini : Ti, Out poutj : Tj) fA'l

I P(In ei, Out xj)

parbegin A, A2 An parend
[t], 4'

t -41 ýý S -42
delay n

skip

A TGCL vanable can be the following:

V:: =Vsig I Vstr I
x. d

where v, ig is an atomic variable, v, is a structural variable, and x. d is a data field of a

structural variable.
TGCL also adopts the concept of 'shunt' in TAM. Shunts are shared variables via

which communications between agents is performed. In TGCL, a TAM agent is im-

plemented with an executable program segment. A shunt contains two values: the first

one is a stamp which records the time of the most recent write, and the second one is

the value which was most recently written.

The informal semantics of TGCL is described as following:

o General elements.

-x :=e evaluates the result of expression e to variable x.

- ; A' means the sequential composition of A and A.

if [-] gi then Ai fi is a conditional statement. If any guard gi is true then the
iG1

corresponding Ai will be executed.

- while g do A' od is the loop statement.

83

- skip is empty operation statement.

5.2. TIMED GUARDED CONENIAND LANGUAGE

* Procedural elements.

- fxi : Til is the structure building declaration. It defines a structure

named T, which has data fields xi of type Ti, iE1. - n.

-x: T means defining x as a variable of type T. T can be a simple data type

or a structure.

- proc P(In pini : Ti, Out poutj : Tj) f A'j defines a procedure in TGCL. The

procedure is named P, which has pini as its input parameters, and poutj as

its output parameters. The input parameter passing convention is call by

value, which means that the values of the practical parameters are passed

into the procedure; and the output parameter passing convention is call by

reference, which means that the address references of the practical parame-

ters are passed into the procedure, and therefore any change made will take

effect on practical parameters themselves. f A'j is the procedure body of P.

- P(In ej, Out xj) means the invocation of procedure P with parameters pi,

while ej are input parameters and xj are output parameters.

- x-d is field selection. x is a structure, and d is a field of x.

o Real time elements.

- parbegin A, 11 A2 11,
.. -,

11 An parend. Here 'I I' is introduced as the parallel

operator. This statement means that A,, ---, A, execute concurrently, and

tern-tinates until all the Ai terminate.

- [t] A' means that the execution of A' should be completed within t time units

(deadline).

Al rý"t A2. The given shunt s is treated as a signal, and is monitored from
S

the release time for t time units. If s is written to in that interval then the

agent A2 is released with a release time equal to the end of the interval,
1ý

84

otherwise the agent A, is released at the end of the interval.

5.2. TIMED GUARDED COMMAND LANGUAGE

- delay n will cause a delay of the system for n time units.

- (x, y) ý- s is the input statement with time feature, which reads the times-

tamp and value from a shunt s at the same time. The timestamp is read into

x, and the value into y.

-s is the output statement with time feature, which writes the value

alven into shunt s. tý 4

5.2.2 Semantics

AssuminEr that Pý Aý defines the semantics of A, At represents a duration of t time
C

A

unit, i. e., Pý Atý = len = t, the formal semantics of TGCL is defined as following:

A
ýx: = eý = Ox

opýA; Alý 2-ý- Pý A]; P ýA'ý

if E] gi then Ai fi]=A (V(gi AP ý AiN v A-1gi)
iEI iEI iEI

A

while g do A' odý = (g AP A]) A fin (--, g)

-p ý (x, y) ý- sý xsAy= read (s)

where read (s) -12
(S)

P ýx --* sý = skip A Os (,, Is+ 1, x)

A

ýproc P(In pini : Ti, Out poutj : Tj) A'Jý =Pý Alý

A(Vpini o pini EWA stable (pini)) A (Vpoutj -, pouti E W)

a- El (exp = a) where stable exp

9pý P(In ei, Out xj)ý =/' pý A'ý (pinilei, poutjlxj)

I
where proc P(In pini : Ti, Out POuti : Tj) IA'l

85

Tý -ý- Mx), i-e. the feature of type T P ýx :-

5.3. OBJECT-ORIENTED TEMPORAL AGENT MODEL

9PýT= fxi: Tjjý /' Vx GT -fT
(x) =

I\fT, (xi)

iEI

e Assume T= Ixi : Tj I and x: T, then Pýx. dý i. e., d is a data field Ad E Uxi,

iEI
of structural variable x.

9Pý parbegin AII A'parendl =
AP LAý AP ýA]

[t]A] At A (P ý A] ; true) A (T ý A'ý :) len <= t)

oPý delay ný =
Alen

=n

NA, >A2ý --ý- (At A stable(.,, / s) ; PýAjý)v(AtA-, stable (v/s) ; PýA2ý)
S

]A
skip = empty

5.3 Object-Oriented Temporal Agent Model

TAM (Temporal Agent Model) aims to be a realistic software development method for

real-time systems. It has sufficient power for time, concurrency and conu-nunication.

ObTAM extends TAM with object-oriented features, e. g., object hierarchy and inheri-

tance.

5.3.1 SYntax

ObTAM syntax is the same as the syntax of TGCL less the procedural part, but with

the following additional object-oriented portion:

A: =x :
I T<subT'

NA T= fxi : Ti, mi (In Pinjk : Tk, Out POutji : TI

x. d

x. m(In ek : Tki Out PoUtl : T11)

86

5.3. OBJECT-ORIENTED TEMPORAL AGENT MODEL

A variable of ObTAM can be the following:

":: =Vsig I Vobj I
x. d

where vsig is an atornic variable, v,, bj is an object variable, and x. d is a data field of an

object variable.

The informal semantics of ObTAM is described as following:

o General elements: same as TGCL.

* Object-oriented elements.

x: T means defining x as a variable of type T. T can be a simple data type

or a class.

T <sub 7' can be used to build the object hierarchy. It declares that class

T is a subclass of class T'. As the consequence, T will inherit all the data

fields and methods in T' if they are not redefined in T. On the other hand,

all the data field and methods in T' will be overridden with the counterparts

in T if they are redefined in T.

-T fxi : Th Mi (In P'nik : Tk, Out poutj, : TI') [Aj] I is the class building

declaration. It defines a class named T, which has data fields xi of type Ti,

iGL. n, and methods mj, jEL. r. The behaviour of a class is a sequence

of method invocations. pinj, stands for the input parameters of method mj,

and poutj, stands for the output parameters of method mj. The input param-

eter passing convention is call by value, and the output parameter passing

convention is call by reference. Aj is the methods body of method mj.

- x. d is object field reference. x is an object, and d is a field of x.

- X. 771(In ek : Tk, Out pout, : Tl') is method invocation. It invocates the method

in in object x.

87

o Real time elements: same as TGCL.

5.3. OBJECT-ORIENTED TEMPORAL AGENT MODEL

5.3.2 Semantics

Similarly, the formal semantics of the above elements of ObTAM is defined as follows:

P ýx : Tý - fT(x), i. e. the feature of type T

T -- ýxj : Ti, mj (In pinj, : Tk, Out poutj, : TI') [Aj]

x: T- Wx: f where
wx =

uxi

iEI

f= 1\fT, (xi) A (V (P R Aj ýA (V pinj, o stable ýpinjj)))
iEI jEJ

o Assume T= Ixi : Ti, mj(In pinjk : Tk, Out poutj, : Tj) [Aj] I and 7' = fyi, :
f Ti't I mý, (In pinj, : T,, Out poutf : T,) [A' then: k kl

PET <subT'ý " x: T=W,: f

where W= Uxi UU yi, iff for all xi iEI, yi, -0 xi
iEI iEP

f= /VT, (xi) A AfTi, (yi,) A V4I)j* AV ((Dj,)*
iEI ilEll jEJ f Ey

iff for all xi iEI, yi, =A xi, and iff for all ýDj jEJ, 4)j, :A (Dj

Vi EJ 4ýj =Pý Aj ý Astable(P'nik)

Vf EY 4ýj/ =Pý Aj, ý Astable(pinjkt,

The above means that T inherits all the data fields and methods of T' if they are

not redefined in T, and all the data fields and methods in T' are overridden with

the counterparts in T if they are redefined in T.

o Assume T= fxi : Ti, mj (In pinj, : Tk, Out poutj, : TI) [Aj] I and x: T, then:

x. dý --ý- dG Uxi, i. e., d is a data field of object x.
iEI

88 ý

o Assume T= fxi : Ti, mj (In pinj, : Tk, Out poutj, : TI) [Aj] I and x: T, then:

5.4. COMMON STRUCTURAL LANGUAGE

x. m(In ek, OUt Yl)ý A there exists an m, s. t.,

ms E UmjAm,
=mAP ýA, ý (pin Sk lekiPOUtsilYI)

jEJ

5.4 Common Structural Language

CSL is developed to enrich the statements in TGCL and make RWSL compatible to

WSL in MA. Statements in CSL are more program-like. CSL can be viewed as an

extension of WSL in NIA with time, concurrency and type, or a variation of TGCL

with a more pr9gram-like format and diversity in statements. CSL is the most concrete

procedural layer of RWSL.

CSL syntax and semantics (defined in TGCL) is as follows:

1. Assignment

A

x: =e = x: = e

This statement evaluates the result of expression e to variable x.

2. Sequential Composition

A

==

This statement compose program segments A and A' sequentially.

3. Deterministic Iteration

while g do
4

while g do A od

od

89

This statement is an iteration with g as loop condition and A as loop body.

5.4. COMMON STRUCTURAL LANGUAGE

4. Input Statement

A

read x, y from s= (x, y) ý- s

This is the input statement with time feature, which reads the timestamp and

value from a shunt s at the same time. The timestamp is read into x, and the value

into

5. Output Statement

A

write x to s=X

This is the output statement with time feature, which writes the value given into

shunts.
b

6. Structure Definition

struct
I

A
Ti: xi =T= ýxj: Til

I

This is the structure declaration statement. It defines a structure named T, which

has data fields xi of type Ti, iEI. n.

7. Typed Variable

x:

This statement defines x as a variable of type T. T can be a simple data type or a

structure.

90

8. Procedure Definition

5.4. COMAION STRUCTURAL LANGUAGE

proc P(In pini: Ti, Out poutj: Tj)

proc P(In pini : Ti , Out poutj : Tj") f A'j
I

This statement defines a procedure named P, which has pini as its input parame-

ters, and poutj as its output parameters. The input parameter passing convention

is call by value, and the output parameter passing convention is call by reference.
f, 4'1 is the procedure body of P.

9. Procedure Invocation

P(In ei, Out xj) A P(In ei, Out xj) »

This statement invocates procedure P with parameters pi, while ej are input pa-

rameters and xj are output parameters.

10. Parallel Composition

mirhi, crin

A1
A

parallel with = parbegin A, A2parend

A2

parend

This statement defines that program segments A, and A2execute in parallel, and

terminates until all A terminate.

11. Deadline

duration t in

[t]A A-

91

end

5.4. COMMON STRUCTURAL LANGUAGE

This statement means that the execution of A should be completed within t time

units (deadline).

12. Signal

wait on s for t do

A

else

B

end

A>'B
s

The given shunt s is treated as a signal, and is monitored from the release time

for t time units. If s is written to in that interval then the agent A2is released with

a release time equal to the end of the interval, otherwise the agent A, is released

at the end of the interval.

13. Delay

A
delay n= delay n

This statement will cause a delay of the system for n time units.

14. Local Variable

var x: =e:

Po where proc Po fx: T; x: =e; Al

end

This statement defines x to be a local variable within block A.

15. Actions

actions : labi:

labi, Ej == Ajej; ýKall labje, I call Z. L! Ai ; (Aj V skip)

92

end-act-ions

5.4. COMMON STRUCTURAL LANGUAGE

This statement defines an action system composed of a sequence of actions. An

action is a parameterless procedure acting on global variables, which is defined

as labiEl AV,, where labi is a statement variable (the name of the action) and
Ai is the action body. In the above action system, action labi is executed first,

i. e., execution of its action body. After that, if Ai is succeeded with a call labj'Ej

statement, action labj will be executed; if call Z is the successive statement the

action system exits.

16. Typed Array Declaration

A
T: array ayname[e] =Xl i X2) ... i Xe-I i Xe :T where xi -= ayname[i]

This statement declares that ayname is an array with e elements of type T, where

e is an integer expression.

17. Untyped Array Declaration

array name[e] ="= Xl i X2) ... 1 Xe-I 7 Xe where xi = name lil

This statement declares that ayname is an array with e elements, where e is an

integer expression. The element type is not defined.

18. Assertion

A
g= an ITL fonnula

Assertions state that a certain condition is true at a particular point in a program.

19. Parallel Assignment

A
X2: =e2 >=x, : =ei 11 X2 := e2

This statement defines that the assignments inside the brackets are carried out in

Parallel. x, andX2must be two different variables.

93

5.4. CONIN ION STRUCTURAL LANGUAGE

20. Comment

comment: "text" A
skip

This statement presents a comment of the program which is enclosed in the quo-

tation marks.

21. If-Else Conditions

if gi then A,
4=

else A2

fi

if gi then A, fi;

if --ig, then A2 fi

This is a typical two-branched condition stitement.

22. Nested Conditions

if g, then A,

elsf g, then A2 if g, then A,
A

else
A3 = else if -191

A92 then A2
else

A3

fi

This is a typical nested condition statement.

23. Exit

A
exit = --ig A skip

where g is the condition of the loop in which exit locates.

This statement should locate in a loop, and when it is reached the program leaves

the loop and continues execution from immediately after the end of the loop.

94

24. Infinite Loop

5.4. COMIVION STRUCTURAL LANGUAGE

do

while true do A od
od

This statement defines a loop whose iteration condition is alway true.

25. Counted Repetition

for x: =el Lo e2 step e3 dO

for xý Var(A) (i. e. for fresh x),
od x: =el; whilex<e2dOA; x: =x+e3od

This is the standard "for loop" in a programming language.

26. Empty Operation

A
skip = skip

This statement performs an "empty operation".

27. Dijkstra Constructs

(a) Guarded conditions

d-if

A if [-] gi then Aifi jE,
iEI

fi

This is a non-deterministic conditional statement. The program may exe-

cute any one branch which has a true guard. This contrasts with the ordinary

conditional statement where it is the first branch with a true guard that is ex-

ecuted.

95

(b) Guarded iteration

5.4. COMMON STRUCTURAL LANGUAGE

d-do
A

or = while true do if R gi then Ai fi od 8iEI-ý
AiEI

iE,

od

This statement is equivalent to a "D-If" inside a "while" loop. While at

least one of the guards is true, the program will execute the loop.

28. Local Procedure Definition

begin

A1
A

where proc P(pini var poutj)--, =-,: A2- :-A, APE A,

end
*

The procedure P is local because it belongs to A,. pini are the input parameters

which are passed by value, and poutj are output parameters which are passed by

reference. The procedure body is defined as A2-

29. Local Procedure Invocation

P(ei var xj)
A P(In ei, Out xj)

This statement invokes local procedure, while ej are input parameters and xj are

output parameters.

30. External Procedure Invocation

! xp pname(expni) P'(In ei, Out xj)

assume that the function of external procedure pname can be simulated by pro-

96

cedure P' in TGCL.

5.4. COMMON STRUCTURAL LANGUAGE

Extemal procedures are used in RWSL in order to deal with code modules which

call procedures that are not explicit in the program, i. e., defined outside the sys-

tem border. The function of the external procedure can be simulated with proce-
dure P'. A (possibly empty) list of expressions is passed by value or by reference

to the procedure.

31. Function Definition

pini: Ti): T

f
A

= proc Pf (In pini : Ti, Out x: T) f, 41
I

S

The statement defines a function named f, the returned value is of type T, and all

parameters are passed by value.

32. Untyped Function Definition

pini)

f
A

A =: proc Pf (In pini, Out x) ýAJ

In this definition, the parameters and the returned value of function f are not

typed.

33. Function Invocation

A

x :=f (ei) = Pf (In ej, Out x) where Pf is the procedure equivalent to function f.

Functions are invoked as expressions wherever an expression can be used.

97

34. External Function Invocation

5.5. COMMON OBJECT-ORIENTED LANGUAGE

x: =1f (ei) A IPf (In ei, Out x)

where Tjý is the procedure equivalent to function ! f.

An external function invocation is an expression which is evaluated by a function

which is not explicit in the program. There are obvious similarities between

external functions and external procedures.

5.5 Common Object-Oriented Language

The syntax of COOL is the same as the syntax of CSL less the procedural part, but with

the following, additional object-oriented portion:

1. Class Definition

class T

Tj : xi;

mj(In pinj,: Tk, Out poutj,: Tl)

f Ajj

A

=T= fxi: Ti, mj(Inpinj, : Tk, Out poutj, : Ti') [Ail I

This statement is the class building declaration. It defines a class named T, which

has data fields xi of type Ti, iGl.. n, and methods mj, jE Ex. pinj, stands for

the input parameters of method mj, and poutj, stands for the output parameters

of method mj. The input parameter passing convention is call by value, and the

output parameter passing convention is call by reference. Aj is the methods body

of method mj-

98

2. Class Hierarchy

5.5. COMMON OBJECT-ORIENTED LANGUAGE

A T extends T' =T <sub T'

This statement is used to build the object hierarchy. It declares that class T is a

subclass of class T'. Therefore, T inherits the properties of T'.

3. Field Reference

x. d

This is object field reference. x is an object, and d is a field of x.

4. Method Invocation

A
x. m(In ek, OUt YI) = x-m(In ek, OUt YI)

This invokes the method m in object x.

5. Object Declaration

T: x =x
A

This statement defines x as a variable of type T. If T is a class, x will be an object

99

of class T.

Chapter 6

Abstraction: Taxonomy and Rules

6.1 Introduction S

An implementation (code), a design and a specification of a software system are usually

at different levels of abstraction. To move from code to design and then to specification

involves a process of crossing levels of abstraction. Usually a specification is more ab-

stract than its implementation, and therefore the above process can be also represented

as:

concrete -+ less abstract -ý more abstract

Abstraction is the crucial technique to reverse engineering. Without tackling ab-

stractions properly, any design or specification recovery methodology can not succeed.

To achieve correct and practical abstraction, two fundamental problems need to be

solved:

1. First of all, it is necessary to identify what abstraction is. Although abstraction

technology was used in quite a few research projects [62,919 22,16,42,73], the

definition of abstraction remains a disputed issue. Most existing definitions adopt

ad hoc methods and only covers special aspects of the problem. This results in

the definitions of abstraction that are ambiguous, incomplete, and incorrect in

6.2. DEFINITIONS

some cases. In this chapter, a taxonomy of abstraction is proposed. Within this

taxonomy, abstractions are formally defined under different conditions in reverse

enaineering environment. Monotonicity and relations between these abstractions

are discussed and then described in a formal notation. Healthiness obligations are
developed as axioms to guarantee correct and sensible abstraction during reverse

engineerina C :D*

2. Once abstractions are identified in reverse engineering, the next question is how

to perform abstraction, i. e., how to cross levels of abstractions. This research

issue has not been properly addressed, and practical solutions with precisely de-

fined semantics are urgently needed. To solve this problem, a group of abstraction

rules for conducting abstraction in the above process are proposed. These rules

aim at extracting formal specification from legacy source code, and are formally

defined and proven sound in ITL, which assures precision and correctness.

6.2 Definitions

In a software system, the specification is different from source code in the following

aspects:

e Source code has more implementation details which need not to exist in a speci-

fication;

9 Implementation is focused on how to do, while specification is focused on what

to do;

* There is much more non-determinism in a specification than in an implementa-

tion.

In a broad sense, abstraction corresponds to weakening in semantics and this weak-

101

ening is due to the following:

6.2. DEFINITIONS

inessential design/implementation details are omitted;

9 non-determinism is increased; and

"how to do" is substituted by what to do'

The simplest interpretation of the notion of abstraction is to hide irrelevant details.

Although simple, it leaves open to wider interpretation to what constitutes "irrelevant".

For this reason, we have decided to categorise abstraction in a way that hopefully makes

it clear. We classify abstraction as follows: Weakening Abstraction (WA), Hiding Ab-

straCti071 (HA), Temporal Abstraction (TA), Structural Abstraction (SA) and Data Ab-

straction (DA). These five kinds of abstraction form a rather complete taxonomy of

abstraction. The formal definition of abstraction is as follows, and special cases will be

discussed in the next five subsections.

The implementation of a software system is known as the concrete form of the

system, e. g., source code, and the specification is known as the abstract description. To I

unify terminology, we use the term representation for both abstract and concrete forms.

Therefore, an abstraction relation >- is defined as a function relating two representations

of one single system. A representation B is an abstraction of representation A, written

as A >-j- 5 (read as S is an abstraction of A in respect off) is defined as:

LA (A, B)

where f is defined according to the type of abstraction, namely WA(Weakening Ab-

straction), HA(Hiding Abstraction), TA(Temporal Abstraction), SA(Structural Abstrac-

tion) and DA(Data Abstraction).

6.2.1 Weakening Abstraction

Weakenina, abstraction is quite broad in sense. Here, "weakening" refers to semantics

102

weakening of representations during abstraction. If some information is taken out from
1.

6.2. DEFINITIONS

the oncrinal representation, and the new result representation has not any contradic-
tion with the original, that is, the semantics of the original representation implies that t:)

of the new representation, then a semantics weakening sequence is built and the new

representation is a weakening abstraction of the original one.

Corresponding formal definition is as follows: 4-: ý

ý-'-WA B =A ýAý =t- ýBý

The above definition means that representation B is a weakening abstraction of

representation A on the condition that the semantics of A implies that of B. Obviously,

weakening abstraction is the inverse offiunctional refinement.

Assuming we have a representation segment ýs follows:

o= (x> 0A y= X!) V (x< 0/\Y=-100)

The software reengineer identifies that the last part (x <0Ay= -100) is purely imple-

mentation detail to assure a smooth execution by exceptional state test and handling,

actually y can be arbitrary when x<0, and therefore decides to get rid of it to reach a

more concise representation:

0 /=(x> 0 Ay= X!) VX<0

Since 0 =ý- 0', (x >- 0Ay=x!) vx<0 is a weakening abstraction of the

original representation (x >0Ay=x!) V (x <0Ay= -100). In further

reverse engineering steps, the original representation can even be made more concise

by weakening abstraction to:

01=>0=: y=

103

In fact, the above result is the core function of the original representation.

6.2. DEFINITIONS

6.2.2 Hiding Abstraction

Hiding abstraction focuses on the simplification of data space. It emphasises that a

part of the data space of the original representation is to be considered as irrelevant or

unnecessary and is therefore omitted from the representation. However, the resulting

representation should still be a semantic weakening of the original one. In practical

reverse engineering, hiding abstraction is often used to get rid of local variables and

hide internal communication channels. This is because details become unimportant or

too "local" and should not be observed outside the blackbox when a software system is

viewed from a more abstract point of view.

The corresponding formal definition is as follows:

A >-HAB
-" (3 xo EAý) => [BJ

The above definition means that representation B is a hiding abstraction of repre-

sentation A on the condition that a part of the data space of A (such as x) is hidden and

B as the remaining part of A is implied by the original A

Assuming we have a representation fragment as follows:
Cý

Queue-body={

string: fieldl;

float: field2;

I

Queue-body: array queue-body [maximum];

integer: q ueLle-head;

integer: q ueue- tail; C)

proc Initialise()

integer: 1; 1.
queue-head: =O;

queue-tail: =O;

for i: =O to maximum step I do

104

6.2. DEFINITIONS

queue-body [1]. field 1: =";

queue-body[l]. field2: =O. O;

od.

The procedure initialises an array-based queue: setting the queue head and tail to

position 0 and all queue elements to the nil value. It has a local variable i which is used

as loop control variable to initialise the queue elements one by one. Obviously, the

for loop involves implementation details that should not be seen at a higher abstraction

level. The software reengineer may record the effect of the for loop with an inner

procedure "init. -elements" and then hide its details by using the "init-elements" instead

of the loop in further system representations:

init-elements >- i := OA (queue- body [i] fieldl : =" Aqueue-body[i]field2 :=O. OAi := i+l)""u'

The new representation appears as:

Queue-body= f

string: fieldl;

float: field2;

I

Queue-body: array queue-body [maximum];

integer: q ueue- head; Cl
integer: q ueue- tail;

proc Initialiseo

queue-head: =O;

queue-tail: =O;

init-elementso;
I

105

Therefore, with the above hiding abstraction local variable i is hidden and its related

6.2. DEFINITIONS

details are blocked out.

6.2.3 Temporal Abstraction

Temporal abstraction is abstraction which relates to time. It is useful and popular when

tackling the reverse engineering of real-time systems. For the representation of a frag-

ment of software systems, namely A, its duration is defined as the time span from the

beginning of its execution to the end of its execution. Temporal abstraction reflects the "D

variation of this duration while abstraction is conducted.

Let the duration of A be denoted T(A). It can be defined as T(A) -- fx E Time

AA le7l= xj, that is, T(A) is the set of execution (durations) times of A. The formal

definition of temporal abstraction is as follows:

AtTA B =A QA] ==ý ýBý) A RT(T(A), T(B))

In the above definition, RT(T(A), T(B)) is a relation between the execution times

of A and S. In temporal abstraction, the execution time of the new result representation

(13) COUld be either speeded up or slowed down compared with that of the original repre-

sentation (A). However, in either cases the new semantics should only be a weakening

of the oriainal. rý
For example, consider an experimental temperature control system, in which there

is a heater, an electric fan and a thermo-sensor installed in the experimental box. The

heater can be switched on to increase the temperature within the box or switched off to

let the box cool off. The electric fan is used to speed up the cooling of the box. The

thermo-sensor keeps testing the temperature in the box. If it exceeds the high limit, then

the heater is switched off and the fan is switched on. If it exceeds the low limit, then

the heater is switched on and the fan is switched off. Assume we have a representation

fragment as follows:

106

temp-control >-(temp > high-limit A (A . 5ms A heater = off ; A5ms A fan = on))

6.2. DEFINITIONS

V(temp < low-limit A (Z-\. 5ms Afan = off ; A5ms A heater = on))

The software reengineer finds that it is not necessary to switch the heater and the

fan sequentially. In this case, the sequential composition operator can be substituted

with a parallel composition operator and the duration can be adjusted to the sum of the

sequences. Therefore with temporal abstraction the above representation is changed to

the follows:

temp-control ý-- (temp > high-limit A (A5ms A (heater = off A fan = on)))

V (temp < low-limit A (A 5ms A (fan = off A heater = on)))

The new representation is weaker in semantics because it only said the heater and

fan be switched within 15 milliseconds no matter which one is dealt with first. The

operation order in the representation is omitted as trivial detail.

6.2.4 Structural Abstraction

Structural abstraction is so named because it endeavours to make structural simplifica-,

tion in system representation. There are two kinds of composition structures: sequential

composition and parallel composition. With structural abstraction, these compositions

are reduced and their effects are recorded in a more abstracted representation. Two

basic conditions determine whether a change in system representation is a structural

abstraction: firstly, whether there is any sequential or parallel composition reduced in

the new representation; secondly, whether the semantics of the new representation is a

weakening of the original.

Structural abstraction is formally defined as follows:

1. StrLICtUral abstraction on sequential composition:
C, >. _ ICA -op(C') > #seq-op(C)

-S" = ýC'ý ==ý ýCý and #seq

where #seq-op(C) and #seq-op(C) represent the number of sequential compo-

si ti on operators in C or C'.

107

6.2. DEFINITIONS

2. StrLICtural abstraction on parallel composition:

C, C ýCý and #par-op(C) > #par-op(C)

where #par-op(C) and #par-op(C') represent the number of parallel composi-

tion operators in C or C.

The above definition means that representation C is a structural abstraction of C' on

the followiiig conditions: 1. the semantics of C implies the semantics of C; 2. There is

at least one sequential or parallel composition reduced in the new representation.

StrLICtural abstraction is useful because a system is composed of simpler compo-

nents or subsystems through the above two basic compositions no matter how complex

it is.

For example, there is a program in charge of the switch on and off of motors in a

streamline control system. When an interrupt to stop the streamline occurs, the four

motors need to switch off within 5 milliseconds but the order is not important, i. e., the

four motors can be switched off in any order. After analysing the program, the software

reengineer gets the following representation: t: l I=

interrupt = stop A A5ms A ((switchoff (inotorl); switchoff (motor2))

11 (switclzojf(motor3); switchoff(motor4)))

The above formula not only requires switching off the four motors within 5ms but

also defines the order-motorl ahead of motor2, motor3 ahead of motor4. This hap-

pened becaLise the developer composed the switch operations with sequential compo-

sition. Viewing the order as specific implementation detail, the software reengineer Cý

extracts a more high level representation by reducing unnecessary compositions:

interrupt = stop A A5ms A (switchoft'linotorl) A switchoff (motor2)

Aswitchoff (motor3) A switchoff (motor4))

In the new representation, the order is no longer defined, and the original sequential

108

compositions disappear.

6.2. DEFINITIONS

6.2.5 Data Abstraction

Data abstraction is a general technique by which one can change the state space in an

abstraction. Data abstraction allows software engineer to extend and change the origi-

nal data types in legacy code to more high level and proper data types. In the absence of

data abstraction, data structure identified from legacy code remains unchanged during

the whole reverse engineering process although it will help to acquire better specifi-

cation if the data structure is mapped to a more suitable one. Data abstraction is a

quite complex means to reverse engineering. Correct data abstraction can improve the

resulting specification greatly, while improper data abstraction may result in degraded

specification.

In a data abstraction, a data abstraction relation must be defined first, which maps

the original data structures to new data structures and therefore the original data states C)
to new data states. The condition of data abstraction is that the semantics of the new

representation must be a weakening of the original representation. If it is difficult to

judge, then the data states of the original representation needs to be mapped over the

data abstraction relation.

The formal definition of data abstraction is as follows:

Assuming A and B are two representations, r is a data abstraction relation: 4-

r= (states of A --ý states of B)

or in a more formal format:

(x, y) :xEX, yEY, X=f states of Al, Y=f states of BI I

where a stctte of a representation consists of the values of all the variables in the frame of

the representation. Therefore, A is data-abstracted to B on relation r, denoted A ý_DA-r

B, is clefined as:

109

A
ý-DA-r 5= <Aý)

6.2. DEFINITIONS

The above definition means that B is a data abstraction of A on relation r on the

condition that if the states of A are mapped to those of B, then the semantics of B is a

weakening of the mapped semantics of A.

Assume we have a queue data structure implemented with an array. Here we only

give the element insertion procedure as an example.

Queue-bod%, =f

string: fieldl;

float: field2;

I

Queue-body: array queue-body [maximum];

integer: queue-head;

integer: queue-tail;
b

proc insert(In element: Queue-body)

f
if Abs(queue-head - queue-tail)+ I >maximum. then Print("queue is full")

else queue-tail: =(queue-tail+l) mod maximum;

queue-body[queue-tail]: = element

fi;

The procedure is a little bit complex because array "queue-body" has a capacity

limit and therefore quite a lot attention was paid to the related error handling. We use

data abstraction to make the above procedure more concise: mapping the array data

structure to a list structure.

Queue-bod), =f

string: fieldl;

float: field2;

Queue-body: link;

I

Queue-body: queue-head, queue-tail;

110

6.3. HEALTHINESS OBLIGATION

proc insert(In element: Queue-body)

ueue-tail. link: =element;

queue-tail: = queue-tail. link

In the new procedure, all implementation details related to array capacity is left out.

The remaining information is more concise and easy to understand.

6.3 Healthiness Obligation

Healthiness obligations are conditions that must hold in order to have "sensible" ab-

stractions. Different abstractions have different healthiness obligations. These are sim-

ilar to Dijkstra's healthiness conditions [58,59] for his Guarded Command Language.

One can think of them as axioms or invariants.

Hiding Abstraction

* Shared variables between different representations should not be hidden. These

shared variables connect different representations and involve important design

or functional information.

For all A >-HAB =" (] x- RAý) =: ý> ýBý

there must be

x0 shared-var(A) and x0 shared-var(B)

which means that x is not a shared variable.

* Variables with visibility level of zero should not be hidden. This is because vari-

ill

ables with visibility level of zero are global variables in structured legacy systems

6.3. HEALTHINESS OBLIGATION

and are crucial for the design and specification.

Tur all A >-HAB x- ýAý)

there must be

visibility-level(x) 00

Weakening Abstraction

Any representation should not be abstracted to TRUE or FALSE (trivial specifi-

cation or starting from scratch). Although abstraction throws away irrelevant or

unimportant details, it does not make sense to throw away everything.

fur all A ý-W A 13 A ýA]

there must be

B =A TRUE

Temporal Abstraction

* An infinite action cannot be performed in a finite interval.

L3
A

For all A >-TA = QAý =ý- ýBý) A RT(T(A), T(L3))

there must be

finite(A) =#ýfinite(B)

9 Any representation cannot be abstracted to an agent with negative time interval.

>0

112

Structural Abstraction

6.4. MONOTONICITY OF ABSTRACTION RELATIONS 113

Two finite representations in sequential or parallel composition can not be struc-

turally abstracted to an infinite representation. This means that if there is any

contention between the two representations, for example, resource deadlock, then

the sequential or parallel composition can not be reduced.

For all C' >-sA C

where #seq-op(C') > #seq-op(C) or #par-op(C) > #par-op(C)

there must be

finite(C') ==ý>finite(C)

Data Abstraction

9 Recursion on data abstraction relation is forbidden. This means that the variable

set of A should not be the same of B, i. e., data abstraction relation should not map

to itself. In that case, data abstraction turns into weakening abstraction because

data abstraction relation is then just the identity relation.

El-
fur all A ý-DA-r

there must be

WA =A W13

00 6.4 Monotonicity of Abstraction Relations

Monotonicity is important to abstraction because any abstraction is actually performed

on a part of the whole software system. If the abstractions defined are not monotonic

within most common context of popular software systems, the usage of the abstractions

will be limited to a quite great extent.

Let CX be a context, CX is monotonic with respect to ý: f if Ai ý: f 8j, i= 01 1 k,

6.4. MONOTONICITY OF ABSTRACTION RELATIONS

then CX(, 4) CX (B) holds where A: -- AOi Ali ... , Akand L3 - BO, Bk.

The conclusion we have reached is that: for conjunction, disjunction, sequential

composition, parallel composition and the conclusion part of implication, which cover

all the normal context in logic and source code program, weakening abstraction and

structural abstraction are monotonic, temporal abstraction is monotonic only if RTis a

kind of functions to which the above context is also monotonic, hiding abstraction is

monotonic only over disjunction and sequential composition, and data abstraction is not

monotonic. However, since weakening abstraction is the basic semantic foundation of

all the five category of abstractions, temporal, hiding and data abstractions performed

on local parts of a software system can be "inherited" by further abstraction process in

the sense of weakening abstraction.

