

Large Scale Social Network Analysis

By

Rui Portocarrero Sarmento

2013

Master Thesis – Data Analysis and Decision Support Systems

Supervisors:

João Gama

Albert Bifet

ii

Keywords: network analysis, large graph networks, parallel computing, network

community structure

iii

Biography

Rui Sarmento has a degree in Electrical Engineering by University of Porto, Faculty

of Engineering. He has worked in several areas from 3G mobile networks with

functions in an international technical support center to software development

companies focusing on Communications and Intranet solutions with Linux based

Enterprise Operating Systems. Finally he has also worked for the main public

transportation company in his hometown, Porto, as a project management engineer in

the informatics and communications area.

He is currently also collaborating with LIAAD (Laboratory of Artificial Intelligence

and Data Analysis) in INESCP.

iv

Acknowledgments

First, I would like to thank my advisors João Gama and Albert Bifet for their advices

and support. This thesis would not have been possible without them and without the

encouragement they have given me over the last two years. I’ll thank specially to João

Gama for giving me the opportunity for the time I spent at LIAAD (Artificial

Intelligence and Data Analysis Lab) surrounded by great Doctorate Students. They were

always supporting and very helpful. I would also like to thank Albert Bifet for being a

never ending resource of information for new and arising tools used throughout the

thesis.

I thank a lot to Marcia Oliveira. The time spent studying with her at LIAAD was great.

I thank her for the help she gave me understanding important theoretical subjects and

for making the thesis development task a lot easier.

I also would like to thank to FEUP (Faculty of Engineering - University of Porto) for

lending the “grid cluster”. That made the task of dealing with large datasets feasible, for

that I would like to thank Jonathan Barber for the immense enthusiasm and support

when I was dealing with supercomputers and clusters without previous knowledge on

the subject.

I want to thank Américo Amaral for helping me with the installation of Hadoop on

VM’s (Virtual Machines). His help was much appreciated and his insight on Hadoop

install was always of great value on the beginning of thesis research.

The thesis final phase consisted on the development of an algorithm previously not

developed with the Green-Marl language and in spite being a relatively fresh language I

had the pleasure to be guided by Martin Sevenich, Hong Sungpack and Austin Gibbons,

some of them contributing for the development of the language or that had contributed

to it in the past. They were all great help in understanding the language syntax and

behavior in parallel environments.

Finally I want to thank Tiago Cunha for the great companionship while we were

studying for the master courses and particularly because he helped me when gathering

some considerable quantity of data in study on this document.

v

Abstract

Throughout this document we present an in depth study and analysis of very large

scale social networks. Besides the explanation of how to use and install several tools

available, we explain in detail the basis of these tools. Several algorithms will be used to

give the reader knowledge of different tools and technique results. Using tools like

Graphlab or using Hadoop and Hadoop Map Reduce based tools like Pegasus or Giraph

we will compute some important metrics. We will also use an optimized tool for graph

analysis, it is called Snap (Stanford Network Analysis Platform). Although this tool is

not inherently a parallel computing one, it can serve as a reference for non parallel

graph analysis software.

Several metrics will be computed for several different size networks including a case

study using data previously achieved from the CrunchBase databases. One of this

particular Crunchbase network has relationships between technological companies and

financial organizations. Another network is also derived from Crunchbase databases

with relationships between persons and technological companies.

Finally, using parallel computing paradigm, two distinct algorithms will be

implemented, a community detection algorithm and also a similarity ranking algorithm.

Both algorithms behavior will also be subject of studies with test networks.

PORTUGUESE VERSION

O objetivo deste documento é explorar em profundidade o estudo das redes sociais de

grande escala. Além da exposição ao leitor do método de utilização e instalação de

diversas ferramentas disponíveis também será explicada a arquitetura funcional dessas

ferramentas. Serão utilizados vários algoritmos para dar ao leitor uma noção das

técnicas de funcionamento e correspondentes resultados para cada uma das ferramentas.

