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Abstract 

The process of urbanization experienced world-wide has increased rapidly in recent 

decades, with this trend set to continue. Urbanization is more pronounced in cities in the 

Global South, and this brings with it significant social and environmental problems such as 

uncontrolled urban sprawl and uneven resource distribution. While much urbanization in 

the Global South is unplanned, there have been some rare attempts at strategic, large-scale 

urban planning. One such example is Abuja, the capital of Nigeria, which is a new planned 

city with its origins in a Master Plan devised in the 1970’s. 

This research uses multi-temporal remote sensing to investigate urbanization in Abuja over 

the last 40 years to critique the original Abuja Master Plan, showing the extent to which 

urban development has kept with, or diverged from, the original Master Plan. The study 

also investigated the potential of using remote sensing methods to distinguish unplanned 

and planned urban settlements in Abuja, Nigeria. 

First a time-series of multispectral Landsat images was acquired; cloud-free images from 

1975, 1986, 1990, 1999, 2002, 2008 and 2014 were used, with some years specifically 

selected to correspond with important dates in Nigeria’s socio-political development, and 

to match major milestone targets as prescribed by the Master Plan.  

The research also combined Landsat Thematic Mapper (TM)/Enhanced Thematic Mapper 

plus (ETM+) image classifications of urban built-up land cover with Defence Meteorological 

Satellite Program-Operational Linescan System (DMSP-OLS) stable nighttime lights imagery 

to investigate, distinguish and map unplanned and planned urban areas. DMSP-OLS stable 

nighttime lights imagery from 1999, 2002 and 2008 were selected. Thresholding techniques 

with ancillary information were successfully applied to distinguish areas of unplanned and 

planned developments. 

Finally, the research focused on developing and applying deep learning and random forest 

classification techniques on Very High Resolution (VHR) imagery to characterise and map 

unplanned and planned built-up land at a finer spatial scale. This approach was able to 

address some of the obvious limitations resulting from using coarse (DSMP-OLS) and 

medium (Landsat) resolution imagery encountered in the earlier part of the research in 

attempting to distinguish unplanned and planned built-up settlements. The results of the 

study have shown deep learning can be successfully adapted to map unplanned and 
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planned settlements in a city of the Global South, while random forest performed poorly 

in distinguishing planned and unplanned settlements. 
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1. Introduction 

1.1 Urban areas and urban growth 

Urbanization is the process involving an increasing number of people living in urban areas 

on a permanent basis. Historically, urbanization has been linked to accelerated economic 

growth and development, but recently the situation is different in developing countries, 

especially in sub-Saharan Africa, where rapid urbanization continued while economic 

decline was observed between 1970s and 2000 (United Nations, 2015). As the world 

continues to urbanize, and with much of the future population growth expected in Africa 

and Asia, this will no doubt bring enormous environmental, economic, social, and political 

transformations and challenges (Cohen, 2006). Such growth, especially in Africa, has led to 

about 62% of the total urban population in the continent to be living in unplanned 

settlements and slums (UN Habitat, 2015).  

Despite the evidence that the world is urbanizing at a faster rate than ever, there is still no 

unified definition of exactly what constitutes an urban area or urban settlement (Frey & 

Zimmer, 2001). There is also no single acceptable to all definition of what constitutes an 

unplanned settlement. The definition of ‘urban’ differs widely between disciplines, regions 

and countries, and sometimes what is termed urban changes even within a country over 

time.  Several criteria are used to define urban areas, including administrative boundaries, 

population density, minimum population threshold, connection to electric grid, 

infrastructure such as the presence of paved roads, piped water, and sewers, and health 

and educational services (United Nations, 2015).  

In some countries only one criterion (such as population density) is used to define urban 

areas while in others a combination of different criteria are used  (Cohen, 2004). For 

example, in the United States the criteria outlined by the United States Census Bureau 

(2010) are that an area will have to meet a minimum population density requirement of 

2,500 people before it can be considered urban. In contrast, the UK Office for National 

Statistics (ONS 2013) defines an urban area in relation to built-up area. Built-up land is 

defined as any land which is “irreversibly urban in character”; this means the area 

possesses the characteristics of a village, town or city. Also, areas that are within 200 

meters of each other are considered linked as a single built-up area. The Census Bureau 

links these built-up areas with population using a base referred to as output areas, with 
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urban areas defined as having 10,000 or more residents. The definition of urban is similar 

between most Global South countries. The term ‘Global South’ refers to low- and middle-

income countries located in Africa, Latin America, Asia and the Caribbean ranked and 

grouped by the World Bank (Mitlin & Satterthwaite, 2013). Here, urban areas are mostly 

defined based on a ‘threshold’ with regards to the number of people that makes up a 

settlement. The threshold can range from a few hundred up to 50,000 people, but most 

fall in the range of 1,500 to 5,000 people (Hardoy & Satterthwaite, 1986; De Bonet et al., 

2010). In Nigeria, urban has been defined as an agglomeration of over 5,000 people in 1963, 

and this was raised to over 20,000 in 1991 (Tiffen, 2003).  

1.2 Urban sprawl and unplanned settlements 

Urban sprawl can be defined as the accelerated expansion of built-up land at the fringe of 

a city in a disordered and irregular pattern (Bhatta, 2010; Tewolde & Cabral, 2011). A 

review of literature reveals that there is no unified definition for urban sprawl, which 

means urban sprawl monitoring is especially challenging. Ewing (1997 pg. 108) defined 

urban sprawl based on the combination of three different categories, namely: (1) “leapfrog 

or scattered development; (2) commercial strip development; and (3) large expanses of 

low-density or single-use development (as in sprawling bedroom communities).” Johnson 

(2001), on the other hand, went further to state that this definition of sprawl is not 

comprehensive enough, as sprawl should be seen and recognized as a matter of degree 

because there is a fine line between what people define as sprawl and multicentred 

development (a type of compact development). A completely different approach was 

taking by Angel et al. (2007 pg. 2) when defining urban sprawl, who consider it as both a 

pattern of urban land use, meaning “a spatial configuration of a metropolitan area at a 

point in time” and also a process, namely “the change in the spatial structure of cities over 

time”. In this definition, sprawl is used both as a condition (noun) and process (verb), which 

was also how Galster et al. (2001) defined it.  Despite the difficulty in agreeing definition, 

there is general agreement that urban sprawl occurs at the fringe of cities and is 

characterised by uncontrolled, rampant and uneven growth. This uneven growth leads to 

the rise and growth of unplanned settlements, especially in cities of the Global South. This 

growth is influenced by several factors and processes such as population growth, spatial 

configuration, land use efficiency etc. (Bhatta et al., 2010), which lead to inefficient 

utilization of resources.  
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Unplanned settlements, sometimes also referred to as informal settlements, are areas that 

generally develop haphazardly, without planning provisions. They are usually associated 

with poor infrastructure, irregular layout and poor housing quality (UN-Habitat, 2010; 

Kuffer et al., 2014). It is important to monitor and map unplanned settlements since one 

third of the urban population in the developing nations live in areas that are unplanned 

(United Nations 2011). This can only be done effectively by having access to cheap, 

accurate, reliable and regular data on the urban environment. Doing this will help provide 

information that will help in better urban management decision making and ultimately 

reducing the negative impact of urbanization in countries of the Global South, promote 

more equitable distribution resources, improve environmental sustainability and 

governance. Because of the varying definitions of what constitutes an urban area, there are 

limitations in how to assess and monitor rapidly urbanizing cities such as Abuja in a timely 

manner. Remote sensing provides us with the capacity to observe and manage urban areas 

effectively through the detection of spatial landscape changes. Satellite remote sensing has 

shown considerable promise in the past decade in its ability to monitor unplanned 

settlements and map slums around the world (Patino, 2013; Kuffer et al., 2014; Kuffer et 

al., 2016).  

1.3 Urban planning in the Global South 

Urban planning is the process of controlling the development of cities through plan-making, 

land use design and regulations, with the main objective of improving and enabling cities 

to function better and be more sustainable (Hall & Tewdwr-Jones, 2010). This is one of the 

approaches used over the years to regulate and monitor urban growth and urban sprawl in 

cities of the developing world. This planning involves all the processes that govern the 

design and use of land in the urban environment. In reality, the theory and practice of urban 

planning means different things in different part of the world (Watson, 2009). This means 

that it is important for such plans to be examined periodically to see if in today’s rapidly 

changing urban environments, they can still play a positive role in the growth and 

monitoring of cities. The challenge of urbanization in the Global South is exacerbated by 

lack of relevant spatial information to assist planners, policy makers and other stakeholders 

address the challenges efficiently. This point was highlighted by De Jong et al. (2000) when 

they discovered that planning agencies in Ouagadougou, Burkina Faso, lack the necessary 

spatial information to address issues like provision of infrastructure and social services 
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successfully. The cities of developing countries are structured and planned differently from 

those of the developed world, and because of this at the World Urban Forum in Vancouver 

in 2006 stakeholders called for a major shift in thinking with regards the future of cities in 

the Global South (Watson, 2009). Despite this call, little research in the GIScience 

community is being conducted to address the impact of urban growth in emerging and 

developing countries (Akingbade et al., 2009).  

Planning in developing countries is performed mainly with the aim of urban modernization. 

Urban modernization generally involves having new sets of urban layouts and urban forms 

coupled with a legal mechanism to implement and enforce the new provisions (Watson, 

2009). In trying to cope with the challenges of urbanization, some developing countries 

undertake steps to re-plan their cities in an effort to reduce congestion or handle future 

urban growth. Some take a bold step by proposing a new planned city or trying to adopt 

some form of plan in an unplanned city. For example, in Dar es-salaam, Tanzania, the 

government attempted to tackle the city’s uncontrolled growth by adopting an uncommon 

approach of producing several Master Plans over the years to guide and regulate city’s 

urbanization. In Myanmar the capital was relocated from Yangon to Naypydaw, citing the 

new location as more strategic geographically to accommodate the economic expansion 

and urban development in the country (Preechrushh, 2011). Similar reasons of 

geographical centrality and room for expansion were given in Malawi, where the capital 

was moved from Zomba to Lilongwe (Kalipeni & Zeleza, 1999). Nigerian cities are no 

exception when it comes to rapid urbanization; they are among the fastest growing cities 

in Africa (Braimoh & Onishi, 2007; Merem, 2008) and most of these cities are not planned, 

meaning that there is no strong mechanism to  handle such explosive growth (Oluseyi, 

2006). The level of urbanization in and around major cities in Nigeria, and the adverse effect 

of urban expansion especially in the past 20 years, is making people question how effective 

government policies are towards urbanization and the relevance of the activities of urban 

development agencies and related planning authorities in addressing these problems 

(Arimah & Adeagbo 2000). Some of these reasons led to the creation and relocation of 

Nigeria’s capital city from Lagos to Abuja, initiated in 1976. The relocation was intended 

among other things, to address the lack of adequate space for future development in Lagos 

and to foster unity. The country decided that a new capital was needed that is planned, 

comfortable, secure and centrally accessible, to provide a base for urban development and 

serve as a symbol of Nigeria’s aspiration for unity and greatness (Ikejiofor, 1997). 
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1.4 Remote sensing of urban areas 

Remote sensing is the science of acquiring information about physical objects and the 

environment using non-contact sensors (Colwell, 1997; Campbell & Wynne, 2011). Urban 

remote sensing is the field of remote sensing that investigates various phenomena related 

to urban areas. Having the capability of providing a synoptic view of the urban environment 

and also the ability to provide data with high spatial detail and temporal frequency, makes 

remote sensing a useful tool in studying urban environments (Herold et al., 2003; Jensen & 

Cowen 1999; Xiao et al., 2006; Pham et al., 2011). In the past, aerial photography has been 

successfully employed as a tool and a major source of information in urban analysis (Jensen, 

1982), and it is still in use today, as it continues to provide a means of acquiring the fine 

spatial resolution data that is critical in urban planning and management (Myint et al., 

2011). However, as a result of technological advancement and the availability of ever more 

detailed very high resolution (VHR) satellite imagery, satellite, as well as aerial, remote 

sensing systems have increased the potential for urban remote sensing studies. Moreover, 

these systems can offer additional benefits such as recurrent, comprehensive and 

consistent coverage of urban areas at (relatively) low costs. Many studies are now using 

VHR imagery to study different sectors of the urban environment. For example, object-

based analysis of VHR satellite imagery has been used to assess urban growth by mapping 

and quantifying new buildings (Tsai et al., 2011), and urban change detection (Doxani, 

2012). Urban remote sensing research over the years has focused more attention to the 

use of digital, multispectral images from Earth observation satellites (compared to 

undigitized aerial photographs), a trend which can be attributed to the launch of the second 

generation sensors like Landsat Thematic Mapper (TM), launched in 1982, and 

Satellite Pour l'Observation de la Terre (SPOT 1) launched in 1986 (Donnay et al., 2003; 

Maktav et al., 2005). 

The advent of second generation satellites with improved spatial resolution of between 10 

m and 30 m in the 1980s gave the field of urban remote sensing an improved prospect 

(compared to earlier sensors with 80 m resolution and higher) to better manage the 

challenges of the urban environment. Some of the early urban studies conducted using 

data from Landsat Thematic Mapper (TM) and Landsat Enhanced Thematic Mapper Plus 

(ETM+) among others, was to analyse regional urban systems and conduct exploratory 

investigations of some large cities in North America (Forster 1980; Jensen 1982; Donnay et 
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al., 2003; Jackson et al., 1980). Over the last few years, the spatial resolution of satellite 

imagery has improved significantly from 10 m to less than 1 m.  This was made possible 

with the advent of the third generation of satellites such as IKONOS, which was the first 

commercial satellite providing VHR imagery launched in 1999. This heralded a new era of 

more detailed research in the urban environment. These VHR images have increased the 

amount of information that can be extracted in complex urban environments (Myint et al., 

2011), for example, relatively small features like roads, buildings and intra-urban open 

areas can be identified, (Puissant et al., 2005), whereas medium resolution satellite sensors 

struggle to discriminate these (Barnsley, 1997; Franklin & Wulder, 2002; Weng, 2012). Prior 

to 1999, the main limitation cited for the sporadic research in remote sensing of impervious 

surfaces was the lack of high (less than 10 m) resolution images (Weng 2012).  

Despite the complexities and dynamism of urban areas, remote sensing can be used to 

extract important attributes of the urban environment. Furthermore, integrating remote 

sensing data with other ancillary data can help reveal other characteristics of the urban 

environment like socio-economic conditions (Blaschke et al., 2011; Taubenböck et al., 

2008), for example, urban poverty and low-income sites (Thomson 2000; Hall et al., 2001). 

Other studies have also successfully utilized VHR imagery to estimate population (Wu et al. 

2005; Liu et al., 2006). This further shows the significance of remote sensing in providing a 

unique capacity in the spatial and temporal observation and analysis of the diverse 

processes and aspects of the urban environment (Herold et al., 2003). 

A great deal of research in urban remote sensing has concentrated on general land use and 

land cover change; more research is needed to target specifically the evolution and change 

of built-up land (impervious surfaces) over time (Weng 2012). Studying change in built-up 

land in cities is very important as it can help not just urban planners towards sustainable 

urban development, but also better and sustainable environmental management. 

1.5 Remote sensing data sources  

Remote sensing technology has been in existence since the mid-19th century. The first 

reported aerial photographs were taken with a camera mounted on a balloon in the 1860s 

by Felix Tournachon in France (Patino & Duque, 2013). Prior to 1946, remote sensing data 

was only collected in the form of photographs from balloons and aeroplanes. Satellite 

remote sensing kick-started in earnest only with launch of a satellite called TIROS 1 
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(Television Infrared Observation Satellite) an experimental system with the aim of 

monitoring Earth’s weather (Fritz & Wexler, 1960). However, the breakthrough for 

environmental remote sensing came with the launch of ERTS-1 (Earth Resources 

Technology Satellite 1), later renamed Landsat-1, in 1972 by National Aeronautics and 

Space Administration (NASA). This launch was so profound in terms of peaceful acquisition 

and sharing of scientific data that Vincent (1997) stated that there is no event  in the history 

of science that can equal the advent of the Landsat-1 Multispectral Scanning System (MSS). 

Landsat MSS is part of the first-generation satellites that have a relatively moderate spatial 

resolution, i.e. imagery with 10-100 metre resolution. Remote sensing images are generally 

categorised based into three broad groups based on spatial resolution: coarse, moderate 

and fine resolution imagery (Franklin & Wulder, 2002). 

1.5.1 Coarse spatial resolution imagery 

Low (or coarse) spatial resolution remote sensing includes images with >100 m resolution, 

for example, Advanced Very High Resolution Radiometer (AVHRR) imagery, Moderate 

Resolution Imaging Spectroradiometer (MODIS) and Defence Meteorological Satellite 

Program-Operational Linescan System (DMSP-OLS) nighttime lights imagery. AVHRR 

imagery is widely used for environmental studies due to its coverage and its standard in 

terms of spectral characteristics. On the other hand, Defence Meteorological Satellite 

Program-Operational Linescan System (DMSP-OLS) nighttime lights (NTL) dataset have a 

non-standard spectral nature, though it uses the same optical principle with other coarse 

resolution satellite imagery. DMSP-OLS nighttime stable lights (SNTL) data are part of NTL 

dataset acquired and made publicly available cost-free by National Centre for 

Environmental Information (NCEI), which is part of the United States National Oceanic and 

Atmospheric Administration (NOAA). The nighttime lights data was recorded in 6-bit 

format, with each pixel recorded as a digital number (DN) ranging from 0 – 63. Each pixel 

is the average of the OLS visible band recorded DN values of lights from cities, towns and 

other persistent light in a year. This dataset is becoming very valuable in monitoring urban 

areas and as a proxy to obtain other complimentary information like land use and socio-

economic characteristics of cities around the world (Doll & Pachauri 2010; Small et al., 

2011; Gao et al., 2015). Many studies have successfully utilized coarse resolution DMSP-

OLS imagery (Letu et al., 2010; Jing et al., 2015; Liu et al., 2015; Ma et al., 2015; Goldblatt 

et al., 2018) imagery to map land cover and land use. The majority of studies that utilize 
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low-resolution imagery focus on regional and global scale (Lu et al., 2008; Weng, 2012). 

There are multiple methods that have been used to extract information on urban areas 

using nighttime lights imagery. These methods include: empirical thresholding technique 

(Elvidge et al., 1997), thresholding technique using mutation detection (Imhoff et al., 1997), 

image classification methods (Cao et al., 2009) and thresholding technique with ancillary 

data (Henderson et al., 2003).  

1.5.2 Moderate spatial resolution imagery 

The second category of medium (or moderate) spatial resolution remote sensing includes 

images with 10-100 m resolution, for example, Landsat Multispectral Scanner (MSS), 

Thematic Mapper (TM), Enhanced Thematic Mapper Plus (ETM+) & Operation Land Imager 

(OLI) imagery. Other medium resolution image sources include Advanced Spaceborne 

Thermal Emission and Reflection Radiometer (ASTER), SPOT and Sentinel-2 imagery. 

Studies that have effectively used such data types for an environmental studies include: 

Song et al. (2001) who indicated when and where to perform atmospheric correction when 

using Landsat TM data for classification and change detection; Franklin & Wulder (2002) 

reviewed in detail the different approaches to land cover classification using medium 

resolution satellite imagery; Liu & Yang (2005) successfully monitored urban land changes 

in Atlanta using Landsat TM imagery combined with Geographic Information Systems (GIS); 

Weng & Hu (2008) used medium resolution satellite imagery to estimate and impervious 

surface successfully; Esch et al., (2009) assessed and analysed impervious surface in a large 

area using Landsat ETM+ imagery combined with geospatial vector data; Tan et al., (2009) 

used SPOT multispectral images to successfully map impervious surfaces in an urban area.  

Over the past few decades, several other studies have utilized Landsat imagery successfully 

to extract and map urban land cover and land use. For instance, Yang et al. (2003) 

presented an approach to map a large area of impervious surfaces using Landsat ETM+ 

imagery. A similar approach was also suggested by Esch et al. (2009) using Landsat ETM+ 

images combined with geospatial vector data. Landsat TM imagery was also effectively 

used to map land cover and perform change analysis in the metropolitan area of 

Minnesota, USA (Yuan et al., 2005). Several other studies have used Landsat imagery 

independently or combined with other sensor imagery to successfully detect urban growth, 

urban socioeconomic attributes, and map land cover and land use in urban areas (Chen 
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2002; Mundia & Aniya 2005; Xiao et al., 2006; Morton & Yuan, 2009; Dong et al., 2010; Li 

& Weng, 2010; Ward et al., 2010; Wakode et al., 2014). 

Despite the successes of using Landsat for urban studies, some limitations exist. For 

example, Landsat has a relatively poor temporal resolution. There are also significant time 

gaps in the Landsat archive between good quality images to conduct intended land cover 

land use mapping work. Other limitations of Landsat include its basic spatial resolution 

limitation: 30 m pixels cannot detect small urban features) and its inability to 

classify/distinguish planned and unplanned urban settlement classes. 

1.5.3 Fine spatial resolution imagery 

High (or fine) spatial resolution remote sensing includes images with a resolution ranging a 

from few centimetres to less than 10 m, with imagery of less than 5 m in the group usually 

referred to as very high resolution (VHR) imagery. Examples of fine resolution sensors 

includes; IKONOS (3.2 m Multispectral (MS)), QuickBird (2.6 m MS), GeoEye-1 (1.8 m MS), 

NigeriaSat-2 (5 m MS) and WorldView-4 1.2 m MS) Several studies have employed high 

resolution imagery such as QuickBird and GeoEye to investigate urban environment in finer 

spatial detail with great success. For instance, Lu et al. (2011) mapped impervious surfaces 

using QuickBird imagery, Kuffer et al. (2014) utilized VHR imagery to develop an unplanned 

settlement morphological index, Wieland & Pittore (2014) investigated the potential of 

using machine learning techniques on medium and VHR satellite images, and Mboga et al. 

(2017) used QuickBird imagery to detect and map informal settlements in Dar es Salaam, 

Tanzania. Aguilar et al. (2013) explored and compared the effect of using GeoEye-1 and 

WorldView-2 images on classification accuracy in urban areas, and Huang & Zhang (2011) 

also utilized GeoEye-1 imagery to develop a morphological building index for the automatic 

extraction of building from VHR imagery in urban areas. 

1.6 Urban mapping and image classification 

Remote sensing plays a significant role in the area of urban growth detection and mapping. 

Some of the earliest applications of remote sensing involved urban extent mapping using 

aerial photography (Wentz et al., 2014). Delineation and mapping of urban areas is usually 

performed using image classification. Image classification is the process of labelling pixels 

to information classes in an image. When classifying land cover and land use, there is no 

single way or standard that is universally accepted as best in terms of accuracy (Stehman, 
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1997). Land cover is defined as the biophysical attributes of the Earth’s surface (Lambin et 

al., 2001) and land use is described as the purpose or intent applied to these attributes 

(land cover) by humans (Campbell & Wynne, 2011; Lambin et al., 2001). Land cover is an 

important variable that links and affects many part of the physical and human 

environments (Foody, 2002).   Tackling various environmental problems like deforestation, 

flooding, uncontrolled urbanization, loss of agricultural lands, and environmental pollution 

has made having reliable and frequent information about land cover and land use 

increasingly important (Nunes & Auge, 1999; Sala et al., 2000). 

The classification process is broad and can be approached through different perspectives. 

The perspective tends to be influenced by the purpose of the study and user preference 

even though an objective numerical approach is used. This is because the ultimate decision 

of what classifier or technique to adopt is determined based on the analyst interest. In 

theory, the method to use in land cover classification should be based on landscape 

structure (Hubert-Moy et al., 2001), but this is not always the case as each classification is 

specifically made to satisfy the need of a particular user or target audience (Anderson, 

1976). Image classification can be conducted using two major approaches of pixel labelling 

that are referred to in the remote sensing literature as unsupervised and supervised 

classification techniques (Duda & Canty, 2002; Wilkinson, 2005; Phyu, 2009).  

Supervised classification is a process of using sample pixels whose identity is known to 

classify pixels of unknown identity. The training pixels are usually well distributed, and 

representative of their individual classes located in the image to be classified (Zhang & 

Foody, 2001). Unsupervised classification on the other hand is a semi-automatic process of 

identifying clusters and natural structures within a multispectral image. It works by 

organizing data into classes that share similar (spectrally homogenous) characteristics 

(Duda & Canty, 2002). Image classification are sometimes categorised based on the how a 

classifier works. For instance, per-pixel algorithms (sometimes referred to as hard 

classifiers) and fuzzy classification algorithms (sometimes referred to as soft classifiers). 