The formal definition is as follows:

For CX =AIvI; 1111 ==ý(conclusion part),

*X is monotonic with respect to ý- vvA;

* CX is monotonic with respect to

e CX is monotonic with respect to >-TAif CX is monotonic with respect to RT;

V and are monotonic with respect to >-HA, but A, 11 and =: ý> are not.

e CX is not monotonic with respect to ý-DA. Here is an counter example. Assume

A, >-DA-,, A',, and A2 tDA-r2 A ý2. However, rl is not applicable on A2 and r2

is not applicable on A,, hence, A, ýýDA-r2AI, and A2 ý4-DA-rj A". Here A" and 21

A" represent any possible representations. Therefore, A,; A2 ý4-DA-rj Al; A/2
2

and Ali A2 ýý- DA - r2A"; A'. Hence, both CX (Ali A2) tDA-rl CX(A' A") and 1212
CX(A", A') are false. CX(A17 A2) tDA-r2 12

The above conclusion has been proven sound in formal logic. Interested reader may

114

refer to the appendix.

6.5. RELATIONS BETWEEN ABSTRACTIONS

6.5 Relations between Abstractions

The partial ordering relations between the five categories of abstractions discussed in Z-:)

section 6.2 are shown in Figure 6.1. Le.:

WA

HA

DA

CTA

TA

SA

Figure 6.1: Partial Ordering Relations between Abstractions.

The following conclusion has been proven sound in formal logic. The proof is given

in the appendix.

Temporal abstraction, structural abstraction and hiding abstraction are weaken-

ing abstraction, too. This means that weakening abstraction is the basis of these

abstractions. In another words, temporal abstraction, structural abstraction and

hiding abstraction are stronger in semantics than weakening abstraction. The

reason is that semantics weakening is a part of the definitions of other abstrac-

tions. Abstraction is different from both transformation and restructuring, and

there should be a consistence between the original semantics and the abstracted

semantics.

2. Temporal abstraction, structural abstraction and hiding abstraction are indepen-

115

dent to each other. There is no partial ordering or overlap between them. Z:)

6.6. ELEMENTARY ABSTRACTION RULES

3. Data abstraction is the most general. If the variable set of A remains to be the

same of S, i. e., the data abstraction relation r maps to itself, then data abstraction

turns into weakening abstraction.

6.6 Elementary Abstraction Rules

A formal notation is used to describe abstraction rules in our study. We have classified

the abstraction rules obtained through our study into two categories: elementary ab-

straction rules, rules to abstract source statements into logic formulae, which may be

very redundant and specific; andfurther abstraction rules, which extract a more concise

and abstract specification from the formulae through compositions and semantics weak-

ening. Also, abstraction rules fall into different sections according to the domain that

the rules deal with. For example, when dealing with an object-oriented (time-critical)

system, the abstraction rules consist of general abstraction rules, object-oriented ab-

straction rules and time critical rules.

Abstraction rules in this category aim to abstract the statements in TGCL and Ob-

TAM to formulae in ITL (the resultant formulae may be redundant, or even "too spe-

cific") and these rules can transform source statements into logic formulae, which is a

kind of specification. So, in further abstraction, logic composition and semantic weak-

ening will be applied through further abstraction rules to abstract these formulae to a

more concise and abstract specification.

The statements in TGCL and ObTAM consist of two sets: simple statements such

as assignment, input and output, and composite statements which are a composition of

simple statements and composite statements through composition structures, such as

condition, loop and procedure. Therefore, elementary abstraction rules fall into two

sets correspondingly: the first set which is named Primitive Abstraction Rules converts

the simple statements to ITL formulae, and the second set which is named Compound

Abstraction Rules deals with the composite statements.

116

6.6. ELEMENTARY ABSTRACTION RULES

6.6.1 Primitive Abstraction Rules

Primitive Abstraction Rules aim at converting the simple statements in RWSL to ITL

formulae. The formal definition of Primitive Abstraction Rules is as follows:

St ý-- Sp

where St denotes a simple statement in concrete code, and Sp is the abstract specifica-

tion for St, that is, the semantics of St in logical form.

Proof:

V4 = sp (definition of St)

Hence, ýStý ==ý. Sp
T-1-
Ilence, St >- Sp.

Rules listed in this subsection are instances of the Primitive Abstraction Rules and

are proven sound in ITL based on the semantic weakening definition of abstraction.

Due to similarity, the proofs of these rules are carried out in the proof of Primitive

Abstraction Rules.

Assume A, B, Ai, Bi are system representations, and (P, T, (Di, Tj are formulae,

then we have the following primitive abstraction rules:

1. Assignment

x: = e >- ýx1 : Ox =e

This rule extracts a logic formula of the assignment statement which assigns the

value of expression e to variable x.

Example Consider a simple calculation:

117

Y: =X*Y+8 >- fyj : OY=X*Y+8

6.6. ELEMENTARY ABSTRACTION RULES

2 Input Statement

tx, yl :x= �/ sAy= read (s)

This rule extracts a logic formula of the input statement which reads the value in

shunt s to variable y and store the timestamp in x.

Example Consider reading temperature from a thermo sensor (shunt):

(tm, temp) ý- sensor >- f tm, templ : tm = N/ sensor A temp = read (sensor)

I Output Statement

x-ýs>-fsj: skipAOs=(V1s+l, x) -

This rule extracts a logic formula of the output statement which writes the value

of variable or expression x to shunt s, and change the timestamp, of s to the time

when last write operation happened.

Example Consider setting the high limit to alarm of a water level sensor (shunt):

20m --ý sensor >- f sensorl : Skip A Osensor = (V/ sensor + 1,20m)

4. Type Definition

x: T >- Elx -fT(x) A scope (x)

The statement declares variable x of type T. This is expressed in logic as variable

x has the feature of type T, which is described with functionfT(x), and the valid

scope of x is described with scope(x) which depends on the definition context.

Example Consider variable age defined as an integer:

118

age : Integer >- 3 age -, Integer(age) A scope(age)

6.6. ELEMENTARY ABSTRACTION RULES

5. Delay

delay n >- len =n

Delay means doing nothing during the specified period. The statement defines a
delay lasting n time unit, which is expressed with the formula len = n.

17-V-
,.:, -, ample Consider operations on a CPU are delayed 100 time units:

delay 100 >- len = 100

6.6.2 Compound Abstraction Rules

Compound Abstraction Rules aim at converting composite statements to ITL formulae.

The formal definition of Compound Abstraction Rules is as follows:

Si ý- (Di

c (Si) ý-- fc (41, i)
where fc denotes logical construction corresponding to composition operator C, and Si

denotes simple statements or composite statements.

Proof:

ýC(sj)ý =fCQSjj) (from the definition of fc (Si))

Since Si >- (Di, hence ýSjj ==ý ýDj

Since ýSj =#- 4)i andfc(Si) is monotonic with ==ý relation

Hence, fc QSJ) ==ý> fc (ýPj)

Hence, ýC(Sj)ý ==ý>fc((Dj)

Hence, C (Si) t fc (41ýj)

119

6.6. ELEMENTARY ABSTRACTION RULES

Rules listed in this subsection are instances of the Compound Abstraction Rules

and are proven sound in ITL based on the semantic weakening definition of abstraction.
Due to similarity, the proofs of these rules are carried out in the proof of Compound

Abstraction Rules.

Assume A, B, Aj, Bi are system representations, and ýý, T, 4bi, Tj are formulae,

then we have the following abstraction rules:

1. Sequential Composition

B >- T

13 >- f rame ((D) uf rame (T) : ýý ;Tý

If two representation fragments have a sequential composition relation, they can

be abstracted separately, and the result representations should be composed with

a sequential operator. The new frame is the union of both original frames.

Example Consider two delay operations in sequence:

delay x; delay y

Performing abstraction on the two delay statements separately, we got:

len = x; len =

Then compose the two formulae with sequential operator:

len = x; len =

By further abstraction we got the final result:

120

len =x+y

6.6. ELEMENTARY ABSTRACTION RULES

2. Conditional Statement

Ai >- (Di (for all iE I)

if F] gi then Ai fi Uf rame (Ai) (V (gi A (Di)) v (A-igi)
iEI iEl iEI iEl

This rule extracts a logic formula from a conditional statement. Each guarded

branch can be abstracted separately and then composed together with disjunction.

The new frame is the union of the frames of all branches.

Example Consider the symbolic function:

if x>O then y: =l

else if x=O then y: =O

else if x<O then y: =-l fi

fi

fi

We perform abstraction on the "else" branch of the outer "if" statement first:

if x>O then y: =1

else fyj : (x=O A y: =O)V(x< 0AY: = -I) V (x> 0)

fi

Then we abstract the "if" branch of the outer "if" statement and compose the

result together:

W OAY: = 1) V (x= 0/\Y: =0) V (x< OAY: = -1)

Further abstraction may be possible to make the above representation more ab-

stract.

121

3. Iteration Statement

6.6. ELEMENTARY ABSTRACTION RULES

while g do A od >- frame (ýD) : (g A (D)* A fin

This rule extracts a logic formula of an iteration statement. The iteration is

mapped into "chopstar" formula in ITL, and the iteration body can be abstracted
separately and then joined into the chopstar structure. The new frame equals the
frame of the iteration body.

Example Consider a loop implementing factorial calculation:

while n> 1 do y: =y*n; n: =n- 1 od

With the above rule, it is abstracted to:

fy, nj : (n> 1A (Oy=y*n; On= n- 1))*Afin(n< 1)

4. Procedure Definition

Al >- (D

proc P(In pini : Ti, Out poutj : T! f A'I >- fpoutjl u frame ((D) : (1) J)
where Observables=fpini, poutj, global variables to PI

Scope=f local variables of PI

A procedure definition is abstracted into a separate specification in ITL with its

input parameters stable and output parameters possibly nonstable. The procedure

body can be abstracted separately and then join the parameter part with conjunc-

tion. The new frame is the union of Poutj and the frame of the procedure body.

Observables are defined to include parameters and global variables of the pro-

cedure, which form the interface of the procedure. Local variables should be

122

6.6. ELEMENTARY ABSTRACTION RULES

deleted with their effects recorded in further abstraction because they are consid-

ered as implementation details.

Example Consider a procedure as follows:

proc calculator(In x integer; Out y: integer)

integer: i;

y: =l;

for i: =1 to 8 step 1 do

y: =y

od
I

6

The observables of calculator consists of x and y, and the scope only consists

of local variable i which should be hidden. In the first step, we abstract the

procedure body with corresponding rules:

fyl :3i- integer(i) Ay :-1; (y :-y* x)8

Since i is no longer used in the representation, its declaration is left out. The

complete result is as follows:

calculator >- jyj : (y :=I; (y :=y*x'

More concisely, the final result is: calculator ý- fyj :y :=x8.

5. Procedure Invocation

123

ýI : (D(pinilei, poutjlxj) P(In ei, Out xj) h fx

6.6. ELEMENTARY ABSTRACTION RULES

where proc P(In pini : Ti, Out poutj : Tj) f A'j

The invocation of a procedure equals the execution of the procedure's abstracted

body with the input parameters' values passed in and output parameters returned.

Example Assume the procedure defined in "procedure definition" is invoked in

a conditional statement:

if num> 10 then calculator(In num, Out

The abstracted result should be: fyI: num > 10 Ay: = num 8

6. Parallel

parbegin AIIB parend >- frame ((P) u frame (T) : (ýD A IF)

Two concurrency or parallel representations can be abstracted separately and the

results are composed through the conjunction operator. The new frame is the

union of both original frames.

Example Assume there are two control procedure running concurrently, one to

monitor the methane level in a mine, the other to monitor the water level:

parbegin

methane-monitoro 11 water-level-monitoro

parend

With this rule, the program will be abstracted to the following:

124

methane-monitoro A water-level-monitoro

6.6. ELEMENTARY ABSTRACTION RULES

7. Duration

[t]A >- frame (4b) : (At A (D ; true) A (4) D len <= t)

Duration means that the execution of the specified representation should be fin-

ished within the indicated time duration. This rule extracts a logic formula from

duration statement. It indicates that the execution body within a duration state-

ment can be abstracted separately.

Example Assume the pump motor must be set off within 5ms once an alarm of

high methane level occurs. The program is as follows:

duration 5ms in

motor-status: =off

end

With this duration rule, the program will be abstracted to the follows:

ýmotor-statusj : A5msAmotor-status := off; trueAmotor-status := off D len < 5ms

And then be further abstracted to:

motor-status := off A len < 5ms

8. Signal

. 41 >- (Di

-42
t 41) 2

Al >S' A2 >- f rame ((DI) uf rame ((D2) Uf Sj : (At A stable (, / s) 4)1)

125

v (At A --i stable (, / s) ; ýM

6.6. ELEMENTARY ABSTRACTION RULES

The two execution bodies in a signal statement can be abstracted separately and

then joined together with the formula defined above. This rule extracts a logic

formula from the signal statement.

Example Assume there is the following fragment of a control system. If there is

an overload alann within 10ms, the red light will be set on, otherwise the green

light will be set.

wait on overload for lOms do

red-light: =on

else

green-light: =on

end

With this signal rule, the program will be abstracted to the follows:

joverload, red-light, green-lightj :

(Aloms A stable (. \Ioverload) ; red-light = on)

v(Aloms A --, stable (Voverload) ; green-light = on)

9. Object Definition

As type specification, classes defined in COOL or ObTAM programs will disap-

pear once they are abstracted to ITL specification. Only objects exist as formulae

with frames in ITL.

Let T= fxi : Ti, mj (In p inj, : Tk, Out poutj, : TI') [Aj] 1, then

Aj >- xpj

W,: f

where Wx =
Uxi
iEI

126

6.6. ELEMENTARY ABSTRACTION RULES

/VT, (xi) A (V f rame (Tj) U fpoutj, I: qjj)
iEl jEj

This rule transforms the definition of an object in source code into a logic de-

scription. W, is the data fields of the object, it fon-ns the object's observables. f

is the behaviour description of the object where frame (qfj) U Jpoutj, I: Tj is the

description of method mj.

Example Assume there are a set of sensors in a control system. A class sensor

is defined to describe the general features and operations of all sensors. The

definition in COOL is as follows:

class Sensor

String: id;

Boolean: status;

enableo status: =enabled 1;

disableo status: =disabled

status represents whether the sensor is enabled or disabled, and each sensor has a

unique identification recorded in id. Class Sensor has two operations: enableo to

enable the sensor, and disableo to disable it. With this abstraction rule, an object

sensor of class Sensor can be abstracted to the follows:

sensor >- f id, statusl : string(id) A boolean(status) A (enableo v disableo)*

enableo ý- Istatusl : status := enabled

disable() >- f status I: status := disabled

127

10. Object FEerarchy

6.6. ELEMENTARY ABSTRACTION RULES

Let T- ýxj : Ti, mj (In pinj, : Tk, Out poutj, : TI) [Aj] I

fyi, mý, (In pinj, : Tk,, Outpoutj,, i k1

Aj ý: xFj, Aj', >- xpjt

T <sub T' >- W,: f

where W, = Uxi UU yil iff for all xi iEI, yi, 0 xi
iEI it EF

(xi) A (yi,) A (Výýj V (D/ f= AfTi AfTi, V

iEI ? EF jEJ IEJ'

then

iff for all xi iEI, yi, :ý xi, and iff for all (Dj jEJ, (Dj, =, k (Dj

Vi Eio (bj = frame (, Fj) u fpoutj, I: Tj

V EY o (DjI, = frame fi(, Fi',) u fpoutjl" I Fj, /

The subclass relation<sub is transitive. This rule transforms the object hierar-

chy definition, including inheritance, into a logic formula. Assume that T is a

subclass of T, for any object x of class T, it will inherit all the data fields and

methods in T' if they are not redefined in T. On the other hand, all the data

fields and methods in T' will be overridden with the counterparts in T if they are

redefined in T.

Example Assume there is some temperature sensors in the control system de-

scribed above. Besides the general data and operations introduced in class Sensor,

the temperature sensors have a data field to indicate current temperature and one

related operation to read out the current temperature. The enable operation is

overwritten: the current temperature reading must be reset to zero after the sen-

sor being enabled. We define a subclass derived from class Sensor, namely

Temp-sensor. All data and operations of sensor are inherited by Temp-sensor

except that enable is overridden. The definition in COOL is as follows:

128

Temp-sensor extends Sensor;

6.6. ELEMENTARY ABSTRACTION RULES

class Temp-sensor

f
Float: current-temp;

enableo f status: =enabled; current-temp: =O 1;

temp-read(Out temp) f temp: =current-temp I

I

With the object hierarchy rule, an object t-sensor of class Temp-sensor will be

albstracted to:

t-sensor >- I id, status, current-temp I: string (id) A boolean (status) A

float (current-temp) A (enableo ý/ disableo v temp-reado)*

enableo >- Istatus, current-templ : status := enabled A current-temp :=0

disable() >- f statusl : status := disabled

temp-read(temp) >- f templ : temp := current-temp

11. Method Invocation

x. m(ei, yj) >- fyjl : (D(pinilei, potttjlyj)

where m (In pini : Ti, Out poutj : Tj)

A method invocation equals the execution of the method's abstracted agent with

the input parameters passed in and the result of output parameters returned.

12. Field Reference

x. d >- dEW,

129

A data field of an object is a variable belonging to the frame of the object.

6.7. FURTHER ABSTRACTION RULES

6.7 Further Abstraction Rules

Further abstraction rules aim to extract more concise and abstract specifications from

the formulae obtained through applying the elementary abstraction rules. Logic com-

position and semantics weakening are the basis of further abstraction. During further

abstraction domain knowledge may be applied by software engineers to give the soft-

ware system a more concise and "professional" description.

There is not any "object combination" during further abstraction, i. e. objects will

be abstracted but not combined.

As stated in section 4.2.1, abstraction is a process of generalisation, removing re-

strictions, eliminating detail and removing inessential information. Unlike transfor-

mation which keeps the semantics unchanged, abstraction endeavours in weakening

the original semantics of system implementation. Identification of the parts to be ab-

stracted away cannot be determined automatically within the system, therefore, user

guidance is needed. Further abstraction rules cover the principles to identify some

kinds of implementation details, however, not a complete set of them. To increase the

automation of the supporting tool, a set of abstraction patterns based on relevant further

abstraction rules are developed as means of acquiring observations identified by soft-

ware engineers. These observations are necessary informations for automated further

abstractions based on corresponding rules. These abstraction patterns are embodied

as abstraction pattern assertions in the resulting tool RA, which will be introduced in

detail in Chapter 7.

Assume A, B, Aj, Bi are representations, and (D, T, 41)i, Tj are formulae, then we

have the following abstraction rules Proof of soundness of these rules are given in

appendix.

1. Transitive

AB

130

BC

6.7. FURTHER ABSTRACTION RULES

AC

This rule states that a system representation can be abstracted step by step, and the
final result will be an abstraction of the original representation if it is guaranteed
that each step is an abstraction.

2. Monotonic

AB
CX=AIVI; III I=#>

CX(A) >- CX(B)

For the context of conjunction, disjunction, sequential composition, parallel com-

position and implication, all abstractions discussed in section 6.2 are monotonic

in the sense of weakening, temporal, hiding and structural abstraction.

3. Sequence Folding

ýA 5ý

A- B>-AAB I-

If no contradiction is caused when substituting the sequential composition be-

tween two representations to conjunction composition, then the sequence can be

folded through conjunction.

This rule can be applied when the execution order of a sequence is not crucial.

In non-parallel systems, this is true under most situations except any operation

provides parts of the pre-conditions of its successor within the sequence. How-

ever, in parallel systems, if the sequence relates with communication or shared

resources, it can not be folded with conjunction.

131

6.7. FURTHER ABSTRACTION RULES

4. Specification Combination

4.1 (Wi (DI) A (W2: (1)2) (wl U W2) : (I)l A (ý2

4.2 (WI 4ý1) V (W2: (D2) (WI U W-)) : (DI V 41ý2

This rule is used to combine specifications in ITL because there are often quite

a number of specifications within one software system and some of them can be

potentially combined for further abstractions. Two specifications with conjunc-

tion relation can be merged into one specification with their frames united and

their description formulae conjunctively composed. Similarly, two specifications

with disjunction relation can be merged into one specification with their frames

united an d their description formulae disjunctly composed.

5. State Test and Exception Handling

State tests and exception handling are often used in programs to assure smooth

execution. Although they may be important in system implementation, these

details do not involve the crucial functionality of the system. Therefore, in high-

level specification, these details are unnecessary and should be abstracted away.

The related abstraction pattern is called "state test and exception handling pat-

tern", which consists of the following cases:

* State test and exception handling branch. The identified state test and ex-

ception handling parts are branches in conditional structures. In this case, 4D

the branches should be abstracted away.

o State test and exception handling loop. The identified state test and ex-

ception handling part is a loop structure. In this case, the loop should be

abstracted away.

9 State test and exception handling component. The identified state test and

exception handling part is a procedure or function (component). In this

132

case, the component should be abstracted away.

6.7. FURTHER ABSTRACTION RULES

State test and exception handling expression. An expression is identified as

related with state test and exception handling. In this case, the expression

together with the smallest representation unit (statement or ITL formula) in

which the expression directly locates should be abstracted away.

9 State test and exception handling variable. A variable is identified as related

with state test and exception handling. In this case, all the smallest repre-

sentation units (statements or ITL formulae) in which the variable directly

locates should be abstracted away.

6. User Interface Fonnat

Almost all computing systems have to pay some attention to the format of its

interface with the user. There are three sorts, of so called user interface fonnat:

9 Input format

* Output format

9 Graphic User Interface (GUI)

For some systems, a rather big part is devoted to making a better user interface

format. However, these format related parts are not involved in the function core

of the system and could be left out in the high level specification. The related

abstraction pattern is called "user interface format pattern", which consists of the

following cases:

* User interface format branch. The identified user interface format parts

are branches in conditional structures. In this case, the branches should be

abstracted away.

9 User interface format loop. The identified user interface format part is a

loop structure. In this case, the loop should be abstracted away.

* User interface format branch component. The identified user interface for-

133

mat part is a procedure or function (component). In this case, the component

6.7. FURTHER ABSTRACTION RULES

should be abstracted away.

* User interface format branch expression. An expression is identified as re-

lated with user interface format. In this case, the expression together with

the smallest representation unit (statement or ITL formula) in which the

expression directly locates should be abstracted away.

9 User interface format branch variable. A variable is identified as related

with User interface format. In this case, all the smallest representation units

(statements or ITL formulae) in which the variable directly locates should

be abstracted away.

7. Semantic'Core

The semantic core of a specification is the ýart which covers the specification's

key contents. In this abstraction pattern, once the semantic core of a specification

is identified, further abstraction will keep the core but omit other parts of the

specification.

8. Concise Specification

If a more concise specification is observed and it is a weakening of the origi-

nal specification, the software engineer could insert it as observations. Then in

further abstraction the original specification will be substituted with this obser-

vation.

9. Comment Revision

Comments in source code often give great help to the understanding of the sys-

tem. During reverse engineering, comments should be kept and revised to fit

specifications at different abstraction levels. For higher level specification, com-

ments should be revised into abstract ones.

134

10. Trivial Elements

6.7. FURTHER ABSTRACTION RULES

If a part of the system's functionality are considered too "trivial" to be kept in

high level specification, the elements related to this part of functionality is identi-

fied as "trivial elements", which should be abstracted away in further abstraction.

Trivial elements could be the following cases: 4D

e Trivial branch. The identified trivial element is a branch in a conditional

structure. In this case, the branch should be abstracted away.

* Trivial loop. The identified trivial element is a loop structure. In this case,

the loop should be abstracted away.

9 Trivial component. The identified trivial element is a procedure or function

(component). In this case, the component should be abstracted away.

Trivial expression. The identified trivial element is an expression. In this

case, the expression together with the smallest representation unit (state-

ment or ITL formula) in which the expression directly locates should be

abstracted away.

9 Trivial variable. The identified trivial element is a variable. In this case, all

the smallest representation units (statements or ITL formulae) in which the

variable directly locates should be abstracted away.

11. Domain unction

Domain functions give more scientific and concise descriptions of the function-

ality of target systems. If a representation is identified as an implementation of

certain domain function, then it should be abstracted back to the domain function

in further abstraction. This will make the specification more abstract and con-

cise. For example.) the specification f x, yj : (x >0Ay=y*x; x=x- 1)x-1

implements y=x!. Therefore, it can be abstracted as f x, yj :y=x!.

135

12. Efficiency-Improving Details

6.7. FURTHER ABSTRACTION RULES

The implementation is often cluttered with information/details to improve the ef-

ficiency of the system. These details are nomially not function related, and could

be abstracted away in high-level specification. For example, using of register

variable is to improve the system's efficiency, all the related parts are classified

as efficiency-improving details.

This abstraction pattern consists of the following cases:

e Efficiency-improving branch. The identified efficiency-improving part is a

branch in a conditional structure. In this case, the branch should be ab-

stracted away.

* Efficiency-improving loop. The identified efficiency-improving part is a

loop structure. In this case, the loop should be abstracted away.

Efficiency-improving component. The identified efficiency-improving part

is a procedure or function (component). In this case, the component should

be abstracted away.

Efficiency-irn proving expression. An expression is identified as related with

efficiency improving. In this case, the expression together with the small-

est representation unit (statement or ITL fon-nula) in which the expression

directly locates should be abstracted away.

Efficiency-improving variable. A variable is identified as related with effi-

ciency improving. In this case, all the smallest representation units (state-

ments or ITL fonnulae) in which the variable directly locates should be

abstracted away.

The formal representation of Rule 5 to 12 is as follows:

(1) ==ý> IF

136

frame (T) : IV

6.7. FURTHER ABSTRACTION RULES

When moving from (D to T, the identified contents are abstracted away or sub-

stituted with more concise representation. These contents could be state test and

exception handling detail, or user interface format detail, or trivial elements, or

obsolete comments, or efficiency-improving details, or too detailed domain func-

tion description.

13. Conjunction

A >- (1)

frame ((D) u frame (T) : (D AT

If a representation is abstracted separately into two results, a more accurate ab-

straction may be obtained by making a conjunction of them.

14. Specification

A stable (s) = (W - s) : (D (if s not in 41))

This rule eliminates the redundant variables in a specification. If a variable is

stable and does not occurs in the description formula, then it should be left out of

the frame.

15. Sequential

15.1 empty; A=A=A; empty

15.2 A; (B ; C) = (A; B) C

15.3 A,; (A2 VA3) ; A4 == (Al; A2; A4) V (Al; A3; A4)

These rules indicate that sequential composition operator has empty as a unit and

is associative and distributive over nondeterministic choice.

137

16. Delay

6.7. FURTHER ABSTRACTION RULES

delaYdi *, delayd2 = delaYdi +d2

skip = delay,

The first rule indicates that two successive delay can be simplified to one delay

with the times added. The second rule indicates that skip equals to delay of one

time unit.

17. Parallel

17.1 AB=B

17.2 A (B 11 C)

17.3 A true =.

17.4 A (B V C)

17.5 AB >- Al

17.6 (G ==>. 4)1) 11

A

(A B) 11 C

(A 13) V (A 11 C)

B, for any B if A >- A

(G' ==>' 41) 2)t (G A GI) ==>

The first four rules indicate that parallel composition operator is symmetric, as-

sociative, and distributive over nondeterministic choice. The fifth rule indicates

that if one of the representations in parallel is abstracted the parallel composi-

tion is also abstracted. The last rule means that two parallel implications can be

abstracted to one implication with the premises and conclusions conjunctively

composed.

18. Signal

18.1 (A>n
_S ,

6) 11 (C >n
-s

-D) = (Alle) >n (L3II-D)
-s

18.2,4 >n

-s
(C >O

-S
L3) = A >n Z3

These rules are for the simplification of signal-related formulae. Two parallel

signal formulae can be rewritten in one signal formula. An signal formula can be

deployed over time span or the opposite.

138

6.8. DEMONSTRATIVE EXAMPLES

19. Non-deterministic choice

19.1, P v'P =p

19.2PVQ= QVP

19.3 PV (Q V R) = (P V Q) VR

19.4 true VP= true

These rules indicate that non-deterministic choice is reflective, symmetric and

associative.

20. Iteration

A= p,, A; A Pn+, A=A; An I
h

This rule indicates that an iteration may be deployed totally or partially.

6.8 Demonstrative Examples

A prototype system, named the Reengineering Assistant (RA), has been developed and

example programs have been experimented with the system. In this section, two exam-

ple programs are used to demonstrate the proposed RWSL-based abstraction approach,

i. e., how to extract an ITL specification from source code through the developed ab-

straction rules. Before the start, we assume that we know nothing about these pro-

grams, and the only information source is source code programs. The first example is

a sequential program and the second one is a real-time, interrupt handling program.

Example 1 Assume we have a sequential CSL program as follows:

proc factorial(In x: int, Out y: int)

1

139

int:

6.8. DEMONSTRATIVE EXAMPLES

k: =x; y: =I;

while (k> 1) do y: =y*k; k: =k- I od;

Lf (k<O) then y: = - 100 fi;

We first extract a specification of the program through applying the elementary

abstraction rules:

factorial >-fk, yl : k: =x; y: = I;

> 1) A (y: = y*k; k: = k- 1))* ; ((k < 0) A y: = -100)

We then apply the further abstraction rules to make the specification more concise

through logic composition:

factorial >-fk, yl :k :=x; y :=I;

(k > 1) A (y : =y*k; k: =k- I)k-l ; ((k < 0) Ay := -100)

k<0 is state test and exception handling added as implementation details to assure

smooth execution. In the next step, these details are eliminated by applying a further

abstraction rule (semantics weakening) and we obtain: au

factorial ý-fkjj :k :=x; y :=1; (k > 1) A (y :=y*k; k :-k- I)k-1

In the next step, we make the specification more concise and professional by apply-

ing domain knowledge to identify the domain function y=k!:

factorial >- fk, yj : k: =x; y-k!

factorial >- jyj :y=x!

We can finally understand that the original program is for calculation the factorial

of an integer. The specification is an ITL formula and software engineer can gain a

140

better understanding of the program through it.

6.8. DEMONSTRATIVE EXAMPLES

Example 2 Assume we have a real-time, interrupt handling program as follows:

proc pump-control()

alarm: Shunt;

sw: Boolean;

tm: Integer;

while true do

wait on alarm for I ms

do

delay Oms

else

(tm, slgnal)ý-alarm;

if signal=High-alarm

then [I ms] sw: =on fi;

ff signal=Low-alarm

then [Ims]sw: =off fi;

od

od
I

We first extract a specification of the program through applying elementary abstrac-

tion rules. The signal agent in TGCL A, >S' A2 is written in a more program-like style

in CSL: wait on s for t do A, elSe A2 Od-

pump- control >- f alarm, signal, tm I: (true A ((A IA stable (ý, Ialarm) ; len - 0) V

(A IA-, stable (-, Ialarm) ; (tm = Valarm A signal = read (alarm)

(signal = High-alarm AAIA sw on A (sw on D len < 1)) ;

(signal - Low-alarm AAIA sw off A (sw off D len < 1))))))

We then apply further abstraction rules to make the specification more concise

through logic composition:

pump-control ý- f alarm, signal, tmj : (true A ((A IA stable (Nlalarm) ; len == 0) V

141

(A iA --, stable (, Vlalarm) ; (tm - Valarm A signal = read (alarm) -,

6.8. DEMONSTRATIVE EXAMPLES

(signal = High-alarm A sw := on A len < 1) ;

(signal = Low-alarm A sw : =ý off A len :5 1))))) *

Since timestamp tm is never used in the program, we delete it through a further

abstraction rule. Since len =0 means empty operation, we change it to empty. Be-

cause an alarm cannot be both a high level alarm and a low level alarm simultaneously,

we change the sequential composition between the two condition statements into non-

deterministic choice. Meanwhile, simplify the specification by taking away of true

condition.

pump-control >- f alarm, signall : ((A IA stable (, \Ialarm) ; empty) V

IA-, stable (\/alarm) ; (signal = read (alarm) ;

(signal = High-alarm A sw := on A len < 1) V

(signal = Low-alarm A sw := off A len < 1)))) *

Through the final specification we can understand that the program keeps testing

whether there is any interrupt (alarm) sent by water level sensors. If the alarm is a high

level alarm which means the water level hitting the high safety limit, the pump must

be switched on within I millisecond; similarly, if the signal is a low level alarm, the

pump must be switched off within I millisecond. If there is not any alarm, no operation

is performed. In fact, this program describes a simple water drainage pump control

142

system.

Chapter 7

Reengineering Assistant: A Realisation

7.1 System Architecture

Reengineering Assistant (RA) is a semi-automatic tool which aims at helping software

engineers in quite comprehensive processes of the reengineering of legacy systems.

RA is a rule-based intelligent system. Automation is the goal of RA, however, human

intervention is crucial in reverse engineering, i. e., full automation is impossible, RA

adopts semi-automation to facilitate the process of reengineering. Figure 7.1 shows the

general system architecture of RA.

The architecture reflects the working flow of RWSL in figure 4.5. The legacy source

code is firstly translated into CSL or COOL, and then the CSUCOOL code is parsed

and displayed in the browser interface. An internal LISP database of the code is mean-

while generated. The internal database is in a form of syntax tree, which is convenient

for transformation and abstraction. Once the CSUCOOL is parsed and stored, software

engineers could choose three different processes to reengineer the legacy system:

1. Program Transformer. CSL/COOL code is improved through the program trans-

former. New required extra functionalities can also be added. The new CSL/COOL

code can then be translated into an equivalent programming language through a

universal translator.

7.1. SYSTEM ARCHITECTURE

---------------------------- I ...
...

ERD, DF; D
P.,

=CC)bjccts

SC. Etc. , g,.
Re im

Librades
........

...........
Prqsmm L P=

Semantic
Interfam Synitrzister
Analyser

pý

ýnw-]ý

Modulariser y --------------------------

XJCý

c Wdtcr

Source

Code

Tmnr, latDr

------------------------- Metric Facility

.......................
Browscr4lutcrimcc

User

New
Dcirpec

C' c
4
Lm

i I'l
_Ixt

Targe

Code

Tcanslator

Figure 7.1: General System Architecture of Reengineering Assistant

Key:

F-I
Toc)l Component

Data Presentation

Data and Contml

F; ccdba&

Data Flow

2. Object Extractor. If the object-oriented paradigm is sought, object extraction is

performed on CSL code to obtain an equivalent COOL code. Then the COOL

code could be extended or improved or left unchanged. Subsequently, the new

code can be transformed into an object-oriented language, such as ADA, JAVA

and C++.

3. Abstractor. This is the main part on which this thesis concentrates. To seek a

high level specification, the abstractor extracts it from CSL or COOL code with

abstraction technology discussed in the thesis. The abstraction taxonomy and

rules discussed in chapter 6 are implemented in the abstractor. The extracted

specification could subsequently be used as a basis for re-specification, re-design

and forward engineering through refinement.

