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SLUM MAPPING 

A comparison of single class learning, and expert based object-oriented 

classification for mapping slum settlements in Addis Ababa city, 

Ethiopia. 

ABSTRACT 

Updated spatial information on the dynamics of slums can be helpful to measure and 

evaluate the progress of urban upgrading projects and policies. Earlier studies have shown 

that remote sensing techniques, with the help of very-high resolution imagery, can play a 

significant role in detecting slums, and providing timely spatial information. The main 

objective of this thesis is to develop a reliable object-oriented slum identification 

technique that enables the provision of timely spatial information about slum settlements 

in Addis Ababa city. It compares the one-class support vector machines algorithm with 

the expert defined classification rule set in the discrimination of slums, using GeoEye-1 

imagery. Two different approaches, called manual and automatic fine-tuning, were 

deployed to determine the best value of parameters in one-class support vector machines 

algorithm. The manual fine-tuning of the parameters is done using extensive manual trial. 

The automatic tuning is done using cross-validation grid search with the overall accuracy 

as the performance metric. Two regions of study were defined with different landscape 

compositions, providing different classification scenarios to compare the classification 

approaches. After image segmentation, twenty predictive variables were computed to 

characterize the objects in both study areas. An image analyst collected one hundred 

sample objects of a slum to be used as training for the single-class learner. In parallel, an 

image analyst has defined a hierarchical rule set to discriminate the class of interest. 

Results in both study areas indicate that the one-class support vector machine with manual 

tuning yields higher overall accuracy (97.7% in subset 1, and 92% in subset 2) and 

requiring much less application effort and computing time than the expert system. 
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1. INTRODUCTION 

The proliferation of the term slum traced back to the 1820s, used to identify the poorest 

quality housing and the most unsanitary conditions; a refuge for marginal activities 

including crime, and drug abuse (Elias, 2008). Although slums share some similarities at 

a global level, their characteristics vary between regions and countries that reflect local 

cultures and conditions (UN-Habitat, 2003). Consequently, slums are perceived and 

named in various ways, which makes the international comparison and monitoring of 

slums difficult, and the actions and policies that should be implemented to improve the 

slums complex (Calderon, 2008).  

In a general way UN-Habitat, 2003 defined slum as - a heavily populated urban area 

characterized by substandard housing and squalor. The Cities Alliance action plan also 

defines slums as - neglected parts of cities where housing and living conditions are 

appallingly poor. Slums range from high-density, squalid central city tenements to 

spontaneous squatter settlements without legal recognition or rights, sprawling at the edge 

of cities. These definitions bring together the vital characteristics of a slum, which are: 

high densities, lack of formality, low standards of housing both in structure and services, 

squalor and poor environments, as well as lack of legality (Lemma et al., 2006).  

Slums are spontaneously emerging as a dominant type of settlement especially in the cities 

of the developing world (United Nations, 2015). Since 2000, the global slum population 

grew on average by 6 million a year which means an increase of 16,500 People daily. In 

Sub-Saharan Africa, 59 percent of the population lives in slums (United Nations, 2015).  

Slum settlements result from a combination of poverty with inadequacies in the housing 

provision system, so that poor people are forced to seek affordable accommodation and 

land that become increasingly inadequate. The numbers of urban people in poverty are, to 

a large extent, outside the control of city governments, and are exacerbated by a 

combination of economic stagnation, increasing inequality and population growth, 

especially growth through in-migration (UN-Habitat, 2013). Figure 1 below portrayed the 

situation of slum formation.  
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Figure 1. Slum formation (UN-Habitat, 2003) 

1.1. Slum mapping techniques  

The rapid expansion of slum settlements, especially in the cities of developing countries, 

is a major area of concern for local, national and international organizations. The initial 

step in slum eradication activities is the access to reliable spatial and other related data 

about slums, which in turn leads to the need for a reliable data collection technique that 

can help in evaluating the performance of slum eradication policies and programs (UN-

Habitat, 2010). 

Previous studies show that a variety of techniques have been implemented to map slum 

settlements in different cities. Mapping of slum settlements using a data collected through 

census survey is one approach for slum mapping. As census data is regularly collected in 

many countries, mostly every ten years so that it provides a stimulating option for slum 

mapping. However, the long temporal gap between two census periods restricted its 

utility, considering the dynamic nature of urban areas (Kohli et al., 2012). Other slum 

mapping technique, such as participatory approach, requires the involvement of local 
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people and expertise at various levels. Thus, it is time-consuming and resource-intensive 

technique (Joshi et al., 2002).  

With the help of VHR satellite imagery, remote sensing-based slum mapping technique 

can help to improve the detection and characterization of slum settlements. It can provide 

spatially disaggregated data and regular information on slums with high temporal 

consistency, which can be facilitate rapid monitoring and effective intervention of slums 

by local authorities (Sliuzas et al., 2008, and Kohli et al., 2012).  

1.2. Problem statement 

The formulation of relevant policies and intervention programs for the improvement of 

slum neighborhoods requires the understanding of slums in a local context in one hand, 

and it demands accurate, timely and policy-relevant data on the other hand (Lemma et al., 

2006). However, many policies and planning decisions made in many developing 

countries are taken without access to adequate data, which possibly increases the risk of 

inappropriate measures being adopted (Sliuzas, 2004). 

In line with this, the identification of slum settlements in Addis Ababa city is mainly 

undertaken based on administrative definition (Political decision) of slums and sometimes 

based on socio-economic indicators. This technique provides only the number of slum 

dwellers rather than delivering maps of slum extents which would provide a much-needed 

picture of the locations, extents, and densities of slums in the city. Thus, informed decision 

making in slum intervention programs, by excluding spatial characteristics of slum 

settlements, has been hardly possible in the city. There is a lack of adequate and timely 

available spatial data, and scarcity of baseline information about slums. In addition to this, 

the context and characteristics of slum settlement at the local level (city level) have not 

been well assessed.  

Therefore, the above-stated problems call upon a search for reliable slum detecting 

procedures and techniques in the city. As stated in Sliuzas et al. (2008), remote sensing 

techniques, with the help of VHR imagery, can play a significant role in detecting slum 

settlements and providing timely spatial information. Obtaining updated spatial 

information about slum settlements also would have great importance for any decisions 
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and can be helpful to measure and evaluate the progress of slum eradication policies 

(Kohli et al., 2013). Moreover, it allows to link the urban morphology with socioeconomic 

parameters and offer essential baseline information for developing and applying slum 

upgrading methods adapted to the local context. 

1.3. Research objective 

The principal objective of this thesis is to develop a reliable object-oriented slum 

identification technique that enables the provision of timely spatial information about 

slum settlements in Addis Ababa city. Specifically, this thesis is intended to; 

• Evaluate the performance of one-class support vector machines classification for 

mapping slums.  

• Assess the performance of expert system classification to identify and classify 

slums. 

• Compare the accuracies and time consumption of one-class support vector 

machines, and expert system classification for slum mapping.  

1.4. Thesis organization 

This thesis is organized into five sections. The first section introduces the concept of slum 

and slum situations in the world. In addition, it provides a short introduction of slum 

mapping techniques followed by the statement of the problem, and the research objectives. 

Section two covers a literature review, where the theoretical and conceptual issues used 

to frame this study is discussed. Section three presents the data and methods used for the 

study. The result and discussion part of this thesis is presented in section four. Finally, 

Section five includes the main conclusions of the thesis. 
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2. LITERATURE REVIEW 

The purpose of this section is to discuss the theoretical and conceptual issues used to frame 

the study. It is organized in two parts. The first subsection deals with the approaches to 

slum mapping, followed by details in object-oriented image analysis. The second 

subsection focus on the image classification techniques, and comparison and evaluation 

of classifiers. 

2.1. Approaches for slum mapping 

Previous studies show that there are three different slum mapping approaches based on 

the type of data used for mapping the slums. These are (i) Census-based approach, (ii) 

Participatory approach, and (iii) Remote sensing-based approach. As the focus of this 

thesis is on the remote sensing-based approach for slum mapping, less attention is giving 

to the census-based and participatory approaches.  

Census-based approach 

The census-based approach for slum mapping is based on the data collected through 

census survey. Census data contains detail data on social, economic and infrastructure 

aspects of the inhabitants in a country at the level of an enumeration unit. Weeks and others 

used census data from Accra, Ghana, to create a slum index based on the UN slum 

indicators for a place to be a slum and using it to measure the concentration of slums in 

different neighborhoods of the city. According to their study, a high correlation was found 

between the slum index, the socio-economic characteristics of neighborhoods and certain 

land cover characteristics derived from very high-resolution satellite imagery (Weeks et 

al., 2007). The prominent advantage of using this approach is that census data are routinely 

collected in many countries so that it provides detail information at the household level 

and provides an interesting option for slum mapping. However, the long temporal gap 

between two census periods, especially in developing countries, restricted its utility, 

considering the rapid changes that can occur in the slum areas (Kohli et al., 2012).  

Participatory approach 

Participatory approach for slum mapping is undertaken with the cooperation of the slum 

residents in mapping the details of slum settlement at the individual or household level 
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(Joshi et al., 2002). Lemma and others implemented a participatory approach using rapid 

appraisal techniques, that integrate local knowledge with GIS and remote sensing 

techniques for the identification and spatial analysis of slums on selected three sub-cities 

of Addis Ababa city. Their approach incorporates an input from stakeholders through the 

combination of focus group discussion, field observation and visual image interpretation 

using satellite images and aerial photographs (Lemma et al., 2006). Participatory 

approaches for slum mapping can help to generate spatial and non-spatial information in 

the form of thematic GIS layers that provide additional information to socio-economic 

surveys and included in slum related policy development and planning. However, the 

detailed level of information provided by the participatory approach is time-consuming. 

