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ABSTRACT

This dissertation studies the problem of similarity learning in the era of big
data with heavy emphasis on real-world applications in social media. As in
the saying “birds of a feather flock together,” in similarity learning, we aim
to identify the notion of being similar in a data-driven and task-specific way,
which is a central problem for maximizing the value of big data. Despite many
successes of similarity learning from past decades, social media networks as
one of the most typical big data media contain large-volume, various and
high-velocity data, which makes conventional learning paradigms and off-
the-shelf algorithms insufficient. Thus, we focus on addressing the emerging
challenges brought by the inherent “three-Vs” characteristics of big data by
answering the following questions: 1) Similarity is characterized by both
links and node contents in networks; how to identify the contribution of
each network component to seamlessly construct an application orientated
similarity function? 2) Social media data are massive and contain much noise;
how to efficiently learn the similarity between node pairs in large and noisy
environments? 3) Node contents in social media networks are multi-modal;
how to effectively measure cross-modal similarity by bridging the so-called
“semantic gap”? 4) User wants and needs, and item characteristics, are
continuously evolving, which generates data at an unprecedented rate; how
to model the nature of temporal dynamics in principle and provide timely
decision makings? The goal of this dissertation is to provide solutions to
these questions via innovative research and novel methods. We hope this
dissertation sheds more light on similarity learning in the big data era and

broadens its applications in social media.
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CHAPTER 1

INTRODUCTION

Similarity learning - answering the question whether two given objects
are similar, or whether object A is more similar to B compared to C - is
an important problem with many applications. Frankly speaking, it is a
long standing research problem that has been studied since the beginning
stage of artificial intelligence (AI) and pattern recognition. In classification,
the first algorithm that we learned - k-Nearest Neighbor classifier [1] - uses
distance metric as a dissimilarity function to identify the nearest neighbors.
Fundamental clustering algorithms, such as the prominent k-means [2], rely
on distance measurements between data instances. In information retrieval,
candidate results are often ranked according to their relevance to a given
query. Clearly, the performance of these methods depends on the quality of
the underlying similarity function. As in the saying “birds of a feather flock
together,” in similarity learning, we hope to identify the pairs of instances
that are indeed semantically close, through a data-driven and task-specific
way [3].

Although there have been many successes in learning similarity in past
decades, as we enter the era of big data, similarity learning faces many new
challenges. The first impression when people talk about big data is its size,
which is usually referred to in the literature as the “volume”. With the boom-
ing of social networks, e-commerce, and smart devices in the past ten years,
data has increased greatly. According to the International Data Corporation,
the number of overall created data had reached 1.8 ZB (approximately equals
10*! B) worldwide in 2011, an increase of nine times within five years [4]. Es-
pecially, big data related to the services of social media grow rapidly. For
instance, Facebook generates log data of over 10 petabyte (PB) per month,
while Taobao, a subsidiary of Alibaba, receives data by the tens of terabyte
(TB) per day from its online trading [5].

While the amount of data is drastically rising, the variety of data also
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Figure 1.1: Ilustration of the heterogeneity of different data sources
described by the same topic “Malaysia Airlines MH 177.

brings about many challenges, which demands prompt solutions. “Variety”
indicates the various types of data. Social media contains semi-structured
and unstructured [6] data in various types such as image, audio, video, web-
page and text. For instance, different model types are reported when an
event takes place. As a Google search example of “Malaysia Airlines MH 17”
illustrates in figure 1.1, relevant results include not only text documents but
also images and videos.

Furthermore, “velocity” is another inherent characteristic for big data.
In almost all online social media systems, data are generated at an unprece-
dented rate. For example, Facebook users exceeded one billion in 2012, which
doubled from the year before!'; Netflix gained more than three million sub-
scribers from mid-March 2013 to April 2013%; and more than 10 million
transactions are made per day in eBay®. Such data have distinct proper-
ties such as being temporally ordered, continuous and at high-velocity. Data
collection and analytics must be rapidly and timely performed to catch the
instantaneous need of users and maximize the commercial value of big data.

Often, volume, variety and velocity are refereed as the “three-Vs” for big
data [7]. While the problem of similarity learning retains its important role
in many modern applications, the game of learning has changed significantly
compared to a decade ago. Specifically, many conventional setting and off-
the-shelf algorithms are no longer suitable for big data. Thus, in this dis-
sertation, we focus on addressing the emerging “three-V” issues of similarity
learning in big data. Due to broad applications of big data, we specifically
restrict our regime to the study of social media data, which is considered one
of the most representative big data media that are easily accessible. We will
show that by combining rigorous mathematics with judicious design, we can
make broad impacts on society and uncover natural and social phenomena

in the era of big data by similarity learning.

1http://www.businessinsider.com/facebook—350-million-photos—each-day—2013-9

2https://en.wikipedia.org/wiki/Netflix
3http://www.webretailer.com/articles/ebay—statistics.asp



1.1 Big Data Applications

Similarity learning can potentially be beneficial for tasks in which the notion
of similarity among data plays an important role. Recently, it has been
widely applied to many fields such as computer vision [8, 9], data mining
[10, 11, 12, 13, 14, 15], machine learning [16, 17, 18], speech [19, 20], etc. In
the following, we list several important applications in social media analysis,

where similarity learning has been shown to be extremely useful.

Link prediction: The task of link prediction aims to predict missing links
in a given network and new or dissolution links in future time, which is
important for mining and analyzing the evolution of networks [21]. Link
prediction techniques have been widely used in many online social network
sites. Facebook and Linkedin recommend missing edges (friendship connec-
tions) in their social graph. To solve the link prediction problem, it needs
to determine the formation or dissolution probability between all node pairs.
A natural and effective way to model such probabilities is to calculate the
node-based similarity or relative ranks through either a predefined metric
or a data-driven approach. A comprehensive survey on link prediction has
been published by Wang et al. [22], which includes many state-of-the-art

link prediction algorithms via similarity learning.

Community detection: Community detection is often viewed as a clus-
tering task in networks. Communities (also called clusters or modules in
the literature) are groups of vertices which probably share common prop-
erties and/or play similar roles within the graph. It has been shown that
real networks are not random graphs (i.e. the probability of having an edge
between any pair of nodes is equal). Instead, the probability of connec-
tion among node pairs within a same community is much higher than the
inter-community connection rate [6, 23]. Identifying graph communities is a
popular topic in big data with concrete demands. For instance, clustering
large networks can create optimal data structures for efficient graph storage,
query and search [24]. Other important real-world applications and emerging

techniques are presented in the survey [25].

Recommendation: In recent years, recommendation has become one of the
most active research areas driven by enormous industrial needs. The business

model for many major technology companies such as Amazon, Netflix and



Pandora heavily relies on their recommender systems. The objective of many
recommender systems is to provide the user with the most relevant items ac-
cording to his/her historical data. Based on the type of user generated data,
the task can be further divided into two groups: recommendation with ex-
plicit feedback [26] and recommendation with implicit feedback [14, 21]. The
ranking of all candidate items is often achieved by measuring the similarity
between the user and an item. Applications of similarity learning for recom-
mendation include the work in [26, 27, 28, 29|, and interested readers may

refer to the surveys [30, 31] for more details.

Information retrieval: Google search engine is the most successful trans-
formation from information retrieval research to our daily life needs. Similar
to recommendation, information retrieval algorithms rank candidate docu-
ments, images or videos based on their similarity scores to a specific query.
Examples include the work of [32, 33].

1.2 Research Challenges

The problem of similarity learning for large-scale, noisy, heterogeneous, and
high-velocity social media data is fundamentally different from the conven-
tional settings that have been used over past decades, which requires emerg-
ing research efforts. In this section, we list several major challenges posed by

the application of similarity learning in the new settings.

Networked data: The availability of vectorized data representations are
frequently assumed in conventional similarity learning. They are easy to
handle since each data can be viewed as a point residing in a FEuclidean
space [34, 35]. Thus, the similarity between different data points can be di-
rectly measured by an appropriate metric to solve tasks such as classification,
clustering and retrieval. Unfortunately, many data sources (e.g. Facebook,
YouTube, Twitter, etc.) in the era of big data cannot be naturally repre-
sented as vectorized inputs. Instead, networks or graphs are commonly used
to represent these user interactions and online social activities.

Similarity learning in the network environment differs from traditional set-
ups, mainly due to the notion that similarity is characterized by both the link

and content. The notion of similarity is reflected by the network connectivity,



content correlation or a combination of the two. Due to social connectivity
structures, we note that the nature of data connection plays a vital role in
discovering similar node pairs. As a concrete example from sociology, the
concept of homophily (i.e., “love of the same”) [36] describes the tendency
of individuals to associate and bond with similar others, which implies that
connected components in networks tend to share common characteristics. On
the other hand, metadata can be easily obtained in social networks, which
often can be adopted as indicators to identify similar user groups.

Next, we describe a toy example from a real-world scientific author rec-
ommendation and retrieval scenario. We show why the direct adoption of
content or link metrics only fails to provide good predictions. We consider
the top six similar authors calculated from two different aspects of the au-
thor Thomas S. Huang in the DBLP-Four-Areas data set [37], which will
be formally introduced in section 3.6.1. Table 1.1 illustrates search results
by directly utilizing link weights and content features, respectively. We ob-
served that recommended authors using link information are only Thomas
Huang’s close collaborators, students, or postdoctoral associates. However,
link weights fail to maintain high precision for a long ranking list because
of sparsity issues. The main problem is the selection of the proper choice of
indirectly connected candidates. On the other hand, among authors retrieved
from the content source, most of them shared mutual interests for specific
scientific topics. One of the drawbacks for such approaches is that each au-
thor is usually interested in several research topics or belongs to multiple
latent categories. Therefore, the use of a global content measure overlooks
the “similarity” in a fine-grid level. From this example, we see that the re-
trieved results vary a lot from the different perspective of similarity measures.
Utilizing either of the two alone is insufficient to retrieve nodes with similar
attributes in networks. The scientific goal of similarity learning in networks
is to determine the contribution of network components in a task specific

fashion for network oriented applications.

Large volume data: The big data era brings huge challenges of data ac-
quisition, storage, management and analytics. Specifically, data are massive
and generated at high speed. Therefore, similarity learning needs to be im-
plemented very efficiently and be able to work with one pass of the data

[21]. Furthermore, the input streams consist of not only new relations, but



Table 1.1: A motivating example to illustrate the variations in the
similarities between nodes from different perspectives.

Link Content
Rank 1 Shuicheng Yan Anni R. Bruss
Rank 2 Brendan J. Frey Qiang Yang
Rank 3 Xiaoou Tang Takeo Kanade
Rank 4 Ying Wu Jaime G. Carbonell
Rank 5 Huan Wang Rong Jin
Rank 6 | Antonio Colmenarez | Raghu Ramakrishnan

also new registered entities which can be introduced to the system for any
given time. Therefore, it requires the algorithm to provide responses to any
unseen candidates without assuming a fixed number of nodes in the network

(out-of-the-sample issue [38]).

Noisy data: Social media data contains much noise. For example, re-
searchers noticed that spammers generate more data than legitimate users
[39] due to the autonomous nature of online activities. One the other hand,
since users with different backgrounds and knowledge post content freely,
only a small amount of data is valuable for task specific learning. The noisy
nature of the underlying network poses a great challenge to data acquisi-
tion and effective learning. From the similarity learning aspect, many links
are not semantically meaningful, especially in online social networks such as
Facebook. This is because the cost of connection in Facebook is very low. In
this context, it is essential to make the network similarity learning algorithms
capable of distinguishing the meaningful aspect of the network characteristics

under noisy scenarios.

Varied data: Multimedia data (e.g. image, audio, text and video) have
been growing rapidly, which is specifically useful in extracting knowledge and
understanding user intension. However, multimedia data is heterogeneous,
which means that data from different modalities are not directly comparable.
Learning similarity between them is confronted with the huge challenge of
the semantic differences. For example, two images with similar visual ap-
pearances (low-level similarity, e.g. color, shape, etc.) might not correspond
to similar high-level concepts (e.g. label information). Such a phenomenon

is often called the “semantic gap” [12]. How to bridge the gap is a key for



effectively learning with multimedia inputs.

High-velocity data: The high-velocity characteristic of big data requires
learning algorithms to update and respond timely in order to catch users’ in-
stant intentions and demands. However, many conventional schemes analyze
the new coming data and update their models at regular time intervals (e.g.
every day or number of days). In addition, for many big data applications,
the underlying user preferences (or item characteristics) continuously evolve
over time, which can have significant effects on predictions. For instance, in
the context of co-authorship prediction, one may change the research inter-
est from one field to another, which decreases the likelihood of connecting to
people from the original field. Thus, the learning similarity should capture

such signals and timely adapt its prediction accordingly.

1.3 Organization

Different applications in big data era might encounter one or multiple afore-
mentioned challenges. In this dissertation, each chapter specifically targets
one or several aforementioned research challenges in an application oriented
way. We acknowledge that this dissertation only coversa few aspects of big
data analytics. We hope to shed more light on the problem of similarity
learning in big data, gain the attention of the research community, and open
up new directions in which we can contribute more in the future.

The remainder of this dissertation is organized as follows. In Chapter 2,
we introduce some basic and necessary concepts in learning similarity in dif-
ferent types of networks. In Chapter 3, we first introduce a static network
representation followed by a detailed investigation of learning similarity in
large and noisy networks. In Chapter 4, we turn our view to heterogeneous
networks. Specifically, we propose a general framework to convert heteroge-
neous networks to vectors so that off-the-shelf similarity learning algorithms
can be applied to many big data applications. Chapter 5 focuses on learning
similarity in high-velocity environments. We unify many big data tasks such
as link prediction, search and recommendation to a single steaming Positive-
Unlabeled (PU) scheme. Finally, we conclude the dissertation and point out

broader impacts and promising research directions in Chapter 6.



CHAPTER 2

BACKGROUND AND PRELIMINARIES

Before proceeding to study the problem of similarity learning in big data
environments, we first need to review several basic concepts and well-known

algorithms for the purpose of similarity learning in different networks.

2.1 Static Networks

Here, we briefly review existing approaches for learning similarity functions
in static networks. In general, similarity learning can be done by either using

content, network topology or a combination of these two.

2.1.1 Content-based Similarity Learning

In recent years, there is some emerging research interest in learning content-
based similarity in a low-dimensional space such that the regular Euclidean
metric is more meaningful in terms of reflecting semantic “closeness” [10].
The first category is supervised metric learning, which is learning a distance
metric from the training data with explicit class labels. The representative
techniques include the Neighborhood Component Analysis [16] and the Large
Margin Nearest Neighbor [17]. However, the performance of the supervised
approaches relies heavily on the number of labeled training data examples.
This is a problem, because such labels are usually not available in signif-
icantly large numbers. Xing et al. [18] proposed to use side information
instead of class labels. The side information is presented as pairwise con-
straints associated with input data, which provides weaker information than
the exact class labels. In particular, each constraint indicates whether a pair
of samples are similar or not. Subsequently, there were several promising

research directions, such as Relevance Component Analysis [40] and Infor-



mation Theoretic Metric Learning [41].

However, most of the existing metric learning algorithms do not scale well
across various high dimensional learning paradigms. The reason is the size
of the distance matrix scales with the square of the dimensionality. Sparse
Distance Metric Learning [42] works under pairwise relevance constraints to
produce sparse metrics which significantly reduce the number of parameters,
so that the time required for learning reduces dramatically. Another issue
that makes metric-based similarity learning inefficient for real-world applica-
tions is the positive semi-definite (PSD) constraints imposed on the distance
matrix. In general, it requires nontrivial PSD programming [43] techniques,
and the computational complexity is cubic in the dimensionality of the in-
put data. A recent work proposed by Zhen et al., which is referred to as
Locally-Adaptive Decision Learning (LAD) [9], learns a non-isotropic simi-
larity function by a joint model of a distance metric and a locally adaptive
thresholding rule. The LAD algorithm relaxes the PSD constraint so that the
learned similarity can be negative, if only the relative order is appreciated.

All aforementioned methods assume the availability of vectorized inputs,
which often cannot directly apply to these applications with networks in-

volved.

2.1.2 Link-based Similarity Learning

In contrast to content-based similarity learning, link-based methods empha-
size network topological structures. The most popular link-based similarity
learning method or ranking system is known as the PageRank [32], which
is used by the Google search engine. The original Brin and Page model for
PageRank uses the hyperlink structure of the web to build a Markov process
with a primitive transition probability. A lot of link-based similarity learning
approaches are motivated by PageRank including SimFusion [44], Pagesim
[45] and the Relational Like-base Ranking [46].

An interesting method, known as SimRank [47], is an iterative PageRank
like structure similarity measure in networks. However, SimRank only uti-
lizes the in-link relationships for proximity computation while neglecting the
information conveyed from out-links. Zhao et al. proposed a P-Rank [4§]

algorithm which extends SimRank by considering both in-link and out-link



simultaneously. It is worth mentioning that most existing link-based meth-
ods rely heavily on the homophily assumption [36], and are insufficient for

fully capturing the underlying semantics.

2.1.3 Fusion-based Similarity Learning

Fusion-based similarity learning aims to incorporate both content and link
similarity in a seamless way. This issue is often addressed in graph-based
semi-supervised learning and recommender systems.

Semi-supervised learning [12] considers the situations where only a few
labeled data are available and the vast majority of data remain unlabeled,
which has significant impact on pervasive applications in machine learning
and data mining. Among many semi-supervised methods, graph-based algo-
rithms are substantially relevant to fusion-based learning, and define a graph
where the nodes (feature vectors) are both labeled and unlabeled, and edges
reflect connectivity between data samples. Then, similarity can propagate
through the graph in a discriminative and transductive way by satisfying the
following two requirements: 1) the learned similarity function should sat-
isfy given labeled constraints as much as possible; and 2) similarity function
should be smooth across the whole graph. Some representative works include:
MinCut [49], Gaussian Random Fields and Harmonic Functions [50], Local
and Global Consistency [51], Manifold Regularization [52], Graph Kernels
and Laplacian Graph [53], etc. The survey in [54] contains comprehensive
studies on semi-supervised learning in graphs.

One the other hand, in the task recommender systems, both content and
link information are often assumed available. The problem of recommenda-
tion can be viewed as learning similarity on a bipartite graph, which one side
is the user nodes and the other side is the item nodes. Links between them
are the user-item iterations. Often, users/items in recommender systems
contain auxiliary information, which describes their intrinsic properties (e.g.
age, gender, job for users and content descriptions as genre, year of produce
for items) by vectors. Research [14] has shown that integrating content-based
knowledge enhances the performance on recommendation. In [29, 55], a hy-
brid movie recommender system is proposed that makes use of both content

information acquired from the Internet Movie Database (IMDB) as well as
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the collaborative information. A naive Bayes classifier is built to impute
the missing entries first, followed by traditional collaborative filtering on the
dense pseudo rating matrix. In [56], the authors propose a novel knowledge
transfer based algorithm to learn a regression model from the content features
to the item latent representations. This approach utilizes existing factoriza-
tion based techniques [57, 58] to obtain the latent representations of each
item with user ratings. A regression model bridges the high-dimensional con-
tent features to the low-dimensional latent space. Content-boosted Matrix
Factorization [59] incorporates content information directly into the matrix
factorization, which assumes the latent item profiles can be further decom-
posed by a projection of the content vectors. The survey [30] we mentioned

above also contains detailed discussion on fusion-based methods.

2.2 Heterogeneous Networks

Recently, many researchers have started to consider similarity measure on
heterogeneous networks [60]. Wang et al. [61] proposed a model that focuses
on analyzing the context of heterogeneous networks. However, their method
overlooks the similarity from the network structure perspective. Based on a
Markov chain model, Fouss et al. [62] designed a distance function termed
Euclidean Commute Time Distance. Unfortunately, the absence of a path
constraint makes this method cannot capture the subtle semantics in hetero-
geneous networks. Sun et al. proposed PathSim [63] by considering semantics
in meta paths constituted by different-typed objects. The drawback for Path-
Sim is that it only considers the similarity of same-typed objects based on
symmetric paths, which ignores many valuable asymmetric paths. In order
to evaluate the relevance of different-typed objects, Shi et al. [64] proposed
HeteSim to measure the relevance of any object pairs under arbitrary path,
which makes it is suitable for a wide range of applications.

Another branch of calculating similarity in heterogeneous networks utilizes
network embeddings [15]. These models often transfer the problem as learn-
ing an embedding of the entities, which algebraically corresponds to a matrix
factorization problem of observed relationships. Zhu et al. [65] proposed a
joint factorization approach on both link and document-term frequency ma-

trix for Web page categorization. Similar concepts also include [66, 67].
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However, these models focus only on single relations that do not adapt to
heterogeneous settings. A natural extension of these methods stacks the re-
lational matrices, and then applies conventional tensor factorization [68, 69].
The disadvantage of such multi-relational embeddings is the inherent sharing
of parameters between different terms, which does not scale to large graphs.
A nonlinear embedding model is proposed by Yuan et al. [70], which uses Re-
stricted Boltzmann Machines (RBM) for cross-model link analysis. However,
it requires a feature vectorization step, which results in information loss. A

survey of heterogeneous information network analysis can be found in [60].