In further development, RA could absorb reuse techniques by building up Reuse

144

Libraries and The Synthesiser. Reuse libraries are used to store reuseable components,

7.1. SYSTEM ARCHITECTURE 145

which may form a repository. The synthesiser can build up new systems by integration

of components in the reusable library. Graphic models may also be introduced in RA

to help understand the legacy system, for example, Entity-Relation diagram (ER), Data

Flow Diagram (DFD), and Structure Chart (SC).

The sole interface between software engineers and RA is the Browse r-Interface. It

has the following functions:

9 To display the translated legacy source code in CSL/COOL;

* To accept process command from software engineers;

* To accept necessary information which must be acquired from software engi-

neers;

To display process results, including extracted specification, new object-oriented

COOL program, and transformed source code;

* To display the metric result of processes.

A more detailed architecture of the reverse engineering part in RA, i. e., extraction

of ITL specification from legacy source code, is shown in figure 7.2.

The lexical scanner and parser are used to check the syntax of the CSL/COOL

code; any error will be reported to the software engineer through the brow ser-interface

for correction. Correct programs will be stored in the CSUCOOL LISP Database in

specially designed syntax tree structure. Meanwhile, the program displayer is started to

display the program in the browser-interface in pretty print format, for example, with

indentation and different fonts.

The program abstractor is the most important part, it is an inference machine. Vari-

nlý OUS austractions are classified into corresponding catalogues, and abstraction rules are

implemented as inference rules. The extracted ITL specification is stored in the ITL

LISP Database, in a syntax tree structure sPecially designed for logic formulae. During

abstraction inference, the CSUCOOL LISP database and ITL LISP database provide

7.1. SYSTEM ARCHITECTURE

c)

Figure 7.2: Architecture of the Reverse Engineering Part of Reengineering Assistant

the necessary data. In a knowledge system sense, they are the databases backing the

inference machine. For the extracted ITL specification, further abstraction may also be

applied to make it more concise, i. e., high level. During the abstraction process, the

extracted specification is pretty printed in the browser-interface with the ITL displayer,

and the process information is displayed in the LISP dialogue window.

CSL/COOL programs are at source code level, and ITL specifications are at the

specification level. The program abstracter is an inference machine to cross various

abstraction levels with interactions. In the next subsections of this chapter, we will

146

discuss the reverse engineering parts of RA part by part.

7.2. EMBEDDING CSL AND COOL IN LISP

7.2 Embedding CSL and COOL in LISP

7.2.1 Syntax Check

The syntax of CSL and COOL is defined formally in chapter 5. In RA, the syntax

of CSL and COOL code needs to be checked to assure its correctness. The syntax is

checked in the following situations:

* when a CSL/COOL program in text format is loaded into RA.

when RA performed any transformation on the loaded CSL/COOL program and

redisplays the new CSL/COOL program in the interface.

Lex and Yacc techniques are used to generate the syntax scanner and parser in C

code automatically. Before this generation, the syntax of CSL/COOL need to be defined

in corresponding Lex and Yacc format. Here are some examples.

To identify keywords from text program with the scanner generated by Lex, the

keywords need to be defined in the following program segment as input of Lex:

class f return class-;)

CLASS (return class-;)

read { return read-; I

READ { return read-; }

delay { return delay_; }

DELAY { return delay_; }

parbegin { return parbegin_;

PARBEGIN { return parbegin_;

parend { return parend-;

PAREND { return parend-;

parallel { return parallel-;

PARALLEL { return parallel-;

147

7.2. EMBEDDING CSL AND COOL IN LISP

To parse the syntax of signal statement, which is shown below, the syntax need to
be described in a program segment as input to Yacc. The syntax of signal statement is

as follows:

wait on s for t do

A

else

S

end

A>18
s

And the corresponding Yacc input segment could be the following:

I wait- on- (cat("(Signal "); I

variable { tmp = popo; cat (tmp); cat(" ");)

or-

expn { tmp = pop cat (tmp)

do- { cat(" (");

stmnts

else- { cat(") ("); ý

stmnts

end- (cat("))");)

Here, we assume that the syntax of variable, stmnts(statements) and expn(expression)

is already defined. The left column gives the syntax rules in sequence. The text in I

I in the right column defines the actions to take once the syntax rules are matched. In

the above example, the action is to construct the external LISP representation of signal

statement.

7.2.2 CSL/COOL LISP Database

In RA, RWSL is internally represented as a syntax tree and is expressed, in a LISP style,

as a series of nested lists. This representation, together with additional internal infor-

148

mation, constructs the LISP Database of RWSL, including both code level CSL/COOL

7.2. EMBEDDING CSL AND COOL IN LISP

and specification level ITL. To the user, RWSL is always presented by the browser-

interface in a easy-to-read form, that is, in a Pascal/Java-style text for CSL/COOL, and

in logic formulae for ITL.

In this section, we focus on the code level, CSUCOOL. Consider the duration state-

ment as an example. In the text form, it could be as follows:

duration tI +t2 in

x: =a*b

end

The statement could be represented in a syntax tree shown in Figure 7.3. With

proper pre-defined procedures, this tree structure can be easily traversed and changed.

Since both ITL at specification level and CSL/COOL at code level are represented in

syntax tree structures, abstraction and transformation can be implemented easily on this

tree structure.

Duration

+ Statements

TI T2 ssign

Assignment

XA

Figure 7.3: Syntax Tree Form of RWSL Duration Statement.

In CSL/COOL database, two forms of the above syntax tree are used. The first

149

one, namely the intemalform, stores at each node additional information, such as its

7.2. EMBEDDING CSL AND COOL IN LISP

database table. The internal form is the main structure of CSL/COOL database, and is

used to perform abstraction and transformation. The second form, namely the external

form, is "LISP-like". It omits the extra information so that programs in this form can

be executed via a number of macro and function definitions. The external form is

more easy to understand and check, it is an abstract form of CSL/COOL database.

All programs being reengineered in RA are stored using an abstract data type which

implements the first form.

For the above example, its external LISP form is as follows:

(DURATION (+ TI T2) ((ASSIGN (X (+ A B)))))

And its internal form appears as follows:

NIL 152) NIL) (DURATION STATEMENT)

NIL 153) NIL) (+ EXPRESSION)

NIL 154) NIL) (VARIABLE EXPRESSION Tl))

NIL 155) NIL) (VARIABLE EXPRESSION T2)))

NIL 156) NIL) (STATEMENTS STATEMENTS)

NIL 157) NIL) (ASSIGN STATEMENT)

((- NIL 158) NIL) (ASSIGNMENT ASSIGNMENT)

((- NIL 159) (11 NIL) (VARIABLE ASSD_VAR X))

NIL 160) NIL) (* EXPRESSION)

NIL 161) NIL) (VARIABLE EXPRESSION A))

NIL 162) NIL) (VARIABLE EXPRESSION B)))))))

7.2.3 Pretty Print Display

Using X Window graphic functions, RA displays the stored CSL/COOL programs in

the interface window in an indented format with various fonts. This gives the user a

150

nice environment to view and reengineer the program. Figure 7.4 is a sample display.

7.3. EMBEDDING INTERVAL TEMPORAL LOGIC IN LISP

Figure 7.4: A Sample Pretty Print Display of a CSL/COOL Program in the User Inter-
face.

7.3 Embedding Interval Temporal Logic in LISP

7.3.1 Tree Structure and Stepwise Abstraction

As stated in the last subsection, ITL, as the specification part of RWSL, is also repre-

sented in a syntax tree structure. Adopting the same representation structure of both

code and specification levels facilities abstraction greatly, because this ensures con-

sistency between code and specification. Moreover, the syntax tree structure is easy

for traversal, structural change and pattern matching. By using the tree structure for

both code and specification levels, crossing levels of abstractions could be done on tree

structures with three main tree operations: traversal, change in tree structure and tree

structure pattern matching.

Although the syntax tree structure of a source code language can be obviously ob-

tained from its formal syntax definition, representation of a logic in tree structure needs

some study.

The basic elements in ITL are terms. A term is either a variable symbol or the appli-

cation of a function symbol of n arguments to n terms. Terms are composed intoformu-

lae with operators. We classify ITL formulae into two categories: primitive formulae

and composite formulae. A primitive formula has no sub-formula, while a composite

151

7.3. EMBEDDING INTERVAL TEMPORAL LOGIC IN LISP

formula has sub-formulae composed with operators.

Stepwise abstraction often requires us to slice a large system into sub-systems,

then to abstract these sub-systems individually, and finally to integrate the specifications

of each sub-system into a whole system specification. This requires that a system can

be represented with a combination of both specification segments and code pieces.

In RA, a specification statement is defined to act as the junction between code and

specification. A RWSL representation consists of RWSL statements, including both

CSL/COOL statements and specification statements. A specification statement is com-

posed of two parts: aformula which is a segment of system specification in ITL, and

aframe which includes all variables that may possibly change in the formula. In this

design, specification and source code could be combined in the same system represen-

tation. And therefore stepwise abstraction becomes possible.

The ITL syntax is defined in syntax tree structure as follows:

RWSL representation :: = statements

Statements :: = CSUCOOL statements specification statements

Specification statement:: = f variablesl formula

Formula:: = primitive formula I composite formula

Primitive formula:: = empty I stable (variable) I more I finite I inf ISkip

I Oexpression I expression = expression

expression < expression I expression > expression

P(expressions) I fin expression I variable := expression

function description I read (variable)

Composite formula formula A formula I formula V formula I --fiormula

I formula; formula I formuld

IV variables * formula 13 variables - formula

Oformula I Elformula I Oformula

halt formula I keep formula I fin formula I fstar formula

152

7.3. EMBEDDING INTERVAL TEMPORAL LOGIC IN LISP 153

7.3.2 ITL LISP Database

RA implements ITL as its specification part. Similar to CSL/COOL, based on the

syntax tree structure defined in the last section, ITL is internally represented as a syntax

tree and is expressed, in a LISP style, as a series of nested lists. This representation,

together with additional internal information, constructs the LISP Database of ITL.

In this section, we demonstrate the method to embed ITL specification in a LISP

database with an example. Consider the following ITL formula:

3X)Y- (X> Y*Y+62) A (OX-- Y+100)

The syntax tree of the above formula is shown in Figure 7.5.

EXISTSITL

VARIABLES

xy

x

62 x+

yy 100

Figure 7.5: Syntax Tree Form of ITL Exists Formula.

In the ITL database, two forms of the above syntax tree are used. The first one,

namely the intemalform, stores at each node additional information, such as its database

table. The internal form is the main structure of the ITL database, and is used to per-

form abstraction and transformation. The second form, namely the extemal form, is

7.3. EMBEDDING INTERVAL TEMPORAL LOGIC IN LISP

"LISP-like". It omits the extra information so that programs in this form can be exe-

cuted via a number of macro and function definitions. The external form is more easy

to understand and check as it is an abstract form of the ITL database. All specifications

extracted with RA are stored using an abstract data type which implements the first

form.
For the above example, its external form is as follows:

(EXISTS (X Y) (WEDGE (LARGEEXP X (+ (* Y Y) 62))

(NEXTF (EQUALEXP X (+ Y 100)))

And its internal form appears as follows:

NIL 6) NIL) (EXISTSITL FORMULA)

NIL 7) NIL) (VARIABLES VARIABLES)

((- NIL 8) (11 NIL) (VARIABLE VARIABLE X))

NIL 9) NIL) (VARIABLE VARIABLE Y)))

NIL 10) NIL) (WEDGE FORMULA)

NIL 11) NIL) (LARGEEXP FORMULA)

NIL 12) NIL) (VARIABLE EXPRESSION X))

NIL 13) NIL) (+ EXPRESSION)

NIL 14) NIL) (* EXPRESSION)

NIL 15) NIL) (VARIABLE EXPRESSION Y))

NIL 16) NIL) (VARIABLE EXPRESSION Y)))

NIL 17) NIL) (NUMBER EXPRESSION 62))))

NIL 18) (1 1 NIL) (NEXTF FORMULA)

NIL 19) (11 NIL) (EQUALEXP FORMULA)

((- NIL 20) (11 NIL) (VARIABLE VARIABLE X))

NIL 21) NIL) (+ EXPRESSION)

NIL 22) NIL) (VARIABLE EXPRESSION Y))

NIL 23) NIL) (NUMBER EXPRESSION 100)))))))

154

7.4. REALISATION OF ELEMENTARY ABSTRACTION RULES

7.3.3 Pretty Print Display

To facilitate further abstraction, re-design, re-specification and forward engineering,

ITL Specifications stored in the ITL LISP database are displayed in the user interface

window in an indented format with various fonts, which we call "pretty print". Com-

pared with CSUCOOL, ITL has special temporal logic symbols, such as 0, E], V, 3,

etc. We decided to use these symbols in RA because they make the specification more

concise and consistent to ITL. These symbols are represented with bitmaps and then

loaded into the interface window at precise location. Figure 7.6 is a sample display.

Figure 7.6: A Sample Pretty Print Display of ITL Specification in the User Interface.

7.4 Realisation of Elementary Abstraction Rules

7.4.1 Constructing the Catalogue

The Reengineering Assistant incorporates a large number of abstractions, which are

classified and built in different categories. Most generally, abstractions in RA fall into

two major groups: elementary abstractions andfurther abstractions. As stated in sec-

tion 6.6, elementary abstraction rules aim at abstracting CSL/COOL statements to for-

mulae in ITL, which is a specification. With further abstraction rules, logic composition

155

7.4. REALISATION OF ELEMENTARY ABSTRACTION RULES

and semantics weakening will be applied to abstract these formulae to extract a more

concise and abstract specification.

In this section, we focus on the implementation of elementary rules. Two relevant

categories of abstractions are built in RA, namely, primitive abstractions and compound

abstractions. The first category includes all the abstractions dealing with simple state-

ments in CSL/COOL, and the second category consists of abstractions about composite

statements.

The primitive abstraction category is divided into detailed abstractions depending

on the statements dealt with, which are assignment abstraction, type declaration ab-

straction, delay abstraction, input abstraction and output abstraction. The composite

abstraction category is also divided into detailed abstractions according to the state-

ments dealt with. The detailed abstractions includes the following:

e General control structure abstractions, including sequential composition, condi-

tional statement, iteration statements (while, for, etc.), Procedure invocation, and

external procedure invocation.

e Real-time structure abstractions, including parallel statement, signal statement,

and duration statement.

* Definition abstractions, including procedure definition, function definition, class

definition, method definition and hierarchy definition.

The user can select to work with any or all of these abstractions on the source code

program.

7.4.2 Inference Process

Once an abstraction category is selected, RA will test the applicability of all the ab-

stractions in this category. The valid abstractions will be returned and displayed as

156

sub-menu of the category in the interface. To do this, each abstraction needs to have

7.4. REALISATION OF ELEMENTARY ABSTRACTION RULES

its distinct "applicability condition" and have the condition coded. Here we define

abstraction applicability condition as follows:

An abstraction's applicability condition is the test which determines whether

the particular abstraction can be legitimately applied (i. e., suitable for the

program/sy stem's situation and liable for making progress in abstraction)

at the currently selected point in the program.

A pattern matching technique is used the in applicability test. Each abstraction is

applicable to certain program/system situations, which are represented as a "situation

pattern". If a situation pattern is identified as matching the current selected program,

then the related abstraction is considered feasible. Pattern matching is carried out with

LISP inference code and data from the LISP database of the current program.

If an abstraction is tested as applicable and then confirmed by the user, RA will

perform it as the "action" part of the inference rule. As the first step, basic informations

of the processed program segment are extracted from the CSL/COOL LISP database,

such as name of variables, expressions, sub-statements, etc. Then, with these basic

informations and inference action logic, RA constructs the new specification, which

is in ITL LISP database format. Each abstraction has its own inference action logic,

which is embedded in its LISP code.

Once the construction of the new specification finished, the ITL LISP database is

updated with the new value. And the new RWSL program, including the generated

specifications, is displayed in pretty print format.

During the whole abstraction process, the operation information, including error

message if any error happens, is echoed in the LISP operation window so that the user

could monitor the system's operation and make correct decisions.

Obviously, the LISP CSUCOOL database and ITL database play important roles

157

during the whole abstraction process.

7.4. REALISATION OF ELEMENTARY ABSTRACTION RULES 158

Examples Consider the delay statement as an example of primitive abstractions. Its

applicability test code is as follows:

(Defun Do-What-Abstr (Type)
(Cond

(Eq Type 'PRIMITIVE-ABSTRACTION)
(Eval (Expand_Trans-Patterns

'(Let ((Ok_Trans Nil))
(Cond

(([-Check?
-]

Statement (Delay (-? -))
(Setq Ok_Trans (Cons 'Delay-Statement Ok-Trans)))

(Funcall 'Print-Abstr Ok_Trans)))

And its inference action code is as follows:

(Defun Abstr_Delay-Stat (&Optional Data)
(Var ((Token Nil) (OP Nil) (Varlist Nil) (Result Nil))

(Setq Token Data)
(Setq OP

'(Var ((Table ([_Match_] Statement
(Delay (~>? - Tm)) Empty)))

If this item is abstracted to a specification statement,
then prepare its frame part:

(Cond
((Eq Token 'Sepa)

(Setq Varlist ([-Variables_] %Item%))
(Setq Table ([_Put_] Frame (Generate_Frame Varlist) Table))

(Setq Table ([-Put-] Con
'((_ NIL 0) NIL)

Table))

(Setq Table ([_Put_] Formu
([_Fill_In-] Formula

(EqualExp
Table)

Table)

(VARIABLE VARIABLE LEN))

(-<? - Con) (-<? - Tm))

;; Abstract to a specification statement or a formula:

(Cond

7.4. REALISATION OF ELEMENTARY ABSTRACTION RULES

((Eq Token 'Sepa)
(@Change-To ([-Fill_In_] Statement

(Specification (-<? - Frame) Formu)) Table)))
(Else)

(Setq Result ([_ýGet_] Formu Table))

(Eval (Expand-Trans-Patterns OP))
(Return-from Abstr_Delay-Stat Result)

For the compound abstractions, we use the "while iteration" statement as an exam-

ple. The applicability test code is as follows:

(Eq Type 'COMPOSITE-ABSTRACTION)
(Eval (Expand-Trans-Patterns

'(Let ((Ok_Trans Nil) (Sts Nil))
(Cond

(([_Check?
_]

Statement (While (-? -)
(Setq Ok-Trans (Cons 'While_Statement Ok_Trans)))

And the inference action code is as follows:

(Defun Abstr
-

While_Stat (&Optional Data)
(Var ((Token Nil) (OP Nil) (Varlist Nil) (Loop-Times Nil)

(Buf Nil) (Fm Nil) (Result Nil))
(Setq Token Data)
(Setq OP

'(Var ((Table ([-Match_] Statement
(While (->? - Cd) (->*- Sts)) Empty))

(Head (Car %Item%)))

;; Store the original value of current while statement
(Setq Buf %Item%)

If this item is abstracted to a specification statement,

then prepare its frame part:
(Cond

((Eq Token 'Sepa)
(Setq Varlist ([

-
Variables-] %Item%))

(Setq Table ([_Put_] Frame (Generate-Frame Varlist) Table))

159

7.4. REALISATION OF ELEMENTARY ABSTRACTION RULES

;; Transform the condition in CSL/COOL to a formula in ITL.
(@Down)
(Setq Table ([_Put_] CF (Cond_To_Formu) Table)
(@Up)

;; Recover the current while statement to the original value.
(@Change_To Buf)

;; Process the sub-statements one by one.
(Setq Loop-Times 'First)
(@When 0((And ([--ýG-Type?

-]
Statement) (Not (Eq (car %Item%) Head)

(Setq Fm (Abstr_Stats))
(Cond ((not (Equalp Fm 'Ignore))

(Setq Table ([_Put_] Formul Fm Table)
(Cond ((Eq Loop_Times 'First)

(Setq Table ([_Put_] Formu2 ([_Get_] Formul Table) Table))
(Setq Loop-Times 'Second))

((Eq Loop_Times 'Second)
(Setq Table ([-Put_] Formu2 (List ([_Get_] Formu2 Table)

([_Get_] Formul Table)) Table))
(Setq Loop-Times 'Many)
((Eq Loop_Times 'Many)

(Setq Table ([_Put_] Formu2 (Append ([_Get_] Formu2 Table)
(List ([_Get_] Formul Table))) Table)))

(Cond ((Eq Loop_Times 'Many)
(Setq Table ([_Put_] Formu3

([_Fill_In_] Formula
(Chop ((-<*- Formu2)))
Table)

Table))

(Else)
(Setq Table ([_Put_] Formu3

([_Get_] Formu2 Table)
Table))

(Setq Table ([_Put_] Formu
([_Fill_In_l

(Iteration
Table)

Table))

Formula
(Wedge (-<? - CF) Formu3))

;; Abstract to a specification statement or a formula:

(Cond
(Eq Token 'Sepa)
Whange-To H-Fill-In-] Statement

160

7.5. REALISATION OF FURTHER ABSTRACTION RULES

(Specification (-<? - Frame) Formu)) TableM
(Else)
(Setq Result ([-Get-] Formu TableM

(Eval (Expand
-

Trans-Patterns OP))
(Return-from Abstr-While-Stat Result)

7.5 Realisation of Further Abstraction Rules

7.5.1 Abstraction Patterns

Abstraction patterns are introduced as a means of acquiring observations of the legacy

system identified by software engineers. Abstraction patterns are classified into various

groups according to abstraction situations, which have been discussed in section 6.7.

These observations are then embedded in RWSL representation as abstraction pattern

assertions.

RA adopts the following two-step process of using abstraction patterns.

1. Identifying Abstraction Patterns. This step lets the user express his observations

about the current abstraction situation. Based on the diversity of abstraction situa- au

tions and relevant further abstraction rules, RA includes the following abstraction

patterns:

* State Test and Exception Handling

9 User Interface Format

9 Semantic Core

* Concise Specification

o Trivial Elements

161

e Domain Function

7.5. REALISATION OF FURTHER ABSTRACTION RULES

9 Efficiency -Improving Details

Each abstraction pattern category may be classified further into sub abstraction

patterns, for example, "State Test and Exception Handling" includes several sub

patterns, namely, state test and exception handling branch, state test and excep-

tion handling loop, state test and exception handling component, state test and

exception handling expression, state test and exception handling variable. And

"Domain Function" includes regular domain function and irregular domain func-

tion as its sub abstraction patterns.

2. Commitment of Abstraction Patterns. This step performs further abstractions

according to the identified abstraction patterns. This process is carried out auto-

matically, no user intervention is needed.

7.5.2 Constructing the Catalogue

Each instance of abstraction rules is implemented as a distinct abstraction. Further ab-

stractions help in extracting more high-level specifications from the preliminary spec-

ifications obtained directly from the elementary abstractions. Based on the further ab-

straction rules discussed in section 6.7, further abstractions in RA are classified into the

following categories:

9 State Test and Exception Handling. This category abstracts away the identified

state test and exception handling details.

* User Interface Format. This category abstracts away the identified user interface

format details.

* Semantic Core. This category abstracts the specification to the identified seman-

tic core.

Concise Specification. This category abstracts the specification to the identified

concise specification.

162

7.5. REALISATION OF FURTHER ABSTRACTION RULES 163

9 Trivial Elements. This category abstracts away the identified trivial elements
details.

9 Domain Function. This category abstracts the specification by introducing the

domain function.

Efficiency-Improving Details. This category abstracts away the identified efficiency-

improving details.

9 Sequence Folding. This category changes sequential composition to conjunctive

relations.

Specification Combination. This category combines two separate ITL specifica-

tions into one specification. It includes two sub categories, namely, conjunctive

combination and disjunctive combination.

9 Comment Revision. This category revises comments to keep it consistent with

new specifications.

7.5.3 Inference Process

Once an further abstraction category is selected, similar to elementary abstractions, RA

will test the applicability of all the sub further abstractions in this category. The valid

abstractions will be returned and displayed as sub-menu of the category in the interface.

To do this, each abstraction needs to have its distinct "applicability condition" and have

the condition coded. For example, to apply the sequence folding abstraction, there must

be at least one sequential composition in the current system representation.

If an abstraction is tested as applicable and then confirmed by the user, RA will

perform it as the "action" part of the inference rule. Different from elementary abstrac-

tions, in further abstractions RA will extract necessary information about user observa-

tions from abstraction pattern assertions, or under extreme situations, popup dialogue

7.5. REALISATION OF FURTHER ABSTRACTION RULES

windows to acquire this kind of information. Basic information, such as system struc-

ture, variable names, etc., will be extracted by pattern matching from the RWSL system

representation automatically.

For example, when using domain function abstraction, although the domain func-

tion's position and the category of abstraction pattern could be decided by RA atomi-

cally, the details of the domain function need to be acquired as user observation from

the corresponding abstraction pattern assertion, which was embedded in RWSL when

the pattern was identified.

In the next step, with the automatically extracted basic informations, the user obser-

vations and built-in inference action logic, RA constructs the new specification, which

is in ITL LISP database format. Each abstraction has its own inference action logic,

which is embedded in its LISP code.

Once the construction of the new specification finished, the ITL LISP database is

updated with the new value. And the new RWSL program, including the generated

specifications, is displayed in pretty print format.

During the whole abstraction process, the operation information, including error

message if any error happens, is echoed in the LISP operation window so that the user

could monitor the system's operation and make correct decisions.

The ITL database plays important roles in further abstraction processes, but the

CSL/COOL LISP database is rarely used.

Examples Consider the introduction of abstraction pattern "Regular Domain Func-

tion". RA will first check the feasibility of introducing a domain function at the current

representation position, where the item should be a formula, a specification or an ab-

stracted component in ITL. If it is feasible, then acquire the domain function's name

and parameters through interaction with the software engineer. Then, construct the in-

ternal LISP form of the abstraction pattern. In the last step, insert the abstraction pattern

at the selected position, that is, the first place before the current specification statement.

164

The corresponding LISP code is as follows. Please note that the interaction part in

7.5. REALISATION OF FURTHER ABSTRACTION RULES

C is not listed.

(Defun Abstr_Regular_Domain_Function (Data)
(Var ((NPlist Data) (OP Nil) (Pname Nil) (Contents Nil)

(Psn2 Nil) (AbsPattern Nil) (NTop True) (Feasible
(ExtPn Nil) (IntPn Nil) (ExtPl Nil) (IntPl Nil)
(V Nil) (IV) (Int-Var) (Dfunction Nil))

(Setq OP
I(Var ((Table Nil))

(Psnl Nil)
Ni 1)

Check the feasibility of introducing the Domain Function
abstraction pattern

(Cond (([-G-Type?
-]

Formula)
(Setq Feasible True)

([-Check?
_]

Statement (Abstracted-Agent
(Setq Feasible True)

([_Check?
_]

Statement (Specification
(Setq Feasible True)

(Else)

(Showln "Wrong situation, impossible to introduce a
Domain Function abstraction pattern assertion.
The current object should be a variable, an
expression, a condition branch, a loop or
a component. ")

(return-from Abstr_Domain_Function Nil)

prepare the abstraction pattern's name in internal format:
(Setq Pname (List 'NAME 'NAME 'Domain_Function))
(Setq Pname (List '(NIL 0) '(11 NIL) Pname))

prepare the abstraction pattern's contents in internal format:

(Setq Contents %Item%)

prepare the function name in internal format:

(Setq V (Car NPlist))
(Setq ExtPn (List 'NAME 'NAME V))
(Setq IntPn (List '(NIL 0) 1(11 NIL) ExtPn))

(Setq Table ([-Put-] Pname IntPn Table))

prepare the parameter list in internal format:

(Setq ExtPl (Cdr NPlist))
(Dolist

(V ExtPl)
(Setq IV (List 'VARIABLE 'VARIABLE V))

(Setq Int
-

Var (List 1(_ NIL 0) '(11 NIL) IV))

(Setq IntPl (Append IntPl (List Int-Var)))

165

7.5. REALISATION OF FURTHER ABSTRACTION RULES

(Setq Table ([-Put_] Plist IntPl Table))

prepare the domain function, save it in Dfunction:
(Setq Dfunction ([_Fill_In_] Formula

(FuncITL (-<? - Pname) Plist))) Table)

insert the abstraction pattern assertion just ahead of the
beginning of the current specification or abstracted agent
statement:
(Setq PsnI %Posn%)
(Loop

(Setq Psn2 %Posn%)
(Cond ((Or ([_Check?

_]
Statement (Abstracted

I
Agent

([_Check?
_]

Statement (Specification
(Setq Feasible True)
(return 'NTop))

((And (Else) (Not (Eq NTop Nil)))
(Setq NTop (@Up))

((And (Else) (Eq NTop Nil))
(Setq Feasible Nil)
(Showln "Wrong position, impossible to introduce an

abstraction pattern assertion. ")

(return 'NTop)

(Cond (Feasible
(Setq AbsPattern (List '(_ NIL 0) '(11 NIL) '(ABSTRPATTERN

STATEMENT) Pname Dfunction Contents))

(Showln AbsPattern)
(@Ins-Before AbsPattern)
(@Goto Psnl)

166

(Eval (Expand_Trans_Patterns OPH

Chapter 8

Case Studies

8.1 Introduction

Case studies have been experimented with the proposed approach and resulting pro-

totype. Various legacy systems are considered, from sequential non-time system to

real-time systems with parallelism and communication.

The lexical scanner system aims at testing the approach and tool's ability in dealing

with sequential non-time system. The robot control system is a multiple-process ap-

plication. The purpose of the task farming system is to demonstrate how the approach

and tool deal with concurrency/parallel and communication. At the last section, a mine

drainage system is used to demonstrate the real-time ability of the approach.

8.2 Lexical Scanner

8.2.1 Background

This case study demonstrates the application of the proposed approach to a common

sequential non-timed system. The legacy system is a lexical scanner implemented in

PASCAL [140]. Before processing it, we assume that the software engineer does not

know the system's structure and function details at all. What available to him/her is

8.2. LEXICAL SCANNER

only the system's source code, which is given in the appendix.

8.2.2 Extracting the Specification

The PASCAL source code is first translated into RWSL, that is, CSL. The resultant

code is given in the appendix.

We choose part of the lexical system for detailed discussion, namely, procedure

initialise and scanreal. The extracted specification of the whole system is given in the

appendix.

Module: initialise

The translated CSL code of procedure initialise is as follows:

proc initialise(Out linebuffer: linebufrec)

int: i;

linebuffer. echo := true;
linebuffenlineerror := false;
linebuffer. linecount :=0;

for i :=0 to maxcharsperline do
linebuffer. line [i] :=";
linebuffer. errorline[i] := ermone

od;

linebuffer. errorset := [];
linebuffer. fileerror false;
linebuffer. endoffile false;
linebuffer. endofline true;
linebuffer. pnum :=0

1;

There are two 0-leveled data items: linebuffer and token. initialise is a component

at level 1. i is the only local data item of procedure initialise; therefore, one goal of the

abstraction process is to hide i because it is implementation detail.

168

8.2. LEXICAL SCANNER 169

We start by isolating the effect of i:

proc initialise(Out linebuffer: linebufrec)

int: i;

linebuffer. echo: = true;
linebuffenlineerror: = false;
linebuffer. linecount: = 0; 11
for i: = 0 to maxcharsperline do

linebuffer. line [i] :=' '-9 11
linebuffer. errorline[il := ermone

od;
linebuffer. errorset: =
linebuffer. fileerror: = false;
linebuffer. endoffile: = false;
linebuffer. endofline: = true;
linebuffer. pnum :=0

ffl :i :=0;
(line[i] : =' ' /\
errorline[i] :- errnone;
i :=i+1
) maxcharperline

Here we abstract the possible sequential composition inside the for-loop away by

replacing it byA (parallel composition).

We then record its effect by defining an auxiliary procedure/predicate initline at

level I and eliminate all references to i in the program:

proc initialise(var linebuffer: linebufrec);

int: i;

linebuffer. echo: = true;
linebuffenlineerror: = false;
linebuffer. linecount: = 0; 11

initline(Out linebuffer. line,;
linebuffer. errorline)

linebuffer. errorset: = []; 11
linebuffer. fileerror: = false;
linebuffer. endoffile: = false;
linebuffer. endofline: = true;
linebuffer. pnum :=0

initline(line, errorline) A
f il :i :-0; (line[i] : =' 'A errorline[i] :- erronone;

i :=i+ 1)maxcharperline

8.2. LEXICAL SCANNER

end
end;

Let 0 represent an empty set, the final specification is as follows:

170

initfine(line, errorfine) `ý fil : i: = 0; (line[i] : =' 'A errorline[i] := erronone; i :-i+ I)maxcharperline
initialise(linebuffer) >- f linebufferl :

linebuffer. echo := true A linebuffe r. line rro r : =false A linebuffer. linecount :=0;
initline(linebuffer. line, linebuffer. errorline);
linebuffer. errorset :=0A linebufferfileerror : =false A linebuffer. endoffile : --jalseA
linebuffer. endofline := true A linebuffer. pnum :=0

Module: scanreal

The translated CSL code of procedure initialise is as follows:

comment: 91 scan a real number with/without exponent";

proc scanreal(Out linebuffer: linebufrec; token: tokenrec)

int: expo;
real: fac;
int: i;
boolean: negexp;
int: nexpo;
real: r;
int: scale;
real: x;

if debug then !p writeln('scanning real number') fi;

token. class: = realconstant;

comment: "do integer part, overflow assumed impossible";

x: = 0.0;
expo: = 0;
for i: = linebuffer-pint to linebuffer. charptr-I do

x=x* 10. O+ord(linebuffer. line [i])-ord('O')

od;

nexpo := linebuffer. charptr-linebuffer. pint;

scale :=0;
if linebuffer. ch ='. ' then

8.2. LEXICAL SCANNER

getnextchar(Out linebuffer);
linebuffer. pfrac := linebuffer. charptr;
if numeric(linebuffer. ch) then

while (numeric(linebuffer. ch)) do
scale: =scale-1;
x: =x*10.0+ord(ch)-ord('O');
getnextchar(Out linebuffer)

od
else puterror(In ermodigit, linebuffer)
ti;
comment: "check if we must find first nonzero digit";
if nexpo=O then

i: = linebuffer. pfrac;
while linebuffer. line [i] = '0' do i: =i+l od;
nexpo := linebuffer. pfrac-i

fi
fi; comment "fractional ch='. "';

comment: "do we have an exponent? ";
if ch='e' then

negexp := false;
getnextchar(Out linebuffer);
if ch='-' then

negexp: =true;
getnextchar(Out linebuffer)

else if ch='+' then getnextchar(Out linebuffer) fi
fi;

comment "build exponent";
if numeric(linebuffer. ch) then

while numeric(linebuffer. ch) do
expo: = expo*10+ ord(ch)-ord('O');
getnextchar(linebuffer)

od;

comment: "adjust scale and nexpo";
if negexp then

scale: = scale-expo;
nexpo: = scale-expo

else
scale: = scale+expo;
nexpo: = scale+expo

fi
else puterror(In errexpochar, linebuffer)
fi; comment "process numeric"
comment "exponent"

171

8.2. LEXICAL SCANNER

comment: "compute 10**scale using right to left binary method";
if abs(nexpo)<maxexponent then

if scale<>O then
r: =
negexp: = scale<O;
scale: = abs(scale);
fac: = 10.0;
while scale< >0 do

if odd(scale) then r: =r*fac;
fac: =sqr(fac);
scale: = scale div 2

od;
if negexp then realvalue: = x/r
else realvalue: = x*r
fi

else realvalue: =x fi
else puterror(In errexposize, linebuffer)
fi

1;

scanreal takes linebuffer and token as global variables (level 0), and expo, fac, i,

negexp, nexpo, r, scale and x as local variables which we will try to hide. Since the

procedure is somewhat long, stepwise abstraction is used. We will first divide it into

several sections and deal with them separately, and then combine the results into one

complete specification. The section division is normally equal to program blocks be-

cause a block is normally a functional unit in a structured program. As an advantage of

a wide spectrum language, specification and code could appear together in the system

representation.

