23 research outputs found

    DPM: A novel distributed large-scale social graph processing framework for link prediction algorithms

    Get PDF
    Large-scale graphs have become ubiquitous in social media. Computer-based recommendations in these huge graphs pose challenges in terms of algorithm design and resource usage efficiency when processing recommendations in distributed computing environments. Moreover, recommendation algorithms for graphs, particularly link prediction algorithms, have different requirements depending of the way the underlying graph is traversed. Path-based algorithms usually perform traversals in different directions to build a large ranking of vertices to recommend, whereas random walk-based algorithms build an initial subgraph and perform several iterations on those vertices to compute the final ranking. In this work, we propose a distributed graph processing framework called Distributed Partitioned Merge (DPM), which supports both types of algorithms and we compare its performance and resource usage w.r.t. two relevant frameworks, namely Fork-Join and Pregel. In our experiments, we show that in most tests DPM outperforms both Pregel and Fork-Join in terms of recommendation time, with a minor penalization in network usage in some scenarios.Fil: Corbellini, Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; ArgentinaFil: Godoy, Daniela Lis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; ArgentinaFil: Mateos Diaz, Cristian Maximiliano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; ArgentinaFil: Schiaffino, Silvia Noemi. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; ArgentinaFil: Zunino Suarez, Alejandro Octavio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentin

    Exact Single-Source SimRank Computation on Large Graphs

    Full text link
    SimRank is a popular measurement for evaluating the node-to-node similarities based on the graph topology. In recent years, single-source and top-kk SimRank queries have received increasing attention due to their applications in web mining, social network analysis, and spam detection. However, a fundamental obstacle in studying SimRank has been the lack of ground truths. The only exact algorithm, Power Method, is computationally infeasible on graphs with more than 10610^6 nodes. Consequently, no existing work has evaluated the actual trade-offs between query time and accuracy on large real-world graphs. In this paper, we present ExactSim, the first algorithm that computes the exact single-source and top-kk SimRank results on large graphs. With high probability, this algorithm produces ground truths with a rigorous theoretical guarantee. We conduct extensive experiments on real-world datasets to demonstrate the efficiency of ExactSim. The results show that ExactSim provides the ground truth for any single-source SimRank query with a precision up to 7 decimal places within a reasonable query time.Comment: ACM SIGMOD 202

    Massively Parallel Single-Source SimRanks in o(logn)o(\log n) Rounds

    Full text link
    SimRank is one of the most fundamental measures that evaluate the structural similarity between two nodes in a graph and has been applied in a plethora of data management tasks. These tasks often involve single-source SimRank computation that evaluates the SimRank values between a source node ss and all other nodes. Due to its high computation complexity, single-source SimRank computation for large graphs is notoriously challenging, and hence recent studies resort to distributed processing. To our surprise, although SimRank has been widely adopted for two decades, theoretical aspects of distributed SimRanks with provable results have rarely been studied. In this paper, we conduct a theoretical study on single-source SimRank computation in the Massive Parallel Computation (MPC) model, which is the standard theoretical framework modeling distributed systems such as MapReduce, Hadoop, or Spark. Existing distributed SimRank algorithms enforce either Ω(logn)\Omega(\log n) communication round complexity or Ω(n)\Omega(n) machine space for a graph of nn nodes. We overcome this barrier. Particularly, given a graph of nn nodes, for any query node vv and constant error ϵ>3n\epsilon>\frac{3}{n}, we show that using O(log2logn)O(\log^2 \log n) rounds of communication among machines is almost enough to compute single-source SimRank values with at most ϵ\epsilon absolute errors, while each machine only needs a space sub-linear to nn. To the best of our knowledge, this is the first single-source SimRank algorithm in MPC that can overcome the Θ(logn)\Theta(\log n) round complexity barrier with provable result accuracy

    Efficient and Effective Methodologies for Exploring and Prediction Movement Patterns in Large Networks

    Get PDF
    In the era of Big Data the prevalence of networks of all kinds has grown dramatically, and analysing (mining) such networks to support decision-making processes has become an extremely important subject for research, typically with a view to some social and/or economic gain. This thesis describes research work within the theme of Movement Pattern Mining (MPM) as applied to large network data. MPM is a type of frequent pattern mining that provides observation into how information is exchanged between objects in large networks. In the context of the work described in this thesis, the focus is on how the concept of Movement Patterns (MPs) can be extracted from large networks efficiently and effectively, and how such movement patterns can best be utilised so as to predict future movement. The work describes how, by utilising big data facilities like Share/Distribute Memory Systems and Hadoop/MapReduce, novel data mining based techniques can be used, not only to extract MPs from large networks, but also how they can be utilised for prediction purposes. To this end, the works in this thesis are divided into two parts. The first part is concerned with an investigation of an efficient mechanism for MPM. The second part is concerned with the utilisation of the extracted MPs in the context of prediction. For evaluation purposes, two large network datasets were used: The Great Britain Cattle Tracking System database and the Jiayuan Social Network. The evaluation indicates that an efficient and effective mechanism for identifying and extracting MPs form large networks, and subsequently using then MPs for prediction purposes, has been established