Serão calculadas algumas métricas importantes, usando ferramentas como o Graphlab

ou usando o Hadoop e ferramentas baseadas no Hadoop Map Reduce como o Pegasus

ou o Giraph. Adicionalmente utilizaremos ferramentas otimizadas para a análise de

redes sociais como o Snap (Stanford Network Analysis Platform) que embora não sendo

uma ferramenta de computação paralela serve como referência neste campo.

vi

Vários algoritmos serão computados para redes de diferentes tamanhos incluindo um

caso de estudo com redes obtidas da base de dados Crunchbase. Esta rede Crunchbase é

composta pelas relações entre empresas tecnológicas e organizações financeiras.

Também derivada da base de dados Crunchbase está outra rede com as ligações entre

personalidades e as empresas tecnológicas.

Finalmente, utilizando as bases da computação paralela, foram desenvolvidos dois

algoritmos distintos. Um algoritmo de deteção de comunidades e um algoritmo de

cálculo do ranking de similaridades (simrank) entre nós de uma rede. Ambos os

algoritmos serão também sujeitos a estudos de comportamento com redes de teste.

vii

Table of Contents

Biography ... iii

Acknowledgments ... iv

Abstract .. v

1. Introduction ... 1

1.1. Motivation .. 1

1.2. Thesis Overview ... 2

1.3. Contributions ... 2

2. State of the art .. 4

2.1. Parallel Architectures & Programming Models.. 4

2.1.1. Shared-memory computers ... 6

2.2. Mapping Parallel Graph Algorithms to Hardware ... 8

2.3. Software Approaches ... 10

2.4. Recent Approach: Distributed File System ... 12

2.4.1. Architecture of compute nodes .. 12

2.5. Introduction to Hadoop ... 14

2.5.1. Physical Architecture... 16

2.5.2. Hadoop Users ... 16

2.5.3. Hadoop Available Algorithms ... 17

2.5.4. Hadoop Advantages and Disadvantages ... 18

2.5.5. Hadoop installation - Physical Architecture ... 18

2.6. Map-Reduce ... 18

2.6.1. The Map processing ... 19

2.6.2. The Reduce processing .. 20

2.6.3. The Shuffle and Sort Process ... 20

2.7. Resumed evolution over recent times .. 21

3. Graph Analysis Tools ... 23

3.1. Tools Introduction .. 23

3.1.1. Pegasus ... 23

3.1.2. Graphlab .. 23

3.1.3. Giraph .. 24

3.1.4. Snap (Stanford Network Analysis Platform) .. 24

3.2. Comparison of basic features of graph analysis tools ... 25

3.3. Advantages and Disadvantages ... 28

3.4. Computing Metrics for Graph Analysis .. 29

3.4.1. Case Studies ... 29

3.4.1.1. Characteristics of the original data ... 29

3.4.1.2. Data Preprocessing .. 31

3.4.2. Degree Measure with Pegasus ... 32

3.4.3. Triangles with Graph Analytics Graphlab Toolkit .. 33

viii

3.4.4. Connected Components with Graph Analytics Graphlab Toolkit 35

3.4.5. KCore decomposition with Graph Analytics Graphlab Toolkit 37

3.4.6. Measuring ‘Friends of Friends’ with Hadoop Map-Reduce ... 40

3.4.7. Centrality Measures with Snap ... 41

3.4.8. Communities with Snap ... 42

3.4.9. Connected Components with Apache Giraph ... 43

3.5. Processing Time for Graph Analysis ... 44

4. Communities Detection and Similarity Ranking algorithms .. 48

4.1. Case Studies ... 48

4.2. Introduction to Community Detection .. 49

4.2.1. Community Detection Algorithms ... 50

4.3. Similarity Ranking Algorithm ... 51

4.4. Green-Marl Language ... 52

4.4.1. What does Green-Marl offer from start? .. 53

4.5. Communities Detection algorithm with Green Marl... 53

4.5.1. Development details and variations of the original algorithm 58

4.5.2. Modularity Results - Comparison with other algorithms ... 59

4.5.3. Processing Time Results - Comparison with other algorithms 59

4.6. SimRank algorithm with Green Marl ... 61

4.6.1. Development details – Memory use estimation ... 61

4.6.2. Simrank Single Core Vs Multicore.. 62

5. Conclusions .. 66

5.1. Lessons Learned .. 66

5.2. Future Work .. 67

References .. 69

Appendix A ... 72

1. Hadoop Installation - Implementation Procedures ... 72

2. Installation Procedures for Pegasus .. 81

3. Installation Procedures for Giraph.. 81

4. Installation Procedures for Graphlab.. 82

5. Installation Procedures for Hadoop Map Reduce (from book) ... 82