The variable declaration part and debug mode test part are abstracted to specifica-

tion first:

comment: " scan a real number with/without exponent";

proc scanreal(Out linebuffer: linebufrec; token: tokenrec)
f

expo, fac, i, negexp, nexpo, r, scale, x- int (expo) A real (fac) A int (i) A
boolean(negexp) A int(nexpo) A real(r) A int(scale) A real(x) A

172

debug A writeln (/scanning real number') A

8.2. LEXICAL SCANNER

token. class := realconstant;

comment: "do integer part, overflow assumed impossible";
x: = 0.0;
expo: = 0;
for i: = linebuffer. pint to linebuffer. charptr-I do

x=x* 10.0+ord(linebuffer. line [i])-ord('O')
od;

nexpo := linebuffer. charptr-linebuffer. pint;
scale :=0;
if linebuffer. ch ='. ' then

getnextchar(Out linebuffer);
linebuffer. pfrac := linebuffer. charptr;
if numeric(linebuffer. ch) then

while (numeric(linebuffer. ch)) do
scale: =scale-1;
x: =x*10.0+ord(ch)-ord('O');
getnextchar(Out linebuffer)

od
else puterror(In ermodigit, linebuffer)
fi;
comment: "check if we must find first nonzero digit";

if nexpo=O then
i: = linebuffer. pfrac;
while linebuffer. line [i] = '0' do i: =i+l od;
nexpo := linebuffer. pfrac-i

fi
fi; comment "fractional ch='. "';

comment: "do we have an exponent? ";

if ch='e' then
negexp := false;
getnextchar(Out linebuffer);
if ch='-' then

negexp: =true;
getnextchar(Out linebuffer)

else if ch='+' then getnextchar(Out linebuffer) fi
fi;

comment "build exponent";
if numeric(linebuffer. ch) then

while numeric(linebuffer. ch) do

expo: = expo*10+ ord(ch)-ord('O');
getnextchar(linebuffer)

od;

173

8.2. LEXICAL SCANNER 174

comment: "adjust scale and nexpo";
if negexp then

scale: = scale-expo;
nexpo: = scale-expo

else
scale: = scale+expo;
nexpo: = scale+expo

fi
else puterror(In errexpochar, linebuffer)
fi; comment "Process numeric"

fi; comment "exponent"

comment: 99compute 10**scale using right to left binary method";
if abs(nexpo)<maxexponent then

if scale<> 0 then
r: =
negexp: = scale<O;
scale: = abs(scale);
fac: = 10.0;
while scale<>O do

if odd(scale) then r: =r*fac;
fac: =sqr(fac);
scale: = scale div 2

od;
if negexp then realvalue: = x/r
else realvalue: = x*r
fi

else realvalue: =x fi
else puterror(In errexposize, linebuffer)
fi

1;

In this case, we abstract variable type information into a specific function var-declare

and only present the function in the high level specification, leaving the variable type

details in a lower level specification for possible retrieval when needed. Obviously, de-

bug message is purely for implementation. Therefore, these parts are abstracted away.

The result is as follows:

comment: " scan a real number with/without exponent";

var-declare(expo, fac, i, negexp, nexpo, r, scale, x) =
I expo, fac, i, negexp, nexpo, r, scale, x- int(expo) A real(fac) A int(i)
Aboolean(negexp) A int(nexpo) A real(r) A int(scale) A real(x)

8.2. LEXICAL SCANNER

proc scanreal(Out linebuffer: linebufrec; token: tokenrec)
I

var-declare (expo, fac, i, negexp, nexpo, r, scale, x)
token. class := realconstant;

comment: "do integer part, overflow assumed impossible";
x: = 0.0;
expo: = 0;
for i: = linebuffer. pint to linebuffer. charptr-I do

x=x* I 0.0+ord(linebuffer. line [i] -ord('O')
od;

nexpo := linebuffer. charptr-linebuffer. pint;
scale :=0;
if linebuffer. ch ='. ' then

getnextchar(Out linebuffer);
linebuffer. pfrac := linebuffer. charptr;
if numeric(linebuffer. ch) then

while (numeric(linebuffer. ch)) do
scale: =scale-1;
x: =x*10.0+ord(ch)-ord('O');
getnextchar(Out linebuffer)

od
else puterror(In ermodigit, linebuffer)
fi;
comment: "check if we must find first nonzero digit";
if nexpo=O then

i: = linebuffer. pfrac;
while linebuffer. line [i] = '0' do i: =i+l od;
nexpo := linebuffer. pfrac-i

fi
fi; comment "fractional ch='. "';

comment: "do we have an exponent? ";
if ch='e' then

negexp := false;
getnextchar(Out linebuffer);
if ch='-' then

negexp: =true;
getnextchar(Out linebuffer)

else if ch='+' then getnextchar(Out linebuffer) fi

fi;

comment "build exponent";
if numeric(linebuffer. ch) then

while numeric(linebuffer. ch) do

175

8.2. LEXICAL SCANNER

expo: = expo* 10+ ord(ch)-ord('0');
getnextchar(linebuffer)

od;

comment: "adjust scale and nexpo";
if negexp then

scale: = scale-expo;
nexpo: = scale-expo

else
scale: = scale+expo;
nexpo: = scale+expo

fi
else puterror(In errexpochar, linebuffer)
fi; comment "process numeric"
comment "exponent"

comment: "compute 10**scale using right to left binary method";
if abs(nexpo)<maxexponent then

if scale<> 0 then
1.0;

negexp: = scale<O;
scale: = abs(scale);
fac: = 10.0;
while scale<> 0 do

if odd(scale) then r: =r*fac;
fac: =sqr(fac);
scale: = scale div 2

od;
if negexp then realvalue: = x/r
else realvalue: = x*r
fi

else realvalue: =x fi

else puterror(In errexposize, linebuffer)
fi

1;

Then we process the next block and find nothing to abstract away at this moment

only change possible chop operators to logic conjunctions:

comment: 1ý scan a real number with/without exponent";

proc scanreal(Out linebuffer: linebufrec; token: tokenrec)
f

var-declare(expo, fac, i, negexp, nexpo, r, scale, x) A

token. class : == realconstant;

176

8.2. LEXICAL SCANNER

comment: "do integer part, overflow assumed impossible";

x: =0.0 A expo :=0Ai: = linebuffer. pint;
W. pint- I. (x: - xx 10.0 + ord(linebuffer. line [i]) - ord('O') Ai :=i+ j)1inebq&r. charptr-Iinebuff

nexpo := linebuffer. charptr-linebuffer. pint;
scale :=0;
if linebuffer. ch ='. ' then

getnextchar(Out linebuffer);
linebuffer. pfrac := linebuffer. charptr;
if numeric(linebuffer. ch) then

while (numeric(linebuffer. ch)) do
scale: =scale-1;
x: =x* I 0.0+ord(ch)-ord('O');
getnextchar(Out linebuffer)

od
else puterror(In ermodigit, linebuffer)
fi;
comment: "check if we must find first nonzero digit";
if nexpo=O then

i: = linebuffer. pfrac;
while linebuffer. line [i] = '0' do i: =i+l od;
nexpo := linebuffer. pfrac-i

fi
fi; comment "fractional ch='. "';

comment: "do we have an exponent? ";
if ch='e' then

negexp := false;
getnextchar(Out linebuffer);
if ch='-' then

negexp: =true;
getnextchar(Out linebuffer)

else if ch='+' then getnextchar(Out linebuffer) fi
fi;

comment "build exponent";
if numeric(linebuffer. ch) then

while numeric(linebuffer. ch) do

expo: = expo*10+ ord(ch)-ord('O');
getnextchar(linebuffer)

od;

comment: ý9 adjust scale and nexpo";
if negexp then

scale: = scale-expo;
nexpo: = scale-expo

177

8.2. LEXICAL SCANNER 178

else
scale: = scale+expo;
nexpo: = scale+expo

fi
else puterror(In errexpochar, linebuffer)
fi; comment "process numeric"

fi; comment "exponent"

comment: "compute 10**scale using right to left binary method";
if abs(nexpo)<maxexponent then

if scale<> 0 then
r: =
negexp: = scale<O;
scale: = abs(scale);
fac: = 10.0;
while scale< >0 do

if odd(scale) then r: =r*fac;
fac: =sqr(fac);
scale: = scale div 2

od;
if negexp then realvalue: = x/r
else realvalue: = x*r
fi

else realvalue: =x fi
else puterror(In errexposize, linebuffer)
fi

1;

Then we apply domain knowledge, knowing the section processes "integer" part of

the float number, so define it as a domain function to block its details from upper level.

To save space, meanwhile we process next block, changing statements into formulae:

comment: " scan a real number with/without exponent";

A
dealInteger(linebuffer, x, expo) = fil : x: = 0.0 A expo :=0Ai := linebuffer. pint;

�7ý? r. charptr-linebqffer. pint- 1 (x xx 10.0 + ord(linebuffer. line [i]) - ord(V) Aii+ 1) linebul

proc scanreal(Out linebuffer: linebufrec; token: tokenrec)

var-declare(expo, fac, negexp, nexpol r, scale, x)A
token. class := realconstant;

comment: "do integer part, overflow assumed impossible";
dealInteger(linebuffer, x, expo);

8.2. LEXICAL SCANNER

nexpo : -- linebuffer. charptr - linebuffer. pint; scale :=0;
linebuffer-ch =' .'A

(getnextchar(linebuffer); linebuffer. pfrac := linebuffer. charptr;
(numeric (linebuffer. ch) = trueA
(numeric (linebuffer. ch) A (scale := scale - 1; x :=xx 10.0 + ord(ch) - ord('O');
getnextchar(linebuffer))) *
V (numefic(ch) =false A puterror(errnodigit, linebuffer)));
nexpo =0A (i := linebuffer. frac; (linebuffer. line [i] --' 0' Ai :=i+ 1)*;
nexpo := linebuffer. pfrac - i));

comment: "do we have an exponent? ";
if ch='e' then

negexp := false;
getnextchar(Out linebuffer);
if ch='-' then

negexp: =true;
getnextchar(Out linebuffer)

else if ch='+' then getnextchar(Out linebuffer) fi
fi;

comment "build exponent";
if numenc(linebuffer. ch) then

while numeric(linebuffer. ch) do
expo: = expo*10+ ord(ch)-ord('O');
getnextchar(linebuffer)

od;

comment: "adjust scale and nexpo";
if negexp then

scale: = scale-expo;
nexpo: = scale-expo

else
scale: = scale+expo;
nexpo: = scale+expo

fi
else puterror(In errexpochar, linebuffer)
fi; comment "process numeric"

fi; comment "exponent"

comment: 99compute 10**scale using right to left binary method";
if abs(nexpo)<maxexponent then

if scale<>O then
r: =
negexp: = scale<O;
scale: = abs(scale);
fac: = 10.0;
while scale<> 0 do

179

8.2. LEXICAL SCANNER

if odd(scale) then r: =r*fac;
fac: =sqr(fac);
scale: = scale div 2

od;
if negexp then realvalue: = x/r
else realvalue: = x*r
fi

else realvalue: =x fi
else puterror(In errexposize, linebuffer)
fi

1;

Using state test and error handling pattern, we abstract away puterror branch; with

domain knowledge, we know this block deals with "fractional" part of the float number,

similarly, we block its details by defining a domain function:

comment: " scan a real number with/without exponent";

A
dealFraction (linebuffer, nexpo , scale , x) = nexpo linebuffer. charptr - linebuffer. pint A scale 0;

linebuffer. ch =' .'A
(getnextchar(linebuffer) A linebuffer. pfrac := linebuffer. charptr;

(numeric (linebuffer. ch) = trueA
(numeric (linebuffer. ch) A (scale scale -1Axxx 10.0 + ord(ch) - ord(' 0') A

getnextchar(linebuffer))) *;

nexpo 0A (i := linebuffer. frac; (linebuffer. line [i] =' 0' Aii+ 1)

nexpo linebuffer. pfrac - i));

proc scanreal(Out linebuffer: linebufrec; token: tokenrec)
f

var-declare (expo, fac, i, negexp, nexpo, r, scale, x) A
token. class :- realconstant;

comment: "do integer part, overflow assumed impossible";
dealInteger(linebuffer, x, expo);

dealFraction(linebuffer, nexpo, scale, x);

comment: "do we have an exponent? ";

if ch='e' then
negexp := false;

getnextchar(Out linebuffer);
if ch='-' then

negexp: =true;
getnextchar(Out linebuffer)

else if ch='+' then getnextchar(Out linebuffer) fi

180

8.2. LEXICAL SCANNER 181

fi;

comment "build exponent";
if numeric(linebuffer. ch) then

while numeric(ch) do
expo: = expo*10+ ord(ch)-ord('O');
getnextchar(linebuffer)

od;

comment: "adjust scale and nexpo";
if negexp then

scale: = scale-expo;
nexpo: = scale-expo

else
scale: = scale+expo;
nexpo: = scale+expo

fi
else puterror(In errexpochar, linebuffer)
fi; comment "process numeric"

fi; comment "exponent"

comment: "compute 10**scale using right to left binary method";
if abs(nexpo)<maxexponent then

if scale< >0 then
r: = 1.0;
negexp: = scale<O;
scale: = abs(scale);
fac: = 10.0;
while scale< >0 do

if odd(scale) then r: =r*fac;
fac: =sqr(fac);
scale: = scale div 2

od;
if negexp then realvalue: = x/r
else realvalue: = x*r
fi

else realvalue: =x fi

else puterror(In errexposize, linebuffer)
fi

1;

The last part of scanreal is divided into two sections, which are abstracted into

two separate procedures dealExponent and CalcuReal. Local variables i is hidden in

procedure dealInteger, expo in dealExponent, and r, fac in calcuReal, because they are

only used in the corresponding procedure. And the relevant variable type information

8.2. LEXICAL SCANNER 182

in iur-declare should also be distributed to the procedures where the variables are used.

The result is as follows:

comment: " scan a real number with/without exponent";

A
dealExponetit(linebuffer, nexpo, negexp, scale) =

f expol : linebuffer. ch =' el A (negexp : =false A getnextchar(linebuffer);
(linebuffer. ch -' -' A (negexp := true A getnextchar(linebuffer)))
V(linebuffer. ch =' +' A getnextchar(linebuffer));
numeric (linebuffe r. ch) A (numeric (linebuffer. ch) A (expo := expo x 10 + ord(ch) - ord('O');
getnextchar(linebuffer)))*;
(negexp A (scale := scale - expo A nexpo := scale - expo))
V(-, negexp A (scale := scale + expo A nexpo := scale - expo)));

A
calcuReal (token, scale, nexpo, negexp, x) = fr, facl : abs(nexpo) <= maxexponent A (scale<> OA

(r :=1.0 A negexp := scale <0A scale := abs (scale) A fac := 10.0;
(scale <> 0A (odd(scale) Ar :=r *Jac; fac := sqr(fac); scale := scalel2))*;
(negexp A realvalue := x1r) V (-, negexp A realvalue : == xx r))
V (scale =0A realvalue = x)) V (abs(nexpo) > maxexponent A puterror(errexposize, linebuffer))

proc scanreal(Out linebuffer: linebufrec; token: tokenrec)
I

var-declare (negexp, nexpo, scale, x) A
token. class := realconstant;

comment: "do integer part, overflow assumed impossible";
dealInteger(linebuffer, x, expo);

dealFraction(linebuffer, nexpo, scale, x);

comment: "do we have an exponent? ";
dealExponent(linebuffer, nexpo, scale);

comment: Iýcompute 10**scale using right to left binary method";

calcuReal(token, scale, x)

1;

In the last step, we abstract main procedure scanreal into specification:

comment: " scan a real number with/without exponentil;

scanreal(linebuffer, token) Af negexp, nexpo, scale, xj

8.3. ROBOT CONTROL SYSTEM

var-declare(negexp, nexpo, scale, x) A token. class :- realconstant;
dealInteger(linebuffer, x, expo) ; dealFraction(linebuffer, nexpo, scale, x);
dealExponent(linebuffer, nexpo, scale) ; calcuReal (token, scale, x)

From the final specification, it is easy to see that the function of scanreal is to scan

a real number with or without exponent and fraction. scanreal processes the integer

part first, then the fractional part (if there is any), and then the exponent part (if there is

any). In the last step, scanreal puts the three part together to form a real number. The

details of relevant procedures are not present in the high level specification, as these

procedures are treated as domain functions. In case that these details are needed, the

software engineer can retrieve them at the lower level specification.

8.2.3 Summary

The lexical scanner is a typical sequential non-time software. The point of this case

study is to decompose large procedures (monolithic) into reasonable sections and ab-

stract them separately. This would improve the understandability of the system and the

clarity of the extracted specification efficiently.

8.3 Robot Control System

8.3.1 Background

This case study is a multiple-process application [37]. The tele-operated robot is a

tracked device which was originally developed for military use. It is driven by two

motors, left and right. Both of these motors can move forwards and backwards. The

robot is steered by moving one motor faster than the other.

From a control point of view, commands are issued to the motors via an operator

joystick which issues integer values in the range 0... 127 for forward motion (127 max.

speed) and 0., 128 for reverse motion. It is possible to drive only one motor at a time,

in such a case the robot will turn. The speed of the motors is directly proportional to

183

8.3. ROBOT CONTROL SYSTEM

the value written to them.

The robot is equipped with 8 infra red sensors. These return an integer value in the

range 0 ... 255 depending on whether an obstacle is present or not. 0 indicates no obsta-

cle, 255 indicates obstacle very near. The robot is operated normally with a threshold of

around 100, above which the robot takes notice of the sensor readings, i. e., an obstacles

of interest. At this point reactive control takes over from the manual control by moving

the robot away from the obstacle until the 100 threshold is not set. The sensor positions

are as follows: N, NE, E, SE, S, SW, W and NW, covering the body of the robot and

shown in Figure 8.1.

NW

L

w

N

R

NE

Po0

LR
000
123

Operator Console

sw S
ROBOT

Figure 8.1: The Robot Control System

SE

8.3.2 Extracting the Specification

CSL program translated from C code The robot control system was implemented

in C. In order to extract a system specification of the robot control system, we first

184

translate its source code into CSL as the basis for abstraction.

8.3. ROBOT CONTROL SYSTEM

proc move(In left-op: int, right-op: int)

send- left- motor(left- op);
send -right- motor(ri ght- op);
I

proc motor-control()

while true do
if(ir-active=l)
then move(left-ir-cmd, right-ir-cmd)
else if(operator- active= I)

then move(left-op-cmd, right-op-cmd)
fi

fi
od

proc operatoro

while true do
if((Ieft-op-cmd <> Ileft-op-cmd) & (right-op-cmd <> Iright-op-cmd))
then operator-active 1
else operator-active 0
fi;
Ileft-op-cmd: = left-op-cmd;
Iright-op-cmd: = right-op-cmd;

od

proc iro
f

int: i, count;
while true do

count: = 0;
left-ir-cmd: = 0; right-ir-cmd: = 0;
ir-active :=0; 1: =O;
while (1<8) do

if (ir-counts(i) > 100)
then

left-ir-cmd: = left- ir-cmd+motor- values[il [01;
right-ir-cmd: = right- ir-cmd+motor- values[i] [I];

count++
fi;
i: =i+l

od
if (count>O) then ir-active :=I fi;

od
I

proc maino
f

int: left-ir-cmd, right-ir-cmd;

185

8.3. ROBOT CONTROL SYSTEM

int: left-op-cmd, right-op-cmd;
int: Ileft-op-cmd, Inght-op-cmd;
int: ir-active, operator- active;
int: motor- values[8][21;

left-ir-cmd: =0; right-ir-cmd: =0;
left-op-cmd: =0; right-op-cmd: =0;
Ileft-op-cmd: =0; Iright-op-cmd: =0;
ir-active: =0; operator-active: =0;
motor-values[8] [21-={f -20, -201, f -20,01, t-20,201,

t0,201,120,201,120,01, ý20, -201, f 0, -2011;

parbegin
motor-control()Il iroll operatoro

parend;

System Specification in ITL At the first step, elementary abstraction rules are ap-

plied to each procedure in the program. Because the procedures are small enough, no

section decomposition will be conducted. The result is as follows:

move(left-op, right-op) >- send- left-motor (left-op) A send- right-motor (right- op)

motor-control() >- ((ir-active =1A move (left- ir-cmd, right-ir-cmd))
V(ir-active 7ý 1A operater-active =1A move (left- op- cmd, right- op-cmd)))

operatoro >- f left-op-cmd, lleft-op-cmd, right-op-cmd, lright-op-cmd, operator- active
((left-op-cmd 7ý lleft-op-cmd A right-op-cmd : A: lright-op-cmd A operator-active
V(left-op-cmd = lleft-op-cmd V right-op-cmd = lright-op-cmd A operator-active := 0);

(lleft-op-cmd: - left-op-cmd) ; (lright-op-cmd: = right-op-cmd))*

iro >- f ir-active, left-ir-cmd, right-ir-cmd, i, countl :
(count :=0; left-ir-cmd :=0; right-ir-cmd :=0; ir-active :=0; i :=0;
(i <8A (ir-counts(i) > 100 A left-ir-cmd: = left-ir-cmd + motor-value[i][0];

right-ir-cmd := right-ir-cmd + motor-value[i][1] ; count := count + 1) +
(count >0A ir-active := 1))*

maino >- f left-ir-cmd, right-ir-cmd, left-op-cmd, right-op-cmd, lleft-op-cmd,

lright-op-cmd, ir-active, operator-active, motor-values[8] [2]1 :
left-ir-cmd: = 0; right-ir-cmd: = 0; left-op-cmd: = 0; right-op-cmd: = 0;

lleft-op-cmd :-0; lright-op-cmd: = 0; ir-active :=0; operator-active :-0;

motor-values[8][2] := ff-201-20ý, f-20,01, f-20,201, fO, 201, ý20,20ý, ý20,01,

t20ý -201, ffl, -20»;

186

motor-control() 11 iro 11 operatoro

8.3. ROBOT CONTROL SYSTEM

Then we begin to do further abstraction to each procedure. For procedure operator

sequence folding rule is applied to change chop into logic conjunction:

operatoro >- f left-op-cmd, lleft-op-cmd, right-op-cmd, Iright-op-cmd, operator- active I:
((left-op-cmd: ý-' lleft-op-cmd A right-op-cmd: ý lright-op-cmd A operator-active := 1)
V(left-op-cmd = lleft-op-cmd V right-op-cmd -= lright-op-cmd A operator-active := O)A
(lleft-op-cmd: = left-op-cmd) A (lright-op-cmd: - right-op-cmd))*

Then use logic reasoning to make it more concise:

operatoro >- f left-op-cmd, lleft-op-cmd, right-op-cmd, lright-op-cmd, operator- active I:
(operator- active := (left-op-cmd :A lleft-op-cmd A right-op-cmd :A lright-op-cmd) A
(lleft-op-cmd: = left-op-cmd) A (lright-op-cmd: = right-op-cmd))*

Procedure iro has two local variables, i and count. Since the loop time is fixed to 8,

we change the chop-star into a concrete number 8. count could be left out by rewriting

the specification in a more compact style since it is merely a boolean test. Sequence

folding is done whenever possible.

iro >- f ir-active, left-ir-cmd, right-ir-cmd, i, countl :
(count :=0A left-ir-cmd :=0A right-ir-cmd: = 0A ir-active : =- 0Ai: = 0;
((ir-counts(i) > 100 A left-ir-cmd := left-ir-cmd + motor-value[i] [01 A

right-ir-cmd : == right-ir-cmd + motor-value[il [1] A count := count + 1) Ai :-i+ 1)8;
(count >0A ir-active := 1))*

iro >- f ir-active, left-ir-cmd, right-ir-cmd, i, countl :
iG [0,71 A (ir-active =

V(ir-counts(i) > 100)A

i
left-ir-cmd = E((ir-counts(i) >

i
right-ir-cmd - 1: ((ir-counts(i)

i

100) * motor- values [i] [0]) A

100) * motor-values[i] [1]))*

For procedure maino, the initialisation part could be left out as trivial details, there-

fore we get a quite concise specification:

187

maino >- motor-control() 11 iro 11 operatoro

8.3. ROBOT CONTROL SYSTEM

Putting together, the final specification is as follows:

move(left-op, right-op) ý: send- left-motor (left- op) A send- right-motor(right- op)

motor-control() >_- ((ir-active =1A move (left- ir-cmd, right-ir-cmd))
V(ir-active zA IA operater-active =1A move (left- op-cmd, right-op-cmd)))

operatoro >- f left-op-cmd, lleft-op-cmd, right-op-cmd, lright-op-cmd, operator- active I:
(operator-active := (left-op-cmd =ý- Ileft-op-cmd A right-op-cmd :A Iright-op-cmd) A
(lleft-op-cmd: = left-op-cmd) A (lright-op-cmd: = right-op-cmd))*

A
iro =f ir-active, left-ir-cmd, right-ir-cmd, i, countl

iE [0,7] A (ir-active - V(ir-counts(i) > 100)A
i

left-ir-cmd = E((ir-counts(i) >
i

right-ir-cmd - ((ir- counts (i)

100) * motor-values[i] [0]) A

100) * motor-values[i][1]))*

maino >- motor-control() 11 iro 11 operatoro

8.3.3 Summary

The purpose of this case study is to test whether the proposed approach is capable of

multiple concurrent processes without communication.

From main, it is clear that the robot system is composed of three concurrent pro-

cesses, namely, motor-control, ir and operator. More details of the three processes are

given in their own specification. Since the final specification is quite concise, it is easy

to see the following points:

* From motor-control: if the control mode is infra-red, then move the robot through

parameters left-ir-cmd and right-ir-cmd; if the control mode is operator, then

move the robot through parameters left-op-cmd and right-op-cmd.

From operator: if there is new operator command then set operator control mode

active, and change the former command to current value.

188

8.4. TASK FARMING SYSTEM

* From ir: check the eight sensor, if any of them detects a nearby obstacle, then

move the robot away from it.

The final specification will help software engineers understand the robot system.

8.4 Task Farming System

8.4.1 Background

This example is about a message-passing task farm. Its purpose is to demonstrate how

the proposed approach deals with concurrency/parallel and communication [161]. In

this task farm, every worker communicates directly with the source in order to get jobs

and forward results. All workers run their dispatched tasks in parallel. Since the source

has no way of telling when a worker has finished its job, and needs another, workers

must send requests for more work to the source. These requests must be tagged in some

way to identify the sender, so that the source knows where to send its reply.

8.4.2 Extracting the Specification

Translated CSL code The task farm is implemented in FORTRAN-KCSP. As pre-

liminary process, we translated the FORTRAN-KCSP implementation into CSL.

struct messagel
integer: id;
string: mbody;
integer: sender;
integer: receiver
1;

shunt: array connect[1001;

proc rooto

integer: id, i, j, t, numw;
string: taskid;
message: msgi, msg2;
integer: array buffer[1001;

189

8.4. TASK FARMING SYSTEM

comment: "setup";
id: =! xf getprocessido;
! xp mpsyncho;
numw: =! xf mp-grp-size(workerGrp);
for i: =t to 100 step I do

buffer[ll: =- I
od;

comment: "assign tasks";
for i: = I to numw step I do

read t, msg I from connect[i];
if (msgI. Id <> buffer[ij) and (msgI. receiver=id)
then buffer[i]: = msgI. id;

if msgI. mbody="finished"
then ! xp gettask(taskid);

if taskid<O
then msg2. mbody: ="idle"
else msg2. mbody: =! xf strcat("do", taskid)
fi

fi;
if msgl. mbody="faulty"
then msg 2. mbody: ="terminate"
fi;
msg2. id: =! xf gen-msg-ido;
msg2. sender: =id;
in sg2. receiver: =i;
write msg2 to connect[l]

fi
od;

comment: "tide up";
msgl. id: =O; msgl. mbody: ="

1;

proc workero

integecid, buffer;

string: taskid, taskstate;
message: msgl, msg2;
integer: aff ay buffer[1001;

comment: "setup";
id: =! xf getprocessido;
! xp mpsyncho;
buffer: =- 1;

comment: "deal task";
read t, msg I from connect[id];
if (msg Lid< >buffer) and (msgl. receiver=ld)
then buffer: =msgl. ld;

if msgl. mbody="terminate"
then ! xp terminate(taskid)

190

8.4. TASK FARMING SYSTEM 191

fi;
if msg I. mbody="do xxxxx"
then taskid: ="xxxxx";

! xp execute(taskid)
fi;
if msgI. mbody="idle"
then skip fi;

fi;

comment: "sending message to root";
taskstate: =! xf gettaskstate(taskid);
if taskstate="finished"
then msg2. mbody: ="finished" fi;
if taskstate="faulty"
then msg2. mbody: ="faulty" fi;
if taskstate="running"
then skip fi;
msg2. id: =! xf gen-msg-ldo;
msg2. sender: =1d;
msg2. receiver: =O;
write msg2 to connect[id]

1;

proc maino

int: i;

! xp createprocess(rooto);
for i: =1 to W step I do

! xp createprocess(workero)
od;

1;

There are three procedures in the program, root, worker and main. We abstract the

main procedure. The new system representation is as follows:

procrooto
f

comment: "setup";
id: =! xf getprocessido;
! xp mpsyncho;
numw: =! xf mp-grp-size(workerGrp);
for i: = I to 100 step I do

buffer[i]: =-l
od;

comment: "assign tasks";
for j: = I to numw step I do

read t, msg I from connect[i];
if (msg Lid <> buffer[,]) and (msg I -receiver=,

d)

8.4. TASK FARMING SYSTEM

then buffer[i]: = msgl. id;
if msgl. mbody="finished"
then ! xp gettask(taskid);

if taskid<O
then msg2. mbody: ="idle"
else msg2. mbody: =! xf strcat("do", taskid)
fi

fi;
if msgl. mbody="faulty"
then msg2. mbody: ="terminate"
fi;
msg2. id: =! xf gen-msg-ido;
msg2. sender: =id;
msg2. receiver: =i;
write msg2 to connect[l]

fi
od;

comment"tide up";
msgI. 1d: =O; msgI. mbody: ="

1;

proc workero

comment: "setup";
id: =! xf getprocessido;
lxp mpsyncho;
buffer: =-I;

comment: "deal task";
read t, msg I from connect[id];
if (msgl. ld< >buffer) and (msgl. receiver=ld)
then buffer: =msgI. id;

if msgl. mbody="terminate"
then ! xp terminate(taskid)
fi;
if msg I. mbody="do xxxxx"
then taskid: ="xxxxx";

! xp execute(taskid)
fi;
if msgl. mbody="idle"
then skip fi;

fi;

comment: "sending message to root";
taskstate: =! xf gettaskstate(taskid);
if taskstate="finished"
then rn sg2. mbody: ="fin i shed" fi;

if taskstate="faulty"
then msg2. mbody: ="faulty" fi;

if taskstate="running"
then skip fi;
msg2.1d: =! xf gen-msg-ido;

192

8.4. TASK FARMING SYSTEM

in sg2. sender: =id;
msg2. receiver: =O;
write msg2 to connect[id]

maino fil : createprocess (rooto) ;i :-I; (createprocess (workero)) w

Since i is no longer used in the specification of main, it is omitted. root is divided

into three sections, which are defined as domain functions in ITL. The first result looks

like the following:

RTsetup(id, numw, buffer) fil id getprocessido ; mpsyncho ; numw := mp-grp-size ("worker");
i :=I; (buffer[i] -1 ii+ 1)'00

A
assign Tasks (n umw, msgl, msg2, connect, id, buffer) =fi, t, taskidl :i :=1;

(t = ,
Iconnect[i] A msgi - read (conn e ct[i]);

msgl. id 54 buffer[il A msgI. receiver idA
(buffer[i] = msgl. id; msgl. mbody 'finished'A (gettask(taskid),
(taskid <0A msg2. mbody := 'idle') V (taskid >0A msg2. mbody: = strcat('do', taskid);
msgl. mbody = 'faulty'A msg2. mbody: = 'terminate';
msg2. id = gen-msg-ido ; msg2. sender: = id; msg2. receiver: = i;
skip A connect[i] := (-, Iconnect[i] + 1, msg2) ;i: =: i+ 1))) numw

tideUp(msgl) msgl. id: = 0A msgl. mbody: ="

procrooto
f

comment: "setup";
RTsetup(id, numw);

comment: "assign tasks";
assign Tasks (n umw, msgl, msg2, connect, id, buffer);

comment"tide up";
tideUp(msgl)

1;

proc workero

comment: "setup";
id: =! xf getprocessido;
1xp mpsyncho;
buffer: =- I;

comment: "deal task";
read t, msg I from connect[id];
if (msg Lid< >buffer) and (msgl. receiver=id)

193

8.4. TASK FARMING SYSTEM

then buffer: =msg 1.1d;
if msgI. mbody="terminate"
then ! xp terminate(taskid)
fi;
if msgI. mbody="do xxxxx"
then taskid: ="xxxxx"-,

! xp execute(taskid)
fi;
if msgl. mbody="Idle"
then skip fi;

fi;

comment: "sending message to root";
taskstate: =! xf gettaskstate(taskid);
if taskstate="fi ni shed"
then msg2. mbody: ="finished" fi;
if taskstate="faulty"
then msg2. mbody: ="faulty" fi;
if taskstate="running"
then skip fi;
msg2. id: =! xf gen-msg-ldo;
msg2. sender: =1d;
msg2. receiver: =0;
write msg2 to connect[id]

1;

0A main = createprocess (rooto) ; (createprocess (workero))

Since the timestamp t is never used in assignTask, we abstract it away. Meanwhile

we conduct sequence folding, and abstract the frame of root.