    Entity recommendation and search in heterogeneous information networks

    Get PDF
    With the rapid development of social media and information network-based web services, data mining studies on network analysis have gained increasing attention in recent years. Many early studies focus on homogeneous network mining, with the assumption that the network nodes and links are of the same type (e.g., social networks). However, real-world data in many domains and applications are often multi-typed and interconnected, forming heterogeneous information networks. The objective of my thesis is to study effective and scalable approaches to help users explore and discover useful information and knowledge in heterogeneous information networks. I also aim to advance the principles and methodologies of mining heterogeneous information networks through these studies. Specifically, I study and focus on entity recommendation and search related problems in heterogeneous information networks. I investigate and propose data mining methodologies to facilitate the construction of entity recommender systems and search engines for heterogeneous networks. In this thesis, I first propose to study entity recommendation problem in heterogeneous information network scope with implicit feedback. Second, I study a real-world large-scale entity recommendation application with commercial search engine user logs and a web-scale entity graph. Third, I combine text information and heterogeneous relationships between entities to study citation prediction and search problem in bibliographical networks. Fourth, I introduce a user-guided entity similarity search framework in information networks to integrate users' guidance into entity search process, which helps alleviate entity similarity ambiguity problem in heterogeneous networks. The methodologies proposed in this thesis are critically important for information exploration in heterogeneous information networks. The principles and theoretical findings in these studies have potential impact in other information network related research fields and can be applied in a wide range of real-world applications

    Similarity learning in the era of big data

    Get PDF
    This dissertation studies the problem of similarity learning in the era of big data with heavy emphasis on real-world applications in social media. As in the saying “birds of a feather flock together,” in similarity learning, we aim to identify the notion of being similar in a data-driven and task-specific way, which is a central problem for maximizing the value of big data. Despite many successes of similarity learning from past decades, social media networks as one of the most typical big data media contain large-volume, various and high-velocity data, which makes conventional learning paradigms and off- the-shelf algorithms insufficient. Thus, we focus on addressing the emerging challenges brought by the inherent “three-Vs” characteristics of big data by answering the following questions: 1) Similarity is characterized by both links and node contents in networks; how to identify the contribution of each network component to seamlessly construct an application orientated similarity function? 2) Social media data are massive and contain much noise; how to efficiently learn the similarity between node pairs in large and noisy environments? 3) Node contents in social media networks are multi-modal; how to effectively measure cross-modal similarity by bridging the so-called “semantic gap”? 4) User wants and needs, and item characteristics, are continuously evolving, which generates data at an unprecedented rate; how to model the nature of temporal dynamics in principle and provide timely decision makings? The goal of this dissertation is to provide solutions to these questions via innovative research and novel methods. We hope this dissertation sheds more light on similarity learning in the big data era and broadens its applications in social media