This technique may be difficult to upscale to larger areas, especially in cities with 

extensive slum settlements like in Addis Ababa. (Kohli et al., 2013).  

Remote sensing-based approach 

The remote sensing-based approach for slum mapping uses image processing techniques 

to map slums from satellite imagery. With the help of remote sensing techniques, it is 

possible to provide spatially disaggregated data with high temporal consistency, which 

can facilitate rapid monitoring and effective intervention of slums by local authorities. 

Moreover, remote sensing techniques reduced enumeration resources and can 

systematically generate citywide slum maps (Kohli et al., 2013).  

Visual interpretation from very high-resolution images has been used to extract 

concentrations of slum areas (Sliuzas et al., 2008). Baud et al 2010, used very high-

resolution images to identify precise patterns within slum areas using physical variables 

such as built-up density, building size, and physical site suitability. Extensive local expert 

knowledge is needed to produce reliable results using visual interpretation methods. The 

process of visual interpretation of VHR orthophotos is not automated, but requires 

extensive expert knowledge, systematic search and additional data to ensure effective 

identification of slum settlements. This technique is time-consuming and is not feasible 

for searching over extensive areas (Ward & Peters, 2007). Furthermore, it is not 

independent way of slum mapping technique, and unable to detect the time space 

dynamics of slum settlements. 



7 
 

Jain (2007) point out that, studying the development of informal settlement through image 

classification could explain the patterns over time and space. Weeks et al (2007) used 

pixel-based image classification to classify slum neighborhoods in Accra, Ghana. 

However, Myint et al point out that the application of pixel-based classification in slum 

mapping is incapable of representing the heterogeneity of an urban environment (Myint 

et al., 2011).  

Very high-resolution airborne and satellite imagery in meter or submeter level has 

generated a new era in the information extraction of slum areas based on object-oriented 

image analysis techniques. Object-based image analysis approach can capture the 

heterogeneity of urban environment through following a hierarchy for object-

classification that includes contextual information for objects and non-physical features 

(Hofmann, 2001).  

Using very high-resolution images, object-based image analysis techniques for 

classification have demonstrated to be accurate in urban applications (Cleve et al., 2008; 

Sliuzas et al., 2008). Kuffer et al 2016, reviewed multiple techniques for slum mapping 

undertaken for 15 years (2001 - 2016) using very high-resolution imagery by focusing on 

the most promising methods with respect to extracted information level (objects or areas) 

and achieved accuracies (Table 1). 

Though, the techniques to extract slums are rather diverse (Table 1 columns), the most 

frequently used method in the 15 years (2001- 2016) was object-based image classification 

approach (34.6%). Apart from object-based image analysis, visual image interpretation 

(17.95%) and pixel-based image classification were employed (10.25%). However, the 

reliance on standard pixel-based classification methods is not that appropriate for 

analyzing a complex urban environment having high spectral diversity, very small and 

clustered objects and diverse morphological characteristics (Kuffer et al., 2016). Though 

visual interpretation method for slum mapping is labor intensive, it is still used for slum 

identification, producing reliable results using expert interpretations (Kuffer et al., 2016). 
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METHODS 

F
O

C
U

S
 

  ML OBA PBA SM Tex. VI 
Total 

[%] 

Analysis of types of slum area 1 1 0 1 1 2 6 (7.7) 

Identification of slum Areas 8 15 3 2 9 11 48 (61.5) 

Extraction of objects 0 7 0 0 1 1 9 (11.5) 

Land use/cover Mapping 2 4 5 1 3 0 15 (19.3) 

Total [%] 

11 

(14) 

27 

(34.6) 

8 

(10.25) 

4 

(5.12) 

14 

(17.95) 

14 

(17.95) 
78 (100) 

Table 1. Frequency of methods versus main focus for slum mapping using VHR imagery (2001 - 2016), Where VI is 

Visual Interpretation, Tex. is texture, SM is statistical model, PBA is pixel-based approach, OBA is object-based 

approach, ML is machine learning (Kuffer et al., 2016). 

Therefore, as this thesis is using very high-resolution (0.5 meters) GeoEye-1 satellite 

imagery for identifying slum settlements in Addis Ababa city, I found the object-based 

image analysis techniques for classification accurate and suitable to achieve the objectives 

of the research. 

2.2.  Object based image analysis 

Together with the increasing accessibility of very high-resolution satellite imagery, 

accurate identification, and extraction of ground objects using object-oriented approach 

has become increasingly important for a variety of remote sensing and GIS applications 

(Zhang & Maxwell, 2006).  

The use of object-oriented approach is motivated among others by the fact that mostly the 

expected result of image analysis (especially using very high-resolution imagery) tasks is 

the extraction of real-world objects, proper in shape and classification. This expectation 

cannot be fulfilled by traditional pixel-based approaches, because an object in high-

resolution imagery is usually composed of heterogeneous pixels with different spectral 

attributes (Giada et al., 2003). In addition to this, Pan-sharpened images is problematic 

for pixel-based classification because the pixel spectral values are artificial.  

The important information necessary to interpret an image is represented in meaningful 

image objects. In comparison to pixels, image objects carry much more useful 
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information. Thus, they can be characterized by far more properties such as form, texture, 

neighborhood or context, than pure spectral or spectral derivative information (Conchedda 

et al., 2008).  

Object-oriented image analysis uses the advantage of image segmentation which is the 

hierarchical network of image objects. An image object is a group of pixels in which each 

object represents a definite space within a scene and objects can provide information about 

this space (Definiens, 2015). The advantages of object-oriented analysis are the 

meaningful statistic and texture calculation, and the close relation between real-world 

objects with the segmented image objects. This relation improves the result of the final 

classification and cannot be fulfilled by common, pixel-based approaches (Giada et al., 

2003). 

Similarly, in the case of urban slum identification Jain (2007) found out that it is difficult 

to represent the heterogeneity of an urban environment with a pixel-based classification 

approach using only spectral values. Object-oriented image analysis has proved to be 

useful and accurate in urban classification applications (Cleve et al., 2008; Sliuzas et al., 

2008).  

Urban areas comprise a mix of land cover features, and object-oriented image analysis 

method enables identification of buildings, roads, and other anthropogenic features more 

accurately (Myint et al., 2011). It is more valuable in the case of slum settlements, which 

can have a relatively complex and undefined morphology by offering the potential to 

integrate spectral, spatial and contextual characteristics for classification (Hofmann, 

2001). In a nutshell, Cleve et al., (2008) have demonstrated that an object-based approach, 

using high-resolution satellite imagery provided 41.73% greater accuracy than pixel-

based classification for built area category.  

The Advantages of using object-based image analysis are coupled with higher levels of 

complexity in terms of deriving real-world knowledge through remote sensing. Therefore, 

it is important to understand and integrate epistemological and ontological aspects of real-

world to conceptualize the spatial characteristics of slums for object-based image analysis. 

(Blaschke et al., 2008).  
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Kohli et al, 2012, develops an ontological framework to conceptualize slums using input 

from fifty domain experts covering sixteen different countries, named as Generic slum 

ontology. This generic slum ontology comprises concepts identified at three levels that 

refer to the morphology of the built environment. These are; the environment level, the 

settlement level, and the object level. The ontology can, thus, serves as a comprehensive 

basis for image-based classification of slums, particular using object-oriented image 

analysis techniques (Kohli et al., 2012). 

Level  Indicator Interpretation element Observation  

Environment 

level 

Location Slope, Pattern 
Close to flood zone, and along 

highways 

Neighborhood 

characteristics 
Pattern, Secondary data 

Surrounding the planned areas, close 

to the site of employment opportunity 

Settlement 

level 

Shape Pattern Irregular pattern 

Density Texture 
Denser compared to planned 

Low vegetation and open spaces 

Object level 

Building 

Shape Irregular, attached buildings 

Size 
Small size of building compared to 

planned 

Material Roofs-corrugated iron sheets, tin 

Color Range-grey, brown, and dark brown 

Orientation Haphazard arrangement 

Access network 
Shape Irregular 

Type Unpaved access paths 

Table 2. Generic slum ontology (Kohli et al., 2012) 

As described in Table 2, building and road characteristics are major components of the 

ontology at the object level. At the settlement level, texture measures can be potentially 

used to represent the contrast between planned and unplanned settlements. At the 

environment level, external factors which extend beyond the site itself are important 

indicators. The observation was undertaking in slum areas of Kisumu, India. These 

characteristics may be different for other study areas but show the applicability of the 

developed framework. 
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In a nutshell, the slum ontology helps to understand and obtain slum information at 

different levels. Acquiring basic knowledge of the study site is important for developing 

and setting up rules and methods for the image analysis and classification stage. The next 

subsection will focus on the image classification techniques and comparison and 

evaluation of classifiers.  

2.3. Image classification techniques 

Remote sensing is an attractive source of thematic maps such as those depicting land cover 

as it provides a map-like representation of the Earth’s surface that is spatially continuous 

and highly consistent, as well as available at a range of spatial and temporal scales. 