Hard classifiers work by assigning each individual pixel to a single land cover (or other class) 

while soft classifiers work by assigning pixels a class membership of each land cover present 

instead of a single land cover class (Weng, 2012).  
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Many image classification methods have been developed over the years to extract 

information from remotely sensed data, with mapping and extracting impervious surfaces 

to study urban environments attracting more and more interest (Lu et al., 2011). For 

instance, Lu & Weng (2009) used IKONOS imagery to extract impervious surfaces, Puissant 

et al. (2005) explored the usefulness of texture analysis in improving per-pixel classification 

of VHR imagery, and Sugg et al. (2014) described methods of extracting impervious surface 

from high resolution imagery using object-based classification technique. Others have also 

successfully utilized medium spatial resolution data such as Landsat for classification and 

mapping of impervious surfaces in the urban environment (Esch et al., 2009; Hu & Weng, 

2009, 2011; Lu et al., 2011; Xian & Crane, 2005; Yang et al., 2003). Sahoo & Pekkat (2014) 

attempted to determine the characteristics of impervious surfaces in an urban region using 

images from Landsat MSS, TM and ETM+, in an effort to assess the role spatial resolution 

plays in determining the level of urbanization in an area. Weng (2012) gave detailed 

requirements, methods and trends in classifying and mapping impervious surfaces. Also, 

maximum likelihood (ML) and support vector machine (SVM) algorithms were combined 

successfully to classify land cover in Eastern Uganda (Otukei & Blaschke, 2010). Object-

based classification approaches are another classification category that works by 

combining spectral, texture, shape and context of a group of pixels to extract and classify 

target features (Mathieu et al., 2007; Weng, 2012). Object-based classification approaches 

have been applied effectively to monitor urban growth by classifying buildings and 

impervious surfaces (Leinenkugel et al., 2011; Tsai et al., 2011; Doxani et al., 2012).  

Furthermore, pixel and object-based classification techniques were used to define and 

classify urban areas with high accuracy in 27 mega cities around the world (Taubenböcket 

et al., 2012). Machine learning techniques which utilizes ensemble learning capability like 

random forests (RF) and deep learning (DL) are also becoming popular in the field of urban 

remote sensing object extraction and classification.  

1.6.1 Maximum likelihood 

ML is a statistical method that is commonly used in supervised classification of remotely 

senses data (Kamh et al., 2012). The ML method is among statistical procedures referred 

to as parametric, as it is based on estimates derived from statistical parameters of the 

training data chosen by the user. The basic assumption behind the maximum likelihood 

algorithm is that the frequency distribution of the classes is in multivariate normal form 
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(Mather & Koch, 2011); i.e. ML operates by using the training data to estimate the means 

and variances of the classes identified by the user. This is then used to estimate the 

probabilities of class membership (Campbell & Wynne, 2011). ML is a well-known and well 

understood technique and has been widely used in the field of remote sensing image 

classification. The main weakness of this approach is its parametric assumption (normal 

distribution of data) which can sometimes be problematic and leads to reduced accuracy. 

The success of parametric classifiers like ML is highly dependent on the size and the quality 

of the training sets. Also, in situations where different classes overlap each other in feature 

space, parametric classifiers tend to yield a number of misclassifications (Hubert-Moy et al. 

2001).  

1.6.2 Random forests 

Machine learning approaches are also becoming more widely used in remote sensing image 

classification in urban areas using both unsupervised and supervised classification 

techniques (Wieland & Pittore, 2014; Hu et al., 2015; Hu et al., 2015b; Fu et al., 2017; 

Mboga et al., 2017). Random forest (RF) is a machine learning algorithm that uses an 

ensemble of classification trees. The RF classifier works by using two parameters to create 

its prediction model; the parameters are the number of decision trees and the variables 

utilized to make the tree grow (Ma et al., 2017). The RF classifier is a non-parametric 

algorithm which makes it suitable for handling unbalanced data (Thanh Noi & Kappas, 

2018). It builds binary classification trees (ntree) that draw replacements from the original 

observations (Eisavi et al., 2015). RF is now being widely utilised for classification in the 

field of remote sensing due its improved accuracy and performance over other traditional 

classifiers (Stumpf & Kerle, 2011; Puissant et al., 2014; Me et al., 2017; Thanh Noi & Kappas, 

2018). Several studies have successfully utilized RF to analyse and map urban land cover 

using both medium resolution imagery (Na et al., 2010; Li et al., 2014; Marston et al., 2014) 

and VHR imagery (Sun et al., 2017; Du et al., 2015).  

1.6.3 Deep learning 

Deep learning is a neural network technique that uses backpropagation algorithms to make 

a machine automatically adjust its inbuilt parameters to learn representative and 

discriminative features in a hierarchical manner from a large dataset (LeCun et al., 2015; 

Zhang et al., 2016). Due to the limitations of classic remote sensing feature extraction and 
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classification algorithms, (for example, the assumption of normal multivariate distribution 

of data) a new algorithm is needed that can effectively combine spectral and spatial 

features within an image (Noguiera et al., 2017). DL algorithm combines spectral and spatial 

characteristics of an image, and it works without the need for prior knowledge regarding 

the relationships that exists within the data (Lary et al., 2016). DL is proving to be very 

successful in solving many advanced remote sensing tasks and improving results (Zhu et al., 

2017). A prominent and well-known DL algorithm is convolution neural network (CNN). 

CNNs have been successfully applied in the field of object detection and segmentation 

(Girschick et al., 2016), and classification (Zhou et al., 2016; Zhang et al., 2016; Hu et al., 

2015; Luus et al., 2015). Its popularity and growing relevance can be linked to its 

multifaceted application, from image pre-processing to scene recognition, high-level 

semantic feature extraction and pixel-based classification (Zhang, 2016).  

1.7 Remote sensing change detection 

Change detection is one of the most important and challenging aspects in the field of 

environmental remote sensing, due to its multifaceted application and significance. The 

complexity of impervious surfaces and other distinct features of the urban environment 

makes digital change detection even more challenging (Lu et al. 2011). A large range of 

change detection techniques have been developed and applied to monitor environmental 

change over time (Lu et al., 2004). Example techniques include image differencing, which 

involves subtracting a transformed image from another image of a different date but 

registered exactly together with the first image (Coppin & Bauer, 1996); using principal 

component analysis (PCA) to  improve stacked sensor data information and then combining 

supervised and unsupervised classification to detect and quantify the changes (Deng et al., 

2008); neighbourhood correlation image analysis and decision trees based on the logic that 

images of a geographical location on two dates will be uncorrelated if change has occurred 

and highly correlated if little or no change is experienced (Im & Jensen 2005); and post-

classification comparison (Fichera et al., 2012).  

1.7.1 Post classification comparison 

Post classification comparison is a widely utilised change detection technique in remote 

sensing. This technique compares independently-classified images of an area acquired at 

different times and is widely used in land cover and land use change detection analysis (Ji 
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et al., 2006; Sarvestani et al., 2011; Kamhet al., 2012; Liu 2015). This normally involves two 

(bi-temporal) or more (multi-temporal) images of the same area with the intention of 

analysing, uncovering and quantifying any change that has taking place within the area in 

question. Post-classification comparison works by separate classification and analyses of a 

combined dataset of two or more alternate dates in order to identify areas of changes in 

each image and comparing the results afterwards.  

1.8 Research Focus 

Rapid urbanization has led to the proliferation of unplanned settlements in the cities of the 

Global South. The effects of rapid urbanization led to the decision of some countries to 

develop entirely new planned cities to curtail some of the negative effects. Most Nigerian 

cities are unplanned, containing few, if any, planned neighbourhoods. This leads to many 

challenges including traffic congestion, pollution and poor infrastructure and inadequate 

basic social amenities. Some of these challenges led to the decision to create a new planned 

city – Abuja – to serve as the nation’s new capital. Four decades later, the success of this 

venture has never been comprehensively evaluated. 

Planned cities around the world are a relatively new phenomenon and have not been 

monitored over long timescales in general. In the few instances where monitoring has been 

conducted, this has not been over the full lifetime of the cities and it has not involved wall-

to-wall spatial analysis, e.g. using remote sensing imagery. Thus, using satellite imagery to 

monitor and analyse urban development in Abuja since the time of its conception in the 

late 1970s is highly worthwhile and wholly novel. Four decades after the Abuja Master Plan 

was drawn up, few studies have looked at the city’s urban growth and development 

(Abubakar, 2014; Ujoh, 2010; Zubair et al., 2015). Furthermore, since its publication, there 

has never been any comprehensive review of Abuja’s Master Plan or its success (Abubakar, 

2014). This implies that the effects of urbanization in and around Abuja over the past four 

decades has not been investigated fully, even though Abuja has been growing at an 

unprecedented rate especially over the past 20 years. Between 2000-2010 alone, according 

to UN figures, Abuja had a growth rate of 139.7%, making it the fastest growing city in the 

world in that period (Boumphrey, 2010).  

Remote sensing provides us with a unique opportunity to study the city of Abuja from when 

it came into existence and it also offers us the ability to analyse the pattern of land cover 



24 
 

land use change in and around city boundaries. Such information will be significant in 

understanding how planned cities, especially in the Global South, evolve. The findings of 

this research will also enable planners to manage the city’s fast paced urbanization 

effectively, including remediating the presence and problems of any future unplanned 

settlements.   

This research project specifically assesses how Abuja, the first planned city in Nigeria, has 

grown between 1975, when it was first conceived, and 2014. The research focuses in 

particular on the development and expansion of unplanned settlements in Abuja over the 

last four decades. The concept of planned cities is principally concerned with the 

overcoming of all major problems associated with unintended urban growth. As the term 

implies, planned cities come into existence after rigorous planning, usually captured in a 

form of a Master Plan. With the help of satellite remote sensing, we can investigate the 

past, compare it with the present and appraise the successes and failures of a planned 

Global South city like Abuja.  

1.8.1 Research aim and objectives 

The aim of this research is to investigate urbanization in the Global South using a range of 

remote sensing data sources and image processing methods, specifically attempting to 

identify and map unplanned settlements and distinguish these from planned development 

in Abuja, Nigeria. 

To achieve this aim, three main research objectives are set: 

1. To monitor the changing land cover around Abuja over the last four decades using 

a time-series of Landsat imagery in order to assess the effectiveness of the city’s 

Master Plan in controlling urbanization. 

To fulfil this objective, a series of research questions are set: 

I. How have patterns of land cover in Abuja Federal Capital Territory (FCT) 

evolved since the 1970s? 

II. Has the Master Plan been effective in dictating the pace and pattern of 

urbanization in Abuja? 

III. Has unplanned urban development been limited successfully? 
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IV. Have changes in political governance influenced the nature of urban 

growth? 

 

2. To monitor urban development and distinguish unplanned and planned urban areas 

in Abuja using DMSP-OLS nighttime lights imagery. 

To fulfil this objective, two research questions are set: 

I. How effective is DMSP-OLS stable nighttime lights (SNTL) imagery in 

mapping urban extent at local scale in a Global South environment? 

II. Can DMSP-OLS SNTL imagery successfully distinguish unplanned and 

planned and urban areas in a Global South environment? 

 

3. To map urban land in detail and distinguish unplanned and planned urban areas in 

Abuja using VHR GeoEye-1 imagery and deep learning analysis. 

To fulfil this objective, two research questions are set: 

I. Can deep learning offer enhanced classification performance over 

established machine learning methods such as random forests? 

II. Can planned and unplanned urban settlements be distinguished and 

mapped successfully using deep learning? 

1.9 Thesis outline 
1.9.1 Chapter One: Introduction 

This chapter provides a general introduction to the research project. Background 

information is presented on urbanization, urban sprawl and unplanned settlements, and 

urban planning in the Global South; and on urban remote sensing, data sources, image 

classification and change detection. Finally, the research focus, aim and objectives are 

specified in detail.  

1.9.2 Chapter Two: Time-series satellite imagery demonstrates the progressive failure of a 
city Master Plan to control urbanization in Abuja, Nigeria 

This first research chapter focuses on investigating temporal change of the city from 1975-

2014. An attempt is also made to establish if urban growth has occurred according to the 

Master Plan, or if there is any diversion. Where any diversion from the Master Plan occurs, 

this will be investigated to determine the causal factors and the implications of these.  
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This study focuses on the spatial component of the Abuja Master Plan because it is area 

that can be effectively analysed and examined using remote sensing. This means, the 

Master Plan temporal aspect that has not been assessed in the past can be investigated. 

Taking this into account, the main focus of the chapter is on land cover and land use change, 

specifically with regards to urban built-up land and the growth and evolution of unplanned 

settlements. The analysis performed led to the discovery of other data and methodological, 

for instance the difficulty in using Landsat imagery to distinguish planned and unplanned 

urban development due to both classes having similar spectral characteristics. There is also 

the issue of temporal coverage of Landsat and issues of cloud cover and strip lines on ETM+ 

imagery after 2002.To tackle this problem, a different type of remote sensing imagery is 

needed, for example, DMSP-OLS nighttime lights. This provides a big advantage over other 

sensors such as Landsat that have low temporal frequency. Furthermore, the way in which 

the data is composited together and provided to the user community including the 

developed methods, means DMSP-OLS NTL could be utilized to assess the development of 

Abuja at higher temporal frequency.  

1.9.3 Chapter Three: Using DMSP-OLS nighttime lights and Landsat TM/ETM+ imagery to 
map and characterise urbanization in a planned city of the Global South 

The second research chapter focuses on investigating, characterising and mapping planned 

and unplanned built-up land growth in and outside Abuja’s planned city compartments 

using DMSP-OLS stable nighttime lights (SNTL) data combined with Landsat TM/ETM+ 

imagery. The DMSP-OLS data was chosen to address some of the limitations of 

independently using Landsat multispectral imagery that is not capable of distinguishing 

planned and unplanned areas. DMSP-OLS images from 1999, 2002 and 2008 were selected 

to match available Landsat imagery, also coinciding with the period of change in Abuja after 

governance returned to democratic rule in 1999 following military dictatorship. In this 

chapter, a thresholding technique with ancillary data (Landsat image-generated urban 

built-up land cover) was adopted to extract urban built-up area, and also to map planned 

and unplanned urban area in Abuja. Thresholding involves determining a certain level of 

light intensity to map urban areas and reduce over blooming. Blooming is defined as the 

“spurious indication of light in a location that does not contain a light source” (Small et al., 

2005 pg. 278).  
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This technique was adopted because it is used extensively due to its reliability and relatively 

higher accuracy than other techniques like thresholding based on mutation detection and 

thresholding based on empirical technique (Henderson et al., 2003; Milesi et al., 2003; Liu 

et al. 2012). DMSP-OLS NTL has shown a lot of potential in urban mapping but it also 

exhibited some limitations. For example, over blooming in dense urban areas is very 

common and this leads to over estimation of urban extent in cities. Also, the archives of 

DMSP-OLS NTL extends only to 2010. This is another major limitation to the scope this study 

intended to cover. Furthermore, the spatial resolution of NTL imagery (approximately 1 

km) is another significant limitation that makes it difficult to target smaller settlements. To 

address these issues, a different technique and imagery with much improved spatial 

resolution is needed.  Using fine resolution GeoEye-1 imagery can address some these 

limitations observed.  

 1.9.4 Chapter Four: A simplified approach to mapping complex planned and unplanned 
settlements in Abuja, Nigeria using deep learning and random forests. 

The analysis performed in the earlier chapters have revealed a major limitation with 

regards to spatial resolution. Coarse and medium resolution imagery are inadequate to 

successfully distinguish planned and unplanned settlements. GeoEye-1 imagery is utilized 

to address the problem associated with the limitation posed by coarse and medium 

resolution images. Still, the two main classes of interest - planned and unplanned 

settlements - tend to be spectrally confused using traditional classification approaches. 

Classical remote sensing techniques such as maximum likelihood algorithms, unlike DL, 

struggle to combine spatial and spectral attributes of an imagery in feature extraction and 

classification. This is why the third research chapter focuses on developing a novel method 

of using deep learning approach on VHR imagery to map planned and unplanned 

settlements in Abuja at a finer scale. This research attempts to utilize VHR GeoEye-1 

imagery, plus deep learning analysis, to address the limitations of using moderate (Landsat) 

and coarse (DMSP-OLS NTL) spatial resolution imagery to distinguish unplanned and 

planned settlements. Many studies are beginning to use DL in the field of remote sensing 

as an improvement to other extraction and classification techniques to study urban areas 

using VHR imagery. For instance, Xu et al., (2018) used a segmentation model combined DL 

with guided filters to extract buildings in an urban area.  Fu et al., on the other hand, 

proposed an improved Fully Convolution Network (FCN) as an upgrade to CNN in extracting 

buildings in urban areas. Despite the growing interest in using DL in remote sensing, not 
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much is known on its potential to map and characterise planned and unplanned 

settlements. DL approach using CNN on a QuickBird imagery was also utilised to detect 

informal settlements in Dar es Salaam, Tanzania, with the result of the study showing 

improved accuracy over SVMs (Mboga et al., 2017).  

This study utilized an off the shelf CNN architecture that was trained to detect and map 

planned and unplanned settlements (alongside other land cover) using GeoEye-1 satellite 

imagery. The methodology proposed here is aimed to study unplanned and planned land 

characterisation at greater detail. The methodology was designed and simplified in a way 

to make it easier for urban planners and policy maker to be able to adopt it to monitor and 

manage unplanned settlements for the future.  

1.9.5 Chapter Five: Conclusion 

The final chapter provides an overall summary and conclusion on the research project 

findings. Commentary is provided to set these findings in academic context and to outline 

the potential societal impact of the research, including its practical significance to urban 

planners, environmental managers and policy makers in the Global South. Limitations of 

the present research project, including data sources and image analysis methods, are also 

outlined, and suggestions made for future avenues of research.  
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Time-series satellite imagery demonstrates the progressive failure 
of city Master Plan to control urbanization 
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Abstract 

 Urbanization is a global phenomenon, but its negative effects are most pronounced in 

developing countries. While much urbanization in the Global South is unplanned, there 

have been occasional attempts at strategic, large-scale urban planning. One example is 

Abuja, Nigeria, a new city with origins in a 1970s Master Plan. Here, we use multi-temporal 

remote sensing to investigate four decades of urbanization in Abuja, showing the extent 

to which urban development has matched original intentions. Seven Landsat images from 

1975 to 2014 were selected to correspond with Master Plan milestones and turning points 

in Nigeria's socio-political development. Land cover classification and change detection 

results show built-up land increasing rapidly, from 1,167 ha in 1975 to 18,623 ha in 2014, 

mostly converted from grassland, often via a pioneer bare soil class. Comparing image 

analysis against the Master Plan shows that, in the early years, Abuja's development 

matched broad planning intentions fairly closely. Later, though, unplanned development 

proliferated, and the city's resemblance to the Master Plan diminished progressively. 

Level of adherence to the Master Plan varied widely according to the system of 

government. Notably, after long-term military rule was replaced by democratic 

government around the turn of the millennium, unplanned development increased 

sharply. 
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2.1 Introduction 

The current rate of urbanization worldwide is unprecedented, with these rapidly growing 

urban environments having significant human and environmental consequences. In 1900 

only approximately 5% of the world’s population lived in cities (Maktav et al., 2005), yet 

this increased to over 50% by 2008 (Wurm et al., 2009; Pham et al., 2011); and it is 

forecasted that 70% of global population will be urban dwellers by the middle of the 

twenty-first century (Maktav et al., 2005). 

Much of the world’s future urban and population growth will occur in developing countries, 

with Africa and Asia urbanizing at a faster rate than the rest of the world. By 2050, the 

global urban population is expected to increase by 2.5 billion, with 90% of this increase in 

Africa and Asia; China, India and Nigeria alone are forecast to account for 37% of the global 

urban population increase (United Nations, 2015). Although urbanization is global, its 

impact is often felt most severely in developing countries poorly equipped to manage the 

challenges associated with rapid urban growth, such as environmental degradation, high 

unemployment, poverty and housing shortages (Ji et al., 2001; Karanja & Matara, 2013). 

To manage urbanization more effectively, some countries have taken the approach of 

building new planned cities, often capital cities intended to be emblematic of the country’s 

modern perspective, free of negative legacy and urbanization effects. Motivations for 

creating these new planned capital cities vary. For example, for Dodoma, Tanzania, the 

philosophy was to create a city that is a symbol of ‘ujamaa’ or ‘an alternative vision’ of 

human settlement and urbanism (Myers, 2011). In the case of Lilongwe, Malawi, 

geographical centrality was one of the main reasons cited for relocating the capital from 

Zomba (the colonial capital) after independence (Kalipeni & Zeleza, 1999; Englund, 2001). 

More recently, the capital of Myanmar was also relocated from Yangon to Pyinmana (later 

renamed Naypydaw) as it is “geographically and strategically located” for the development 

of Myanmar (Preecharushh, 2011, p. 1012). Other examples of planned capital cities 

include Brasilia (Brazil), Islamabad (Pakistan), Canberra (Australia) and Washington, D.C. 

(USA). Planned cities are often guided by some form of ‘Master Plan’, a comprehensive 

long-term planning document produced to provide a clear framework for city design, land 

use, growth and development schedule. In developed nations, there has been strong 

criticism of the use of Master Plans with many countries now moving to more flexible and 

collaborative initiatives such as strategic spatial plans, strategic urban planning, multi-
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functional urban projects and smart growth or ‘urban villages’ (Borja et al., 1997; Healey, 

1997; Marshall, 2000; Albrechts, 2001; Steinberg, 2005; Watson, 2009). Some of these 

criticisms are that Master Planning is less participatory and democratic, and that it does 

not adequately address environmental concerns such as resource depletion, climate 

change and environmental sustainability. This led to calls for this approach to be 

substituted with a more flexible and inclusive approach (Watson, 2009). However, in 

developing countries, master planning has remained popular, and is still considered a 

valuable approach for effective urban development and management. One notable 

example of a planned capital city in the Global South is Abuja, Nigeria. 

Given the pace of global urbanization and its negative consequences, monitoring urban 

area growth is critical to provide essential information for urban management and 

planning. To monitor urbanization, a regular and reliable source of spatial information is 

needed, with ground survey labour-intensive and costly. Remote sensing is the only 

realistic solution. Satellite data has been used widely in mapping urban growth and 

assessing city morphology, informal settlements, and socio-economic features such as 

population size and poverty (Jensen & Cowen, 1999; Longley, 2002; Aplin, 2003a; Wurm et 

al., 2009). Urban remote sensing dates back to the start of the Landsat programme in 1972, 

when the spatial data requirements needed to delineate broad urban patterns were met 

with medium (79 by 57 m) spatial resolution Landsat Multispectral Sensor (MSS) imagery 

(Maktav et al., 2005). Later generations of Landsat and other medium resolution sensors, 

especially Landsat’s Thematic Mapper series (30 m spatial resolution), increased the detail 

and accuracy of urban mapping to some extent (Gluch, 2002; Blaschke et al., 2011). 

However, the introduction of very high resolution (VHR) sensors, the first being IKONOS, 

launched in 1999 with 4 m spatial resolution (multispectral) imagery (Aplin, 2003b; Weng, 

2012), improved capabilities dramatically. The greater detail provided by VHR sensors 

offered improved discrimination of built-up and non-built-up areas and has improved the 

ability to analyse internal variation within urban settlements (Wania et al., 2014). 

While great effort goes into Master Plan development and implementation, there is often 

little later reflection on the success of this approach. In Abuja, few studies have 

retrospectively examined the city’s urban growth and development (Ujoh et al., 2010; Ujoh 

et al., 2011; Abubakar, 2014; Zubair et al., 2015), and there has been no comprehensive 

review of the Master Plan’s successes and failures (Abubakar, 2014). Notably, no study has 
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examined how Abuja has developed in relation to the Master Plan document originally 

designed to guide the city’s growth, using satellite remote sensing. This study is one of the 

first to assess comprehensively the success of a city Master Plan in the Global South using 

the approach of mapping land cover change using historical remotely sensed imagery.  

A few examples where Master Plans have been assessed include six local plans in New 

Zealand (Laurian et al., 2004); Islamabad, Pakistan (Maria & Imran, 2006); Amman, Jordan 

(Beauregard & Marpillero-Colomina 2011); the central district plan of Israel (Alfasi et al., 

2012; Feitelson et al., 2017); Guangzhou, China (Tian & Shen, 2011); Lucknow, India (Dutta, 

2012);  Nanjing, China (Qian, 2013); and Lisbon, Portugal (Padeiro, 2016), though these 

have not generally exploited time-series remotely sensed imagery to aid their assessment. 

These studies focus mainly on planning policy implementation or the level of conformance 

of current land use to the Master Plan without interrogating the processes that led to the 

current situation. Other studies assess Master Plans in relation to architectural design flaws 

(Maria & Imran, 2006) or focus on variables such as population and economic activity (Qian, 

2013). Most studies also fail to analyse the intention of the original Master Plan in relation 

to the later outcomes observed. Finally, these studies also tend to conduct assessment over 

a relatively short time-frame rather than considering the full lifetime of a city which can 

shed light on how, when and why cities deviate from original plans. As such, the findings of 

this study, which examines long-term change in Abuja, and also comment on the causes of 

these changes, will have widespread significance for urban planning and management 

practices in the context of rapid global urbanization. 

The aim of this study is to monitor the urbanization of Abuja since its inception in the mid-

1970s  and assess the extent to which the Master Plan has been realised. To achieve this, a 

time-series of historical Landsat images is used to generate a series of land cover maps 

enabling change in land cover types and coverage throughout Abuja’s Federal Capital 

Territory (FCT) between 1975 and 2014 to be quantified. Of particular interest is the 

distinction between planned (as identified in the Master Plan) and unplanned urban 

development. The very existence of a Master Plan implies that unplanned development 

should not have occurred, or at least should be relatively insignificant. There will also be 

consideration of how prevailing social and political context can influence urban 

development. For instance, during implementation of Abuja’s Master Plan, Nigeria’s 

government switched variously between democratic and military rule, and this may have 
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influenced urban development policies. Ultimately, the study’s findings will enable 

recommendations on how planners and policy makers can better monitor urban growth, 

thus tackling urbanization and its unwanted consequences more effectively. Four specific 

research questions are posed here: 1) How have patterns of land cover in Abuja FCT evolved 

since the 1970s? 2) Has the Master Plan been effective in dictating the pace and pattern of 

urbanization in Abuja? 3) Has unplanned urban development been limited successfully? 4) 

Have changes in political governance influenced the nature of urban growth? 