2.3 Streaming Networks

In the era of big data, the inputs for many online systems arrive in a stream-
ing fashion [71, 72]. These data flow into a system in vast volumes, change
dynamically and are possibly infinite [6, 73]. When the data are of large
volume, they cannot be stored in traditional database systems. Moreover,
most systems may only be able to access the stream once. This poses great
computational and mining challenges. There have been many works on effi-
cient methods for mining data streams, which specifically work with one pass
of the data. Many research problems that are closely related to similarity
learning in streaming graphss have been explored, which include counting
triangles [74], finding common node-neighbors [75], estimating PageRank
scores [76], clustering graph streams [77], outlier detection [78], mining dense
structural patterns [79], etc. Meanwhile, the stream mining process is dy-
namic since user behaviors as well as item characteristics may evolve over
time. Many stream mining algorithms focus on the evolution of the under-
lying data [26, 21]. Readers could refer to these books [80, 6] and surveys
(81, 82, 83] for details.

2.4 Related Topics

We mention here three general machine learning topics that are related to our

research, which served as important foundations for our proposed methods.
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2.4.1 Matrix Factorization

Matrix factorization is one of the most popular methods in matrix comple-
tion and recommendation. Typically, the factorization assumes that there
are low rank distributions in space, and a low rank approximation is utilized
to regularize the factorization process. The fundamental problem is to fill
out the missing entries of the utility matrix with sparse observations. Tradi-
tional approaches include Low-rank Matrix Fitting [84], Nonnegative Matrix
Factorization (NMF) [85] and Probabilistic Matrix Factorization (PMF) [57],
which fit a probabilistic distribution for the matrix. In the domain of col-
laborative filtering, which learns the similarities between different entries,
the social hints are also considered in addition to link structures [86, 87].
These approaches are referred to as the social matrix factorization. Other
approaches try to incorporate content similarities into the factorization, and

a typical extension is the Collaborative Topic Modes [88].

2.4.2 Deep Learning

Deep learning plays a central role in an important shift in machine learning
research that emphasizes feature learning from raw data. It has become
increasingly important in speech recognition, object recognition/detection,
and natural language processing. Recent advances in deep learning have
benefited from a confluence of factors, such as the availability of large-scale
datasets, computational resources, and advances in both unsupervised and
supervised training algorithms. Unsupervised deep learning, often referred to
as “pre-training” [89], provides robust initialization and regularization with
the help of unlabeled data, which is copiously available. For example, Hinton
and Salakhutdinov [90] first employed layer-wise initialization of deep neural
networks with the use of RBMs. A similar approach is weight initialized with
auto-encoders found by Bengio et al. [91]. More recently, supervised learning
with multilayered neural networks has been proven possible. Covolutional
Neural Networks (CNN) [92], with the method of Dropout [93] and Rectified
Linear Unit (ReLu) [94], has shown particular promise. The combination of
these recent advances keeps breaking the record of the ImageNet challenges
(92, 95]. The development of deep learning is too fast to be comprehensively

introduced here; we recommend that interested readers see the survey [96]
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written by LeCun, Bengio and Hinton, and pay close attention to arXiv!.

2.4.3 PU Learning

The problem of PU learning is first studied in binary classification, where
training examples only consist of positive labels. Two general approaches
have been previously proposed to handle such “one-side” measurements. The
first approach involves iterating between two steps, which are 1) identifying
possible negative samples (some approaches also include positive ones [97])
from unlabeled data, and 2) applying standard binary classification methods
on negative samples identified in the previous step [98]. The other approach
assigns weights to each unlabeled datum, and then trains a classifier with the
unlabeled data interpreted as weighted negative samples [99, 100]. Although
many algorithms have been well developed for classification with PU inputs,
they assume data are in the form of vectorized representations, which is not
applicable to problems where only network topology information is available.

Matrix factorization [57, 84, 85, 101, 102] is one of the most popular ap-
proaches to link prediction or recommendation since it does not require any
auxiliary content features. However, most of the existing approaches are not
specifically designed for the PU inputs. An important variant of the matrix
completion problem is to recover an underlying matrix from one-bit quan-
tizations, which is an instance of PU learning. Davenport et al. [103] first
analyze one-bit matrix completion under a uniform sampling model, where
observed entries are assumed to be sampled uniformly at random. However,
in data mining applications such as collaborative filtering, the uniform sam-
pling model is overidealized. An improved method has been proposed in
[104], which replaces the uniform sampling assumption with the max-norm
as a convex relaxation for the rank. Recently, Hsieh et al. [105] proposed
a method termed PU Learning for Matrix Completion (PUMC), which con-
tains well developed theories on performing one-bit matrix completion by
assigning different costs to observed and unobserved entries in the objective.
Similar ideas [106, 107] have also been used in recommender systems, albeit
heuristically. It is worth mentioning that all these methods are batch models

without considering any temporal aspect of the data.

1https ://arxiv.org/
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CHAPTER 3

LARGE VOLUME DATA

Nowadays, networks are ubiquitous in the context of data mining and in-
formation retrieval applications. Social and technical information systems
usually exhibit a wide range of interesting properties and patterns such as
interacting physical, conceptual and societal entities. Each individual entity
interchanges and influences others in the context of this interconnected net-
work. Similarity learning as a central tenant of network mining research in
the era of big data will be first investigated, for large and noisy networks, in

this chapter.

3.1 Static Network Representation

The two fundamental components defining a network topology are nodes
and edges. In this chapter, we model any given network as a directed graph
G(V,E), where V represents a set of nodes/vertices and £ represents the
edges between these nodes. We denote the vertices by V = {vy,...,v,} and
edges by €& = {ej,...,e,}. Thus, there are a total of n nodes and m di-
rected edges. The directed assumption is without loss of generality, because
undirected networks can be easily converted into a directed framework, by
simply replacing undirected links by two directed edges. We further assume,
that two additional types of information are available. One of them corre-
sponds to link weights and the other one corresponds to content features.
The weight of a link indicates the strength of the connection, while the con-
tent uniquely describes node characteristics. Let £ = {ly,...,[,,} represent
the link weights associated with the corresponding edges {e;} in the network,
where each [; € R, Vi = {1,...,m}. Similarly, let C = {¢y,...,c,} be the
set of content features represented by a vector in some vector space in R¢,

so that every v; € V is associated with a d—dimensional content vector de-
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noted by ¢;. In summary, we characterize a network using the representation

G(\V,&,C, L), which includes the graph structure, content and link features.

3.2 Weakly Supervised Similarity Learning in
Networks

As the example in table 1.1 shows, either content-based or link-based features
alone are insufficient to retrieve nodes with similar attributes in networks.
Therefore, we seek a unified learning framework that considers both link
and content information. However, the notion of similarity is subjective and
task-specific, and correctly understanding it is critical to decision making.
We observe that, in many social applications, although obtaining absolute
“label” of each node is hard, the relative ordered information (intentional
knowledge) can be easily generated. Such information is often termed as
weakly supervised information [108], which could be generated from the user
clicking behaviors on the web or transferred from other domains of sources.
Mathematically, the weak supervision is modeled by triplet constraints of the

form:
S = {(vi,v;,v;) : (v; and v;) more similar to (v; and vy)}.

Such information is extremely useful for understanding users’ intentions in
order to identify the task-specific notion of being similar in a network. Thus,
we reveal the problem of similarity learning by also integrating the limited
supervision. To achieve this goal, next we will introduce a novel factorization
based scheme. Our approach models the similarity learning as a matrix
completion problem [57, 84, 85|, where it aims at supervised learning the
correlation between different nodes using both link and content information
so that the completed similarity matrix will correctly reflect the homogeneity

between different nodes.

3.2.1 Parameterizations and Constraints

In order to model the similarity learning as a matrix completion problem,
we formulate G(V,&,C, L) in matrix form. Let C € R™? and L € R™™"
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represent the content and link matrices, which are defined as follows. Each
row C;. of the content matrix C' is the corresponding feature vector ¢; € C.
If the link weight [, € £ associates with edge e, € £ which connects nodes
v; and v; € V, then the L;; entry in the link matrix L will be [,. A nonzero
entry L;; in L indicates that a link exists from the node v; to v;, with a
weight equal to the strength of the link. It is worth pointing out that both
C and L are typically very sparse in practice.

The target is to learn a matrix S € R™*", which reflects the information in
both L and C. The (7, j)th entry of S measures the similarity from node v; to
v;. The similarity matrix S is not necessarily symmetric, because similarity is
usually non-isotropic across the network. Thus, we do not explicitly constrain
the symmetry of S, in order to make our model more general.

On the other hand, the triplet supervision is modeled as constraints for
the space of 9, i.e., the similarity matrix S has to obey the supervision as
much as possible. If the supervision suggests that nodes v; and v; are more
similar to each other than nodes v; and v, the learned similarity has to
reflect that fact by enforcing S;; > S;. However, in terms of mathematical
abstraction, the strict order relationship is not a compact set regularizing
the space of S. Almost all existing optimization approaches do not favor the
open set constraints. We leverage the problem by each constraint as a closed
half-space. Specifically, we require that S has to be in the set 7, which is

defined as follows:
Ti {S . Sij Z Szk -+ C, V(U@,Uj,vk) € S} (31)

Here, ¢ is the margin controlling the minimal separability of the similar en-
tries. The value of ¢ can be chosen arbitrarily, since the order between
candidate nodes is more important than the actual similarity value at each
entry of S. Throughout this chapter, we set ¢ to be equal to 1 for simplicity.
Moreover, the following convexity result holds, and the proof can be found

in appendix A.1.

Lemma 3.2.1 The set T, as defined in equation (3.1), is conve.
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3.2.2 Integrate Link and Content

As is generally the case for matrix completion problems, we assume that the
rank of S is much less than the number of nodes n in the given network. This
is a very natural assumption because the number of latent factors character-
izing different nodes is much smaller than the number of nodes. However,
unlike existing matrix completion problems, S also satisfies some partial or-
der constraints. The minimum number of latent topics, which allows S to
satisfy all the constraints, indicates the intrinsic rank of the similarity ma-
trix. Both content and link data encoded in the network are traded as side
information, to enhance the factorization, followed by supervised knowledge.

To utilize all available information, let S be a completed matrix using both
content information C' and link weight matrix L. We factorize S as S = UV,
where U € R™" and V € R"™" are two low-rank matrices such that r < n.
|S—UV % penalizes the error by approximating S as the product of two low-
rank factors U and V', where || - || is the Frobenius norm of a given matrix,
where || X||r = +/tr(XXT) and tr(-) represents the trace of the matrix.

The link information contributes to similarity learning through the follow-
ing term:

1Pa(S) = Pa(L)|, (3.2)

where () is the index set for the observed elements and the projection Pq
is an orthogonal projector defined in [109]: the (7, j)th element of Pq(L) is
equal to L;; if (i,7) € © and zero otherwise. In other words, we propagate
the link information through its non-zero feature weights. This is done so
that the model will have consistent values as suggested by the link features.
This term ensures that the similarity matrix S is influenced by the local
topological structure.

Furthermore, to encode the content information in our model, we assume
that the content matrix C' can be factorized as two low-rank matrices, that is
a shared U and a basis matrix W, where W € R"™<. The following equation

ensures the propagation of similarity information from C to S.
IS = UVI[E + IC = UW ][5 (3-3)

Note that S has already encoded the link information through equation (3.2).
The intuition behind these two terms in equation (3.3) is that the projec-
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Figure 3.1: An idea illustration for integrating different information sources
in networks.

tions from link and content to a common latent space are identical. If we
assume that both V and W are orthonormal, then we multiply V7 and W7
on both sides of the equations S = UV and C' = UW. We obtain the fol-
lowing: SVT = U and CW?T = U. The similarity matrix S, which encodes
the link information and the content matrix C', is projected into a common
subspace U through projections V7 and W7. Therefore, the content and link
information can be bridged coherently using the aforementioned scheme, so
that the learned similarity matrix S is consistent with both content and
link information globally and locally. A graphical illustration of how differ-
ent information sources are fused and transferred to contribute to learning
node-based similarity is shown in figure 3.1.
We now integrate all the aforementioned parts into a coherent learning
framework as:
it WPolS) = PolD+ 25 ~ UV B+ 2O -0
subject to: S € T, VVT =1, WWT =1I,.

However, the objective in equation (3.4) has two problems, which lead to
inefficient optimization algorithms. The first problem is that the first term
in the above objective function contains a projection of non-zero entries in the
link matrix. Pn(L) can be viewed as indicator function of all non-zero entries
of L, which is discrete. Integer programming solvers are usually quite slow.

To alleviate these challenges, we introduce a transition variable 7" € R™*"
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acting as a bridge to transfer knowledge from L to S. Then, we are able
to convert the projection / indicator term in equation (3.4) to a new set of
constraints on T. Another issue is the orthonormal constraints on both V
and W. These constraints not only introduce more non-convexity into the
objective, but also make the algorithms more complex.

Alternatively, we can relax the orthogonal constraint. To prevent over-
fitting, we introduce Frobenius norms on both V' and W. To this end, we
reformulate objective function (3.4) as follows:

i IS = TR+ IS = UVIE + XllC = W3
+ IV + W13 (3:5)
subject to: Po(L) = Pa(T),S € T.

3.2.3 Optimization

In this subsection, we demonstrate that the optimization problem in equation
(3.5) can be solved efficiently and effectively using the block coordinate de-
scent method [43], which seeks the optimal value for one particular variable,
while fixing others. Though the formulation is non-convex, each subproblem
in block coordinate descent is convex. The key here is in solving for each of
the variable sets U, V', W, T and S, while keeping the others fixed.

Solving for U:
Fixing parameters V, W, T, S to optimize U, the objective function (3.5) re-

duces to a standard convex unconstrained quadratic program as follows:
min Ay[|S — UV|[F + Xl|C = UW[3. (3.6)

By determining the derivative of the aforementioned objective with respect

to U, and setting it to zero, we obtain:
—2X (S —UV)VT —2)(C —UW)WT = 0. (3.7)
We can obtain an analytic solution for the global minimum:

U* = (MSVT = CWHY(MVVT 4+ MWW, (3.8)
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where (-)' indicates the pseudo-inverse for a given matrix.

Solving for V:
Similar to solving for U, the matrix V can be solved as a standard uncon-
strained ridge regression problem, and the objective function can be written

as follows:
mVinMIIS—UVII%JrAsIIVII%- (3.9)

As in the previous case, we can determine the first order derivative of the
objective function in equation (3.9) with respect to V' to be zero as follows:

—20MUT (S —UV) + 203V =0, (3.10)

The aforementioned equation can be solved in order to obtain a global min-
imum for V.

V = (UTU + 21,)7'U"S, (3.11)
where [, is an identity matrix of size r x r.

Solving for W:
Solving for W is almost identical to solving for V. By fixing U, V, T and
S, we can write the objective function and the analytical solution for the

optimal value of W as follows:
mViVnA2||C—UW||2F+A3||W|y%. (3.12)
The optimal value for W is as follows:
W* = (U"U +41,)"'UTC. (3.13)

Solving for 7'
When we solve for T, while keeping the remaining parameters fixed, we obtain

a constrained least squares minimization problem:
mTin IS —T|% st: Po(L) = Po(T). (3.14)

The equality constraints ensure that non-zero entries of the link matrix L are
consistent with the corresponding position on T'. Since it is a convex problem,

the standard technique for solving equation (3.14) first sets 7' = S, and then
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applies the orthogonal projection on 7T'. In particular, we set the entries of
T in Q to be the same, as the corresponding value of L. The compressed
analytical solution for S can be written as T* = S + (Pq(L) — Pa(9)).

Solving for S:
At this point, we can also solve for S, so that equation (3.5) is minimized.

To do so, we obtain the following optimization problem:
msin IS —=T|%+M|IS=UV|3 st:SeT. (3.15)

The objective function can be further compressed by a least square term as
IS — lel(T + MUV)||4. Since the set T is a convex set, the problem in
equation (3.15) is again a convex constrained optimization problem, which
can be solved using projected gradient methods [43]. The definition of a
projection is given in 3.2.3. Then, the proximal operator associated with
equation (3.15) is in the form of projecting a point to the intersection of
a set of halfspaces T = ﬂﬁllTi # (), which can be solved using proximal
splitting methods [110]. Moreover, we observe that our objective is a simple
projection problem, and thus we can use the successive projection algorithm
to solve it efficiently [111]. This has the effect of avoiding expensive line
search procedures. The optimal S is obtained by first setting it as ﬁ(T +
AUV, then projecting it onto the convex set 7. We now provide a closed
form solution to the projection into each set T; in theorem 3.2.2, where the

formal proof can be found in appendix A.2.

Definition A mapping Il : R™™ — T is a projection associated with
convex set T, if it satisfies for any S € R™ ™, TI(S) is the unique matrix in
T that is closest to S, i.e.,

1S —Tr@) <S=51, VS eT,SeR™
with equality if and only if S” = II(S5).

Theorem 3.2.2 Suppose that T,, = {S : S;; > Six + 1}. Then, for any

S € R™™ the projection from S to the convex set T,, is as follows:

7, (S)=5"=S if SeTn,,
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Algorithm 1: Factorized Similarity Learning
Input: Content matrix C, link matrix L and ordered constraint set T
Output: Similarity matrix S
1 Initialize: U, V, W, T and S
2 repeat
3 U= (/\15VT — )\QCWT)()\lva + /\QWWT)T;
a | V=(U"U+ L) 'UTS;
5 | W= UTU+321L)'UTC;
6
7
8
9

T* =5+ (Pa(L) — Pa(9));
S =5 (T+MUV);
Slice S in row-wise into {S;.}"; to compute parallel;

for:=1...ndo

10 repeat

11 if Sij < Szk: +1 V(l,], k?) € S then
12 Sy = 3(1+ Sij + Six)

13 Szk = %(—1 + SZ']' + Szk‘)

14 end

15 until all constraint satisfied,

16 end

17 until converge or maximum iteration exceed;
18 return S

Furthermore, if S & T, then the following is true:

—14 Si; + Six)

—~

M7, (S) =5 ={ S =

To conclude this subsection, we illustrate the optimization scheme for the
proposed method in algorithm 1 and name it as the Factorized Similarity

Learning (FSL).

3.3 Large-scale Network Handling

For a large-scale network, most commodity hardware cannot hold the simi-
larity matrix S in main memory. This situation is typically arrived at when
the number of nodes exceeds 30,000. In order to alleviate this issue, we will

show that the proposed method can be easily formulated in a divide and
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Figure 3.2: Large-scale matrix handling.

conquer framework.

We first slice the similarity matrix S in row-wise fashion, into different
sub-matrices Si,...S,, where each S; € R(®™xn  Then, each S; can be
further expressed as S; = U;V, where each S; corresponds to a (n/m) x r
matrix U;. From the block-wise matrix multiplication, we know if we stack
each U; in column-wise fashion, and multiply by V', the result will be exactly
equal to the original n X n similarity matrix 5;. Doing so provides significant
memory efficiency gain. Instead of storing an n x n matrix S, we only require
(n/m) x n floating point space. In an extreme case of n = m, we achieve
the lowest memory cost. Figure 3.2 provides a visualization of extending the
proposed method into a large-scale framework.

The mathematical abstraction can be directly derived from equation (3.5)
as follows:

min Zi:l 1S; — T35 + M\ Zi:l 1S; — UV |5

U;,V,W.,T;,S; Vi
+ 20 3G = UW R+ 2a(IVIE+ [W]E)  (3.16)
i=1

subject to: Po(L;) = Pa(T;),S: € T; Vi.

Here, C;, L; and T; are the corresponding sliced content, link and bridging
matrices. The overall result is that neither the network information, nor the
completed similarity matrix S will be stored in main memory as a whole

piece, and the memory can be managed much more efficiently.

Solving for U;, T; and S;:
The process of solving for each U;, T; and S; uses a similar approach. Here,
we provide a detailed optimization scheme for U; and the idea can be easily

extended to solve for T; and S;.
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Calculating U can be seen as optimizing m sub-problems for each U; (at a
smaller scale), which has no interdependency. Moreover, the solution for U;

is exactly the same as before:
U = (MSVT = MCWH(MVVT 4 MWW (3.17)

Solving for V' and W:
Solving for V' is slightly different from the case when we treat matrices S and

U as whole. The corresponding Equation (3.9) is transformed as follows:
min Ay 1S = UV I[E + ]V (3.18)

The optimal analytical solution of V' is as follows:

vt — (Zm UTU, + §—§Ir> - (Zm UT Si> . (3.19)

The optimal value of W can be calculated in a similar manner as follows:

W — (Zm UTU; + §—1) - (Zm Ut Ci> . (3.20)

MapReduce:

The bottleneck of efficient learning is at the step of updating S or 5; in
both conventional and large-scale formulations in equation (3.15) and (3.16)
respectively. However, the proposed FSL algorithm is able to decouple the
row updates of the similarity matrix .S, involving supervised projection. Es-
sentially, this can be easily fit into a MapReduce framework to significantly
boost the training efficiency. Moreover, for the large-scale formulation in
equation (3.16), the low-rank matrices U;, bridging matrices T; and the sim-
ilarity matrix S; can also be handled in parallel to reduce the running time.
While we present these ideas as possibilities for future exploration, a de-
tailed discussion is beyond the scope of this dissertation. We refer interested

readers to [112] and [113] for background on relevant big-data frameworks.
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3.4 Noisy Data

Real-world data always contain a significant amount of noise, which could
be extremely detrimental to the algorithms. In this section, we explicitly
consider the case where the available supervision is noisy. We show how the
proposed method can be integrated with noisy intentional knowledge to yield
reliable predictions.

We previously modeled the supervised knowledge on different samples as
a set of triplet constraints &, in which each element in the constraint set is in
the form (v;,v;,vy). Specifically, each triplet supervision provides the simi-
larity information on two pairs of nodes with the same query node. When the
noise increases, similarity learning could result in poor quality. We illustrate
the problem of noisy supervision with a toy example.