Thematic mapping from remotely sensed data is typically based on an image classification 

(Foody, 2002). Image classification is the process of extracting valuable information from 

massive satellite imagery by categorizing the image pixel values or image objects into 

meaningful categories. The idea behind image classification is that different features on 

the earth's surface have a different spectral reflectance (Lillesand & Keifer, 2004).  

There are several methods and techniques for satellite image classification. The 

development of image classifiers has been subject to ongoing research since the 

introduction of remote sensing. Each image classification technique has its own strengths 

and weaknesses relative to applications to which they may be applied (Lawrence & Wright 

2001; Mather 2004). Satellite image classification methods can be broadly classified into 

two categories as; unsupervised classification, and supervised classification. With their 

own merits and demerits. 

Unsupervised classification technique uses clustering mechanisms to group satellite image 

pixels into classes. Here, the analyst decides the number of classes to generate and which 

bands to use for classification. Based on this information, the image classification 

algorithm generates the intended classes. It is often the case that multiple clusters represent 

a single land cover class. The analyst merges clusters into a single land cover class so as 

to produce satisfactory classification result. This classification technique is commonly 

used when no training sample sites exist. There are two most frequent clustering methods 

used for unsupervised classification, namely, K-means and iterative self-organizing data 
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analysis technique. These two methods rely on pixel-based statistics and doesn’t 

incorporate prior knowledge of the characteristics of the themes under study (Brown de 

Colstoun et al., 2003).  

On the other hand, supervised classification is a method in which the analyst collects a 

training sample which are the representative samples for each land cover class. In 

supervised classification, the analyst is required to be familiar with the area covered by 

the satellite image and the spectral properties of the land cover classes (Jawak et al., 2015). 

As the accuracy of the outcome of the classifier is heavily dependent on the training areas, 

which are used to train the classifier to recognize unknown areas, there must be carefully 

chosen. Insufficient chosen or incorrectly defined training areas will result in lower overall 

accuracy (Campbell, 2006; Mather, 2004). The common supervised classification 

algorithms are the minimum distance, maximum likelihood classifier, K-nearest neighbor, 

support vector machines, and spectral angle mapper (Jawak et al., 2015).  

Satellite image classification is a complex and time-consuming process, which is affected 

by a wide variety of factors. When deciding on a classification method for an application, 

a user must compare the importance of several different factors. Efficacy of classification 

methods is usually judged in the literature according to the statistical accuracies of the 

final classification. However, the demand for human expertise, the time and expense of 

preparing and running the classifier, and the degree of automation required are aspects 

which must be considered (Pal & Mather, 2003). It should also be noted that the accuracies 

of different classification methodologies are often specific to the application to which they 

are put (Liu et al., 2002). It is therefore important that the user be aware of the different 

types of classifiers available, to judge which is better suited to the application at hand.  

The selection of suitable classification algorithm is also depending on the spatial 

resolution of the used satellite imagery. In the case of high-resolution data such as 

GeoEye-1, IKONOS, and World View-2, object-oriented classifiers may outperform the 

per-pixel classifier. In the case of medium and coarse spatial resolution, sub-pixel 

classifiers have proved to be more useful than per-pixel classifiers because of the mixed 

pixels problem. In this case, the loss of spatial information makes spectral information 
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more important than spatial one. Moreover, ancillary data can be also integrated with 

spectral data for improved classification results (Prasad et al., 2015). 

Criteria Categories Characteristics Example 

Training 

Sample 

Supervised 
- Use training sets to classify pixels of unknown 

identity. 

MD 

MXL 

Unsupervised 
- Divides pixels into number of classes based on 

natural groupings. 

K-means 

ISODATA 

Assumptions 

on Data 

distribution 

Parametric 

- Based on assumption of Gaussian distribution. 

MXL - Mean vector and covariance matrix are generated 

from training samples. 

Non-

Parametric 
- No prior assumptions about data distribution. 

ANN 

SVMs 

Expert 

system 

Number of 

Outputs 

Hard (crisp) - Each pixel shows membership to single class. 

MXL 

MD 

ANN 

SVMs 

Soft (fuzzy) 

- Each pixel exhibits partial class membership. MXL 

- Produces more accurate result. 
ANN 

FCM 

Pixel 

Information 

Per-pixel 

classifier  

- Pixel by pixel classification. MXL 

- Generates signatures by using the spectra of all 

training pixels. 
ANN 

- Low accuracy because of the impact of mixed 

pixel problem. 

SVMs 

MD 

Sub-pixel 

classifiers 

- Provides membership of each pixel to each class. SMA 

- Has the capability to handle the mixed pixel 

problem. 

Fuzzy - 

classifiers 

Per-field 

- Integrates vector and raster data.   

GIS-based 

approaches 

  

  

- Suitable for fine spatial resolutions 

Object-oriented  

- Pixels are grouped into objects of different shape 

and scale (segmentation) and then classification is 

performed based on objects. 

  

e-Cognition 

software 

  

  

- Additional information such as object texture, 

shape and relations to adjacent regions can be used. 

- Suitable especially for HR imagery. 

Spatial 

Information 

Spectral - Based on pure spectral information 
MXL  

ANN 

Contextual 
- Spatial measurements related to the 

neighborhoods 

Markov 

random field 

Multiple 

classifiers 

Hybrid 

Systems 
- Combine the advantages of multiple classifiers 

Voting rules 

Evidential -

reasoning 

Multiple 

ANN 
Table 3. A taxonomy of image classification methods (Kamavisdar et al., 2013). 
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Image classification has made great progress over the past few decades in the development 

and use of advanced classification algorithms. Supervised and unsupervised 

classifications can be used as alternative approaches but are often combined to form a 

hybrid system using more than one methods. On the other hand, when using the new 

generation of images, characterized by a higher spatial and spectral resolution, it is still 

difficult to obtain satisfactory results by using supervised and unsupervised techniques 

alone. As a result, a wide variety of classification approaches are available as presented in 

Table 3. 

The taxonomy of image classification method in Table 3 is based on six different criteria’s. 

The first criteria depend on whether training samples are used or not in the image 

classification method, thus, classified as supervised and unsupervised classification 

approaches. The parametric and non-parametric classifiers are differentiated based on the 

assumption of data distribution, meaning it depends on whether parameters such as mean 

vector and covariance matrix are used or not. In Parametric classifiers, gaussian 

distribution is assumed. However, no assumption about the data is required in non-

parametric classifier (Lu & Weng, 2007). The image classification methods are also 

grouped based on the kind of pixel information used for classification. Per-pixel classifiers 

typically develop a signature by combining the spectra of all training-set pixels from a 

given feature. The resulting signature contains the contributions of all materials present in 

the training-set pixels, ignoring the mixed pixel problems. Whereas, in object-oriented 

classification, pixels are grouped into objects of different shape and scale (segmentation) 

and then classification is performed based on objects (Lu & Weng, 2007). 

2.3.1. One-class support vector machines  

Supervised classification is the most commonly used image classification technique in 

remote sensing for research application (Mountrakis & Ogole, 2011). One significant 

advantage of supervised classification is that it allows tailoring the classification process 

in order to obtain a map depicting only the classes of interest (Foody et al., 2006). Indeed, 

users are often not interested in a complete characterization of the landscape but rather on 

a subset of the classes existing in the study area. Fundamentally, the accurate 



15 
 

discrimination of some classes is more important than the discrimination of others for 

some applications (Silva et al., 2017a). 

In its beginning, the support vector machine (SVM) was developed to solve binary 

classification problems. However, the same principles can be applied to solve one-class 

problems (Schölkopf et al., 2000). This problem consists in detecting from a particular 

class, often called target class or class of interest. These problems differ greatly from the 

standard supervised classification in the sense that the training set is composed exclusively 

by data points from the target class, which is its most attractive feature in terms of focusing 

effort and resource on the class of interest (Silva et al., 2017b). On the other hand, there 

are no counterexamples to define the classification space outside the class of interest (Tax, 

2001). The one-class classification has been utilized in a variety of applications and has 

great potential in remotely sensed data processing. There are two approaches to one-class 

classification based on SVM principles, One-Class Support Vector Machines (OCSVM) 

and the Support Vector Data Description (SVDD). This thesis is focused on the use of 

OCSVM. The basic idea behind the OCSVM is to determine a function that signals 

positive if the given data point belongs to the target class and negative otherwise (Silva et 

al., 2017b).  

The development of a learning algorithm requires the use of accuracy metrics to assess 

the quality and compare the performance of alternative classifiers. Empirical evidence 

suggesting that parameter fine-tuning is often more important than the choice of algorithm 

(Carrizosa & Morales, 2013). Fine-tuning is the process of finding the parameterization 

of a classification algorithm that yields the maximum overall accuracy (Hastie et al., 

2009).  

