2,424 research outputs found

    Mapping Informal Settlements in Developing Countries using Machine Learning and Low Resolution Multi-spectral Data

    Full text link
    Informal settlements are home to the most socially and economically vulnerable people on the planet. In order to deliver effective economic and social aid, non-government organizations (NGOs), such as the United Nations Children's Fund (UNICEF), require detailed maps of the locations of informal settlements. However, data regarding informal and formal settlements is primarily unavailable and if available is often incomplete. This is due, in part, to the cost and complexity of gathering data on a large scale. To address these challenges, we, in this work, provide three contributions. 1) A brand new machine learning data-set, purposely developed for informal settlement detection. 2) We show that it is possible to detect informal settlements using freely available low-resolution (LR) data, in contrast to previous studies that use very-high resolution (VHR) satellite and aerial imagery, something that is cost-prohibitive for NGOs. 3) We demonstrate two effective classification schemes on our curated data set, one that is cost-efficient for NGOs and another that is cost-prohibitive for NGOs, but has additional utility. We integrate these schemes into a semi-automated pipeline that converts either a LR or VHR satellite image into a binary map that encodes the locations of informal settlements.Comment: Published at the AAAI/ACM Conference on AI, ethics and society. Extended results from our previous workshop: arXiv:1812.0081

    The role of earth observation in an integrated deprived area mapping “system” for low-to-middle income countries

    Get PDF
    Urbanization in the global South has been accompanied by the proliferation of vast informal and marginalized urban areas that lack access to essential services and infrastructure. UN-Habitat estimates that close to a billion people currently live in these deprived and informal urban settlements, generally grouped under the term of urban slums. Two major knowledge gaps undermine the efforts to monitor progress towards the corresponding sustainable development goal (i.e., SDG 11—Sustainable Cities and Communities). First, the data available for cities worldwide is patchy and insufficient to differentiate between the diversity of urban areas with respect to their access to essential services and their specific infrastructure needs. Second, existing approaches used to map deprived areas (i.e., aggregated household data, Earth observation (EO), and community-driven data collection) are mostly siloed, and, individually, they often lack transferability and scalability and fail to include the opinions of different interest groups. In particular, EO-based-deprived area mapping approaches are mostly top-down, with very little attention given to ground information and interaction with urban communities and stakeholders. Existing top-down methods should be complemented with bottom-up approaches to produce routinely updated, accurate, and timely deprived area maps. In this review, we first assess the strengths and limitations of existing deprived area mapping methods. We then propose an Integrated Deprived Area Mapping System (IDeAMapS) framework that leverages the strengths of EO- and community-based approaches. The proposed framework offers a way forward to map deprived areas globally, routinely, and with maximum accuracy to support SDG 11 monitoring and the needs of different interest groups

    Informal settlement segmentation using VHR RGB and height information from UAV imagery: a case study of Nepal

    Get PDF
    Dissertation submitted in partial fulfilment of the requirements for the Degree of Master of Science in Geospatial TechnologiesInformal settlement in developing countries are complex. They are contextually and radiometrically very similar to formal settlement. Resolution offered by Remote sensing is not sufficient to capture high variations and feature size in informal settlements in these situations. UAV imageries offers solution with higher resolution. Incorporating UAV image and normalized DSM obtained from UAV provides an opportunity of including information on 3D space. This can be a crucial factor for informal settlement extraction in countries like Nepal. While formal and informal settlements have similar texture, they differ significantly in height. In this regard, we propose segmentation of informal settlement of Nepal using UAV and normalized DSM, against traditional approach of orthophoto only or orthophoto and DSM. Absolute height, normalized DSM(nDSM) and vegetation index from visual band added to 8 bit RGB channels are used to locate informal settlements. Segmentation including nDSM resulted in 6 % increment in Intersection over Union for informal settlements. IoU of 85% for informal settlement is obtained using nDSM trained end to end on Resnet18 based Unet. Use of threshold value had same effect as using absolute height, meaning use of threshold does not alter result from using absolute nDSM. Integration of height as additional band showed better performance over model that trained height separately. Interestingly, benefits of vegetation index is limited to settlements with small huts partly covered with vegetation, which has no or negative effect elsewhere