Suppose that four different nodes a, b, ¢, d are given, and the correct under-
lying similarity order of using a as a query is that (a,b) > (a,c) > (a,d). If
{(a,b,c), (a,c,d)} is given as the constraint set S, we can order the candidate
nodes b, ¢, d correctly with respect to reference a. With noisy supervision ex-
amples, such as {(a, b, c), (a,d,b)} or {(a,b,c), (a,d,c), (a,c,d)}, the ranking
result will either be in an incorrect order, or may have no feasible solution.
The inconsistent supervision provides no feasible solution of S € T in Equa-
tion (3.5).

The aforementioned toy example suggests that the constraints should be
relaxed with the use of slack variables &;;;,. Intuitively, these slack variables
can account for the noise in the objective function. Therefore, the modified
optimization problem is as follows:

. . 2 _ 2 B 9
UMI}/I}%%,&% 1S = T|% + M|lS = UV]z + Xof|C = UW |5

+X(IVIE+ IWIE) + M\ Z
subject to: PQ(L) = 'PQ(T),fwk Z O,
Sij — Sik > 1 =&, V(i,j, k) €S.

(ames it (3.21)

It is worth mentioning that the core idea behind such a large-margin re-
laxation is similar to the formulation of Support Vector Machines (SVM)
[114].

A naive way to solve equation (3.21) is to use stochastic sub-gradient
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descent [115] by converting the last two constraints as a penalty term in the

objective.

: - 2 - 2
Lmin 1S =TI+ MIS = UV

+ X)lC = UWE+ As(IVIIF + W5
+ /\4 Z(i,j7k)e$ max {O, 1-— Sij + Szk}

subject to: Po(L) = Pao(T).

(3.22)

Here, A4 regulates the noise penalty. The term associated with A4 is the
hinge loss [114].

To solve the optimization problem in equation (3.22), we follow a simi-
lar procedure, as illustrated in algorithm 1 by the block coordinate descent
method. The only difference is that we compute the sub-gradient at the step
of solving .S instead of using the projected gradient methods. By fixing other

parameters to compute the optimal value of S, we obtain:

min f(S) = (IS = T|5 + M| = UVI[E

(3.23)
+ )\4 Z(ijk)es max {0, 1-— Sz’j + Szk}

This is an unconstrained quadratic programming problem. Furthermore, one
of the sub-gradients of f(5) is as follows:

UE) — oS — T) +2\(S — UV)

A 1{1 — S; + Sip, > 0} (B — E (3.24)
+ 4Z(i7j7k)es {1 =5 + Six = 0}(Eix — Eij).
Here, 1(-) is an indicator function, and FE;; = e]e;. Moreover, e; is the
standard unit vector which is a 1 x n vector with only the i*" entry set to

one, and zero otherwise.

3.5 Speed the Learning up

Comparing the formulation in equation (3.5) to (3.21), similar to SVM, the
noisy version always has the advantage in terms of robustness. Thus, in
this section, we derive a dual form of the optimization problem (3.23) which

possesses an efficient solution to make the algorithm even more suitable for
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big data.
Using the slack variables {&;;;}, equation (3.23) is equivalent to

: _ 2 _ 2 g
min [|S = TlF+M|IS —UVIE+ DS 3.35)
subject to: §x >0, Sij — Sie > 1— & V(i,5,k) € S.

Note that each row of S in the primal problem (3.25) can be optimized
separately, since the rows of S are independent of each other in both the
objective function and the constraints. Similar to what we discussed in the
subsection 3.3, solving S in a row-wise manner significantly facilitates large
scale applications and benefits from parallel computing. Let S; denote the

i-th row of S, then the optimization problem for each S; is written as:

1 Jpp— . 2 Jpp— . 2 ..
min [[S; = Tillz + A5 = UiV ]lz + s Z(myk)es St (3.26)
subject to: &1 > 0, Sy — Si > 1 — &,

which is a constrained convex optimization problem. It can be solved by its
dual problem due to the strong duality according to Slater’s condition [43]. In
the sequel we show that the dual problem is a box constrained quadratic pro-
gramming problem which can be solved efficiently by the coordinate descent
algorithm. As opposed to the subgradient method for the primal problem,
the limited inequality constraints leads to a dual problem that can be solved
much faster by coordinate descent.

With the dual variables ;j, > 0 and 3;;, > 0 for the inequality constraints,
the Lagrangian of the optimization problem (3.26) is

3.27
— Z(i,j,k)es (aijk<5ij — S+ & — 1) + ﬁz‘jkfijk)-
Taking the derivative of £ with respect to S; and {{}, we have
oL =2(5;, = T; 20 (5; — U,V ip(es (3.28)
03, (Si = Ti) +2M(S; = U;V) — Z(i’j’k) k(e — er), .
and
oL o
= )\ — Qi — B”k, \V/(l,j, k’) eS. (329)
O&ijk
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Letting derivatives in equation (3.28) and (3.29) be zero, we have

. Z(ijk)es ozijk(ej —ek) +2)\1UZV+2E
S = A , and
242\ (3.30)
ik + Bije = M, Y(i,7,k) € S.

We further denote by ay, 3;, & the vectorization of ok, Bijr and &, with
(1,7, k) € S respectively. R; = {(j,k) : (i,7,k) € S} is used to represent
indices of the elements of S; that appear in the constraints, and «;, 5;, &
are of size 1 x |R;|. Moreover, we define the matrix M; of size |R;| x n
whose rows are comprised of {e; — ey, (i,7,k) € S}, and the rows of M are
arranged in the order such that o;M; = Z(i,j,k)es a;ji(ej — ex). With these

new notations, S; can be rewritten as

= . 3.31
! 1+ )N 2+ 2\ ( )

Substituting S} (3.31) into the Lagrangian (3.27), we obtain the dual problem

below, which is a box constrained Quadratic Programming (QP) problem:

1
min P(o;) = éaiQiaZT —ar] subject to: 0 < a; < Ay, (3.32)
where M, MT UV + T,) M
M V 4+ T M:
= =1 sy 3.33
@=aay " 1+ M (3:33)

1 is an all-ones 1 X R; vector, and the inequality in (3.32) is the element-
wise inequality. In addition, according to the KKT conditions, the optimal

solution of the primal and dual variables should satisfy:

@is(Si — Sik + &ijr —1) =0
ﬁiséis =0
Qs + Bis = A1, aus >0, Bis > 0,

where «;; is the s-th element of «; and 1 < s < |R;|. 7, k are the indices that

correspond to the s-th constraint. Combined with the primal constraints in
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equation (3.26), it follows that

a; =0 = S;; —Sr>1
O0< s <Ny = Sij — S =1 (334)
Qs = Ay, = Sj — S < 1.

Note that ); is positive semi-definite, but it may not be positive definite.
Also, it can be verified that the diagonal elements of (); are all Tl)\l since
the diagonal elements of M; M. are all 2. We use coordinate descent method
[116] to solve the optimization problem (3.32). In each iteration of the coordi-
nate descent, the objective function P(«;) is minimized in a coordinate-wise
manner. Suppose a; = {aj;, ¥, - .., &} is the value of a; in t-th iteration
for t > 0, the coordinate descent method minimizes ;s for s = 1,2, ..., |R;]

with other elements fixed:

t+1 : t t
o = argmin P, g, - - gy
Qi1
t+1 _ - t+1 i+l t ¢ (3.35)
a7 =argmin P(ag oy ..o, Qus, Qi(s41)s - - - 7%’|Ri|)
Qs
1 i t+1 t+l t+1 ‘
Q| = Argmin Plag a5 ...  (Rs |- 1) iRy
| Ry |

To illustrate the coordinate-wise minimization in (3.35), we show how to opti-
mize over o;; with all the remaining elements {1, . . ., Qi(s—1), Qi(s41), - - - » ViR }

fixed. In this case, the optimization problem of equation (3.32) is reduced to

1
min P(ay,) =

—— 02 — Ryays, st 0 < ays < A4, 3.36
Qs 2(14+Ay) ™ - = ( )

where Ry, = 15— > @ (Q;)su. Equation (3.35) is an univariate QP problem,
uF#s
and P(q;s) achieves its minimum at

)\4 : R5(1+)\1> > )\4
aj,=4q R(l+XN) : 0<SR(1+X)< N\ (3.37)
0 - R5<]. + /\1) < 0.

The coordinate descent algorithm for the dual problem (3.32) for each 1 <

1 < n is summarized in Algorithm 2.
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Algorithm 2: Coordinate Descent Algorithm for the Dual Problem
(3.32)

Input: U;, V, Ay, R;: the constraint set, a?: the initial value of o, €q:
the stopping threshold, 7,.,: the maximum number of
iteration

Output: The i-th row of the similarity matrix .S;

1 Initialize: t = 0, o) is set to be an all zeros vector. Compute Q;, 7
according to (3.33).

2 fort=0...7,.,—1do
3 for s=1...|R;| do
4 =7ris — > Qu(Qi)su, Rs is computed using
u#s
5 {affl» R fél—nv O‘f(s+1)7 aE 7O‘§|RZ—|}-
)\4 : Rs(l + /\1) > )\4
6 P =1¢ R(1+XN) @ 0<R(1+XMN)<N
0 @ Rs(1+X)<0
7 end
if ||t — o]y < go then

‘ The algorithm converges and break
10 end
11 =t+1
12 end

MU VAT + a; M;

e 12y using the obtained optimal solution o7

13 Compute S; =
14 return S;

In addition, the dual problem (3.32) has a nice property regarding the
number of iterations required to converge. Let P* denote the minimum
value of the objective function for the dual problem (3.32), and {af}?°; be
the sequence obtained by the coordinate descent algorithm 2 with g9 = 0
and Tyax = 00. Based on the property of the coordinate descent algorithm
[116], algorithm 2 converges and obtains the globally optimal solution to
the dual problem (3.32). In fact, since the sequence {af}:2, is bounded,
it contains a subsequence that converges to the optimal solution to (3.32)
where the optimality condition is met. In practice, the stopping threshold g
is a small positive number and 7p,., is finite. For 5 > 0, theorem 3.5.1 gives
the upper bound for the number of iterations required for the convergence of

algorithm 2. The proof is shown in appendix A.3.

Theorem 3.5.1 The coordinate descent algorithm 2 converges after at most

[2IRZ‘|(PO;I;*)(H)‘1)-‘ iterations, where Py = P(a?) is the initial value of the
0
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Table 3.1: The detailed statistics of the datasets.

DBLP | DBLP-clean | CoRA

Number of node 28,702 2,760 15,644

Number of edge 133,664 7,636 59,062
Number of node with label | 4,057 2,760 15,644

Number of class 4 4 10

Content dimensionality 13,214 13,214 12,313

objective function.

We run Algorithm 2 for ¢ = 1...n to obtain the entire S, and the com-
putation of S can be parallelized by computing {S;} separately. Moreover,
according to Theorem 2, letting ¢y be the stopping threshold of the coor-

dinate descent method in Algorithm 2, and |R;| be the number of con-
2|Rz‘|(P0*Pi*)(1+>\1)—‘ it
E: -

erations, where Py = P(a) = 0, P is minimum value of the objective

straints in S;, Algorithm 2 converges after at most [

function for the dual problem (32). Therefore, the time complexity for
computing S; is O(|R;|? [ww + rn). Let Rpax = maxj<i<n, R;

€o
be the maximum number of constraints across all the rows of S, P, =
min;<;<, P, then the time complexity for completing the entire S sequen-
tially is O(n|Rmax|? P‘Rm"HP’Ei“l(lﬂl)w +rn?).

€0

3.6  Evaluation

In this section, several experimental results are presented on different datasets
in order to validate the effectiveness and efficiency of the proposed FSL
method. We also present robustness results in terms of parameter sensi-
tivity and noise tolerance. Our FSL approach on two real datasets and one
synthetic dataset significantly outperforms other existing off-the-shelf meth-

ods.

3.6.1 Datasets

The detailed descriptions of the datasets are as follows:

DBLP-Four-Areas: DBLP is an online collection of computer science. It

is a source of cross-genre information, including content (e.g., keywords of
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papers) and links (e.g., co-author relationships, and user friendships). In
this chapter, we use the DBLP subset from [37], which contains 28,569 re-
search papers from 28,702 authors, published in 20 conferences. The content
information for each paper is extracted from its abstract, and represented
using a bag of words. Moreover, 4,057 authors are labeled by four areas,
corresponding to database, data mining, information retrieval, and artificial

intelligence.

DBLP-Clean: A cleaned version of the DBLP-Four-Areas is also extracted
from the original dataset. This cleaned dataset, removing all the authors who
do not have, any connection with others or who have no labels, includes 2,760
authors and is labeled by four areas. It is utilized to analyze the performance

of the proposed algorithm and verify the robustness on parameter selection.

CoRA: This dataset is comprised of computer science research papers, and
includes full citation graph and the topics (and sub-, sub-subtopics) of each
paper [117], resulting in over 80 labels. Instead of using such a huge label
space, we used the hierarchical structure of the labels provided by the dataset,
and used the higher level labels. In our setting, there are 10 group labels, to
identify the class of each paper.

Summary statistics of the datasets are illustrated in table 3.1.

3.6.2 Baseline Methods

We compared our proposed method with a number of baseline algorithms

including the following:

Euclidean Metric: The standard Euclidean distance between content vec-

tors measures the inverse of the similarity between two nodes.

PMF [57]: Probabilistic Matrix Factorization treats the link matrix L as the
utility matrix to complete. PMF only utilizes the existing linkage information
as observed entries. The stronger a link between a pair of nodes, the greater

the similarity between them.

NMF [85]: Nonnegative Matrix Factorization is similar to PMF in which

the link matrix L is used to be completed.

LAD [9]: Locally-Adaptive Decision function learning uses both content
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and supervision information to learn a local non-isotropic similarity function

beyond the traditional generalized Mahalanobis metric.

CFSL: Content-based Factorized Similarity Learning is a special case of our
FSL algorithm by setting Ay, = 0 in Equation (3.22). CFSL is still able
to incorporate both link and content information in a globally factorized

manner.

SSMetric [8]: Semi-Supervised Metric learning incorporates knowledge
from sparse linkage information and is used as neighborhood graph. It is
a variant of the originally proposed method, which is modified to allow it
to use the linkage structure. The intentional knowledge can be propagated
through the link graph L to learn a distance metric on the content vector

space.

In summary, the first two baselines learn a similarity measure based only
on content or linkage information in an unsupervised manner. LAD utilizes
both content and supervised knowledge. CFSL evaluates the proximity on
both contents and links. SSMetric is similar to our method in terms of incor-

porating different information sources on content, linkages and supervision.

3.6.3 Experimental Settings

In our experiments, we simulated the real-world scenario on similarity learn-
ing as a retrieval problem. We start by explaining the experimental settings
with an example. As illustrated in figure 3.3, we divide all pairwise nodes
into two disjoint groups parameterized by two variables p, and p; indicating
the level of supervision. For instance, if p, = 0.5 and p, = 0.6, then it means
0.5+ 0.6 x (1 —0.5) = 80% of entries are provided supervised knowledge,
and the remaining 20% do not have any information about relative ordering.
It is worth mentioning that if we divide the training and testing portions
into portions of size 80% and 20%, it does not mean that the full triplet
constraints will be given for the training region. Another hyper-parameter s
controls the number of triplet orderings provided for the training region. In
our experiments, s is usually set to the range of 5 to 20.

Since the ground truth provided in both the DBLP and CoRA datasets are

explicit multi-class labels, we need to convert them into triplet constraints.
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One way of achieving this is to generate triplet constraints, is by setting
nodes with the same label as a similar pair and nodes with different labels
as dissimilar. In other words, the triplet constraint (i, j, k) € S is generated
by randomly choosing two nodes v; and v; with the same label. And v, has
a different label with v; and v;.

The implementations of LAD and SSMetric methods use pairwise con-
straints instead of triplets. Although straightforward conversions exist from
pairwise settings to triplet in most metric learning based algorithms, we obey
their original implementation by converting triplet constraint to pairwise in
the following way: each triplet constraint (7, j, k) is split into two different
sets, that is, (v;, v,) as a similar pair and (v;, vy) as a dissimilar pair. Another
issue for these two baselines is that they are not able to scale up to a high
dimensional setting. Therefore, we perform Principal Component Analysis
(PCA) to reduce the dimensionality to 1,000 as a preprocessing step.

For each dataset, we initialize our similarity matrix S by the link matrix
L with a small constant value to each entry. The purpose of adding a small
constant value in S is to prevent a row or a column of S without any initial
value. Adding a constant value to every entry of the similarity matrix will
not affect the performance, since we only emphasize the ordered information
instead of the explicit entrywise values. Similar initialization is conducted on
the bridging matrix 7" as well. To initialize the low-rank matrix U, V and W
we use a Laplace distribution with zero mean and a scale parameter value of
one. In addition, the content matrix C' and the link matrix L are normalized
to remove the scale variations. To evaluate the performance, we compute the
averaged precision at each level k (denoted as PQk) across different query

nodes.

3.6.4 Results

In this section, we present the results from our proposed FSL approach and
the aforementioned baseline methods on both DBLP and CoRA datasets.

All experimental results were averaged over 10 runs.

DBLP:

According to our experimental settings, we provide each node 30 triplet con-

35



Figure 3.3: The experiment settings; yellow region indicates the training
while blue is the testing entries.

straints as the intentional knowledge and report the comparative performance
with other baseline methods in figure 3.4. It is evident that the proposed
method achieves the best performance across all ranges of the ranks tested.
On the other hand, link-based methods such as PMF and NMF achieved
the poorest performance. The other methods achieved intermediate perfor-
mance. The LAD method achieves the second best performance for learning
similarity between authors in the publication network.

An interesting observation is that all methods using linkage information
performed worse than the content-based methods, except for the proposed
FSL scheme. The reason for this is that the noisy links can often hurt the
proximity approximation. Predictions from PMF and NMF methods are
based only on the sparse noisy links without any global content bias. CFSL
utilizes both content and linkage information. However, the noise encoded
in the linkage structure prevents good prediction results. SSMetric is similar
to the proposed FSL method which uses linkage, content and supervision
simultaneously. However, it is particularly poor at handling noise because of
its inability to prevent similarity propagation along noisy links.

The LAD algorithm incorporates the supervised information to learn se-
mantic proximities, which outperform unsupervised content methods. How-
ever, the useful information within the linkage structure cannot be utilized
to enhance the performance. The proposed FSL approach is able to iden-
tify these unreliable links and eliminate their contributions by transferring
and fusing the knowledge from content and supervision. In such a way, in-

fluential links can be emphasized, so that FSL achieves the best performance.
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Figure 3.4: P@Qk curve on the DBLP  Figure 3.5: PQk curve on the CoRA
dataset. dataset.

CoRA:

Since the CoRA dataset is somewhat smaller than DBLP in terms of the
number of nodes and links, we only provided 15 supervised examples per
node. We reported the top 50 retrieval results for each baseline method
in Figure 3.5. We obtain similar results to the DBLP dataset, on which
the linkage-based method performed poorly. The PMF and NMF methods
obtain the worst result. Although the performance of CFSL and SSMetric is
comparable with the standard Euclidean metric, they are still not quite in
the same league as the LAD approach.

The proposed method outperforms LAD by more than 10%, starting from
rank 5, and retains this performance beyond this point. It shows that the
proposed FSL method not only estimates the proximity of top candidates
correctly, but also retains a very high recall in the retrieval tasks. Our
proposed method is very robust in terms of the similarity learning across
different datasets.

Discussion:

Comparing the experimental results we obtained from figure 3.4 and figure
3.5, we discover that the precision decreases much slower with & increases
for the DBLP dataset. Specifically, the precision of our proposed method at
50 for the DBLP dataset still remains around 0.85 while the CoRA dataset

only has 0.7 left. Similar observations are also reflected from other baselines.
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This is due to the number of classes for the CoRA dataset being significantly
larger than in the DBLP dataset. In addition, the labels’ granularity is
much finer for the CoRA dataset, which imposes huge challenges to correctly
retrieve other “similar” nodes. Although the absolute precision of our model
for the CoRA dataset is lower than that for the DBLP dataset, the relative
performance of our algorithm compared to the second best method is much
better. This implies that our performance drops much slower compared to

other baselines when the retrieval task gets much harder.

3.6.5 Parameter Sensitivity

The main parameters of the proposed FSL algorithm are the weight param-
eters )\;, the portion of supervision information s (the number of constraints
provided in training for each user), and the rank of matrices U and V' (de-
noted as R). To validate the robustness of parameters and analyze the effect
of each parameter on the final result, a group of experiments were conducted
on the clean DBLP dataset. It is a small dataset, obtained by cleaning all
the noise from DBLP, and contains links, content and four classes. We use

the strategy in Section 3.6.3 to generate supervision information.

Control Parameters \;:

The performance with varying \; is shown in figure 3.6, in which A, is fixed
at 7, R = 10 and s = 12. \; controls the importance of linkage information
considered in factorization. As shown in figure 3.6, the performance is stable
when A\; > 1. The results suggest that as long as sufficient linkage infor-
mation is provided, the content similarity and supervision can be robustly
propagated along the topological structure.

Similarly, the effect of Ay is shown in figure 3.7, and the performance is
robust to parameter setting when Ay > 3. It validates the importance of
global (content) information on similarity learning. The robustness in pa-
rameter choice reflects how optimality is achieved with the help of underlying
topological structure spread with linkage information.