    큰 그래프 상에서의 개인화된 페이지 랭크에 대한 빠른 계산 기법

    Get PDF
    학위논문 (박사) -- 서울대학교 대학원 : 공과대학 전기·컴퓨터공학부, 2020. 8. 이상구.Computation of Personalized PageRank (PPR) in graphs is an important function that is widely utilized in myriad application domains such as search, recommendation, and knowledge discovery. Because the computation of PPR is an expensive process, a good number of innovative and efficient algorithms for computing PPR have been developed. However, efficient computation of PPR within very large graphs with over millions of nodes is still an open problem. Moreover, previously proposed algorithms cannot handle updates efficiently, thus, severely limiting their capability of handling dynamic graphs. In this paper, we present a fast converging algorithm that guarantees high and controlled precision. We improve the convergence rate of traditional Power Iteration method by adopting successive over-relaxation, and initial guess revision, a vector reuse strategy. The proposed method vastly improves on the traditional Power Iteration in terms of convergence rate and computation time, while retaining its simplicity and strictness. Since it can reuse the previously computed vectors for refreshing PPR vectors, its update performance is also greatly enhanced. Also, since the algorithm halts as soon as it reaches a given error threshold, we can flexibly control the trade-off between accuracy and time, a feature lacking in both sampling-based approximation methods and fully exact methods. Experiments show that the proposed algorithm is at least 20 times faster than the Power Iteration and outperforms other state-of-the-art algorithms.그래프 내에서 개인화된 페이지랭크 (P ersonalized P age R ank, PPR 를 계산하는 것은 검색 , 추천 , 지식발견 등 여러 분야에서 광범위하게 활용되는 중요한 작업 이다 . 개인화된 페이지랭크를 계산하는 것은 고비용의 과정이 필요하므로 , 개인화된 페이지랭크를 계산하는 효율적이고 혁신적인 방법들이 다수 개발되어왔다 . 그러나 수백만 이상의 노드를 가진 대용량 그래프에 대한 효율적인 계산은 여전히 해결되지 않은 문제이다 . 그에 더하여 , 기존 제시된 알고리듬들은 그래프 갱신을 효율적으로 다루지 못하여 동적으로 변화하는 그래프를 다루는 데에 한계점이 크다 . 본 연구에서는 높은 정밀도를 보장하고 정밀도를 통제 가능한 , 빠르게 수렴하는 개인화된 페이지랭크 계산 알고리듬을 제시한다 . 전통적인 거듭제곱법 (Power 에 축차가속완화법 (Successive Over Relaxation) 과 초기 추측 값 보정법 (Initial Guess 을 활용한 벡터 재사용 전략을 적용하여 수렴 속도를 개선하였다 . 제시된 방법은 기존 거듭제곱법의 장점인 단순성과 엄밀성을 유지 하면서 도 수렴율과 계산속도를 크게 개선 한다 . 또한 개인화된 페이지랭크 벡터의 갱신을 위하여 이전에 계산 되어 저장된 벡터를 재사용하 여 , 갱신 에 드는 시간이 크게 단축된다 . 본 방법은 주어진 오차 한계에 도달하는 즉시 결과값을 산출하므로 정확도와 계산시간을 유연하게 조절할 수 있으며 이는 표본 기반 추정방법이나 정확한 값을 산출하는 역행렬 기반 방법 이 가지지 못한 특성이다 . 실험 결과 , 본 방법은 거듭제곱법에 비하여 20 배 이상 빠르게 수렴한다는 것이 확인되었으며 , 기 제시된 최고 성능 의 알고리 듬 보다 우수한 성능을 보이는 것 또한 확인되었다1 Introduction 1 2 Preliminaries: Personalized PageRank 4 2.1 Random Walk, PageRank, and Personalized PageRank. 5 2.1.1 Basics on Random Walk 5 2.1.2 PageRank. 6 2.1.3 Personalized PageRank 8 2.2 Characteristics of Personalized PageRank. 9 2.3 Applications of Personalized PageRank. 12 2.4 Previous Work on Personalized PageRank Computation. 17 2.4.1 Basic Algorithms 17 2.4.2 Enhanced Power Iteration 18 2.4.3 Bookmark Coloring Algorithm. 20 2.4.4 Dynamic Programming 21 2.4.5 Monte-Carlo Sampling. 22 2.4.6 Enhanced Direct Solving 24 2.5 Summary 26 3 Personalized PageRank Computation with Initial Guess Revision 30 3.1 Initial Guess Revision and Relaxation 30 3.2 Finding Optimal Weight of Successive Over Relaxation for PPR. 34 3.3 Initial Guess Construction Algorithm for Personalized PageRank. 36 4 Fully Personalized PageRank Algorithm with Initial Guess Revision 42 4.1 FPPR with IGR. 42 4.2 Optimization. 49 4.3 Experiments. 52 5 Personalized PageRank Query Processing with Initial Guess Revision 56 5.1 PPR Query Processing with IGR 56 5.2 Optimization. 64 5.3 Experiments. 67 6 Conclusion 74 Bibliography 77 Appendix 88 Abstract (In Korean) 90Docto

    Unsupervised Graph-Based Similarity Learning Using Heterogeneous Features.

    Full text link
    Relational data refers to data that contains explicit relations among objects. Nowadays, relational data are universal and have a broad appeal in many different application domains. The problem of estimating similarity between objects is a core requirement for many standard Machine Learning (ML), Natural Language Processing (NLP) and Information Retrieval (IR) problems such as clustering, classiffication, word sense disambiguation, etc. Traditional machine learning approaches represent the data using simple, concise representations such as feature vectors. While this works very well for homogeneous data, i.e, data with a single feature type such as text, it does not exploit the availability of dfferent feature types fully. For example, scientic publications have text, citations, authorship information, venue information. Each of the features can be used for estimating similarity. Representing such objects has been a key issue in efficient mining (Getoor and Taskar, 2007). In this thesis, we propose natural representations for relational data using multiple, connected layers of graphs; one for each feature type. Also, we propose novel algorithms for estimating similarity using multiple heterogeneous features. Also, we present novel algorithms for tasks like topic detection and music recommendation using the estimated similarity measure. We demonstrate superior performance of the proposed algorithms (root mean squared error of 24.81 on the Yahoo! KDD Music recommendation data set and classiffication accuracy of 88% on the ACL Anthology Network data set) over many of the state of the art algorithms, such as Latent Semantic Analysis (LSA), Multiple Kernel Learning (MKL) and spectral clustering and baselines on large, standard data sets.Ph.D.Computer Science & EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/89824/1/mpradeep_1.pd
    corecore