    Slum mapping : a comparison of single class learning and expert system object-oriented classification for mapping slum settlements in Addis Ababa city, Ethiopia

    Get PDF
    Dissertation submitted in partial fulfilment of the requirements for the degree of Master of Science in Geospatial TechnologiesUpdated spatial information on the dynamics of slums can be helpful to measure and evaluate the progress of urban upgrading projects and policies. Earlier studies have shown that remote sensing techniques, with the help of very-high resolution imagery, can play a significant role in detecting slums, and providing timely spatial information. The main objective of this thesis is to develop a reliable object-oriented slum identification technique that enables the provision of timely spatial information about slum settlements in Addis Ababa city. It compares the one-class support vector machines algorithm with the expert defined classification rule set in the discrimination of slums, using GeoEye-1 imagery. Two different approaches, called manual and automatic fine-tuning, were deployed to determine the best value of parameters in one-class support vector machines algorithm. The manual fine-tuning of the parameters is done using extensive manual trial. The automatic tuning is done using cross-validation grid search with the overall accuracy as the performance metric. Two regions of study were defined with different landscape compositions, providing different classification scenarios to compare the classification approaches. After image segmentation, twenty predictive variables were computed to characterize the objects in both study areas. An image analyst collected one hundred sample objects of a slum to be used as training for the single-class learner. In parallel, an image analyst has defined a hierarchical rule set to discriminate the class of interest. Results in both study areas indicate that the one-class support vector machine with manual tuning yields higher overall accuracy (97.7% in subset 1, and 92% in subset 2) and requiring much less application effort and computing time than the expert system

    Integrating openstreetmap data and sentinel-2 Imagery for classifying and monitoring informal settlements

    Get PDF
    Dissertation submitted in partial fulfilment of the requirements for the degree of Master of Science in Geospatial TechnologiesThe identification and monitoring of informal settlements in urban areas is an important step in developing and implementing pro-poor urban policies. Understanding when, where and who lives inside informal settlements is critical to efforts to improve their resilience. This study aims at integrating OSM data and sentinel-2 imagery for classifying and monitoring the growth of informal settlements methods to map informal areas in Kampala (Uganda) and Dar es Salaam (Tanzania) and to monitor their growth in Kampala. Three building feature characteristics of size, shape and Distance to nearest Neighbour were derived and used to cluster and classify informal areas using Hotspot Cluster analysis and ML approach on OSM buildings data. The resultant informal regions in Kampala were used with Sentinel-2 image tiles to investigate the spatiotemporal changes in informal areas using Convolutional Neural Networks (CNNs). Results from Optimized Hot Spot Analysis and Random Forest Classification show that Informal regions can be mapped based on building outline characteristics. An accuracy of 90.3% was achieved when an optimally trained CNN was executed on a test set of 2019 satellite image tiles. Predictions of informality from new datasets for the years 2016 and 2017 provided promising results on combining different open source geospatial datasets to identify, classify and monitor informal settlements

    Mapping New Informal Settlements using Machine Learning and Time Series Satellite Images: An Application in the Venezuelan Migration Crisis

    Full text link
    Since 2014, nearly 2 million Venezuelans have fled to Colombia to escape an economically devastated country during what is one of the largest humanitarian crises in modern history. Non-government organizations and local government units are faced with the challenge of identifying, assessing, and monitoring rapidly growing migrant communities in order to provide urgent humanitarian aid. However, with many of these displaced populations living in informal settlements areas across the country, locating migrant settlements across large territories can be a major challenge. To address this problem, we propose a novel approach for rapidly and cost-effectively locating new and emerging informal settlements using machine learning and publicly accessible Sentinel-2 time-series satellite imagery. We demonstrate the effectiveness of the approach in identifying potential Venezuelan migrant settlements in Colombia that have emerged between 2015 to 2020. Finally, we emphasize the importance of post-classification verification and present a two-step validation approach consisting of (1) remote validation using Google Earth and (2) on-the-ground validation through the Premise App, a mobile crowdsourcing platform

    Towards an automated monitoring of human settlements in South Africa using high resolution SPOT satellite imagery