6. Installation Procedures for Snap (Stanford Network Analysis Platform) 83

7. Installation Procedures for Green-Marl .. 83

Appendix B ... 84

1. Edge List to Adjacency List – R code .. 84

2. Edge List to Giraph JSON Input Format – R code ... 84

3. Community Detection – Green-Marl code (core .gm file) ... 85

4. Community Detection – Main File (C++) code (core .cc file) .. 91

5. SimRank – Green-Marl code (core .gm file) .. 94

6. SimRank – Main File (C++) code (core .cc file) ... 96

ix

Figures & Algorithms

Figure 1: Distributed Memory Machines .. 5
Figure 2: Global Address Space Computing ... 6
Figure 3: SMP global memory ... 7
Figure 4: Compute nodes in racks, connected by rack switches interconnected by a cluster switch 13
Figure 5: Map-Reduce Job and Task Tracking ... 15
Figure 6: Schematic of Map-Reduce Computation ... 19
Algorithm 1: High-level example of Text mining with Map/Reduce... 21
Figure 7: Schematic of Map-Reduce Shuffle & Sorting .. 21
Figure 8: State of the Art – recent evolution ... 22
Figure 9: Processing time variation for Hadoop Map-Reduce FoF algorithm 46
Figure 10: Processing time variation for Pegasus Degree algorithm .. 46
Figure 11: Processing time variation for Graphlab Triangles detection algorithm 47
Figure 12: Simple Graph with 3 communities surrounded with dashed squares. 49
Algorithm 2: The weighted label propagation algorithm .. 54
Figure 13: Network used in the development of the algorithm phase A. .. 58
Algorithm 3: The SimRank algorithm .. 61
Figure 14: Test Network used in the development of the similarity algorithm. 62
Figure 15: Processing time for parallel/sequential execution of the similarity algorithm. 64

Tables

Table 1: Advantages and Disadvantages – Hadoop Map Reduce ... 18
Table 2: Comparison of tools – Algorithms .. 26
Table 3: Advantages and Disadvantages - Comparison of tools .. 28
Table 4: Processing Time (in seconds) ... 45
Table 5: Green-Marl Algorithms .. 53
Table 6: Modularity Comparison for Community Detection Algorithms ... 59
Table 7: Processing Time comparison for Community Detection Algorithms 60
Table 8: Processing Time for Similarity Algorithms (in seconds) ... 63

x

1

1. Introduction

1.1. Motivation

Graphs are the main used representation for the social networks structure. In graph

theory, a graph is a representation of a network of entities, objects or beings where some

of them are connected by links. They are abstracted by being represented by nodes,

vertices or vertexes and the links between them are called edges. They are visually

presented typically by a diagram with a set of dots for the vertexes and joined by curves

or lines for the edges. The edges may be directed or undirected. For example, in a

scientific conference the public will know the orator but the orator might not know all

the elements in the audience so the connections between the audience and the orator will

be represented by directed connections. If the orator gets to know some particular

person in the audience them the connection will be therefore undirected since the orator

knows the audience member and the audience member knows the orator.

Graph computations are often completely data-driven, dictated by the vertex and edge

(node and link) structure of the graph on which it is operating rather than being directly

expressed in code. In particular, the above properties of graph problems present

significant challenges for efficient parallelism. As a result, parallelism based on

partitioning of computation can be difficult to express because the structure of

computations in the algorithm is not known a priori.

The data in graph problems are typically unstructured and highly irregular. Graph data

makes it difficult to extract parallelism by partitioning the problem data. Scalability can

be quite limited by unbalanced computational loads resulting from poorly partitioned

data.

Performance in contemporary processors is predicated upon exploiting locality. Thus,

high performance can be hard to obtain for graph algorithms, even on serial machines.