2.2 Study Area: The Planned City of Abuja, Nigeria 

In 1975 a report was conducted by the Nigerian government’s ‘Committee on the Location 

of the Federal Capital of Nigeria’ which concluded that Lagos was not capable of continuing 

as Federal Capital due to inadequate space for future development, lack of cultural 

diversity, and non-central (within Nigeria) geographical location (Ikejiofor, 1997). The 

government thus commissioned planning of a new capital city that should be centrally 

located, ethnically neutral, have sufficient natural land resources for development, and, 

aspirationally, provide a symbol of Nigeria’s ambition to foster unity and portray greatness 

(Ikejiofor, 1997). In February 1976, the military government of Nigeria issued a federal 

decree to establish the Federal Capital Development Authority (FCDA) and charged it with 

the planning and development of the new federal capital of the country, later named Abuja. 

Therefore, a Master Plan was developed by International Planning Associates (IPA) in 1979 

(Abubakar, 2014). This initiated the creation of a new capital city, a policy regarded as one 

of the most profound decisions taken by Nigeria since independence from Great Britain in 

1960 (Vale, 2014). The Master Plan was submitted and adopted for implementation in 

1979. Construction began in 1980 with an intended occupancy date of 1986, later moved 

to 1991 (when Abuja officially replaced Lagos as capital city) due to the slow pace of 

development. The Master Plan proposed a 20+ year implementation period, with the year 

2000 set as the target date by which all phases of the city (as specified in the plan) would 

be fully developed (IPA, 1979). 

The Federal Capital City (FCC) of Abuja covered an area of 256 km2 (in the original Master 

Plan), now extended to approximately 450 km2 (including an extra development phase 

added in 2005). Located within the Federal Capital Territory (FCT) of Nigeria which covers 

an area of around 8,000 km2 (Figure 2.1), the FCT is positioned between latitude 7°25’ and 

9°20’N, and longitude 5°45’ and 7°39’ W, with elevation ranging from approximately 100 
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m (in the southwest) to above 600 m (in the northeast). Abuja has two distinct seasons: the 

wet season between early April and late October, and the dry season from November to 

March. The FCT is located within the Guinea-Savanna vegetation zone (Idoko & Bisong, 

2010). 

 

Figure 2.1. Study area showing the extent of Abuja Federal Capital Territory (FCT) on the 

left, with an inset of Abuja Federal Capital City (FCC) and its phase boundaries on the right. 

The FCC footprint is overlaid on a false colour composite display of the cropped 2014 

Landsat Operational Land Imager (OLI) image area. (FCC map adapted from data supplied 

by Abuja Geographic Information System agency, Federal Capital Development Authority 

and Nigeria Space Research and Development Agency; Landsat OLI image supplied by US 

Geological Survey.) 

The Master Plan originally specified four main phases of development (with a fifth phase 

added in 2005), covering four distinct spatial compartments of the city radiating outwards 

sequentially from the main urban centre in the northeast of the FCC (Figure 2.1). To the 

north and east of the urban centre is a large rock outcrop that inhibits urban construction, 

thus development was intended to be focussed to the west and south. The phased 

approach of development was adopted to ensure orderly growth of the city, limiting 

disruption and pollution associated with development, and enabling targeted 

infrastructural development so the city is habitable, populated and functional at the 

conclusion of each phase (IPA, 1979). The phases were intended to occur broadly 

sequentially, though some allowance was made for overlap between phases. While the 



36 
 

spatial footprints of these phases were specified precisely in the Master Plan, the 

timescales for development were less clear. Few specific dates were given, though 

construction of phase one was scheduled to start in 1980 and end by 1986 (when Abuja 

was intended to be inaugurated as Nigeria’s capital city), and completion of all four phases 

was scheduled for 2000. 

Prior to development, 500-600 small settlements and villages were present in the FCT area, 

with a total population around 300,000 in 1975. The Master Plan proposed that these 

settlements and their indigenous residents be relocated from areas earmarked for 

development within the planned city (IPA, 1979), though there has been little follow-up 

analysis to investigate the process of relocation or its success. 

The Master Plan provides considerable detail on planned land cover and land use 

distributions (Figure 2.1), organising the city into sectors, and specifying development type 

(residential, industrial, government facilities etc.) in each sector. Of the FCC’s usable land 

(excluding steep slopes and rock outcrops), 49% was earmarked for residential 

development, 32.5% for recreational purposes (including green and open space), 16.5% for 

light industries (including commercial activities) and 2% for government usage (IPA, 1979). 
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Figure 2.2. Land use plan for Abuja Federal Capital City (source: IPA, 1979). 

The main rationale of the Abuja Master Plan was to provide long-term guidance for the 

systematic implementation and growth of the new Federal Capital City (IPA, 1979). The 

creators of the Master Plan intended that the plan would “recognize changes and 

uncertainty by making provisions for both unforeseen growth and transition as well as 

unforeseen events” (IPA, 1979, p. v). However, the extent to which this has been achieved 

is questionable. 

Since its inception, Abuja has experienced rapid population growth and urbanization. With 

an urbanization rate of 8.3% per annum, Abuja is the fastest growing city in Africa (Myers, 

2011). Such rapid growth has put considerable strain on the city’s urban infrastructure, and 

has limited overall adherence to the provisions of the Abuja Master Plan (Abubakar, 2014; 

Iro, 2007). The original population target figure when development was completed in 2000 

was 1.6 million people, although it was speculated that this figure may be exceeded (up to 
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a maximum of an additional 1.6 million) whereby the additional population was 

accommodated in other satellite towns within the FCT (IPA, 1979). In the official 2006 

census, population was stated as just under 1.7 million (NPC, 2006), although this figure is 

highly contentious and other researchers have claimed the true population is far higher. 

For instance, Iro (2007) estimated unofficial daytime population in Abuja to be close to 7 

million, illustrating the problems developers can encounter where plans are based strictly 

on official figures. 

Notwithstanding official census figures, in 2005 the government responded to observations 

that both urbanization and population growth had far outstripped projections in the 

Master Plan (United Nations, 2015), by proposing an additional, fifth phase of 

development. Phase five covers an area of approximately 210 km2 and extends further 

southwest from the original development (see Figure 2.1). However, details regarding 

phase five remain scant in terms of land use distribution, and the proposal has never been 

ratified by the FCDA. 
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2.3 Research Data 
2.3.1 Remotely Sensed Imagery 

The principal form of analytical data used to investigate urbanization in Abuja is a time-

series of Landsat remotely sensed images. Seven images were used covering the lifetime 

of the Master Plan from 1975, 1986, 1990, 1999, 2002, 2008 and 2014 (Table 2.1). These 

images were downloaded via the online EarthExplorer facility 

(https://earthexplorer.usgs.gov/). To enable ready comparison, images were acquired 

from around the same time of year, thus minimizing seasonal effects. Nonetheless, image 

selection was influenced by availability of cloud-free images. It was not always possible to 

source images from the same month (January was targeted since this is central in the dry 

season), however all images selected were within one month of this target window. It was 

not possible to source images in equal time steps (e.g. every five years), however images 

were spaced reasonably regularly over the project timescale, with certain years targeted 

specifically to correspond with political and legislative change in Nigeria. For example, 1975 

corresponded with the original (1976) proposal to create Abuja (Moore, 1984), 1986 with 

intended initial occupation of the city (Ikejiofor, 1998) and 1990 with the proposed 

relocation of the capital city from Lagos to Abuja (Idoko & Bisong, 2010). 1999 was selected 

to match Nigeria’s switch from military to democratic governance, and 2002, 2008 and 

2014 were selected with relatively short intervals to provide some correlation with the four 

year tenure of elected governments in Nigeria. Matching the imagery to key dates in 

Nigeria’s recent political past is important since civilian rule has seen a marked increase in 

infrastructural investment in Abuja (Adama, 2007). 

  

https://earthexplorer.usgs.gov/).
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Table 2.1. Multitemporal Landsat time-series and NigeriaSat-2 imagery used to analyse 

urbanization in Abuja (MSS = Multispectral Scanner, TM = Thematic Mapper, ETM+ = 

Enhanced Thematic Mapper Plus, OLI = Operational Land Imager; B = blue, G = green, R = 

red, NIR = near infrared, SWIR = shortwave infrared, P = Panchromatic). 

Acquisition 

date 

Landsat sensor Spatial resolution 

(m) 

Spectral bands used (μm) 

6 Dec 1975 MSS 60 (resampled from 

original 79 x 57 

resolution)  

G (0.5-0.6), R (0.6-0.7), NIR 1 (0.7-0.8), NIR 2 (0.8-1.1) 

8 Jan 1986 TM 30 B (0.45-0.52), G (0.52-0.60), R (0.63-0.69), NIR (0.76-0.90), 

SWIR 1 (1.55-1.75), SWIR 2 (2.08-2.35) 

12 Feb 1990 TM 30 B (0.45-0.52), G (0.52-0.60), R (0.63-0.69), NIR (0.76-0.90), 

SWIR 1 (1.55-1.75), SWIR 2 (2.08-2.35) 

28 Jan 1999 TM 30 B (0.45-0.52), G (0.52-0.60), R (0.63-0.69), NIR (0.76-0.90), 

SWIR 1 (1.55-1.75), SWIR 2 (2.08-2.35) 

2 Dec 2002 ETM+ 30 B (0.45-0.52), G (0.52-0.60), R (0.63-0.69), NIR (0.77-0.90), 

SWIR 1 (1.55-1.75), SWIR 2 (2.09-2.35) 

29 Jan 2008 ETM+ 30 B (0.45-0.52), G (0.52-0.60), R (0.63-0.69), NIR (0.77-0.90), 

SWIR 1 (1.55-1.75), SWIR 2 (2.09-2.35) 

21 Jan 2014 OLI 30 B (0.45-0.51), G (0.53-0.59), R (0.64-0.67), NIR (0.85-0.88), 

SWIR 1 (1.57-1.65), SWIR 2 (2.11-2.29) 

15 Jan 2014 NigeriaSat-2 5 m and 2.5 m (P) B (0.45-0.52), G (0.52-0.60), R (0.63-0.69), NIR (0.76-0.90), P 

(0.45-0.90) 

 

Due to the timescale over which urban development is investigated, it was necessary to 

utilise images acquired from different Landsat sensors: Multispectral Scanner (MSS), 

Thematic Mapper (TM), Enhanced Thematic Mapper Plus (ETM+) and Operational Land 

Imager (OLI). The spectral and spatial specifications of these instruments vary, but basic 

multispectral image configurations were used in all cases (see Table 2.1 for details). Thus, 

the spatial resolution was 30 m for all TM, ETM+ and OLI images, with only the MSS image 

being at a coarser resolution (originally acquired at 79 x 57 m, subsequently resampled to 

regular 60 m pixels before data supply). Spectrally, standard visible (blue, green and red), 

near infrared (NIR) and shortwave infrared (SWIR) bands were used, wherever available. 

The thermal band (TM, ETM+, OLI), and OLI’s coastal and cirrus bands, were omitted since 
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these bands are not optimised for land cover features, and to ensure more direct 

comparison between images.  

2.3.2 Urban Planning Data 

The original Abuja Master Plan was used as a source of data on proposed land cover and 

land use distributions throughout the study area, against which the remote sensing analysis 

results were compared. The Master Plan data included maps showing proposed 

development phases including land cover and land use, plus tables, text and figures 

presenting statistical details of land cover and land use allocations. A map of the original 

(four) Master Plan FCC phases was obtained from the Abuja Geographic Information 

Systems (AGIS) Agency, and subsequently digitized. A phase 5 map was obtained from the 

Federal Capital Development Authority’s (FCDA) Department of Urban and Regional 

Planning, which was also digitised. To enable detailed spatial analysis, vector maps 

(shapefiles) showing individual districts within the FCC were obtained from AGIS. For six of 

these districts (Jahi, Katampe, Kaura and Utako located in phase 2; and Kabusa and Saraji 

in phase 3), detailed land cover and land use budget allocations (i.e. specific planned areal 

extents of different classes) were available, provided by the FCDA. This data was used to 

calculate the total expected planned coverage of built-up area in each district. 

2.3.3 Reference Data 

To enable independent verification of the land cover change analysis, a robust reference 

data set was compiled from a range of available sources. First, a six-week field campaign 

was undertaken in 2015. This involved extensive land cover survey throughout the study 

area and interviews (relating to land cover and land use change over the years and planning 

policies) with the city’s planning officials and residents. Second, land cover maps covering 

parts of the study area (phases 1-3) were acquired from both AGIS and the FCDA. Third, 

VHR imagery was accessed, both through Google Earth’s historical imagery function 

(containing imagery dating back to 2001) (O’Regan et al., 2016), and directly from a 

NigeriaSat-2 image (5 m resolution multispectral imagery (red, green, blue, near infrared 

bands) and 2.5 m panchromatic band) of Abuja acquired in January 2014 (supplied by the 

Nigeria Space Research and Development Agency (NASRDA)) (Figure 2.3). 
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Figure 2.3. Contrast between planned (northeast of image) and unplanned (west and south 

of image) urban development in Kabusa district, as represented by three different true 

colour composite images captured in January 2014: Landsat Operational Land Imager, 

NigeriaSat-2 and Google Earth imagery. (Landsat OLI image supplied by US Geological 

Survey; NigeriaSat-2 image supplied by Nigeria Space Research and Development Agency; 

Google Earth imagery © 2018 CNES/Airbus.) 

These reference data sources were collated to create a single, comprehensive reference 

land cover data set for each year of analysis (i.e. each of the Landsat image dates), and 

were used to train and test land cover classification analysis (Sawaya et al., 2003; Thomas 

et al., 2003; Yang, et al., 2003). Ensuring close temporal alignment between reference and 

image data proved challenging, especially for the early image dates. While the 2014 image 

was very well referenced (fieldwork and NigeriaSat-2 image), and other relatively recent 

images (1999, 2002, 2009) were covered by historical Google Earth imagery and secondary 

land cover maps, reference data sources were more limited for earlier image dates (1975, 

1986, 1990). In these cases, the fieldwork campaign proved invaluable, eliciting personal 

observations and oral histories through interviews with long-term planning officials and 

residents able to provide detailed descriptions of past land cover distributions and changes 

over time (Jianchu et al., 2005; Weber et al., 2005). This combined composite was especially 

significant in the accuracy assessment of the older historic images (1975,1986 and 1990). 
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2.4 Methodology 
2.4.1 Land Cover Classification System 

Urban land cover classification from remotely sensed data sets can be complex due to the 

spectral heterogeneity of urban reflectance (Small, 2003; Small et al., 2005; Taubenböck et 

al., 2012; Momeni et al., 2016), so it is important to define appropriate classes considering 

the nature of the study area and the technical specifications of the imagery. The 

classification system used here was developed after careful study of relevant literature and 

secondary land cover maps and following extensive field observation around the study 

area. The system was adapted from Anderson's (1976) widely used approach, specifically 

the level 1 classes. 

Six land cover classes were selected: bare exposed rock, bare ground, built-up land, forest, 

grassland and water (Table 2.2). All six classes were used for all except one of the Landsat 

images. In the earliest (1975) Landsat MSS image, only four classes were mapped: bare 

exposed rock, built-up land, forest and grassland. The other two classes, bare ground and 

water, were omitted because there was no significant presence of these land cover types 

in 1975. In later images, bare ground appeared as a pioneer class for built-up land. That is, 

land was converted from (i) an initial class (commonly grassland, but also sometimes forest) 

in the earliest image, via (ii) the bare ground class in the next image as land was cleared for 

development, to (iii) the built-up land class in the latest image. Also, no large water bodies 

were present in the study area in 1975 (water bodies in subsequent years were human-

made reservoirs built after this date). 

Table 2.2. Abuja land cover classification system. 

Land cover class Description 

Bare exposed rock Bare rock outcrops, including occasional rounded knolls, inselbergs, granitic and 

other exposed rock outcrops. 

Bare ground Open areas devoid of trees, grass or other vegetation that is not built-up, water 

or exposed rock. This class often comprises land cleared for development. 

Built-up land Impervious surfaces including building rooftops, asphalt roads and concrete 

surfaces not necessarily residential.  

Forest Woodlands and thick riverine vegetation. This class generally comprises patches 

of forest in isolated areas with steep slopes in riverine areas. 

Grassland Areas dominated by grasses, but also including shrubs and isolated trees (i.e. 

not forest blocks), and any other vegetation.  
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Water Water bodies such as reservoirs, rivers and standing water. 

 

2.4.2 Data Pre-processing 

The Landsat images were downloaded as level 1 standard products, which are pre-

radiometrically and geometrically corrected. To verify the geometric alignment of the 

images, each Landsat image was cross-checked against a VHR NigeriaSat-2 image (which 

was within 2-5 m of the ground control points (GCPs) selected) to ensure positional 

accuracy. Image pre-processing is very important in change detection analysis to minimise 

errors and have comparable results. All images other than the 1975 Landsat MSS image 

were geometrically aligned to within approximately 15 m of the NigeriaSat-2 image. The 

MSS image was geographically displaced by approximately 200 m; this error was consistent 

throughout the image. Therefore, an image to image co-registration was performed using 

the 1986 Landsat TM image as a reference. The 1986 image was selected as this was closest 

in time to the 1975 image, increasing the likelihood of common features (GCPs) being 

identifiable in both images. 

While geometric alignment is essential for accurate change detection analysis, radiometric 

and atmospheric correction was less important since the results pertained to processed 

land cover classifications. Although atmospheric correction is advised where spectral pixel 

(e.g. surface reflectance) values of multi-temporal images are compared, here all images 

were converted from continuous original pixel values (digital numbers) to classified 

thematic land cover class labels. These land cover classifications were independently 

checked using accuracy assessment procedures, and the errors presented. This essentially 

bypasses any direct requirement for atmospheric correction or radiometric normalization, 

and is standard practice for post-classification comparison analysis (Singh, 1989; Foody, 

2002; Coppin et al., 2004; Aplin, 2006; Chen et al., 2012; Hussain et al, 2013; Tewkesbury 

et al., 2015). 

Prior to classification, all images were cropped to an identical area covering Abuja FCC and 

its immediate surroundings. The Landsat MSS image contained a data artefact (a diagonal 

line towards the southern edge of the image – see Figure 2.4) which was masked, and the 

affected area excluded from all images. The 2008 ETM+ image suffered from striping 

caused by the scan-line corrector fault which affected all imagery since 2003 (Andrefouet 
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et al., 2003; Zeng et al., 2013). Several methods to overcome this problem have been 

promoted by the USGS (https://landsat.usgs.gov/landsat-7) including Web Enabled Landsat 

Data (WELD), Erdas Imagine Mosaicking Method, Historic Techniques (Phase 1 and 2) and 

Erdas Imagine Focal Analysis. Here, the focal analysis approach was used to gap fill areas of 

data loss. An iterative approach was employed, with visual assessment used to ensure a 

satisfactory outcome. 

Finally, boundary data of the Master Plan development phases were digitised from maps 

supplied by AGIS and FCDA to create vector coverages to enable integrated analysis with 

the classified images. 

2.4.3 Class Training and Image Classification 

Land cover classification was conducted using the maximum likelihood (ML) approach. ML 

classification is widely used, well-understood and generally accurate where training data 

are selected appropriately (Foody et al., 1992; Erbek et al., 2004; Otukei & Blaschke, 2010; 

Srivastava et al., 2012; Li et al., 2014; Momeni et al., 2016;). Class training samples were 

chosen carefully from each image to meet the statistical requirements of the parametric 

ML classifier (Table 2.3). Reference data (described in section 4.4) were scrutinized to select 

training samples (i.e. image pixels) representing each class; these samples were sufficiently 

large, distributed throughout the study area and relatively evenly spread between classes 

to provide robust statistical representation of all classes (Perumal & Bhaskaran, 2010; 

Fichera et al., 2012; Jia et al., 2014). However, class training for the 1975 Landsat MSS image 

proved problematic, as the coarse spatial resolution of MSS meant that identifying small 

features, especially built-up areas (which in 1975 tended to be small, informal settlements), 

was challenging. As such, the class training samples for this image tended to be relatively 

small (see Table 2.3).  

  

https://landsat.usgs.gov/landsat-7)


46 
 

Table 2.3. Land cover class training and testing details for the 1975-2014 Landsat images 

of Abuja. 

Image 

year 

No. class training samples Overall classification 

accuracy (%) Bare ex- 

posed 

rock 

Bare 

ground 

Built-up 

land 

Forest Grassland Water 

1975 35 - 21 94 163 - 67.5 

1986 192 172 218 205 188 106 90.8 

1990 92 268 202 314 546 182 84.6 

1999 97 164 257 213 559 264 86.7 

2002 153 137 196 147 210 112 86.0 

2008 138 184 237 232 325 145 78.8 

2014 99 171 225 144 553 358 83.8 

 

Statistical separability testing was then performed on training samples to ensure there was 

no significant spectral overlap between classes. Specifically, Transformed Divergence (TD) 

statistics were calculated for all classes and images. TD represents the degree of divergence 

between pairs of classes as values between 0 and 2000, where a low value suggests poor 

separability and the 2000 maximum indicates full separability (Chen & Stow, 2002). TD 

results were generally high for all years of imagery, with many class pairs exhibiting full (TD 

= 2000) separability. The lowest values were recorded for the 1999 image, with an average 

TD value of 1972. Having established suitable spectral separability, ML classification was 

performed (Gong & Howarth 1990, Jensen 1996). 

2.4.4 Accuracy Assessment 

Quantitative accuracy assessment was conducted for each land cover classification. This 

involved generating a random sample of points in the study area (a stratified approach was 

used ensuring all classes were well represented) and, at each point, comparing the 

classified image pixel with the reference data. The reference data used for accuracy 

assessment were independent of the reference data used for class training (i.e. the same 

locations were not used for both training and testing). A relatively large sample of 240 

points was used for each image to ensure reliable results. Results were presented and 

interrogated using the standard error matrix approach (Congalton, 1991; Liu et al., 2015).  
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2.4.5 Change Detection 

Post-classification comparison was conducted on the classified images to identify change 

over time. This involved overlaying the classifications from the different years and assessing 

how pixels’ class associations change between image dates (Yuan, et al., 2005; Tewkesbury, 

et al., 2015), and how the area coverage of each class varies. Here, more detailed spatial 

interrogation was also conducted on the growth of the built-up class, to identify expansion 

of built-up land for each time period, and to determine which other classes were converted 

to built-up.  

2.4.6 Comparison with Master Plan 

Following image classification and change detection analysis, spatial boundary data drawn 

from the Master Plan were integrated with the classified images to determine how closely 

urban development (as determined from the images) matched Master Plan projections. 

Specifically, vector coverages of the five development phases were overlaid on the land 

cover classifications, and the area of the built-up class was extracted. This analysis was also 

conducted beyond the development phase footprints to identify unplanned developments 

outside the planned area. 

As the Master Plan contains a timeline of when and how the city should grow, this enabled 

comparative analysis of correspondence and deviation between the planned and observed 

phases of development to be performed. This also identifies evidence of urban sprawl, a 

common and unwanted phenomenon in many cities around the world (Galster et al., 2001; 

Wilson et al., 2003; Cohen, 2006; Wakode et al., 2014). Additional local-scale analysis was 

conducted by comparing Master Plan projections of built-up area for six Abuja districts with 

the image analysis results.   
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2.5 Results 
2.5.1 Land Cover Classification 

The seven land cover maps (1975, 1986, 1990, 1999, 2002, 2008, 2014) are presented in 

Figure 2.4. These clearly illustrate the rapid development of Abuja over this period, with 

built-up land displayed in red. Other notable features include the general dominance of the 

study area by grassland, and the creation of two water bodies (reservoirs) in the northern 

part of the study area to supply the population in Abuja, which first became apparent in 

the 1986 classification). Interestingly, the bare ground class tends to identify land cleared 

for development – areas shown as bare ground in one image are often converted to built-

up land in the subsequent image. Finally, areas of forest in the southern part of the study 

area were lost rapidly after 1986, replaced by grassland. This surprise finding was 

investigated during the 2015 field campaign, and although unknown to planning officials at 

the time, it subsequently became apparent that the two main causes for this forest loss 

were illegal logging and agricultural clearance (A. Wakili, personal communication, 3 

October 2015). 
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Figure 2.4. Land cover classification of Abuja, Nigeria and its environs in (a) December 1975, 

(b) January 1986, (c) February 1990, (d) January 1999, (e) January 2002, (f) January 2008, 

and (g) January 2014. No data corresponds to dropped lines in the 1975 image, with the 

affected area masked out of all classifications to enable direct comparison. 

Quantitative accuracy assessment was performed on all the classified images, with overall 

classification accuracies shown in Table 2.4a-g. Accuracies were generally high, with all 

classifications approaching or exceeding 85%, except the 1975 and 2008 images. The 1975 

image was likely affected by its coarser spatial resolution and simpler spectral configuration 

compared to the other images, making class separability more difficult especially for 

smaller land cover features such as dwellings and informal settlements (i.e. built-up land). 