RTsetup(id, numw, buffer) Af il : id getprocessido -, mpsynch () A numw mp-grp-size ("worker") A
i: = 1; (buffer[i] -1 A i: = i+ 1)100

assign Tasks (n umw, msgl, msg2, connect, id, buffer) ="' ji, taskidl : i: - 1;
(msgl = read (connect[i]);
msgI. id 54 buffer[i] A msgl. receiver - idA
(buffer[i] = msgl. id A msgl. mbody = finished' A (gettask(taskid);
(taskid <0A msg2. mbody: = 'idle') V (taskid >0A msg2. mbody: = strcat(do, taskid);
msgl. mbody = 'faulty'A msg2. mbody: = 'terminate';
msg2. id = gen-msg-ido ; msg2. sender: - id; msg2. receiver: = i;

connect[i] := (Vconnect[i] + 1, msg2) ;i: =i+ 1)))umw

A it
tide Up (msg 1) = msg 1. id 0A msg 1. mbody :=

rooto
Af
= numw, msgl, msg2, connect, id, bufferl: RTsetup(id, numw);

assign Tasks (numw, msg 1, msg2, connect, id, buffer); tideUp(msgl)

194

8.4. TASK FARMING SYSTEM 195

proc workero

comment: "setup";
id: =! xf getprocessido;
! xp mpsyncho;
buffer: =- 1;

comment: "deal task";
read t, msg I from connect[id];
if (msg Lid< >buffer) and (msg I. receiver=ld)
then buffer: =msgI. 1d;

if msg I. mbody="termi n ate"
then ! xp term 1 nate(taski d)
fi;
if msgI. mbody="do xxxxx"
then taskid: ="xxxxx";

! xp execute(taskid)
fi;
if msgI. mbody="Idle"
then skip fi;

fi;

comment: "sending message to root";
taskstate: =! xf gettaskstate(taskid);
if taskstate="fi ni shed"
then msg2. mbody: ="finished" fi;
if taskstate="faulty"
then msg2. mbody: ='Taulty" fi;
if taskstate="running"
then skip fi;
msg2.1d: =! xf gen-msg-ido;
msg2. sender: =id;
msg2. receiver: =0;
write msg2 to connect[id]

1;

0A main = createprocess (rooto) ; (createprocess(workero))'

To get a clear overview of the system, the details of procedure RTsetup, assignTasks

and tideUp are then retained at the low level specification, not present in the high level

specification.

The worker procedure is dealt with in a similar way. Three new procedures are

introduced to describe the three blocks in worker, and these procedures are abstracted

separately. The results are as follows:

"' f numw, msg 1, msg2, connect, id, bufferl : RTsetup (id, numw); rooto =

8.4. TASK FARMING SYSTEM 196

assign Tasks (n umw, msg 1, msg2, connect, id, buffer); tideUp(msgl)

I., WKsetup(id, buffer) = id := getprocessido ; mpsyncho ; buffer

dealTask(id, msgl, connect, taskid) (t
,
Iconnect[id] A msgl = read (conn ect[id]));

(msgl. id: ý buffer A msgl. receiver id A (buffer := msgl. id; msgl. mbody terminate A terminate (taskid);
msgl. mbody = do xxxxx A (taskid xxxxx; execute (taskid)) ; msgl. mbody idle A skip))

A

sendMessage(taskid, taskstate, id, msg2) = taskstate := gettaskstate(taskid);
taskstate =finished A msg2. mbody : =finishedfi; taskstate =Jaulty A msg2. mbody : =Jaulty;
taskstate = running A skip ; msg2. id := gen-msg-ido A msg2 -sender id A msg2 - receiver 0;
skip A connect[id] := (Vconnect[id] + 1, msg2)

A
workero = lid, buffer, taskid, taskstate, msgl, msg2, buffer} : WKsetup(id, buffer);

dealTask(id, msgl, connect, taskid) ; sendMessage(taskid, taskstate, id, msg2)

() A
main = createprocess (rooto) ; (createprocess (workerffl)'

Abstract away the unused timestamp, fold possible sequences, a more concise result

looks like as follows:

rooto=" Inumw, msgl, msg2, connect, id, bufferl : RTsetup(id, numw);
assign Tasks (n umw, msg 1, msg 2, connect, id, buffer); tideUp(msgl)

WKsetup (id, buffer) 2-ý' id := getprocessido ; mpsynch () ; buffer :=-I

A
dealTask(id, msgl, connect, taskid) = ms91 = read (connect[id]);

(msgl. id 54 buffer A msgl. receiver = id A (buffer: = msgLid; msgl. mbody terminate A terminate (taskid);

msgl. mbody = do xxxxx A (taskid: = xxxxx; execute (taskid)) ; msgl. mbody idle A skip))

sendMessage(taskid, taskstate, id, msg2) 2-ýý taskstate := gettaskstate(taskid);
taskstate =finished A msg2-mbody: =finishedfl; taskstate =Jaulty A msg2. mbody: = faulty;

taskstate = running A skip; msg2. id: = gen-msg-ido A msg2. sender: = id A msg2. receiver: = 0;

skip A connect[id] := (-, Iconnect[id] + 1, msg2)

workero =" lid, buffer, taskid, taskstate, msgl, msg2, bufferl : WKsetup(id, buffer);

dealTask(id, msgl, connect, taskid) ; sendMessage(taskid, taskstate, id, msg2)

A
maino = Createprocess (rooto) ; (createprocess(workero))'

Finally, we block the details of procedure WKsetup, dealTask and sendMessage

from the high level specification, treating them as domain functions. The final high

level specification is as follows:

8.5. MINE DRAINAGE SYSTEM

root() =A Inuinw, msgl, msg2, connect, id, bufferl : RTsetup(id, numw);
assign Tasks (numw, msg 1, msg2, connect, id, buffer); tideUp(msgl)

workero lid, buffer, taskid, taskstate, msg I, msg2, bufferl : WKsetup(id, buffer);
dealTask(id, msgl, connect, taskid) ; sendMessage(taskid, taskstate, id, msg2)

niain() c rea tep rocess (rootffl ; (createprocess (workero)) W

8.4.3 Summary

The extracted specification gives software engineers a clear impression of the task farm

system. It describes the system in an hierarchical order, and only keeps the basic de-

scriptions. From main, it is easy to know that the system consists of one root process

and M worker processes. The root process first sets up itself, then assigns tasks to every

worker who send a 'finishes' signal to the root. After the assignment, root resets the

message body. The key contents of each step are given in the corresponding proce-

dures. For each worker process, it first sets up itself, then processes the assigned task

and sends corresponding messages to the root.

The root process and all worker process run in parallel. The communication be-

tween them are implemented through 'shunts', namely, connect[100].

This case study demonstrates how the proposed approach deals with concurrent/parallel

programs with communication.

8.5 Mine Drainage System

8.5.1 Background

This case study is based on one which commonly appears in the literature. It con-

cerns the software necessary to manage a simplified pump control system for a mining

environment [34]. It is a good demonstration of the real-time aspect of the proposed

approach.

197

The system is used to pump mine water, which collects in a sump at the bottom of

8.5. MINE DRAINAGE SYSTEM

the shaft, to the surface. The main safety requirement is that the pump should not be

operated when the level of methane gas in the mine reaches a high value due to the risk

of explosion. A simple schematic diagram of the system is given in Figure 8.2.

To surface control
room

Figure 8.2: A Mine Drainage Control System

The functional specification of the system is divided into four components: the

pump operation, the environment monitoring, the operator interaction, and system mon-

itoring

The required behaviour of the pump is that it monitors the water levels in the sump.

When the water reaches a high level, the pump is turned on and the sump is drained

until the water reaches the low level. At this point, the pump is turned off. A flow of

water in the pipe can be detected if required. The pump should be allowed to operate

only if methane level in the mine is below a critical level.

198

The environment must be monitored to detect the level of methane in the air; there

8.5. MINE DRAINAGE SYSTEM

is a level beyond which it is not safe to cut coal or operate the pump. The monitoring

also measures the level of carbon monoxide in the mine and detects whether there is an

adequate flow of air. Alarms must be signaled if gas levels or air-flow become critical.

The system is controlled from the surface via an operator's console. The operator

is informed of all critical events.

All the system events are to be stored in an archival database, and may be retrieved

and displayed upon request.

The non-functional requirements includes three components: timing, dependabil-

ity and security. This case study is mainly concerned with the timing requirements,

which appear as monitoring periods, pump shut-down deadline and operator informa-

tion deadline.

8.5.2 Extracting the Specification

Translated CSL Code The mine drainage system is implemented in ADA. As pre-

liminary process, we first translated this implementation into CSL. The complete result

is listed in the appendix. Here we focus on two selected modules: pump control and

methane detection. For conciseness, we assume that all the global variables and con-

stants have been defined in the main procedure.

Pump Module The CSL code is as follows:

proc motor-unsafeo
I

if motor-status=On
then

sw: =Off;
motor- status: =Off;
motor-log(In "motor- stopped")

fi;
m otor- condition: =Disabled;
motor-log(In "motor- un safe")

1;

proc motor-safeo
f

199

8.5. MINE DRAINAGE SYSTEM

if motor-status=Off
then

sw: =On;
m otor- status: =On;
motor-log(In "motor- started")

fi;
motor- conditi on: =Enabled;
motor-log(In "motor-safe")

1;

proc set-pump(In pump-status: Boolean;)

if pump-status=On
then if motor- status=Off

then if motor-condition=Disabled
then err-msg(In "pu mp- not- safe")
fi;
if ch4-status=Motor-safe
then motor- status: =On;

sw: =On;
motor-log(In "motor- started")

else err-msg(In "pump- not- safe")
fi

fi
else if motor-status=On

then motor- status: =Off;
if motor-condition=Enabled
then

sw: =Off;
motor-log(In "motor- stopped")

fi
fi

fi
};

As the first step, we abstract the three procedures separately into ITL specification:

Motor-unsafeo L" motor-status = On A (sw := Off ; motor-status := Off ; motor- log (mo tor-stopped'));

motor-condition: = Disabled moto r- log ('moto r- unsafe')

motor-safeo motor-status = Off A (sw := On; motor-status :- On; motor- log ('motor-started'));

motor-condition : =Enabled; motor-log('motor-safe')

A
set-pump(pump-status =

(pump-status = OnA
(motor-status = OffA

(motor-condition = Disabled A err-ms9('pump-not-sqfe'));
(ch4-status = Motor-safe A (motor-status := On; sw :- On; motor-log('motor-started')))

V(ch4-status = Motor-unsafe A err- msg ('pump-not-safe'))))

200

8.5. MINE DRAINAGE SYSTEM

v (pump-status = Off A
motor-status = On A (motor-status := Off-,

motor-condition = Enabled A (sw := Off ; motor- log ('motor-stopped'))))

In the above specification, there are several things that need to be simplified. Firstly,

some "chop" operators could be replaced by logic conjunction, and therefore resulting

in further logic composition. Secondly, there are quite a lot exception test and handling

details in the specification. In high level specification, this kind of descriptions could

be considered as implementation details and therefore be abstracted away. A more

abstracted specification is given as follows:

motor-unsafeo =A motor-status = On A (sw := Off ; motor-status := Off A moto r- log(' motor-stopped'));
motor-condition := Disabled A motor- log ('motor-unsafe')

motor-safeo =" motor-status = Off A (sw := On; motor-status := On A motor- log (motor-started'));

motor-condition := Enabled A motor- log ('motor-safe')

set-pump(pump-status)
(pump-status = OnA

(motor-status = QffA
(ch4-status = Motor-safe A (motor-status := On; sw := On; motor-log('motor-started')))))

V(pump-status = OffA

motor-status = On A (motor-status := Off;

motor-condition = Enabled A (sw := Off A motor-log('motor-stopped))))

More concisely, the specification is as follows:

motor-unsafeo =1ý motor-status = On A (sw: = Off ; motor-status := Off A motor-log('motor-stopped'));

motor-condition Disabled A motor-log ('motor- unsaW) V_)

AI
motor-safeo = motor-status = Off A (sw := On; motor-status :- On A motor-log(motor-started'));

motor-condition := Enabled A motor-log(Imotor-safe')

set-pump(pump-status) "'

(pump-status = On A motor-status = Off A ch4-status = Motor-safeA
(motor-status := On; sw := On A motor- log (motor-started'M

V(pump-status Off A motor-status = OnA
(motor-status Off ; motor-condition - Enabled A (sw :- Off A moto r- log ('motor-stoppedffl)

201

8.5. MINE DRAINAGE SYSTEM

The log function is not directly related with system performance, therefore could

be abstracted away:

A
motor-unsafe = motor-status = On A (sw : -- Off ; motor-status := off) ; motor-condition := Disabled

A
motor-safe = motor-status = Off A (sw := On ; motor-status := On) ; motor-condition := Enabled

set-pump(pump-status) ="
(pump-status = On A motor-status = Off A ch4-status = Motor-safeA

(motor-status := On; sw := On))
V(pump-status = Off A motor-status = OnA

(motor-status := Off ; motor-condition = Enabled A sw := Off))

Methane Model The CSL code is as follows:

proc inito

comment: "enable device";
ch4- sensor- status: =En ab led;
ch4- status: =Motor- unsafe

proc ch4-processo

read tm, ch4-level from ch4-sensor;
if ch4-level>ch4-Max
then if ch4- status=motor- safe

then motor-unsafeo;
operator- con sole- alarm (In "High- methane");
ch4-status: =motor-unsafe

fi
else if (64-level<64-Max-jitterrange)

then motor-safeo;
ch4- status: =m otor- safe

fi
fi;
ch4-log(In ch4-level)

1;

proc ch4-periodo

inito;
while true do

duration in 30 ch4-processo end;
delay (80-30)

od

202

1;

8.5. MINE DRAINAGE SYSTEM

As the first step, we abstract the three procedures separately into ITL specification:

iiiito ch4-sensor-status :- Enabled; ch4-status :- Motor-unsafe

A

ch4-process(= tm, = Vch4-sensor A ch4-level = read (ch4-sensor);
(ch4-level > ch4-Max)A

ch4-status = motor-safeA
(motor-unsafeo ; operator-console-alarm('High-methane') ; ch4-status := motor-unsafe)

V(ch4-level < ch4-Max) A (ch4-level < ch4-Max -jitterrange) A (motor-safeo ; ch4-status :- motor-safe);
ch4-log(ch4-level)

A
ch4-periodo = inito ; (ch4-processo A len < 30ms; len -- 50ms)*

Similarly, we replace possible "chop" operators with logic conjunction, leave out

the unused timestamp tm. The final result will look like as below:

inito =" ch4-sensor-status := Enabled A ch4-status := Motor-unsafe

A
ch4-processo = ch4-level - read (ch4-sensor);

(ch4-level > ch4-Max) A ch4-status = motor-safeA
(motor-unsafeo A ope rato r-conso le-a larm (High-me than e') A ch4-status := motor-unsafe)

V(ch4-level < ch4-Max) A (ch4-level < ch4-Max -jitterrange) A (motor-safeo A ch4-status := motor-safe);
ch4-log(ch4-level)

ch4-periodo inito ; (ch4-processo A len < 30ms; len = 30ms)*

8.5.3 Summary

The purpose of the mine drainage case study is to demonstrate that the proposed ap-

proach has the ability to tackle systems with critical time requirement. This is achieved

through the following points:

1. RWSL has the power to represent time critical systems from specification level

to source code level.

2. The abstraction rules are specially designed to deal with time feature.

203

3. ITL is powerful for real time system specification.

Chapter 9

Conclusion

9.1 Criteria for Success and Analysis

9.1.1 The approach

In Chapter 1, a set of criteria are proposed to judge the success of the approach de-

scribed in this thesis. In this section, detailed analysis of our approach are presented
based on these criteria.

For a heavily modified legacy system which has never been developed in a well

structured or ob ect-oriented method, how viable is it to extract a specification j

from its source code with the proposed abstraction technology?

The approach can extract specifications of various legacy systems from their

source code no matter whether they had been modified or were well structured.

The abstraction definitions and rules are language independent and are based on

most popular structures of legacy systems, i. e., both system structure and state-

ment structure. The abstraction rules cover all the basic statements in legacy

statement. Other statements, if uncovered, can be treated as variations of the ba-

sic statements, and relevant abstraction rules can be easily derived. However, the

more structured a legacy system is, the easier the extraction process may be. As

9.1. CRITERIA FOR SUCCESS AND ANALYSIS

discussed in section 4.2.1, to make specification extraction more efficient, vari-

ous existing re-structuring techniques can be used to decompose and structure a
legacy system if it is very monolithic or unstructured [20,78,100].

* Is the extracted specification consistent to the original design? Is it reliable to

perform redesign or respecification on the base of the extracted specification?

The answer is positive. This is guaranteed by the soundness of abstraction rules,

which is proven in ITL. Since every movement in specification extraction is based

on certain abstraction rules, the extracted specification must be consistent to the

original design.

* Is the extracted specification unambiguous and easy to understand?

The answer is also positive. Using ITL guarantees the unambiguity of the ex-

tracted specification. Actually, this is one of the main reasons that we adopt ITL.

The extracted specification is also easy to understand, because ITL is well struc-

tured and has a first order predicate logic nature, which is quite popular in formal

computing.

* What kind of legacy systems can the approach deal with? Besides sequential

non-time systems, can it tackle more complex and emergent- in -need but rarely

addressed systems, such parallel and time critical systems?

Besides sequential non-time systems, which are addressed by most reverse en-

gineering research, the approach takes time-critical systems with parallelism as

its specific application domain. RWSL is designed to have real-time and parallel

feature: from ITL at specification level to CSUCOOL at code level, relevant ele-

ments such as delay, duration, signal, parallel and communication, are developed.

Correspondingly, abstraction rules cover how to deal with these elements.

Crossing levels of abstraction involves both semantics changelselection and trans-

formation in representation. How does the proposed approach solve this prob-

205

9.1. CRITERIA FOR SUCCESS AND ANALYSIS

lem? Is the taxonomy of abstraction comprehensive enough and are the abstrac-

tion rules reliable?

Specification extraction involves crossing levels of abstraction. Abstraction is the

crucial technique to reverse engineering. Without tackling abstractions properly,

any design or specification recovery methodology can not succeed. To achieve

correct and practical abstraction, our approach answered two fundamental ques-

tions. By formally defining a taxonomy of abstraction, we answered the first

question "what abstraction is". Monotonicity and relations between these ab-

stractions are discussed and healthiness obligations are developed as axioms to

guarantee correct and sensible abstraction during reverse engineering. Once ab-

stractions are identified, the next question is "how to perform these abstractions".

Relevant abstraction rules are developed to solve this problem.

The taxonomy of abstraction covers abstractions in both normal sequential non-

time and real-time parallel systems, and therefore are comprehensive enough to

deal with abstraction problems in these domains. The developed abstraction rules

are formally defined and proved sound, and therefore are considered reliable. The

case studies conducted also show positive evidence to this conclusion.

4D Is the approach feasible for realisation ? For example, is it possible to build a

practical tool to demonstrate the approach?

Quite a lot attention was paid to the practical part of the approach during develop-

ment. RWSL, abstraction taxonomy and rules are not only theoretically correct,

but also workable for real legacy systems. The examples and case studies show

that the approach is a "Practical" one, i. e., feasible for practice. A resulting tool

named Reengineering Assistant has been built.

Is the approach capablefor industrial-scaled systems?

The approach is capable for industrial-scaled systems and efficient enough for

real practice. The approach adopts systematic stepwise abstraction, which slices

206

9.1. CRITERIA FOR SUCCESS AND ANALYSIS

a large system into manageable sub-systems, then deals with these sub-systems

separately and finally integrates the results into one full view of the system. The

approach also supports automation, and a semi-automatic tool has been built,

which much improves the efficiency of reengineering process, together with the

problem size.

o Is there any special prerequisitefor using the approach?

To use the approach, the software engineer has to have a sound understanding

and skills of formal methods, i. e., ITL- Otherwise, the resulting specification may
be somewhat difficult to understand. Without sound skills in ITL, the resulting

specification may also be not concise enough.

9.1.2 The Tool

In this section, we assess the developed tool with a set of criteria. More comprehensive

data may be collected from diverse users.

Ease o Use. ýf

One measure of a tool's effectiveness is the ease with which the user can operate

it. No matter how functional or complete a tool is, if the user spends most time

thinking about how to use the tool or making the tool work, then the tool is

hindering and not helping to complete the task. To justify using a tool, the tool's

benefits must offset its cost with the time spent using it.

RA ranks a high score of this criterion due to the following features:

- Intelligence

RA helps the user by performing its functions intelligently. This intelli-

gence embodies in the strong automatic inference mechanism to perform

its functions, which enables RA accomplish user-selected functions with-

out user intervention. All the elementary abstractions can be done auto-

matically, and all further abstractions can be done automatically provided

207

9.1. CRITERIA FOR SUCCESS AND ANALYSIS

that correct user observations of current situation have been identified. In

addition, RA could anticipate user decision and interaction by providing

possible operations' prompt and information prompt.

- Predictability

Unpredicted responses from a too] usually result in unhappy users and un-

wanted output. RA was designed to avoid this shortcoming. Menu and com-

mand names in RA suggest the function well and users are provided with

good explanations of the execution results. If an unpredicted result/response

does occur, the user could use the "undo" menu to track back to any previous

point he wants. No matter how drastic the result of a particular command

be, this backtracking is always possible.

- Error Handling

RA considers possible error cases comprehensively. RA is tolerant to many

user errors, it checks for the errors, corrects the errors whenever possible,

and gives relevant prompt information.

- System Interface

RA provides a friendly user interface. RWSL representation of target sys-

tems are displayed nicely with the pretty print module. Operation feedback

is displayed in the LISP operation window. And the menus and buttons are

well formatted.

However, currently RA is only available under UNIX environment. To increase

its popularity, a PC version will be developed.

* Tool Leverage

Leverage is the extent to which small actions by the user create large effects.

The leverage of any interactive tool is a function of its command/menu set. The

method RA uses to increase this leverage is to increase its intelligence and there-

208

9.1. CRITERIA FOR SUCCESS AND ANALYSIS

fore to integrate closely related functions into one menu as many as possible. RA

has a quite high tool leverage due to its high intelligence.

o Perfonnance

The performance of a tool can greatly affect the ease with which it is used and can

ultimately determine the success of a tool within an organisation. A tool must be

able to function efficiently and be responsive to the user. Poor tool performance

can create costs that negate many of the benefits realised from tool use. A tool

that performs inefficiently may result in missed schedules or frustrated users who

are sceptical about whether the tool really helps them.

RA responses to all the possible user choices correctly and within tolerable time.

The examples and case studies show that RNs performance is satisfiable.

9 Robustness

The robustness of a tool is a combination of such factors as: the reliability of the

tool, the performance of the tool under failure conditions, the criticality of the

consequences of tool failures, the consistency of the tool operations, and the way

in which a tool is integrated into the environment.

RA is robust, because it has the following features:

- Consistency

The operations of RA are consistent with each other, they all contribute to

the sole goal, that is, specification extraction.

- Evolution

In all but the most unusual cases, due to the component-based nature and

good system interface, RA could evolve over time to accommodate chang-

ing requirements, changes to the environment, correcting detected flaws,

and performance enhancements.

209

- Fault Tolerance

9.1. CRITERIA FOR SUCCESS AND ANALYSIS

RA considers possible error cases comprehensively. RA is tolerant to many

user errors, it checks for the errors, corrects the errors whenever possible,

and gives relevant prompt information.

Since RA has an operation history, the user can always backtrack to any

previous point once an unrecoverable error happened.

* Functionality

The functionality of a tool is not only driven by the task that the tool is designed

to perform but also by the methods used to accomplish the task. Many tools sup-

port methodologies. The accuracy and efficiency with which the tool does this

can directly affect the understandability and performance of the tool, as well as

determine the quality and usefulness of tool outputs. In addition, a tool that gen-

erates incorrect outputs can lead to frustrated users and extra time expenditures

needed to "fix" tool outputs. These additional costs may weigh heavily against a

tool's benefits.

RA answered these questions successfully by providing the following features:

- Methodology Support

A methodology is a systematic approach to solving a problem. The pro-

posed approach is a methodology because it prescribes a set of steps and

work products as well as rules to guide the production and analysis of re-

verse engineering process. Automated support for a methodology can aid

its use and effectiveness. The design and functionality of RA are based ex-

actly on the proposed approach, and RA provides coherent support to the

proposed approach.

- Correctness

210

To be useful, RA operates correctly and produces correct outputs.

9.2. CONCLUSION 211

9.2 Conclusion

9.2.1 Lessons Learnt

Through developing the approach, we learnt the following lessons:

Definition of abstraction levels - RWSL provides a spectrum of abstractions of the

reengineered system, from concrete code to formal specification. These abstractions are

integrated and cooperated in a uniform manner. All the layers in RWSL have formal

syntax and semantics, which give the target system unambiguous descriptions at various

abstraction levels.

Development of formal abstraction rules - In our approach, reverse engineering is

carried out by extracting system descriptions at a higher abstraction level from those

at lower abstraction levels. Based on RWSL, a set of the abstraction rules were de-

veloped. All the abstraction rules are defined formally with ITL. This assures precise

and rigorous semantics of the rules, and provides us with confidence in the obtained

specification.

Application in real-time domain - At present, existing reverse engineering technol-

ogy is limited to merely sequential and non-time systems no matter it adopts formal

techniques or ad hoc techniques [110]. Our approach is based on a wide spectrum lan-

guage, which is designed to bear an ability to describe time critical features of the target

system in a wide span.

Object-Orientation - The proposed approach relates to object-orientation in two as-

pects. Firstly, the approach aims to transform procedural legacy systems into object-

oriented systems at the code level. A set of object extraction rules [1081 are developed.

For a well-structured procedural program, i. e., there is no unnecessary coupling and rel-

evance between data and procedures, these rules can transform the procedural program

9.2. CONCLUSION

in TGCL into a reasonable and satisfactory object-oriented program in ObTAM. Sec-

ondly, our approach supports reverse engineering of object-oriented systems, i. e., using

abstraction rules, an object-oriented program (in ObTAM form) can be abstracted into

a logic specification.

Abstractness Measurement - We believe that corresponding metric measures should
be developed in conjunction with the development of any reverse engineering approach

and therefore a metric facility is developed by S. Zhou for the abstraction approach

[171,169]. Metrics on abstractness of software are useful to a software reverse engineer

who is trying to derive software designs or specifications from existing code, because

abstractness measures can help to guide the engineer to reverse engineer code more

effectively in selecting abstraction rules (to help develop heuristics on what the final

abstraction form the measured program should be in), to measure the progress made in

optimising the program code and to measure the resulting quality of the program being

abstracted. The following metrics were defined based on the data and control struc-

tures of RWSL programs in the prototype of our reengineering tool [116,169,1721:

Abstractness based on McCabe's Cyclomatic Complexity Measure (ABST-MCCM),

Abstractness based on Lines Of Code (ABST-LOC), Abstractness based on Control-

Flow and Data-Flow Complexity (ABST-CFDF), Abstractness based on Loop Com-

plexity (ABST-LOOP), Abstractness in Vocabulary (ABST-VOC), and Abstractness in

Statement (ABST-STAT).

9.2.2 Our Approach and Existing Work

Existing research closely related to our work (formal and informal) on software ab-

straction for reverse engineering have been studied when our approach was developed.

Here only the most related projects are briefly discussed.

Transformation-based Maintenance Model (TMM) is a method proposed in [9]

for recovering abstractions and design decisions that were made during imple-

212

9.2. CONCLUSION

mentation. The abstractions and design decisions of software must be recovered
first before the software is re-implemented.

* [62] proposed "A Concept Recognition-Based Program Transformation System",

whose characteristic is its use of concept recognition, the understanding and ab-

straction of high-level programming and domain entities in programs, as the basis

for transformations. Four understanding levels are defined: the text level, the syn-

tactic level, the semantic level, and the concept level. The program transforma-

tion system depends on its program understanding capabilities up to the concept

level. The key component is a concept library which contains the knowledge

about programming and application domain concepts, and concept recognition is

done by pattern matching.

e REFORM project developed a tool named the Maintainer's Assistant to assist the

human maintainer, handling assembler and Z in an easy to use way [22,165,167].

One of the most important successes of Maintainer's Assistant is that it is based

on a wide spectrum language whose syntax and semantics are formally defined.

Maintainer's Assistant focused on transformation rather than abstraction. It in-

volved little in how to use multi-levelled abstractions and relevant abstraction

rules to reach a good system reengineering, especially reverse engineering. The

Wide Spectrum Language in Maintainer's Assistant is sequential and non-timed,

which limits its application domains.

Research in University of California at San Diego [91] based their approach to re-

verse engineering on abstraction, and identified three kinds of abstractions: prob-

lem domain, structural, and logical. However, this work is not formalised and did

not have multiple abstraction levels with an integrated formal semantics. These

11 mit the accuracy and power of their approach.

* PRISME is a reverse engineering tool based on functional abstraction [161, but

213

the abstraction in PRISME is function-based instead of semantic s-based. It does

9.2. CONCLUSION

not engage a mature formal method to specify the target system, and PRISME ex-

tracts 'signatures' as pieces of outline description of the system, but not complete

specification. Moreover, the notations in PRISME lack of integrated semantic

foundation.

AUTOSPEC project [42,44,73] involves a two-phase approach to reverse en-

gineering that integrate a process for abstracting formal specifications from pro-

gram code with a technique for identifying candidate objects in program code.

A prototype tool was built. This project only deals with the first abstraction step

of reverse engineering, i. e., it extracts low level specifications, in the form of

predicate logic as a notation of the source code. Therefore, AUTOSPEC only

considers the initial step in the whole process of reversing source code into a

system specification.

To summarise, although many aspects of reverse engineering have been researched,

using formal abstraction rules to extract formal specifications from code is rarely ad-

dressed. The above listed studies solved some closely-related problems, such as trans-

formation and part of informal abstraction. However, none of them engages in extract-

ing semantics -consistent formal specifications from source code through abstraction.

Formal abstraction rules for reverse engineering seemed not to be developed. Most

of these approaches have been advocated for reverse engineering, but few have been

evaluated in practice on large-scale code. Abstraction levels are not clearly defined.

Abstraction to be used in a "real-time" system has been rarely addressed. Techniques

for coping with crossing levels of abstraction covering all abstraction levels need more

research. Where genuine crossing of levels of abstraction occurs, this is done manually.

9.2.3 Conclusion

The features of our abstraction approach (including the tool developed in the project -

the Reengineering Assistant) are as follows:

214

9.2. CONCLUSION

e use of ITL to define RWSL, allowing both non-real-time and real-time programs
to be represented and manipulated;

*a small, traceable kernel language, i. e., ITL plus TGCL and ObTAM, allowing

very precise and thorough formal semantics to be given to RWSL;

e transformation for all kinds of programs;

object-extraction rules to enable transferring legacy procedural programs to object-

oriented programs;

* abstraction rules for crossing levels of abstraction in a stepwise manner;

* abstraction patterns as a means of describing current abstraction situations and

acquiring expert observations of the target system, and then applying these ob-

servations in further abstraction;

9 dealing with various languages via simple translation followed by automatic re-

structuring and simplification;

an interactive, semi-automatic tool, rather than attempting complete automation,

thereby making good use of human expert knowledge about the software and its

domain;

mechanical checking of the correctness conditions on transformation, object ex-

traction and abstraction, appearing in the tool menus;

using the prototype and manual case studies to demonstrate how the experienced

user solves a problem, and then implementing these methods and heuristics;

9 rapid prototyping development, with the system organised as a collection of ab-

stract machines with formally defined interfaces.

To conclude this thesis: a reengineering approach with an emphasis on reverse

215

engineering using program abstraction is proposed. A supporting tool based on the ap-

9.3. FUTURE DIRECTIONS

proach is developed to speed and to scale up practical reengineering. A formal frame-
work based on ITL semantics was developed and it is implemented in a wide spectrum
language, RWSL. We have formalised program abstraction within a reengineering en-
vironment. The abstraction problem has been addressed by software engineering re-
searchers for some years but dedicated approaches used in a reengineering environment

with both concurrency and real-time features have been non-existing.
The specification produced is then understood and used as basis of enhanced spec-

ification for forward engineering the system. Before proceeding, the specification may
be changed and/or extended with extra non-functional requirement(s) that we require
(e. g. reliability, dependability, limited resources, etc.).

Through the discussion in this thesis, it can be concluded that program abstraction
is a powerful means for reverse engineering and a systematic approach of reengineering

such as the one proposed in this thesis will help reengineering.

9.3 Future Directions

Based on the discussions in former sections, we concluded that the approach has novel

ideas and is successful in reverse engineering. The resulting tool scales up the ap-

proach and is consistent with the approach. In this section, we explore some possible

extensions of the present work.

An ITL specification is rigorous and structured. It provides software engineers with

a good basis for respecification, redesign and further forward engineering. A suitable

graphic model could be developed and integrated with the formal ITL model to give the

target system more intuitive description. This graphic model should also be structured,

and may be hierarchic. It should focus on the overview structure of the target system,

and not include many system details. A mechanism should be developed to keep the

consistency between the ITL model and the graphic model. Any changes in ITL model

should be reflected in the graphic model automatically.

216

Software reuse is an important technique in software development. Component-

9.3. FUTURE DIRECTIONS

based software reengineering covers the study of extracting reusable components from

legacy source code and reusing them in further design and forward engineering. As

stated before, the Reengineering Assistant plans to include the reuse part in a broad

sense. It could be a good and useful research issue how to apply the abstraction-based

reverse engineering technique discussed in this thesis to the extraction of reusable com-

ponents, especially their specifications and documents. The connection or integration

between the current reverse engineering part and the reuse part should be addressed

properly in future study, including both the theoretical approach and practical tool.

The approach and tool aim at dealing with sequential non-timed systems and real-

time systems with parallelism. Although domain features and domain knowledge are

considered carefully during the development, more profound study of specific domain

knowledge could help improve the automation of the tool further. This is because real-

time systems are diversified and complicated, and different sub branches have distinct

217

characteristics.

References

ABD-EL-HAFIZ, S. K., AND BASILI, V. R. A knowledge-based approach to the analysis

of loops. IEEE Transactions on Sojhvare Engineering 22,5 (May 1996).

2. ABELSON, H., AND SUSSMAN, G. J. Structure and Interpretation of Computer Pro-

grams. The MIT Press, McGraw-Hill Book Company, 1985.

3. ABRIAL, J. R., SCHUMAN, S. A., AND MEYER, B. Specification Language Z. Mas-

sachusetts Computer Associates Inc., Boston, 1979.

4. ALUR, R., AND DILL, D. Automata for modeling real-time systems. In M. S. Paterson

editor, ICALP 90: Automata, Languages and Programming, Lecture Notes in Computer

Science (1990), 322-335.

5. ANGER, F. D., RODRIGUEZ, R. V., AND YOUND, M. Combining static and dynamic

analysis of concurrent programs. In Proceedings of the International Conference on Soft-

ware Maintenance (Sept. 1995), IEEE Computer Society Press, pp. 98-99.