In graph algorithms computation there is typically a higher ratio of data access than for

other scientific applications computation. Since these accesses tend to have a low

amount of exploitable locality, runtime can be dominated by the wait for memory

fetches. All this problems are discussed extensively by Lumsdaine et al. (2007) and will

be exposed in this document. The majority of tools used for this thesis development

2

address the problems searching for solutions and specifically addressing large graph

analysis issues.

1.2. Thesis Overview

This document tries to gather on one single document as much information possible

about the parallel computing tools available nowadays for the purpose of social

networks analysis, more concretely for those of large scale. Several tools and different

algorithms were used to gather information on several different networks of large scale,

impossible/very difficult to study on a normal commodity machine and with sequential

software due to time consuming processing.

On Chapter 2 we describe the state of the art of parallel computing architectures,

hardware and software approaches to the subject of study in this document, i.e. large

scale graph analysis.

Chapter 3 introduces the reader to the tools available for graph analysis, describe their

functional characteristics and prepare the user to use introduced tools on practical use

cases. On Section 3.4, previous to explore practical use cases with tools previously

introduced also on Chapter 3, the characteristics of the data used for this task are also

explained.

On Chapter 4 we describe the development process of two parallel algorithms. There

is an introduction to these metrics and then the developed code results on some test case

data specifically used to focus on the algorithms characteristics.

Finally on Chapter 5 we take conclusions on the overall work developed for this

document and explain also the possible further developments of this work and what we

think could be a good update for it in the future.

1.3. Contributions

With this document we tried to compile as much information to compare the tools

available for graph analysis nowadays. There will be a comparison of these tools

regarding several important subjects like advantages and disadvantages, offered

algorithms from installation and also methods for installing and running these tools.

3

Other main contributions of this work are novel implementations of an algorithm for

community detection and also of a similarity ranking calculation algorithm, with a

recently developed specific domain language. They were developed and experimented

with a language for graph analysis domain called Green-Marl. This specific language

tool is also exposed and explained on this document’s Section 4.4.

Resuming this document has these main contributions:

1. Aggregation of information:

a. What tools to use for analyzing large social networks

b. How to install the tools

c. What algorithms are already implemented with these tools

d. How to run the offered algorithms

2. Implementation of algorithms for large scale Social Network analysis:

a. Community Detection algorithm implementation with Green-Marl

language

b. Similarity Ranking algorithm implementation also with Green-Marl

language

4

2. State of the art

This Chapter introduces the state of the art architectures and software strategies

available recently, that are scalable to large networks since they use parallel processing.

Therefore this Chapter is dedicated only to parallel processing. We will write about

major technologies used by data scientists to approach the problem of big data

particularly on the large/very large graphs subject.

Sections 2.1 to 2.3 are an overview based on the important paper by Lumsdaine et al.

(2007) addressing on parallel computing for graph analysis. This way we intend to

expose recent research made on this subject and subsequently its evolution as time

evolved until today.

2.1. Parallel Architectures & Programming Models

Nowadays most machines are built based on standard microprocessors, with the use of

hierarchical memory. The processing is usually optimized reducing latency with fast

memory to store values from memory addresses that are likely to be accessed soon.

Although for the majority of modern applications, this is a way to improve performance,

it is not particularly effective for unstructured graphs calculations as we will see.

Distributed Memory Machines

This type of machines is usually programmed by explicit message passing by the user.

He is responsible for the division of data among the memories and also responsible for

the assigning of different tasks to the processors.

5

Figure 1: Distributed Memory Machines

The exchanging of data between processors is governed by user controlled messages,

generally with the help of MPI communication library from Borchers and Crawford

(1993). This way and for many users applications high performance is achieved but the

high detail in messages control can be fastidious and errors might be usual.

Normally programs are written in a way that processors might work independently on

local data and might also work collective in a group of processors with operations based

on communications between them as specified from Valiant (1990). However data

cannot be exchanged instantly and processing demands that it can only be done on

breaks between computation tasks. This characteristic makes it tedious to explore fine-

grained parallelism making distributed memory machines not suited to this kind of

parallelism.

Partitioned global address space computing

Partitioned global address such as UPC from El-Ghazawi et al. (2003) is more

adequate for fine-grained parallelism. The feature of a global address space makes

easier the writing of applications with data access patterns of higher complexity.