A comparison between figures 3.6 and 3.7, yields some interesting obser-

vations:

e when \; increases, the performance drops slightly;
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e when )\, increases, the performance improves slightly.

This observation is in agreement with our experimental results in Section 3.6.4.
For this particular task assignment, linkage information is not as useful as

content similarity.

Control Parameters s:

Figure 3.8 shows the effect of supervision on the FSL algorithm, fixing
A = 1.5, Aa = 7 and R = 10. It is obvious that given a certain number
of constraints for each user, i.e. s > 10, the performance is fairly stable
regardless of the value of s. These results suggest the following:

s increases: As more supervision is provided, the FSL algorithm will adjust
the topological structure of networks relying on trustworthy guidance. In this
situation, the information propagation will be more efficient. On the other
hand, diminishing returns are achieved for increasing s beyond a certain
point.

s is small: In this case, the algorithm focuses most of its efforts on fitting
a small portion of supervision. This has a detrimental impact on the whole
structure of the network. As a result, the performance is not very good in
this range.

In this experiment, the percentage of supervision is p, = s/N(U), which is
approximately 4 x 107, This is much smaller than a typical social network,
e.g., Facebook, where there are hundreds of labeled links (i.e., friendships)
on average for each user. Therefore, the algorithm is practical in real-world

scenarios.

Low Rank Approximation R:

Finally, the effect of matrix rank R is shown in figure 3.9. As observed in
the figure, the performance increases stably after R > 8. Considering the
fact that the samples in the DBLP dataset are labeled with 4 classes, it
is feasible to assume R > 4. Typically, the value assignment of rank R is

application-dependent.
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3.6.6 Noise Tolerance

In this section, we present the performance on error tolerance using the large-
margin formulation proposed in equation (3.21) on the DBLP-clean dataset.
We tested the FSL method with different levels of noise in the supervision in
figure 3.10. The color of the histogram indicates the level of noise injection.
Furthermore, the different groups in the histogram show the retrieval result
at different ranks. We observe that when the noise level is low (1% or 5%)
the proposed method maintains very good results, and the retrieval precision
decreases very slowly with increasing rank. However, when the noise level
becomes high, the FSL method obtains a poor recall. Overall, figure 3.10
demonstrates that our proposed method is robust to a low-level of error

tolerance.

40



Error Tolerance on Clean-DBLP dataset
T T T

I 1%
0.9t 5% H
C10%

0.8} = I 20% ||

0.7r

0.6

0.5F

Relavance Precision

0.4r

0.31

0.21

E

0.1

5 10 20
P@k

Figure 3.10: Error tolerance: different color indicates the percentage of
supervision randomly flipped.

3.6.7 Efficient Solution by the Dual

Directly solving the primal problem (3.23) needs to handle n? elements of S
by the subgradient method. In contrast, the efficient dual solver only deals
with |R;| variables for each row of S, with a total of n|R;| variables, and it
leads to a much more efficient solution. We perform the comparison of com-
putational time between the optimization of (3.23) in the primal form using
subgradient versus the dual form using quadratic programming by coordinate
descent. Figure 3.11 shows the comparison of the computational time using
fixed number of users n = 10%, with the number of constraints varies within
{1,100, 200, ...,1000}. It is observed that the dual method always needs less
time than the primal method. In addition, both of them take more time with
the increasing number of constraints. With more constraints, more compu-
tational cost arises when computing the subgradient for the primal method,
and there are more variables in the dual method. Figure 3.12 illustrates
the comparison of the computational time using fixed number of constraints,
i.e. |R;| = 100 for all rows of S, with the number of users varies within
{10%,10°,2 x 10°,...,10°}. In this case, the number of variables for the dual
method is fixed, and the number of variables for the primal method increases
quadratically with the number of users. We can see that the dual method is

significantly faster than the primal method. Also, the computational time of
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Figure 3.11: Comparison of Figure 3.12: Comparison of
Computation Time with varying Computation Time with varying
number of constraints and fixed number of users and fixed number
number of users. of constraints.

the dual method increases with more and more users, since the dual method
still needs to compute Q;, r; and S; for each row of S.

Note that the rows of S can be computed separately. In both comparisons,
the first 300 rows of S are computed, and the Frobenius norm of the difference
of S computed using the primal and the dual is always less than 10~7. The
maximum number of iterations for the subgradient method in the primal and
the coordinate descent in the dual is 200. We perform the comparisons on a
Desktop with 16 GB memory and Intel i7-4770 3.4 GHz CPU.

3.7 Conclusion

In this chapter, we proposed a novel similarity learning approach, termed
as FSL, to measure node-based similarity in large networks within a matrix
factorization framework. We propose a holistic model, which leverages net-
work topological structure, node content and user supervision. The proposed
method is able to ameliorate the impact of noisy linkage structures by fus-
ing and transferring knowledge from other domains. At the same time, the
reliable linkages are used effectively in conjunction with content and user-
supervision. By embedding content and links into a unified latent space, the
supervision can correctly guide the factorization process. We show extensive
experiments on real-world datasets. The proposed FSL method significantly
outperforms other state-of-the art approaches in node-based retrieval, and is

efficient and highly robust for noisy supervision.
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CHAPTER 4

VARIED DATA

In the previous chapter, we illustrated how supervised information is ex-
tremely useful in distinguishing the notion of “similarity” in networks from
its dual aspects. The content associated with each node is explicitly consid-
ered as homogeneous, which means it belongs to a single modality. However,
“variety” is one of the three-V characteristics of big data; it is more realistic
to assume the inputs for real-world systems consist of data from different
domains.

In this chapter, we further investigate the problem of similarity learning
in more depth by examining heterogeneous networks, where the content and
nodes are of various types. Such networks are notoriously difficult to mine
because of the bewildering combination of the heterogeneous content and
structure. We aim to alleviate the “variety” challenge posed by big data by
creating a unified embedding framework for heterogeneous networks, which
converts each network node into a multidimensional representation in an un-
supervised fashion. In other words, a desired embedding scheme serves as a
feature learning process to transform every node to a vectorized representa-
tion by encoding both content and link similarity from networks. The idea
of a network-preserved embedding is illustrated in figure 4.1. The creation
of the network embedding opens the door to the use of a wide variety of

off-the-shelf learning techniques for multidimensional data.

4.1 Heterogeneous Network Representation

A heterogeneous network [60] is defined as a network with multiple types
of objects and/or multiple types of links. As a mathematical abstraction,
we define an undirected graph G = (V, &), where V = {vy,...,v,} is a set
of vertices and & is a set of edges. An edge e;;, Vi,j € {1,---,n} belongs
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Figure 4.1: The flowchart of the proposed Heterogeneous Network
Embedding (HNE) framework.

to the set £ if and only if an undirected link exists between nodes ¢ and
j. Moreover, the graph G is also associated with an object type mapping
function f, : ¥V — O and a link type mapping function f. : £ — R, where
O and R represent the object and relation sets, respectively. Each node
v; € V belongs to one particular object type as f,(v;) € O. Similarly, each
link e;; € £ is categorized in different relations as f,(e;;) € R. It is worth
mentioning that the linkage type of an edge automatically defines the node
types of its end points. The heterogeneity of a network is reflected by the size
of the sets O and R, respectively. In the case of |O| = |R| = 1, the network is
homogeneous; otherwise, it is heterogeneous. An example of a heterogeneous
network is illustrated in the left-hand side of figure 4.1, which contains two
object and three link types. For further ease in understanding, we will assume
object types of image (/) and text (7'). The link relationships R correspond
to image-to-image (red dotted line), text-to-text (green dashed line) and
image-to-text (blue solid line), which are denoted by R;;, Rrr and Ryr,
respectively. Therefore, in this case, we have |O] = 2 and |R| = 3. While this
simplified abstraction in the text and image domain is both semantically and
notationally convenient for further discussion in this chapter, this assumption
is without loss of generality because the ideas are easily generalizable to any
number of types.

Thus, any vertex v; € V can be categorized into two disjoint subsets V; and

Vr corresponding to the text image domains, respectively. Therefore, we have
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ViUVr =V and VNVr = ¢. Similarly, the edge set £ can be partitioned into
three disjoint subsets, which are denoted by &;;, Err and &E;r, respectively.
Furthermore, each node is summarized by unique content information. In
particular, images are given as a squared tensor format as X; € R4rxdrx3
for every v; € V;, while texts are represented by a dp-dimensional feature
vector as z; € R for all v; € Vr. For example, the content representation
could be a raw pixel format in RGB color space for images, or it could be
the Term Frequency - Inverse Document Frequency (TF-IDF) [10] scores of
a text document. We represent linkage relationship as a symmetric matrix
L € R™" in which the (7, 7)th entry of L equals one if ¢;; € &; otherwise

L;; = —1 (for model simplicity).

4.2 Heterogeneous Network Embedding

In this section, we present Heterogeneous Network Embedding (HNE) math-
ematically by first introducing a novel loss function to measure correlations
across networks. Essentially, the embedding process encodes both heteroge-
neous content and linkage information to a multidimensional representation

for each object.

4.2.1 Latent Embedding in Networks

The main goal of the heterogeneous embedding task is to learn a mapping
function to project data from different modalities to a common space so
that similarities between objects can be directly measured. Assume that
the raw content X; associated with an image node can be transformed to a
d}-dimensional vector representation as x;. The conversion of the raw input
data into this dj-dimensional vector representation can be achieved by using
any feature machines. A naive approach to do so is by stacking each column
of an image as a vector or through feature machines. It is worth pointing
out that the values of d} and dy need not be the same, because images and
text are defined in terms of completely different sets of features.

We transform two types of samples to a uniform latent space with the use
of two linear transformation matrices, denoted by U € R%*" and V € R4 ",

for the image and text domains, respectively. The transformed samples are
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denoted by  and Z for images and text documents, respectively, where we
have:
T=UTz,and 2 =V72. (4.1)

Even though the image and documents may be represented in spaces of dif-
ferent dimensionality, the transformation matrices U and V' map them into a
common r-dimensional space. The similarity between two data points with
the same object type can be presented as an inner product in the projected

space as follows:

s, ;) = @5 = (UT2) U ;= af My,

(4.2)
s(zi,2) = &2 = (V') V% = 2] Mrrz;.

Note that the embedding into a common space also enables similarity com-
putation between two objects of different types, such as text and images, as
follows:

s(xi,25) = 77 2 = (U )"V 2 = a] Myrz;

(4.3)
= %Tfl = (VTZj)TUT.iL'i = ZJTMITT.’L'Z

Here, M;; € R4 and Mypp € RIT¥IT gre positive semi-definite matrices
while M € R%>*4r  The latent embedding is closely related to similarity
and metric learning that has been widely studied in the literature [9]. It
suggests that the correlations between two nodes in a network can be either
parameterized by the projection matrices U and V' or through a bilinear
function defined by the matrices M;;, Mpr and M;p. This provides the
flexibility to model the heterogeneous relationship in an application-specific
way.

The heterogeneous objects interact with each other either explicitly or
implicitly. These interactive pieces of information are represented as het-
erogeneous linkages in networks. The assumption is that if two objects are
connected, the similarity measure between them should reflect this fact by
providing a larger value compared to the ones that are isolated. Consider
a pair of images denoted as x; and z;. To encode the link information, we

design a pairwise decision function d(z;, z;) as follows:

>0 if L;; =1
d(z;, x; 7 ’ 4.4
( ]) { < (0 otherwise. (44)
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Note that to infer d we need not know the respective entry value of L, or
require heterogeneous nodes to be in-sample. This means that the approach

has the generalization ability to embed samples from unseen nodes. Consider
d(xwx]) = S(xiaxj) _tIIa (45>

for all v;,v; € V;, where t;7 is a relational based bias value. Then, the loss

function can be formulated as follows:
L(w;, ;) = log (1 + exp (—L; jd(w4, 7;))), (4.6)

which can be seen as a binary logistic regression guided by network linkages.
The loss function of text-text and image-text are similar to equation (4.6) by
simply replacing s(-) with that of the corresponding modality. Similarly, the
bias terms, denoted by trr and t;7, can be set to the corresponding ones. It

leads to our objective functions in the form of:

min 1 Z L(xi,xj)—f—L Z L(z;, z;)

vV NI[ v;,v; €V NTT vi,v; €V (4 7)
Ao '
N > Ll z) + X(IUIE+ VIR,

UiEV[,Uj EVr

where Ny7, Nppr and Nyr are the numbers of the three types of links in the
network. Furthermore, A, Ao and A3 are the three balancing parameters, in
which the first two control the emphasis among three types of linkages and
the last one is used to balance the so called bias-variance trade-off. The bias
terms in the loss functions can be either treated as learning variables or set
to fixed values. For simplicity, we set these bias terms to constants.

The aforementioned objective function can be efficiently solved with coor-
dinate descent methods, which solve for each individual variable while keep-

ing the others fixed.

Solving U:
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Fixing parameter V', the objective function (4.7) can be reduced as follows:

mUin Z log <1+€ Lage; UUT%) + Xs|UI%
vl,v eVr
J)\z R (4.8)
D DI (Rt k)]
viEV[,vjEVT
The gradient is given by the following:
(- 1 —L; j(xal + z2T)U
o0) _ 1 > 5(22 - TJ> + 203U
oU Ny iy, 1 4 elijz; UUT;
Y . (4.9)
i )\2 Z —meizj Vv
L; jxTUuvTz; "
NIT v1€V],’Uj€VT 1 + e !
Solving V:
Similarly, the variable V' can be handled as follows:
mln Z log (1+e Lig=l VVT2 ) + \3||V[|%
i ”’iVT (4.10)
2 —L; jaTUV Tz,
+NIT Z log(l—i—e j J>_
’UZEV]{UJ‘GVT
Taking the derivative with respect to V', we obtain:
(- h —Li (228 + 22TV
ﬁ: 1 Z (2 B TJ) LNV
oV Npr W= 1+ eligz VVTz
o (4.11)
4 )\2 Z —L; ,jzj U ‘
Nrr 1 + eliiei UVTz

UZEV[,’U]' EVr

So far, we have shown that our loss function integrates network structures
that map different heterogeneous components into a unified latent space.
However, such embedding functions are still linear, which might lack the
power to model complex network connections. In the following, we will

present how Equation (4.7) fits into the deep learning framework.
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4.3 A Deep Embedding

The previous section, we broke the learning down into two steps: 1) manually
construct a feature representation, 2) embed different modalities into a com-
mon space. In this section we tightly integrate these two steps into a deep

learning framework by learning the feature representation and embedding

together:
. 1 2 2
o, Ty D Lo (X000, () + (1T V)
)\1 )\2
t > Llgpe(z1), apr (%)) + N > Llpp,(X0), 4o, (%))
T Ui,UjEVT 1T ’UiGV],ijVT

(4.12)
Here, p(-) and ¢(+) are two nonlinear functions parameterized by D; and Dr.
D; and Dr are two sets of parameters associated with the deep image and text
networks, respectively. Specifically, we utilize the convolutional structure as
building blocks to learn image features while fully connected (FC) layers are
used to extract discriminative representations for pre-processed texts. The
feature learning and information embedding are mutually reinforced by our
approach.

The image module exploits spatially local correlations by enforcing a local
connectivity between neurons from adjacent layers. The parameters on each
layer are referred to as filters. The architecture confines the learned filters
to reflect the spatial local patterns of images. In addition, each sparse filter
is replicated across the entire visual field, which shares the same parameters
(both weights WF and bias b%). The output of each filter is usually termed as
a “feature map,” and conceptually, a feature map is obtained by convolving
an input image with a linear filter, adding a bias term and then applying
a non-linear function. We denote the k-th feature map at a given layer (a
given depth) as h¥, which is determined by the corresponding weights W*

and bias b*. Then, the feature map is obtained as follows:
h* = max{0, (W* x M) + b*}. (4.13)
Here, x denotes the convolution operation and M is an input from the previ-

ous layer of the deep image module. The definition of convolution of a filter
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Figure 4.2: An example of the deep image module which consists of five
convolution layers and two fully connected layers.

g with a 2D signal f is as follows:

ofm,n] = flm,n] x glm,n] = S 37 fluolglu—moo—nl.  (414)

U=—00 V=—00

Moreover, the max{0,-} operator, called the ReLLU [94], provides the non-
linearity. To form rich representations of a given dataset, each layer is
composed of multiple feature maps so that each filter W* forms a three-
dimensional tensor for every combination of source feature map, vertical and
horizontal size. A graphical illustration of the image module is provided in
figure 4.2, which contains five convolution layers and two FC layers. Each in-
put image X € R4*%>3 is represented as a 4096-dimensional vector through
a series of nonlinear operations in both the training and testing phases. Once
the set of parameters Dy is fixed, the feature of each individual input image
is deterministic.

In contrast, since text documents are unstructured and do not contain
spatial information, fully connected layers are commonly used to extract
application orientated features on top of TF-IDF inputs. The feature trans-

formation is expressed as follows:
qp,(2) = max{0, Wrz + br}. (4.15)

This is performed through a single fully connected layer, where Wy € R™*4r
and by € R. The term r indicates the number of neurons in a given layer.

Similarly, rich representations can be learned by stacking multiple fully con-
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nected layers with different number of neurons (r can be set to different
values in different layers) to construct the deep text architecture for word
documents.

Since the linear heterogeneous embedding in section 4.2.1 can be viewed
as transforming inputs to a common space, we can achieve this by cascading

an extra linear embedding layer to each deep module. Define

ﬁD}(X> = UTpDI (X)7 and qD&«(Z) = VTpDT (2)7 (416>

where D) = Dy U{U} and D). = Dy U {V'}. Then, the objective function in

equation (4.12) is equivalent to the following:

1
min —— L'(pp (X)), ppr (X)) + —— L' (ipr (2), Gor (2
iy 2 DO B0+ n 3 Loy (). ()

A B N
+N_2 Z L’(pD/I(Xi),QD'T(Zj))-
T v €V, V€V
(4.17)

The problem of over-fitting can be effectively prevented by using Dropout

93] instead of Ly regularizations. The new loss term L'(-,-) is defined as
L'(a,b) = log (14 exp (—A4;;a"b)), (4.18)

for any vector a, b with a same dimensionality. For simplicity, we refer to both
deep image and text modules as a series of nonlinear feature transformations
with an additional linear common space embedding.

To perform end-to-end HNE learning, we connect the deep image and text
modules accordingly to the image-image, text-text, and image-text losses
in equation (4.17). As an example, we illustrate the text-text module in
figure 4.3, and the other two can be extended in a similar manner. Figure
4.3 contains two text modules that comprise the pairwise text-text module.
The illustrated deep text-text module contains two FC layers followed by a
linear embedding layer. A pair of text documents is fed from the left and
computed in a left-to-right direction. The outputs from the embedding layer
are the vectorized representation of corresponding objects in the common
latent space. These are further channeled to a prediction layer to calculate
the loss using equation (4.17). To make the text-text module symmetric

(feeding the same objects from the top or the bottom pass of the text-text
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Figure 4.3: An example of the deep text-text module by concatenating a
pair of text modules. Same coloring indicates shared weights.

modules will lead to a same latent representation), we need to tighten these
parameters. In figure 4.3, if two neurons have the same color, they share the
same weight and bias.

The overall architecture of learning such a heterogeneous embedding func-
tion from a given network is visualized in figure 4.4. Three modules are shown
in the figure, corresponding to image-image, image-text and text-text from
left to right. These are connected to the prediction layer. Pairwise train-
ing samples are formed as mini-batches feeding from the bottom to the top.
Once the value of the loss has been obtained, the gradients of each parameter

in the deep network are calculated using backpropagation techniques.
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4.3.1 Optimization

The objective function in equation (4.17) can be efficiently minimized by
Stochastic Gradient Descent by sampling mini-batches from the training
set. The advantage of training stochastically is that each mini-batch can
be loaded onto GPU and computed in a parallel scheme if needed. Popular
open-source deep learning packages using GPU-based implementations in-
clude Cuda-convnet [92], Caffe [118] and Theano [119], etc. For each input

image pair, the gradient of D} is given as follows:

o() _ () 815@;(Xi)+ () Opp (X;)
oD} Ipp,(X;) 0D Ipp,(X;) 0D (4.19)
= e (poy (00 L iy ) 22K
i oD, A gp )

—Aij
A b (X)T o (X3)
e 1 I

where ¢;; = It is worth mentioning that the summation

from both X; and X, parts is because we tie the parameters of each image
module within the image-image subnetwork (symmetric to pairwise inputs).
Oppy, (Xi) Opp (X;)
oD, and oD,
ture of the deep neural network. In other words, once the deep architecture

Moreover, the gradients are dependent only on the struc-
has been fixed, their gradients are automatically defined. Furthermore, for
each input text pair, the gradient is similar except for changing the input
and network parameters in equation (4.19) to those of the corresponding text
case.