6. ANSI. Standard 729. IEEE Standard Glossary of Software Engineering Terminology,

1983.

7. ANTONINI, P., BENEDUSI, P., CANTONE, G., AND CIMITILE, A. Maintenance and

reverse engineenng: Low-level design documents production and improvement. In IEEE

Conference on Software Maintenance-] 987 (Austin, Texas, 1987), pp. 13-24.

8. ANTONIOL, G., FIUTEM, R., MERLO, E., AND TONELLA, P. Application and user

interface migration from basic to visual c++. In International Conference on Software

Maintenance (Nice, Oct. 1995), pp. 76-85.

9.3. FUTURE DIRECTIONS

ARANGo, G., BAXTER, I., FREEMAN, P., AND PIDGEON, C. TMM: Software mainte-

nance by transformation. IEEE Software (May 1986), 27-39.

10. ARNOLD, R. Software Re-engineering. IEEE Computer Society Press, ISBN 0-8186-

3271-2,1992.

11. ARNOLD, R. S., AND BOHNER, S. A. Impact analysis-towards a framework for com-

parison. In Proceedings of the International Conference on Software Maintenance (Sept.

1993), IEEE Computer Society Press, pp. 292-301.

12. ARTHUR, L. J. Software Evolution: The Software Maintenance Chanllenge. John Wiley

& Sons, 1988.

13. AWAD, M., KUUSELA, J., AND ZIEGLER, J. Requirements specification and software

architecture. Embedded Systems Programming Magazine (Oct. 1996).

14. BACHMAN, R. A CASEfor Reverse Engineering. Cahners Publishing Company, July

1988. repfinted from DATAMATION.

15. BAETEN, J. C. M., AND BERGSTRA, J. A. Real time process algebra. Formal Aspects

of Computing 3 (Feb. 1991), 142-188.

16. BALMAS, F. Prisme: Formalizing programming strategies as a way to understand pro-

grams. In Eighth International Conference on Software Engineering and Knowledge En-

gineering (Lake Tahoe, Nevada, June 1996), IEEE Computer Society.

17. BALMAS, F. Toward a framework for conceptual and formal outlines of programs. In

rl_

ruurth Working Conference on Reverse Engineering (Amsterdam, The Netherlands, Oc-

tober 1997), EEEE Computer Society, pp. 226 - 235.

18. BEHFOROoz, A., AND HUDSON, F. J. Software Engineering Fundamentals. Oxford

University Press, 1996.

19. BENNETT, K. H. The software maintenance of large software systems: Management

219

method and tools. Technical report, Durham University, 1989.

9.3. FUTURE DIRECTIONS 220

20. BENNETT, K. H. Software maintenance for the year 2000. In The Sixth European Work-

shop on Software Maintenance (The Centre for Software Maintenance, Durham Univer-

sity, England, 1992).

21. BENNETT, K. H. An overview of maintenance and reverse engineering. In The REDO

Compendium. John Wiley Sons, Inc., Chichester, 1993.

22. BENNETT, K. H., BULL, T., AND YANG, H. A transformation system for maintenance

- turning theory into practice. In IEEE Conference on Software Maintenance-] 992 (Or-

lando, Florida, Nov. 1992).

23. BENNETT, K. H., CORNELIUS, B. J., MUNRO, M., AND ROBSON, D. J. Software

maintenance. In Software Engineer's Reference Book. Butterworth Heinemann, 1991.

pp. 20/1-20/18.

24. BENNETT, K. H., DENIER, J., AND ESTUBLIER, J. Environments for software mainte-

nance. Technical report, Durham University, 1989.

25. BENVENISTE, A., AND HARTER, P. K. Proving real-time properties of programs with

temporal logics. In Proceedings of ACM SIGOPS 8th annual ACM symposium on Oper-

ating systems Principles (Dec. 198 1), pp. 1-11.

26. BERGSTRA, J. A., AND KLOP, J. W. Process algebra for synchronous communication.

Information and Control 60 (Jan. 1984), 109-137.

27. BERTHOMIEU, B., AND DIAZ, M. Modeling and verification of time dependent systems

using timed petri nets. IEEE Transactions on Software Engineering 17 (Mar. 1991), 259-

273.

28. BERZINS, V. Software Merging and slicing. IEEE Computer Society Press, ISBN 0-

8186-6792-3,1995.

29. BILLINGTON, J., WHEELER, G. R., AND WILBUR-HAM, M. C. PROTEAN: a high-

level petri net tool for the specification and verification of communication protocol. IEEE

Transactions on Software Engineering 14 (Mar. 1988), 301-316.

9.3. FUTURE DIRECTIONS

30. MORNER, D., AND JONES, C. B. Formal Specification and Software Development.

Prentice-Hall International, 1982.

31. BROWN, A. Specifications and reverse engineering. Software Maintenance: Research

and Practice 5,3 (1993).

32. BULL, T. An introduction to the WSL program transformer. In IEEE Conference on
Software Maintenance- 1990 (San Diego, California, 1990).

33. BULL, T. Software Maintenance by Program Transformations in A Wide Spectrum Lan-

guage. Ph. D. thesis, Durham University, 1994.

34. BURNS, A., AND WELLINGS, A. $HRT-hood-fTMI$: A structured design method for

hard real-time ada system. Real-time Safety Critical Systems Series 3 (1995).

35. Buss, E., AND ET AL. Investigating reverse engineering technologies for the cas program

understanding project. IBM Systems Journal 33,3 (1994), 477-500.

36. CANFORA, G., CIMITILE, A., AND CARLINI, U. D. A logic based approach to reverse

engineering tools production. In Proceedings of the International Conference on Software

Maintenance (1991), IEEE Computer Society Press, pp. 83-91.

37. CAU, A., CZARNECKI, C., AND ZEDAN, H. Designing a provably correct robot control

system using a 'lean' formal method. In LNCS 1486: the 5th Intemational Symposium,

Formal Techniques in Real-Time and Fault-Tolerant Systems, FTRTFT'98 (Lyngby, Den-

mark, Sept. 1998).

38. CAU, A., AND ZEDAN, H. Refining interval temporal logic specifications. In the

4th AMAST Workshop on Real-Time systems, Concurrent, and Distributed Software

(ARTS'97) (Mallorca, Spain, May 1997).

39. CAU, A., ZEDAN, H., COLEMAN, N., AND MOSZKOWSKI, B. Using ITL and tempura

for large scale specification and simulation. In Proceedings of 4th EUROMICRO Work-

shop on Parallel and Distributed Processing, IEEE (Braga, Portugal, 1996), pp. 493-500.

40. CHAOCHEN, Z., HOARE, C., AND RAVN, A. P. A calculus of durations. Information

221

Processing Letters 40 (05 1991), 269-276.

9.3. FUTURE DIRECTIONS

41. CHAOCHEN, Z., RAVN, A. P., AND HANSEN, M. R. An extended duration calculus for

hybrid systems. Hybrid Systems, R. L. Grossman, A. Nerode, A. R Ravn- H. Rischel(Eds.)
(1993), 36-59.

42. CHENG, B. H. C. Applying formal methods in automated software development. Jour-

nal of Computer and Software Engineering 2 (02 1994), 137-164.

43. CHENG, B. H. C., AND GANNOD, G. C. Abstraction of formal specifications from

program code. In Proceedingsfor the 3rd International Conference on Toolsfor Artificial

Intelligence (1991), pp. 125-128.

44. CHENG, B. H. C., AND JENG, J. J. Reusing analogous components. IEEE Transactions

on Knowledge and Data Engineering (Nov. 1994).

45. CHIKOFSKY, E. J., AND CROSS, II, J. H. Reverse engineering and design recovery: A

taxonomy. IEEE Software (Jan. 1990), 13-17.

46. CHLLAS, B. F. Modal Logic: An Introduction. Cambridge University Press, 1980.

47. CHU, W. C., AND YANG, H. A formal method for software maintenance. In IEEE Inter-

national Conference on Software Maintenance (ICSM'96) (Monterey, CA, Nov. 1996).

48. CIMITILE, A., AND CARLINI, U. D. Reverse engineering: Algorithms for program

graph production. Sofiware Practice and Experience 21 (May 1991), 519-537.

49. CLARKE, E., EMERSON, E. A., AND SISTLA, A. P. Automatic verification of finite

concurrent systems using temporal logic specifications: A practical approach. In Pro-

ceedings of the 10th ACM Symposium on Principles of Programming Languages (1983),

pp. 117-126.

50. CLAYBROOK, B. G. A specification method for specifying data and procedural abstrac-

tion. IEEE Transactions on Software Engineering SE-8,5 (Sept. 1982).

51. CLAYTON, R., AND RUGABER, S. The representation problem in reverse engineering.

In Proceedings of the First Working Conference on Reverse Engineering (Maryland, May

222

1993).

9.3. FUTURE DIRECTIONS

52. COLBROOK, A., AND SMYTHE, C. The retrospective introduction of abstraction into

software. In IEEE Conference on Software Maintenance-] 989 (Miami, Florida, 1989).

53. COLBROOK, A., SMYTHE, C., AND DARLISON, A. Data abstraction in a software re-

engineering reference model. In IEEE Conference on Software Maintenance-] 990 (San

Diego, California, 1990).

54. CROSS, J. H. Improving comprehensibility of ada with control structure diagrams. In

Proceedings of Software Technology Conference (Salt Lake City, Apr. 1994).

55. CROSS, J. H., CHIKOFSKY, E. J., AND MAY, JR., C. H. Reverse engineering. Advances

in Computers 35 (1992).

56. CROSS, J. H., AND HENDRIX, T. D. Using generalized markup and sgml for reverse

engineering graphical representations of software. In Proceedings of Working Conference

on Reverse Engineering (Toronto, July 1995).

57. DIETRICH, S. W., AND CALLISS, F. W. The application of deductive databases to inter-

module code analysis. In Proceedings of the International Conference on Software Main-

tenance (1991), IEEE Computer Society Press, pp. 120-128.

58. DIJKSTRA, E. W. A Discipline of Programming. Prentice-Hall, Englewood Cliffs, New

Jersey, 1976.

59. DIJKSTRA, E. W., AND SCHOLTEN, C. S. Predicate Calculus and Program Semantics.

Springer-Verlag, 1990.

60. EDWARDS, H. M., AND MUNRO, M. White paper on edcs: The evolutionary design of

complex software program. Technical report, DARPA EDCS Project Group, USA, 1996.

61. EIXELSBERGER, W., WARHOLM, L., KLOSCH, R., AND GALL, H. Software architec-

ture recovery of embedded software. In International Conference on Software Engineer-

ing (ICSE'97) (Boston, USA, May 1997).

62. ENGBERTS, A., KOZACZYNSKI, W., AND NING, J. Concept recognition-based pro-

gram transformation. In IEEE Conference on Software Maintenance-] 991 (Sorrento,

223

Italy, 1991), pp. 73-82.

9.3. FUTURE DIRECTIONS 224

63. ETESSAMI, F., AND HURA, G. Rule-based design methodology for solving control prob-

lems. IEEE Transactions on Software Engineering 17 (Mar. 1991), 274-282.

64. FENCOTT, C. Formal Methods for Concurrency. International Thomson Publishing

Company, ISBN 1-85032-173-6,1996.

65. FlUTEM, R., MERLO, E., ANTONIOL, G., AND TONELLA, P. Understanding the archi-

tecture of software systems. In 4th Workshop on Program Comprehension (Berlin, Mar.

1996), EEEE Computer Society Press, pp. 187-196.

66. FRAKES, W. B., AND POLE, P. T. An empirical study of representation method for

reusable software components. IEEE Transactions on Software Engineering SE-20,8

(Aug. 1994), 617-630.

67. FRASER, M. D., KuMER, K., AND VAISHNAVI, V. K. Informal and formal requirements

specification languages: Bridging the gap. IEEE Transactions on Software Engineering

SE- 17,5 (May 199 1)

68. GABRIELIAN, A., AND FRANKLIN, M. State-based specification of complex real-time

systems. In Proceedings of the 9th Real-Time Systems Symposium (Dec. 1988), pp. 2-1 L

69. GALL, H., KLbSCH, R., AND MITTERMEIR, R. Object recovery from procedural sys-

tems for changing the architecture of applications. In IEEE, ACM Third Intemational

Conference for Systems Integration (ICSI '94) (Sao Paulo City, Brazil, Aug. 1994).

70. GALL, H., KLOSCH, R., AND MITTERMEIR, R. Architectural transformation of legacy

systems. In ICSE-17 Workshop on Program Transformation for Software Evolution (Seat-

tle, USA, Apr. 1995).

71. GALLAGHER, K. B., AND LYLE, J. R. Using program slicing in software maintenance.

IEEE Transactions on Software Engineering (Aug. 1991), 751-761.

72. GANNOD, C., AND CHENG, B. H. C. A two-phase approach to reverse engineering using

formal methods. In Proc. of Formal Methods in Programming and Their Applications

Conference (June 1993), Springer-Verlag.

9.3. FUTURE DIRECTIONS

73. GANNOD, C., AND CHENG, B. H. C. Strongest postcondition semantics as a basis

for reverse engineering. In Proc. of IEEE Working Conference on Reverse Engineering,

(Toronto, Ontario, July 1995), pp. 188-197.

74. GANNOD, G. C., AND CHENG, B. H. Facilitating the maintenance of safety-critical

systems using formal methods. The International Journal of Software Engineering and
Knowledge Engineering 4 (Feb. 1994).

75. GOGUEN, J., AND TARDO, J. An introduction to OBJ: A language for writing and testing

software specifications,. In Marvin Zelkowitz editor, Specification of Reliable Software

(1979), 170-189. Reprinted by Addison Wesley in 1985, 'Specification Techniques',

p391-420.

76. GOGUEN, J. A., AND TARDO, J. J. An introduction to OBJ: A language for writing and

testing formal algebraic program specifications. In Software Specification Techniques.

Addison-Wesley Publishing Company, 1986.

77. GRISWOLD, W. G., CHEN, M. I., BOWDIDGE, R. W., CABANISS, J. L., NGUYEN,

V. B., AND MORGENTHALER, J. D. Tool support for planning the restructuring of data

abstractions in large systems. Technical Report CS97-559, Software Engineering Labo-

ratory, University of California at San Diego, 1997.

78. GRISWOLD, W. G., AND NOTKIN, D. Architectural tradeoffs for a meaning-preserving

program restructuring tool. IEEE Transactions on Software Engineering SE-21,4 (Apr.

1995), 275-287.

79. GUTTAG, J., AND HORNING, J. Larch: Languages and Toolsfor Formal Specification.

Springer-Verlag, 1993.

80. HANSSON, H. A. Time and probability in formal design of distributed systems. Real-

Time Safety Critical Systems Series 2 (1994).

81. HAUSLER, P. A., PLESZKOCH, M. G., LINGER, R. C., AND HEVNER, A. R. Us-

ing function abstraction to understand program behaviour. IEEE Software 7,1 (January

225

1990), 55-63.

9.3. FUTURE DIRECTIONS

82. HOARE, C. Communicating sequential processes. COmmunication ofACM 21 (08 1978),
666-677.

83. HOARE, C. A. R. An axiomatic basis for computer programming. Communications of
ACM 12 (Oct. 1969), 576-580.

84. HOARE, C. A. R. Notes on data structuring. In Structured Programming. Academic

Press, Inc., London, 1972.

85. HOARE, C. A. R. Proof of A structured program: The sieve of eratosthenes. Computer

14,4 (1972).

86. HOARE, C. A. R. Communicating Sequential Processes. Prentice-Hall International,

1985.

87. HOLTZBLATT, L. J., PIAZZA, R. L., REUBENSTEIN, H. B., ROBERTS, S. N., AND

HARRIS, D. R. Design recovery for distributed systems. IEEE Transactions on Software

Engineering 23,7 (July 1997).

88. HoOMAN, J. Specification and compositional verification of real-time systems. PhD

Thesis (1991).

89. HOOMAN, J., AND DE ROEVER, W. P. Design and verification in real-time distributed

computing: an introduction to compositional methods. In Proceedings of the 9th Inter-

national Symposium on Protocol Specification, Testing and Verification (North Holland,

1989).

90. HoOMAN, J., RAMESH, S., AND DE ROEVER, W. A compositional semantics for state-

charts. Technical Report (1989).

91. HOWDEN, W. E., AND PAK, S. Problem domain, strutural and logical abstractions in

reverse engineering. In Proceedings of the International Conference on Software Mainte-

nance 1992 (Nov. 1992), EEEE Computer Society Press, PP- 214-224.

92. IEEE. IEEE Standard Collection: Software Engineering. IEEE Inc., New York, 1997.

93. ISO. Information systems processing-open systems interconnection-LOTOS. Techni-

226

cal Report (1987).

9.3. FUTURE DIRECTIONS

94. JAHANIAN, F., AND MOK, A. Safety analysis Of timing properties in real-time systems.

IEEE Transactions on Software Engineering 12 (09 1986).

95. JOINER, J. K., TSAI, W. T., CHEN, X. P., AND SUBRAMANIAN, S. Data-centered pro-

gram understanding. In Proceedings of the International Conference on Software Main-

tenance (Sept. 1994), IEEE Computer Society Press, pp. 272-28 1.

96. JONES, C. B. Software Development: A Rigorous Approach. Prentice-Hall International,

1980.

97. JONES, C. B. Systematic Software Development Using VDM. Prentice-Hall Interna-

tional, Inc., London, 1986.

98. KARLSSON, E. -A. Software Reuse-A Holistic Approach. John Wiley Ltd, ISBN 0471

95489 6,1995.

99. KINLOCH, D. A., AND MUNRO, M. Understanding C programs using the combined C

graph representation. In Proceedings of the International Conference on Software Main-

tenance (Sept. 1994), IEEE Computer Society Press, pp. 172-180.

100. KOREL, B. Computation of dynamic program slices for unstructured programs. IEEE

Transactions on Software Engineering SE-23, I (July 1984), 352-257.

101. KWIATKOWSKI, J., PUCHALSKI, L, AND YANG, H. Pre-processing cobol programs

for reverse engineering in a software maintenance tool. In Ist US Colloquium on Object

Technology and System Re-engineering (Oxford, England, Apr. 1998).

102. LANO, K. The B Language and Method: A Guide to Practical Formal Development.

Springer-Verlag, ISBN 3-540-76033-4,1996.

103. LANO, K. C., AND HAUGHTON, H. P. Formal development in B. Information and

Software Technology 37 (June 1995), 303-316.

104. LAYZELL, P. J., FREEMAN, M. J., AND BENEDUSI, P. Improving reverse engineering

through the use of multiple knowledge sources. Software Maintenance: Research and

227

Practice 7 (1995), 279-299.

9.3. FUTURE DIRECTIONS

105. LEVESON, N. G., AND STOLZY, J. L. Safety analysis using petri nets. IEEE Transac-

tions on Software Engineering 13 (Mar. 1987), 386-397.

106. Liu, X. Abstraction rules for system reverse engineering. Tech. rep., STRL, Department

of Computer Science, De Montfort University, England, November 1997.

107. Liu, X. A design framework for system re-engineering. Tech. rep., STRL, Department

of Computer Science, De Montfort University, England, July 1997.

108. Liu, X. Object extraction rules for system reverse engineering. Tech. rep., STRL, De-

partment of Computer Science, De Montfort University, England, July 1997.

109. Liu, X., CHEN, Z., YANG, H., ZEDAN, H., AND CHU, W. A design framework for

system re-engineering. In the Proceedings of Joint Asia Pacific Software Engineering

Conference and International Computer Science Conference (APSEC'971ICSC'97) (Hong

Kong, December 1997), EEEE Computer Society.

I 10. Liu, X., YANG, H., AND ZEDAN, H. Formal methods for the re-engineering of comput-

ing systems. In the Proceedings of The 21st IEEE International Conference on Computer

Software and Application (COMPSAC'97) (Washington, D. C., August 1997), EEEE Com-

puter Society, pp. 409-414.

111. Liu, X., YANG, H., AND ZEDAN, H. Improving maintenance through development

experiences. In Workshop on Empirical Studies in Software Maintenance (WESS98)

(Metropolitan, Washington D. C., USA, November 1998), IEEE Computer Society.

112. LIVADAS, P. E., AND ROY, P. K. Program dependence analysis. In Proceedings of the

International Conference on Software Maintenance (Nov. 1992), IEEE Computer Society

Press, pp. 356-365.

113. LOGRIPPO, L., MELANCHUK, T., AND WORS, R. J. D. The algebraic specification

language LOTOS: an industrial experience. ACM SIGSOFT Software Engineering Notes

15 (04 1990), 59-66.

114. MAHONEY, B. P., AND HAYES, 1. J. A case study in timed refinement: A mine pump.

228

IEEE Transactions on Software Engineering 18 (09 1992), 817-825.

9.3. FUTURE DIRECTIONS

115. MANNA, Z., AND PNUELI, A. The Temporal Logic of Reactive and Concurrent Systems.

Spfinger-Verlag, ISBN 0-387-97664-7,1996.

116. MCCABE, T. J. A complexity measure. IEEE Transaction on Software Engineering

SE-2,4 (Dec. 1976), 308-320.

117. MEHMET, A., AND WANLI, M. An overview of temporal logic programming. In First

International Conference, ICTL'94, Lecture Notes in AI (1994), vol. 827, Springer-Verlag,

pp. 445-481.

118. MERLIN, P. M., AND SEGALL, A. Recoverability of communication protocols-

implications of a theoretical study. IEEE Transactions on Communications (Sept. 1976),

1036-1043.

I N. MILI, A., MILI, R., AND MITTERMEIR, R. Storing and retrieving software compo-

nents: A refinement-based system. In Proceedings of the l6th International Conference

on Soflware Engineering (May 1994), IEEE Computer Society Press, pp. 91-102.

120. MILLER, H. A., ORGUN, M. A., TILLEY, S. R., AND UHL, J. S. A reverse engineer-

ing approach to subsystem structure identification. Journal of Sojýware Maintenance:

Research and Practice 5 (Dec. 1993), 181-204.

121. MILNER, R. A calculus of communicating systems. LNCS 90 (1980).

122. MILNER, R. Some directions in concurrency theory(panel statement). In Proceedings of

the international Conference on the fifth Generation Computer Systems (1988).

123. MILNER, R. Communication and Concurrency. Prentice Hall, Hertfordshire, 1989.

124. MOSZKOWSKI, B. A Temporal Logic for Multilevel Reasoning about Hardware. IEEE

Computer Society, Feb. 1985.

125. MOSZKOWSKI, B. Executing Temporal Logic Programs. Cambridge University Press,

Cambridge UK, 1986.

126. MYLOPOULOS, J., STANLEY, M., WONG, K., AND ET AL. Towards an integrated

toolset for program understanding. In CAS Conference 1994 Proceedings (CASCON

229

1994) (1994), pp. 19-31.

9.3. FUTURE DIRECTIONS

127. NARAT, V. Using a relational database for software maintenance: A case study. In Pro-

ceedings of the International Conference on Software Maintenance (1993), IEEE Com-

puter Society Press, pp. 244-245.

128. NARAYANA, K. T., AND AABY, A. A. Specification of real-time systems in real-time

temporal interval logic. In Proceedings of Real-Time Systems Symposium (Dec. 1988),

IEEE Computer Society, pp. 86-95.

129. OSTROFF, J. S. Temporal logic for real-time systems. Advanced Software Development

Series (1989).

130. OSTROFF, J. S. Deciding properties of timed transition models. IEEE Transactions on

Parallel and Distributed Systems I (Apr. 1990), 170-183.

131. OSTROFF, J. S., AND WONHAM, W. M. A temporal logic approach to real-time con-

trol. In Proceedings of the 24th IEEE Conference on Decision and Control (Flonda, Dec.

1985), pp. 656-657.

132. PAUL, S., AND PRAKASH, A. Querying source code using an algebraic query language.

In Proceedings of the International Conference on Software Maintenance (1994), IEEE

Computer Society Press, pp. 127-136.

133. PETERSON, J. L. Petri Net Theory and the Modeling of Systems. Prentice-Hall, Engle-

wood Cliffs, NJ, 1981.

134. RAMCHANDANI, C. Analysis of asynchronous concurrent systems by timed petri nets.

Technical Report (Feb. 1974).

135. RAZOUK, R. R., AND PHELPS, C. V. Performance analysis of timed petri nets. In

Proceedings of 4th International Workshop on Protocol Verification and Testing (June

1984).

136. REED, G. M., AND ROSCOE, A. W. Timed CSP: Theory and practice. In REX

Workshop-Real- Time : Theory and Practice (1992), LNCS Springer-Verlag.

230

137. REISIG, W. Petri Nets: an Introduction. Springer-Verlag, Berlin, 1985.

9.3. FUTURE DIRECTIONS

138. RESCHER, N., AND URQUHART, A. Temporal logic. Library of Exact Philosophy

(1971).

139. RUGABER, S., ORNBURN, S. B., AND JR. RICHARD J. LEBLANC. Recognizing design

decisions in programs. IEEE Software (Jan. 1990), 46-54.

140. SCHNEIDER, G. M. Advanced Programming and Problem Solving with PASCAL. John

Wiley & Sons INC, 1987.

141. SCHNEIDEWIND, N. F., AND EBERT, C. Preserve or redesign legacy systems. IEEE

Software 15,4 (1998).

142. SCHOLEFIELD, D. A refinement calculus for real-time systems. PhD thesis (1992).

143. SCHOLEFIELD, D., AND ZEDAN, H. TAM: A temporal agent model for distributed real-

time systems. In EUROMICRO'90 Workshop (North Holland, Aug. 1990).

144. SCHOLEFIELD, D., AND ZEDAN, H. TAM: A formal framework for the development

of distributed real-time systems. In Symposium on Formal Techniques in Real-Time and

Fault Tolerant Systems (Nijmegen, Netherland, Jan. 1992).

145. SCHOLEFIELD, D., ZEDAN, H., AND HE, J. A specification-oriented semantics for the

refinement of real-time systems. Theoretical Computer Science 130 (Aug. 1994).

146. SERE, K., AND WALDEN, M. Reverse engineering distributed algorithms. Software

Maintenance: Research and Practice 8 (1996), 117-144.

147. SITARAMAN, M., WEIDE, B-W., AND OGDEN, W. F. On the practical need for abstrac-

tion relations to verify abstract data type representations. IEEE Transactions on Software

Engineering 23,3 (March 1997).

148. SNEED, H. M. Planning the reengineering of legacy systems. IEEE Software 12,1

(January 1995).

149. SNEED, H. M., AND JANDRASICS, G. Inverse transformation of software from code

to specification. In IEEE Conference on Software Maintenance-] 988 (Phoenix, Arizona,

231

1988).

9.3. FUTURE DIRECTIONS

150. SOLOWAY, E., AND EHRLICH, K. Empirical studies of programming knowledge. IEEE

Transaction on Software Engineering SE-10,5 (Sept. 1984), 595-609.

151. SOWMYA, A., AND RAMESH, S. Extending statecharts with temporal logic. IEEE Trans-

action on Software Engineering 24,3 (Mar. 1998), 216-227.

152. SPIVEY, J. M. Understanding Z. Cambridge University Press, 1988.

153. SWANSON, E. B. The dimension of maintenance. In Second International Conference

on Software Engineering (Los Alamitos, Califomia, 1976), IEEE Computer Society.

154. TILBORG, A. M. V., AND KOOB, G. M. Foundations of Real-Time Computing-Formal

Specification and Methods. Kluwer Academic Publishers, ISBN 0-7923-9167-5., 1991.

155. TILLEY, S. R., WONG, K., STOREY, M. A. D.,
, AND MILLER, H. A. Programmable

reverse engineering. International Journal of Software Engineering and Knowledge En-

gineering (Dec. 1994), 501-520.

156. TURNER, K. J. DELL-digital logic in LOTOS. Formal Description Techniques, FORTE

VII (Oct. 1993).

157. VAN EIJK, P. H. J., VISSERS, C. A., AND DIAZ, M. The Formal Description Technique

LOTOS. Elsevier Science Publishers, 1989.

158. WARD, M. A definition of abstraction. Technical report, Durham University, 1992.

159. WARD, M. Abstracting a specification from code. Software Maintenance: Research and

Practice 5 (1993), 101-122.

160. WARD, M., MUNRO, M., AND CALLISS9 F. W. The maintainer's assistant. In IEEE

Conference on Software Maintenance-] 989 (Miami, Florida, 1989), pp. 307-315.

161. WILSON, G. V. Practical Parallel Programming. The MIT Press, ISBN 0-262-23186-7,

1995.

162. WORDSWORTH, J. Software Engineering with B. Addison Wesley Longman, ISBN 0-

232

201-40356-0., 1996.

9.3. FUTURE DIRECTIONS

163. YANG, H. The supporting environment for A reverse engineering system - the main-
tainer's assistant. In IEEE Conference on Software Maintenance- 1991 (Sorrento, Italy,

Oct. 1991), pp. 13-22.

164. YANG, H. Acquiring Data Designsfrom Existing Data Intensive Programs. Ph. D. thesis,

Durham University, 1994.

165. YANG, H. Formal methods and software maintenance - some experience with the RE-

FORM project. In Workshop on Formal Methods, Position Paper (Montery, USA, Sept.

1994).

166. YANG, H., AND BENNETT, K. H. Extension of A transformation system for maintenance

- dealing with data-intensive programs. In IEEE International Conference on Software

Maintenance (ICSM '94) (Victoria, Canada, Sept. 1994).

167. YANG, H., AND BENNETT, K. H. Aquairing entity-relationship attribute diagrams from

code and data through program transformation. In IEEE International Conference on

Software Maintenance (ICSM '95) (Nice, France, Oct. 1995).

168. YANG, H., Liu, X., AND ZEDAN, H. Tackling the abstraction problem for reverse engi-

neering in a system re-engineering approach. In the proceedings of the IEEE Conference

on Software Maintenance (ICSM'98) (Metropolitan, Washington D. C., USA, November

1998), IEEE Computer Society.

169. YANG, H., AND LUKER, P. Measuring abstractness for reverse engineering in a re-

engineering tool. In IEEE International Conference on Software Maintenance (Bari, Italy,

October 1997).

170. ZEDAN, H., AND HEPING, H. An executable specification language for fast prototyping

parallel responsive systerns. Computer Language Vol 22 (01 1996), 1-13.

171. ZHOU, S., YANG, H., LUKER, P., AND HE, X. A useful approach to developing reverse

engineering metrics. In IEEE Computer Software and Application Conference (COMP-

233

SAC'99) (Arizona, USA, Oct. 1999).

9.3. FUTURE DIRECTIONS

172. ZUSE, H. Software Complexity - Measures and Methods. Walter de Gruyter, New York,

234

1991.

Appendix A

Proofs

A. 1 Monotonicity of Abstractions

Assume D ý: f C and A ý: f B. Let (D be a context, 0 is monitonic with respect to ý: f if

D'ý.) A ý: f C (D S where (D =AIV =ý-(conclusion part). Since 11= A, 11 does

not need to be proved separately.

The proof is as follows:

f=WA: (D is monotonic with respect to ý-wA.

ýD A Aý = ýDý A ýAý

RD AR Bý (with RAý R13ý)

RC AR 13ý (with RDý

==ý, A 13ý

hence, E) AA >-wAC AB

ýDVAý = ýDý VýAý

ýE) v Bý (with ýAý =: ý

ýC V Bý (with ýDj ==>-

=*

hence, DVA >-wAC V 13

A-1. MONOTONICITY OF ABSTRACTIONS

ýV; RAý

ftV; ftB}I

=ftC; B]

(with ýAý =: ý ýBý)

(with ýDý =: ý ýCý)

hence, D; A >- wA
C;

ýD =#ý Aý = --, ýDý V(ýD ýAý

--, ý'D ý V(ýD

hence, D =: ý> A >-wAD =: ý> B

(with ýAý =: ý, ýBý)

(with ýAý =: ý ýBý)

=: >. ýD =: > Bý (with ýDý ==>. ýCý)

hence, C ==ý A >-wAD =ý>

Hence, E) (ý) A >- wACOBfor(D=AIV 1; 111

and E) (: D A >- wAD oB for (D = =ý-

f=TA: 0 is monotonic with respect to >-TA if (ý) is monotonic with respect to RT;

Assuming that

AB == T(T (A), T(B)) A ý-T A (ýAý AR

D >-TAC " QDý ýCj) A RT(T(D), T(C))

Hence, we have ýAý =: >- ýBý, i. e., A ý-wA S as part of the definition,

and, ýDý --=ý> RCý, i. e., D >-wAC as part of the definition.

Since WA is monotonic over 0,

236

Hence, ý(D G) A)ý =: ý- ý(C 0 B)ý

A-1. MONOTONICITY OF ABSTRACTIONS

From the above definitions, we have RT(T (A), T(L3)) and RT(T(D), T(C))

For the RTover which ýý-) is monotonic, RT(T(D (D A), T(C (ý) 13)) is also true,

Hence, 'D (--) A >-TAC 0 L3

f=SA: G) is monotonic with respect to >-sA ;
Assuming

D ý-- sAC "' ýDý =ý ýQ and #seq-op(D) > #seq-op(C)

or #par-op(D) > #par-op(C), and

A >-sA B= A ý8ý and #seq-op(A) > #seq-op(L3)

or #par-op(A) > #par-op(S)

Hence, we have RAý ==ý> RBý, i. e., A >-wAB as part of the definition,

and, ýDý =3; - ýQ, i. e., D >-wAC as part of the definition.

Since WA is monotonic over (ý),

Hence, ý(D (ý) A)ý =: ý ý(C o B)ý

From the above definitions, we have

#seq-op(D) > #seq-op(C) or #par-op(D) > #par-op(C), and

#seq-op(A) > #seq-op(B) or #par-op(A) > #par-op(B)

Hence, there must be:

#seq-op(D 0 A) > #seq-op(C B), or

#par-op(D (D A) > #par-op(C B)

Hence, combine the two sub-conclusions, we have:

VOASAC®B

f=HA:

Assume A >-HA BL (3 x-ý, 4ý) ==ý ýBý and
" (3y D >-HA C=

237

Since WA is monotonic with respect to (D

A. 2. RELATIONS BETWEEN ABSTRACTIONS

Hence, R(D o- A)ý =: ý. ý(C o 13)ý

Since El is extensible over V and ;

Hence, (3 x, yo ýD v Aý) =* ýC v Sý

and (I x, y9 ýD ; Aý) =: ýý ýC ; Sý

However, since El is not extensible over A and therefore =t,

Hence, (3 x, y- RD A Aý) ==ý, RC A Bý is false

and, (3 x, y- ýE) =: ý. Aý) =#ý ýC =:: >. Bý is false

f=DA on r: (--.) is not monotonic with respect to >-DA.

Here is a counter example to the monotonicity.