The 2008 image may have been affected by the gap filling analysis, though visually it 

appears relatively accurate, with the representation of built-up land clearly showing urban 

development progressing between the 2002 and 2014 images. Full error matrices for all 

classifications are shown in Table 2.4a-g. 

Table 2.4a 
Error matrix for Abuja land cover classification using 1975 Landsat Multispectral Scanner image. 

  Reference class Users 
accuracy (%) 

 
 

Bare 
exposed 
rock 

Built-up 
land 

Forest Grassland  

Bare exposed rock 10 0 5 5 50.0 
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Predicted 
class 

Built-up land 0 8 0 0 100.0 
Forest 0 0 18 1 90.0 
Grassland 0 12 2 18 56.3 

Producers accuracy (%) 100.0 40.0 72.0 75.0  
Overall classification accuracy = 67.5% 

 
Table 2.4b 
Error matrix for Abuja land cover classification using 1986 Landsat Thematic Mapper image. 

  Reference class Users 
accuracy 
(%) 

 
 

Bare 
exposed 
rock 

Bare 
ground 

Built-
up 
land 

Forest Grassland Water 

Predicted 
class 

Bare exposed rock 40 0 0 0 0 40 100.0 
Bare ground 3 27 8 0 2 0 67.5 
Built-up land 0 0 32 1 4 0 80.0 
Forest 0 0 0 40 0 0 100.0 
Grassland 0 0 0 0 39 0 97.5 
Water 0 0 0 0 0 0 100.0 

Producers accuracy (%) 87.0 100.0 80.0 95.2 86.7 100.0  
Overall classification accuracy = 90.8% 

 

Table 2.4c 
Error matrix for Abuja land cover classification using 1990 Landsat Thematic Mapper image. 

  Reference class Users 
accuracy 
(%) 

 
 

Bare 
exposed 
rock 

Bare 
ground 

Built-
up 
land 

Forest Grassland Water 

Predicted 
class 

Bare exposed rock 37 0 0 2 1 0 92.5 
Bare ground 0 36 2 0 2 0 90.0 
Built-up land 1 2 23 0 14 0 57.5 
Forest 0 0 0 33 7 0 82.5 
Grassland 2 0 0 3 35 0 87.5 
Water 0 0 1 0 0 39 97.5 

Producers accuracy (%) 92.5 94.7 88.5 86.8 59.3 100.0  

Overall classification accuracy = 84.6% 

 

Table 2.4d 
Error matrix for Abuja land cover classification using 1999 Landsat Thematic Mapper image. 

  Reference class Users 
accuracy 
(%) 

 
 

Bare 
exposed 
rock 

Bare 
ground 

Built-
up 
land 

Forest Grassland Water 

Predicted 
class 

Bare exposed rock 38 0 0 1 1 0 95.0 
Bare ground 2 24 10 0 4 0 60.0 
Built-up land 0 2 36 1 1 0 90.0 
Forest 0 0 0 40 0 0 100.0 
Grassland 2 0 0 5 33 0 82.5 
Water 1 0 1 1 0 37 92.5 

Producers accuracy (%) 88.4 92.3 76.6 83.3 84.6 100.0  
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Overall classification accuracy = 86.7% 
 

Table 2.4e 
Error matrix for Abuja land cover classification using 2002 Landsat Enhanced Thematic Mapper Plus image. 

  Reference class Users 
accuracy 
(%) 

 
 

Bare 
exposed 
rock 

Bare 
ground 

Built-
up 
land 

Forest Grassland Water 

Predicted 
class 

Bare exposed rock 37 0 0 0 2 1 92.5 

Bare ground 0 21 14 0 5 0 52.5 

Built-up land 0 0 37 0 3 0 92.5 

Forest 0 0 0 38 2 0 95.0 

Grassland 2 0 1 3 36 0 90.0 

Water 1 0 0 0 1 38 95.0 

Producers accuracy (%) 93.4 100.0 71.2 91.7 73.5 97.4  

Overall classification accuracy = 86.0% 

 

Table 2.4f 
Error matrix for Abuja land cover classification using 2009 Landsat Enhanced Thematic Mapper Plus image. 

  Reference class Users 
accuracy 
(%) 

 
 

Bare 
exposed 
rock 

Bare 
ground 

Built-
up 
land 

Forest Grassland Water 

Predicted 
class 

Bare exposed rock 33 1 0 0 6 0 82.5 
Bare ground 2 17 14 0 7 0 42.5 
Built-up land 1 1 29 3 6 0 72.5 
Forest 0 0 0 39 1 0 97.5 
Grassland 0 0 1 4 35 0 87.5 
Water 0 0 0 4 0 36 90.0 

Producers accuracy (%) 91.7 89.5 65.9 78.0 63.6 100.0  
Overall classification accuracy = 78.8% 

 

Table 2.4g 
Error matrix for Abuja land cover classification using 2014 Landsat Operational Land Imager image. 

  Reference class Users 
accuracy 
(%)  

 
Bare 
exposed 
rock 

Bare 
ground 

Built-
up 
land 

Forest Grassland Water 

Predicted 
class 

Bare exposed rock 27 0 0 0 0 0 100.0 

Bare ground 0 21 4 0 0 1 80.8 

Built-up land 0 1 36 0 1 2 90.0 

Forest 0 0 0 26 2 0 92.9 

Grassland 10 6 3 9 53 0 65.4 

Water 0 0 0 0 0 38 100.0 

Producers accuracy (%) 92.7 75.0 83.7 74.3 94.6 92.7 
 

Overall classification accuracy = 83.8% 



53 
 

2.5.2 Land Cover Change 

Extensive land cover conversions have taken place in the study area over the last 40 years, 

as illustrated by the change detection statistics presented in Table 2.5. The most dramatic 

class changes involve built-up land, which increased steadily from 1,164 ha (or 0.6% of the 

study area) in 1975 to 18,623 ha (9.8%) in 2014, and water, which was completely absent 

at the start of the study but increased to 1,038 (0.5%) ha in 2014 through the reservoir 

creation. Other notable changes include a slow but steady increase in bare ground during 

the study period, which can be attributed to the ongoing clearance of land for new urban 

development. Forest area remained relatively steady throughout the study, averaging 

approximately 9-9.5% of the study area despite logging and agricultural clearance activities. 

These losses are offset with gains in human-made forest scattered throughout the study 

area (e.g. national (government-managed) parks and commercial plantation, as confirmed 

through fieldwork and interviews in 2015). Similarly, bare exposed rock remained relatively 

constant (at an average of about 1,000 ha) since this land is unsuitable for urban 

development or land conversion. Grassland is the only class suffering significant loss of 

area, with this process being gradual and constant throughout the study period. In 1975, 

grassland covered 172,082 ha (91.1% of the study area), decreasing to 144,463 ha (76.7%) 

by 2014. This change occurred as grassland was converted to built-up, often via bare 

ground as a pioneer urban development class, and also to water.  

 

Table 2.5. Land cover change in Abuja between 1975 and 2014. 

Land cover class 1975 1986 1990 1999 

 Area (ha) Study 

area % 

Area (ha) Study 

area % 

Area (ha) Study 

area % 

Area (ha) Study 

area % 

Bare exposed rock 1327.3 0.7 1357.1 0.7 1167.6 0.6 1208.3 0.6 

Bare ground 0.0 0.0 1949.4 1.0 1643.0 0.9 3143.5 1.7 

Built-up land 1166.8 0.6 3479.0 1.8 5721.3 3.0 7184.5 3.8 

Forest 14501.2 7.6 18421.9 9.7 19272.0 10.1 19926.7 10.5 

Grassland 173154.6 91.1 164623.5 86.3 161777.0 84.9 158013.1 82.9 

Water 0.0 0.0 822.0 0.4 933.3 0.5 1038.1 0.5 
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Land cover class 2002 2008 2014 

 Area (ha) Study 

area % 

Area (ha) Study 

area % 

Area (ha) Study 

area % 

Bare exposed rock 880.7 0.5 734.8 0.4 815.5 0.4 

Bare ground 3851.5 2.0 2309.2 1.2 6485.8 3.4 

Built-up land 12083.8 6.3 15478.4 8.1 18623.3 9.8 

Forest 19144.8 10.0 15348.5 8.1 17776.5 9.3 

Grassland 153614.5 80.6 155599.2 81.7 145962.9 76.5 

Water 938.4 0.5 1044.1 0.5 1038.1 0.5 

 

2.5.3 Master Plan Comparison 

The increase in built-up land over the study period is illustrated in Figure 2.5, overlaid with 

the Master Plan development phase boundaries and with satellite towns and airport 

development indicated. It is noticeable that the central strategy of the Master Plan, 

whereby development commenced in the main urban centre in the northeast of the FCC 

and radiated outwards sequentially during the development phases, was realised to an 

extent. Figure 2.5 shows early concentration of built-up land in the northeast (the orange 

and yellow colours representing built-up land in 1986 and 1990 respectively), next adjoined 

by development extending during the middle period of the study (1999: green, 2002: blue), 

and finally occurring further out to the west from the urban core (2009: purple, 2014: red). 
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Figure 2.5. Development of built-up land in the Abuja area between 1975 and 2014. 

Though the general trend of urban development in Abuja matched the broad Master Plan 

strategy, it is clear there is significant deviation from the specific objectives outlined in the 

plan. Figure 2.6 shows the areal extent of built-up land in individual development phase 

footprints taken from the time-series of land cover maps. It is clear that deviation from 

original plans occurred early in the development of Abuja. While phase 1 was scheduled 

for completion in 1986, by this time only 781 ha of built-up land existed, with continued 



56 
 

development in this phase footprint continuing right up to at least 2014 when 3,345 ha of 

built-up land was present. Development in phases 2, 3 and 4 occurred concurrently 

throughout the 1980s and 1990s, rather than sequentially as intended. In the 2000s, the 

area of built-up land increased rapidly in phases 2 and 3, while that of phase 4 remained 

generally static. In contrast to phase 4, phase 5 seems to have been growing fast and 

steadily since 2005 when it was first proposed. This is perhaps unsurprising as phase 5 was 

planned relatively recently in light of earlier Master Plan shortcomings. 

Figure 2.6. Increases in built-up land in Abuja in the Master Plan development phase 

areas. 

Of particular interest is the increase in built-up land outside the phase boundaries (Figures 

2.5 and 2.6), showing unplanned urban development. This essentially represents direct 

failure of the Master Plan. This unplanned development occurred almost immediately after 

construction commenced on phase 1, and by 1986, when phase 1 was scheduled for 

completion, unplanned built-up land covered more than twice the area of built-up land 

within the phase 1 footprint. Unplanned development then remained largely static until 

1999, from when a dramatic and sustained increase is observed (see Outside Phase 

Footprints in Figure 2.6). The unplanned developments are mostly concentrated in the 

various satellite towns located in and around the outskirts of the FCC, and also around the 

airport west of Abuja (Figure 2.5). 
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Figures 2.5 and 2.6 enable broad comparison between Master Plan objectives 

(development phase footprints/timescales) and image-derived land cover change, but 

more detailed analysis is conducted for six districts of Abuja where the Master Plan set 

specific development targets. For Jahi, Katampe, Kaura and Utako (phase 2), and Kabusa 

and Saraji (phase 3), the Master Plan stated intended areal coverage of built-up land, and 

these values are compared against built-up land mapped from the time-series of Landsat 

images (Figure 2.7). 

Figure 2.7. Areal coverage of proposed and actual built-up land in individual districts (Jahi, 

Katampe, Kaura, Utako in Phase 2, and Kabusa and Saraji in Phase 3). 

Figure 2.7 shows marked discrepancies between planned and actual built-up land at the 

scale of individual districts in Abuja. Most of the districts fall well short of projected urban 

development, with five of the six districts investigated barely registering any built-up land 

at all before 1999, the date by which the original Master Plan should have been more or 

less fully implemented. Only Utako can be seen to be urbanizing progressively throughout 

the original timescale of the Master Plan, with the proportion of built-up land increasing 

steadily from 1975 (pre-plan), through 1990 (around the time of inaugurating Abuja as 

Nigeria’s capital), to 1999 (completion of Master Plan). Since 1999, the proportion of built-

up land has increased noticeably in all six districts, though only Utako has come close to 

approaching its original target built-up area. Kaura has developed to about half of its target 

built-up area, while the other four districts fall far short of their targets. There is no 
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noticeable trend related to development phases. The only real success story, Utako, is in 

the Master Plan phase 2 footprint. Overall, these district-level results, though only 

representing a small sample of Abuja’s districts, show a general failure to achieve detailed, 

local-scale Master Plan objectives, with a significant shortfall in built-up land. This does 

perhaps bring into question why an additional development phase was added in 2005, 

when so much of the original Master Plan area remained undeveloped.  
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2.6 Discussion 
2.6.1 Evolution of Land Cover in Abuja 

The first research question posed in this study was ‘How have patterns of land cover in 

Abuja FCT evolved since the 1970s?’ Historical remote sensing image analysis clearly shows 

a picture of rapid and ongoing urbanization, with large areas of grassland being converted 

to built-up land, plus the creation of two large artificial water bodies to supply the new city 

(figure 2.4). Interestingly, the bare ground land cover class effectively acts as a pioneer class 

for urban development, showing where land has been cleared for construction. This offers 

a potential means of forecasting future urbanization. Though forest cover remained 

broadly static over the study area as a whole, locally there are interesting, and hitherto 

unknown, patterns of change. Rural forest patches were lost rapidly after 1986, caused by 

illegal logging and agricultural clearance (M. Hamza, personal communication, 3 October 

2015). Elsewhere, afforestation occurred through parkland developments and commercial 

plantation. 

Historical Landsat imagery has proved effective for land cover classification and change 

analysis in this urbanizing environment. While recent generations of Landsat (OLI, ETM+ 

etc.) yielded the most accurate classification analysis, even the earliest MSS instrument, 

with its coarse spatial resolution and limited spectral band set, enabled effective 

identification of the major land cover classes. Thus, the Landsat archive provides a valuable 

resource for retrospective monitoring of urban growth in the Global South and elsewhere. 

The situation for ongoing and future monitoring is now perhaps even more promising, with 

the emergence of additional, free sources of moderate spatial resolution imagery from 

Europe’s Sentinel satellites, plus multiple VHR image sources providing increased local area 

detail. 

2.6.2 Effectiveness of the Master Plan 

The second research question posed was ‘Has the Master Plan been effective in dictating 

the pace and pattern of urbanization in Abuja?’ While some broad intentions of the original 

Master Plan were followed in the early stages of Abuja’s development, the Master Plan 

cannot be considered a success overall. Figures 2.5 and 2.6 show that planned development 

up to 1986 was focused mainly on the phase 1 footprint, as intended. Even so, phase 1 

development was slow, and the target date for relocating the capital from Lagos to Abuja 
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was postponed from 1986 to 1991. Thereafter, the general pattern of urban development 

diverged more and more from Master Plan objectives. Instead of sequential development 

through phases 2, 3 and 4, urbanization actually occurred more or less concurrently in these 

phases (Figure 2.6). Local, district-scale analysis (Figure 2.7) reinforces the general 

discrepancy between Master Plan intentions and actual development, with only one of six 

sample districts coming close to realising built-up area projections. Ultimately, apparent 

failure in realizing some of the original Master Plan intentions was confirmed in 2005, when 

an extra development phase was devised to compensate for lack of success in achieving 

the original goals. Such failure of master planning can be attributed to slow but consistent 

disconnect between the planning phase and implementation processes over the years. This 

seems to be a recurring feature in the Global South, as a similar conclusion was reached by 

Rizzo (2014), when investigating master planning as a tool for guiding urban development 

in Qatar. On the contrary, in the Norwegian cities of Sandefjord and Elverum, 96% and 98% 

of the urban expansion since 1970 was found to be in accordance with their Master Plan 

(Sagile & Sandberg, 1997). 

2.6.3 Unplanned Urban Development 

The third research question posed was ‘Has unplanned urban development been limited 

successfully?’ Clearly, the principal aim of an urban Master Plan is to control development, 

thus eliminating, or at least minimising, unplanned urban sprawl. Figures 2.5 and 2.6 show 

the Master Plan has not been wholly successful in limiting unplanned development, indeed 

far from it. Substantial parts of the study area outside the Master Plan phase footprints 

have been developed, including several sizeable satellite towns. 

One stated aim within the original Master Plan was to relocate pre-existing settlements 

within the FCT area, accommodating the population in the newly developed FCC. However, 

detail was scant on how this relocation would proceed, and it appears now that little action 

was taken to achieve this goal. To date, the majority of the indigenous population are yet 

to be provided with compensated land (Amba, 2010). This inaction seems to have played a 

significant role in the presence, persistence and growth of unplanned urban settlements. 

Pre-existing settlements close to Abuja such as Karu, Kubwa, Mpape and Kuje have become 

a magnet for unplanned urbanization (Figure 2.5), offering informal, low-cost development 

options compared to the relatively high cost of urban construction within the FCC (COHRE, 

2008; Jibril, 2009). 
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Affordability is a key driver of unplanned development. One significant flaw in the original 

Master Plan was the little regard given to the needs and means of the unskilled/low-income 

population. Instead, the focus was on high quality infrastructure, including housing, which 

had the effect of pricing out low-income residents. As Vale (2014) observed, Abuja is a city 

planned without much regard to Nigeria’s poor. Many of the migrants travelling to Abuja 

in search of better employment opportunities fall under this category, and the inevitable 

consequence is unplanned urban sprawl. Current residents echo these concerns. For 

instance, a resident of Ndako village (located in FCC phase 3) interviewed for this study 

stated, “If informal settlements are not dealt with properly, the city will be a mess in 10-20 

years. The planners seem relaxed at the moment. So, if this continues, the city will be in 

trouble” (C. Akap, personal communication, 9 October 2015). 

Though population estimates for Abuja vary, it appears that the Master Plan substantially 

under-estimated the number of people attracted to the new city. As relocation to Abuja 

intensified, the development of infrastructure, especially housing, could not match 

population growth, and this has led to a major expansion of unauthorised housing (Morah, 

1992; Mabogunje, 2001). Furthermore, Abuja’s rapid and uneven urbanization has resulted 

in greater pressure on existing service infrastructure such as roads, sanitation and energy 

supply, affecting the quality of service especially in the suburbs and satellite towns 

(Ebehikalu et al., 2016; PMNews 2016). The problem of a Master Plan under-estimating 

population growth is not unique to Abuja. A similar situation was observed in Shenzhen, 

China where its Master Plan made provision for a population of 4 million, while the 2000 

census recorded 7 million inhabitants (Friedmann, 2005; Watson, 2009). 

Overall, Abuja’s propensity for unplanned urban development is fairly typical of cities in 

the Global South, exhibiting common problems such as urban sprawl, lack of housing, poor 

infrastructure and development of slums (Ikejiofor, 1998; Imam et al., 2008; Myers, 2011). 

Viewing the pattern of urban development across the city as a whole, a striking picture 

begins to appear – that of a dual city which at its centre is modern, planned, affluent and 

efficient, while around the periphery is unplanned, under-developed and spontaneous. 
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2.6.4 Social Context and Political Governance 

The fourth research question posed was ‘Have changes in political governance influenced 

the nature of urban growth?’ It is clear that the pace of urbanization is not uniform over 

the study period, and various changes in government have tended to accelerate or slow 

urban development (Ikoku, 2004). During the early part of Abuja’s establishment, up to 

around the year 2000, urban development is relatively slow (Figure 2.6). Thereafter, the 

area covered by built-up land increases rapidly. This change can be linked directly to the 

nature and level of governmental control. In 1999, after 16 years of military rule, Nigeria 

switched to a democratic government. This had various consequences; in addition to a 

relaxation of planning legislation and control, Abuja received increased investment 

(Adama, 2007) leading to more urban development, but also attracting more migrants to 

the area in search of better employment opportunities, thereby further increasing the 

demand for housing and urban infrastructure.  

Over the study period, the philosophy and approach towards implementing the Master 

Plan has varied. For example, in the 1980s when construction of Abuja started, the policy 

on how to tackle indigenous inhabitants was to completely resettle all villages within five 

kilometres of the new FCC footprint, thereby providing a “blank canvas” (Adama, 2007, 

p.16) for construction of the new city. However, there was a significant shift in policy in the 

1990s, as the military government of the day introduced what it called an ‘Integration 

Policy’ (Space for Change, 2013) that sought to upgrade pre-existing villages within the FCC. 

This policy, though, was short-lived and little action was ever undertaken (COHRE, 2008). 

In 1999, after the return to civilian rule, the integration policy was abandoned, and a hybrid 

policy involving both resettlement and village integration was attempted. Overall, none of 

these initiatives proved particularly successful in solving the problem (Gusah, 2012), thus 

unplanned settlements remain widespread and continue to expand rapidly. 

In 2003, when the government of Obasanjo appointed Mallam Nasir El-Rufai Minister of 

the FCT, a significant attempt was made to correct and reverse the “bastardization” of the 

Master Plan pre-1999 (Kalgo & Ayileka, 2001; cited in Olujimi, 2009, p.205). This regime 

was credited for making determined efforts to realign the physical development of the city 

with the Master Plan despite political obstacles arising through past regimes’ actions and 

inaction (Olujimi, 2009; Onyedika-Ugoeze, 2016). During this time, many unplanned 

constructions and even entire settlements were demolished, though this did not solve the 



63 
 

problem outright as no sustainable solutions or alternatives were provided for the 

residents. 

Another major shift in land development policy came in 2013 when the FCT minister Bala 

Muhammed unveiled the “Land Swap Initiative”, a policy which basically provided large 

tracts of grassland for private developers on the understanding that their construction 

work would include development of basic infrastructure like roads, water and electricity 

and also that they would fund the resettlement of any indigenous population living on the 

allocated land (Premium Times, 2014). A few years later, this policy became marred in 

controversy with Nigerian Federal Senator and FCT Senate Chairman, Dino Melaye, quoted 

as saying “despite the good intentions of the Land Swap Initiative, the coordinators of the 

programme failed to follow the principle of due process. There was flagrant disregard for 

financial regulations and the extant laws” (Daily Trust, 2016). Considering this, it is perhaps 

not surprising that most of the districts earmarked for infrastructure development under 

this initiative are yet to show any visible evidence of construction.  

Evidence from Abuja suggests that political inclination and governance play a major role in 

the growth and management of cities, and this is perhaps especially the case throughout 

the Global South. Thus, adherence to, or disregard of, a Master Plan may well be influenced 

by politics, rather than focusing first and foremost on land use need and environmental 

implications. A similar observation was made by Hameed & Nadeem (2006) in a study to 

identify the challenges of implementing a Master Plan in Lahore, Pakistan. In that case, 

weak institutions and lack of coordination between government agencies were identified 

as major impediments to realizing the city’s Master Plan objectives.  
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2.7 Conclusions 

The rapid pace of urbanization worldwide, and especially in the Global South, has serious 

social and environmental consequences, including over-population, housing and 

infrastructure shortages, slum development and urban sprawl. Effective urban planning is 

essential to control development, yet this study shows that even newly planned cities may 

have limited success in eliminating unwanted urban sprawl. Here, the 40+ year Landsat 

image archive enabled assessment of urban development over the whole lifetime of the 

planned city of Abuja, Nigeria. A series of seven Landsat images from the mid-1970s, when 

the new city was first proposed, to the modern day show rapid urbanization, with large 

areas of grassland being converted to built-up land, often via an intermediate bare soil 

class. Land cover change, as identified from image analysis, was compared against the 

intentions of the city’s original Master Plan, showing that early success in realising plans 

soon gave way to uncontrolled and unintended development. Of particular concern is the 

wide-ranging failure to prevent unplanned development in the long-term. Though it is hard 

to pinpoint very precise reasons for the failure of the planning process, it is clear that the 

level of adherence to the Master Plan varied according to the system of government in 

place. For instance, after long-term military rule was replaced by democratic government 

around the turn of the millennium, unplanned development increased sharply. 

It now seems clear that Abuja’s original Master Plan included certain significant oversights 

when anticipating future urban infrastructure requirements. Notably, while uncertainty 

exists over population estimates, the city’s population is almost certainly substantially 

larger than that originally predicted. Also, insufficient consideration was given to the needs 

and means of unskilled/low-income residents (Vale, 2014), and it is this large portion of the 

population that has driven the growth of unplanned development since planned housing is 

generally unaffordable (COHRE, 2008; Jibril, 2009). Throughout Abuja’s development, it 

appears there was little formal review of progress against the original plans. By design, 

urban Master Plans are largely static, but this puts them at odds with cities which by their 

nature are growing and changing in ways not easily predictable (Watson, 2009). Future 

attempts at large-scale urban planning in the Global South would seem well advised to 

retain greater flexibility in adapting initial plans according to regular progress reviews. This 

should increase the likelihood of cities such as Egypt’s proposed new capital (CNN, 2016) 
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to develop in a controlled way and reduce the negative consequences of unplanned 

urbanization. 