The determination of the best values of the learning algorithm parameters is typically done 

by cross-validation trials (Friedman et al., 2001). The range of the parameters is divided 

into a grid, and the training set is broken into parts. Each part is in turn used as a testing 

set, and all others are used as training set. Then, a classifier is induced using the training 

set and tested with the testing set. The classification errors yielded with each part are then 

averaged, and the parameterization with the least classification error is selected (Deng et 

al., 2012).  
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To fine tune, an OCSVM is harder than to fine tune an SVM (Silva et al., 2017a). The 

training set of OCSVM does not contain data points outside the class of interest. Thus, it 

is not possible to assess the overall accuracy nor the specificity of the classifier in the 

cross-validation grid search process (automatic tuning). Sensitivity can be only assessed 

effectively. Using the sensitivity alone to parameterize a classification algorithm may 

result in a classifier with high sensitivity and low specificity, overestimating the extension 

of the classes of interest. To minimize the effects of this limitation, the cross-validation 

process can be carried out using the ratio between the sensitivity and the number of support 

vectors as a metric. This ratio enforces high sensibility while limiting model complexity 

which usually indicates good model generalization ability (Silva et al., 2017b). Moreover, 

it is possible to control the sensitivity value of a classification algorithm through manual 

tuning approach. 

2.3.2. Expert system classification  

More recent research has examined classification systems which use a set of expert-

informed rules in logical structures to determine information classes from the different 

features within remotely-sensed imagery (Brown de Colstoun et al., 2003). These rule-

based classifiers have two distinct advantages over more conventional methods: the 

logical, flexible and transparent manner in which image information is represented within 

a rule-set; and the modular arrangement of the rule-set, which allows for easy alterations 

or updates for classifier improvement (Cohen & Shoshany, 2002).  

Expert system satellite image classification approach is an alternative classifier to 

overcome the limitations of training data. This technique comprises a number of rules 

which uses prior expert knowledge to define image classes. In the expert system 

classification approach the classes are assigned is by a set of threshold rules of the 

“If...Then...Else” structure (Bolstad & Lillesand, 1992). By examining the rule-set, users 

can familiarize themselves with the more discriminating features for each image class. 

Figure 2 below displays an example of expert system rule-set development. The primary 

disadvantage of expert system classification is that the creation of a usable rule-set from 

expert knowledge is time-consuming. Another disadvantage of rule-based expert systems 

is it requires a high level of expertise (Liu et al., 2002). 
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Moreover, both the one-class support vector machines and expert system classification 

approaches have been enhanced by object-orientated methods. Object-orientation image 

classification involves the delineation and classification of image objects rather than 

individual pixels, which allows for more meaningful analysis of spectral and textural 

features.  

 

Figure 2. Expert system rule-set development (“If...Then...Else” structure)  
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2.4. Comparison and evaluation of classifiers 

The design and implementation of a learning algorithm require the use of accuracy metrics 

to assess the quality and compare the performance of alternative classifiers. For example, 

when fine-tuning a classification algorithm, it is often necessary to compute an accuracy 

metric to determine the parameterization that yields on average the highest accuracy value. 

Although commonly used, the overall classification accuracy (the proportion of correctly 

classified data points) may not a reliable metric when the training set is imbalanced (Silva 

et al., 2017a). This is because the majority class dominates the behavior of this metric, 

and thus it gives optimistically biased results (Xanthopoulos & Razzaghi, 2014). Indeed, 

the definition of the accuracy metric is particularly important for binary classification, 

since the performance of the classifiers can be particularly sensitive to the classes relative 

size (Shalev-Shwartz & Ben-David, 2014; Xanthopoulos & Razzaghi, 2014). In this 

condition, the results of the fine-tuning process may be unreliable not because of the 

process but rather because of the accuracy metric employed in the process (Silva et al., 

2017a). If the training data set is unbalanced and the classification accuracy is utilized, the 

outcome of the fine-tuning process will indicate that a particular parameterization is the 

one with the highest classification accuracy but may indeed biased towards the majority 

class, since that parameterization may yield a classifier that classifies very accurately the 

majority class in detriment of the minority class (Hwang et al., 2011). There are better 

alternative accuracy metrics to the classification accuracy especially when the data set is 

imbalanced, for example, sensitivity and specificity (Hastie et al., 2009). At the basis of 

this analysis is the binary confusion matrix (Table 4). 

  

Predicted 

Positive Negative 

A
ct

u
a

l 

Positive  TP FN 

Negative FP TN 
Table 4. Binary confusion matrix. 

In Table 4, TP (true positives) represents the number of actual positive classes classified 

as positive. TN (true negatives) is the number of actual negative classes correctly 

classified. FP (false positives) represents the number of actual negative classes predicted 

as positive class, and FN (false negatives) is the number of actual positive classes 
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predicted as negative class. Therefore, classification accuracy is the proportion of true 

positives and true negatives which is commonly used to metric classification performance 

in multi-class problems (Silva et al., 2017a). But in binary classification, classification 

accuracy may not be a reliable indicator because it doesn’t reveal if an error was evenly 

distributed between classes. Thus, other quality metrics can be used as an alternative, such 

as sensitivity and specificity (Xanthopoulos & Razzaghi, 2014). Sensitivity refers to the 

proportion of true positives correctly classified. whereas specificity refers to the 

proportion of true negatives correctly classified (Hastie et al., 2009). In this way, 

sensitivity indicates how good the classifier is recognizing positive classes and specificity 

indicates how good the classifier is recognizing negative classes (Xanthopoulos & 

Razzaghi, 2014). Since the output classification of this research is binary one overall 

accuracy, sensitivity and specificity are deployed as a quality matrix. The next chapter of 

this thesis is focused on data and methods where the data used, and methodology deployed 

in the study presented. 
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3. DATA AND METHODS 

This section examines the methodology used in the creation and application of the two-

different object orientated classifications techniques. It is categorized into three major 

parts. The first part provides details about the study area, data, data processing techniques, 

and selection of the study areas.  The second subsection is about object-oriented image 

analysis, where the segmentation and classification techniques used in this thesis 

presented.  The final part of this section is dedicated to classification accuracy assessment. 

3.1. Introduction 

3.1.1. Study area 

Addis Ababa, the capital city of Ethiopia, is one of the largest urban centers in sub-

Saharan Africa (AAILIC, 2013). Geographically, it is located between 8° 49' 56" and 9° 

5' 54" North latitude and between 38° 38' 17" and 38° 54' 20" East longitudes. 

 
Figure 3. Map of the study area. 
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The city is extended to 540 Km2 of land with an altitudinal zone ranging from about 2050 

to 2400 meter above sea level. The northern and western part of the city is characterized 

by high topography, whereas the southeastern and south-western part of the city is 

relatively flat, separated by a deep gorge and rivers crossing the city from north to the 

south direction. Long-term mean annual maximum and the minimum temperature of the 

city is 23 °C and 10.6 °C respectively. Long-term mean annual rainfall of the city is also 

1180 mm (AAILIC, 2013). Specifically, the study areas are located in Yeka (Subset 1) and 

Lideta (Subset 2) sub-cities representing the slum situation in the periphery and central 

part of Addis Ababa city respectively (Figure 3). 

3.1.2. Input data 

GeoEye-1 orthoimages 

The Very high-resolution (0.5m pixel size) GeoEye-1 images used in this thesis was 

acquired from Digital Globe Foundation, captured on 30 April 2015. The image dataset 

has four multispectral bands (red, green, blue, and Near-infrared) and panchromatic band. 

The images were obtained at the standard processing level, i.e., the geometric correction 

was done by the image provider, and geographically projected to the UTM zone 37N with 

WGS 84 Datum. Table 5 below presented the detail characteristics of the satellite image 

used for classification. 

Acquisition 

date 
Image size (Pixel) Spectral range (nm) 

Spatial 

resolution (m) 

Radiometric 

resolution (bits) 

30-Apr-2015 

Subset-1 1410 x 936 
Band 1: Blue 450 - 510 2 x 2 

11 

Band 2: Green 510 - 580 2 x 2 

Subset-2 2013 x 843 

Band 3: Red 655 - 690 2 x 2 

Band 4: NIR 780 - 920 2 x 2 

Panchromatic 450 - 800 0.5 x 0.5 

Table 5. GeoEye-1 satellite data characteristics. 

3.1.3. Data preprocessing 

Panchromatic sharpening 

Panchromatic sharpening or commonly known pan-sharpening is the term given to the 

fusion of a higher resolution panchromatic band with a lower-resolution multispectral 
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bands, for the purposes of increasing the spatial resolution of the multispectral bands (Du 

et al., 2007; and Rahmani et al., 2010). GeoEye-1 images with a resolution of 0.5m 

panchromatic and 2m multispectral bands were used for classification in this thesis. A 

resolution merge by principal components was performed to produce a pan-sharpened 

image of four bands (Blue, Green, Red, NIR) with a 0.5m resolution. 

3.1.4. Sub-setting and selection of the study areas 

Due to the heavy computational demands of remote-sensing operations, it is a generally 

accepted practice to undertake analyses on smaller sections of an entire image. Two 

subsets of an image were created from the central and north-east part of Addis Ababa city. 

The size of the subsets was considered to be large enough to contain adequate coverage 

of the slums and non-slums in the area, while not so large to render object segmentation 

time impracticable (Table 5).  The locations of the subsets were also purposefully chosen 

to include the different situation of slums in the city center and in the periphery area of 

Addis Ababa city. Subset-1 is part of the outer city which covers 26 hectares area 

(Appendix 1a). It comprises the non-slum (vegetations, road and open space, and non-

slum buildings), and slum buildings. Subset-2 is part of the city center and is 

approximately 37 hectares in size (Appendix 1b). Similarly, it includes the slum and non-

slum settlements. 