Assume that Al >-DA-,, Al, and -42
>--DA-r2

-4/2 2,

However, r, is not applicable on A2 and r2 is not applicable on A,

Hence, A, ýýDA-r2X, and A2 ýý-DA-rj X
1 29

here A" and A" represent any possible representations. 12
Therefore, A, G) A2 ýý-DA-rjA'j (ý) A" and 2

A, G) A2 ý4- DA - r2 All 0 A' 12
Hence, both C; V(Al, A2) tm, CX (A', A") and 12

// AI) C, y (Ali A2) ý--DA-r2 CX(Al) 2

are false.

A. 2 Relations between Abstractions

Proof:

238

1. If A ý-TAB then A >-wA B

A. 2. RELATIONS BETWEEN ABSTRACTIONS

Since A >-TAB
=/' (ýAý =: ý ý8ý) A RT(T (A), T(13))

Hence, A >-TA S =:: ý, (ýAý =zý. ý13ý)

From the definition of weakening abstraction: A ý- wA B =A (ýAý =--ý ýBý)q

therefore, A >-TA B =: ý A >- wA B

2. There are two kinds of SA:

(a) Structural abstraction on sequential composition:
Cl ý-'-SA C =A ýCý ýCý and #seq-op(C) > #seq-op(C), and

(b) Structural abstraction on parallel composition:
Cl >-'-SA C and #par-op(C) > #par-op(C).

Both the definitions have ýC'ý ==ý ýCý as a part of them.
A Since weakening abstraction is defined as: C' >-wA C= Wl

=ý-
M)

hence, C' t-SA C :: ý Cl '--WA C

3. HA:

From HA definition A (3x - ýAý) HA B

we have: ýAý
A QAý Since weakening abstraction is defined as: A >-wA B

Hence, A >-HA B =: ý> A >- wA B

4. DA:

When r is recursive, DA degrades to WA. However, this contradicts with te

healthiness obligation and is not allowed in practical reverse engineering.

DA is defined as: A ý-DA-r B 2-ý- rQAý) =: ý ýBý

239

4

A. 3. FURTHER ABSTRACTION RULES 240

wherer= j(x, y) x CX, YCY, X- Istatesof Al, Y= Istatesof 1311.

If r-I (x, y) :xyAxCX, yCY, X states of A 1, Y states of L31 I

then r(ýAý)

Hence, ýAý

Hence, A >-wA B

A. 3 Further Abstraction Rules

The following proof is based on weakening abstraction, that is, >- is assumed as ý-wA.

1. Transitive

13
8 ý-

AC

This rule indicates that abstraction relations are transitive.

Proof:

Since A >- B, we have ýAý

Since B ý- C, we have ýBý

Hence, ýAý =: ý- ýCý

Hence, A >- C

2. Monotonic

AL3
1) >-

CX = Al V 1; 111

CX(Aý D) >- CX(L3, C)

A. 3. FURTHER ABSTRACTION RULES

The proof is given in the appendix "Monotonicity of Abstraction"

3. Sequence Folding

RA; 8ý :: ý ýA A Sý

B>-AA13

If no contradiction is caused when substituting the sequential composition be-

tween two representations to conjunction composition, then the sequence can be

folded through conjunction.

Proof:

From the premise, ýA ; 8ý has no contradiction with ýA A 5ý

Therefore, we have ýA ; Bý ==ý ýA A 13ý

Hence, A; B >- AAB

4. Specification Combination

(WI 4)1) A (W2: ýD2) (WI U W2): 4(Dl A'1)2

(WI 41ý 1) V (W2 : 4) 2) >- (Wi U W2) : 4)l V ýý2

Proof:

Since W-fA frame (W) Af

Hence (WI (Di) A(W2 41)2) = (firame(WI) AcD,) A (frame(W2) A(P 2)

Hence (WI (P 1)
A(W2 'ýP 2)= (frame(WI) Afirame(W2)) A ('I)l A4)2)

Hence (Wi : (DI) A(W2 : 41ý2) = (frame(Wi U W2)) A ((Pi A41)2)

Hence (W, : 4)1) A (W2: 4)2) - (WI U W2): (Di A 'ýD 2

Since W. f '-ý-frame(W) Af

Hence (WI : (DI) V (W2: 41)2) - (frame(Wi) A (DI) V (frame(W2) A'ýN)

241

A. 3. FURTHER ABSTRACTION RULES

Since (frame(WI) A 4)1) V (frame(W2)A 'C: ý 2)::: ý

(frame(Wi) Aframe(W2)) A ((I)l V ('N)

Hence (WI (ýI) V (W2 : ýý2) (frame(Wl U W2)) llý
(41ý1 V 41)2)

Hence (WI 4)1) V (W2: 4)2) (Wl U W2): 41ý1 V'ýN

Hence (WI (1) 1) V (W2 : 4)2) (Wl U W2) : 'I) IV (D2

5. Weakening

This is a quite general abstraction rule, which includes the following sub rules:

o State Test and Exception Handling

9 User Interface Format

* Semantic Core

o Concise Specification

* Comment Revise

o Trivial Elements

* Domain Function

9 Efficiency-Improving Details

The general formal representation of these rule is as follows:

(1) =ý- T

Proof:

Since A >- 4), hence ýAý ==ý 4b

From the premise, we have ýD =: ý T

Hence, RAý =ý> T

Hence, A >- T

242

A. 3. FURTHER ABSTRACTION RULES

6. Conjunction

A>-W

AAW

Proof:

Since A >- 4), hence ýAý

Since A >- T, hence ýAý

Hence, ýAý =: ý- 4D AT

Hence, A >- (D AT

7. Specification

(W : ýD) A stable (s) = (W - s) : (P (if s not in fl

Proof:
1ý Since W: f= firame(W) Af

Hence (W: (D) A stable (s) =frame(W) A (D A stable (s)

Since stable (s) and s not in (P

Hencefirame(W) A 4) A stable (s) =frame(W - s) A (D

Hence (W: (P) A stable (s) : =firame (W - s) A ýD

Hence (W : (D) A stable (s) = (W - s) : ýD

This rule eliminates the redundant variables in a specification.

8. Sequential

8.1 empty ;A-A=A; empty

243

8.2 A; (B ; C) - (A ;

A. 3. FURTHER ABSTRACTION RULES

8.3 A,; (A2V A3)
I

A4 (Al; A2; A4) V (Al; A3; A4)

Proof:

empty; A=A=A; empty is an ITL axiom.

A -, (S; C) = A; S; C

(A; S); C =A; S; C

Hence, A; (13 ; C) = (A; B) ;C

From the formal semantics of f, ; f2, there must be

A,; (A2vA3)
;

A4 ý:: (Al; A2; A4) V (AI; A3; A4)

These rules indicate that sequential composition operator has empty as a unit and

is associative and distributive over nondeterministic choice.

9. Delay

del3Yd,; delaYd2 = delaYdl+d2

skip = delay,

Proof:

Since del4d len =d

Hence del'3Ydl; del'3Yd2= (len = di ; len =
d2)

- (len - di + d2)

Since del2lYdl+d2 - (len = di + d2)

Hence delaYdi; delaYd2 - delaYd, +d2

skip 2-ý- len =I
delay, = (len -

Hence skip = delay,

244

A. 3. FURTHER ABSTRACTION RULES

10. Parallel

10.1 AS-8 11 A

10.2 A (S 11 C) = (A L3) 11 C

10.3 A true =A
10.4 A (B V C) (A L3) V (A 11 C)

10.5 AS ý- A' B, for any S if A ý- A'

10.6 (G =ýý 41)1) 11 (G' =: ý 4)2) ý-- (G A G) ::: * ql)l A(ý 2

Proof:
1ý The basis of the proof of the above rules is P 11 Q=PA

All S= A AS

-BAA

=BIIA

All (B IIC)=AA(BAC)

(A A B) AC

C

true= AA true

A 11 (B v C)= AA (B v C)

(A A B) V (A A C)

(All L3)V(All C)

A

245

From premise, there is A >--

A. 3. FURTHER ABSTRACTION RULES

Hence, A =: ý

Hence, AAB =* A' AB

Hence, AAS >- A' A 13

Hence, A 118 >- Al 118

(G = i) (G' = 2) (G = i) A (G' = 2)

GV ýD 1) A (--i G'V 'ýD 2)

GA --, G') V (---, GA ýý 2) V ((D 1A --i G') V (41ý 1A qb 2)
(G A G) 7* 11)1 A (1ý2: --::: --, (G A G) V ((Di A ýD2)

=V-, G') V ((T)l A (N)

246

Since (--, G A ---, G') V (-, G A (D2) V (4), A --lG') V (41)1 A'1)2) =: ý> (-7G V -G) V (4), A (1)2)

Hence (G 41) (G' =-> ýN) =--> ((G A G') =ý> 'Clý IA 41)2)

Hence (G (P (G' =: ý (D2) >- (G A G') =: ý (D 1A ýD2

11. Signal

11.1 (A>n L3) 11 (C >n -D) = (All C) >n (L3 11 -D)
-S -S -S

11.2 A >n (C >O 13) =A >n 13
-s -s

Proof:

>'A2
A

-, stable (ý, / s) ,
A2) In ITL, A, LS = (At A stable (, Is) ; A,) v (At A

Hence (A >n 13) 11 (C >n -D) = (A >n L3) A(C >n -D)
-S -S -S -S

((An A stable (, Is) ; A) V (An A -, stable (, Is) ; B)) A

((, An A stable (, \Ils) ; C) V (An A -7 stable (, v1s) ; 'D))

= (An A stable (. Vs) ; A) A (An A stable (Vs) ; C)V

(An A stable (. \Is) ; A) A (An A --, stable (, Is) 'D)V

(An A --, stable (Vs) ; 8) A (An A stable (-ýs) C)V

(An A --, stable (. \Ils) ; B) A (An A -, stable (, v1s) D)

A. 3. FURTHER ABSTRACTION RULES

Since stable (, ý/ s) A (--, stable (V s)) =false
Hence (A >n B) 11 (C >n -D)

S -S
= (An A stable (Vs) (A A C)) Vjalse Vjalse V (An A --, stable (Vs) ; (B A D))

= (An A stable (-, / s) (A A C)) V (An A- stable (, / s) ; (B A D))

= (A AC) >n (BA D)
-S

= (All C) >n (B 11 D)
-S

A >n (C >' B) = (An A stable (v1s) A)
S -S

(An A --, stable (Vs) ; (AO A stable (Vs) ; C) v (AO A -, stable (. \Is) ; 8))

Since shunt s can not change within 0 time unit,

stable (ý, / s) will keep its original state when AO

Hence A >n (C >' 8) = (An A stable (ý, / s) ; A) v (An A -, stable s) ; S)
-S -S

Hence A >n (C >' B) =A
>n L3

-S -S -S

12. Non-deterministic choice

12.1 PVP=P

12.2PVQ- QVP

12.3 PV (Q V IZ) = (P V Q) V IZ

12.4 true VP= true

Proof:

Normal first order logic axioms.

13. Iteration

Pn+
IA=--A; PnA==PnA; A

Proof:

247

1j'n + 1A= (A)Pn+l

A. 3. FURTHER ABSTRACTION RULES

- (A)4,,; A

- p, A; A

A= (A)",, +l
A; (A)fLn

A; (p,, A)

248

Appendix B

Code/Specification of Case Studies

B. 1 Lexical Scanner

B. 1.1 Source Code in PASCAL

The source code of the lexical scanner in section 8.2 is as follows:

program scanner (input, output);
const

debug = false; {debug flag)

maxcharsperline = 140; (max characters per linel

maxexponent = 200; (allowable exponent for real numbersl
quote = I'll; {for literal stringsl
tokenlenmax = 80; (token buffer size)
version = 'scannerO. 4-a basic lexical scanner,;

type
tokenclass =

(delimiter, identifier, integerconstant,
literal, realconstant, tendoffile, tendofline);

tokenrec
record

blankptr : 0.. tokenlenmax;
{used to blank fill buffer}

tbptr : 0.. tokenlenmax; {index of last char added}
tokenbuf f er: 0. . packed array [1. . tokenlenmax] of char;
case class : tokenclass of

integerconstant : (integervalue: integer);

realconstant : (realvalue: real)
end; {of case and record tokenrec)

errorclass =
(errnone, erroct, errnodigit, errbigint, errexposize,

errexpochar, errmissingquote, errlongliteral, errlast);
lineindex = O.. maxcharsperline;
linebufrec =

B. I. LEXICAL SCANNER

var

record
ch char; {the line buffer char}
charptr lineindex; {next char to be processed)
echo boolean; {true->echo each line to output)
endoffile boolean; {true->at end of file)
endofline boolean; {true->at end of line)
errorline array[lineindex) of errorclass;
errorset set of errorclass; {for the whole file}
fileerror boolean; {true if the file had an error)
length lineindex; {length of line)
line array[lineindex] of char;

{the one line buffer)
linecount integer; {counts input lines)
lineerror boolean;
{set true if an error is found on the line)
pfrac lineindex;

{ptr to first digit of frac part}
pint line index;

{ptr to first nonezero char of number}
pnum. lineindex;

{ptr to the first char of a number}
end; {of record linebufferec)

linebuffer linebufrec; {a one line buffer)
token tokenrec; {holds a lexical tokenj

{initialize

}
initialize line buffer

procedure initialize(var linebuffer: linebufrec);

var
i lineindex; {loop index)

begin
if debug then writelnPinitializingh line buffer');

with linebuffer do
begin

echo: = true; (we will echo the input lines)

lineerror: = false;
linecount: = 0;
for i: = 0 to maxcharsperline do

begin
line[il := '';
errorline[il := errnone

end; (of for}

errorset: =
fileerror: =
endoffile: =
endofline: =
pnum

end {of withl
end; (of proced

(getnextline

false;
false;
true;
0

ure initialize)

read a new line into the linebuffer

}

250

procedure getnextline(var linebuffer: linefufrec);

B. I. LEXICAL SCANNER

write a line and its line number to output

procedure printline(var linebuffer: linebufrec);
var

i lineindex; {loop index)
begin

with linebuffer do
begin

write(linecount: 6, '');
for i: = 1 to length do write(line[i]);
writeln

end
end; (of procedure printline}

(printerrorline

print pointers to errors, add to errorset,
clear lineerror

procedure printerrorline(var linebuffer: linebufrec);
var

column integer; {output column number}
i integer; {loop index}
i integer; {loop index}

num integer; (ord(errclass))
begin

column: = 0;

with linebuffer do
begin

printline(linebuffer); (this could be removed later)

write('*****,: 6,11); {space over line number)
for i: =1 to length +1 do

if errorline[i]<>errnone then
begin

errorset: = errorset+[errorline[ill;
num: = ord(errorline[il); ferrornumber)
if i>column then
begin

for j: = column +2 to i do write(''); {tab)

write('I');
column: = i

end
else
begin

write(', ');
column: = column +1

end
write(num: 1); {use a1 or 2 char field}

column: = column+l;
if num>9 then column: = column+1;
errorline[il: = errnone

end; {of if and for)

writeln;
lineerror: = false;
fileerror: = true

end {of with}
end; (of procedure printerrorline)

begin {of procedure getnextline}
if debug then writeln('getting new line');

with linebuffer do

251

B. I. LEXICAL SCANNER

begin
if lineerror then Printerrorline(linebuffer);
(last line had errors)
if not eof(input) then {read the file}
begin

length: = 0;

while not eoln(input) do
(line overflow assumed impossible)
begin

length: = length+1;

read(input, line[length])

end;
readln(input); (get next line so eof can be checked)

(delete any trailing blanks)
line[01: = '*';
while line[lengthl='' do length: = length-1;
line[length+11: = 'I; {ensure endofline returns blank)

linecount: = linecount+l;
if echo then printline(linebuffer);

charptr: = 1;

ch: = line[charptr];

endofline: = (charptr>length)

end (not eof}
else endoffile: = true

end (with)

end; (of procedure getnextline}

{alphabetic

}
function to determine if a character is a letter

function alphabetic(ch: char): boolean;
begin

alphabetic: = ch in Pa'.. 'z']
end; {of function alphabetic}

{numeric

I
function to determine if a character is a digit

function numeric(ch: char): boolean;
begin

numeric: = ch in ['0'.. '9'1
end; {of function numeric}

{getnextsymbol

find next token in linebuffer

procedure getnextsymbol(var linebuffer: linebufrec;

var token: tokenrec);

(Puterror

place error message at the current buffer pointer

252

procedure puterror(error: errorclass;
var linebuffer: linebufrec);

B. 1. LEXICAL SCANNER

begin
with linebuffer do
begin

lineerror: = true;
errorline(charptrl: = error

end
end; (of procedure puterror)

(blankf ill

}
ensure that the token buffer is blank filled

procedure blankfill(var token: tokenrec);
begin

with token do
begin

while blankptr>tbptr do
begin

tokenbu ff er [blankptr I=II-
blankptr: = blankptr-1

end;
blankptr: = tbptr

end {of with}
end; {of procedure blankfill}

{getnextcharecter

}

read next character from line buffer
and advance pointer

porcedure getnextchar(var linebuffer: linebufrec);
begin

with linebuffer do
begin

if endofline then
if eof(input) then endoffile: = true
else getnextline(linebuffer)

else
begin

charptr: = charptr+l;
if charptr>length then endofline: = true

end
ch: = line[charptr]

end (of with)
end; {of procedure getnextchar)

(scanidentifier

)

scan alphanumeric characters
(copying them to tokenbuffer)

porcedure scanidentifier(var linebuffer: linebufrec;

var token: tokenrec);
begin

if debug then writeln(Iscanning identifier');

with linebuffer, token do
begin

class: = identifier;

253

B. I. LEXICAL SCANNER 254

tbptr: = 0;
repeat (first char is known to be alphabetic)

if tbptr<tokenlenmax then
begin

tbptr: =tbptr+l;
tokenbuffer[tpbtr]: = ch

end;
getnextchar(linebuffer)

until not (alphabetic(ch) or numeric(ch))
end {with}

end; {of procedure scanidentifier)

procedure scannumber(var linebuffer: linebufrec;
var token: tokenrec);

var
i: integer;

(convinteger

convert part of linebuffer to an integer
(with no overflow)

}

procedure convinteger(var linebuffer: linebufrec;
base: integer;

maxint: integer;
first, last:
lineindex;

var n: integer);

var
digit : 0.. 9; {holds a single digit's worth}
i integer; {loop index)

x real; {used to check for overflow}

begin

n: = 0,

X: = 0.0;
i: = first;

while i<last do
begin

digit: = ord(linebuffer. line[il)-ord('O');
if digit >= base then
begin

puterror(erroct, linebuffer);
i: = last {terminate loop}

end;

x: = x*base+digit;
if x<= maxint then n: =n*base+digit
else
begin

puterror(errbigint, linebuffer);
i: = last

end;
i: = i+1

end (of while}
end; {of procedure convinteger)

(scaninteger

scan a decimal integer

B. I. LEXICAL SCANNER

procedure scaninteger(var linebuffer: linebufrec;
var token: tokenrec);

begin
with linebuffer, token do
begin

with linebuffer, token do
begin

class: = integerconstant;
convinteger(linebuffer, 10, maxint,

pint, charptr, integervalue)
end

end; {of procedure scaninteger)

(scanoctal

}
scan an octal number

procedure scanoctal(var linebuffer: linebuffrecý
var token: tokenrec);

begin
with linebuffer, token do
begin

class: = integerconstant;
convinteger(linebuffer, 8, maxint, pint,

charptr, integervalue);
getnextchar(linebuffer) {skip 'bl)

end
end; {of procedure scanoctal)

(scanreal

scan a real number with/without exponent

procedure scanreal(var linebuffer: linebufrec;

var token: tokenrec);
var

expo integer;
fac real; {used to compute power of 10)
i integer;

negexp boolean; (true if exponent is <01
nexpo integer; {normalised exponentj
r real; {used to compute power of 10)

scale integer;

x real; {accumlator)

begin
if debug then writeln('scanning real number');

with linebuffer, token do
begin

class: = realconstant;

(do integer part, overflow assumed impossible)

X: = 0.0;
expo: = 0;
for i: = pint to carptr-1 do

x=x*10.0+ord(line[i]-ord('O');

nexpo: = charptr-pint;
scale: = 0;
if ch=,., then
begin

getnextchar(linebuffer); {skip'. ')

255

B. I. LEXICAL SCANNER

pfrac: = charptr;
if numeric(ch) then

repeat
scale: =scale-1;
x: =x*10.0+ord(ch)-ord('O,);
getnextchar(linebuffer)

until not numeric(ch)
else puterror(errnodigit, linebuffer);

(check if we must find first nonzero digit)
if nexpo=O then (integer part was zero)
begin

i: = pfrac;
while line[i]= '0' do i: =i+l;
nexpo: = pfrac-i {=trunc(log1O(x)))

end
end; {fractional partj

(do we have an exponent?)
if ch='e' then
begin

negexp: = false;

getnextchar(linebuffer); {skip ell
if ch='-' then
begin

negexp: =true;
getnextchar(linebuffer) (skip

end
else if ch='+' then getnextchar(linebuffer);

(build exponent)
if numeric(ch) then
begin

repeat
expo: = expo*10+ ord(ch)-ord(IOI);
getnextchar(linebuffer)

until not numeric(ch);

(adjust scale and nexpo)
if negexp then
begin

scale: = scale-expo;
nexpo: = scale-expo

end
else
begin

scale: = scale+expo;
nexpo: = scale+expo

end
end
else puterror(errexpochar, linebuffer)

end; (exponentl

{compute 10**scale using right to
left binary method)

if abs(nexpo)<=maxexponent then
if scale<>O then {must adjust exponent)
begin

r: = 1.0;

negexp: ý scale<O;
scale: = abs(scale);
fac: = 10.0;

repeat
if odd(scale) then r: =r*fac;
fac: =sqr(fac);
scale: = scale div 2

256

B. I. LEXICAL SCANNER

until scale=O;
if negexp, then realvalue: = x/r
else realvalue: = x*r

end (apply exponent)
else realvalue: =x

else puterror(errexposize, linebuffer)
end (of with)

end; {of procedure scanreal)

begin (of procedure scannumber)
if debug then writeln('scanning number');
with linebuffer, token do
begin

tbptr: = 0; (reset token buffer pointer)
pint: = charptr; {first nonzero char}

{scan integer part}
while numeric(ch) do getnextchar(linebuffer);

if ch<>'b' then
begin

if not((ch=,,,) or (ch='e')) then
scaninteger(linebuffer, token)

else scanreal(linebuffer, token)
end
else scanoctal(linebuffer, token);

(copy number into token buffer)
i: = pnum;
tbptr: = 0;

while(i<charptr> and (tbptr<tokenlenmax) do
begin

tbptr: = tbptr+l;
tokenbuffer[tbptrl: = line[i];
i: =i+l

end; {of copy)

pnum: =O tenable getnextlinel
end {with)

end; (of procedure scanumber)

iscanliteral

}
read in a literal string

procedure scanliteral(var linebuffer: linebufrec;

var token: tokenrec);

var
working boolean; (true if the closing quote

has not been found}
begin

if debug then writenln (I scanning literal');

with linebuffer, token do
begin

class: = literal;
tbptr: = 0;

getnextchar(linebuffer); (skip first quote}

working: = true;

while working and not endofline do

begin
if ch=quote then {is it two in a row?)

begin

getnextchar(linebuffer);
{if ch is a quote, continue since it

257

B. I. LEXICAL SCANNER

is and imbedded one)
working: = ch= quote

end;
if working then
begin

if tbptr<tokenlenmax then
begin

tbptr: = tbptr+l;
tokenbuffer[tbptrl: = ch;
getnextchar(linebuffer)

end
else (string too long)
begin

puterror(errlongliteral, linebuffer);
while (ch<>quote) and not endofline do

getnextchar(linebuffer);
(skip over string)

if ch=quote then
getnextchar(linebuffer);

working: = false
end {overflow)

end (of if working}
end; (of while)
if working then

puterror(errmissingquote, buffer)
end (with)

end; (of procedure scanliteral}

(scandelimiter

put ch into token buffer and advance

procedure scandelimiter(var linebuffer: linebufrec;

var token: tokenrec);
begin

if debug then writeln(Iscanning delimiter');
token. class: = delimiter;
token. tbptr: = 1;
token. tokenbuffer[token. tbptrl: = linebuffer. ch;
getnextchar(linebuffer)

end; (of procedure scandelimiter)

{scanendofline

}
return end of line status

procedure scanendofline(var linebuffer: linebufrec;

var token: tokenrec);
begin

if debug then writeln(Iscanning end of line');

token. class: = tendofline;
token. tbptr: = 0

end; {of procedure scan endofline)

(scanfileend

I
return end of file status

258

procedure scanfileend(var linebuffer: linebufrec;

var token: tokenrec);

B. I. LEXICAL SCANNER

begin
if debug then writeln('scanning end of file');
token. class: = tendoffile;
token. tbptr: = 0

end; {of procedure scanfileend)

begin (of procedure getnextsymbol}
if debug then writeln('getting next symbol.

(ch=,, linebuffer. ch, l),);
if (token. class=tendofline) or

(token. class= tendoffile) then
getnextline(linebuffer);

with linebuffer do
begin

(scan leading blanks}
while (ch='') and not endofline do

getnextchar(linebuffer);

(classify token based on its first char)
if alphabetic(ch) then

scanidentifier(linebuffer, token)
else
if numeric(ch) then

scannumber(linebuffer, token}
if ch=quote then

scanliteral(linebuffer, token)
else
if not endofline then

scanidelimiter(linebuffer, token)
else
if not endoffile then

scanendofilne(linebuffer, token)
else
if endoffile then

scanfileend(linebuffer, token)

else
half

end; (with)
blankfill(token) (follow token with blanks)

end; {of procedure getnextsymbol)

(reporterrors

write a list of errors that
have been found in the file

}

procedure reporterrors(var linebuffer: linefubrec);

var
err errorclass; (loop index)

begin

writenln(, ***** errors in file: ');

writeln;
f or err: = succ (errnone) to pred (erriast) do

if err in linebuffer. errorset then

begin

write(ord(err)8,
case err of

erroct write('digit 8 or 9 in

octal constant');

errbigint writePinteger constant>',
Imaxint(=', maxint: l, ')');

259

B. I. LEXICAL SCANNER 260

errexposize: write('abs(real exponent)>'
'maxexponent(=,,

maxexponent: l,,),);
errexpochar: write('digit expected in

exponent');
errnodigit : write('digit expected

after ". " 1);
errmissingquoter: write('no closing quote

in literal');
errlongliteral: write('literal too long

(max is',
tokenlenmax: 1, ' chars)')

end; {of case}
writeln

end; {of error and for loop}
writeln;
writeln('end of error list')

end; {of procedure reporterrors}

begin (of program SCANNER)

page(output);
writeln(version);
initialize(linebuffer);

getnextline(linebuffer); (read the first line)
if not linebuffer. endoffile

then
token. class: = delimiter

else token. class: = tendoffile;
token. blankptr: = tokenlenmax;

while token. class<>tendoffile do
begin

getnextsymbol(linebuffer, token);
write('', token. tokenbuffer: 20, '->');
with token do

case class of
identifier writePident');
integerconstant writePinteger=',

integervalue);

realconstant writePreal= 1, realvalue);
delimiter write('delimiter');
literal writePliteral');
endofline writePend of line');
tendoffile writePend of rile')

end; {of case and with)
writeln;

end; (of while}
writeln;
if linebuffer. fileerror then reporterrors(linebuffer);
writeln(lexecution of scanner complete');

end. {program SCANNER}

B-1.2 Translated CSL Code

The CSL code of the lexical scanner is as follows:

B. 1. LEXICAL SCANNER

proc scannero (

comment: "Constants";
debug := false;
maxcharsperline := 140;
maxexponent 200;
quote - -';
tokenlenmax 80;
version := 'scannerO. 4-a basic lexical scanner,;

comment-. "Enumeration type simulation";
delimiter := 100; identifier := 101; integerconstant := 102;
literal := 103; realconstant : =104; tendoffile := 105;
tendofline := 106;

errnone := 200; erroct := 201; errnodigit := 202; errbigint := 203;
errexposize := 204; errexpochar := 205; errmissingquote := 206;
errlongliteral := 207; errlast := 208;

comment: "Record definition";

struct tokenrec {
int: blankptr;
int: tbptr;
char: array tokenbuffer[tokenlenmax];
int: class;
int: integervalue;

real: realvalue;

struct linebufrec
char: ch;
int: charptr;
boolean: echo;
boolean: endoffile;
boolean: endofline;
int: array errorline[lineindex];
set: errorset[10001;
boolean: fileerror;
int: length;
char: array line[lineindex];
integer: linecount;
boolean: lineerror;
int: pfrac;
int: pint;
int: pnum;

comment: "Global variables";
linebufrec: linebuffer;
tokenrec: token;

comment: " initialize line buffer";

proc initialize(out linebuffer: linebufrec) f

int: i;

if debug then !p writeln(I initializing line buffer') fi;

linebuffer. echo := true;
linebuffer. lineerror := false;
linebuffer. linecount :=0;

261

for i :=0 to maxcharsperline do

B-1. LEXICAL SCANNER

linebuffer. line[il := '';
linebuffer. errorline(il := errnone

od;

linebuffer. errorset [];
linebuffer. fileerror false;
linebuffer. endoffile false;
linebuffer. endofline true;
linebuffer. pnum :=0

comment: " read a new line into the linebuffer

proc getnextline(out linebuffer: linefufrec) {

co=ent: " write a line and its line number to output ,;

proc printline(Out linebuffer: linebufrec) {

i: lineindex;

!p write(linecount: 6,11);
for i: = 1 to linebuf fer. length do !p write(line[i]) od;
!p writeln

comment: " print pointers to errors, add to errorset, clear lineerror ";

proc printerrorline(var linebuffer: linebufrec) (

int: column integer;
int: i integer;
int: j integer;
int: num integer;

column: =

printline(out linebuffer);
!p write('*****': 6,11);

for i: =1 to linebuffer. length +1 do
if linebuffer. errorline[il<>errnone then

linebuffer. errorset: = linebuffer. errorset+[linebuffer. errorline[ill;
num: = ord(linebuffer. errorline[il);
if i>column then

for j: = column +2 to i do !p write('') od;
!p write('I');
column: = i

else
!p writeP,
column: = column +1

fi;
!p write(num: 1);
column := column+1;
if num>9 then column: = column+1 fi;
linebuffer. errorline[il: = errnone

fi
od;
!p writeln;
linebuffer. lineerror := false;

linebuffer. fileerror: = true

262

B. I. LEXICAL SCANNER

comment: " begin of procedure getnextline ,;

if debug then !p writeln('getting new line') fi;

if linebuffer. lineerror then printerrorline(Out linebuffer) fi;
if not !p eof(input) then

linebuffer. length: = 0;
while not !p eoln(input) do

linebuffer. length: = linebuffer. length+1;
read(input, linebuffer. line[linebuffer. length])

od;
!p readln(input);

comment- "delete any trailing blanks,,;
linebuffer. line[01: = -;
while linebuffer. line[lengthl='' do linebuffer. length := linebuffer. length-1 od;
linebuffer. line[linebuffer. lengthI := 11;

linebuffer. linecount: = linebuffer. linecount+l;
if linebuffer. echo then printline(Out linebuffer) fi;

linebuffer. charptr :=1;
linebuffer. ch := linebuffer. line[linebuffer. charptrl;
linebuffer. endofline := (linebuffer. charptr>linebuffer. length)

else linebuffer. endoffile: = true
fi

comment: "function to determine if a character is a letter";

func alphabetic(In ch: char): boolean

alphabetic := (ch>='a') and (ch<='z')

comment: " function to determine if a character is a digit";

func numeric(In ch: char): boolean;

numeric: = (ch>='O') and (ch<='9')

comment: 11 find next token in linebuffer";

proc getnextsymbol(Out linebuffer: linebufrec; token: tokenrec) (

comment: "place error message at the current buffer pointer";

proc puterror(In error: errorclass; Out linebuffer: linebufrec)

linebuffer. lineerror: = true;
linebuf f er. errorline [linebuf f er. charptr] := error

comment: " ensure that the token buffer is blank filled";

proc blankfill(Out token: tokenrec) (

while token. blankptr>token. tbptr do

token. tokenbuffer(token. blankptrI

token. blankptr := token. blankptr-1

od;
token. blankptr: = token. tbptr

263

B-1. LEXICAL SCANNER 264

comment: "read next character from line buffer and advance pointer,,;

proc getnextchar(Out linebuffer: linebufrec) {

if linebuffer. endofline then
if !p eof(input) then linebuffer. endoffile: = true
else getnextchar(out linebuffer) fi

else
linebuffer. charptr: = linebuffer. charptr+l;
if linebuffer. charptr>linebuffer. length
then linebuffer. endofline: = true
fi

fi;
linebuffer. ch := linebuffer. line[linebuffer. charptrI

comment: " scan alphanumeric characters (copying them to tokenbuf f er) 11;

proc scanidentifier(Out linebuffer: linebufrec; token: tokenrec)

if debug then !p writeln('scanning identifier') fi;

token. class := identifier;
token. tbptr :=0;
while (alphabetic (linebuf fer. ch) or numeric (linebuf fer. ch)

if token. tbptr<tokenlenmax then
token. tbptr: =token. tbptr+l;
token. tokenbuf f er [token. tpbtr 11 inebuf f er. ch

fi;
getnextchar(Out linebuffer)

od

I;

comment: "convert a decimal or octal number, or a real to internal form";

proc scannumber(Out linebuffer: linebufrec; token: tokenrec)

integer: i;

comment: 11 convert part of linebuf f er to an integer (with no overflow),,;

proc convinteger(In base: integer; maxint: integer;

first, last: lineindex;

Out linebuffer: linebufrec; n: integer)

int: digit;
integer: i;

real: x;

n: 0;
X: 0.0;
i: = first;
while i<last do

digit: = ord(linebuffer. line[il)-ord('O');
if digit >= base then

puterror(In erroct, linebuffer);
i: = last

fi;

x: = x*base+digit;
if x<= maxint then n: =n*base+digit
else

puterror(In errbigint, linebuffer);