As can be seen on Fig. 2 UPC is based on a single communication layer therefore

parallel programs of fine-grained type achieve better performance than using MPI

library for communication between CPU’s, memory and host machines.

6

One constraint of UPC programs, as for MPI is that the number of threads is limited

and constant, usually equal to the number of processors. As will be pointed on the

sections below the lack of dynamic threads makes it generically difficult to build up

superior performance software for graph analysis.

Figure 2: Global Address Space Computing

2.1.1. Shared-memory computers

UPC features a globally addressable memory by software on distributed memory

hardware but it can also be provided in plain hardware. Shared memory computers can

be categorized in several groups. Here it is only considered cache-coherent computers

and also massively multithreaded computers.

Cache-coherent parallel computers

With SMPs (symmetric multiprocessors) global memory is globally reachable by each

processor. UPC might be used to program these machines although the most usually

used is OpenMP from Dagum and Menon (1998) or even a POSIX threading approach

from Society (1990). In this Thesis we will use exclusively SMPs machines for

computing metrics for graph analysis in Section 3.4 and will also use OpenMP in

chapter 4 for the development of graph analysis algorithms.

7

Figure 3: SMP global memory

SMP characteristics make it possible for a program to access any addresses in global

memory directly and sensibly fast because of its hardware support. Therefore

unstructured problems can achieve better performance than is possible on distributed

memory machines. SMPs are therefore dependant of faster hardware for accessing

memory and subsequently with lower latency.

As seen above in Fig. 3 processors possess a memory hierarchy in which a small

amount of data is kept in cache, a faster memory for quick access and to ensure read

operations get the most recent values for variables.

In a multiprocessor computer with multiple caches, cache-coherence is a great and

challenging task adding overhead which can degrade performance. For problems in

which reads are much more prevalent than writes, cache coherence protocols impact on

performance and scalability.

Another challenge with SMPs is thread synchronization and scheduling being possible

that some threads be blocked for a period of time. Recent versions of OpenMP required

that the number of threads be equal to the number of processors and therefore a blocked

thread corresponds to an idle processor and that may impact on performance as will see

in section 4.6.2 with some practical use cases and for developed algorithms that use

OpenMP.

8

Massively multithreaded architectures

Massive multithreaded machines are built upon custom processors which are more

expensive and have much slower clock frequency than mainstream microprocessors.

MTA-2 from Anderson et al. (2003) is an example of this type of machine and it has

also a non-standard programming model although it might be considered simple.

2.2. Mapping Parallel Graph Algorithms to Hardware

Parallel graph algorithms have been classified to be difficult to develop. The

challenging characteristics of software and hardware to take care with in the

development process are the following:

Task Granularity: With centrality measures computations it is common to use many

shortest path calculations and therefore there is a significant quantity of coarse-grained

parallelism. Resuming, each shortest path could be a separate task, but for the majority

of graph calculations parallelism is exclusively found on fine-grained parallelism.

Hardware architecture that makes it easy to use fine-grained parallelism would be more

suited to run such type of algorithms.

Memory contention: In global address space systems, multiple threads try to

simultaneously access the same memory. This reduces performance on the majority of

situations. This problem grows in the same measure the degree of parallelism increases

and is maximized with multithread machines. A graph algorithm will usually not write

within the graph input but it has to create and write its own data structures and therefore

memory addressing must be handled with care.

Load Balancing: For some cases of graph algorithms, for example breadth-first

search, load balancing might change over time (few vertices to visit in the beginning

and more in the end). This problem is less worrying with shared-memory machines

because work tasks can be migrated between processors without having to move data

from and to memory.

Simultaneous Queries: A large graph may be queried by a group of analysts

simultaneously, and for that, architecture should focus on throughput.

9

Distributed-memory architectures

Distributed memory and message passing machines have the least propensity to fine-

grained parallelism and are hard to make them perform dynamic load balancing. On the

other side and with a more generic behavior MPI programs will run on almost all

parallel platforms.

With edges and vertices of a graph partitioned among processors in a distributed

memory system, if a processor owns a vertex, it needs to have a mechanism to find his

vertex’s neighbors. This issue is solved widely in many applications by keeping a local

sub-data structure with the information of all the neighbors/adjacent vertex’s (also

called ghost cells) to the vertex’s owned by the processor or local to a process. This

kind of solutions is well applied to graph structures where a low amount of edges are

spread across different processors, and these kind of graphs are usual in scientific graph

problems. In addition, high-degree vertices cause problems in distributed memory, as

they may overload the memory available on a single processor.