In the process of formulating a strategy for identifying and extracting slum settlements 

from imagery, the contextual slum settlement has to be characterized. The initial 

identification and characterization of the slum settlement in this thesis is made through 

visual interpretation integrated with personal professional experience.  In Addis Ababa 

city, buildings are highly variable in terms of size, color, and shape. By means of visual 

interpretation, using parameters such as building roof color, structure, orientation, road 

characteristics, as well as amounts and patterns of vegetation and open spaces, it was 

observed that there are many types of built-up areas. For example, the planned residential 

areas tend to have buildings that show a well-organized pattern with regular orientation 

and spacing and are often separated by planned green spaces or vegetation (Typical non-

slum settlements). Some areas have buildings with grey, whitish grey or brown roofs with 

variable green spaces between them, and with a variety of size and orientation (Typical 
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slum settlements). Figure 4 and Figure 5 displays the instances of slum settlements in 

subset 1 and subset 2 respectively.  

 
Figure 4. Typical slum settlements in subset 1. 

 

 
Figure 5. Typical slum settlements in subset 2. 



24 
 

Although, the slum settlements throughout the city varies considering the above listed 

characteristics, the selected study areas, as it is depicted in figure 4 and figure 5, are 

specifically characterized by the following properties: 

• A group of single storied, small sized dwellings in a settlement without enough 

open space and greenery. 

• Most of the roofs are constructed from corrugated iron and zinc sheets with 

variable textures. The color of the roofs occurs mostly bright grey to bright blue 

and in some parts bright red to dark brown; and  

• Irregular patterns of buildings, without any planning orientation.  

Acquiring basic knowledge of the study site is important for developing and setting up 

rules and methods for the image analysis and classification stage. The next subsection will 

focus on the consideration of the above mentioned physical characteristics of slum 

settlements in Addis Ababa city to outline the procedure of object-oriented image 

classification.  

3.2. Object-oriented image analysis  

Analysis of an image in the object-oriented approach involved classifying the image 

objects according to class descriptions organized in an appropriate knowledge base. 

Objects are defined based on the similarity of their spectral values, the contrast with 

neighboring objects, their own spatial and spectral characteristics, or a combination of 

these three properties (Giada et al., 2003).  

The analysis plan for meeting the objectives of this study is depicted as a flowchart in 

Figure 6. A detailed description of each step is provided in the following sections. The 

process of the object-oriented classification mainly involved two parts; these are image 

segmentation, and image classification. 

3.2.1. Image segmentation  

The first step in an object-oriented image analysis is image segmentation. The process of 

image segmentation divides the image into spatially continuous and homogenous regions 

called image objects (Conchedda et al., 2008). The object-based image analysis software 

used in this thesis was eCognition version 9.1.  eCognition provides a complete tool for 
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object-based image analysis with various segmentation algorithms. Considering the 

objective of this thesis both multi-resolution segmentation and spectral difference 

segmentation algorithms are deployed in the analysis. Each segmentation algorithms and 

their parameters are explained in this part. 

 
Figure 6. A chart displays the process of the thesis. 

I. Multi-Resolution Segmentation  

Multiresolution segmentation (MRS) is an optimization procedure which, for a given 

number of image objects, minimizes the average heterogeneity and maximizes their 

respective homogeneity (Definiens, 2015). The important step in multiresolution 

segmentation is to assign appropriate values to the key parameters, namely scale, shape, 

and compactness to segment objects. Here, scale parameter determines the maximally 

allowed heterogeneity of the objects. A large value of scale parameter results in a low 

number of relatively large objects, whereas a small value for scale parameter results in a 

large number of relatively small objects. The parameter shape and color balance the shape 

versus the spectral homogeneity of objects as the sum of two is equal to one (Kohli et al., 

2013). Color defines the digital value of the resulting image objects, and Shape defines 

the textural homogeneity of the resulting image objects. Each parameter can be weighted 

from 0 to 1 (Laliberte et al., 2004). 
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The MRS parameters for the study sites are assigned to achieve a realistic segmentation of 

image objects. All parameters of MRS are assigned through a trial-and-error but systematic 

experimentation. Several combinations of the parameters are tested, and one optimum set 

of parameters is selected for each study area based on the visual inspection of the resulting 

objects, as also described by Im et al., (2008) and Nobrega et al., (2006). The results of 

scale parameters ranging from 10 to 140 were sequentially tested and visually assessed. 

A scale parameter of 40 for subset 1 and 35 for subset 2 was determined to be the most 

suitable for the image segmentation in the respective study areas. A value of 50% was 

assigned to shape and color, both in subset 1 and in subset 2, to give equal weight to shape 

and spectral reflectance in the segmentation process.   

In addition to scale parameter, shape and color criteria, the contribution of the input image 

channels in segmentation process is of great importance. Different weight variations were 

also tested among the layers, with the resulting segmentations visually analyzed for 

suitability. Finally, equal weight is given to all layers. The resulting multi resolution 

segmentation parameters for subset 1 and subset 2 are summarized in Table 6. 

Area 
Scale parameter  

(No unit) 
Shape (%) Color (%) 

Image layer weight 

B G R NIR 

Subset 1 40 50 50 1 1 1 1 

Subset 2 35 50 50 1 1 1 1 

Table 6. MRS parameters for subset 1 and subset 2. 

As the results of the image segmentation strongly depend on the image data and the 

assessment of the segmentation results depends on the classification task, it is almost 

impossible to suggest well-suited segmentation parameters in general (Hofmann, 2001). 

II. Spectral Difference Segmentation 

 

The Spectral difference segmentation (SDS) algorithm merges neighboring image objects 

according to their mean image layer intensity values. Neighboring image objects are 

merged if the difference between their layer mean intensities is below the value given by 

the maximum spectral difference. This algorithm is designed to refine existing 

segmentation results, by merging spectrally similar image objects produced by previous 

segmentations (Definiens, 2015). The maximum spectral difference for the study areas is 
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assigned to improve the segmentation process and to achieve more realistic image objects. 

The same trial-and-error but systematic strategy is also implemented for assigning the SDS 

parameters in both study areas. The SDS parameters used for subset 1 and subset 2 are 

summarized in Table 7 below.  

Area Maximum spectral difference (No unit) 
Image layer weight 

B G R NIR 

Subset 1 25 1 1 1 1 

Subset 2 10 1 1 1 1 

Table 7. SDS parameters for subset 1 and subset 2. 

Figure 7 shows an example of the resulting image objects using only multiresolution 

segmentation [b] and with multiresolution segmentation and spectral difference 

segmentation together [c]. 

 

 
[a] 

 
[b] 

 
[c] 

Figure 7. Image segmentation. a) orginal image. b) MRS. c) MRS plus SDS. 

In this way, the resulting image objects are, thus, characterized not only by their spectral 

characteristics but also by their shape or texture features. The next step after image 

segmentation is image object classification, which is presented in the next subsection. 

3.2.2. Image object classification 

The object features provided in eCognition software supplies different attributes about the 

shape, spectral and textural values that are used as sources of information to define the 

parameters used to classify image objects (Sliuzas et al., 2008). This section deals with 

the two classification techniques used in this thesis. The first part explains the procedures 

used in the creation of the rule-set for the expert system classification. The second part 

details with the one class support vector machine classifications used in this thesis. 
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I. Rule-set development 

The rule set development for the expert system classification is undertaken in eCognition 

version 9.1. eCognition provides different classification techniques and methods to train 

and build up a knowledge base for image object classification. The class hierarchy in 

eCognition is the frame of the knowledge base for the analysis and classification of image 

objects. It encompasses all classes of a classification scheme grouped either in a 

hierarchical manner or based on the given values of the image object.  Within object-based 

analyses, spectral, textural, contextual and scale information can be integrated into the 

classification hierarchical rule-set. This information’s are expected to increase the quality 

of classifications (Conchedda et al., 2008). In this thesis, a rule set was developed 

independently for each of the two subset images to discriminate the slum settlements from 

the non-slums, based on twenty variables characterize each image object. These variables 

are categorized into three broad groups comprising spectral, texture, and geometry. Table 

8 below explains the parameter used to classify the land cover classes in this thesis with 

their definition. 

Parameters Definition 

Spectral 

Mean 

The mean intensity of all pixels forming an image object in the blue, 

green, red, and NIR bands. 

Ratio The amount that a given image layer contributes to the total brightness. 

Texture 

Standard 

deviation 

The standard deviation is calculated from the image layer intensity 

values of all pixel forming an image objects. 

Geometry 

Area 
The number of pixels forming an image object. If unit information is 

available, the number of pixels can be converted into a measurement. 

Rectangular 

fit 

The description of how well an image object fits into a rectangle of 

similar size and proportions. While 0 indicates no fit, 1 indicates for a 

complete fitting image object. 

NDVI 

An index developed to measure vegetation, defined as (NIR - Red) / 

(NIR + Red) 

Table 8.The definition of parameters used in the classification of subset 1 and subset 2 (Definiens, 2015). 

Since the classification in eCognition is recommended to be hierarchical, initially, the 

whole image is categorized into the following main landcover classes: [a] vegetation and 

green area, [b] Shadow [c] Road and open space, and [d] Buildings (Slum, and non-slum). 
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Thus, a membership threshold is implemented for the image objects to describe and 

classify different classes in the study areas. The vegetation and green area in both study 

area is classified by the external input of Normalized Difference Vegetation Indexes 

(NDVI). Table 9, and Table 10 represent the classes, feature objects and membership 

thresholds that are used during the extraction and classification procedure for subset 1 and 

subset 2, respectively. The decisions (thresholds) are derived from a series of tests across 

the study areas. 