We can see that image-image inputs only contribute to learning discrimina-
tive representations for image modules. On the other hand, the cross-model
inputs will affect the learning specific to both image and text. Their gradients

are shown respectively as follows:

a() —A; by, (25) ) Opp; (Xi) (4.20)
aDII _ 1 i eAi,jﬁD/I (Xi)TﬁD% (25) 6’7)’1 ’ '
and ) A; ippr (X5) Iy, (i)
. —A; ;pp (X5 p\Zi
() 1PD; oy %) (4.21)

ODy | 4 Mt K00, G 9D,
The trained deep neural network assigns different types of data to some

points in a unified space so that similarities can be directly compared. So far,

we have shown the proposed embedding scheme for heterogeneous networks
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with only two object types: text and images. While these two types are
naturally representative in many real settings, it is conceivable to expect
more than two types of inputs. The proposed methods can be easily extended
to handle multiple input types by considering an individual deep module
for each type of data. Then, the objective function in equation (4.17) will

consider all possible pairs of input types. If there are |O| input types, the

0]
2

Because deep learning is highly nonlinear and non-convex, globally opti-

new objective will contain |O| + ( ) object types.

mal convergence is not assured. The initialization of parameters is crucial
to the final performance. The literature has shown that well-designed pre-
training can significantly improve final performance even when the final task
is different from the pre-training task. It is worth mentioning that the pro-
posed embedding method is unsupervised and can be used as a pre-training
step for any further fine-tuning. In other words, if we want to classify net-
work nodes, we can either obtain final features from the embedding layer and
apply off-the-shelf machine learning algorithms or we can replace the predic-
tion layer to a soft-max layer, and then fine-tune the entire deep network to

a task-specific one.

4.4  Evaluation

In this section, we evaluate our proposed algorithm on several real-world
datasets for both homogeneous and heterogeneous settings. The experimen-
tal results show evidence of significant improvement over many conventional

baselines.

4.4.1 Datasets and Experiment Settings

We use two publicly available datasets from real-world social sites. The first
one is the BlogCatalog, which is used in [120] to select features in linked social
media data. The second one is a heterogeneous dataset, which is referred
to as the NUS-WIDE [121]. This dataset contains both images and text.
All experiment results are averaged over five different runs. The detailed

descriptions and statistics for both datasets are provided below.
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Table 4.1: Detailed statistics of the BlogCatalog dataset.

Statistics
Number of nodes 5196
Number of links 171,743
Number of classes 6
Content dimensionality 8189
Balanced classes yes

BlogCatalog [120]: It is a social blogging site where registered users are
able to categorize their blogs under predefined classes. Such categorizations
are used to define class labels, whereas “following” behaviors are used to
construct linkages between users. The TF-IDF features are extracted from
blogs as a vector representation of each individual user. Thus, blog users are
represented as different nodes of the constructed networks associated with
content features. It is worth mentioning that the user blogging networks
are undirected, where the co-following and co-followed relationships are the

same. Some detailed statistics are summarized in table 4.1.

NUS-WIDE [121]: The dataset was originally collected by the Lab for Me-
dia Search in the National University of Singapore in the year 2009. The
dataset includes 269,648 unique images with associated tags from Flickr.
The total number of tags is 5,018. Additionally, there are 81 groundtruth
attribute labels for each image and tag pair. Since the original dataset in-
jected many “noise” samples that did not originally belong to any of the
81 concepts, these samples were removed. Moreover, we used the most fre-
quent 1,000 tags as text documents and extracted their TF-IDF features. We
further removed those image-text pairs that did not contain any considered
words. Finally, we randomly sampled 53,844 and 36,352 image-text pairs
for training and testing, respectively. We constructed a heterogeneous net-
work as the input of our proposed framework by treating images and text as
separate nodes. In total, the training network contains 107,688 nodes while
the testing network has 72,704. The semantic linkages between two nodes
are initially constructed if they share at least one concept. We then random
sample at most 30 links per node to construct the sparse matrix L . It is
worth mentioning that we only evaluate our framework in an out-of-sample

manner. In other words, we ensure that the training information absolutely
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does not appear in any of the testing cases.

4.4.2 Network Reconstructions

Before proceeding to evaluate the proposed method in the task of classi-
fication, clustering or retrieval, we will first provide a basic and intuitive
evaluation of the quality of network linkage reconstruction to validate our
assumptions. Since the goal of the proposed formulation in equation (4.17)
is that a good latent embedding brings objects with links closer while it
pushes objects without linkage structures further, the ideal performance of
the learned model can reach perfect network linkage reconstructions using
equation (4.4). We first visualize the network linkage structure of the Blog-
Catalog dataset by randomly selecting 500 nodes and plotting their connec-
tivities in figure 4.5. The color of each node indicates its class. As we can
see, the social “following” relationships tend to connect users with similar
attributes, at least from a relative point of view. On the other hand, they are
noisy from an absolute point of view, in which 59.89% of links in the entire
dataset connect to nodes with different classes.

We apply the proposed algorithm to learn an embedding function while
monitoring the link reconstruction accuracy as shown in figure 4.6. The
stochastic learning is conducted by randomly selecting 128 pairs of nodes to
use as a mini-batch. The horizontal axis indicates the index of the epoch.
And each epoch contains 500 mini-batches. On average, each mini-batch can
be trained in less than 0.15 seconds on a single Nvidia Tesla K40 GPU. In
figure 4.6, the reconstruction performance on each mini-batch is recorded,
and the line indicates the median filtered values. As more samples have been
viewed by the deep HNE learner, it is able to correctly reconstruct more
than 80% of the pairwise connections as compared to the initial number of
55%. Similarities propagate through sparse links across the whole network

to obtain a global consistency.
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Figure 4.5: Linkage structures between 500 randomly selected nodes in the
BlogCatalog dataset. The node color indicates the label of each node.

4.4.3 BlogCatalog

We first evaluate the performance of the HNE and compare it with other

baselines in various tasks.

Classification:

To demonstrate the effectiveness of the representation provided by HNE, we
compare our learned features with those of other feature learning methods,
while keeping the classification scheme fixed. The other baseline representa-

tions are as follows:

e Content: Only the content feature from the original space.
e Links: We treat the adjacency structures as the features.
e Link-content: We combine features from the previous two.

e LUFS [120]: Unsupervised feature selection framework for linked social

media data considering both content and links.

e LCMF [65]: A matrix co-factorization method that utilizes both link-

age structure and content features.

To ensure a fair comparison, we used the same representation dimensionality
and used the standard kNN classifier. In other words, the number of latent
factors for LCMF is set to be the same as our output dimensionality and the
first three methods are projected to a low-dimensional space using the PCA.

The average classification accuracies for the BlogCatalog dataset are shown
in figure 4.7, with the output dimensionality fixed to 100. As shown, the pro-
posed HNE method consistently outperforms other methods under different
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Figure 4.6: The Linkage reconstruction rate on the BlogCatalog.

training set sizes. This is because the network linkage information encodes
useful insights for learning a low-dimensional embedding space by bridging
linked nodes.

The rightmost bar under each setting is achieved by treating latent embed-
ding learning as a pre-training step and fine-tuning the entire deep network
by replacing the loss layer with a multi-class soft-max layer. It shows that
the unsupervised latent spacing learning provides very good initializations
for the supervised classification task using deep architectures and also shows

that we can also achieve much higher accuracies.

Clustering:
We also compared different feature representations under the clustering task.
Compared to classification, clustering is totally unsupervised, and it heavily
relies on the similarity measure between different objects. We adopted the
commonly used cosine similarity. The results are reported in table 4.2 us-
ing both accuracy and Normalized Mutual Information (NMI) as evaluation
metrics.

The results are similar to those for the classification task. Using only links
provides the worst results. This may be because, without global content

information, the similarity measurements tend to be local and sensitive to
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Figure 4.7: The classification accuracies among different methods under
various size of training sets.

Table 4.2: The clustering result for BlogCatalog dataset.

Methods \Accuracy\ NMI

content 49.06 % | 0.3192
link 40.76 % | 0.2482
content-link | 51.69 % | 0.3457
LUFS 49.88 % | 0.3221
LCMF 53.91 % | 0.3678
HNE 62.37 % | 0.4388

noisy links. On the other hand, content similarities alone are insufficient
to capture the relational knowledge. Therefore, a naive combination of the
links and content provides comparable performance with other baselines. The
proposed method of jointly learning the embedded space outperforms other

baselines and achieves the state-of-the-art.

4.4.4 NUS-WIDE

Compared to the BlogCatalog dataset, the NUS-WIDE dataset forms a het-
erogeneous network that contains both images and text. We illustrate the

performance of our framework for the task of classification and cross-modal
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retrieval in the following subsections. Note that the latter application is not

possible in the homogeneous scenario of the previous dataset.

Heterogeneous Classifications:
Given the heterogeneous scenario of this dataset, we compared our proposed
method to a different set of unsupervised baselines that can specifically han-

dle multimodal data inputs:

e CCA: The Canonical Correlation Analysis embeds two types of input
sources into a common latent space by optimizing with respect to their

correlations.

e DTL [122]: A transfer learning method is used to bridge semantic

distances between image and text by latent embeddings.

e LHNE: The linear version of HNE solves the optimization function

in equation (4.7).

Since our proposed method is an end-to-end learning framework, it does not
require feature extraction for image inputs. We extract 4096-dimensional
Cuda-convnet [92] features for all other baseline methods. The output (data
in the common space) dimensionality is set to 400. Since the NUS-WIDE
dataset is multi-label with unbalanced classes, we use the average precision
(AP) to evaluate the classification performance for each possible label out-
come. AP uses precision-recall curves for algorithmic quantification for each
label. These curves are used to obtain the mean average precision (mAP).
The mAP in multi-label classification domains is the standard metric which
is widely used in PASCAL challenges [123] in computer vision communities.
To ensure fair comparison, we use linear SVM as a common classification
algorithm for all algorithms. The reason for using SVM is that calculating
AP requires probabilistic interpreted confidence scores, which is inconvenient
to obtain from NN classifiers.

The classification results are illustrated in table 4.3, which contains three
different settings. The “image only” setting means that we learn embedding
functions from the heterogeneous training set, and then train an SVM, and
test classification performance on image nodes. Under the “Image + text”
setting, we consider all objects in the testing network. We observe that,

for all methods, categorizing text documents only is the most difficult task.
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Table 4.3: The classification result in terms of mAP (mean average
precision) for the NUS-WIDE dataset.

Sample | CCA | DTL | LHNE | HNE
Image only | 51.96 % | 52.07 % | 53.16 % | 54.28 %
Text only | 51.37 % | 51.88 % | 51.34 % | 52.76 %
Image + Text | 52.54 % | 53.22 % | 53.32 % | 54.99 %

Table 4.4: The cross-modal retrieval result (p@k) for the NUS-WIDE

dataset.

Method‘ rank 1 ‘ rank 5 ‘ rank 10 ‘ rank 20

CCA 21.05% | 16.84 % | 18.95 % | 18.68 %
DTL 20.53 % | 25.26 % | 22.63 % | 2237 %
LHNE | 26.32 % | 21.05 % | 21.02% | 22.27 %
HNE | 36.84 % | 29.47 % | 27.89 % | 26.32 %

This may be because of the fact that the input text is sparse compared to im-
ages. Moreover, without the deep training, the linear version of our proposed
method obtains results comparable to those of DTL which outperforms CCA.
The deep architecture of HNE improves the performance further under all
three settings, which demonstrates the advantage of jointly optimizing the

feature learning and latent embedding with nonlinear functions.

Multimodal Search:

To further demonstrate that the learned features can be leveraged with many
data mining and web search tasks, we compared our proposed method with
the aforementioned baselines in the task of cross-modal retrieval. Among all
81 labels, about 75 of them appear in the TF-IDF text vector. We manually
constructed 75 query vectors in the original 1000-dimensional text domain
by setting the corresponding label entries to one and the remaining to zero.
Using the learned embedding function, we projected these query vectors to
the common latent space to retrieve all image samples in the test set using
the standard Euclidean distance.

The average precision at rank k over all queries is reported in table 4.4.
We observe consistent results as other tasks, and the proposed method sig-
nificantly outperforms other baselines. Table 4.5 illustrates some sample
retrieval results. For the query “mountain,” the third retrieved result is in-
correct. This might be due to the extreme visual similarities between the

other mountain images and the one with a cow. The retrieval result for the
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Table 4.5: Cross-model retrieval results of the proposed HNE method.

Query rank 1 rank 2 rank 3 rank 4 rank 5

Mountain

Sunset

Cow

Leaf

query “cow” is not as good as the others. The first five returned images
contain three deer. This is because these images have multiple labels and
are connected by the concept “animal.” Since our method as well as the
ranking functions are totally unsupervised, these links between “deer” and
“cow” objects confuse our embedding learning. We expect performance gains

by using supervised ranking methods.

4.5  Conclusion

In this chapter, to alleviate the challenge brought by “variety” aspect of big
data, we proposed a novel embedding scheme in networks. This approach
transfers different objects in heterogeneous networks to unified vector repre-
sentations. A highly nonlinear multi-layered embedding function is proposed
to capture complex interactions between heterogeneous data in networks.
Our approach not only simultaneously encodes network connectivity and
rich content information, but also allows for similarity among cross-modal
data to be measured in a common embedding space. Such a nonlinear multi-
layered embedding architecture is robust, scalable and beneficial to many
data mining and web search applications. Furthermore, the approach has
wide applicability because a robust feature representation is useful in many
big data tasks.
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CHAPTER 5

HIGH-VELOCITY DATA

In this chapter, we specifically investigate the problem of similarity learning
in two types of streaming networks: 1) regular networks with homogeneous
node types, and 2) bipartite networks with heterogeneous node types. For
generalization purposes, we do not explicitly assume any node contents and
link weights that are available. We focus on these scenarios because they
are closely related to the two modern applications in data mining, link pre-
diction and recommendation with implicit feedback (also known as one-class
recommendation), respectively. For example, in link prediction, networks
can indicate friendships among users, while in one-class recommendation,
bipartite networks can capture purchase relations between users and items.

Despite the differences in their network structures, both applications share
common characteristics. First, links are in the form of positive-unlabeled
(PU) measurements (e.g. Twitter “following”, Facebook “like”, Last.fm “lis-
tened” etc.) that do not provide negative information. Second, in the era
of big data, such data are generated continuously and rapidly, and ordered
temporally, determining its streaming nature. These common characteris-
tics allow us to unify our studies into a novel framework — PU learning in

streaming networks.

5.1 Streaming Network Representation

Throughout this chapter, we use the following conventions:

e Upper-cased letters, A, denote random variables/vectors. Lower-cased

letters, a, denote deterministic values. Script letters, A, denote sets.

e p(+) or ¢(+) denote probability density function or probability mass func-
tion, depending on whether the random variable is continuous or dis-

crete.
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e E,(A) and Cov, (A) denote expectation and covariance of A respec-

tively, under the probability measure p.
e N (i,Y) denotes normal distribution with mean p and covariance Y.

o {A;}; is a set of random variables A; with subscript ¢ running through
the index set, i.e. U;{4;}.

For any streaming networks, we assume there are two types of nodes: type-
1 and type-2. Note that type-1 can be identical to type-2 in some problems
such as link prediction. The numbers of these two types of nodes at time t are
m! and n’ respectively. The reason why they depend on ¢ is that the proposed
model accommodates the introduction of new nodes. For each type-1-type-2
node pair (3, j), ij is an indicator variable of whether they connect, i.e. it
is 1 if there is an edge connecting them at time ¢ and 0 otherwise.

This network representation is applicable to a number of real-world appli-
cations. For example, in social networks, the two types of nodes are homo-
geneous and represent the users, and Lﬁj = 1 represents that users ¢ and j
connect at time ¢, while in one-class recommendations, the two types of nodes
are heterogeneous, with one representing the users and the other denoting
the items, such as movies or social media posts. The two types of nodes
form a bipartite graph, where L';fj = 1 denotes that user 7 interacts with (e.g.
downloads, or gives “like” to) item j. Without the loss of generality, we
assume the two types of nodes are heterogeneous. Homogeneity is merely a
special case by imposing symmetry on the connections.

It is now important to emphasize the streaming nature of our setting.
First, rather than presetting a fixed number of nodes, our setting allows the
size of the network to be constantly and continuously changing. Second,
rather than regarding the connection status between nodes as stationary,
our setting regards each link status as dynamic and instantaneous. In other
words, ng = 1 only reflects the connection status at that particular time
t when the edge is established. It does not imply that the node pair (i, 7)
keeps connecting at any future times.

The instantaneity of connection status is a natural assumption for appli-
cations where the connection represents a click, a message sent etc., because
these interactions are themselves instantaneous. Even for applications where
the connection represents some durable relation such as a “like,” a Twitter

“follow” etc., this assumption is still reasonable because in most real-world
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scenarios canceling an edge may be difficult or impossible, even though their
actual connection status may have changed. For example, suppose a user
gives a “like” to a Facebook post, expressing his/her interest in the post.
This “like” is likely to persist even if the user’s interest in the post dimin-
ishes over time. Therefore, the “like” merely reflects the user’s interest at

that particular moment, but hardly any time afterwards.

5.2 Streaming Positive-Unlabeled Learning - The
Probabilistic Model

Our goal is to predict the node pairs that would connect in the near future,

. . AN t . . . T t+
given any time t. Formally, V(i, j) : L;; = 0, provide the prediction L;; s.t.
the probability of error

Pt # L) = BI(LY — 14

is minimized; where ¢+ denotes a sufficiently small amount of time after ¢.
We adopt the standard Bayesian approach for the task, which consists of two
steps: 1) model the probability distribution of ij; and 2) predict the connec-
tion status with a tractable inference scheme under the modeled distribution.
These two steps will be detailed in this and the following section respectively.
And we name the unified framework as the Streaming PU Learning, and use

SPU for short.

5.2.1 Partially Observed Connection

To address the positive-unlabeled nature of our data, we assume Lﬁj depends
on two factors: 1) The “mutual interest” of the node pair, and 2) whether
their connection status is observed. In other words, the node pair (i,7)
connects only when these two nodes are of interest to each other, and their
connection status is observed. More concretely, in Facebook, for instance,
there are two reasons that a user has not given a “thumbs up” to a post: 1)
this user does not like the post at all (no mutual interests), or 2) this user
has not seen the post yet (connection status unobserved).

To model the above intuition, we adapt the popular Probit model. Denote
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Xj; as a real valued hidden variable modeling their mutual interest. And Oj;
is the indicator variable of whether the connection status of node pair (i, j)

is observed at time ¢. Then, the conditional distribution of Lf; is

(5.1)

ij

ot _{ 1 ifOL =1A X} >0

0 otherwise.

The prior distributions of O!; and ij are given in the following two sections

)

respectively.

5.2.2 Connection Observability

t
YR

nection observability. Intuitively, the connection observability is affected by

This section proposes the prior distribution of O;., which denotes the con-
several factors. The first factor is the liveliness of the network. If the amount
of activity is great, i.e. the nodes are actively seeking links with others, then
the probability of not meeting a node is low. The second factor is the cost
to connect. If the cost of connection is low, i.e. the nodes can easily find
other nodes, and can easily connect to whichever nodes they want, then the
probability of having an unobserved link is also low.

While these factors are hard to evaluate explicitly, we find that the network
liveliness is intuitively correlated with the number of recently established
links; and the connection difficulty is inversely correlated with the number
of recently born pairs, 7.e. pairs with at least one node that is recently born.
This is because the faster new content is introduced, the harder for the nodes
to traverse the new content and find the nodes of interests.

Based on these intuitions, we first define the new-link-to-new-node ratio:

. #{G):Iret-ALn, L =1}
 #{(i,) a; € (t— At t) Vb € (t— At 1)}

(5.2)

where At is a time window; a; and b; denote the birth times for the type-1
node i and type-2 node j respectively. Then the prior distribution of ij is
given by

p (0} =1) =max {\, 1}, (5.3)

where A is a model parameter. The appropriateness of equation (5.3) will be
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demonstrated in section 5.4.5.

5.2.3 Mutual Interests between Nodes

This section introduces the conditional prior of ij. For each type-1 node ¢
at time ¢, we assume there exists a hidden topic random vector U} of length
r, whose elements represent type-1 node ¢’s affinities to r hidden topics.
Likewise, we use V}t to denote the length-r characteristic vector of type-2
node j at time ¢.

For each type-1-type-2 node pair (4, j), their mutual interest, Xf], depends
on the similarity between their hidden topic vectors. Intuitively, the more
similar their affinity patterns are, the more mutual interests they have. For-
mally, the pdf of X}; is given by

p (XLIULVE) = N ((U8) v 0h), (5.4)

PRI % J

where 0% is a model parameter.

5.2.4 Temporal Dynamics

The hidden topic vectors of nodes tend to shift over time. To model their
temporal dynamics, we assume Brownian motion:

P (Uf|UffT) =N (UET, O'QUTI)

(]

p(VIVi) = N (v, o).

J

(5.5)

The initial distribution, namely the distribution at birth time, is defined
differently for two distinct cases. For those nodes that are born at ¢ > 0,
recall that a; and b; denote the birth times for the type-1 node ¢ and type-2
node j respectively. Also, for notation ease, the nodes are indexed by birth

order. Then we have
p (Uf|L%7) = ( ZE L] 0501>
bj bi—\ _ 1 bj bj— 2
p (Ve )—N<j—_1;E[V; c },ovof>,
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where £~ is the set of observed Lﬁ;,

given in section 5.2.5. Equation (5.6) essentially assumes that the initial

t' < t, whose formal definition will be

preference of a newly-born node follows the general taste of the current pop-
ulation, because E [Uy7|£"] and E [V{"7|£!"] are MMSE estimates of the
hidden topic vectors. Averaging across the whole population extracts the
general topic vector.

For those nodes that exist at the beginning of the world, ¢t = 0, we assume

zero-mean Gaussian distribution:
p(UY) =N (0,080I) and p (V}') =N (0,07,1), (5.7)

2 2 2 2
where of;, oy,, 0, and oy, are model parameters.

5.2.5 The Observation Set and Events

A link ij is defined as an observation if and only if the following two condi-

tions are satisfied.