An alternative to ghost cells is to use a hashing scheme to assign vertices to

processors. Although hashing can result in memory savings compared to ghost cells, it

can incur significant computational overhead.

Partitioned global address space computing

In this case global address space makes it obvious for the need for ghost cells,

facilitating finer-grained parallelism and dynamic load balancing. Data layout may be

important for performance though, since the graph is partitioned and non-local accesses

induce overhead. UPC language implementations might be difficult because of its

limited support and portability.

Cache-coherent, shared-memory computers

SMPs have all the advantages of partitioned global address space computing. They

have lower latencies because they provide hardware support for global address access

though they have a limitation of one thread per processor. They also have complicated

memory access patterns making processor idles usual while waiting for memory.

10

Massive multithreaded machines

Massive multithreaded machines support both coarse and fine-grained parallelism and

are amenable to load-balancing and simultaneous queries. Adding to these good features

they do not have the complexity and performance costs of implementations of cache-

coherence of SMPs.

The main problem with massively multithreaded algorithms is the amount of threads

in itself because if it is in numbers much greater than the number of processors memory

contention issues are more common. This technology is also said to have an uncertain

future so the commitment to development based on this architecture may not be advised

or is considered risky.

2.3. Software Approaches

Parallel Boost Graph Library

By abstracting away the reliance on a particular communication medium, the same

algorithm in the Parallel BGL (Boost Graph Library) from Gregor et al. (2005) can

execute on distributed-memory clusters using MPI (relying on message passing for

communication) or SMPs using Pthreads (relying on shared memory and locking

processors for communication).

With parallel BGL, multiple algorithm implementations may be required to account

for radical differences in architecture, such as the distinction between course-grained

parallelism that performs well on clusters and some SMPs and fine-grained parallelism

that performs well on massively multi-threaded architectures like the MTA-2.

Multi-Threaded Graph Library

The MTA-2 and XMT simple programming model assure its high level propensity for

the generic programming but it had constraints because of its novelty and immature

status regarding its software library.

Another solution is the MultiThreaded Graph Library from Berry et al. (2006),

inspired by the serial Boost Graph Library, developed at Sandia National Laboratories

to provide a near-term generic programming capability for implementing graph

algorithms on massively multithreaded machines. Like the Parallel BGL, underlying

data structures are leveraged to abstract parallelism away from the programmer. The

11

key to performance on MTA/XMT machines is keeping processors busy, and in practice

this often reduces to performing many communicating, asynchronous, fine-grained tasks

concurrently. The MTGL provides a flexible engine to control this style of parallelism.

The MTGL was developed to facilitate data mining on semantic graphs, i.e., graphs

with vertex and edge types. Furthermore, the XMT usage model allows many users to

run algorithms concurrently on the same graph. The MTGL is designed to support this

usage model.

SNAP, small-world network analysis and partitioning framework

SNAP (Small-world Network Analysis and Partitioning) is a modular graph

infrastructure for analyzing and partitioning interaction graphs, targeting multicore and

many core platforms. SNAP is implemented in C language and uses POSIX threads and

OpenMP primitives for parallelization. The source code is freely available online from

1
. In addition to partitioning and analysis support for interaction graphs, SNAP provides

an optimized collection of algorithmic “building blocks” (efficient implementations of

key graph-theoretic kernels) to end-users. Novel parallel algorithms for several graph

problems were designed and run efficiently on shared memory systems. SNAP

framework team does implementations of breadth-first graph traversal, shortest paths,

spanning tree, MST, connected components, and other problems achieve impressive

parallel (multicore) speedup for arbitrary, sparse graph instances. SNAP provides a

simple and intuitive interface for network analysis application design, whose objective

is hiding the parallel programming complexity involved in the low-level kernel design

from the user, as mentioned by Bader and Madduri (2008).