Area Class Object feature Threshold 

Subset 1 

Vegetation and Green areas NDVI > 0.2 

Shadow Mean Green < 335 

Non-slum Buildings Red channel Ratio 0.175 - 0.229 

Slum Buildings 
Red channel Ratio 0.23 - 0.33 

Area  < 70 m2 

Table 9. Classes, object feature and their threshold defined to extract and classify objects in subset 1. 

The mean green value of the objects is used to classify the shadows in subset 1. In addition, 

to mean green value of objects, mean blue is also used to classify the shadow in subset 2. 

Because the dark slum buildings were also detected with the shadow area while using only 

mean green values as in subset 1.  

Area Class Object feature Threshold 

Subset 2 

Vegetation and Green areas NDVI > 0.16 

Shadow 
Mean Green < 400 

Mean Blue < 425 

Non-slum Buildings Blue channel Ratio < 0.25 

Slum Buildings 

Blue channel Ratio > 0.28 

Area < 40 m2 

Rectangular fit < 0.72 

Table 10. Classes, object feature and their threshold defined to extract and classify objects in subset 2. 

The ratio of a given band is the amount that a given image layer contributes to the total 

brightness. The ratio of the bands is used in the subsequent building roof extraction 

process based on a machine-learning decision tree. The red channel ratio and area of the 

image objects are used to detect the slum areas in subset 1. Whereas, Blue channel ratio 

is used to extract the slum buildings in subset 2. Moreover, area and rectangular fit are 

also used as a criterion to identify the slum buildings in subset 2. In general, the rule set 

definition in each subset depends on the nature of the study area such as color, size, and 

shape of the buildings.  
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II. One-class SVM  

One-class SVM is another technique of classification used in this thesis, to compare its 

performance of slum mapping with the expert system. Fine-tuning a one-class SVM is 

harder than to fine tune an SVM (Silva et al., 2017). The determination of the best values 

of the OCSVM algorithm parameters is done in two ways; manual fine-tuning, and 

automatic fine-tuning. The manual fine-tuning of the parameters is done using extensive 

manual trial in both study areas. The automatic tuning is done using cross-validation grid 

search.  

Table 11 presents the parameterization of one-class support vector machine with 

automatic fine-tuning, and one-class support vector machine with manual fine-tuning in 

subset 1 and subset 2. 

Study area Method Gamma nu 

Subset 1 
One-class SVM (automatic fine-tuning) 0.000488 0.1 

One-class SVM (manual fine-tuning) 0.08 0.05 

Subset 2 
One-class SVM (automatic fine-tuning) 0.000122 0.12 

One-class SVM (manual fine-tuning) 1.6 0.09 

Table 11. Parameterization of one-class SVM with automatic and manual fine-tuning in subset 1 and subset 2. 

The radial basis function was chosen as the kernel and it was used in all the tested 

approaches. The free-parameters gamma and nu of the radial basis function were 

determined using a ten-fold cross-validation grid-search with overall accuracy as the 

performance metric. In this way, the fine-tuning process is effectively searching for the 

parameterization with the highest overall accuracy regardless of the classes.  

3.3. Classification accuracy assessment 

In thematic mapping from remotely sensed data, the term accuracy is used typically to 

express the degree of correctness of a map or classification (Foody, 2002). A thematic 

map derived from a classification may be considered accurate if it provides an unbiased 

representation of the land cover of the region it portrays. Therefore, classification accuracy 

is typically taken to mean the degree to which the derived image classification agrees with 

reality or conforms to the truth. A classification error is, thus, some discrepancy between 

the situation depicted on the thematic map and reality (Foody, 2002). 
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The most common approach to assess the accuracy of remotely sensed data uses an error 

matrix and is referred to as confusion matrix. A confusion matrix is a square array of 

numbers set out in rows and columns, which expresses the relationship between the 

samples in the reference and the classified image (Table 4).  

Using error matrix to represent accuracy is recommended and adopted as the standard 

reporting convention. For this purpose, 1000 samples points were selected for each subset 

using a random points generator tool. The samples were then labeled into their respective 

classes and a confusion matrix was designed. In addition, one hundred sample slum image 

objects were also collected from each subset to be used as training for the single-class 

learner. Since the output classification of this research is binary one overall accuracy, 

sensitivity and specificity are deployed as a quality matrix (Xanthopoulos and Razzaghi 

2014). The next chapter of this thesis is focused on the result and discussion part, where 

the performance of each classifier to discriminate slums in Addis Ababa city is assessed. 
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4. RESULT AND DISCUSSION 

This section starts by assessing the performance of both one-class support vector machines 

and expert system classification and then comparing the performance of each alternative 

classifier in discriminating slum settlements in subset 1. Next, it details the same for subset 

2. Lastly, the third section combines the performance comparison of the classifiers in 

subset 1 and subset 2. The assessment of the quality of each classifier and performance 

comparison between the classifiers is done based on the accuracy results. Overall 

accuracy, sensitivity, and specificity values are used as a performance metrices to compare 

the classifiers. The value of overall classification accuracy shows the proportion of 

correctly classified data points. Sensitivity value refers to the proportion of correctly 

classified true positives (slums). Whereas, specificity value indicates to the proportion of 

correctly classified true negatives (non-slums). 

4.1. Results and accuracy assessment of one-class SVM and expert 

system classifier in subset 1 

Table 12 below presented the accuracy result of each classifier in subset 1. The results in 

bracket refer to the value of the standard error of each parameter which measures the 

statistical accuracy of an estimate. One-class SVM (manual tuning) classifier yield higher 

overall accuracy (97.7%) than the expert system (96.6%), and one-class SVM (automatic 

tuning) having 96 % overall accuracy. In other terms, although all of the classifiers have 

a good result of overall accuracy, one-class SVM (manual tuning) classification technique 

has 1.1 percentage point better performance than the expert system; and 1.7 percentage 

point better performance than one-class SVM (automatic tuning) to discriminate both the 

slums and non-slums in subset 1. The error matrix of all the classifiers for subset 1 is 

attached in Appendix 4. 

  

Subset One 

Expert System 

OCSVM 

(Manual Tuning) 

OCSVM 

(Automatic Tuning) 

Overall accuracy 96.6 (1.1) 97.7 (0.9) 96 (1.2) 

Sensitivity 80.2 (2.5) 82.3 (2.4) 82.4 (2.4) 

Specificity 98.3 (0.8) 99.3 (0.5) 97.4 (1) 
Table 12. Accuracy result of the classifiers for subset 1, where results in bracket refers to standard error. 
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The sensitivity results of each classifier in table 12 indicates how good each classifier is 

recognizing the positive class (slum) in subset 1. Accordingly, one-class SVM (manual 

tuning) and one-class SVM (automatic tuning) are more sensitive with 82.3% and 82.4% 

results respectively, to discriminate the slums in subset 1 than expert system (80.2%). 

Figure 8 below presented an example to show the implication of the sensitivity results of 

each classifier on the generated maps.  

 
 

  

Figure 8. The implication of sensitivity results on the generated maps. Red color in the figure refers to the buildings 

detected as a slum by the classifiers.  a) a subset of slum buildings- ground truth. b) the performance of expert system 

to discriminate the slum buildings. c) the performance of one-class SVM (manual tuning) to discriminate the slum 

buildings. d) the performance of one-class SVM (automatic tuning) to discriminate the slum buildings. 

Subset [a] in Figure 8 representing the slum buildings in the study area, used here as a 

ground truth for visual comparison with the classification result of each classifier. As it is 

clearly shown in the original image, it comprises vegetations, road, and slum buildings. 

As the comparison is about the performance of the classifiers to detect the slum buildings, 

thus, the object of analysis is only the buildings. The classification results of all the 

classifiers for subset 1 is attached in Appendix 2. 

The above figure has different implications with regards to the sensitivity result of the 

classifiers in subset 1. First, all the classifiers don’t detect the entire slums in the subset 
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image, which has a direct impact on the sensitivity result. The possible reasons for the 

misclassification of undetected slums will be discussed later. Next, the performance of 

one-class SVM with manual tuning [c] and one-class SVM with automatic tuning [d] to 

detect the slum buildings in the subset image are exactly the same. The sensitivity result 

of both techniques is also the same (Table 12). Lastly, with all its similarities, the 

performance of the expert system to discriminate the slums in the subset image is 

underperform other classifiers, because some slum buildings in the middle of the subset 

image don’t detect using this method [b]. The sensitivity result of the expert system is also 

lower than the other classifiers as it is indicated in Table 12. The high value of sensitivity 

(near to 100 percent) indicates the high performance of the classifier to detect the positive 

class, and low value of sensitivity indicates the low performance of a classifier to detect 

the positive class.  In general, this example represents the generated maps using different 

classifiers, and a number of similar occurrences were observed in different part of the 

study area. 

The specificity result presented in Table 12 shows the proportion of truly classified 

negative class in subset 1. It compares the performance of the classifier based on their 

ability to recognize the non-slums in the study area. Although the specificity results of all 

the classifiers are good, one-class SVM with manual tuning (99.3%) has outperformed the 

expert system (98.3%) and one-class SVM with automatic tuning (97.4%). The high value 

of specificity indicates the high performance of the classifier to detect the negative class, 

and low value of sensitivity indicates the low performance of a classifier to detect the 

negative class. 

