8 research outputs found

    Active SLAM for autonomous underwater exploration

    Get PDF
    Exploration of a complex underwater environment without an a priori map is beyond the state of the art for autonomous underwater vehicles (AUVs). Despite several efforts regarding simultaneous localization and mapping (SLAM) and view planning, there is no exploration framework, tailored to underwater vehicles, that faces exploration combining mapping, active localization, and view planning in a unified way. We propose an exploration framework, based on an active SLAM strategy, that combines three main elements: a view planner, an iterative closest point algorithm (ICP)-based pose-graph SLAM algorithm, and an action selection mechanism that makes use of the joint map and state entropy reduction. To demonstrate the benefits of the active SLAM strategy, several tests were conducted with the Girona 500 AUV, both in simulation and in the real world. The article shows how the proposed framework makes it possible to plan exploratory trajectories that keep the vehicle’s uncertainty bounded; thus, creating more consistent maps.Peer ReviewedPostprint (published version

    Underwater inspection using sonar-based volumetric submaps

    Get PDF
    We propose a submap-based technique for mapping of underwater structures with complex geometries. Our approach relies on the use of probabilistic volumetric techniques to create submaps from multibeam sonar scans, as these offer increased outlier robustness. Special attention is paid to the problem of denoising/enhancing sonar data. Pairwise submap alignment constraints are used in a factor graph framework to correct for navigation drift and improve map accuracy. We provide experimental results obtained from the inspection of the running gear and bulbous bow of a 600-foot, Wright-class supply ship.United States. Office of Naval Research (N00014-12-1-0093)United States. Office of Naval Research (N00014-14-1-0373

    underwater SLAM: Challenges, state of the art, algorithms and a new biologically-inspired approach

    Get PDF
    Abstract-The unstructured scenario, the extraction of significant features, the imprecision of sensors along with the impossibility of using GPS signals are some of the challenges encountered in underwater environments. Given this adverse context, the Simultaneous Localization and Mapping techniques (SLAM) attempt to localize the robot in an efficient way in an unknown underwater environment while, at the same time, generate a representative model of the environment. In this paper, we focus on key topics related to SLAM applications in underwater environments. Moreover, a review of major studies in the literature and proposed solutions for addressing the problem are presented. Given the limitations of probabilistic approaches, a new alternative based on a bio-inspired model is highlighted

    Mapping 3D Underwater Environments with Smoothed Submaps

    No full text
    This paper presents a technique for improved mapping of complex underwater environments. Autonomous underwater vehicles (AUVs) are becoming valuable tools for inspection of underwater infrastructure, and can create 3D maps of their environment using high-frequency profiling sonar. However, the quality of these maps is limited by the drift in the vehicle’s navigation system. We have developed a technique for simultaneous localization and mapping (SLAM) by aligning point clouds gathered over a short time scale using the iterative closest point (ICP) algorithm. To improve alignment, we have developed a system for smoothing these “submaps” and removing outliers. We integrate the constraints from submap alignment into a 6-DOF pose graph, which is optimized to estimate the full vehicle trajectory over the duration of the inspection task. We present real-world results using the Bluefin Hovering AUV, as well as analysis of a synthetic data set. Keywords: Point Cloud, Iterative Close Point, Dead Reckoning, Iterative Close Point, Vehicle TrajectoryUnited States. Office of Naval Research (Grant N00014-12-1-0093)United States. Office of Naval Research (Grant N00014-12-10020)United States. Office of Naval Research (Grant N00014-10-1-0936)United States. Office of Naval Research (Grant N00014-13-1-0588)United States. Office of Naval Research (Grant N00014-11-1-0688)National Science Foundation (U.S.). Graduate Research Fellowship ProgramNational Science Foundation (U.S.). (Award IIS-1318392