Condition 1: The value of Lﬁj first appears or changes at time ¢, which
involves two scenarios: 1) all ijs whose corresponding type-1 node ¢ and/or
type-2 node j are born at time ¢; 2) all Lﬁjs whose values jump to 1 at time

t (recall that all the 1’s are instantaneous as discussed in section 5.2.1).

Condition 2: For an L{; = 0 to be an observation, O}; = 1.

Here we would like to reiterate that the Lj;s that meet the above conditions
are considered as observations at that specific time ¢ only. Based on these

two conditions, the observation set £|O is rigorously defined by
LIO={L}: ((ai=tVb;=t)NO; =1)V L =1}, (5.8)

where O denotes the set of all ijs. As implied by equation (5.8), the ob-
servation set is conditional on O which is hidden, and thus is impossible to
evaluate. Following the common paradigm to marginalize over unobserved

randomness, we define the unconditional observation set £ as the set of L{;s
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that satisfy condition 1:

L= |J cgo={L:a=tvb=tvL=1}. (5.9)
0e{0,1}1°

The definition of observation set introduces our important concept of
events. An event is a time instance t at which new observations are in-
troduced. As already discussed, this includes: 1) the world starts t = 0; 2) a
new node is introduced (¢ = a; or b;); and 3) a new edge is established.

Here we define some observation- and event-related notations. For any
time ¢, we have the following definitions:

e L - the unconditional observation set as in equation (5.9);

e L' - the subset of £ with time up to and including time ¢;

e L'~ - the subset of £ with time up to but not including time ¢;

e 7 - the set of all event times;

e 7(t) - the time elapsed after the most recent (excluding current) event;

e 7 (i,t) - the time elapsed after the most recent (excluding current) event
that is related to type-1 node i;

e 7y (j,t) - the time elapsed after the most recent (excluding current) event

that is related to type-2 node j.

5.2.6 Model Summary and Joint Distribution

To sum up, the probabilistic model involves observed variables £ and hidden
variables {Of;, X!

1,]'7 zj?
(5.1)-(5.7). In particular, for an event time ¢, the joint posterior distribution

Ut V]t} The prior distributions are given by equations

of all the hidden variables is given recursively by

p( U;7‘/jt7ijuO§j}i7j |£t> O(p( U;7‘/jt}i,j |£t_7(t))

AlrX50ivp0h) - I »(L41X5,04), (5.10)
]

i,j:LﬁjECKQ
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Event by a; s a; St
time: Vi intro. Upintro. UV, interact  Uyintro. Uy¥, interact

Figure 5.1: An illustrative framework of Streaming PU learning. White
nodes denote observed variables, and shaded nodes denote hidden variables.
The nodes are shown in a 3D coordinate grid with the time axis being the
canonical x-axis as labeled. All the hidden nodes are a subset of the
underlying continuous hidden process sampled at event times.

where
H p(Lﬁj]ij,ij)Z H p(le?j’Xz‘tjaO;j)
i.j:LteL|o ij:L;=1,L{ ;€L
Lo o (5.11)
H p(Lij|Xij7Oij) i
i,j:ngzo,ijeL
and t—r(t) ¢ A—T(t)
p(QUL Vi Y 1277 0) = p({uy 0 v T2
. . 5.12
I pwiv ) T pevvi). (5:12)
i J

As can be seen, the last term of equation (5.11) is raised to the power of
Oj;. This is merely a compact way of expressing that only those Lj;s with
Oj; = 1 (condition 2 of being an observation) are incorporated into the joint
probability distribution. An illustration of the probabilistic model is shown

in figure 5.1.
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5.3 Streaming Positive-Unlabeled Learning - The
Model Inference

With the model established, we formulate the prediction of future connection
status as a standard inference problem based on the observed connection

status up to current time.

5.3.1 The Prediction Task

Our goal is to identify connections that are about to establish, i.e.
¢ _ t+ _

According to equation (5.1), one of the necessary conditions is to identify
t t

The posterior expectation, a.k.a. the MMSE estimate, E [ij|£t}, is ap-
plied to infer the hidden ij. However, this involves evaluating the posterior
distribution as in equation (5.10), which does not bear a closed-form solution
due to the complex nonlinearity of the model. Therefore, we would apply a
variant of the variational approach to approximate the posterior distribution,

as will be introduced in the remainder of the section.

5.3.2 Recursive Variational Inference

Approximating equation (5.10) involves two steps alternatively and recur-

sively. First, it is approximated by the following distribution:

p({Ut Vi X Ot}”|£t> ~ ({Ut VX Ot}'7j|[’t>

7,]7 7,]7

A <{Ut ViYL )p(X Ui, Vi) p (O) (5.15)
H p( ‘thyOt )
i,j:ngeqo

The only difference between equations (5.10) and (5.15) is that the first term
is replaced with an approximate distribution p'({U}, Vjt}ij |£t=7®) | which
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will be defined soon.

Then, we apply the variational approximation approach to approximate
p’({Uf,Vjt,ij,ij}iJ |£") as in equation (5.15) to the distribution ¢ with
the following form (for notation ease, condition on observation is omitted

without causing ambiguity):

pl ({Uzt7 ‘/jt7Xitj7 ij}z,j “Ct> ~q ( Uit7 ‘/jt7X;j7 ij}z,]> -
H Q(Uf) H CI(Vjt) H Q(Ozt'j)QO(Xitj|Uit7 Vjt)(liof")%(ij) .
i J 1]

The key idea behind this approximation form is that when Lﬁj is observed, i.e.
ij = 1, we apply the simple mean-field approximation, where each hidden
variable is independent; otherwise we add the dependency on U and V} to
ij. The advantages of choosing this approximation form are twofold. First,
this approximation yields a smaller error than the simple mean-field approx-
imation, because the latter is merely a special case of equation (5.16) by con-
straining qo(X};|U/, V") = q1(X};). Second, though complicated with more
dependencies, this approximation still has a tractable and concise closed-form
solution.

We find the closest approximation by minimizing the KL divergence be-
tween p’ and ¢:

q ({UZ, Vi X, Ogj}z@)

min D = min KL
q q

Now we are ready to define p" as in equation (5.15), which depends on the ¢

(5.17)

v ({04 V), X5, 04}, 12")

distribution at the preceding event in a similar way to equation (5.12):

% <{Uf7 V}t}i,j |£t—7'(t)>

_ Hp/ (Uit|£t77'(t)) Hp/ (V}tlﬁtfﬂ'(t)) ’
( J

(5.18)
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where
/ t Et—T(t) _ d t—7(t) t—7(t) tyrt—7(t)
p (Uz| ) = U; q|\U; p (Ui1U;

(5.19)
P (VL) = / v (Vi) p (Vi)

To sum up, our inference scheme can be described as:
o= qgatt—T(t)=p att=qatt=---,

at each event time ¢, first obtain the current p’ from the ¢ at the previous
event according to equations (5.15), (5.18) and (5.19). Then, approximate
the current p’ with the current ¢ according to equations (5.16) and (5.17),
and so on. The ¢ distributions are the distributions over which we perform
the inference. Hence we name our inference scheme the recursive variational

inference.

5.3.3 The Streaming Inference Scheme

In this section, we briefly state the final solution to equation (5.17). The

inference scheme consists of two parts:

e Update the posterior moments of hidden variables (under ¢(-|£")) at each

event time ¢;

e Predict future connection based on the most recent updated posterior mo-

ments.
Updating Posterior Moments:

Recall that the ¢ distribution is the approximate distribution for the poste-
rior distribution p (-|£"). Since at each event time ¢, the observation set L’ is
augmented, the ¢ distribution should be updated accordingly. Furthermore,
the ¢ distribution is characterized by its moments, and so it suffices just to
update the moments. The update process is iterative: posterior moments
obtained in the previous iteration are applied to update the posterior mo-
ments in the current iteration until convergence. The update equations in

each iteration are given as follows.
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e The update equations for U} and Vjt:
For a given event time ¢, for any type-1 node 7 that is involved in the event,

the update equation is given by

Couy (1) = (3t + 03 3 (0 =18, (1)) )

LTt
JiLi;ect

E, (U}) = Cov, (U}) (ZEMU@' +op’ Y q (0 =1)E, (V) Ey (X)) >’
j:LﬁjEEt

(5.20)

where, for type-1 nodes that were born before t,
Yui = Covq(Uf_TU(i’t)) +opTu(i, ), pyi = Eq(Uf_TU(i’t));

and for type-1 nodes that were born at t, uy; and Xy; are the corresponding
mean and covariance in either equation (5.7) or (5.6) depending on whether
t is zero. More importantly, for nodes that are not involved in the event,
no update is needed. The update equation for V;-t is symmetric to equation

(5.20) except that U and V', and subscripts 7 and j, are interchanged.

. t . . . t
e The update equations for Xj;: For a given event time ¢, for any X

whose corresponding Lﬁj is in the observation set £¢, the posterior expectation

Eq, (X'tj) = py; + (¢ (6%) ol Zt]) ) OE, (5.21)

is given by

® (ef;) — @ (1)
where ¢(-) and ®(-) are pdf and cdf of standard Gaussian distribution re-
spectively; and uf; = Eq(U})TE(V)),

—ut. .
[ [ i
Y —o0o  otherwise 7 % otherwise.
e The update equations for ij:
At an event time t, if either type-1 node i or type-2 node j is involved, the

update equation for Of-j is given by

: ! if Lj; =1
Q(OZJ = 1) = P(ijzl) exp(,{gj) ' (522>
1+p<0§j:1)[exp(,{$j)71] otherwise,
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where

1
) = @0 — By (U1)E, (V) = 5| Covg (UNE, (V1)E, (V) -
+ Ey(U1E,(Uf) Covy (V) + Covy(Uf) Covy (V)]

In practice, we find that the trace term in equation (5.23) is often dominated,

and thus is omitted to reduce computational complexity.
Predicting Future Connections:

As discussed before, for any time t and Lﬁj = 0, the prediction is based on
the approximated posterior expectation of ij. Formally, based on equation
(5.14), we would like to find those

according to

Eq (ij) ~ Eq (ij|O§j = 0) = IEq (UZ)TEq (V't)

J
A t—7y (§,t (5'24>
— ]Eq (Uz U ( )) ]Eq <V v (J )) .

J

Here are some intuitions. The first equality is because when there is no
observation ij = 0, the posterior expectation of ij is equal to its prior
expectation. The last equality is because U} and Vjt follow Brownian motion,

and their expectations remain the same when there are no observations.

5.3.4 The Algorithm Table and Complexity

The posterior moment updating scheme is summarized in algorithm 3. In
terms of computational complexity, each Lﬁj € L appears in equation (5.20)
once for each iteration; its corresponding ij and ij appear once in equa-
tions (5.21) and (5.22) respectively. Hence the total complexity over all times
is O(|L|I), where I is the number of iterations for each update. This is a

very efficient algorithm.
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Algorithm 3: Streaming Posterior Update Algorithm

Input: a set of Lj; € L just arrived
1 repeat
2 | Viinvolved in the current events, update E,(U}) and Cov,(UY)
according to equation (5.20);
3 | Vjinvolved in the current events, update E,(V}") and Cov,(V})
according to equation (5.20) with U and V/, and subscripts ¢ and
j interchanged;

4 Vi, j pair involved in the current events, update E,, (ij) according
to equation (5.21);
5 Vi, j pair involved in the current events, update q(Oj; = 1)

according to equation (5.22).
until converge or maximum iteration exceed;
return Updated posterior moments (under q) of the hidden variables

N O

5.4 Evaluation

In this section, we demonstrate the practical usage of the proposed SPU
framework by considering two important data mining applications: link pre-
dictions and recommendations. Our empirical studies on five real-world
datasets provide strong evidence that SPU significantly improves over many

state-of-the-art baselines.

5.4.1 Datasets

We utilize two link prediction and three recommendation datasets. It is worth
mentioning that all five datasets are publicly available and the download links

are provided. The detailed descriptions of each are listed below:
Link Predictions:

DBLP! [124]: This dataset is an undirected collaboration network of au-
thors of scientific papers from the DBLP computer science bibliography. An
edge between two authors represents a common publication. Edges are an-
notated with the date of the publication. We randomly sample 49,945 nodes
among top active authors.

Epinion? [125]: Epinion is a popular product review site, where people can

1http ://konect .uni-koblenz.de/networks/dblp_coauthor
2http ://www.jiliang.xyz/trust.html
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rate various products and add others members to their own trust networks or
“circles of trust.” Such trustworthy relationships among users are directional
and represent who they may seek advice from to make decisions. We collect
a total of 11,752 registered users whose in-degree and out-degree are at least

one.
Recommendations:

Facebook-like Forum?® [126]: The Facebook-like forum dataset consists
of the Internet “post” activities among 899 users and 522 topics from an
online community. The goal is to recommend interesting topics to candidate
users that they will comment on in the near future.

MovieTweeting? [127]: This dataset contains the tweeting activities that
consist of ratings on movies to IMDB from Twitter. Instead of predicting the
specific movie ratings, we are focusing on tweeting activity itself by predicting
what movie a user will rate.

Last.fm Music® [27]: The dataset contains the full listening history for
registered users at Last.fm.® We only use their user ID, track ID and time-

stamp for the purpose of recommendations.

The statistics of the aforementioned datasets are summarized in table 5.1.

3http ://toreopsahl.com/datasets/#online_forum_network

4ht‘cps ://github.com/sidooms/MovieTweetings

5http ://www.dtic.upf.edu/~ocelma/MusicRecommendationDataset/lastfm-1K.html
6http ://www.last.fm/
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5.4.2 Baseline Methods

We compare our proposed framework SPU with several representative base-

line algorithms as follows:

JC / ItemKNN: Jaccard’s coefficient (JC) and item-based k-nearest
neighbor (ItemKNN) are two of the most fundamental baselines for
link prediction and recommendation respectively. We include either of

them based on the task that we evaluate on.

PageRank: PageRank is an iterative fixed-point algorithm over graphs,
which can be applied to compute “importance” scores for each node.
The prediction weight for each node pair is calculated as the product
of their PageRank scores [128].

OCCF [129]: One-class collaborative filtering assigns weights to un-
labeled data to distinguish negative examples and unlabeled positive

ones.

Time-SVD++ with weighted sampling [130]: It is a variant of
the Time-SVD++ algorithm, since the original one specifically takes
inputs as explicitly scaled form. We utilize the same “user-oriented
sampling scheme” that has been adopted by OCCF [129] to alleviate
the problem under PU settings.

NTF [102]: Nonnegative tensor factorization handles both temporal
dynamics as well as the PU inputs. However, it differs from OCCF and
Time-SVD++ with weighted sampling in that it considers all missing

entries as negative.

PUMC [105]: PU learning for matrix completion is a state-of-the-
art one-bit factorization algorithm that aims to recover possible true
negative samples by using different costs in the objective for observed

and unobserved entries.

In summary, JC, ItemKNN and PageRank are three conventional methods

that compute affinity scores among node pairs only based on the graph

topologies, while all the other four baselines leverage the PU inputs in various

ways. Among these four, Time-SVD++ and NTF also incorporate the tem-

poral factor by confidence decay and temporal aggregation, respectively. We
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make use of the open-source C++ framework from GraphChi [131] for the
implementation of OCCF and Time-SVD-++. The graph based algorithms
including JC and PageRank are publicly available from the package in [128].
Moreover, the implementations of NTF and PUMC are acquired from the

original authors.

5.4.3 Experimental Settings

For the purpose of quantitative evaluations, we follow the standard online
testing protocol. Given a set of time-ordered data, we divide them into two
subsets along the temporal direction. We call the first one the “validation
set,” and the second one the “updating and testing set.” An illustrative
example is shown in figure 5.2, where ¢, ¢,y and tg represent the starting time,
the end time of validation set and the end time of the dataset, respectively.
The size of validation set is chosen to be 30% of the entire dataset. In other
words, ty is the time when 30% of connections are presented.

The testing task is to predict the possible connections of the network in
the next time based on the “historical” data. Specifically, we first align
time, to ty. The

prediction is evaluated at time ¢, +At, where At equals the smallest temporal

the reference time t,., also considered as the “current”

granularity of the dataset. The only information that can be used for model
update (refining/learning latent representations) is the list of connections
appearing in the time interval [ty,¢,.]. After performance evaluation at this
specific time, we then shift ¢, by At. In other worlds, the “current” time
is now ty + At. Therefore, all the data generated from temporal horizon
[tv,ty + At] can be used for prediction at ty + 2At. The same procedure is
performed until ¢, reaches end time of the dataset tg.

It is worth mentioning that our proposed algorithm is a fully online model,
which means there is no need to retrain all latent representations from the
sketch when the reference time t, shifts by At. For the batch baselines,
we retrain the entire model every time when ¢, moves, which is much less
efficient. Moreover, many baselines are insufficient to consider the case of
“multiple connections” or handle the temporal resolution in a very fine grid.
Although our SPU algorithm explicitly considers both aforementioned issues,

for fair comparison all multiple edges are merged to the one that first appears;
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Validation set Model updating and testing set

User 65

Item ID Item 172 Item 21 Item 21
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Timestamp  2011/01/23 2011/12/23 2013/11/03
19:35:23 13:01:55 08:17:09
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g

to ty Temporal direction tg

Figure 5.2: An illustrative example on data splitting. The blue region
indicates the validation set while data from the green region are used for
testing and model updating. At each time, the data are in a triplet format
as (user ID, item ID, time-stamp).

and temporal granularity (At) is set to be a year for the DBLP and a week
for the other four datasets.

The validation set is used to seek the best hyperparameters for each algo-
rithm. For instance, the latent dimensionality is a model-sensitive parameter
that needs to be chosen independently. Therefore, all models follow the same
protocol to obtain the best set of parameters on the validation set. Once these
hyperparameters are chosen, they remain the same in the testing phase.

Two commonly used metrics are suitable for both link prediction and rec-
ommendation. They are the area under the Receiver Operating Characteris-
tic (ROC) curve (AUC) as well as the equal error rate accuracy (ACC). These
two metrics are considered as classification metrics which are extremely ap-

7

propriate for tasks such as “finding good objects,” especially when only PU
inputs are available [31, 132]. Since the evaluation task is highly imbalanced,
we randomly sample the same number of negative samples (zeros) as that
of positive ones at each testing time. To ensure reliability, all experimental

results are averaged over 10 runs using different negative samplings.

5.4.4 Experimental Results

In this subsection, we present the empirical results of our proposed SPU
framework compared to the aforementioned states-of-the-art in both link
prediction and recommendation in table 5.2. We observe that the proposed
algorithm consistently achieves the best performance on all five datasets. It

is evident that explicitly modeling the streaming network under PU settings
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significantly improves the performance for both tasks. The demonstrative
features of the proposed SPU algorithm will be detailed in the following
subsections.

Time-SVD—++ is considered as the second best algorithm, which outper-
forms other baselines in three datasets. We extended the original Time-
SVD++ to utilize the unlabeled data through a weighted sampling approach
proposed by OCCEF. The reason why Time-SVD++ outperforms not only
OCCF but also other baselines is that it models the temporal information
in a more suitable way. On the other hand, there is no explicit temporal
consideration in OCCF. Similar to Time-SVD++, NTF also considers the
temporal dynamics, but in a different way. However, its performance is even
worse than OCCF for some datasets. It could be because treating all un-
labeled data as negative samples hurts the performance of NTF. Another
potential reason is that the algorithm considers temporal information in a
retrospective way, which is inadequate to model the prospective aspect of the
data streams. Moreover, PUMC obtains comparable results to Time-SVD++
across all five datasets without using any temporal information. PUMC mod-
els the PU setup in a principled way, which is able to identify the potential
negative samples more accurately. At last, JC/ItemKNN and PageRank re-
veal the worst performance. They all belong to the standard similarity based
algorithms without considering either temporal or PU characteristics of the
inputs.

From the above observations, we can conclude that both temporal infor-
mation and the unlabeled negativity play very important roles in the task
of link prediction and recommendations. Inadequate modeling of either of

these two characteristics will lead to a degradation in performance.

5.4.5 Prior Distribution Validation

In this subsection, we will examine the appropriateness of the prior of ij
as given by equations (5.2) and (5.3). Recall that this prior is defined by
our intuition that the probability of observing a connection is affected by the
network liveliness and the cost of connections, which are correlated with the
ratio of the number of recently established links to that of recently introduced

nodes. We will apply a data-driven approach to validate this assumption.
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The basic idea is that a good prior should maximize the accuracy of link
prediction, and therefore we performed a greedy search to find a suboptimal
path of priors across every time ¢ that maximizes the overall prediction ac-
curacy. Our proposed prior, as a function of event time ¢, will be validated
if it agrees with this suboptimal path.

Specifically, the candidate values of the prior are quantized into discrete
levels uniformly in the logarithmic scale from 2° to 2717, At each event time
t, the accuracy of prediction is computed for every candidate value of the
current prior, given that the priors at previous times are set to the optimal
candidates in their respective greedy searches.

Figure 5.3 shows the results of this greedy search test. Each pixel of the
images denotes the prediction accuracy as a function of prior candidates
(horizontal axis) and event times (vertical axis). As can be seen, the yellow
belt in each subplot corresponds to the prior values that yield high prediction
accuracy, wherein the suboptimal path lies. The black dotted line denotes
the proposed prior, which roughly follows the yellow belt of the suboptimal
path. This validates our proposed prior.