Recent Approaches

To deal with big data applications, more recently, a new software paradigm has

appeared. These programming systems are designed to get their parallelism not only

from a “supercomputer,” but from “computing clusters” – large groups of hardware,

including conventional processors or “nodes” connected by some particular mean

(Ethernet cables or switches) on a computer network. The software stack works with a

new form of file system, called a “distributed file system,” which features an extension

of any disk array in a conventional operating system. Distributed file systems (“DFS”)

1 http://snap-graph.sourceforge.net/

http://snap-graph.sourceforge.net/

12

are also prepared to protect against the frequent failures that occurs when data is

distributed over hundreds or thousands of compute nodes, and DFS does it by providing

replication of data or redundancy. Keeping in mind these kinds of file systems many

different programming systems have been developed. Map-Reduce was one of them and

has been used extensively for the most common calculations on large-scale data

performed on computing clusters. Map-Reduce is used in lots of ways because is

efficient for most calculation cases and is tolerant of hardware failures during the

computation. We will deal with this new approach with more detail on the next sections

of this thesis.

2.4. Recent Approach: Distributed File System

Normally most computing is done on a single node processor, with its main memory,

cache, and local disk. Not long ago, applications that called for parallel processing, such

as large scientific calculations, were done on special-purpose parallel computers with

many processors and specialized hardware. However, the new computing facilities

existing today have given rise to a new generation of programming systems. These

systems take advantage of the power of parallelism and at the same time avoid the

reliability problems that arise when the computing hardware consists of thousands of

independent components. This section discusses the characteristics of this type of

specialized file systems that have been developed to take advantage of large sets of

nodes. Later in this document’s chapter 3, several tools for graph metrics computations

will be introduced. The vast majority of these introduced tools are also DFS based,

typical in a distributed computation environment.

2.4.1. Architecture of compute nodes

Normally compute nodes might be stored on racks of computers. On each rack

computers might be connected with gigabit Ethernet switch or even fiber optics network

cards and switches, if exists more racks these are connected by another network. It is

expected greater bandwidth capacity for the hardware connecting the racks because it is

essential for efficient communication between large racks in need for much more

bandwidth than the communication process between nodes in each individual rack.

13

Figure 4: Compute nodes in racks, connected by rack switches interconnected by a cluster switch

For systems such as Fig. 4, the principal points of failure modes are the loss of a single

node when for example the disk crashes or because of the network card malfunctions or

the loss of an entire rack when for e.g. the rack switch fails to communicate with the

cluster switch.

There are solutions to this problem that can take two different shapes:

1. Files are stored redundantly. The files are duplicated at several compute nodes.

This new file system, often called a distributed file system or DFS:

a. Examples of DFS systems:

i. Google File System (GFS)

ii. Hadoop Distributed File System (HDFS)

iii. CloudStore

b. DFS systems are often used in these situations:

i. used with big files, possibly files with terabytes of size.

ii. Files are rarely updated.

c. How does “DFS” work?

i. Normally, both the chunk size and the degree of replication can be

decided by the user, an example feature of a “DFS” could be:

14

1. Chunks that are replicated, perhaps four times, at four

different compute nodes.

2. The nodes containing copies of data are located at different

racks of computers therefore avoiding loss of data if rack

fails.

3. There is a master node or name node controlling the

location of file chunks and therefore every node using DFS

knows where the files are located.

2. Division of computations into tasks, such that if any one task fails to execute to

completion, it can be restarted without affecting other tasks. This strategy is

followed by the map-reduce programming system.

2.5. Introduction to Hadoop

Hadoop is a framework developed for running applications on large clusters. Apache

Hadoop is the open source implementation of Google’s Map/Reduce methodology,

where the application is divided into several small fragments of work and each may be

executed or re-executed on any node in the cluster. For that purpose Hadoop provides a

distributed file System (HDFS) that stores data on the several nodes. Hadoop

framework also automatically handles node failures regarding Map/Reduce tasks and

also the HDFS system as cited by Mazza (2012).

Map/Reduce is a set of code and infrastructure for parsing and building large data sets.

A map function generates a key/value pair from the input data and this data is then

reduced by a reduce function that merges all values associated with equivalent keys.

Programs are automatically parallelized and executed on a run-time system which

manages partitioning the input data, scheduling execution and managing

communication including recovery from machine failures.