A first step towards improving urban planning in the Global South and thus reducing 

unplanned urbanization and its unwanted consequences is simply to gather useful 

intelligence about the problem. Experience from Abuja shows that planning officials are 

often wholly under-informed on the reality of urban development. For instance, during this 

study a senior FDCA planner stated, “A lot of changes have happened to our land use that 

we don’t even know here in planning” (Abubakar, personal communication, 6 October 

2015). One potential and highly effective source of spatial intelligence for monitoring and 

guiding urban development is remote sensing. Landsat now provides a long-term archive 

of image data that can enable retrospective monitoring, and new sources of imagery such 

as Europe’s Sentinel satellites and widely available VHR sensors provide enhanced imaging 

capabilities for detailed and regular monitoring. We promote the uptake of remote sensing 

as a key element of urban planning activities, and recommend planners develop monitoring 

protocols to review land use change regularly using multitemporal imagery. This will enable 

more effective assessment of urban development activities against stated plans, including 

Master Plans, mitigating the occurrence and consequences of unplanned urbanization, and 

leading to better future planning and forecasting. 
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Chapter 3 

Using DMSP-OLS stable nighttime lights and Landsat TM/ETM+ 
imagery to map and characterise urbanization at a local scale in a 

planned city of the Global South. 

Prepared for submission to International Journal of Remote Sensing 
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Abstract 

The world is urbanizing rapidly, and all growth indices indicate that this trend is set to 

continue. The pace and impact of urbanization is higher in the Global South, with this 

situation giving rise to myriad of environmental and social issues such as urban sprawl, 

inadequate infrastructure, growth of slums and crime. To address these problems, planners 

and policy makers require timely access to accurate spatial information for urban areas to 

make informed planning decisions and provide future solutions for ongoing urban growth. 

This information, especially in developing nations in the Global South, is frequently lacking. 

Remote sensing offers a rich data source that can be applied to urban studies, but whereby 

optical remote sensing has traditionally been employed for these purposes, nighttime 

stable lights data from Defence Meteorological Satellite Program-Operational Linescan 

System (DMSP-OLS) offers an alternative, novel, effective and robust method of mapping 

and characterising urban land use. Most previous studies utilizing DMSP-OLS data have 

been performed at global and regional scale and were focused mostly on developed 

nations. In this study, DMSP-OLS nighttime stable lights and urban built-up land cover 

extracted from Landsat TM/ETM+ are analysed for the years 1999, 2002, and 2008 to map 

urban extent and characterise planned (formal) and unplanned (informal) urban areas in 

the city of Abuja, Nigeria. Newly developed methods analysing the relationships between 

the brightness value of DMSP-OLS stable lights pixels and the corresponding proportion of 

urban built-up land area, derived from classified 30 m Landsat TM/ETM+ imageries are 

presented. Results suggest that DMSP-OLS nighttime stable lights are appropriate for 

characterising planned and unplanned urban areas in a fast-growing city in the developing 

world. The analysis also indicated that areas of planned development are more accurately 

modelled than areas of unplanned (informal) developments. This study highlights the 

promising capability of combining nighttime stable lights and Landsat imagery to map 

urban expansion and characterise complex urban dynamics in rapidly growing cities in the 

global south.  
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3.1 Introduction 

The world has witnessed urbanization growth at an unprecedented rate over the past 100 

years. This trend is set to continue, with most of this growth set to occur in the developing 

world. Despite occupying only approximately 2% of the total global land surface, cities 

currently host more than half the world’s population (United Nations, 2015). Projections 

indicate that by 2100, three billion people will be added to the world’s population and 70%-

90% of these will be living in urban regions (Desa, 2011). Although the world is rapidly 

urbanizing, urban areas in various regions of the world are experiencing the transformation 

process and effects in different ways. For instance, in some regions, urban areas grow in a 

linear form (expanding in one general direction) while in other regions they grow in a 

dispersed form (expanding in all major directions). Moreover, while many urban areas are 

growing rapidly, some are actually shrinking (Zhang & Seto, 2013). These different patterns 

of growth indicate that urban areas need to be studied at the individual level around the 

world to better understand their functional and growth dynamics. There is growing interest 

to study and understand urban areas both at global and regional scales (Scott, 2009) in an 

effort to monitor urbanization and explore its developmental benefits (e.g. better 

infrastructure and economic opportunity), as well as manage the negative impacts (e.g. 

pollution and crime).  

Despite this interest, very little attention is being given to the study of urbanization in 

countries of the developing world (Akingbade et al. 2009). Consequently, in many low-

income developing countries information on urbanization is scarce, outdated and 

unreliable (De Jong et al. 2000; Cohen 2006), while sometimes the only up-to-date maps of 

urban areas in these countries are the maps produced on a global scale (Tatem et al., 2005). 

Studying and understanding urbanization effectively requires regular monitoring through 

observation and analysis of reliable data and information (Makhamreha & Almanasyeha, 

2011). Remote sensing can provide the data and information needed, at the required 

spatial and temporal resolution needed to study the urban environment (Jensen & Cowen, 

1999). Using satellite remote sensing to study urban areas started in earnest in the 1970s 

when Landsat MSS data became available (Glutch, 2002), and more recently with the 

advent of new satellites that provide very high resolution (VHR) imagery, research on urban 

areas is becoming more widespread (Yang, 2011). The advent of VHR sensors played an 

important role in the significant transformation of urban studies, with the first being 
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IKONOS with 4 m resolution in 1999 (Aplin, 2003). The finer spatial resolution (under 5 m) 

of these sensors provides the capacity to identify and map small features in the urban 

environment with relatively higher accuracy (Inglada & Michel 2009; Weng, 2012, Momeni 

et al., 2016). This demonstrates that satellite remote sensing is poised to play a vital role in 

aiding urban planning (in developing countries) by assisting in the production of urban 

maps for city, regional, national and global scale analysis and interpretation (Tatem et al., 

2005). 

Different types of remotely sensed data have previously been used to obtain information 

about urbanization and urban dynamics. For instance, multispectral Landsat MSS, TM and 

ETM+ images have been used to study urban expansion and urban growth dynamics in a 

city in Colombia, Washington D.C, and Shijiazhuang, China (Santana, 2007; Maseket al., 

2000; Xiaoet al., 2006). Land cover and land use characterization in urban areas that focus 

on urban built-up land expansion and change detection analysis are also an area where 

Landsat data is utilized successfully (Vogelmann et al., 1998; Moller-Jensen & Yankson 

1994; Geymen & Baz, 2008). In a study where a meta-analysis was performed on global 

urban expansion around the world, Seto et al. (2011) found that a total of 326 studies have 

used remotely sensed images, mostly from Landsat, to map urban land conversion up until 

the year 2000. The success of using multispectral Landsat imagery and other VHR imagery 

for urban studies is well established (Yuan et al., 2005; Xiao et al., 2006; Wania et al., 2014; 

Momeni et al., 2016). Landsat and other VHR satellite imagery are rich data sources for 

mapping urban areas, however they do also have limitations. For example, while land cover 

can be mapped directly using Landsat imagery and other optical imagery, the complexity 

of urban land cannot be mapped directly without additional data/information. Also, using 

the spectral characteristics of the target features as characterised by the remote sensing 

sensor alone can struggle to distinguish between different types of impervious surface (in 

terms of land use) in urban areas, limiting the level of thematic detail in land cover classes 

that can be discriminated. Compounded by problems with optical data availability resulting 

from cloud cover and data degradation resulting from the scan line correction error on the 

Landsat ETM+ sensor during the 2000s, this is a significant challenge that requires new 

approaches in terms of remote sensing data types utilised and methodological 

development to address.  
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An alternative dataset that is receiving prominence and regarded as very promising in the 

domain of urban research is the nighttime lights (NTL) data, from the Defence 

Meteorological Satellite Program Operational Line-scan System (DMSP-OLS) (Zhang et al., 

2015). The NTL imagery offers global coverage and is available free of charge with different 

formats updated daily, monthly and annually. Where the DMSP-OLS NTL imagery is unique 

and differs from the optical sensors historically used for urban studies such as Landsat, is 

that it can identify and characterise urban areas via light emittance (typically 

anthropogenically produced light rather than natural fires in this study), and discriminate 

between built-up and non-built-up land cover classes (which will not emit light) which could 

be spectrally confused via optical imagery. Thus, this offers a new perspective to minimise 

confusion and improve discrimination of urban built-up land and other land cover land use 

classes (Zhang et al., 2015). The potential of DMSP-OLS images in the field of urban 

mapping were first demonstrated by Croft (1978) after observing nighttime images of some 

regions around the world from space, with Kramer (1994) providing a detailed breakdown 

of the feasibility of using DMSP-OLS data to study different environmental facets, including 

urban areas. The DMSP-OLS sensors have a moderate spatial resolution in two categories, 

with “fine resolution” at 0.56 km and “smooth resolution” with a nominal resolution of 2.7 

km and provide data with a high contrast between lit and un-lit areas (recorded as 

emittance value ranging from 0-63), offering robust data to identify and map areas where 

substantial human activity is occurring (Imhoff et al., 1997). The nighttime lights emitted in 

cities and observed by the DMSP-OLS sensor provides a viable way for delineating and 

mapping urban areas (Imhoff et al., 1997; Small et al., 2005a; Zhou et al., 2014) and 

monitoring urban development worldwide (Small et al., 2011), as well as detecting gas 

flares and wild fires at night (Elvidge et al., 1999).   

Several studies have successfully utilized DMSP-OLS NTL data for urbanization studies, 

including He et al. (2006) which showed how promising DMSP-OLS data was at the regional 

level in the Bohai Rim region of China, by using it to develop three urban spatial analysis 

models, namely polygon-urbanization, line-urbanization and point-urbanization and they 

found that the urbanization process in the region is dominated by polygon-urbanization 

which happens around big cities. Shao & Liu (2014) combined Moderate Resolution Imaging 

Spectroradiometer (MODIS) data and DMSP-OLS NTL data to monitor and estimate large 

scale impervious surface dynamics in China. A similar combination of DMSP-OLS NTL and 

MODIS Normalized Difference Vegetation Index (NDVI) was also used to extract regional 
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urban extent by Zhang et al. (2015). Additionally, Small et al. (2005b) conducted spatial 

analysis of global urban extent from DMSP-OLS data and concluded that nighttime lights 

can be used as a means of creating repeatable consistent maps of human settlements 

globally. Other studies have also used DMSP-OLS NTL to either map urban built-up land or 

monitor urbanization dynamics at global level (Sutton et al., 2001; Elvidge et al., 2001; 

Nghiem et al., 2009; Elvidge et al., 2009, Zhang & Seto, 2013) and also at regional level (Ma 

et al., 2015; Pares-Ramos et al., 2013; Small & Elvidge, 2013; Small et al., 2011; Gao et al., 

2015; Yi et al., 2016; Xu et al., 2015).  

Despite the recent increase in the use of DMSP-OLS nighttime lights to investigate 

urbanization in different regions around the world, very few studies have investigated the 

effectiveness of using DMSP-OLS nighttime lights to map or monitor urban areas at local 

scale (Xu et al., 2014), with even fewer studies looking at urban areas of developing 

countries (Min et al., 2013) despite them experiencing more negative consequences of 

urbanization, which include shortage of housing, unemployment, environmental 

degradation and pollution (Ji et al., 2001). This is potentially due to the fact that most of 

the techniques developed for processing nighttime lights are based on developed nations, 

remaining untested in developing nations (Imhoff et al., 1997). In one of the few studies 

focusing on developing countries, Doll & Pachauri (2010) investigated the extent of 

population access to electricity using DMSP-OLS imagery; the result revealed that there is 

slow progress in the expansion of energy access in Sub-Saharan Africa. Also in this analysis, 

it was found that many areas of the world where there is acute shortage of electrification 

(developing countries) also have large dispersed populations that are not well captured in 

nighttime light data (Doll & Pachauri, 2010; Small et al., 2011). Min et al. (2013) successfully 

used DMSP-OLS nighttime imagery to detect rural electrification, with the result consistent 

when compared with data collected on the ground in Senegal and Mali.  

In this research, we attempt to map and distinguish between unplanned and planned urban 

land use in a planned city of the Global South: Abuja, Nigeria. Combined Landsat TM/ETM 

imagery and DMSP-OLS stable lights data sets were used to map urban built-up land cover, 

and also discriminate areas of planned (formal) and unplanned (informal) urban built-up 

land. Recent analyses (Gumel et al., 2019, submitted to Remote Sensing)) found 

considerable evidence of unplanned urban growth, not only outside of the Abuja planned 

city boundaries, but also inside the different city compartments, as prescribed in the 1979 
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Abuja Master Plan. The objective of this study is to investigate the relationship between 

DMSP-OLS stable light imagery radiance values and the corresponding proportion of urban 

built-up land cover. Hence, two specific research questions are posed to achieve the study’s 

objectives: 1) How effective is DMSP-OLS stable nighttime lights (SNTL) imagery in mapping 

urban extent at local scale in a Global South environment? 2) Can DMSP-OLS SNTL imagery 

successfully distinguish unplanned and planned urban areas in a Global South 

environment? To the author’s knowledge, this is the first study that has used DMSP-OLS 

nighttime imagery to discriminate planned and unplanned built-land areas in a developing 

country.  

3.2 Study Area 

Abuja is a planned city and the capital of Nigeria. The Federal Capital City (FCC) consists of 

five concurrent development phases situated within the Federal Capital Territory (FCT), an 

area of approximately 8,000 km2 that was apportioned in 1976 in central Nigeria to 

accommodate the proposed new capital (see Figure 3.1). The FCT is located between 

latitude 7°25’ and 9°20’N and longitude 5°45’ and 7°39’ W, with a general elevation 

extending from approximately 100 m in the southwest of the territory, to above 600 m in 

the northeast. The FCT is also located within the Guinea-Savanna vegetation zone, with two 

distinct seasons; wet and dry (Idoko and Bisong 2010). 

 Abuja came into existence after the government adopted a report by a committee in 1975 

on the location of the Federal Capital of Nigeria. The report concluded that Lagos (the then 

Capital) was not ideal for continuing as a Federal Capital due its lack of space to 

accommodate developmental expansion and its lack of cultural diversity, coupled with its 

geographical location in the coast which makes access difficult from around the country 

(IPA, 1979). Construction of Abuja started in 1980, with settlement planned for 1986. 

However, the official relocation of the capital from Lagos to Abuja occurred in 1992. The 

city’s growth and development are guided by the Abuja Master Plan, produced by the 

International Planning Associates in 1979.  
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Figure 3.1. Study area comprising Nigeria, Federal Capital Territory and the Federal Capital 

City Abuja (FCC map adapted from maps supplied by AGIS and FCDA), and Landsat OLI (false 

colour composite) image of Abuja (2014). 

Over the past four decades, Abuja has witnessed fast paced urbanization and rapid 

population growth. With a high urbanization rate of 8.3% a year, Abuja is the fastest 

growing city not only Nigeria, but in the African continent as a whole (Myers, 2011). 

Because of this rapid urbanization, the city’s urban infrastructure is under tremendous 

pressure, making it very difficult to grow adhering to the provisions of the Abuja Master 

Plan (Iro, 2007; Abubakar, 2014). As result of these and other factors, there is evidence of 

unplanned settlements emerging alongside the planned developments. Some of the 

settlements started as small villages housing the local inhabitants of Abuja that were slated 

for resettlement outside the FCC but were not resettled by the government (Jibril 2009). 

These settlements are located both outside the planned city boundaries and within some 

districts in the planned development phases. 
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3.3 Data 

In this study, data from two different sources ware utilised. DMSP-OLS SNTL time series 

imagery from the version 4 Global annual composite dataset was combined with urban 

land cover maps created using Landsat TM/ETM+ imagery (Table 3.1). The DMSP-OLS SNTL 

imagery of 1999, 2002 and 2008 were obtained from the website 

(https://maps.ngdc.noaa.gov/viewers/dmsp_gcv4/) of National Centre for Environmental 

Information (NCEI) which is part of the US National Oceanic and Atmospheric 

Administration (NOAA). Images of three different years were downloaded (1999, 2002, 

2008), see Figure 3.2. These years were selected to coincide with the period immediately 

after a major socio-political event in Nigeria, the return to democracy from military rule 

which occurred in 1999, that significantly affected the pace and pattern of urban 

development in Abuja (Gumel et al., 2019, submitted to Remote sensing). The dates were 

limited by the DMSP-OLS SNTL archives which are available until 2010. The data also 

coincided with Landsat TM/ETM+ image availability; images from 1999, 2002 and 2008 

(Figure 3.2) were used to create urban land cover maps.  

The SNTL data were acquired by three different DMSP-OLS satellites: the 1999 image was 

acquired by the F14 satellite, the 2002 image by the F15 satellite and the 2008 image by 

the F16 satellite. The different satellites did not have effect on the analysis of the data as 

each year was analysed independently. Data was recorded in 6-bit format, with each pixel 

recorded as a digital number (DN) ranging from 0 to 63. Each pixel is the average of the 

DMSP-OLS visible band recorded DN values of lights from cities, towns and other persistent 

light over a year. The annual composite data is further screened to exclude factors such as 

background noise, ephemeral lights, moonlight, sunlight glare, fires and lighting from 

auroras (Elvidge et al., 2009), making the annual composite data suitable for urban studies. 
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Figure 3.2. Data: (a) DMSP-OLS nighttime stable lights (b) Landsat TM imagery January 

1999, Landsat TM imagery December 2002 and Landsat ETM+ imagery January 2008 (c) 

Urban area extracted FROM Landsat TM/ETM+ land cover classification. The overlaid 

planned city boundary data was derived from Abuja city map obtained from Abuja 

Geographic Information Systems (AGIS) and FCDA. NTL data was obtained from National 

Centers for Environmental information (NCEI) and Landsat OLI imagery from United State 

Geological Survey (USGS). 

Currently, the Version 4 DMSP-OLS Nighttime Lights Time Series (V4DNLTS) dataset 

released by NCEI in 2010 is among the most widely-used (Liu et al., 2012b). The dataset 

consists of cloud-free annual composites combining all available archived DMSP-OLS 

satellites (approximately 1 km resolution) data from 1992 to 2010. The dataset consists of 

three types of data: Nighttime Stable Lights (SNTL), cloud free coverage, and raw nighttime 

lights with no further filtering. Among the three types of data, the SNTL (used here) is the 

most popular among researchers for its lack of background noise and ephemeral lights such 

as fires (Huang et al., 2014; Liu et al., 2012b, Elvidge et al., 2009). Limitations of the cloud 

free coverage and nighttime lights with no further filtering applied include having no cloud 

free observations at some locations in some years, and data contains ephemeral lights 

(such as fires) that could be confused with city lights. 

The urban built-up land cover of Abuja for 1999, 2002 and 2008 (Figure 3.2) was extracted 

from a land cover map created using Landsat TM (1999) and ETM+ imagery (2002 and 2008) 

(Gumel et al. 2019, submitted to Remote Sensing). The images were originally obtained via 

the United States Geological Survey (USGS) EarthExplorer online facility 

(https://earthexplorer.usgs.gov/). Detailed information on the imagery used is the study is 

shown in Table 3.1.  

Table 3.1 

DMSP-OLS SNTL and Landsat imagery used to characterise urban settlements in Abuja (TM = 

Thematic Mapper, ETM+ = Enhanced Thematic Mapper Plus, B = blue, G = green, R = red, NIR = near 

infrared, SWIR = shortwave infrared, VNIR = Visible Near-Infrared, TIR = Thermal Infrared). 

Acquisition 

Date 

Sensor Spatial 

resolution (m) 

Spectral bands used (μm) 

https://earthexplorer.usgs.gov/).
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28 Jan 1999 Landsat TM 30 B (0.45-0.52), G (0.52-0.60), R (0.63-0.69), NIR 

(0.76-0.90), SWIR 1 (1.55-1.75), SWIR 2 (2.08-

2.35) 

2 Dec 2002 Landsat ETM+ 30 B (0.45-0.52), G (0.52-0.60), R (0.63-0.69), NIR 

(0.76-0.90), SWIR 1 (1.55-1.75), SWIR 2 (2.08-

2.35) 

29 Jan 2008 Landsat ETM+ 30 B (0.45-0.52), G (0.52-0.60), R (0.63-0.69), NIR 

(0.76-0.90), SWIR 1 (1.55-1.75), SWIR 2 (2.08-

2.35) 

1999 DMSP-OLS (stable lights) 909 VNIR (580-910), TIR (1030-1290) 

2002 DMSP-OLS (stable lights) 909 VNIR (580-910), TIR (1030-1290) 

2008 DMSP-OLS (stable lights) 909 VNIR (580-910), TIR (1030-1290) 

The Landsat imagery was initially used for land cover classification, with six classes selected. 

For details of the land cover classification system and the classes adopted, see Gumel et al. 

(2019). For this study we are interested specifically on urban built-up land, with this class 

selected and its areal coverage extracted for further analysis while the other classes were 

disregarded.  

A map of the planned city boundaries (see Figure 3.1) was also used to identify the relative 

planned development phases of Abuja and surrounding satellite towns. Finally, reference 

data were collected through a field campaign in 2015 to help tune the method used to 

distinguish planned and unplanned settlements (by determining threshold for the DMSP-

OLS data; described further below). The field campaign also involved interviews with 

planning officials and residents to provide valuable information on the history and 

evolution of existing planned and unplanned settlements.   
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3.4 Methods  

One common difficulty with multitemporal analysis of DMSP-OLS data is that the visible 

band of the DMSP-OLS sensor does not have on-board radiometric calibration (Elvidge et 

al., 2014), so when using the multi-temporal DMSP version 4 stable lights dataset, previous 

studies have first performed inter-calibration, mostly using second order regression 

techniques developed by Elvidge et al. (2009). An alternative approach to conducting inter-

calibration of multi-temporal stable lights data is to classify each year of data 

independently without directly comparing the radiance value. Since each stable light image 

(1999, 2002, 2008) is independently integrated and analysed alongside urban built-up land 

cover generated from Landsat imagery of a corresponding year, inter-calibration was here 

not deemed necessary. This approach has been successfully applied previously, with Zhuo 

et al. (2009) using non-radiance calibrated DMSP-OLS NTL to model population density at 

pixel level in China.  

3.4.1 Comparison between SNTL values and Landsat built-up area 

Comparison analysis was performed to compare pixel nighttime light brightness (DN) 

values to total built-up land cover area as extracted from Landsat TM/ETM+ derived land 

cover classification. A total of 2,346 nighttime lights pixels covered the study area footprint. 

For each NTL pixel (about 1 km2 in size, at 923 by 923 m), the proportion of built-up area 

within that pixel footprint (as identified from the extracted Landsat built-up class data) was 

calculated using the Geospatial Modelling Environment software package. Correlations 

between the DMSP-OLS stable lights pixel radiance value and corresponding coverage of 

urban built-up land were then calculated for the 1999, 2002 and 2008 time periods using 

regression analysis, and plotted in a series of scatter plots to examine the strength and 

nature of the relationships present. 

3.4.2 Nighttime lights threshold computation 

We analysed the SNTL using a thresholding technique combined with additional ancillary 

data (the Landsat-derived built-up land cover extent), similar to the approach adopted by 

(Henderson et al., 2003; Liu et al., 2012b). The thresholding approach was first developed 

by Imhoff et al. (1997). In that study, it was found that using a certain percentage of light 

intensity, it is possible to successfully classify DMSP-OLS nighttime lights into “Urban 

cover”. A threshold of ≥89% was determined to be the optimal threshold of mapping cities 
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in the USA (Imhoff et al., 1997). Alternatively, Tatem et al., (2005) found the optimal 

threshold for mapping urban extent in Kenya to be 20% or 32%, demonstrating that 

determining a single optimal threshold to classify all cities or regions is difficult and 

subjective, and remains a major challenge (Zhou et al., 2014). Thresholding can be 

problematic as there is always a trade-off between using a high or low threshold. A high 

threshold is more suited to developed nations because it prevents the conurbation of urban 

clusters while a low threshold generally fits developing nations more because it captures a 

bigger areal extent and smaller less lit urban clusters (Sutton et al., 2001). In this study, a 

two-stage thresholding approach was taken. The first stage was to distinguish urban and 

non-urban land, with the second stage to distinguish between planned and unplanned 

urban land. Thresholds were applied to generate urban extent maps for each individual 

year. 

To determine the optimal threshold for each year, we overlaid the built-up land cover map 

with each SNTL image, STNL DN were converted to percentages (%) because it is simpler to 

understand and easier to perform year to year threshold comparison. Several studies 

adopted the same format, for example Imhoff et al. (1997) and Tatem et al. (2005). We 

iteratively tested thresholds from 2% to 100% in multiples of 2% (i.e. 2, 4, 6, 8…100). Finally, 

the threshold was adopted that gives the closest match after a spatial comparison between 

the annual stable lights composite and the urban built-up land cover produced from the 

higher resolution Landsat TM/ETM+ data. An area is ultimately determined to be urban if 

the majority of an NTL pixel is occupied by urban built-up land cover generated from 

Landsat (Liu et al., 2012). The significant spatial resolution difference between the DMSP-

OLS SNTL and Landsat TM/ETM+ makes this an objective quantifiable approach. This 

method was first successfully applied by Henderson et al. (2003) to validate an urban 

boundaries map derived from global night-time satellite imagery for the cities of Lhasa 

(Tibet), Beijing (China), and San Francisco (USA). Additionally, a similar methodology was 

applied to extract the dynamics of urban expansion in China from 1992-2008 using DMSP-

OLS nighttime lights (Liu et al., 2012a), and Gibson et al. (2014) to update urban expansion 

estimates and compare relationships between economic growth and nighttime lights 

expansion in China. 