In principle, a classifier tends to be effective if the sensitivity and specificity results of the 

classification are similar. Because it shows the performance of the classifier to treat the 

positive and negative classes equally, which means there is no overpredicting or 

underpredicting of a specific class by neglecting another class in the classification. 

However, the specificity values of all the three classifiers in subset 1 is greater than the 

sensitivity values. This result indicated that; first, the classifiers were more effective in 

detecting the negative class (non-slums) than detecting the positive class (slums). Second, 

all the classifiers in subset 1 are overpredicted the non-slums, by neglecting the slums. An 
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example from the generated map is presented in Figure 9, where the positive class is 

underpredicted, and as a result, slums being classified as non-slums in the map.  

  

Figure 9. An example shows underprediction of positive class in subset 1. a) a subset of slum buildings- ground truth. 

b) classification result shows overprediction of non-slum 

Subset [a] in Figure 9 shows the slum buildings that should be detected as a slum. The red 

color above the buildings in the subset [b] refers to the buildings detected as a slum by the 

classifiers. However, not all the buildings are hatched by the red color means not detected 

as a slum. This shows that there are slums that are not being classified as a slum, which 

indicated the overprediction of negative class in subset 1.  

There are a variety of reasons for the misclassification of the positive and negative classes 

in subset 1. The primary factor affecting classification accuracy in the study area is the 

existence of non-slum buildings being mapped as a slum due to geometrical and spectral 

homogeneity with the buildings in the slum areas. By geometrically I mean, an occurrence 

is observed in the study area where under-construction buildings are classified as slums 

because of geometric homogeneity with the non-slum buildings, which is the irregular 

shape (Figure 10). 

  

Figure 10. Example of misclassified class in subset 1(a). [a] under construction site in the study area [b] example of 

under construction building classified as slums due to the geometric similarity with slum buildings. 
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Conversely, certain sections of slum building are also misclassified as non-slums due to 

spectral similarity with the non-slum buildings. In most cases, the roof color of the non-

slum buildings in subset 1 is blue, and a few buildings in the slum area of subset 1 have 

also blue roof color. Thus, the spectral similarity of these slum buildings becomes the 

reason for misclassification, and they mapped as a non-slum. Figure 11 below shows the 

example of those slum buildings classified as non-slum.  

  

Figure 11. Example of misclassified class in subset 1(b). [a] slum buildings- ground truth [b] example of slum building 

classified as non-slums due to the spectral similarity with non-slum buildings. 

In a nutshell, the comparison of the performance of each classifier in subset 1 shows the 

following facts. First, the expert system underperforms to achieve a better result of overall 

accuracy, sensitivity, and specificity than the other classifiers. Second, the one-class SVM 

with manual tuning outperforms the other classifiers in the values of overall accuracy and 

specificity. Whereas the sensitivity value is similar with one-class SVM with automatic 

tuning (only 0.1 percentage point difference). Third, the one-class SVM with automatic 

tuning yields better sensitivity value than other techniques. However, the value of overall 

accuracy and specificity using this classifier is lower than the expert system and one-class 

SVM (manual tuning). Therefore, this study concludes that the one-class SVM (manual 

tuning) classifier is the best classification approach for slum mapping in subset 1 with 

97.7% overall accuracy, 82.3% sensitivity, and 99.3% specificity values. 
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4.2. Results and accuracy assessment of one-class SVM and expert 

system classifier in subset 2 
 

Table 13 below presented the accuracy result of each classifier in subset 2. The results in 

bracket refer to the value of the standard error of each parameter which measures the 

statistical accuracy of an estimate. One-class SVM (manual tuning) classifier yield higher 

overall accuracy (92%) than the expert system (86.5%), and one-class SVM (automatic 

tuning) with 86.5 % overall accuracy. In other words, one-class SVM (manual tuning) 

classification technique has 5.5 percentage point better performance than the expert 

system, and one-class SVM (automatic tuning) to discriminate both the slums and non-

slums in subset 2. The error matrix of all the classifiers for subset 2 is attached in Appendix 

5. 

  

Subset Two 

Expert System 

OCSVM 

(Manual Tuning) 

OCSVM 

(Automatic Tuning) 

Overall accuracy 86.5 (2.1) 92 (1.7) 86.5 (2.1) 

Sensitivity 68.6 (2.9) 75.4 (2.7) 83.4 (2.3) 

Specificity 90.7 (1.8) 95.4 (1.3) 87.2 (2.1) 

Table 13. Accuracy result of the classifiers for subset 2, where results in bracket refers to standard error. 

The sensitivity result presented in Table 13 shows the proportion of truly classified 

positive class in subset 2. The sensitivity value used to compare the performance of the 

classifier based on the recognition of the positive class (slums) in the study area. As a 

result, one-class SVM with automatic tuning (83.4%) has outperformed the expert system 

(68.6%) and one-class SVM with automatic tuning (75.4%). The highest sensitivity value 

of one-class SVM with automatic tuning can be related to the problem of estimating 

parameter using cross-validation grid search. The main problem of estimating the best 

parameter using cross-validation grid search (automatic tuning) is that we may end up 

with high sensitivity value, meaning the classifier overpredicts the positive class (slums 

in this case) and neglecting the negative class (non-slums in this case). Figure 12 displays 

the impact of cross-validation grid search on the mapped object in subset 2.  

Subset [a] in Figure 12 below representing the non-slum buildings in subset 2. It is used 

as a ground truth for visual comparison with the classification result of each classifier. 

The classification results of all the classifiers for subset 2 is attached in Appendix 3. 
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Figure 12. The implication of sensitivity results and cross-validation grid search (automatic tuning) on the generated 

maps. Red color in the figure refers to the buildings detected as a slum by the classifiers.  [a] a subset of slum buildings- 

ground truth. [b] the performance of expert system to discriminate the slum buildings. [c] the performance of one-class 

SVM (manual tuning) to discriminate the slum buildings. [d] the performance of one-class SVM (automatic tuning) to 

discriminate the slum buildings. 

The red color in the subset [b], [c], and [d] of the image shows the non-slum buildings but 

classified as slums using the expert system, one-class SVM (manual tuning), and one-

class SVM (automatic tuning) classifiers respectively. Figure 12 has two different 

implications with regards to the sensitivity result of the classifiers in subset 2. First, the 

expert system classifier [b], and one-class SVM with manual tuning [c] have similar 

results as it is shown in the figure. Second, the result of one-class SVM with automatic 

tuning [d] shows that additional buildings are detected as non-slums than the buildings 

detected using the remaining classifiers. This implies that the positive class (slums) is 

overestimated using one-class SVM with automatic tuning in subset 2. This result proves 

the main problem of estimating the best parameter using cross-validation grid search 

(automatic tuning), which is the probability of getting high sensitivity result expressing 

by overpredicting of positive class (slums in this case).  
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The specificity results of the classifiers in table 13 indicate how good each classifier is 

recognizing the negative class (non-slums) in subset 2. Accordingly, one-class SVM 

(manual tuning) was effective to discriminate the slums in subset 2 with the sensitivity 

value of 95.4% than expert system (90.7%) and one-class SVM with automatic tuning 

(87.1%). The specificity values of all the three classifiers in subset 2 are greater than the 

sensitivity values. This result indicated that the classifiers were more effective in detecting 

the negative class than detecting the positive class. In addition to this, it indicated that all 

the classifiers in subset 2 are overpredicted the non-slums, by neglecting the slums.  

The spectral and geometrical similarity observed in some sections of slum and non-slum 

buildings in subset 2 are the primary factors for misclassification and affecting the 

classification accuracy. An occurrence is also observed in subset 2 where under-

construction buildings are classified under the category of slums because of geometric 

homogeneity with the non-slum buildings, which is an irregular shape.  Figure 13 depicts 

one instance of the misclassified class in subset 2. 

  

Figure 13. Example of misclassified class in subset 2. [a] under construction site in the study area [b] example of under 

construction building classified as slums due to the geometric similarity with slum buildings. 

In general, the performance comparison of each classifier in subset 2 shows the following 

facts. First, the expert system underperforms to achieve the better result of overall 

accuracy, sensitivity, and specificity than the other classifiers. Second, the one-class SVM 

with manual tuning outperforms the other classifiers in the values of overall accuracy and 

specificity. Third, the one-class SVM with automatic tuning yields better sensitivity value 

than other techniques. However, the value of overall accuracy and specificity using this 

classifier is lower than the expert system and one-class SVM (manual tuning). Therefore, 

this study concludes that the one-class SVM (manual tuning) classifier is the best 
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classification approach for slum mapping in subset 2 with 92 % overall accuracy, 75.4% 

sensitivity, and 95.4% specificity values. 

4.3. Comparison of classifiers 

The comparison of the classifiers is based on the consideration of the overall accuracy, 

sensitivity and specificity results of each classifier in each subset. Moreover, the time 

consumption of each classifier in this study is also considered to evaluate the pros and 

cons of the classifiers. The comparison of the classifier is done in two ways. First, the 

performance of each classifier in both subsets is presented, followed by the possible 

justifications for the difference accuracy results. Second, the performance of each 

classifier will be compared considering the time consumption and accuracy results.  

  

Subset 1 Subset 2 

Overall 

accuracy 
Sensitivity Specificity 

Overall 

accuracy 
Sensitivity Specificity 

Expert System 96.6 80.2 98.3 86.5 68.6 90.7 

OCSVM 

(Manual tuning) 
97.7 82.3 99.3 92 75.4 95.4 

OCSVM 

(Automatic tuning) 
96 82.4 97.4 86.5 83.4 87.2 

Table 14. Comparison of classifiers. 