    Get PDF
    Urban areas in sub-Saharan Africa are growing at an unprecedented pace. Much of this growth is taking place in informal settlements. In South Africa more than 10% of the population live in urban informal settlements. South Africa has established a National Informal Settlement Development Programme (NUSP) to respond to these challenges. This programme is designed to support the National Department of Human Settlement (NDHS) in its implementation of the Upgrading Informal Settlements Programme (UISP) with the objective of eventually upgrading all informal settlements in the country. Currently, the NDHS does not have access to an updated national dataset captured at the same scale using source data that can be used to understand the status of informal settlements in the country. This pilot study is developing a fully automated workflow for the wall-to-wall processing of SPOT-5 satellite imagery of South Africa. The workflow includes an automatic image information extraction based on multiscale textural and morphological image features extraction. The advanced image feature compression and optimization together with innovative learning and classification techniques allow a processing of the SPOT-5 images using the Landsat-based National Land Cover (NLC) of South Africa from the year 2000 as low-resolution thematic reference layers as. The workflow was tested on 42 SPOT scenes based on a stratified sampling. The derived building information was validated against a visually interpreted building point data set and produced an accuracy of 97 per cent. Given this positive result, is planned to process the most recent wall-to-wall coverage as well as the archived imagery available since 2007 in the near future.JRC.G.2-Global security and crisis managemen

    An integrative approach using remote sensing and social analysis to identify different settlement types and the specific living conditions of its inhabitants