We also sampled nine satellite towns (unplanned settlements) in Abuja to further examine 

in detail to explore the reasons why they may or may not be correctly identified after 
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applying threshold to the SNTL data. For example, size, age, and proximity of the satellite 

towns to the planned could play a role in which of the unplanned settlements is captured 

accurately in each year. The sampled satellite towns that are examined are: Gwagwa, 

Idogwari, Kabusa, Karu, Kubwa, Kuje, Lugbe, Madalla and Mpape all around the FCC Abuja 

(see Figure 3.4). 

3.4.3 Accuracy assessment  

Quantitative accuracy assessment using standard error matrix approach (Congalton, 1991; 

Li et al., 2014) was performed on all the urban extent maps generated using DMSP-OLS 

data. As the Landsat imagery used to generate the land cover classifications has much finer 

spatial resolution than the DMSP-OLS imagery (30 m compared to 1 km), it is appropriate 

to use it for validation and accuracy assessment (Cao et al., 2009; Henderson et al., 2003; 

Small et al., 2005a; Liu et al., 2012a). Accuracy assessment was performed using an 

equalized random approach whereby a fixed number of randomly selected points for each 

class was used to generate 300 points on each map (100 points each for planned and 

unplanned urban areas, and 100 points for non-urban area) to ensure an appropriate 

sample size. This approach makes direct comparison of classification accuracy between 

classes simple (Aplin et al., 1999). Google Earth’s historical image archive was also used to 

enable independent accuracy assessment of the maps and analysis done using the 

multitemporal DMSP-OLS SNTL. This was done by first selecting a sample of SNTL random 

pixel and overlaid on Google Earth imagery to perform a visual interpretation and 

determine majority class i.e. non-urban, planned urban or unplanned urban. Each point’s 

actual class was then determined and compared alongside the classified thematic class 

assigned to calculate the accuracy percentages.  
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3.5 Results and discussion 
3.5.1 Comparison Analyses 

The results of the comparison analysis (Figure 3.3a-c) illustrate the relationship strength 

between nightlights brightness values and built-up land coverage for the three years. The 

R2 values for the raw stable lights and urban built-up proportion are 0.475, 0.421 and 0.440 

for 1999, 2002, and 2008 respectively, with all relationships positive. The R2 values have 

shown that there is an observable relationship between SNTL and built-up land coverage. 

Brighter SNTL pixels having higher coverage of built-up land are seen on the extreme right 

of the regression plot. While the areas having lower threshold of brightness have little to 

no built-up land, are seen towards the left of the plots. This further shows that the points 

with low DN values that are excluded using threshold have little to no urban built-up land, 

while the SNTL points with high DN values have significant amount of urban built-up land. 

The comparison also shows that the urban extent maps are relatively accurate despite the 

over-blooming effect of SNTL that tends to expand the extent of urban areas. Areas of low 

brightness which show weaker correlation with built-up land from Landsat are likely 

unplanned settlements, as seen in Figure 3.3 and also displayed visually in the map of 

unplanned areas (Figure 3.4). This is somewhat expected as unplanned settlements have 

reduced illumination due to poor electricity supply (Admin, 2015; Ebehikalu et al., 2016), 

and have less built-up land area coverage per 1 km2 NTL pixel (see Figure 3.3).  
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Figure 3.3. Correlations between SNTL and total built-up land coverage from Landsat 

TM/ETM+ derived land cover classification; (a) Raw stable lights and built-up land 

proportion 1999; (b) Raw stable lights and built-up land proportion 2002; (c) Raw stable 

lights and built-up land proportion 2008. 

3.5.2 NTL data thresholding 

The first stage of creating urban extent map involved determining a threshold for 

distinguishing urban and non-urban land, with a set of thresholds of ≥ 15% (1999, 2002) 

and ≥ 21% (2008) adopted to achieve this. The second stage involved further analysing and 

determining a series of thresholds which were set at ≥ 31% (1999), ≥ 40% (2002), ≥ 42% 

(2008) respectively to extract the areas of the city that are predominantly populated by 

planned (formal) settlements. Likewise, the threshold was further lowered to ≤49%, ≤ 53%, 

and ≤66% for 1999, 2002, 2008 respectively to extract areas the areas that are 

predominantly occupied by unplanned (informal) settlements. All areas lower than the 

threshold are regarded as non-urban. 

The optimal pixel radiance threshold to identify the urban extents from the DMSP-OLS SNTL 

data were independently determined for each year (Table 3.2). The optimal threshold 

values for mapping the urban extent in 1999 and 2002 is ≥ 15% (≥ 9 (DN)) stable light 
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intensity respectively. For 2008 urban extent, the optimal threshold was slightly higher, at 

21% (≥ 13 DN) stable lights intensity Therefore, each pixel with the same or higher NTL DN 

than the threshold level was classified as urban.  

Table 3.2.  

Showing a breakdown of threshold adopted 1-100% > = Greater than, < = Less than, ≥ = 

Greater than or equal to, ≤ = Less than or equal to.   

DMSP-OLS 

Image date 

Urban extent 

threshold 

Planned area 

threshold 

Unplanned area 

threshold 

1999 ≥ 15% ≥ 49% > 15% ≤ 48% 

2002 ≥ 15% ≥ 63% > 15% ≤ 39% 

2008 ≥ 21% ≥ 66% > 21% ≤ 65% 

The slight increase in the threshold to capture the urban extent in 2008 accurately could 

possibly be explained by the expansion and densification of the urban agglomeration in the 

city, increasing the overall nighttime light radiance. A similar discovery was made by (Zhou 

et al., 2014), which determined the optimal threshold to map large cities such as Beijing 

and Boston to be as high as 60, while cities with smaller urban clusters have optimal 

threshold as low as 20.  

Figure 3.4 delineates the urban area of Abuja into planned and unplanned settlements 

using the two-stage thresholding technique for 1999, 2002 and 2008. In the results (Figure 

3.4), we can observe that urban areas are expanding a little, mainly to the west. Planned 

areas to expanded rapidly to the north-west in 2008. On the other hand, unplanned areas 

were expanding were rapidly from 1999 to 2008 to the south-west and north-west. The 

accelerated expansion for unplanned areas can be linked to the influx of more people into 

Abuja and relaxed legislation and land use enforcement under democratic government that 

returned to Nigeria in 1999. The result shows that the city has been expanding quickly with 

unplanned urban area growing at a faster rate than planned urban area, with a 27% 

expansion from 1999 to 2002 alone, while planned areas expanded 16% over the same 

time frame. It is also possible to observe that planned areas are concentrated mostly in the 

inner parts of the city, with unplanned areas concentrated mostly on the fringes of the 

planned city boundary.  
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Figure 3.4. DMSP-OLS SNTL thresholded images showing planned and unplanned areas in 

Abuja for 1999, 2002, and 2008. The overlaid planned city boundary data was derived from 

Abuja city map obtained from Abuja Geographic Information Systems (AGIS) and FCDA 

(2015).  

The results of the quantitative accuracy assessment for the three years are shown in Table 

3.3. The overall accuracies are 73.7% (2008), 79.7% (2002), and 67.0% (1999).  

Table 3.3a-c. Accuracy assessment for thresholded DMSP-OLS SNTL images for (a) 1999 (b) 

2002, (c) 2008. 

(a) 

   Reference class  

Users 
accuracy 
(%) 

 
 Non-urban Unplanned 

urban Planned urban 
 

 Non-urban 100 2 0 98.0 
Predicted 

class Unplanned urban 55 36 7 36.7 

 Planned urban 20 12 65 67.0 

 Producers Accuracy (%) 56.8 69.2 90.2  
 Overall accuracy = 67.0%     

 
(b)  

   
Reference 
class  

Users 
accuracy (%) 

 
 Non-urban Unplanned 

urban Planned urban 
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 Non-urban 176 5 0 97.2 
Predicted 

class Unplanned urban 44 33 2 41.8 

 Planned urban 4 6 30 75.0 
 Producers Accuracy (%) 78.6 75.0 93.7  
 Overall accuracy = 79.7%     

 
(c)  

   
Reference 
class  

Users 
accuracy (%) 

 
 Non-urban Unplanned 

urban Planned urban 
 

 Non-urban 91 8 1 91.0 
Predicted 

class Unplanned urban 35 49 15 49.0 

 Planned urban 3 15 81 81.0 
 Producers Accuracy (%) 70.5 68.0 83.5  
 Overall accuracy = 73.7%     

Looking closely at the accuracy of mapping individual features within the results in Table 

3.3, it can observed that characterising planned urban area has the highest accuracy overall 

(90.28%, 93.75%, and 83.51% producers accuracy and 67.01%, 75.00%, 83.51% users 

accuracy for 1999, 2002, 2008 respectively) followed by the non-urban class (see Table 3.3). 

The planned areas are usually better lit and denser, makes it easier for them to be captured 

more accurately in SNTL. The unplanned area characterisation has the lowest accuracy 

overall (69.23%, 75.00% and 68.06% producers accuracy, and 36.73%, 41.77%, and 49.00% 

users accuracy for 1999, 2002, 2008 respectively) which may be partially due to the fact 

that these areas are usually smaller and less well lit, meaning they may easily be confused 

with non-urban areas. Despite DMSP-OLS SNTL having coarse spatial resolution, the results 

have indicated that they can be effectively utilized to map areas of planned and unplanned 

urban area in cities of the Global South. One of the challenges observed in this study of 

using SNTL data to map urban extent is the tendency of overestimation of urban areas 

especially towards the periphery of a city. 

The result for the detail examination of nine satellite towns (unplanned settlements) 

classification using SNTL is shown in Table 3.5. This nine satellite towns were further 

assessed to verify if the results obtained in figure 4.4 is rather just a reflection of urban 

density. In the results we can observe that in 1999 four satellite towns are captured as non-

urban while only two are captured as non-urban and one as planned by 2002. By 2008 as 

urban areas continue to expand, seven of the satellite towns are captured correctly as 

unplanned, while three are misclassified as planned. The overall results show a moderate 



86 
 

level of accuracy of capturing and correctly labelling the towns over the three different 

years in focus. 

Table 3.5. Showing Unplanned settlements in Abuja and their classification in different 

years. 

 

  

Towns 

Year Gwagwa Idogwari Kabusa Karu Kubwa Kuje Lugbe Madalla Mpape 

1999 Not urban Unplanned Not urban Unplanned Unplanned Not urban Not urban Unplanned Planned 

2002 Unplanned Unplanned Not urban Unplanned Unplanned Not urban Unplanned Unplanned Planned 

2008 Unplanned Unplanned Unplanned Planned Planned Unplanned Unplanned Unplanned Planned 
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3.5 Discussion 

3.5.1 Urban area mapping 

This study looked to answer the research question ‘How effective is DMSP-OLS SNTL 

imagery in mapping urban extent at local scale in a Global South environment?’ The results 

in Figure 3.4 shows that using a threshold value determined using independent land cover 

data derived from Landsat TM/ETM+ imagery can successfully map urban extent at local 

level with overall urban area classification accuracy at 73.7% (2008), 79.7% (2002), and 

67.0% (1999). This is despite the fact that Nigeria is a developing country, where there is 

an incessant shortage of electricity, with some areas supplied for only a few hours a day, 

and others lacking supply completely for days at a stretch in some instances (Muoh, 2016). 

The lack of constant electricity in Nigerian cities might be expected to pose a challenge on 

how effective using NTL to map urban areas will be. The use of SNTL version of the DMSP-

OLS data minimized this problem. This is possible because, the SNTL are based on the 

average of annual recorded composite of city night lights rather than a single day 

observation.  The main limitation of the methods applied is the overestimation of the urban 

extent at the city fringe, which is common with nighttime lights (Elvidge et al., 1997; Small 

et al., 2011). The reason for this overestimation can be linked to the spatial resolution of 

the SNTL pixel (1 km) and the nature of how anthropogenic lights operate (it extends to 

areas beyond the source of illumination). The result has also indicated that urban areas in 

Abuja have been expanding rapidly from 1999 to 2008.  

3.5.2 Distinguishing planned and unplanned settlements 

The second research question address in this study is: ‘Can DMSP-OLS SNTL imagery 

successfully distinguish planned and unplanned urban settlements in a Global South 

environment?’. This study has been successful in using SNTL data, in combination with 

Landsat-derived built-up land classification, to map urban areas predominantly occupied 

by planned settlements, and areas predominantly occupied by unplanned settlements (see 

Figure 3.4).  Combining Landsat TM/ETM+ with NTL data helped to improve and further 

validate the thresholding approach used to classify planned and unplanned areas. Urban 

built-up areas consist of a collection of features that share similar spectral signatures; this 

is the reason why using multispectral data such as Landsat imagery alone cannot distinguish 

planned and unplanned urban land successfully. Using city lights intensity as a proxy to 

determine the location of planned and unplanned urban areas has proven to be effective. 
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The reason why SNTL data proved to be an effective proxy linked to the fact that unplanned 

settlements are not as brightly lit as their planned counterparts. So, their average annual 

light intensity is low and can be captured successfully. 

Despite being a planned city, Abuja has not escaped the proliferation of unplanned 

settlements, both within the planned city compartments and around the immediate 

periphery of the city (Gumel et al., 2019). Here, we discriminated planned and unplanned 

settlements based on light emittance, rather than spectral characteristics. The results in 

Figure 3.4 demonstrate that applying a threshold combined with ancillary information 

derived from Landsat TM/ETM+ to DMSP-OLS NTL can aid in the classification of urban 

areas that are predominantly occupied by planned and unplanned settlements.  

Among the nine major satellite towns (which are predominantly unplanned/informal) we 

sampled in and around Abuja (Table 3.4), only three, namely Kabusa, Lugbe and Kuje, were 

captured as non-urban and one, Mpape, was misclassified in the DMSP-OLS NTL imagery 

based unplanned map in 1999. This is most likely due to the small size of these settlements 

in 1999, resulting in them being more dimly lit, and therefore not captured by the threshold 

applied. Mpape was misclassified as a planned area most likely due to its close proximity 

to phase one (where most of the planned development is concentrated). This may have 

resulted in the area falling into the extended area of phase one over-glow, a feature that is 

common in areas with high density impervious surfaces (Ma et al., 2012). Mpape was 

consistently misclassified as a planned area for all the survey years. In 2002, six out of the 

nine satellite towns (unplanned settlements) – Gwagwa, Idogwari, Karu, Kubwa, Lugbe and 

Madalla – were correctly captured in the unplanned area classification (see Figure 3.4) and 

two towns, Kabusa and Kuje, were captured as non-urban while one town (Mpape) was 

again misclassified as a planned development. However, in 2008, some interesting changes 

in the area of unplanned settlements start to become obvious. Six satellite towns out of 

nine were correctly classified – Madalla, Lugbe, Gwagwa, Idogwari, Kabusa and Kuje (a 

similar number of towns to the 2002 result) – in the unplanned class, but the major 

difference is that the other three towns, Mpape, Kubwa and Karu, are misclassified as 

planned area this time around (see Table 3.5). Two of these towns (Kubwa and Karu) were 

correctly classified as unplanned settlement in 2002 only for them to be converted and 

misclassified as planned settlements in 2008 while Kuje was finally captured as unplanned. 

The reason for this conversion/misclassification could be attributed to the fast pace urban 
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sprawl and densification experienced by the two satellite towns within the time frame, as 

they are among the closest to Abuja city centre.  The reason why we have three of the 

unplanned satellite towns within the planned city boundary could be attributed to the 

policy of resettlement by the government. The government proposed resettling all the 

villages found within the proposed planned city location, however this was not achieved, 

and these villages have continued to grow, now becoming sizable unplanned settlements 

that are difficult to demolish or resettle. 

Analysis on the pattern of mapping unplanned settlements using DMSP-OLS stable lights 

revealed that, as the unplanned settlements continue to expand, they start to exhibit 

similar brightness characteristics with planned settlements. This means that as unplanned 

settlements become bigger, they become more brightly lit on the stable nighttime lights. 

This is evident in the satellite towns of Kubwa, Karu and Mpape. Furthermore, unplanned 

settlements that are very close to planned areas are potentially at risk of being affected by 

the over-glow of the planned area (Elvidge et al., 1997; Ma et al., 2012) making it difficult 

to be separated using a specific threshold value.  
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3.6 Conclusions 

The majority of urban studies that use DMSP-OLS nighttime lights are based on regional 

and national scales. This study has shown that DMSP-OLS data can be successfully used to 

map urban extent at local scale in a city experiencing rapid urbanisation in the Global South. 

The study has shown how urban extent has been changing overtime, with results revealing 

how the urban area in Abuja has been expanding rapidly from 1999-2008. The results of 

this study further illustrate that it is possible to map not only urban extent, but also 

distinguish areas of planned and unplanned/informal settlements. This was performed by 

combining Landsat TM/ETM+ derived land cover maps, and the careful application of 

different thresholds on DMSP-OLS stable lights. Despite the Landsat data having a much 

higher spatial resolution than the DMSP-OLS stable lights, it is not possible to use it alone 

to distinguish planned and unplanned areas spectrally. Nightlights, through their differing 

illumination of planned and unplanned areas, have been demonstrated to offer a solution 

to this problem.  

The results revealed a generally high accuracy, especially with regards to discriminating 

unplanned and planned urban areas. This is expected considering the coarse size of the 

DMSP-OLS pixel, and the unplanned areas are relatively small and poorly lit. The accuracy 

will most likely improve significantly if a similar study is conducted with the newer fully 

calibrated and higher spatial resolution Visible Infrared Imaging Radiometer Suite (VIIRS) 

night lights data. The VIIRS data will reduce over-blooming, offer better detection of dim 

lights, enhance the characterisation of urban typologies and greatly advance the dynamic 

range of the data (Baugh et al., 2013; Min et al., 2013, Zhang & Seto, 2013).  

This study and the methods developed may be very useful to urban planners in developing 

countries, where ground-based spatial data relevant to mapping planned and unplanned 

areas is sparse, and the resources required to collect such data on the ground are not 

available. The remote sensing data utilized for this study method are cost-free and it can 

be used to complement ground data collection and offer repeatability for monitoring 

applications. 
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Chapter 4 
 

A simplified approach to mapping unplanned and planned 
settlements in Abuja, Nigeria using deep learning and random 

forests. 
 

Prepared for submission to Urban Studies Journal 
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Abstract 
The process of urbanization has increased rapidly in the recent decades. Urbanization is 

more pronounce in cities of the Global South with the highest predicted urban growth set 

to occur in this region. Most of the urbanization happening in the Global South is haphazard 

and unplanned. This leads to significant social and environment problems such as urban 

sprawl, congestion, pollution, crime and lopsided distribution of resources. While the 

growth and acceleration of unplanned settlements is clear and unmistakable, not much is 

done to detect, map and monitor this phenomenon. This research aims to use remote 

sensing technology through the adoption of machine learning techniques (deep learning 

and random forests) for a rapid and cost-effective way of mapping and analysing unplanned 

and planned urban land in a city of the Global South. This will provide useful and critical 

information to urban planners, policy makers and government officials. The results of the 

study have shown that deep learning can be successfully utilized to analyse and map 

unplanned and planned urban areas using VHR imagery. The results have also shown that 

random forest performed poorly in distinguishing planned and unplanned urban land, and 

also found a considerable disparity between different methods of accuracy assessment 

that are utilized alongside deep learning classifications. 
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4.1 Introduction 
Over the past 100 years, the world has experienced unprecedented levels of urbanization. 

This rapid urbanization has led to a substantial shift in population patterns, with more than 

half the world’s population living in cities (Han et al., 2009; Pham et al. 2011). This growth 

in urban population is set to continue, with over 70% of global population predicted to be 

urban residents by 2050 (Maktav et al., 2005; United Nations, 2015). Furthermore, 

between 1970 and 2000, the total global footprint of urban areas quadrupled (Li et al., 

2013), and it is forecast to keep increasing rapidly in the foreseeable future (Seto et al., 

2011). Much of this future population and urban growth will occur in the Global South, with 

African and Asian countries experiencing urbanization at a more rapid rate than the rest of 

the world. While the urban population is expected to grow by more than two thirds, Africa 

and Asia will experience most of the growth, with Nigeria, India and China alone expected 

to accrue one third of the overall urban population growth (United Nations, 2015). The 

pace and scale of this urbanization presents significant challenges that developing 

countries struggle to address, such as lack of housing, environmental degradation, high 

levels of poverty, poor sanitation and over-crowding (Ji et al., 2001; Karanja & Matara 2013; 

Kuffer et al., 2016).  

High population growth experienced in developing countries is one of the prime drivers of 

urbanization, with this urbanization often uncontrolled and unplanned (Sanli, 2008). In an 

attempt to better address the negative impacts of urbanization, a number of countries 

including Brazil, Malawi, Tanzania and Myanmar have built entirely new planned cities. 

Urbanization in these planned cities is expected to be orderly, organised and predictable; 

however, in many developing countries, rapid urbanization has led to the spread of 

informal, unplanned settlements (Mboga et al., 2017). The size and extent of unplanned 

settlements is substantial in some sub-Saharan African cities, with the area of unplanned 

urban settlements often exceeding that of planned settlements (Kombe, 2005; Kuffer et 

al., 2014). 

To assess the success of these planned cities in managing urbanization, effective 

monitoring is required. This is only possible when urban planners and managers have 

access to regular, affordable and reliable means of obtaining the necessary spatial 

information (Taubenböck et al., 2012) pertinent to monitoring the development of a city. 
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This is challenging, if not impossible, in many cases using ground-based surveying alone 

due to the large areas over which the cities extend, and the spatial complexity of the cities 

in question. An alternative source of data highly relevant to monitoring city development 

is provided by satellite remote sensing (Patino & Duque, 2013; Mertes et al., 2015; Joshi et 

al., 2016; He et al., 2017). This presents an ideal solution to these monitoring requirements 

as remote sensing can provide a synoptic view of the urban environment at high levels of 

spatial detail, with high temporal frequency (Franklin & Wulder, 2002) for monitoring the 

historical (using archived satellite imagery), ongoing and future development of a city. This 

presents a considerable advantage over in situ surveying and monitoring approaches that 

are time consuming, offer limited spatial coverage and are often expensive (Wentz et al., 

2014).  

Significant advances in urban remote sensing have been made since the emergence of very 

high resolution (VHR) satellite sensors (e.g. IKONOS, launched in 1999, providing 4 m spatial 

resolution multispectral imagery), which provided a great opportunity to analyse complex 

and detailed urban features (Aplin, 2003; Weng, 2012). In recent years, remote sensing, 

which has continued to offer more detailed spatial, spectral and temporal resolution data, 

has been used effectively for mapping urban built-up land and analysing complex socio-

economic features (Jensen & Cowen, 1999; Longley 2002; Wurm et al. 2009; Wieland & 

Pittore 2014). For instance, a range of remote sensing data sets have been used to map 

impervious surfaces, urban land cover and change in the urban environment (Small et al., 

2005; Xiao et al., 2006; Hu et al., 2007; Cao et al., 2009; Sutton et al., 2009; Zhou et al., 

2014; Momeni et al., 2016), and to estimate urban population and undertake socio-

economic analysis (Doll 2010; Townsend & Bruce, 2010; Veljanovski et al., 2012; Wang et 

al., 2012; Zhang & Seto, 2013; Canty, 2014; Ma et al., 2015). 

Despite considerable activity and success in urban remote sensing analysis, few studies 

have attempted to distinguish planned and unplanned settlements. Partly this may be due 

to the spectral similarity of planned and unplanned built-up land, resulting in difficulties 

discriminating between these two classes through spectral characteristics alone. These 

limitations are more pronounced in classic remote sensing techniques used in feature 

extraction and classification of complex urban environments. Deep learning (DL) is well 

positioned to address some of these limitations as it can effectively combine spatial and 

spectral characteristics within imagery for improved mapping results (Noguiera et al., 

2017). Due to the rapid urbanization experienced in the Global South, it is very important 
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for urban planners and policy makers to be able to monitor and manage the expansion of 

unplanned settlements using fast and cheap methods to minimise the negative 

consequences of unplanned urbanization. 

Information on the nature and extent of unplanned settlements often exhibits poor 

consistency (Herold et al., 2003) or is simply unavailable. This, in part, may be due to 

inconsistent definitions of what constitutes unplanned settlements around the world 

(Mboga et al., 2017), with no conclusive definition in the literature of formal/informal, 

planned/unplanned settlements (Owen & Wong 2013). Sometimes referred to as informal 

settlements, squatter settlements or slums, unplanned settlements are areas that 

predominantly consist of haphazardly constructed buildings, lack basic infrastructure and 

social amenities, are overcrowded, and land tenure is insecure or unrecognized by 

authorities (UN-Habitat, 2016). In one example of a planned city – Abuja, Nigeria – 

unplanned settlements have proliferated despite the city’s development being governed 

by an over-arching Master Plan (IPA, 1979). Here, these unplanned developments typically 

comprise small, irregular clustered dwellings, lack paved roads, and have little or no green 

space (vegetation) within them. Planned settlements by contrast have regular patterns of 

building locations, generally larger buildings, paved roads and are interspersed with 

vegetation patches.  