5.4.6 True Negatives vs. Unlabeled

This subsection illustrates the mechanism through which Oj; deals with the
positive-unlabeled data. Essentially, the key is to distinguish the true nega-
tives from unlabeled data among all Lﬁjs that are 0, and place greater em-
phasis on the former during inference. According to the inference equation
(5.20), each summation term, which corresponds to each observation at time
t, is multiplied by q(ij = 1) as weights. We will determine whether these
weights are able to discriminate between true negatives and unlabeled data.

Figure 5.4 shows the weights ¢(O}; = 1) on 3-by-3 subsets of two datasets.
At event time ¢, all the Lj s in these subsets are 0, but a portion of them turn
to 1 immediately afterwards, as shown by the cells marked 1 in the leftmost
plots. Therefore the observed 0 in these cells are actually unlabeled data,
whereas the rest of the data (marked 0) are more likely to be true negatives.

The right panel plots the evolution of the weight matrix as iteration pro-
ceeds. The gray scale in each cell denotes the weight, and the numbers are

replicates of the left panel for clarity. At first, all the weights are uniform,
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The assumption of the prior distribution of Oi‘j in DBLP
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The assumption of the prior distribution of ij in Twitter
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Figure 5.3: Verification of the proposed form of ¢ (Oﬁj = 1) (the top figure
is from the DBLP, while the bottom one is the Twitter). The color in each
cell denotes the accuracy if the prior is set to the candidate value. The
proposed prior, denoted by dotted lines, roughly follows the high accuracy
region.

where our proposed algorithm essentially reduces to many traditional link
prediction algorithms that treat the all observed 0Os indiscriminately as true
negatives. However, upon convergence, the weights display a discrimina-
tive pattern: the weights of the unlabeled data (marked 1 as discussed) get
smaller; the weights of those more probable true negatives (marked 0) become
larger. In other words, during the inference iteration, the posterior distribu-
tions of the hidden topic vectors are reinforced by the data believed to be

true negatives, and the interference from the unlabeled data is alleviated.
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Figure 5.4: Evolution of weight matrix ¢ (ij = 1) (the top figure is from
the DBLP, while the bottom one is the Twitter). Vertical axis denotes user,
and horizontal axis denotes item. The corresponding connection statuses
ij are all 0 at time ¢ when the inference is performed, but a subset of
them, numbered 1, soon turn to 1, and hence are originally likely to be
unlabeled data. The weights, denoted by the gray scale, managed to
deemphasize these unlabeled data upon convergence.

5.4.7 Temporal Drifting

Figure 5.5 and 5.6 show the evolution of averaged hidden topic vectors, i.e.
E, (Uf) averaged across i, and E, (Vf) averaged across j, through time. In
each plot, the left figure is for the type-1 node topic and the right for type-2.
There are three observations. First, the proposed algorithm is able to capture
the dynamic changes of topics, and hence can produce different predictions
at different times. Second, figure 5.5 plots the result for DBLP, which is a
user-user network with the two types of nodes being identical. The inference
algorithm naturally yields identical topic vectors. In figure 5.6, where the
two types of nodes are heterogeneous, the corresponding topic vectors are
completely distinct. Third, in 5.6, we can observe a more drastic evolution
in user topics (left) than in item topics (right) - there are more fluctuations in
the former whereas changes in the latter are all monotonic. This agrees with

our intuition that users’ tastes are more volatile and influenced by trend.

5.5 Conclusion

Data in many real-world problems in the era of big data such as link pre-
diction and one-class recommendations present similar features — positive-
unlabeled and arriving at high-velocity. The common features enable us to

unify a number of such problems into the novel framework — PU learning
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Figure 5.5: The evolution of the averaged latent topics over time in DBLP
(type-1 = type-2 = user) dataset.
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Figure 5.6: The evolution of the averaged latent topics over time in Twitter
(type-1: user, type-2: item) dataset.

in streaming networks. We delineate three challenges in the problem, i.e.,
streaming nature, unlabeled negativity and concept shift, and then propose
a PU learning algorithm termed SPU that provides a principled and efficient
solution to address these challenges simultaneously. We conducted exper-
iments on various real-world datasets and experimental results suggesting
that SPU can significantly advance the tasks of link prediction and recom-

mendations.
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CHAPTER 6

CONCLUSION AND FUTURE WORK

In this chapter, we summarize our research results and their broader impacts

followed by a discussion on promising future research directions.

6.1 Summary of Contributions

Similarity learning as a long-lasting research problem faces many new chal-
lenges as we enter into the age of big data. In this dissertation, we investigate
three major research challenges in similarity learning posed by the coherent
characteristics of big data: (1) large volume; (2) data variety and (3) high
velocity. For the purpose of the Ph.D. studies, we restrict our regime in
social media data, which is one of the most typical big data media. Due
to the natural existences of social connections in social media, we explicitly
consider all data to be formed as networks.

For learning similarity in large networks, we first investigate the notion of
being similar characterized by different components of networks, 7.e., network
connectivity and node content. We reveal that with the aid of a small amount
of task-specific supervision, similarities can be measured more accurately. In
addition, the proposed method is able to (1) ameliorate the impact of the
noisy nature of social media data and (2) accommodate massive data by
distributed learning and efficient optimizations.

For learning similarity in heterogeneous networks, we propose an embed-
ding scheme that transfers different objects to unified vector representations.
The successful experiences of applying the proposed method in various data
mining applications suggests that (1) maximizing homophily similarity im-
proves the discriminative ability of the learned representations; (2) the deep
embedding framework is better at capturing complex interactions between

heterogeneous data; (3) the performance of the task-independent network em-
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bedding framework can be further improved by viewing it as a pre-training
process.

For learning similarity in streaming networks, a principled probabilistic
framework is proposed to unify many big data applications to a single stream-
ing PU learning task. We first propose a novel streaming network represen-
tation to model the data evolving process. For effective prediction, we jointly
consider two major challenges under streaming settings, unlabeled negativ-
ity and concept shift, which leads to significant performance improvement in
link prediction and recommendation.

In all, this dissertation investigates emerging problems and reveals novel
solutions. The problem of similarity learning for large-scale, noisy, hetero-
geneous and high-velocity networks is challenging due to difference in data
generation assumptions compared to conventional settings. Furthermore,
methodologies and techniques presented in this dissertation have broad im-
pacts. Similarity learning in networks is one the most fundamental and
essential problems not only in social media data, but also in the fields of
psychology, social sciences, biology, etc. The proposed solutions are general

and applicable to many fields and data types.

6.2 Future Research

Learning similarity in big data is still in its early stages of development
and an active area of exploration. Our current research raises a number
of potentially challenging and promising directions that we would like to

address. Examples of these areas include:

Information Trust, Transfer and Fusion: The majority of current re-
search aims to tackle the big data problems from one or a few kinds of
information sources. However, the real-world social computing paradigm is
constructed by the crowd-sourced information. The overarching goal is to
aggregate crowd-sourced information from multiple social and information
networks to produce task-specific predictions. To achieve this goal, we aim
to investigate the following related problems: (1) the source trustworthiness
that aims to distinguish the untrustworthy sources from the trustworthy
ones; (2) social signal processing that aims to aggregate the multi-source

contributed information to recover the true signals behind the problems; (3)
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the social dependency that reveals the mutual influences among different
sources; and (4) the nature of information structure. With solutions of these
aforementioned questions, we will be able to build a principled platform for

big data analytics.

Signed Networks: We have shown many examples of solving challenges
posed by big networks. However, emerging online social networks in the era of
big data contain both positive and negative links, which fundamentally differ
from the conventional networks under the PU setting. Since mining signed
networks is in a very early stage of development, we would like to investigate
the fundamental properties from the point of view of computational social
science. We aim to validate whether well-known network principles (e.g. the
power law) are still applicable. The goal is to systematically understand
the nature of signed networks and establish the fundamental principles and

models and to explore numerous applications.

Big Health: Fast-growing biomedical and healthcare data have encom-
passed multiple scales ranging from molecules, to individuals, to populations
and have connected various entities in healthcare systems with increasing
bandwidth, depth, and resolution. Those data are becoming an enabling
resource for accelerating basic science discoveries and facilitating evidence-
based clinical supports. Meanwhile, similarity learning plays an important
role in clinical decision making. For instance, doctors retrieve the most sim-
ilar clinical pathway for auxiliary diagnosis. However, the sheer volume and
complexity of the data present major barriers toward their translation into

effective clinical actions, which is definitely worth exploring in more depth.

90



1]

[10]

REFERENCES

T. Cover and P. Hart, “Nearest neighbor pattern classification,” IFEE
transactions on information theory, vol. 13, no. 1, pp. 21-27, 1967.

S. Lloyd, “Least squares quantization in pcm,” IEEFE transactions on
information theory, vol. 28, no. 2, pp. 129-137, 1982.

A. Bellet, A. Habrard, and M. Sebban, “A survey on metric learning for
feature vectors and structured data,” arXiv preprint arXiv:1306.6709,
2013.

J. Gantz and D. Reinsel, “Extracting value from chaos,” IDC iview,
vol. 1142, pp. 1-12, 2011.

M. Chen, S. Mao, and Y. Liu, “Big data: a survey,” Mobile Networks
and Applications, vol. 19, no. 2, pp. 171-209, 2014.

J. Han, J. Pei, and M. Kamber, Data mining: concepts and techniques.
Elsevier, 2011.

P. Zikopoulos, C. Eaton et al., Understanding big data: Analytics for
enterprise class hadoop and streaming data. McGraw-Hill Osborne
Media, 2011.

S. C. H. Hoi, W. Liu, and S.-F. Chang, “Semi-supervised distance
metric learning for collaborative image retrieval,” in CVPR. IEEE
Computer Society, 2008.

Z. Li, S. Chang, F. Liang, T. S. Huang, L. Cao, and J. R. Smith,
“Learning locally-adaptive decision functions for person verification,”
in Proceedings of the IEEE Conference on Computer Vision and Pat-
tern Recognition, 2013, pp. 3610-3617.

C. C. Aggarwal, “Towards systematic design of distance functions for
data mining applications,” in Proceedings of the ninth ACM SIGKDD
international conference on Knowledge discovery and data mining.

ACM, 2003, pp. 9-18.

91



[11]

[12]

[13]

[14]

[18]

[19]

[20]

S. Chang, G.-J. Qi, J. Tang, Q. Tian, Y. Rui, and T. S. Huang, “Multi-
media lego: Learning structured model by probabilistic logic ontology
tree,” in 2013 IEEE 13th International Conference on Data Mining.
IEEE, 2013, pp. 979-984.

S. Chang, C. C. Aggarwal, and T. S. Huang, “Learning local semantic
distances with limited supervision,” in 2014 IEEFE International Con-
ference on Data Mining. IEEE, 2014, pp. 70-79.

S. Chang, G.-J. Qi, C. C. Aggarwal, J. Zhou, M. Wang, and T. S.
Huang, “Factorized similarity learning in networks,” in 2014 IEEFE
International Conference on Data Mining. ITEEE, 2014, pp. 60-69.

S. Chang, J. Zhou, P. Chubak, J. Hu, and T. S. Huang, “A space align-
ment method for cold-start tv show recommendations,” in Proceedings
of the Twenty-Fourth International Joint Conference on Artificial In-
telligence, IJCAIL 2015, pp. 3373-3379.

S. Chang, W. Han, J. Tang, G.-J. Qi, C. C. Aggarwal, and T. S.
Huang, “Heterogeneous network embedding via deep architectures,” in
Proceedings of the 21th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining. ACM, 2015, pp. 119-128.

J. Goldberger, G. E. Hinton, S. T. Roweis, and R. Salakhutdinov,
“Neighbourhood components analysis,” in Advances in neural infor-
mation processing systems, 2004, pp. 513-520.

K. Q. Weinberger and L. K. Saul, “Distance metric learning for large
margin nearest neighbor classification,” Journal of Machine Learning
Research, vol. 10, no. Feb, pp. 207-244, 2009.

E. P. Xing, A. Y. Ng, M. I. Jordan, and S. Russell, “Distance met-
ric learning, with application to clustering with side-information,” in
Advances in neural information processing systems, 2003, pp. 505-512.

Z. Ou and Y. Zhang, “Probabilistic acoustic tube: a probabilistic gen-
erative model of speech for speech analysis/synthesis,” in AISTATS,
2012, pp. 841-849.

Y. Zhang, Z. Ou, and M. Hasegawa-Johnson, “Improvement of proba-
bilistic acoustic tube model for speech decomposition,” in 2014 IFEE
International Conference on Acoustics, Speech and Signal Processing

(ICASSP). 1EEE, 2014, pp. 7929-7933.

S. Chang, Y. Zhang, J. Tang, D. Yin, Y. Chang, M. A. Hasegawa-
Johnson, and T. S. Huang, “Positive-unlabeled learning in streaming
networks,” in Proceedings of the 22nd ACM SIGKDD international

conference on Knowledge discovery and data mining, 2016, pp. 755—
764.

92



[22]

[25]

2]

[27]

[28]

[29]

[30]

P. Wang, B. Xu, Y. Wu, and X. Zhou, “Link prediction in social
networks: the state-of-the-art,” Science China Information Sciences,
vol. 58, no. 1, pp. 1-38, 2015.

G.-J. Qi, C. C. Aggarwal, and T. Huang, “Community detection with
edge content in social media networks,” in 2012 IEEE 28th Interna-
tional Conference on Data Engineering. TEEE, 2012, pp. 534-545.

A. Y. Wu, M. Garland, and J. Han, “Mining scale-free networks using
geodesic clustering,” in Proceedings of the tenth ACM SIGKDD inter-
national conference on Knowledge discovery and data mining. ACM,
2004, pp. 719-724.

S. Fortunato, “Community detection in graphs,” Physics reports, vol.
486, no. 3, pp. 75-174, 2010.

S. Chang, Y. Zhang, J. Tang, D. Yin, Y. Chang, M. A. Hasegawa-
Johnson, and T. S. Huang, “Streaming recommender systems,” arXiv
preprint arXiw:1607.06182, 2016.

O. Celma Herrada, “Music recommendation and discovery in the long
tail,” 2009.

B. Sarwar, G. Karypis, J. Konstan, and J. Riedl, “Item-based col-
laborative filtering recommendation algorithms,” in Proceedings of the
10th international conference on World Wide Web. ACM, 2001, pp.
285-295.

P. Melville, R. J. Mooney, and R. Nagarajan, “Content-boosted collab-
orative filtering for improved recommendations,” in AAAI/TAAI 2002,
pp. 187-192.

J. Bobadilla, F. Ortega, A. Hernando, and A. Gutiérrez, “Recom-
mender systems survey,” Knowledge-Based Systems, vol. 46, pp. 109—
132, 2013.

L. Li, M. Medo, C. H. Yeung, Y.-C. Zhang, Z.-K. Zhang, and T. Zhou,
“Recommender systems,” Physics Reports, vol. 519, no. 1, pp. 1-49,
2012.

L. Page, S. Brin, R. Motwani, and T. Winograd, “The pagerank ci-
tation ranking: bringing order to the web,” Stanford InfoLab, Tech.
Rep., 1999.

D. Yin, Y. Hu, J. Tang, T. D. Jr., M. Zhou, H. Ouyang, J. Chen,
C. Kang, H. Deng, C. Nobata, J. Langlois, and Y. Chang, “Ranking
relevance in yahoo search,” in Proceedings of the 22nd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining,
2016, pp. 323-332.

93



[34]

[35]

[36]

[37]

[38]

[42]

[43]

[44]

T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation
of word representations in vector space,” arXiv:1301.3781, 2013.

J. Pennington, R. Socher, and C. D. Manning, “Glove: Global vectors
for word representation,” in EMNLP, vol. 14, 2014, pp. 1532—43.

M. McPherson, L. Smith-Lovin, and J. M. Cook, “Birds of a feather:
Homophily in social networks,” Annual review of sociology, pp. 415—
444, 2001.

H. Deng, J. Han, B. Zhao, Y. Yu, and C. X. Lin, “Probabilistic topic
models with biased propagation on heterogeneous information net-
works,” in Proceedings of the 17th ACM SIGKDD international con-

ference on Knowledge discovery and data mining. ACM, 2011, pp.
1271-1279.

Y. Bengio, J.-F. Paiement, P. Vincent, O. Delalleau, N. Le Roux, and
M. Ouimet, “Out-of-sample extensions for lle, isomap, mds, eigenmaps,
and spectral clustering,” Advances in neural information processing
systems, vol. 16, pp. 177-184, 2004.

7. Chu, S. Gianvecchio, H. Wang, and S. Jajodia, “Who is tweeting
on twitter: human, bot, or cyborg?” in Proceedings of the 26th annual
computer security applications conference. ACM, 2010, pp. 21-30.

A. Bar-Hillel, T. Hertz, N. Shental, and D. Weinshall, “Learning a
mahalanobis metric from equivalence constraints,” Journal of Machine
Learning Research, vol. 6, no. Jun, pp. 937-965, 2005.

J. V. Davis, B. Kulis, P. Jain, S. Sra, and I. S. Dhillon, “Information-
theoretic metric learning,” in Proceedings of the 24th international con-
ference on Machine learning. ACM, 2007, pp. 209-216.

G.-J. Qi, J. Tang, Z.-J. Zha, T.-S. Chua, and H.-J. Zhang, “An efficient
sparse metric learning in high-dimensional space via 1 1-penalized log-
determinant regularization,” in Proceedings of the 26th Annual Inter-
national Conference on Machine Learning. ACM, 2009, pp. 841-848.

S. Boyd and L. Vandenberghe, Conver Optimization. New York, NY,
USA: Cambridge University Press, 2004.

W. Xi, E. A. Fox, W. Fan, B. Zhang, Z. Chen, J. Yan, and D. Zhuang,
“Simfusion: measuring similarity using unified relationship matrix,” in
Proceedings of the 28th annual international ACM SIGIR conference
on Research and development in information retrieval. ACM, 2005,

pp- 130-137.

94



[45]

[47]

[53]

Z. Lin, I. King, and M. R. Lyu, “Pagesim: A novel link-based
similarity measure for the world wide web,” in Proceedings of the
2006 IEEE/WIC/ACM International Conference on Web Intelligence.
IEEE Computer Society, 2006, pp. 687-693.

F. Geerts, H. Mannila, and E. Terzi, “Relational link-based ranking,”
in Proceedings of the Thirtieth international conference on Very large
data bases-Volume 30. VLDB Endowment, 2004, pp. 552-563.

G. Jeh and J. Widom, “Simrank: a measure of structural-context sim-
ilarity,” in Proceedings of the eighth ACM SIGKDD international con-
ference on Knowledge discovery and data mining. ACM, 2002, pp.
538-543.

P. Zhao, J. Han, and Y. Sun, “P-rank: a comprehensive structural sim-
ilarity measure over information networks,” in Proceedings of the 18th
ACM conference on Information and knowledge management. ACM,
2009, pp. 553-562.

A. Blum and S. Chawla, “Learning from labeled and unlabeled data
using graph mincuts,” in Proceedings of the Fighteenth International
Conference on Machine Learning, 2001, pp. 19-26.

X. Zhu, Z. Ghahramani, J. Lafferty et al., “Semi-supervised learning
using gaussian fields and harmonic functions,” in ICML, vol. 3, 2003,
pp. 912-919.

D. Zhou, O. Bousquet, T. N. Lal, J. Weston, and B. Scholkopf, “Learn-
ing with local and global consistency,” Advances in neural information
processing systems, vol. 16, no. 16, pp. 321-328, 2004.

M. Belkin, P. Niyogi, and V. Sindhwani, “Manifold regularization: A
geometric framework for learning from labeled and unlabeled exam-
ples,” Journal of machine learning research, vol. 7, no. Nov, pp. 2399-
2434, 2006.

X. Zhu, J. Kandola, Z. Ghahramani, and J. D. Lafferty, “Nonpara-
metric transforms of graph kernels for semi-supervised learning,” in

Advances in neural information processing systems, 2004, pp. 1641—
1648.

9

X. Zhu, “Semi-supervised learning literature survey,” University of

Wisconsin, Tech. Rep., 2005.

A. 1. Schein, A. Popescul, L. H. Ungar, and D. M. Pennock, “Meth-
ods and metrics for cold-start recommendations,” in Proceedings of the
25th annual international ACM SIGIR conference on Research and de-
velopment in information retrieval. ACM, 2002, pp. 253-260.

95



[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

7. Gantner, L. Drumond, C. Freudenthaler, S. Rendle, and L. Schmidt-
Thieme, “Learning attribute-to-feature mappings for cold-start recom-
mendations,” in Data Mining (ICDM), 2010 IEEE 10th International
Conference on, 2010, pp. 176-185.

A. Mnih and R. Salakhutdinov, “Probabilistic matrix factorization,”
in Advances in neural information processing systems, 2007, pp. 1257—
1264.

Y. Koren, “Factorization meets the neighborhood: a multifaceted col-
laborative filtering model,” in Proceedings of the 14th ACM SIGKDD
international conference on Knowledge discovery and data mining.
ACM, 2008, pp. 426-434.

P. Forbes and M. Zhu, “Content-boosted matrix factorization for rec-
ommender systems: experiments with recipe recommendation,” in Pro-
ceedings of the fifth ACM conference on Recommender systems. ACM,
2011, pp. 261-264.

C. Shi, Y. Li, J. Zhang, Y. Sun, and P. S. Yu, “A survey of heteroge-
neous information network analysis,” arXiv preprint arXiw:1511.04854,
2015.

C. Wang, R. Raina, D. Fong, D. Zhou, J. Han, and G. Badros, “Learn-
ing relevance from heterogeneous social network and its application
in online targeting,” in Proceedings of the 34th international ACM SI-

GIR conference on Research and development in Information Retrieval.
ACM, 2011, pp. 655-664.