    Get PDF
    Someday in 2007, the world population reached a historical landmark: for the first time in human history, more than half of the world´s population was urban. A stagnation of this urbanization process is not in sight, so that by 2050, already 70 percent of humankind is projected to live in urban settlements. Over the last few decades, enormous migrations from rural hinterlands to steadily growing cities could be witnessed coming along with a dramatic growth of the world’s urban population. The speed and the scale of this growth, particularly in the so called less developed regions, are posing tremendous challenges to the countries concerned as well as to the world community. Within mega cities the strongest trends and the most extreme dimensions of the urbanization process can be observed. Their rapid growth results in uncontrolled processes of fragmentation which is often associated with pronounced poverty, social inequality, socio-spatial and political fragmentation, environmental degradation as well as population demands that outstrip environmental service capacity. For the majority of the mega cities a tremendous increase of informal structures and processes has to be observed. Consequentially informal settlements are growing, which represent those characteristic municipal areas being subject to particularly high population density, dynamics as well as marginalization. They have quickly become the most visible expression of urban poverty in developing world cities. Due to the extreme dynamics, the high complexity and huge spatial dimension of mega cities, urban administrations often only have an obsolete or not even existing data basis available to be at all informed about developments, trends and dimensions of urban growth and change. The knowledge about the living conditions of the residents is correspondingly very limited, incomplete and not up to date. Traditional methods such as statistical and regional analyses or fieldwork are no longer capable to capture such urban process. New data sources and monitoring methodologies are required in order to provide an up to date information basis as well as planning strate¬gies to enable sustainable developments and to simplify planning processes in complex urban structures. This research shall seize the described problem and aims to make a contribution to the requirements of monitoring fast developing mega cities. Against this background a methodology is developed to compensate the lack of socio-economic data and to deduce meaningful information on the living conditions of the inhabitants of mega cities. Neither social science methods alone nor the exclusive analysis of remote sensing data can solve the problem of the poor quality and outdated data base. Conventional social science methods cannot cope with the enormous developments and the tremendous growth as they are too labor-, as well as too time- and too cost-intensive. On the other hand, the physical discipline of remote sensing does not allow for direct conclusions on social parameters out of remote sensing images. The prime objective of this research is therefore the development of an integrative approach − bridging remote sensing and social analysis – in order to derive useful information about the living conditions in this specific case of the mega city Delhi and its inhabitants. Hence, this work is established in the overlapping range of the research topics remote sensing, urban areas and social science. Delhi, as India’s fast growing capital, meanwhile with almost 25 million residents the second largest city of the world, represents a prime example of a mega city. Since the second half of the 20th century, Delhi has been transformed from a modest town with mainly administrative and trade-related functions to a complex metropolis with a steep socio-economic gradient. The quality and amount of administrative and socio-economic data are poor and the knowledge about the circumstances of Delhi’s residents is correspondingly insufficient and outdated. Delhi represents therefore a perfectly suited study area for this research. In order to gather information about the living conditions within the different settlement types a methodology was developed and conducted to analyze the urban environment of the mega city Delhi. To identify different settlement types within the urban area, regarding the complex and heterogeneous appearance of the Delhi area, a semi-automated, object-oriented classification approach, based on segmentation derived image objects, was implemented. As the complete conceptual framework of this research, the classification methodology was developed based on a smaller representative training area at first and applied to larger test sites within Delhi afterwards. The object-oriented classification of VHR satellite imagery of the QuickBird sensor allowed for the identification of five different urban land cover classes within the municipal area of Delhi. In the focus of the image analysis is yet the identification of different settlement types and amongst these of informal settlements in particular. The results presented within this study demonstrate, that, based on density classes, the developed methodology is suitable to identify different settlement types and to detect informal settlements which are mega urban risk areas and thus potential residential zones of vulnerable population groups. The remote sensing derived land cover maps form the foundation for the integrative analysis concept and deliver there¬fore the general basis for the derivation of social attributes out of remote sensing data. For this purpose settlement characteristics (e.g., area of the settlement, average building size, and number of houses) are estimated from the classified QuickBird data and used to derive spatial information about the population distribution. In a next step, the derived information is combined with in-situ information on socio-economic conditions (e.g., family size, mean water consumption per capita/family) extracted from georeferenced questionnaires conducted during two field trips in Delhi. This combined data is used to characterize a given settlement type in terms of specific population and water related variables (e.g., population density, total water consumption). With this integrative methodology a catalogue can be compiled, comprising the living conditions of Delhi’s inhabitants living in specific settlement structures – and this in a quick, large-scaled, cost effective, by random or regularly repeatable way with a relatively small required data basis.The combined application of remotely sensed imagery and socio-economic data allows for the mapping, capturing and characterizing the socio-economic structures and dynamics within the mega city of Delhi, as well as it establishes a basis for the monitoring of the mega city of Delhi or certain areas within the city respectively by remote sensing. The opportunity to capture the condition of a mega city and to monitor its development in general enables the persons in charge to identify unbeneficial trends and to intervene accordingly from an urban planning perspective and to countersteer against a non-adequate supply of the inhabitants of different urban districts, primarily of those of informal settlements. This study is understood to be a first step to the development of methods which will help to identify and understand the different forms, actors and processes of urbanization in mega cities. It could support a more proactive and sustainable urban planning and land management – which in turn will increase the importance of urban remote sensing techniques. In this regard, the most obvious and direct beneficiaries are on the one hand the governmental agencies and urban planners and on the other hand, and which is possibly the most important goal, the inhabitants of the affected areas, whose living conditions can be monitored and improved as required. Only if the urban monitoring is quickly, inexpensively and easily available, it will be accepted and applied by the authorities, which in turn enables for the poorest to get the support they need. All in all, the listed benefits are very convincing and corroborate the combined use of remotely sensed and socio-economic data in mega city research

    Advances in remote sensing applications for urban sustainability

    Get PDF
    Abstract: It is essential to monitor urban evolution at spatial and temporal scales to improve our understanding of the changes in cities and their impact on natural resources and environmental systems. Various aspects of remote sensing are routinely used to detect and map features and changes on land and sea surfaces, and in the atmosphere that affect urban sustainability. We provide a critical and comprehensive review of the characteristics of remote sensing systems, and in particular the trade-offs between various system parameters, as well as their use in two key research areas: (a) issues resulting from the expansion of urban environments, and (b) sustainable urban development. The analysis identifies three key trends in the existing literature: (a) the integration of heterogeneous remote sensing data, primarily for investigating or modelling urban environments as a complex system, (b) the development of new algorithms for effective extraction of urban features, and (c) the improvement in the accuracy of traditional spectral-based classification algorithms for addressing the spectral heterogeneity within urban areas. Growing interests in renewable energy have also resulted in the increased use of remote sensing—for planning, operation, and maintenance of energy infrastructures, in particular the ones with spatial variability, such as solar, wind, and geothermal energy. The proliferation of sustainability thinking in all facets of urban development and management also acts as a catalyst for the increased use of, and advances in, remote sensing for urban applications
    corecore