    Mapping 3D Underwater Environments with Smoothed Submaps

    No full text
    Abstract This paper presents a technique for improved mapping of complex un-derwater environments. Autonomous underwater vehicles (AUVs) are becoming valuable tools for inspection of underwater infrastructure, and can create 3D maps of their environment using high-frequency profiling sonar. However, the quality of these maps is limited by the drift in the vehicle’s navigation system. We have devel-oped a technique for simultaneous localization and mapping (SLAM) by aligning point clouds gathered over a short time scale using the iterative closest point (ICP) algorithm. To improve alignment, we have developed a system for smoothing these “submaps ” and removing outliers. We integrate the constraints from submap align-ment into a 6-DOF pose graph, which is optimized to estimate the full vehicle tra-jectory over the duration of the inspection task. We present real-world results using the Bluefin Hovering AUV, as well as analysis of a synthetic data set.

    Dense, sonar-based reconstruction of underwater scenes

    Get PDF
    Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Mechanical Engineering at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution September 2019.Three-dimensional maps of underwater scenes are critical to—or the desired end product of—many applications, spanning a spectrum of spatial scales. Examples range from inspection of subsea infrastructure to hydrographic surveys of coastlines. Depending on the end use, maps will have different accuracy requirements. The accuracy of a mapping platform depends mainly on the individual accuracies of (i) its pose estimate in some global frame, (ii) the estimates of offsets between mapping sensors and platform, and (iii) the accuracy of the mapping sensor measurements. Typically, surface-based surveying platforms will employ highly accurate positioning sensors—e.g. a combination of differential global navigation satellite system (GNSS) receiver with an accurate attitude and heading reference system—to instrument the pose of a mapping sensor such as a multibeam sonar. For underwater platforms, the rapid attenuation of electromagnetic signals in water precludes the use of GNSS receivers at any meaningful depth. Acoustic positioning systems, the underwater analogues to GNSS, are limited to small survey areas and free of obstacles that may result in undesirable acoustic effects such as multi-path propagation and reverberation. Save for a few exceptions, the accuracy and update rate of these systems is significantly lower than that of differential GNSS. This performance reduction shifts the accuracy burden to inertial navigation systems (INS), often aided by Doppler velocity logs. Still, the pose estimates of an aided INS will incur in unbounded drift growth over time, often necessitating the use of techniques such as simultaneous localization and mapping (SLAM) to leverage local features to bound the uncertainty in the position estimate. The contributions presented in this dissertation aim at improving the accuracy of maps of underwater scenes produced from multibeam sonar data. First, we propose robust methods to process and segment sonar data to obtain accurate range measurements in the presence of noise, sensor artifacts, and outliers. Second, we propose a volumetric, submap-based SLAM technique that can successfully leverage map information to correct for drift in the mapping platform’s pose estimate. Third, and informed by the previous two contributions, we propose a dense approach to the sonar-based reconstruction problem, in which the pose estimation, sonar segmentation and model optimization problems are tackled simultaneously under the unified framework of factor graphs. This stands in contrast with the traditional approach where the sensor processing and segmentation, pose estimation, and model reconstruction problems are solved independently. Finally, we provide experimental results obtained over several deployments of a commercial inspection platform that validate the proposed techniques.This work was generously supported by the Office of Naval Research1, the MIT-Portugal Program, and the Schlumberger Technology Corporation

    Umgebungskartenschätzung aus Sidescan-Sonardaten für ein autonomes Unterwasserfahrzeug

    Get PDF
    Für die Schätzung der Höhenkarten aus Sidescan-Sonardaten liefert die Arbeit mehrere Beiträge: Ein neues Schätzverfahren, das Sonarmessungen aus vorberechneten Sonarantworten von Basiselementen, sog. Kerneln, zusammensetzt und so zu einer Höhenschätzung gelangt. Des Weiteren ein dreidimensionales Verfahren, das auf Markov Random Fields basiert und eine Sidescan-Sonarsimulationsumgebung für beliebige dreidimensionale Szenen, die auch verschiedene Sonaraufnahmemodi und Terraingeneratoren bietet
    corecore