F. Fouss, A. Pirotte, J.-M. Renders, and M. Saerens, “Random-walk
computation of similarities between nodes of a graph with application
to collaborative recommendation,” IEEE Transactions on knowledge
and data engineering, vol. 19, no. 3, pp. 355-369, 2007.

Y. Sun, J. Han, X. Yan, P. S. Yu, and T. Wu, “Pathsim: Meta path-
based top-k similarity search in heterogeneous information networks,”
Proceedings of the VLDB Endowment, vol. 4, no. 11, pp. 992-1003,
2011.

C. Shi, X. Kong, Y. Huang, S. Y. Philip, and B. Wu, “Hetesim: A
general framework for relevance measure in heterogeneous networks,”
IEEE Transactions on Knowledge and Data Engineering, vol. 26,
no. 10, pp. 2479-2492, 2014.

S. Zhu, K. Yu, Y. Chi, and Y. Gong, “Combining content and link
for classification using matrix factorization,” in Proceedings of the 30th
annual international ACM SIGIR conference on Research and devel-
opment in information retrieval. ACM, 2007, pp. 487-494.

96



[66]

[74]

[75]

A. Paccanaro and G. E. Hinton, “Learning distributed representations
of concepts using linear relational embedding,” IFEE Transactions on
Knowledge and Data Engineering, vol. 13, no. 2, pp. 232-244, 2001.

T. Yang, R. Jin, Y. Chi, and S. Zhu, “Combining link and content for
community detection: a discriminative approach,” in Proceedings of the
15th ACM SIGKDD international conference on Knowledge discovery
and data mining. ACM, 2009, pp. 927-936.

M. Nickel, V. Tresp, and H.-P. Kriegel, “A three-way model for col-
lective learning on multi-relational data,” in Proceedings of the 28th
international conference on machine learning, 2011, pp. 809-816.

A.P. Singh and G. J. Gordon, “Relational learning via collective matrix
factorization,” in Proceedings of the 14th ACM SIGKDD international
conference on Knowledge discovery and data mining. ACM, 2008, pp.
650-658.

7. Yuan, J. Sang, Y. Liu, and C. Xu, “Latent feature learning in social
media network,” in Proceedings of the 21st ACM international confer-
ence on Multimedia. ACM, 2013, pp. 253-262.

C. Faloutsos, T. G. Kolda, and J. Sun, “Mining large graphs and
streams using matrix and tensor tools,” in Proceedings of the ACM
SIGMOD International Conference on Management of Data, 2007, p.
1174.

J. Sun, D. Tao, and C. Faloutsos, “Beyond streams and graphs: dy-
namic tensor analysis,” in Proceedings of the 12th ACM SIGKDD inter-
national conference on Knowledge discovery and data mining. ACM,
2006, pp. 374-383.

P. Zhao, C. C. Aggarwal, and G. He, “Link prediction in graph
streams,” in 32nd IEEFE International Conference on Data Engineer-
ing, ICDE 2016, Helsinki, Finland, May 16-20, 2016, 2016, pp. 553—
564.

L. S. Buriol, G. Frahling, S. Leonardi, A. Marchetti-Spaccamela, and
C. Sohler, “Counting triangles in data streams,” in Proceedings of the
twenty-fifth ACM SIGMOD-SIGACT-SIGART symposium on Princi-
ples of database systems. ACM, 2006, pp. 253-262.

A. L. Buchsbaum, R. Giancarlo, and J. R. Westbrook, “On finding com-
mon neighborhoods in massive graphs,” Theoretical Computer Science,
vol. 299, no. 1, pp. 707-718, 2003.

97



[76]

A. D. Sarma, S. Gollapudi, and R. Panigrahy, “Estimating pagerank
on graph streams,” Journal of the ACM (JACM), vol. 58, no. 3, p. 13,
2011.

C. C. Aggarwal, Y. Zhao, and S. Y. Philip, “On clustering graph
streams,” in Proceedings of the SIAM International Conference on Data
Mining. SIAM, 2010, pp. 478-489.

C. C. Aggarwal, Y. Zhao, and S. Y. Philip, “Outlier detection in graph
streams,” in 2011 IEEE 27th International Conference on Data Engi-
neering. IEEE, 2011, pp. 399-409.

C. C. Aggarwal, Y. Li, P. S. Yu, and R. Jin, “On dense pattern mining
in graph streams,” Proceedings of the VLDB Endowment, vol. 3, no.
1-2, pp. 975-984, 2010.

C. C. Aggarwal, Data streams: models and algorithms. Springer, 2007,
vol. 31.

L. Golab and M. T. Ozsu, “Issues in data stream management,” ACM
Sigmod Record, vol. 32, no. 2, pp. 5-14, 2003.

A. McGregor, “Graph stream algorithms: a survey,” ACM SIGMOD
Record, vol. 43, no. 1, pp. 9-20, 2014.

N. K. Ahmed, J. Neville, and R. Kompella, “Network sampling: From
static to streaming graphs,” ACM Transactions on Knowledge Discov-
ery from Data (TKDD), vol. 8 no. 2, p. 7, 2014.

7. Wen, W. Yin, and Y. Zhang, “Solving a low-rank factorization model
for matrix completion by a nonlinear successive over-relaxation algo-
rithm,” Mathematical Programming Computation, vol. 4, no. 4, pp.
333-361, 2012.

D. D. Lee and H. S. Seung, “Learning the parts of objects by non-
negative matrix factorization,” Nature, vol. 401, no. 6755, pp. 788791,
1999.

H. Ma, H. Yang, M. R. Lyu, and I. King, “Sorec: social recommenda-
tion using probabilistic matrix factorization,” in Proceedings of the 17th
ACM conference on Information and knowledge management. ACM,
2008, pp. 931-940.

S. Purushotham, Y. Liu, and C.-C. J. Kuo, “Collaborative topic re-
gression with social matrix factorization for recommendation systems,”
arXw preprint arXiw:1206.4684, 2012.

98



3]

[90]

[91]

[92]

[94]

[95]

C. Wang and D. M. Blei, “Collaborative topic modeling for recommend-
ing scientific articles,” in Proceedings of the 17th ACM SIGKDD inter-
national conference on Knowledge discovery and data mining. ACM,
2011, pp. 448-456.

T. L. Paine, P. Khorrami, W. Han, and T. S. Huang, “An analysis of
unsupervised pre-training in light of recent advances,” arXiv preprint
arXiv:1412.6597, 2014.

G. Hinton and R. Salakhutdinov, “Reducing the dimensionality of data
with neural networks,” Science, vol. 313, no. 5786, pp. 504-507, 2006.

Y. Bengio, P. Lamblin, D. Popovici, H. Larochelle et al., “Greedy layer-
wise training of deep networks,” Advances in neural information pro-
cessing systems, vol. 19, p. 153, 2007.

A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classifica-
tion with deep convolutional neural networks,” in Advances in neural
information processing systems, 2012, pp. 1097-1105.

G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and
R. R. Salakhutdinov, “Improving neural networks by preventing co-
adaptation of feature detectors,” arXwv preprint arXiw:1207.0580, 2012.

V. Nair and G. E. Hinton, “Rectified linear units improve restricted
boltzmann machines,” in Proceedings of the 27th International Confer-
ence on Machine Learning, 2010, pp. 807-814.

W. Han, P. Khorrami, T. L. Paine, P. Ramachandran, M. Babaeizadeh,
H. Shi, J. Li, S. Yan, and T. S. Huang, “Seq-nms for video object
detection,” arXiv preprint arXiv:1602.08465, 2016.

Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol.
521, no. 7553, pp. 436-444, 2015,

G. P. C. Fung, J. X. Yu, H. Lu, and P. S. Yu, “Text classification
without negative examples revisit,” IFEFE transactions on Knowledge
and Data Engineering, vol. 18, no. 1, pp. 6—20, 2006.

H. Yu, J. Han, and K.-C. Chang, “Pebl: Web page classification with-
out negative examples,” IEEFE Transactions on Knowledge and Data
Engineering, vol. 16, no. 1, pp. 70-81, 2004.

C. Elkan and K. Noto, “Learning classifiers from only positive and un-
labeled data,” in Proceedings of the 14th ACM SIGKDD international
conference on Knowledge discovery and data mining. ACM, 2008, pp.
213-220.

99



[100]

[101]

102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

110]

[111]

B. Liu, W. S. Lee, P. S. Yu, and X. Li, “Partially supervised classi-
fication of text documents,” in Machine Learning, Proceedings of the
Nineteenth International Conference, 2002, pp. 387-394.

L. Charlin, R. Ranganath, J. McInerney, and D. M. Blei, “Dynamic
poisson factorization,” in Proceedings of the 9th ACM Conference on
Recommender Systems. ACM, 2015, pp. 155-162.

J. Kim and H. Park, “Fast nonnegative tensor factorization with an
active-set-like method,” in High-Performance Scientific Computing.
Springer, 2012, pp. 311-326.

M. A. Davenport, Y. Plan, E. van den Berg, and M. Wootters, “1-
bit matrix completion,” Information and Inference, vol. 3, no. 3, pp.
189-223, 2014.

T. Cai and W.-X. Zhou, “A max-norm constrained minimization ap-
proach to 1-bit matrix completion,” Journal of Machine Learning Re-
search, vol. 14, no. 1, pp. 3619-3647, 2013.

C.-J. Hsieh, N. Natarajan, and I. S. Dhillon, “Pu learning for matrix
completion,” in Proceedings of The 32nd International Conference on
Machine Learning, 2015, pp. 2445-2453.

Y. Hu, Y. Koren, and C. Volinsky, “Collaborative filtering for implicit
feedback datasets,” in 2008 Fighth IEEE International Conference on
Data Mining. leee, 2008, pp. 263-272.

V. Sindhwani, S. S. Bucak, J. Hu, and A. Mojsilovic, “One-class ma-
trix completion with low-density factorizations,” in 2010 IEEFE Inter-
national Conference on Data Mining. IEEE, 2010, pp. 1055-1060.

Y. Ying, K. Huang, and C. Campbell, “Sparse metric learning via
smooth optimization,” in Advances in neural information processing
systems, 2009, pp. 2214-2222.

J-F. Cai, E. J. Candes, and Z. Shen, “A singular value threshold-
ing algorithm for matrix completion,” SIAM Journal on Optimization,
vol. 20, no. 4, pp. 1956-1982, 2010.

W. Cheney and A. A. Goldstein, “Proximity maps for convex sets,”
Proceedings of the American Mathematical Society, vol. 10, no. 3, pp.
448-450, 1959.

S.-P. Han, “A successive projection method,” Mathematical Program-
ming, vol. 40, no. 1-3, pp. 1-14, 1988.

100



[112]

[113]

[114]

[115]

[116]

[117)

[118]

[119]

[120]

[121]

[122]

C. Zeng, Y. Jiang, L. Zheng, J. Li, L. Li, H. Li, C. Shen, W. Zhou,
T. Li, B. Duan, M. Lei, and P. Wang, “Fiu-miner: A fast, integrated,
and user-friendly system for data mining in distributed environment,”
in SIGKDD, 2013, pp. 1506-1509.

J. Dean and S. Ghemawat, “Mapreduce: simplified data processing
on large clusters,” Communications of the ACM, vol. 51, no. 1, pp.
107-113, 2008.

V. Vapnik, The nature of statistical learning theory. Springer Science
& Business Media, 2013.

S. Shalev-Shwartz, Y. Singer, N. Srebro, and A. Cotter, “Pegasos: Pri-
mal estimated sub-gradient solver for svm,” Mathematical program-
ming, vol. 127, no. 1, pp. 3-30, 2011.

P. Tseng, “Convergence of a block coordinate descent method for non-
differentiable minimization,” Journal of optimization theory and appli-
cations, vol. 109, no. 3, pp. 475-494, 2001.

A. K. McCallum, K. Nigam, J. Rennie, and K. Seymore, “Automating
the construction of internet portals with machine learning,” Informa-
tion Retrieval, vol. 3, no. 2, pp. 127-163, 2000.

Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick,
S. Guadarrama, and T. Darrell, “Caffe: Convolutional architecture for
fast feature embedding,” arXw:1408.5093, 2014.

J. Bergstra, O. Breuleux, F. Bastien, P. Lamblin, R. Pascanu, G. Des-
jardins, J. Turian, D. Warde-Farley, and Y. Bengio, “Theano: A cpu
and gpu math compiler in python,” in Proc. 9th Python in Science

Conf, 2010, pp. 1-T7.

J. Tang and H. Liu, “Unsupervised feature selection for linked social
media data,” in Proceedings of the 18th ACM SIGKDD international
conference on Knowledge discovery and data mining. ACM, 2012, pp.
904-912.

T.-S. Chua, J. Tang, R. Hong, H. Li, Z. Luo, and Y. Zheng, “Nus-wide:
a real-world web image database from national university of singapore,”

in Proceedings of the ACM international conference on image and video
retrieval.  ACM, 2009, p. 48.

G.-J. Qi, C. C. Aggarwal, and T. S. Huang, “Transfer learning of dis-
tance metrics by cross-domain metric sampling across heterogeneous
spaces,” in Proceedings of the SIAM International Conference on Data
Mining. SIAM, 2012, pp. 528-539.

101



[123]

[124]

[125]

[126]

[127)

128]

[129]

[130]

[131]

[132]

M. Everingham, L. Van Gool, C. K. Williams, J. Winn, and A. Zisser-
man, “The pascal visual object classes (voc) challenge,” International
journal of computer vision, vol. 88, no. 2, pp. 303-338, 2010.

J. Kunegis, “Konect: the koblenz network collection,” in Proceedings
of the 22nd International Conference on World Wide Web. ACM,
2013, pp. 1343-1350.

J. Tang, H. Gao, and H. Liu, “mtrust: discerning multi-faceted trust
in a connected world,” in Proceedings of the fifth ACM international
conference on Web search and data mining. ACM, 2012, pp. 93-102.

T. Opsahl, “Triadic closure in two-mode networks: Redefining the
global and local clustering coefficients,” Social Networks, vol. 35, no. 2,
pp- 159-167, 2013.

S. Dooms, T. De Pessemier, and L. Martens, “Movietweetings: a movie
rating dataset collected from twitter,” in Workshop on Crowdsourcing
and human computation for recommender systems, CrowdRec at Rec-
Sys, vol. 2013, 2013, p. 43.

X. Wang and G. Sukthankar, “Link prediction in multi-relational col-
laboration networks,” in Proceedings of the 2013 IEEE/ACM Interna-
tional Conference on Advances in Social Networks Analysis and Min-
ing. ACM, 2013, pp. 1445-1447.

R. Pan, Y. Zhou, B. Cao, N. N. Liu, R. Lukose, M. Scholz, and Q. Yang,
“One-class collaborative filtering,” in 2008 Fighth IEEE International
Conference on Data Mining. 1EEE, 2008, pp. 502-511.

Y. Koren, “Collaborative filtering with temporal dynamics,” Commu-
nications of the ACM, vol. 53, no. 4, pp. 89-97, 2010.

A. Kyrola, G. Blelloch, and C. Guestrin, “Graphchi: large-scale graph
computation on just a pc,” in Presented as part of the 10th USENIX
Symposium on Operating Systems Design and Implementation (OSDI
12), 2012, pp. 31-46.

A. K. Menon and C. Elkan, “Link prediction via matrix factorization,”
in Joint European Conference on Machine Learning and Knowledge
Discovery in Databases. Springer, 2011, pp. 437-452.

102



APPENDIX A

PROOFS

A.1 Proof of Lemma 3.2.1

Proof 7T can be expressed as the intersection of |S|sets as 7 = TN - -NTjg).
Each T,, involves a set of triplet supervision. Without loss of generality,
assume T,,, = {5 : S;; > Sip+1}. It can be easily verified that T, is a convex
set by the definition of convex sets by assuming S*, S? € T,,, a € [0,1]. Then,

the following is true:

aSk+ (1 —a)S% > a(Sh + 1) + (1 — a)(5% + 1)
> Sy + (1 —a)Sh, + 1.

Therefore, aS* + (1 — a)S? € T,, and Ty, is a convex set. Furthermore, T

is an intersection of a finite number of convex sets. Therefore, T is convex.

A.2 Proof of Theorem 3.2.2

Before preceding to the proof of theorem 3.2.2, we first need to prove the

following lemma:

Lemma A.2.1 For any x,y,x’ and y' € R such that ' < y' — ¢, where
ceRY, o' =3(—c+x+y) and y = 5(c+x +y) provide the minimal value
of the least squares function f(x,y,2',y) = (x —2')*+(y—y)? if v > y+c.
For x <y — ¢, the minimal f(x,y,2',y") is obtained by setting ¥’ = = and
Y =y.

Proof The problem can be formulated as a constrained convex program as

ming ,» (' —z)%>+ (v —y)? subject to: 2’ <y’ — c.
Y Yy -y J Y
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The optimal solution can be interpreted as numerically solving the KKT

system of equations [43]. The Lagrangian dual problem is
max ming, (2 — )"+ (4 —y)* + Mz’ — 3/ +0),

where A is so called the KKT multiplier. The optimal 2™ and y™* is achieved

if satisfies some regularity conditions such as: the stationarity

2’ —x)+ A =0 ¥ =—-i\+zx
=
2(0' —y) =A=0

the primal feasibility ' — y' + ¢ < 0, the dual feasibility A > 0, and the
complementary slackness A(z'—y'+c) = 0. By solving the system of equations

we obtain the optimal solution of z* and y* as

/%

if A =0 then a:/* -7 , otherwise
y =Yy

2 = (—c+x+y)/2
Y= e+ a+y)/2

This thus completes the proof. |
Now, we have all the tools to prove theorem 3.2.2 as follows:

Proof For any S € 7,,, we have the trivial solution that the projection is
itself. For any S ¢ 7,,, we are seeking the optimal value of S*, such that
the projection error ||S — S*||% is minimized. In other words, the solution
to the minimization problem of ming-c7, ||S — S*||% provides the projector.
Because the Frobenius norm is decoupled for every element, it follows that
Tm only affects the entries of S;; and Sj. Therefore, by choosing S, = Sy,
we obtain zero projection error for S» for all {p,q} # {7,j} and {i,k}. The

minimization problem is further reduced to the following:

ming: > g5 +1 (Sij — S5)° + (Sik — S31)%,

where the property of the optimal solution is given in lemma A.2.1. This

completes the proof. |}
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A.3 Proof of Theorem 3.5.1

Proof First of all, since P is a contentious function defined on a compact set
specified by 0 < a; < A4, the range of P is also a compact set, and it follows
that P* exists and —oo < P* < 0o. In the following text, we will prove that
by each iteration of coordinate descent described in algorithm 2, the decline
of the value of the objective function is bounded from above, from which
both the convergence and the bound for the number of iterations required
for convergence are established.

After the t-th (¢t > 0) iteration, if the algorithm goes on to the (¢ + 1)-

th iteration, then [Ja!t! — ||, > p. Letting s’ = argmax, |a/f! — al,], it
2
follows that (a!f' —al,)? > %, which is the lower bound for the maximum

change of the elements of «; in t-th iteration. Now we will consider three

cases in the updating formula (3.37) to get the bound for the change of the

objective function given the change of the s’-th element of o, i.e. ;.
According to Taylor’s theorem, we obtain

t R
L) — s/ 1
P(a!th) — P(al,) = Lis . ()\ A1)
+ A

1
+ -
2(1+X\y)

(t+1 t)

st Qg

(A.1)

t+1 t )2‘

(ais’ — Qg

When 0 < Ry(1+ X)) < Ay, ot = Ry(1+ );), thereby the change of the

is’

objective function is

P( t+1) P( t ) a?s’_ag’;l( t+1 t >+ 1 ( t+1 t )2
(o) — A ) = —(. ., — O ——— (., — O
18 18 1 + Al 18 18 2(1 _|_ Al) 8 18
_ (O‘E:I — aﬁs’>2 + 1 (Ozﬁ;l N Oézz?s/)2
1+ X\ 2(1+ M)
1 t+1 t N2 5%
=———(a) —0jy) L~ .

C2(14N) A2)

When Ry (1 + A1) > Ay, offt = N\ Also, since 0 < af, < Ay, of, < offl

is’ )
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The change of the objective function is

al, — ot + ol — Ry(1+ X))

Plaly!) ~ Plafy) = H = 0 (0t —al,)
+ ﬁ(%@l — )’
— ety —atr + SR
2
< —ﬁ(afj —ajy)? < —m7
(A.3)

since (a/f' — Ry (1+ \p)) (o' —al,) <0.
Similarly, when Ry (1+ A;) < 0, o/f! =0, and af, > o!f'. We still have
(@it — Ry (1 + M) (el —al,) < 0 and it follows that the change of the

objective function is

2
P!t — P(al,) < L altt — ot c0

- o/ / - / ’ 2 < T T o~ 1 4 .~ - A4
18 Zs) — 2(1 + >\1)< 18 ’LS) — 2|RZ|(1 + )\1> ( )

Based on (A.2), (A.3) and (A.4), the change of the objective function given

i after the ¢-th itera-

the change of a;¢ is bounded from above by — SR

tion.
Moreover, let Py = P(a?) be the initial value of the objective function;
then the difference between the initial value and the optimal value of the

objective function is Py — P* < oo. Therefore, after at most {%—‘ =

0
2[Ri1(14+A1)

[mmm—g*)(ml)

= -‘ iterations, Algorithm 2 converges. |}
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