Recently, studies have tested VHR satellite imagery as a means of mapping informal 

settlements. Since it can be challenging to distinguish planned and unplanned urban 

development purely on the basis of spectral information, alternative approaches that 

exploit spatial configuration and texture of urban land cover have been adopted (Mboga 

et al., 2017). Examples include using texture of land cover to map informal settlements 

include, using the Grey Level Co-Occurrence Matrix (GLCM) to measures contrast, entropy, 

homogeneity and correlation to extract informal settlements (Stasolla & Gamba, 2007; 

Pesaresi et al., 2009; Owen & Wong, 2013). A lacunarity based slum detection algorithm 

was used to derive a slum location map in Hyderabad, India (Kit et al., 2012; Latterly et al., 

2013), while Baud et al. (2010) combined visual image interpretation of VHR imagery, 

spatial indices (shape, clumpiness, and aggregation index) and ground observation to map 

sub-standard residential areas in New Delhi. Morphological factors such as building density, 

size and height have also been used to differentiate between slums and formal settlements 

(Taubenböck & Kraff, 2014). Kuffer et al. (2014) developed an unplanned settlement index 

by combining spectral information and spatial metrics to help with automatic extraction of 
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unplanned settlements. Limitations to these methods include their high level of technical 

complexity and challenges in geographical transferability, as they are based on specific 

features and indices that can be difficult to define and vary considerably between areas 

(Zhao & Du, 2016).  

Recently, object-based image analysis (OBIA) has been used to address some of the 

challenges attributed to mapping formal and informal settlements, by classifying objects 

taking into account not just spectral characteristic of features, but also spatial features like 

size and texture (Aminipouri et al., 2009). Veljanovski et al. (2012) used OBIA to estimate 

the population of informal settlements in Kibera-Nairobi, Kenya; while favelas in Rio de 

Janeiro were mapped as objects by Hofmann et al. (2008) and in Sao Paulo, Brazil by 

Nobrega et al. (2008), the latter by combining a general ontology of informal settlements 

with a fuzzy-logic classification rule. However, significant concerns have been raised 

regarding methodological robustness and transferability of OBIA approaches (Hofmann et 

al., 2011; Kohli et al., 2013; Kuffer et al., 2016). Furthermore, there is considerable 

uncertainty about how segmentation parameters should be defined (Drǎguţ et al., 2010), 

especially where planned and unplanned settlements are being mapped simultaneously. 

Typically, segmentation scale optimization is achieved through trial and error (Meinel & 

Neubert, 2004; Duro et al. 2012). OBIA also presents the new challenge of determining the 

appropriate scale of analysis. Kuffer et al. (2014) considered urban land cover at the level 

of object (e.g. roofs) or areas (i.e. the metropolitan scale), while Kohli et al. (2012) 

constructed a detailed ontology on informal settlements at three different scales: objects, 

settlements and environs. 

Due to the limitations of classic feature extraction algorithms for remote sensing images, 

there has been a push to develop approaches that effectively combine both spatial and 

spectral characteristics to discriminate complex features accurately (Nogueira et al., 2017). 

DL methods, first proposed by Hinton et al. (2006), are becoming a common solution, with 

their application rapidly growing in the remote sensing field (Wang et al., 2017). DL is a 

division of machine learning for learning representations (LeCun et al., 2015) that works by 

attempting to model high level abstraction in data through learning its hierarchical features 

(Hu et al., 2015; Fu et al., 2017). One of the most popular DL algorithms is convolution 

neural networks (CNNs). CNNs are artificial neural networks and are generally regarded as 

the most effective, successful and widely used DL method in both computer vision and 

remote sensing (Hu et al., 2015; Nogueira et al. 2017; Mboga et al. 2017; Wang et al. 2017; 
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Zhou et al. 2017). CNNs are being increasingly applied in the remote sensing field for land 

cover/land use classification using VHR and hyperspectral imagery (Paisitkriangkrai et al., 

2016; Längkvist et al., 2016; Liang & Li, 2016; Ma et al., 2016; Alshehhi et al., 2017; Kussul 

et al., 2017), although very few studies have explored the potential of using CNNs to detect 

informal or unplanned settlements. In one of the few studies using CNNs to detect informal 

settlements, Mboga et al. (2017) reported improved classification accuracies when 

comparing CNNs to support vector machines (SVMs) using GLCM and local binary patterns 

(LBP), with CNN (5 convolution layers) recording 91.7% accuracy while GLCM+SVM 

recorded 86.6% and finally SVM+LBP recorded 90.4%. Another study employing DL to 

identify informal settlements was that of Li et al. (2017) whereby unsupervised deep 

feature learning was used to map urban villages in China and proved computationally faster 

and of comparable accuracy to supervised approaches. These studies were mainly looking 

at informal settlements in isolation which means the CNNs are trained to identify and 

extract informal settlements only, disregarding other urban land and other land cover 

classes. The studies also involved designing and optimizing a new CNN architecture which 

can be complicated and time consuming. No studies have yet explored the potential of DL 

to detect and distinguish both planned and unplanned settlements, and other urban land 

cover types, simultaneously.  

Here, an investigation on the potential of using DL CNN analysis to detect and map planned 

and unplanned urban settlements alongside other land cover types using VHR satellite 

imagery in Abuja, Nigeria in conducted. CNN architecture is trained using three-band (RGB) 

GeoEye-1 satellite imagery, and classification performance of CNN is then compared to an 

alternative, established land cover classification machine learning algorithm, random 

forests (RF), first introduced by Breiman (2001). The RGB image data product provides a 

valuable test here since its spectral simplicity (lacking any near infrared (NIR) band) may 

act as a constraint for accurate classification in a complex urban environment. Thus, we 

might expect that traditional (e.g. RF) classification approaches will struggle to distinguish 

urban classes accurately, while more sophisticated (e.g. DL) approaches will cope more 

effectively with spectral overlap between classes. While other VHR image products do 

include a NIR band, and this might also be likely to increase classification accuracy, RGB 

images are widely used in Global South countries, crucially because of their low-cost which 

can be a key criterion for image selection, so it is extremely worthwhile to develop and 

demonstrate their ability for urban mapping. We present a simple way of detecting and 
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mapping planned and unplanned settlements by allowing the CNN to learn automatically 

the complex spatial and spectral characteristics of the features that comprise each 

settlement. We also investigate how different validation procedures influence empirical 

results, comparing an accuracy assessment procedure (that is more or less automated) 

commonly used in DL analysis (LeCun et al., 2015) against a standard error matrix approach 

used in remote sensing classification validation (Congalton 1991). To achieve these 

objectives, two research questions are posed: 1) Can planned and unplanned urban 

settlements be distinguished and mapped successfully using DL? 2) Can DL offer enhanced 

classification performance over established machine learning methods such as random 

forests? 

4.2 Study Area 
Abuja, the capital of Nigeria, is a planned city for which construction began in 1980 after 

the government of Nigeria decided in 1976 that the previous capital, Lagos, was not fit to 

continue in this role. This was due to having insufficient space in Lagos to accommodate 

future expansion, lack of cultural diversity, and its non-central geographical location within 

Nigeria (Ikejiofor, 1997). A comprehensive Master Plan (IPA, 1979) was formulated to guide 

development of Abuja (Abubakar, 2014) and official relocation of the capital occurred in 

1991. The Master Plan was intended to ensure the orderly growth of the city, limiting 

unplanned or unwanted development. Since construction started, Abuja has experienced 

rapid urbanization and population growth, and, with an urban area growth rate of 8.3% per 

year, it is one of the fastest growing cites in the world, and the fastest in Africa (Myers, 

2011).  

Abuja Federal Capital City (FCC) is located within the Federal Capital Territory (FCT) of 

Nigeria which covers an overall area of around 8,000 km2. The FCT lies between latitudes 

7°25’ and 9°20’N, and 139 longitudes 5°45’ and 7°39’ W, with elevations ranging from 

approximately 100 m to above 600 m. The FCT is part of the Guinea-Savanna vegetation 

zone (Idoko & Bisong, 2010) and has two distinct seasons in a year: the dry season from 

November to March, and the rainy (wet) season from April to October. The land cover in 

the FCC is predominantly occupied by grassland vegetation, built-up land (consisting of 

planned and unplanned settlements), water reservoirs, bare ground and some rock 

outcrops. Planned settlements are mostly organised, orderly, with paved streets and 

individual larger houses in comparison to houses located in unplanned settlements. 
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Unplanned settlements on the other hand are disorganized, with unpaved streets, and with 

random pattern of buildings. 

The study area is an area of 62.5 km2 located in the northern part of the FCC (see Figure 

4.1). This area matches the footprint of the GeoEye-1 image (described below) used for 

analysis. 

 

Figure 4.1. Study area, showing the location of the Federal Capital Territory (FCT) within Nigeria 

(top left), an inset of FCT showing the Abuja Federal Capital City (FCC) footprint in the northeast 

(bottom left), and the GeoEye-1 image covering the northern part of the FCC (right). (FCT and FCC 

maps adapted from data supplied by Abuja Geographic Information System (AGIS) Agency and 

Nigeria Space Research and Development Agency; GeoEye-1 imagery supplied by AGIS.) 
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4.3 Data 
In this study, we utilized a cloud-free February 2014 GeoEye-1 satellite image of Abuja. The 

image was originally acquired from Digital Globe as a three-band (RGB) pan-sharpened 

ortho-ready product, and the spatial resolution is 0.5 m. As mentioned above, this image 

data product, a standard commercial option, has the limitation that it does not include a 

NIR band, the inclusion of which may ordinarily increase land cover classification accuracy. 

However, this product has the significant benefit of lower cost which means it may be the 

only affordable option for users, especially in Global South countries where financial 

constraints can apply. The spectral limitations of the data set suggest that traditional land 

cover classification methods may be relatively inaccurate, whereas DL approaches offer the 

potential for improved land cover feature recognition. 

A comprehensive reference data set was constructed to provide training and testing data 

for the classification analysis. This involved a survey of land cover and land use of the study 

area, plus interviews with planning officials and residents regarding land cover/land use 

distributions, conducted during a six-week field campaign in 2015. Though there is a two-

year gap between image and field data collection, changes on the ground (e.g. as a result 

of new urban development) over this time were immediately apparent from the imagery, 

so any field survey points that were obviously different in the image were omitted from 

analysis. Additionally, land cover/land use maps of the study area were acquired from the 

Federal Capital Development Authority (FCDA) and AGIS. These data sources were collated 

to form an overall reference data set, presented as a vector coverage of the study area, 

from which various separate training and testing samples were subsequently taken. 
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4.4 Methods  
To address the aims of this study, a five-class classification system was developed, targeting 

both planned and unplanned settlements, plus bare ground, vegetation and water classes 

that are also found within the study area. Detailed class descriptions are given in Table 4.1.  

Table 4.1. Land cover/land use class descriptions. 

Land cover/land use class Description 

Bare ground Areas of bare earth, devoid of vegetation and not covered by built-up, 

impervious surfaces. 

Planned settlement Impervious surfaces such as buildings (residential and commercial) with 

mostly aluminium and ceramic roofing, reasonably regular streets and 

paved road network, and large concrete surfaces, plus small plots of 

vegetation (gardens) within planned neighbourhoods. 

Unplanned settlement Impervious surfaces such as small and dense buildings with mostly zinc 

roofing (with little to no space between houses), roads (usually unpaved) 

and irregular street network, plus small open areas and occasional trees 

or other vegetation within unplanned neighbourhoods.  

Vegetation Areas or patches of grasses, shrubs and/or trees not contained within the 

urban boundary.  

Water Water bodies, such as rivers, reservoirs and ponds. 

 

4.4.1 Deep learning analysis 
To classify planned and unplanned settlements using the GeoEye-1 image, a well-known DL 

architecture, Lenet, was adopted. Lenet is based on the Convolution Neural Networks 

(CNNs) algorithm pioneered by Lecun et al. (1998), and consists of two convolution layers, 

two pooling layers, a fully connected layer and one hidden layer (see Figure 4.2). The 

convolution layers consist of kernels that are used to discover specific local features to 

improve the classification process. The pooling layers combine semantically related 

features into single features (Lecun et al., 2015) while the fully connected layer is a softmax 

layer that assigns a semantic label to each pixel after computing a score for the individual 

determined class. The convolution layers comprise input feature maps that have assigned 

weights (filters or kernels) to create new feature maps (Wang et al., 2017). The process 

works by transforming an input image from original pixel values to a final class score using 

a softmax layer for individual defined classes (Hu et al., 2015). The parameters of such CNNs 
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are usually trained with classic stochastic gradient descent based on the backpropagation 

algorithm (Rumelhart et al., 1986; Hu et al., 2015; Wang et al., 2017).  

 

Figure 4.2. Lenet deep learning architecture (adapted from datiaku.com). 

The DL architecture adopted is a pixel-based classifier which was trained to combine and 

recognize both pixel and object-based classification characteristics. The classifier is able to 

recognize a block of pixels as belonging to a predominant class and ignoring isolated pixels 

that may belong to minority class if classified in isolation. Prior to performing the DL 

classification, it is necessary to determine the optimal size of a patch that will be used for 

classification. The patch size is important because a central pixel of a patch is what DL uses 

for the training process.  To determine the optimal patch, measurements were performed 

to determine the average coverage of the individual features that comprise the classes we 

are most interested in, namely planned and unplanned settlements. We measured the area 

of a range of different features in both planned and unplanned settlements to determine 

the average size of a feature. Ultimately a patch size of 51 x 51 pixels (25.5 m x 25.5 m) was 

decided upon, since this covers a typical building in a planned settlement and also 

encompasses one or more buildings in unplanned settlements which are typically smaller 

in size.  

Once patch size was determined, the Lenet algorithm was trained by selecting a sample of 

patches automatically from the reference data set. Reference data was provided as a vector 

coverage of the study area, divided into areas corresponding to the five land cover classes. 

A sample of 400,000 patches were randomly collected, 80,000 per class. Then, for each 

patch, the central pixel was selected and input to the CNN for training. The process of 

selecting a single pixel to represent the patch considers both spatial and spectral 

information and training is relatively simple and fast compared to traditional remote 
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sensing methods that require prior identification and analysis of certain spatial matrices 

and tend to be limited by their high level of complexity and limited geographical 

transferability (Zhao & Du, 2016). Creating a wall to wall land cover map using DL is not 

common because of the amount of computing power and time needed. Therefore, eight 

small subset areas were selected from the original GeoEye-1 image (that covers an area in 

phase 2, 3 and 4 see figure 3.4) for classification, each measuring 506 by 595 pixels or 

approximately 0.08 km2. In combination, these eight subsets included a good mixture of 

the five land cover classes found within the study area, enabling a full and rigorous test of 

the DL algorithm. 

Following DL land cover classification, accuracy assessment was conducted, and two 

approaches were tested for this. Initially, the standard approach for accuracy assessment 

provided within the DL software was used. This was easy to deploy and largely automatic, 

whereby a large number of test patches (i.e. the central pixels of patches, similar to the 

training process) were selected randomly from the reference data set and, in each case, 

the classified pixel was compared to the reference class. Here, 10,000 patches were 

randomly selected, 2,000 per class, and compared to the reference data to create an error 

matrix. Importantly, test patches were independent of training patches. 

The results of this DL software-led accuracy assessment seemed unrealistically high (results 

presented below), likely due to the restriction of testing samples to only ‘pure’ reference 

data. All reference data polygons input for analysis correspond to easily identifiable, pure 

examples of land cover classes. The implication of this is that no difficult, ‘mixed’ land cover 

samples are examined. Clearly there is a higher likelihood of pure samples being classified 

correctly than mixed samples, and images generally contain a considerable degree of mixed 

areas or pixels, especially in complex urban environments. This is a well-known issue in land 

cover classification analysis, with various authors testing the effect of the purity of 

reference data on classification accuracy (Foody, 2002; Olofsson et al., 2014). We speculate 

that this may now be a particular concern for DL classification of remotely sensed imagery 

since many such studies have been published that present very high (often near 100%) 

accuracies (Liang & Li, 2016; Wang et al., 2017). Are such results reliable? It may well be 

that authors, some of whom have a computational rather than a remote sensing 

background, have adopted in-built DL accuracy assessment approaches that, by testing 

only pure reference samples, do not provide a true reflection of whole image classification 

accuracy. We will return to this issue in the discussion section below. 
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Because of our concerns about the reliability of the DL software-led accuracy assessment 

approach, we also deployed a separate, objective accuracy assessment approach. A further 

benefit of this second approach is that the same test can be performed on both DL and 

random forest classifications enabling clear comparison between the two classification 

methods. The accuracy assessment approach follows standard land cover classification 

accuracy assessment methodology, whereby random sample points on classified images 

are cross-referenced against reference data and results are presented as error matrices 

(Congalton, 1991; Liu & Yang, 2015). Here, accuracy assessment was performed on the 

eight classified subset images. As mentioned above, the eight subset areas provide good 

representation of the five land cover classes present in the study area. Also, though, and 

importantly, the full subsets present a realistic mixture of land cover, including boundary 

zones between features (which often exhibit mixed pixels) and more generally the 

ambiguous, mixed land cover patterns often found in urban areas. Therefore, this second 

approach to accuracy assessment considers the full range of land cover, from pure to 

mixed, present in urban areas, providing a fully fair test of classification performance. A 

random sample of 1,600 points were selected, 200 per subset, and each point’s land cover 

class was compared to the corresponding reference data class. Results were presented as 

an error matrix.  

4.4.2 Random forest analysis 
To enable robust comparison of the performance of the DL classification against 

established machine learning methods, the GeoEye-1 image was also classified using a RF 

approach. RFs are a machine learning algorithm, first introduced by Breiman (2001) as an 

ensemble of classification and regression decision trees (Marston et al., 2014). The 

approach involves using a series of simple decisions that are dependent on the results of 

sequential tests for assigning labels to different classes (Wieland & Pittore 2014). RFs are 

non-parametric (Strobl et al., 2008) and can handle diverse types of data (Duro et al., 

2012b). Thus, RFs provide valuable comparison for DL analysis since both approaches 

represent state-of-the-art in machine learning classification (Wieland & Pittore 2014). RF 

classification was performed using the Sentinel Application Platform (SNAP), based on 

methods developed by Breiman (2001). The RF classification was performed on the entire 

GeoEye-1 image, from which the eight subset areas (i.e. matching the subsets analysed in 

DL analysis) were extracted for observation and analysis. To enable direct comparison, the 

same training data set used for DL analysis was deployed for RF classification. The RF 
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classifier was set to train on vectors, using ten trees. Then, the same 1,600 test points used 

for DL accuracy assessment were deployed for RF classification accuracy assessment, with 

the results presented as a standard error matrix.  
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4.5 Results  
Land cover maps of the eight image subsets generated by DL and RF classification are 

presented in figure 4.3, and overall class accuracies for the three accuracy assessments (DL 

automated accuracy assessment approach, DL standard approach, RF standard approach) 

are presented in Table 4.2.  

 

  (a)                                                  (b)                                                       (c) 
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Figure 4.3. Land cover land use classification of a section in Abuja, Nigeria: (a) VHR image subset of 

mixed land cover areas (b) deep learning classification (c) random forest classification 
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Table 4.2. Summary land cover classification accuracy assessment results. 

Class Deep learning classification: 

automated accuracy 

assessment approach 

Deep learning classification: 

standard accuracy 

assessment approach 

Random forest 

classification: standard 

accuracy assessment 

approach 

Users 

accuracy 

(%) 

Producers 

accuracy (%) 

Users 

accuracy 

(%) 

Producers 

accuracy (%) 

Users 

accuracy 

(%) 

Producers 

accuracy (%) 

Bare ground 100.0 99.8 67.0 10.0 27.2 80.0 

Planned 

settlement 

99.4 99.8 56.2 85.7 12.3 15.0 

Unplanned 

settlement 

99.2 99.4 88.0 62.0 37.7 17.7 

Vegetation 97.6 100 51.0 36.0 37.1 26.2 

Water 99.7 96.7 87.0 88.0 19.1 59.6 

Overall 

accuracy (%) 

99.0 66.2 26.8 

 

 

4.5.1 Deep learning land cover classification 
DL classification, when applied to the image subsets, tended to classify relatively large 

objects or areas as distinct, homogenous features. There is little evidence of noise or the 

salt-and-pepper effects common in pixel-based classification of urban study areas. For 

example, small vegetation features within planned settlements, perhaps corresponding to 

garden plots, are not classified as separate vegetation objects but are incorporated into the 

planned settlement class. Homogenous water bodies are also clearly classified. Small 

patches of bare ground within unplanned settlement are not classified as separate class 

but recognized as part of the unplanned settlement land use class. The same can be said 

for small areas of vegetation within planned and unplanned settlements; they are mostly 

merged with the predominant settlement class in the area. 
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The overall accuracy of the DL classification using the automated accuracy assessment 

approach was very high at 99.0%, while that using the remote sensing standard error matrix 

is a modest 66.0% (Table 4.2). The reason for this clear disparity could be linked to the way 

the two approaches test classification accuracy. The DL automated accuracy assessment 

approach uses points fed to it from pure pixels of individual classes. While the remote 

sensing standard error matrix approach test the classification accuracy using areas 

consisting of mixed classes (pixels). The performance of the DL classifier is even higher if 

we look closely into the planned and unplanned individual class accuracies for the two-

different accuracy assessment methods. The users and producers accuracy for planned 

settlement is 56.2% and 85.7% (standard error matrix) and 99.4% and 96.7% (DL automated 

approach) respectively. While the unplanned settlement class user and producer accuracy 

is 88.0% and 62.0% respectively (standard error matrix) and 99.7% and 99.4% (DL 

automated approach) respectively (Table 4.2). The ability of DL to recognize and 

incorporate small areas of vegetation, bare ground and water within planned and 

unplanned settlements into the broader settlement class is what contributed to the higher 

individual accuracy of the two classes. There is a significant difference in the overall 

classification accuracy between the two approaches, with standard error approach at 

66.2% and the DL automated approach at 99.0%. A full confusion matrix for both random 

forest and DL classification is also shown (Table 4.3).  

 

Table 4.3. Deep learning classification standard error matrix. 

Predicted class Reference class Users 

accuracy 

(%) 

Bare 

ground 

Planned 

settlement 

Unplanned 

settlement 

Vegetation Water 

Bare ground 6 0 2 1 0 67.0 

Planned settlement 51 496 192 135 7 56.2 

Unplanned settlement 0 40 380 13 0 88.0 

Vegetation 2 43 37 90 5 51.0 

Water 0 0 2 11 87 87.0 

Producers Accuracy (%) 10.0 85.7 62.0 36.0 88.0  
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4.5.2 Random forest land cover classification  
The random forest classification overall, and individual class accuracy are low. The overall 

accuracy is 26.8% (Table 4.2), while the planned settlement producers and users accuracies 

are 15.0% and 12.3% respectively. The unplanned settlement producers and users accuracy 

are also low at 37.1% and 17.7% respectively. The RF algorithm been strictly a pixel-based 

classifier meant it could only classify individual vegetation, bare ground and water pixels 

within planned and unplanned settlements as independent classes rather than part of the 

predominant settlement class. This contributed to the low accuracy seen in the planned 

and unplanned settlement classification. The lack of infrared band in the GeoEye-1 imagery 

used also contributed in limiting the capacity of RF to distinguish the land cover/land use 

classes with better accuracy. Table 4.4 shows the RF classification error matrix. It illustrates 

the misclassification between virtually all the classes.  

Table 4.4. Random forest classification standard error matrix. 

Predicted class Reference class Users 

accuracy (%) Bare 

ground 

Planned 

settlement 

Unplanned 

settlement 

Vegetation Water 

Bare ground 85 10 168 49 0 27.2 

Planned 

settlement 14 40 130 139 1 

12.3 

Unplanned 

settlement 

8 93 115 65 24 37.7 

Vegetation 0 67 117 119 17 37.1 

Water 0 60 120 82 62 19.1 

Producers 

Accuracy (%) 

80.0 15.0 17.7 26.2 59.6  
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4.6 Discussion 
4.6.1 Effectiveness of deep learning for distinguishing planned and unplanned settlements  
In this study, the first research question posed was ‘Can planned and unplanned urban 

areas be distinguished and mapped successfully using DL?’ The DL approach employed here 

was relatively effective in mapping planned and unplanned settlements alongside water, 

vegetation and bare ground in Abuja. Looking at the result in figure 4.3, we can observe 

that DL is able to map both areas of planned and unplanned settlements to a great extent. 

Water is also captured well. The areas that DL performed less overall are vegetation and 

bare ground. Vegetation was sometimes confused as water and occasionally as part of 

planned area. While bare ground is included as part of planned settlement and vegetation 

at times.  

We adopted a simple DL architecture (Lenet) which consist of two convolution networks 

and is easy to adapt for the purpose of mapping complex urban features like unplanned 

settlements. The methods developed in training the CNN is also straightforward and can 

easily be transferred and tested in other fast-growing cities of developing nations. Having 

a method that is transferable and able to detect and map features like informal settlements 

in developing countries that is independent of location is not common but quite desirable 

(Kuffer et al., 2014; Mboga et al. 2017), with potential for urban planning applications more 

broadly. However, the DL classification accuracy is also highly dependent on robust and 

large training dataset and, determining the optimal patch size for training is also crucial for 

the success of the approach. This means that for remote sensing single scene classification 

where training data could be limited, DL accuracy could be lower. Also, there is no clear 

formula on how to determine an optimal patch size for training. This means that there 

might be some element of subjectivity on this part of the DL process.   