The expert system classifier has a better performance to discriminate the slum and non-

slum buildings in subset 1 than in subset 2. Table 14 above shows better overall accuracy, 

sensitivity, and specificity results of the expert system in subset 1. Similarly, as it 

presented in Table 14 both one-class SVM with manual tuning and one-class SVM with 

automatic tuning has a better performance to discriminate the slums and non-slums in 

subset 1 than in subset 2. 

The primary reason for the better performance of all the classifiers in subset 1 than in 

subset 2 depends on the homogeneity of the buildings. The nature of both the slum and 

non-slum buildings in the periphery area of Addis Ababa city (represented by subset 1) 

have certain similarity than the buildings in the city center (represented by subset 2). The 

construction material of the buildings and the color of the roofs are quite similar, having 

a similar spectral signature, and textural characteristics. Therefore, the similarity of the 

buildings makes the rule set definition relatively easy in the expert system classification 

and helps to detect the slums effectively using all techniques in subset 1.  Figure 14 below 
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depicts the similarity (spectral, geometric and textural) of slum and non-slum buildings to 

each other in subset 1.  

  

Figure 14. Homogeneity of buildings in subset 1. [a] example of slum buildings in subset 1. [b] example of non-slum 

buildings in subset 1. 

The subset image [a] of Figure 14 shows the slum buildings in subset 1 and their similarity 

in the roof color of the buildings (spectral similarity). However, the pattern, size, and 

shape of the buildings are different, and irregularly placed. These are among the 

characteristics of slum settlements. The subset image [b] of Figure 14, on the other hand, 

shows the non-slum buildings in subset 1. Unlike the slum buildings, the pattern, 

orientation, size and shape of the buildings are quite similar. Consequently, this clear 

difference between the slum and non-slum buildings in subset 1 is the reason for the 

effective performance of all the classifiers.  

The above-discussed characteristics of buildings are not apparent in the inner-city slum 

settlement of Addis Ababa city. Figure 15 below shows the heterogeneity of slum and 

non-slum buildings to each other in subset 2.  

  

Figure 15. Heterogeneity of buildings in subset 2. [a] example of slum buildings in subset 2. [b] example of non-slum 

buildings in subset 2. 
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As it is displayed in Figure 15, in some part of the inner city (subset 2) the slum and non-

slum buildings are mixed and difficult to discriminate especially using the expert system 

classification. In order to mitigate this problem, additional parameters are used for subset 

2 to discriminate the slum area from the non-slum using the expert system (Table 10). 

Time consumption is another parameter used in this thesis to compare the performance of 

the classifiers. The time consumption of a classification is directly affected by the amount 

of input required from a user to obtain a classification result, and to the degree to which 

the classification process can be automated. Table 15 presents the time consumption 

(hours) of each classifier in both study areas. The number of hours in the expert system is 

referred to the time I have spent to develop the rule sets for each subset. Accordingly, I 

spent 4 hours less in subset 1 than in subset 2 due to the Spectral and texture homogeneity 

of the slums and non-slums to each other in the study area. Although the expert system 

doesn’t require the collection of training samples, the rule-set development was time-

consuming task than the collection of training data for one area.   

Area 

Required time in hours 

Expert System 
OCSVM 

(Manual Tuning) 

OCSVM 

(Automatic Tuning) 

Subset 1 16 5 2 

Subset 2 20 5 2 

Table 15. Comparison of classifiers (time consumption). 

Conversely, one-class support vector machines (both manual and automatic tuning) 

requires the collection of training sets from the class of interest. Consequently, I spent two 

hours in each subset to collect the training samples. The only difference between one-class 

support vector machines with manual tuning, one-class support vector machines with 

automatic tuning is that the one-class support vector machines with manual tuning require 

for the finding the parameterization of a classification algorithm that yields the maximum 

classification accuracy manually though a couple of trails. Therefore, I spend 

approximately three hours in each subset to fine tune the parameters manually. The 

advantage of using one-class support vector machines with automatic tuning is that the 

parameterization is undertaking automatically using cross-validation grid search, it only 

requires the collection of the training data.  
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In conclusion, the expert system is the most time-consuming technique in comparison to 

other classifiers. Whereas, one-class support vector machine (automatic tuning) is the 

most time-saving classifier, where one-class support vector machine (manual tuning) 

placed in the middle of other classifiers used in this thesis. 

Therefore, considering the results from section 4.1 and 4.2, expert system underperforms 

both classifiers, and here it is the most time-consuming technique. Moreover, it requires 

expert knowledge and thorough understanding of the area under study. From this result, it 

is possible to conclude that expert system classifier is not the best classification technique 

for slum mapping in Addis Ababa city. Although one-class SVM (automatic tuning) is the 

time-saving classifier, its performance accuracy underperforms one-class SVM (manual 

tuning) classifier in almost all the accuracy results (Table 14). The one-class SVM 

(manual tuning) classifier is the tradeoff method between the two other classifiers with 

much better accuracy results in sensitivity, specificity, and overall accuracy, and with 

reasonable time consumption. Therefore, this study concludes that the one-class SVM 

with manual tuning classifier is the better classification approach for slum mapping in 

Addis Ababa city. 
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5. CONCLUSION 

The objective of this thesis is to develop a reliable object-oriented slum identification 

technique that enables the provision of timely spatial information about slum settlements 

in Addis Ababa city. It compares the one-class support vector machines algorithm with 

the expert defined classification rule set in the discrimination of slums. The experiment 

was undertaken in two different areas of Addis Ababa city representing two different 

situations of the slum settlement in the central and periphery areas. The analysis was based 

on GeoEye-1 images with blue, green, red, and panchromatic bands, acquired from Digital 

Globe Foundation. Images were further pre-processed, applying panchromatic sharpening 

for the purposes of increasing the spatial resolution of the multispectral bands. 

The determination of the best values of the parameters in the one-class support vector 

machine algorithm is done in two ways; manual fine-tuning, and automatic fine-tuning. 

The expert system classification was undertaken using decision tree in eCognition version 

9.1.  

The finding of this study shows that the performance of one-class SVM classifier (manual 

tuning) for slum mapping is better than one-class SVM classifier (automatic tuning) and 

expert system, with 97.7% overall accuracy, 83.2% sensitivity, 99.3% specificity in subset 

1; and 92% overall accuracy, 75.4% sensitivity, 95.4% specificity in subset 2. Therefore, 

this study concludes that the one-class SVM with manual tuning classifier is the better 

classification approach for slum mapping in Addis Ababa city, and requiring much less 

application effort and computing time than the expert system.  

As a future research direction, it is recommended to apply these techniques in other areas 

of the city to assess the transferability of the techniques, as this was only tested in the slum 

settlements located in the study areas. 
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APPENDICES  

Appendix 1: Image of the study areas 

[A] Subset 1 

 
 

[B] Subset 2 
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Appendix 2: Classification result of the classifiers for subset 1 

 

[A] Expert system 

 
 

[B] OCSVM [Manual tuning] 
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[C] OCSVM [Automatic tuning] 

 

Appendix 3: Classification result of the classifiers for subset 2 

 

[A] Expert system 
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[B] OCSVM [Manual tuning] 

 

 

 

[C] OCSVM [Automatic tuning] 
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Appendix 4: Confusion matrix of the classifiers for subset 1 

 

[A] Expert system 

  

Predicted 

Total 

Producer’s 

Accuracy Non-slum Slum 

A
ct

u
a

l Non-slum 889 15 904 98.3 

Slum 19 77 96 80.2 

Total 908 92 1000 

  User's Accuracy 97.9 83.7   

 

[B] OCSVM [Manual tuning] 

  

Predicted 

Total 

Producer’s 

Accuracy Non-slum Slum 

A
ct

u
a

l Non-slum 898 6 904 99.3 

Slum 17 79 96 82.3 

Total 915 85 1000 

  User's Accuracy 98.1 92.9   

 

[C] OCSVM [Automatic tuning] 

  

Predicted 

Total 

Producer’s 

Accuracy Non-slum Slum 

A
ct

u
a

l Non-slum 880 23 903 97.4 

Slum 17 80 97 82.4 

Total 897 103 1000 

  User's Accuracy 98.1 77.7   
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Appendix 5: Confusion matrix of the classifiers for subset 2 

 

[A] Expert system 

  

Predicted 

Total 

Producer’s 

Accuracy Non-slum Slum 

A
ct

u
a

l Non-slum 745 76 821 90.7 

Slum 55 120 175 68.6 

Total 800 196 1000 

  User's Accuracy 93.1 61.2   

 

[B] OCSVM [Manual tuning] 

  

Predicted 

Total 

Producer’s 

Accuracy Non-slum Slum 

A
ct

u
a

l Non-slum 787 38 825 95.4 

Slum 43 132 175 75.4 

Total 830 170 1000 

  User's Accuracy 94.8 77.6   

 

[C] OCSVM [Automatic tuning] 

  

Predicted 

Total 

Producer’s 

Accuracy Non-slum Slum 

A
ct

u
a

l Non-slum 719 106 825 87.2 

Slum 29 146 175 83.4 

Total 748 252 1000 

  User's Accuracy 96.1 57.9   
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