B-1. LEXICAL SCANNER

i: = last
fi;
i: = i+l

od

comment: " scan a decimal integer";

procedure scaninteger(Out linebuffer: linebufrec; token: tokenrec)

token. class: = integerconstant;

convinteger(In 10, maxint, pint, charptr,
out linebuffer, integervalue)

comment: " scan an octal number";

procedure scanoctal(Out linebuffer: linebuffrec; token: tokenrec)

token. class: = integerconstant;

convinteger(In 8, maxint, pint, charptr,
out linebuffer, integervalue);

getnextchar(Out linebuffer)

comment: " scan a real number with/without exponent";

proc scanreal(Out linebuffer: linebufrec; token: tokenrec)

int: expo;
real: fac;
int: i;
boolean: negexp;
int: nexpo;
real: r;
int: scale;
real: x;

if debug then ip writeln(Iscanning real number') fi;
token. class: = realconstant;

comment: 11do integer part, overflow assumed impossible";

x: = 0.0;

expo: = 0;
for i: = linebuffer. pint to linebuffer. charptr-1 do

x=x*10.0+ord(linebuffer. line[il-ord(IOI)

od;

nexpo linebuffer. charptr-linebuffer. pint;
scale 0;
if linebuffer. ch =1.1 then

getnextchar(Out linebuffer);
linebuffer. pfrac := linebuffer. charptr;
if numeric(linebuffer. ch) then

while (numeric(ch)) do

scale: =scale-1;
x: =x*10.0+ord(ch)-ord(, O');

getnextchar(Out linebuffer)

od
else puterror(In errnodigit, linebuffer)

fi;

comment: "check if we must find first nonzero digit,,;

if nexpo=O then
i: = linebuffer. pfrac;

while linebuffer. line[il= '0' do i: =i+l od;

nexpo := linebuffer. pfrac-i

265

B. I. LEXICAL SCANNER

fi
fi; comment "fractional ch='. 111

comment: "do we have an exponent? ";
if ch='e' then

negexp := false;
getnextchar(Out linebuffer);
if ch='-' then

negexp: =true;
getnextchar(Out linebuffer)

else if ch='+' then getnextchar(Out linebuffer) fi
fi;

comment "build exponent";
if numeric(linebuffer. ch) then

while numeric(ch) do
expo: = expo*10+ ord(ch)-ord('O');
getnextchar(linebuffer)

od;

comment: "adjust scale and nexpo";
if negexp then

scale: = scale-expo;
nexpo: = scale-expo

else
scale: = scale+expo;
nexpo: = scale+expo

fi
else puterror(In errexpochar, linebuffer)
fi; comment "process numeric"

fi; comment "exponent"

comment: "compute 10**scale using right to left binary method";
if abs(nexpo)<=maxexponent then

if scale<>O then
r: = 1.0;

negexp: = scale<O;
scale: = abs(scale);
fac: = 10.0;

while scale<>O do
if odd(scale) then r: =r*fac;
fac: =sqr(fac);
scale: = scale div 2

od;
if negexp then realvalue: = x/r
else realvalue: = x*r
fi

else realvalue: =x fi

else puterror(In errexposize, linebuffer)
fi

comment: "begin of procedure scannumber";

if debug then !p writeln('scanning number') fi;

token. tbptr :=0;
linebuffer. pint := linebuffer. charptr;

comment: "scan integer part";

while numeric (linebuffer. ch) do getnextchar(Out linebuffer) od;

if linebuffer. ch<>'b' then
if not((linebuffer. ch='. 1) or (linebuffer. ch='e')) then

scaninteger(Out linebuffer, token)

266

B. I. LEXICAL SCANNER

else scanreal(Out linebuffer, token)
fi

else scanoctal(linebuffer, token) fi;

comment: " copy number into token buffer";
i: = pnum;
token. tbptr: = 0;
while(i<linebuffer. charptr) and (token. tbptr<tokenlenmax) do

token. tbptr: = token. tbptr+l;
tokenbuffer[token. tbptr]: = linebuffer. line[i];
i: =i+l

od;
linebuffer. pnum: =o

comment: "read in a literal string";

proc scanliteral(Out linebuffer: linebufrec; token: tokenrec)

boolean: working : boolean;

if debug then !p writenln('scanning literal') fi;
token. class: = literal;
token. tbptr: = 0;

getnextchar(linebuffer);
working: = true;
while working and not endofline do

if linebuffer. ch=quote then
getnextchar(Out linebuffer);

working: = (linebuffer. ch= quote)
fi;
if working then

if token. tbptr<tokenlenmax then
token. tbptr: = token. tbptr+l;
tokenbuffer[token. tbptr]: = linebuffer. ch;
getnextchar(Out linebuffer)

else
puterror(In errlongliteral, linebuffer);

while (linebuffer. ch<>quote) and not endofline do

getnextchar(Out linebuffer)

od;
comment: "skip over string";
if linebuffer. ch=quote then

getnextchar(Out linebuffer)
fi;

working: = false
fi

fi

od;
if working then

puterror(In errmissingquote, buffer)

fi

comment: , put ch into token buffer and advance";

proc scandelimiter(Out linebuffer: linebufrec; token: tokenrec)

if debug then !p writeln(Iscanning delimiter') fi;

token. class: = delimiter;
token. tbptr: = 1;
token. tokenbuffer(token. tbptrl: = linebuffer. ch;

getnextchar(Out linebuffer)

267

comment: "return end of line status";

B. 1. LEXICAL SCANNER

proc scanendofline(Out linebuffer: linebufrec; token: tokenrec)

if debug then !p writeln('scanning end of line') fi;
token. class: = tendofline;
token. tbptr: = 0

comment: " return end of file status";

proc scanfileend(Out linebuffer: linebufrec; token: tokenrec)

if debug then !p writeln('scanning end of file') fi;
token. class: = tendoffile;
token. tbptr: = 0

comment: " begin of procedure getnextsymbol";
if debug then !p writeln ('getting next symbol. (ch= linebuf f er. ch, f i;
if (token. class=tendofline) or

(token. class= tendoffile) then
getnextline(Out linebuffer)

fi;

comment: "scan leading blanks";

while (linebuffer. ch='') and not linebuffer. endofline do
getnextchar(Out linebuffer)

od;
comment: " classify token based on its first char";
if alphabetic(linebuffer. ch) then

scanidentifier(Out linebuffer, token)
else

if numeric(linebuffer. ch) then
scannumber(Out linebuffer, token}

else if linebuffer. ch=quote then
scanliteral(Out linebuffer, token)

else
if not linebuffer. endofline then

scandelimiter(Out linebuffer, token)

else
if not linebuffer. endoffile then

scanendofilne(Out linebuffer, token)

else
if linebuffer. endoffile then

scanfileend(Out linebuffer, token)

else
halt

fi
fi

fi
fi

fi
fi;

blankfill(Out token)

comment: "write a list of errors that have been found in the file";

proc reporterrors(Out linebuffer: linefubrec)

int : err;

lp writenln('***** errors in file: ');

!p writeln;
for err: = succ(errnone) to pred(errlast) do

if err in linebuffer. errorset then

write (ord (err) 8, ': ');

268

B. I. LEXICAL SCANNER

case err of
erroct !p write('digit 8 or 9 in

octal constant');
errbigint !p write('integer constant>,,

'maxint(=1, maxint: 1,,),);
errexposize: !p write('abs(real exponent)>,

'maxexponent(=',

maxexponent: 1,1)1);
errexpochar: !p write('digit expected in

exponent');
errnodigit : !p write('digit expected

after ". " ');
errmissingquoter: !p write('no closing quote

in literal');
errlongliteral: ! j) writePliteral too Iona

end;
!p writeln

fi
od;

!p writeln;
!p writeln

(max is
tokenlenmax: l, ' chars)')

comment: "begin of program SCANNER";

!p page(output);
!p writeln(version);
initialize(Out linebuffer);

getnextline(Out linebuffer);
if not linebuffer. endoffile
then token. class: = delimiter

else token. class: = tendoffile
fi;
token. blankptr: = tokenlenmax;

while token. class<>tendoffile do
getnextsymbol(Out linebuffer, token);
!p write('', token. tokenbuffer: 20, I->I);

case token. class of
identifier
integerconstant

realconstant
delimiter
literal
endofline
tendoffile

end;
!p writeln;

!p writePident');
!P write('integer=',

integervalue);
!p write('real= ', realvalue);
!p write('delimiter');
!p write('literal');
!p writePend of line');
!p writePend of rile')

od;
!p writeln;
if linebuffer. fileerror then repor terrors (Out linebuffer) fi;

!p writeln(lexecution of scanner complete');

269

B. I. LEXICAL SCANNER

B. I. 3 Extracted ITL Specification

In this subsection, a compelete specification abstracted from the source code of the lex-

ical scanner is listed. The approach is the same as in the case studies of chapter 8.

Abstraction rules are applied to each procedures, and for procedures which are con-

sidered as monolithic they are decomposed into resonable sections and each section is

abstracted as a procedure.

Procedure: initialise

270

An new procedure initline is defined.

A
maxcharperline initline(line, errorline) =f il :i :=0; (line[i] : =' 'A errorline[i] := erronone ;i :=i+ 1)

initialise(linebuffer) >- flinebufferl :

linebuffer. echo := true A linebuffer. linerror false A linebuffer. linecount 0;

initline (linebuffer. line, linebuffer. errorline);

linebuffer. errorset :=0A linebufferfileerror : -false A linebuffer. endoffile : =JalseA

linebuffer. endofline := true A linebuffer. pnum :=0

Procedure: printline

printline >- f i, linebufferf : print (linecount); i :=1; (print (line [i]); i+ 1) linebuftr. length.
println

Procedure: printerrorline
A new procedure printerrmsg is introduced.

printerrmsg ý: flinebuffer, column, ij, numl :i :=1;

(linebuffer. errorline[i] <> ermone A (linebuffer. errorset :- linebuffer. errorset + [errorline[ijý
I

(i > column AU= cloumn + 2; (print('')) I*-J-2); print('I'); column: = i)V

(i <= column A print(',); column: = column + 1); print(num);

column: = column + 1; (num >9A column: = column + 1);

linebuffer. errorline[i] == errnone; i : =: i+ 1) linebuffer. length

B. I. LEXICAL SCANNER 271

printerrorline >- flinebufferl : printline(linebuffer); printerrmsg(linebuffer-errorline)

Procedure: getnextline
A new procedure getnewline is introduced.

getnewline >- flinebufferl : (-, endof (input) A (linebuffer. length :=0;
(linebuffer. length linebuffer. length + 1; read (linebuffe r. line [linebuffe r] lengthofline

linebuffer. line [0] *';

(linebuffer. line [length] A linebuffer. length := linebuffer. length - I)Iengthofline

linebuffer. line [length + 1] =' '; echo - true A printline(linebuffer);

linebuffer. charptr :=1; linebuffer. ch := linebuffer. line [linebuffer. charptr];

endofline := (linebuffer. charptr > linebuffer. length))

V (endof (input) A linebuffer. endoffile := true)

getnext line >- f linebufferf : linebuffer. lineerror = true A printerrorline (linebuffer);

getnewline(linebuffer)

Procedure: alphabetic

alphabetiO- Ich, alphabeticl : alphabetic =- (ch >-' a' A ch <='

ý- f ch, alphabeticl : alphabetic - (ch = letter)

Procedure: numeric

numeric ý-- f ch, numericl : numeric - (ch > -1 0' A ch < =/ 9f)

>- f ch, numericl : numeric = (ch = number)

Procedure: puterror

B. 1. LEXICAL SCANNER

puterror >- f error, linebufferl linebuffer. lineerror := true

Alinebuffer. errorline[linebuffer. charptr] := error

Procedure: blankfill

blankfill >-ftokenj : (token. tokenbuffe r [token. blankptr] : =' li

token. blankptr := token-blankptr -
I)blankptr-tbptr

Procedure: getnextchar

getnextchar >- f linebufferl : (linebuffer. endofline = trueA

((eof (input) A linebuffer. endoffile := true) v (--, eof (input) A getnextline(linebuffer)))

V(linebuffer-endofline -false A (linebuffer. charptr := linebuffer. charptr + 11

(linebuffer. charptr > linebuffer. length) A linebuffer. endofline = true)));

linebuffer. ch - linebuffer. line [linebuffer. charptr]

Abstract away the state test and error handling details, we have a more concise

specification:

tffe r) getnextchar >- flinebufferl : (linebuffer. endofline = true A -, eof (input) A getnextline(linebu

V(linebuffer. endofline -false A (linebuffer. charptr := linebuffer. charptr + 1;

(line buffer. charp tr > linebuffer. length) A linebuffer. endofline = true)));

linebuffer. ch = linebuffer. line [linebuffer. charptr]

Most simply, the specification could be the following:

getnextchar >- f linebufferl : linebuffer. charptr := linebuffer. charptr + 1;

linebuffer. ch = linebuffer. line [linebuffer. charptr]

272

Procedure: scanidentifier

B. I. LEXICAL SCANNER

scanidentifier ý- f linebuffer, tokenj : token. class := identifieri token. tbptr :=0;
((alphabetic (linebuffe r. ch) V numeric (linebuffer. ch)) A (token. tbptr < tokenlenmaxA
(token. tbptr := token. tbptr + 1; token - tokenbuffe r [token. tbptr] = linebuffer. ch));

getnextchar(linebuffer)) *

The core of procedure scanidentifier is to keep read next character until it is no

more a letter or number. Therefore, the final specification could be as follows:

scanidentifier >- flinebuffer, tokenj : ((alphabetic (linebuffer. ch) V numeric (linebuffer. ch)) A

(token. tbptr := token-tbptr + 1; token. tokenbuffe r [token. tbptr] = linebuffer. ch));

ge tn extcha r (line buffe r))*

Procedure: convertinteger

convertinteger >- f base, maxint, first, last, linebuffer, n, digit, i, xj :

n :=0; x :=0.0; i : =first; (i < last A (digit := ord(linebuffer. line [ij) - ord('O');

digit >= base A (puterror(erroct, linebuffer); i= last); x :=xx base + digit;

273

(x <= maxint An :=nx base + digit) V (x > maxint) A (puterror(errbigint, linebuffer); i= last);

i: = i+ 1))*

Abstract away the error handling part, the specification will be:

convertinteger ý- f base, first, last, linebufferf

((first < last) A (n :=nx base + ord(linebuffer. line [first]) - ord(o')); first : =first + 1))*

Procedure: scaninteger

scaninteger >- flinebuffer, tokenj : token. class = integerconstantA

Oconvinteger(IO, maxint, pint, cparptr, linebuffer, integervalue)

B. 1. LEXICAL SCANNER

Procedure: scanoctal

scanoctal >- f linebuffer, tokenj token. class = integerconstantA

Oconvinteger(8, maxint, pint, charptr, linebuffer, integervalue)

Procedure: scanreal

The following new procedures are introduced: dealInteger, deaffraction, dealExponent,

calcuReal.

comment: " scan a real number with/without exponent";

A dealInteger(linebuffer, x, expo) =f iý :x :=0.0 A expo :-0Ai := linebuffer. pint;
(x : =- xx 10.0 + ord(linebuffer. line[i]) - ord(V)Ai :=i+ 1)linebuiffýr. charptr-linebuffýr. pint-1

dealFraction(linebuffer, nexpo, scale, x) A nexpo := linebuffer. charptr - linebuffer-pint A scale :-0;
linebuffer. ch =' .'A

(getnextchar(linebuffer) A linebuffer. pfrac := linebuffer. charptr;

(numeric(linebuffer. ch) = trueA

(numeric (linebuffer. ch) A (scale scale -1Axxx 10.0 + ord(ch) - ord(' 0') A

getnextchar(linebuffer))) *;

nexpo =0A (i := linebuffer. frac; (linebuffer. line [i] =' 0' Ai :-i+ 1)*;

nexpo := linebuffer. pfrac - i))I

A
dealExponent(linebuffer, nexpo, negexp, scale) =

f expol : linebuffer. ch =/ e' A (negexp : =false A getnextchar(linebuffer);

(linebuffer. ch =' -' A (negexp := true A ge tnextchar (line buffer)))

V(linebuffer. ch =' +' A getnextchar(linebuffer));

numeric (linebuffer. ch) A (numeric (linebuffer. ch) A (expo := expo x 10 + ord(ch) - ord('O');

getnextchar(linebuffer)))* -1

(negexp A (scale := scale - expo A nexpo := scale - expo))

V(-, negexp A (scale : =: scale + expo A nexpo := scale - expo)));

274

B-1. LEXICAL SCANNER

calcuReal (token, scale, nexpo, negexp, x) Lý Jr, facl : abs(nexpo) <= maxexponent A (scale<> OA

(r :=1.0 A negexp := scale <0A scale := abs(scale) Afac :- 10.0;

(scale<> 0A (odd(scale) Ar :- r*fac; fac := sqrVac); scale: = scalel2))*-7
(negexp A realvalue := x1r) V (--, negexp A realvalue :-xx r))

V (scale =0A realvalue = x)) V (abs(nexpo) > maxexponent A puterror(errexposize, linebuffer))

scan real (linebuffe r, token) Af negexp, nexpo, scale, xj : token. class := realconstant;
dealInteger(linebuffer, x, expo) ; dealFraction(linebuffer, nexpo, scale, x);
dealExponent(linebuffer, nexpo, scale) ; calcuReal(token, scale, x)

Procedure: scanoctal

scannumber >- f linebuffer, token, il : token. tbptr :=0; linebuffer. pint :- linebuffer. charptr;
(numeric (linebuffer. ch) A getnextchar(linebuffer))*;

275

(linebuffer. ch <>' VA (--, ((linebuffer. ch =' -') V (linebuffer-ch =' e')) A scan integer (linebuffe r, token)))

V(linebuffer. ch =' YA scanoctal(linebuffer, token)); i := pnum; token. tbptr :=0;

((i < linebuffer-charptr) A (token. tbptr < tokenlenmax) A (token. tbptr := token. tbptr + 1;

tokenbuffer[token. tbptr] := linebuffer. line [ij; i :=i+ 1))*; linebuffer. pnum :=0

Take away the trivial details, the core specification is as follows:

scannumber >- f linebuffer, tokenj : (numeric (linebuffer. ch) A getnextchar(linebuffer))*;

(linebuffer. ch < >' YA linebuffer. ch < >' .'A linebuffer-ch < >/ el A scaninteger (line buffer, token)) V

(linebuffer. ch <>' V) A (linebuffer. ch -' .'V linebuffer. ch -' e') A scanreal(linebuffer, token))V

(linebuffer. ch =' VA scanoctal(linebuffer, token)); tokenbuffer := linebuffer. line

Procedure: scanliteral

scanliteral >- f linebuffer, token, workingl :

token. class : == literal; token. tbptr :=0; getnextchar(linebuffer);

B-1. LEXICAL SCANNER 276

(-linebuffer. endofline A working A (linebuffer. ch = quoteA
(ge tnextchar (line buffer); working := (ch = quote));
(linebuffer. ch - quote A (token. tbptr < token. token lenmax A (token. tbptr := token. tbptr + 1;

token. tokenbuffer [token
- tbptr] := linebuffer. ch; getnextchar(linebuffer)))V

(token. tbptr > token. token lenmax A (pute rror (e rrlong lite ra 1, linebuffer);

(linebuffer. ch <> quote A -linebuffer. endofline A (getnextchar(linebuffer)))*;

linebuffer-ch = quote A working := false)))))*; working A puterror(errmissingquote, buffer)

Delete all state test and error handling details:

scanliteral >- f linebuffer, token, workingl

token. class := literal; token. tbptr :=0; ge tnextchar (line buffer);

(--, Iinebuffer. endofline A working A (linebuffer. ch = quoteA

(ge tnextchar (line buffer); working := (ch = quote));

(linebuffer. ch = quote A (token. tbptr < token. tokenlenmax A (token. tbptr := token. tbptr + 1;

token. tokenbuffer [token. tbptr] := linebuffer. ch; getnextchar(linebuffer))))))*

Eliminating remaining working by rewriting its effect in other way:

scanliteral >- f linebuffer, tokenj :

token. class := literal; token. tbptr :=0; getnextchar(linebuffer);

(-, linebuffer. endoflineA

((linebuffer-ch = quote A Ogetnextchar(linebuffer) A Olinebufferch = quote)V

(linebuffer-ch =ýý- quote))A

(token. tbptr := token. tbptr + 1; token. tokenbuffe r [token. tbp tr] :- linebuffer. ch; getnextchar(linebuffer)))*

Procedure: scandelimiter

scandelimiter >- f linebuffer, tokenj : token. class = deliminter A token. tbptr = IA

B. I. LEXICAL SCANNER

token - tokenbuffer [token. tbptr] = linebuffer. ch A0 getnextchar(linebuffer)

Procedure: scanendoffine

scanendofline >- flinebuffer, tokenj : token. class := tendofline; token. tbptr :=0

Procedure: scanfileend

scanfileend >- f linebuffer, tokenj : token-class := tendoffile; token. tbptr :=0

Procedure: getnextsymbol

getnextsymbol >- f linebuffer, tokenj :
(token. class = tendofline V token. calss = tendoffile) A getnextline(linebuffer);
(linebuffer. ch =' 'A-, linebuffer-endofline A getnextchar(linebuffer))*;

(alphabetic (linebuffer. ch) A scanidentifier(linebuffer, token))V

(numeric(linebuffer-ch) A scannumber(linebuffer, token))V

(linebuffer. ch = quote A scan litera l(linebuffe r, token)) V

(-linebuffer. endofline A scandelimiter(linebuffer, token))V

(-Iinebuffer. endoffile A scanendoffile(linebuffer, token))V

(linebuffer. endoffile A scanfileend(linebuffer, token))

Procedure: reporterror

reporterror >- f linebuffer, errl : err = succ(ermone);

(err C linebuffer. errorset A (print (o rd (err));

(err - erroct A print('digit 8 or 9 in octal constant')) V

(err - errbigint A print(integer constant >', 'maxint(-', maxint : I, ')')) V

(err errexposize A print(labs(real exponent) > maxexponent(='))V

(err errexpochar A print('digit expected in)exponent')) V

277

B. 2. MINE DRAINAGE SYSTEM

(err = ermodigit A print('digit expected after. ')) V

(err - errmissingquoter A print(Ino closing quote in literal')) V
(err =: errlongliteral A (print('literal too long); print(max is, tokenlenmax :I' chars)'));

err = err +I)pred(errlast) -succ(errnone)
i

Procedure: scanner

Finally, let us have a look at the main entrance procedure.

scanner>- f linebuffer, tokenj

page(output); println (version); initialize (linebuffer); getnextline(linebuffer);

(-Iinebuffer. endoffile A token. class = delimiter) V (linebuffer. endoffile A token. class endoffile);

token. blankptr = tokenlenmax;

(token. class <> tendoffileA

(getnextsymbol(linebuffer, token);

(token. class = identifier A print('indent')) V

(token. class = integerconstant A print('integer =', integervalue)) V

(token. class = realconstant A print ('real =, realvalue)) V

(token. class = delimiter A print ('delimiter')) V

(literal A print('literal')) V

(token. class = endofline A print ('endofline')) V

(token. class = tendoffile A print ('endofrile')))

linebufferfileerror A repo rterrors (linebuffe r);

print(I executionofscannercomplete')

B. 2 Mine Drainage System

B. 2.1 CSL Code Translated from Ada

278

Methane Model

B. 2. MINE DRAINAGE SYSTEM

proc init

comment: "enable device";

ch4-sensor
- status: = enabled;

ch4-status: =motor-unsafe

proce ch4-processo

read tm, ch4_level from ch4-sensor;
if ch4_level>=ch4_Max
then if ch4 status=motor safe

then motor-unsafeo;
operator_console-alarm(In "High-methane" Out);
ch4_status: =motor__ýunsafe

fi
else if (ch4-level<ch4

-
Max-jitterrange)

then motor-safeo;
ch4-status: =motor-safe
fi

fi;

ch4-log(In ch4_level out)

proc ch4_periodo

init () ;
while true do

duration in 30 ch4_processo end;
delay (80-30)

od
I;

Monodioxide Module

procedure inito

comment: "enable device";

co-sensor-status: = enabled

proc co_processo

init () ;
while true do

duration in 60
read tm, co-level from co-sensor;
if co level>=co-max
then operator-console-alarm(In "High-co,, out)

fi;
co_log(In co-level Out)

end;
delay 40

od

Pump Module

279

proce motor_unsafeo

B. 2. MINE DRAINAGE SYSTEM

if motor_status=On
then

motor_log(In 100 Out)
fi;
motor-condition: =disabled;
motor_log(In "motor-unsafe" Out)

proce motor-safeo
f

if motor-status=off
then sw: =On;

motor-status: =On;
motor_log(In "motor-started" Out)

fi;
motor-condition: =enabled;
motor-log(In "motor-safe" Out)

proc set-pump(In Pump-status: Boolean; Out)

if pump-status=On
then if motor status=off

then if motor-condition=disabled
then err_msg(In "pump-not-safe" Out)
fi;
if ch4-status=motor

- safe
then motor-status : =On;

sw: =On;
motor-log(In "motor-started" Out)

else err_msg(In "pump-not-safe" Out)
fi

fi
else if motor status=On

then motor-status: =off;
if motor_condition=enabled
then

sw: =of f;
motor_log(In "motor-stopped" Out)

fi
fi

fi

Water Flow Module

proc init

comment: "enable device";
water_flow_sensor-status: = enabled;
water_flow_signal: =off;
current_pump-status: =off;
last_pump-status: =off

procedure water-flow_processo
f

current_pump-status: =motor_status;
current_pump_condition: =motor -

condition;

read tm, water-flow -
signal from water_flow-sensor;

if (current_pump-status=On) and (last_pump-status=On) and

(water_flow
- signal=off)

then operator-console - alarm(In "pump-fault" Out)

else if (current_pump
- status=off) and (last_pump_status=off) and

(water-flow-signal=on)

280

B. 2. MINE DRAINAGE SYSTEM

then operator-console-alarm(In "pump-fault" Out)
fi

fi;
last-pump-status: =current-pump_status;
water-flow_log(In water-flow-signal out)

procedure water-flow-periodo

init () ;
while true do

duration in 40 water-flow_processo end;
delay (100-40)

od

Water Level Module

proc init

comment: "enable device";
water-level-sensor-status: = enabled;
HW-interrupt: =enabled;
LW-interrupt: =enabled;

proc water-level-signal_process (In w-signal: integer out)

if (wý_signal=High_alarm) and (HW--interrupt= enabled)
then set_pump(In On Out);

high_low_water_log(In Highalarm Out);
LW-interrupt: =enabled;
HW_interrupt: =disabled

else if (wý_signal=Low-alarm) and (LW-interrupt=enabled)
then set_pump(In off out);

high. low-water_log(In Low-alarm Out);
LW-interrupt: =disabled;
HW-interrupt: =enabled

fi
fi

procedure water_level-monitoringo

init H;
while true do

wait on water-level-sensor for 5 do
delay 0

else
duration in 35 read tm, water-level-signal from water-level-sensor end;
duration in 160 water_level-signal_process (In water-level-signal out) end

end
od

Air Flow Module

proc init

comment: 11enable device";

air-flow-sensor-status: = enabled

281

B. 2. MINE DRAINAGE SYSTEM

procedure air-flow-processo

inito;

while true do
duration in 100

read tm, air-flow-signal from air-flow-sensor;
if air-flow-signal=off
then operator_consol e_al arm (In "No-air-flow" Out);

air_flow_log(In air-flow
- signal out)

else air_flow_log(In air-flow-signal out)
fi

end
od

I;

Main Procedure

proc maino

Boolean: On, off, disabled, enabled, motor-safe, motor-unsafe;
integer: High-alarm, Low-alarm, ch4-max, co-max;

Boolean: motor - status, motor - condition;
Boolean: sw, pump_status, water_flow_signal;
Boolean: current-pump-status, current-pump-condition, last-pump-status;
Shunt: water -

flow
- sensor, water_level_sensor, ch4-sensor, air_flow-sensor, co-sensor;

Boolean: water-flow_sensor-status;
integer: water -

level_signal;
Boolean: ch4 - status, ch-high_signal;
Boolean: HW

-
interrupt, LW-interrupt;

integer: ch4_level;
Boolean: air -

flow
- sensor_status, co_sensor-status;

Boolean: air_flow_signal;
integer: co-level;

On: =l; enabled: =l; motor-safe: =l;
off: =O; disabled: =O; motor - unsafe: =O;
High_alarm: =3; Low

- alarm: =2;
ch4-max: =400; co-max: =800;

parbegin
water_flow-periodo

parallel with
parbegin

water-level-detecto
parallel with

parbegin
ch4_periodo

parallel with
parbegin

co-periodo
parallel with

air-flow-periodo
parend

parend
parend

parend

282

B. 2. MINE DRAINAGE SYSTEM

B. 2.2 Extracted ITL Specification

In this subsection, a compelete specification abstracted from the source code of the

mine drainage system is listed. The approach is the same as in the case studies of

chapter 8. Abstraction rules are applied to each procedures. The methane module and
the pump module has been processed in chapter 8.

Methane Model

inito A ch4-sensor- status := Enabled A ch4-status := Motor-unsafe

ch4-processo Lý ch4-level - read (ch4- sensor);
(ch4-level > ch4-Max) A ch4-status = motor-safeA

(motor-unsafeo A operator- console-alarm (High-methane') A ch4-status := motor-unsafe)
V(ch4-level < ch4-Max) A (ch4-level < ch4-Max - jitterrange) A (motor-safeoA
ch4-status := motor-safe) ; ch4- log (ch4- level)

A
ch4-periodo = inito ; (ch4-processo A len <- 30ms; len := 30ms)*

Pump Module

283

A
motor- unsafe () = motor-status = On A (sw Off ; motor-status Off) ; motor-condition Disabled

motor-safeo motor-status - Off A (sw: - On; motor-status := On) ; motor-condition := Enabled

set-pump (pump- status)
I'

(pump-status - On A motor-status - Off A ch4-status - Motor-safeA

(motor-status :- On; sw := On))

V(pump-status Off A motor-status - OnA
(motor-status - Off ; motor-condition - Enabled A sw Off))

Monodioxide Module

The initial specification is as follows after elementary abstraction rules are applied:

inito =A co- sensor- status : == enabled

A
co-processo = inito ; ((tm - Vco-sensor A co-level = read (co- sensor);

B. 2. MINE DRAINAGE SYSTEM

co-level > co-Max A operator- console-alarm ('High-co');
co- log (co- level)) A len < 60; len = 40ms)*

Replace possible "chop" operators with logic conjunctions, leave out the unused
timestamp tm, and abstract away the log details, the final specification is as follows:

)A init(= co - sensor- status := enabled

co-processo 'ý inito ; ((Co-level - read (co- sensor);
co-level > co-Max A operator- console- alarm ('High- co'))
Alen < 60; len - 40ms)*

Water Flow Module

The initial specification is as follows after elementary abstraction rules are applied:

A
init)= water-flow-sensor- status := Enabled; water-flow-signal := off;

current-pump-status := off ; last-pump-status := off

284

water-flow-processo current-pump-status := motor-status ; cu rrent-pump- condition := motor- condition;
tm = N/water-flow-sensor A water-flow- level - read (water-flow-sensor);
((current-pump-status = on) A (last-pump-status = on) A (water-flow-signal - off)A

operator- console- alarm ('Pump-jault'))

V((current-pump-status = off) A (last-pump-status - off) A (water-flow-signal = on))A

operator- console-alarm ('Pump-jault`));

last-pump-status = current-pump-status ; water-flow- log (water-flow-signal)

A
water-flow-periodo == inito ; (water-flow-processo A len < 40ms; len = 60ms)*

Replace possible 6chop" operators with logic conjunctions, leave out the unused

timestamp tm, and abstract away the log details, the final specification is as follows:

B. 2. MINE DRAINAGE SYSTEM 285

inito = water- A floi v-sensor- status Enabled A water-flow-signal off
current-pump-status := off A last-pump-status := off

A
water-flow-processo = cu rrent-pump- status := motor-status ; current-pump- condition := motor- condition;

i twer-flow- level = read(water-flow-sensor);
(((current-pump-status on) A (last-pump-status = on) A (water-flow-signal = off))
V((curretit-pump-status off) A (last-pump-status = off) A (water-flow-signal = on)))A

operator- console-alarm ('Pump-jault'));
last-pump-status == current-pump-status

water-flow-periodo ýý inito ; (water-flow-processo A len
-<

40ms; len = 60ms)*

Water Level Module

The initial specification is as follows after elementary abstraction rules are applied:

A
inito = water- level- sensor- status := Enabled;

HW-interrupt := enabled; LW-interrupt :- enabled

A
water- level- signal-process (w-signal) =

(w-signal = High-alarm A HW-interrupt = enabledA
set-pump(on) ; high- low-water-log (High-alarm);

LW-interrupt := enabled; HW-interrupt := disabled)

V((w-signal = Low-alarm A LW-interrupt = enabledA

set-pump(off) high- low-water- log (Low-alarm);

LW-interrupt disabled; HW-interrupt := enabled)

water- level-monitoring () -"" inito;
(true A ((A5 A stable (Vwater-level-sensor) ; len = O)V

(A5 A -, stable (, Iwater- level-sensor);
((tm = Iwate r- leve 1- sensor A water- level-signal = read (water- level-sensor)) A len < 35;

wate r- leve I- s ignal-process (water- leve 1- signal) A len < 160))))*

Replace possible 66chop" operators with logic conjunctions, leave out the unused

timestamp tm, and abstract away the log details, the final specification is as follows:

inito water- level-sensor-status := EnabledA

HW-interrupt - enabled A LW-interrupt := enabled

B. 2. MINE DRAINAGE SYSTEM

water- level-signal-process (w- signal) -A (w-signal High-alarm A HW-interrupt = enablec/A
ser-pumpýon) ; LW-tnterrupt := enabled; HW-interrupt := disabled)

V((w-signal = Low-alarm A LW-interrupt = enabledA
set-pump(off) ; LW-interrupt := disabled; HW-interrupt: = enabled)

A
wo ter- level-monitoring () = inito;

((A5 A stable (,, Iwater- level-sensor) ; len = O)V
(A5 A -, stable (,, Iwater- level-sensor);

(water- level-signal = read (water-level-sensor) A len < 35;
water- level-signal-process (water- level-signal) A len < 160)))*

Air Flow Module

The initial specification is as follows after elementary abstraction rules are applied:

A
inito = air-flow-sensor- status := enabled

A
air- w-processo = inito ; ((tm = Vair-flow-sensor A air-flow-level = read(air-flow-sensor); flo

air-flow-signal = off A operator- console-alarm ('No-air-flow');

air-flow- log (air-flow-signal)
Vair-flow- log (air-flow-signal)) A len < 100)*

Replace possible "chop"' operators with logic conjunctions, leave out the unused

timestamp tm, and abstract away the log details, the final specification is as follows:

A
inito = air-flow-sensor- status := enabled

A
air-flow-processo = inito ; ((air-flow- level = read (air-flow-sensor);

air-flow-signal = off A operator- console- alarm (No-air-flow'))) A len < 100)*

Main Procedure

After replace the "chop" operators with logic conjunction, the final specification is as

286

follows:

B. 2. MINE DRAINAGE SYSTEM

A
maino= On :=IA enabled :=IA motor-safe :=IA off :=0A disabled 0A motor-unsafe :-0

AHigh-alarm :=3A Low-alarm :=2A ch4-Max := 400 A co-Max 800;

water-flow-periodo A water- level-detecto A ch4-periodo A co-periodo A air-flow-periodo

287