Future developments looking to further improve these methods could include applying 

different CNN that have more than two convolution layers in the architecture as shown by 

Mboga et al. (2017) or by combining a deep residual network first introduced by (He et al., 

2016), with an edge enhancement guided filter applied to a final DL generated map (Xu et 

al., 2018). However, DL has shown considerable promise in its ability to map unplanned 

settlements in a planned city. Information like this will be crucial to planners and policy 

makers to properly monitor and manage a fast-growing city and to identify deprived areas 

where more resources can be focused to upgrade them (Sliuzas, 2003).  
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4.6.2 Machine learning classification using spectrally limited imagery 
The VHR GeoEye image used for the two classifications is limited in spectral resolution, 

having only three bands (red, green, blue), however this is the dataset that is readily 

available to urban planners in developing countries such as Nigeria where mapping 

unplanned urban areas would be of greatest value.  This is mostly due to its lower cost 

while satisfying the basic requirement of the planners in terms of visualisation. Therefore, 

whereas the performance of other classification methods such as RF would typically be 

higher should multispectral VHR imagery be used, for this specific application, random 

forest classifiers perform poorly, and the DL method developed here perform to a much 

higher accuracy. This offers a valuable tool to urban planners that is easy to implement by 

non-experts. Despite the spectral limitation of the VHR image (three visible bands) used, 

DL algorithm performed well in mapping unplanned and planned settlements. On the other 

hand, RF algorithm performance was significantly affected by the spectral limitation of the 

imagery. Hence, DL should be the go-to-approach for urban planners (especially in the 

Global South) to map and monitor unplanned settlements. 

4.6.3 Comparison of deep learning and random forest classification 
The second research question posed in this study was ‘Can DL offer enhanced classification 

performance over established machine learning methods such as random forests?’. Most 

studies that applied DL to remote sensing image processing reported quite a remarkable 

improvement in accuracy (Mboga et al. 2017; Nogueira et al. 2017; Wang et al. 2017). Here, 

we attempted to understand if the improvement in accuracy is strictly due to the potential 

and superiority of DL architecture over other remote sensing classification methods or if it 

might be due to the differences in accuracy assessment approach in the two fields.  The 

result of the DL automated accuracy assessment was quite remarkable for the two main 

classes of interest in this study – planned and unplanned settlements, with both having 

99% classification accuracy. Considering that DL does not routinely generate wall to wall 

map, we decided to subset eight areas within the image to see the land cover result visually. 

On inspection of the DL generated maps of the eight sampled areas, there is, however, 

some disparity with our visual comparison and the 99% overall accuracy reported by the 

DL automated accuracy assessment approach. To perform a more objective assessment, a 

second accuracy assessment on the eight classified maps was performed using a common 

RS approach of standard error matrix using an independent set of validation points. The 

second accuracy assessment showed considerably reduced accuracies (Table 4.2). The 
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overall accuracy of the standard error matrix approach on the DL classification is 66%, with 

planned and unplanned accuracies being around 70% and 75% respectively. This is 

considerably lower than the 99% accuracy reported using the two-class linear system. The 

reason for this difference in accuracy levels is likely attributed to the nature of how the two 

different approaches investigated handle testing data. The DL automated accuracy 

assessment approach uses and test pixels that are within an area that is predominantly 

dominated by a single class. This is because reference data areas are identified as 

homogenous patches or objects of individual classes. On the other hand, standard error 

matrix uses and test pixels that are distributed over an area that consist of multiple classes. 

For example, to test unplanned settlement class, the DL automated approach uses a testing 

polygon, within the unplanned settlement, to then randomly select test patches (e.g. 500 

patches) in an area that is 90% occupied by unplanned settlement. This will most likely 

result in higher accuracy because of the effect of positive spatial autocorrelation 

(Woodcock and Strahler, 1987; Congalton & Green, 2008). The disparity shown between 

the two-different accuracy assessment approach means that care should be taken in 

interpreting and assessing the quality of a remote sensing classification derived from DL. 

Overall, DL methods are good at mapping unplanned settlement, and offers a significant 

improvement in accuracy (see Figure 4.3) over RF (which has a producers and users 

accuracy of 15.0% and 12.3%) for planned settlement and 37.7% and 17.7% producers and 

users accuracy for unplanned settlements (see Table 4.4). The accuracy of DL classifiers 

should be verified with independent data to avoid overestimation of classification 

accuracy. On the other hand, the RF algorithm does not seem to be sophisticated enough 

to enable discrimination between planned and unplanned settlements which are quite 

similar spectrally. The accuracy recorded for RF classification is below acceptable threshold. 

This also shows that not all machine learning methods are suitable for mapping complex 

urban features especially using a spectrally limited dataset. The spectral limitation in the 

VHR imagery used may have played a role in the low accuracy recorded. RF classifier has 

been revealed to perform better in classifying hyperspectral imagery where dimensionality 

and excessive data correlation is a big issue (Belgiu & Drăguţ, 2016).   
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4.7 Conclusion 
In this study we investigated the potential of two machine learning approaches in mapping 

planned and unplanned settlements in Abuja, a rapidly urbanising city of the Global South. 

This research has shown how a simple CNN can be trained to successfully characterise and 

map complex land cover and land use using a basic 3-band RGB VHR image. The 

methodology proposed to map unplanned and planned settlement is simple and can easily 

be adapted and used by non-experts. This will aid in overcoming the problem of having to 

develop new methods of capturing detailed information on the morphology of different 

cities, which is done by adjusting individual spatial metrics of cities based on location 

(Kuffer et al., 2014). This research also illustrates that the RF classifier is poorly suited to 

distinguishing and mapping unplanned and planned settlement using 3-band GeoEye VHR 

imagery.  

The results of this study have revealed a marked difference in accuracy assessment result 

based on the approach adopted when applying DL for remote sensing data. Using an 

automated accuracy assessment (commonly used in DL classification) for accuracy 

assessment revealed a very high accuracy result compared to a standard error matrix 

approach that is widely used in remote sensing. This has clear implication going forward 

especially in the field of remote sensing. The disparity in accuracy figures for the two 

approach is linked to the selection of reference data, where the DL automated approach 

test the classification using reference data from individual homogenous class patches. 

While the standard error matrix approach for remote sensing uses reference data from 

areas consisting of mixed classes. More research is needed to better understand the 

disparity between the two accuracy approaches.  
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Chapter 5 

 

Conclusion 
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5.1 Conclusions 

This study has successfully utilized remote sensing technology to investigate urbanization 

in the planned city of Abuja, Nigeria. The research has involved multi-temporal remote 

sensing to investigate urbanization in Abuja over the last four decades, and multi-source 

remote sensing to distinguish unplanned and planned urban development at different 

scales of observation. The study has succeeded in reviewing and analysing urban growth in 

the city based on the provision of the original Master Plan, showing the extent to which 

actual urban development has kept pace with, or diverged from, the original plan (Chapter 

2). However, limitations in the level of thematic land cover detail achievable using Landsat 

imagery, and also limitations in the temporal coverage of Landsat, led to an experiment 

using DMSP-OLS nighttime lights imagery to monitor urbanization in Abuja and specifically 

to distinguish unplanned and planned urban areas (Chapter 3). Finally, constraints to the 

level of detail and accuracy achievable using coarse spatial resolution DMSP-OLS imagery 

meant that further work was conducted using VHR GeoEye-1 imagery to map urban land 

cover at a high level of detail and distinguish clearly between unplanned and planned urban 

areas. Here, traditional mapping approaches such as maximum likelihood or random forest 

classification proved inaccurate because of the high spatial frequency of urban land cover 

and resulting spectral confusion between classes. Therefore, an alternative, contemporary 

classification approach based on deep learning analysis was developed which proved 

successful in distinguishing unplanned and planned urban area (Chapter 4).  

5.1 Unplanned urbanization in the Global South 

Rapid urban growth is a global affair but in recent years this growth has been experienced 

most in developing countries. This fast-paced urbanization has led to an explosion of 

unplanned settlements in cities of the Global South. One of the challenges posed by 

unplanned settlements is their very complex setting (characterised by disorderly and 

cluttered features) that is difficult to understand. There is also limited information about 

the distribution and growth of unplanned settlements, despite housing one third of the 

urban population of developing countries (United Nations, 2015). This makes mapping and 

monitoring unplanned settlements challenging. Consequently, unplanned settlements are 

suffering from neglect and lack of basic infrastructure such as roads, power and social 

amenities. Urban planners and policy makers need affordable sources of information and 

reliable analytical approaches to first construct inventories (maps) of unplanned 
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urbanization, and then to monitor these areas. Remote sensing has proven to be an 

effective technology to provide this information.  

5.2 The role of remote sensing 

Remote sensing can play a significant role in providing useful information to help in better 

understanding and monitoring of unplanned urbanization in the Global South. Using 

diverse types of remote sensing data sources, that range from low through medium to high 

spatial resolution imagery, unplanned urban development can be successfully detected, 

mapped and monitored with high temporal frequency. Long-term urban change is difficult 

to monitor because of a lack of knowledge about built-up land cover and land use change 

spanning decades. The existence of remote sensing missions such as Landsat, which has 

acquired imagery around the world for almost half a century, offers the opportunity to 

analyse the growth and pattern of urban development, including unplanned settlements. 

Additionally, using DMSP-OLS stable lights imagery has shown to be effective to help 

further discriminate predominantly planned and unplanned areas of a city. This 

information will provide a valuable insight into the attributes of unplanned development 

in cities of the Global South for better monitoring and prediction of, and preparation for, 

future urban growth. Furthermore, the application and use of VHR imagery provides the 

opportunity to acquire enhanced information of not just land cover change in Abuja, but 

also urban land use like unplanned settlements, at greater spatial detail. Such information 

is highly useful to urban planners as it can help them to plan and allocate resources more 

effectively to areas in need.  

5.3 Urban analysis using medium resolution optical (Landsat) imagery 

Reliable, cheap and regular spatial data is the cornerstone of successful urban analysis and 

management. Remote sensing has shown that it is possible to analyse and monitor urban 

areas using medium spatial resolution Landsat imagery. Land cover mapping was achieved 

by classifying a time series of Landsat MSS, TM, ETM+ and OLI imagery of 1975, 1986, 1990, 

1999, 2002, 2008 and 2014 using supervised maximum likelihood classification. Post 

classification comparison was then applied to determine the nature of change taking place 

in the study area since the city’s inception with an emphasis on the growth of urban/built-

up land in and around the city (Chapter 2). The historical images of Landsat used to study 
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urban change in Abuja have been successful even though the images have moderate spatial 

resolution 

The Abuja Master Plan proposed different phases of development in specific spatial 

compartments, dividing the city into four phases. City construction and development was 

designed to be undertaken gradually. The phases were intended to be undertaken broadly 

in sequence, though with some overlap between them. That is, phase one should 

commence first and progress, then phase two will commence while phase one is being 

completed, and the same process to be repeated for the remaining phases. The results of 

this study have revealed that urban growth in Abuja in the 1980s honoured the Master 

Plan’s intentions reasonably faithfully (Chapter 2), but as time passed the original plan 

became less influential and development became more haphazard. This led to rapid 

increase in development of unplanned settlements and satellite towns on the city’s fringes, 

especially in the last two decades. Overall, there has been significant change in terms of 

urban land cover in the study area, from relatively vacant grassland with urban settlement 

of 1,166 ha in 1975, to 18,623 ha of built-up land in 2014. The fastest period of urban 

growth was from 1999-2014. Within this period, built-up land in Abuja has increased from 

7,184 ha to 18,623, an increase of 11,439 ha in 15 years. This rapid urbanization may be 

attributable to the socio-political situation in Nigeria, as 1999 was the year when Nigeria 

transitioned back to democracy after 16 years of military rule. This led to more people 

moving into the capital and more spending on infrastructure by the government to cope 

with the influx. 

The Abuja Master Plan commissioned in 1979 is the principal document that has guided 

urban growth and land use development in the city. However, since its publication, little 

attempt has been made to have it fully updated, through a comprehensive review of its 

shortcomings in comparison with the reality on the ground. The philosophy of the city 

design was to have a capital city that conforms and achieve three basic goals, namely; 

Imageability, Flexibility and Efficiency (IPA, 1979), yet this study has found that none of the 

goals can be confidently considered a full success because of the emergence and growth of 

unplanned settlements. The Master Plan also stated that development of the city will start 

by clearing and resettling all the original inhabitants of the city living within the area 

earmarked for developing FCC (phases 1-4) so that implementation of the master plan will 

be easy, and chances of unplanned settlements and slums eliminated. This was not the 
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case, based on the findings of this study. Settlements were observed across the entire city 

as early as 1986 when less than a quarter of the phase 1 area was developed.  

Moreover, looking critically into the pattern of urban/built-land area (with the help of 

GeoEye-1 VHR imagery analysis) in the city, a dual picture begins to appear – one of 

planned, organized and regulated at its heart, while in mostly haphazard, impoverished and 

disorganised in its fringe. Part of the problem can be blamed on the Master Plan itself, 

because it did not anticipate the high influx of people with low income. These people 

cannot afford to live inside the city but are drawn to the area in search of better 

opportunities. When they arrive, the best option they have is to stay in the villages and 

settlements close to the city. This shows that the planners (who overlook reviewing and 

addressing the shortcomings of the Master Plan) and policy makers have been 

implementing the plan without demanding for a review. Also, not much significance is given 

to lower income residents (who are mostly unskilled workers) by the Master Plan. In 

addition, this class of people are among the first residents of the city, the ones that laid the 

foundation of building the new city, and the ones that are still helping in the construction 

and development of the city today. A similar observation was made by Vale (1992), that 

made him to conclude that Abuja is a city planned without much regard to Nigeria’s poor. 

Despite the successes of using Landsat imagery to analyse and map urban land cover and 

land use, some limitations were observed. For example, the spatial and spectral resolution 

of the Landsat imagery limits the thematic information that can be derived from the 

imagery. Urban built-up land cover and other urban surface materials are spectrally similar, 

for example, bare ground and impervious surfaces can have similar spectral signatures, 

making it very challenging to successfully analyse an urban area (Zhang et al., 2015).  As a 

result, it is not possible to distinguish planned and unplanned urban areas with greater 

detail and accuracy using Landsat imagery alone without additional ancillary data. Similarly, 

the 30 m spatial resolution limits the extent to which small urban features can be detected 

accurately. Other limitations of Landsat include its poor temporal coverage, partly caused 

by the frequency of cloud cover, and the failed Landsat ETM+ Scan Line Corrector (SLC-off 

data) after May 2003.  
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5.4 Monitoring urban development using coarse resolution nighttime lights (DMSP-
OLS) imagery 

DMSP-OLS nighttime imagery as an alternative remote sensing data source provides a 

unique advantage that addresses some of the major weaknesses of Landsat imagery. 

DMSP-OLS NTL has higher temporal frequency (including the annual composites) which can 

be used to fill in the date gaps in the Landsat historical archives. It can also provide thematic 

information based on radiance intensity of city lights to highlight urban areas from non-

urban. This helps minimize the confusion of classifying spectrally similar land cover and 

land use in urban areas (Zhang et al., 2015). This capability makes the DMSP-OLS SNTL 

imagery an effective choice in analysing, characterising and mapping planned and 

unplanned urban areas in Abuja, Nigeria. 

This study successfully utilized DMSP-OLS SNTL to map urban extent and characterise 

unplanned and planned urban areas in a city of the Global South (Abuja). Most studies that 

use DMSP-OLS nighttime lights imagery focus on regional or global scales. Of the few 

studies that use the imagery at city level, most tend to focus on cities in developed nations. 

This is the first study that applies DMSP-OLS SNTL combined with Landsat derived land 

cover to map urban extent and to distinguish unplanned and planned urban areas in a city 

in Nigeria. To do this, urban land cover maps derived from Landsat TM/ETM+ were 

combined with DMSP-OLS SNTL to map planned and unplanned areas in 1999, 2002 and 

2008. The study also sampled nine satellite towns (unplanned settlements) around Abuja 

to further show the performance of the DMSP-OLS SNTL-based classification technique 

adopted. The results of the study show a relatively high level of accuracy in classifying 

planned and unplanned areas in the city (Chapter 3). The method and results of this study 

can be very valuable to city planners and policy makers that need a rapid and inexpensive 

way to map and monitor unplanned urban areas in cities of the Global South. 

This study also performed a comparative analysis to show the relationship between DMSP-

OLS stable lights brightness value with the spatial coverage of urban built-up land cover 

derived from Landsat images (Chapters 2, 3). The results showed a direct positive 

relationship between brightness levels of stable lights and the amount of built-up land 

cover per 1 km2 area (the size of a SNTL pixel). This is the first study to perform such direct 

comparison based on the best knowledge available to the author.  
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The results obtained from the nighttime lights-based classification of the DMS-OLS SNTL 

has revealed some limitations and areas that can be improved in future research, for 

example, the issue of inter-satellite calibrations that can affect comparability and 

consistency between nighttime lights captured by multiple satellites (Huang et al., 2014). 

There is also the level of accuracy of thematic information derived from the DMSP-OLS 

imagery classification and limited spatial detail due to the coarse spatial resolution of the 

sensor.  

5.5 Distinguishing planned and unplanned urban development using VHR (GeoEye-
1) imagery  

The advent of VHR imagery has triggered new interest in the field of urban remote sensing 

by opening new possibilities in studying urban areas with high spatial detail. Improved 

spatial resolution (under 5 meters) is the key advantage offered by VHR satellite imagery 

over Landsat and DMSP-OLS images. High detailed spatial resolution provides an 

opportunity to utilise newer and improved remote sensing target recognition and scene 

classification techniques like random forest, deep learning and other machine learning 

methods. Using GeoEye-1 imagery, this study investigated the potential of using machine 

learning techniques to distinguish planned and unplanned settlements in Abuja, Nigeria. 

The study successfully detected and mapped planned and unplanned settlements using a 

deep learning convolution neural network algorithm (Chapter 4). The detailed information 

provided by this study is of high significance to urban planners and policy makers. The 

results of this study have practical impact and offer a high level of accuracy that can be 

acted upon directly by planners for better city management. 

The result of this study has also shown that deep learning performs significantly better in 

detecting and mapping unplanned and planned areas than random forests using a VHR 

image with limited spectral composition. The GeoEye-1 image used has only three bands 

(RGB). The method developed and adopted for this deep learning-based research is clear, 

uncomplicated and can easily be adapted to map planned and unplanned settlements in 

other rapidly growing cities of the Global South (Chapter 4). Transferability of methods for 

mapping unplanned settlements to different cities of the Global South is a subject that is 

challenging but expedient and desirable to achieve (Mboga et al., 2017). This project has 

further revealed the capability of deep learning in the area of complex target recognition 
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and intuitive scene understanding, fields that have been highlighted over time to be 

challenging in the remote sensing community (Zhang et al., 2016).  

In addition to mapping planned and unplanned settlements using deep learning, this study 

investigated and analysed two approaches to accuracy assessment on deep learning 

classification. DL automated accuracy assessment approach and RS standard error matrix 

approaches were compared (Chapter 4). The results have shown a significant difference in 

accuracy figures between the two approaches, with the DL automated approach reporting 

appreciable increase on all individual classes and overall accuracy. This development has 

significant ramifications in the field of remote sensing where there is growing adoption of 

deep learning techniques to solve different problems. The disparity in the accuracy result 

reported in the DL automated approach is linked to the way testing reference data (for DL 

automated approach) is collected from relatively pure dataset while the testing is done on 

a mixed environment. Further research is needed to better understand reasons for such 

disparity in accuracy assessment between the two approaches. Furthermore, analysing 

VHR imagery can be challenging, as it could sometimes be noisy because of the level of 

spectral detail. The level of detail also makes VHR imagery processing and analysis to be 

slow and time consuming.  

5.6 Challenges of mapping unplanned urbanization in cities with no Master Plan 

Unplanned urbanization by its nature is difficult to identify and to subsequently map. This 

problem is more pronounced in cities that grow without any Master Plan or comprehensive 

land use plans developed over time to guide their growth. Such conditions make it difficult 

to determine what constitute an unplanned settlement over time. This research has shown 

that if a section of unplanned settlements can be identified/sampled, remote sensing can 

easily be utilized in detecting and mapping the rest of the unplanned settlements at the 

larger city scale. The methods presented in this study (Chapter 3, Chapter 4) can be easily 

adapted in other cities of the world that are struggling with detecting and monitoring of 

unplanned settlements. 

5.7 Project limitations 

The research has highlighted some general problems and limitations, with some of these 

limitations data related, and others are methods based. The first limitation is the lack of 

detailed temporal information in the Abuja Master Plan that link urban development to 
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specific targeted years in the Master Plan. This made it difficult to critique the Master Plan 

comprehensively and to compare and contrast the level of development and diversions, 

say every 5 years from 1975. There is also a difficulty in obtaining historical reference data 

corresponding to all the years targeted by the study during a field campaign in Abuja in 

2015. As a result, Oral histories obtained through interviews with old-aged residents and 

long-term urban planners were collected to create a single comprehensive land cover 

dataset for reference. There are no official land cover and land use maps in the late 1970’s 

and 1980’s. If there is, it was not possible to get our hands on them despite several 

attempts to do so by going and speaking to planning officials in the FCDA.  The study also 

faced some political issues that have to do with unreliability of government information. 

For example, there is some objection and uncertainty on the official population figures of 

Abuja (Iro, 2007). There is also a challenge posed by the issue of political corruption in 

Nigeria. This creates a discrepancy in what is on some official urban planning documents of 

Abuja, and the reality on the ground.  

Another limitation is the type of VHR imagery utilized for the study. The imagery consists 

of only RGB bands. This type of imagery is limited spectrally, but it is commonly acquired 

by urban planners in developing countries, as it is cheap and easy to use. Also, DL demands 

high levels of computational power for processing. This makes it unfeasible to generate 

wall-to-wall mapping of the entire study area. This was addressed by sub-setting eight areas 

(with mixed land cover) within the image to perform the classification (Chapter 4). The lack 

of DMSP-OLS imagery after 2010 is another major limitation faced. This limited the analysis 

undertaken using the nighttime imagery. Consequently, an unplanned and planned urban 

area map could not be conducted from DMSP-OLS imagery for 2014. Another limitation of 

using DMSP-OLS nighttime lights to derive urban extent map is the level of subjectivity 

involved in determining an optimum threshold for each city. The issue of over-estimation 

of urban extent due to over-blooming is another well-known limitation when working with 

DMSP-OLS nighttime lights (Imhoff et al. 1997; Letu et al., 2010). 

5.8 Further work 

This study has shown how remote sensing can be successfully utilized in analysing and 

monitoring urbanization in the Global South. The approaches for analysing and monitoring 

urban areas presented in this study are transferable to other cities around the world and 

can be easily utilized using other remote sensing data sources. Another area that needs 
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further attention is to have a better synergy globally in an effort to come up with an 

acceptable worldwide definition and understanding of unplanned developments. Doing 

this will ease in the establishment of general transferable methods and solutions to 

analysing, mapping and monitoring urban areas globally. 

Despite the successes achieved in this study, there is still opportunity for further 

development of this research in the future. One aspect that needs to be investigated 

further is the performance of a new sensor – Visible Infrared Imaging Radiometer Suite 

(VIIRS) – to map unplanned and planned urban areas in the Global South. This sensor 

collects nightlights data and was launched in 2011 to address some of the limitations of 

DMSP-OLS nighttime lights. VIIRS images have improved spatial resolution and the sensor 

has onboard calibration. This will likely help in reducing issues of over blooming and provide 

improved accuracy in urban extent mapping and characterising unplanned and planned 

urban areas (Chapter 3). More studies are also needed to better understand the 

performance of deep learning and random forest to map unplanned and planned 

settlements using spatially and spectrally improved VHR satellite imagery.  

This study has shown the need for the establishment of effective urban monitoring systems 

in cities of the Global South to address the challenges of fast paced urbanization like 

congestion, urban sprawl, infrastructure deficit and emergence of slums. With the advent 

of new satellite sensors like those of the Sentinel’s mission, such monitoring systems could 

now become a reality. Among the objectives of the Sentinels mission is the global 

acquisition of high-resolution multispectral images, with high temporal frequency.  This 

dataset provides an opportunity for urban planning and management organisations in 

developing nations that are financially-constrained to have access to free, high quality 

remote sensing data to develop and operate effective urban monitoring systems. 

Additionally, more studies are needed to further understand the effects of politics in the 

urban growth and management of cities of the Global South.  

5.9 Concluding remarks 

The problem of delineating urban features and the effectiveness of information on urban 

changes depends on the availability of useful data, which is more difficult to obtain in 

developing countries (Weber & Puissant, 2003). This study has provided workable data and 

information that can be used by policy makers and urban planners to monitor and address 
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the issues around rapid growth of unplanned settlements. This research has successfully 

utilized time-series satellite imagery to establish the limits of a Master Plan in controlling 

urbanization in a planned city of the Global South. The study has also demonstrated an 

approach of combining DMSP-OLS nighttime lights with Landsat derived built-up land cover 

map to successfully map unplanned and planned areas of Abuja. Finally, this study has also 

presented a simplified approach of using deep learning on VHR imagery to map unplanned 

and planned settlements at a finer scale in Abuja, Nigeria. The methods developed and 

adopted in this study will go a long way in advancing the field of remote sensing literature 

on cities of the Global South. The study can also have a direct societal impact, as the results 

presented can be acted upon immediately by the policy makers and urban planners in 

Abuja, Nigeria. 

The accuracy and effectiveness of land cover and land use studies have been influenced by 

the scarcity of knowledge about such change, especially in the Global South. This study has 

shown how remote sensing techniques can be successfully applied to detect, distinguish 

and map unplanned and planned settlement in a fast pace growing city of the Global South.  
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