Regarding its architecture, Hadoop Cluster code is written in JAVA and consists of

compute nodes, also called “TaskTrackers” managed by “JobTrackers”. It is also

composed by a distributed file system (HDFS) i.e. a “namenode” with “datanodes”.

15

The “JobTracker” coordinates activities across the slave “TaskTracker” processes. It

accepts Map-Reduce job requests from clients and schedules map and reduce tasks on

“TaskTrackers” to perform the work.

The “TaskTracker” is a daemon process that spawns map and reduce child processes

to perform the actual map or reduce work. Map tasks typically read their input from

HDFS, and write their output to the local disk. Reduce tasks typically read the map

outputs over the network and write their outputs back to HDFS.

Please see Figure 5 explaining interactions between “JobTrackers” and

“TaskTrackers”:

Figure 5: Map-Reduce Job and Task Tracking

The “TaskTrackers” send heart beats signaling to the “JobTracker” at regular intervals,

with the heart beat they also indicate when they can take new map and reduce tasks for

execution. Then the “JobTracker” consults the Scheduler to assign tasks to the

“TaskTrackers” and sends the list of tasks as part of the heart beat response to the

“TaskTrackers”.

http://svn.apache.org/repos/asf/hadoop/common/tags/release-0.21.0/mapreduce/src/java/org/apache/hadoop/mapred/TaskTracker.java
http://svn.apache.org/repos/asf/hadoop/common/tags/release-0.21.0/mapreduce/src/java/org/apache/hadoop/mapred/JobTracker.java

16

2.5.1. Physical Architecture

Hadoop’s component ZooKeeper requires an odd-numbered of machines so the

recommended practice is to have at least three of them in any reasonably sized cluster.

It’s true that Hadoop can run on any kind of servers, even the old ones, but for better

results mid-level rack servers with dual sockets, as much RAM as is affordable, and

SATA drives optimized for RAID storage. Using RAID, however, is strongly

discouraged on the “DataNodes”, because of HDFS being already implementing the

replication and error-checking by nature; but on the “NameNode” it’s strongly

recommended for additional reliability.

From a network topology perspective with regards to switches and firewalls, all of the

master and slave nodes must be able to open connections to each other. For small

clusters, all the hosts would run 1 GB network cards connected to a single, good-quality

switch. For larger clusters look at 10 GB top-of-rack switches that have at least multiple

1 GB uplinks to dual-central switches. Client nodes also need to be able to talk to all of

the master and slave nodes, but if necessary that access can be from behind a firewall

that permits connection establishment only from the client side as mentioned by Holmes

(2012).

2.5.2. Hadoop Users

Hadoop has a high level of penetration in high-tech companies and is spreading across

other sectors. As a small example the following web companies use Hadoop:

1. Facebook uses Hadoop to store copies of internal log and dimension data

sources and use it as a source for reporting/analytics and machine learning.

Currently Facebook has two major clusters, one with 1100-machine with 8800

cores and about 12 PB raw storage. They have yet another 300-machine cluster

with 2400 cores and about 3 PB raw storage. For both this clusters each

commodity node has 8 cores and 12 TB of storage.

2. Yahoo! uses Hadoop in more than 100,000 CPUs on a 40,000 computers

cluster. Their biggest cluster has 4500 computers. Hadoop is used to support

http://www.facebook.com/

17

research for Ad Systems and Web Search. It is also used to do scaling tests to

support development of Hadoop on larger clusters.

3. Twitter uses Hadoop to store and process tweets, log files, and many other types

of data generated across Twitter. They use Cloudera's CDH2 distribution of

Hadoop, and store all data as compressed LZO files.

This information and additional information for many other web companies is available

on the Hadoop Wiki page from Leo (2012).

2.5.3. Hadoop Available Algorithms

For further research about Hadoop algorithms there is a good compilation on

publications that explain how to implement algorithms with this tool on
2
. There is also

a compilation of map-reduce patterns on
3
 and finally if the reader is more interested on

machine learning algorithms with Hadoop it might be useful to check the Mahout page

on
4
.

Hadoop Mahout’s algorithms are implemented on top of Apache Hadoop using the

map/reduce paradigm. Mahout’s core libraries are optimized to allow also for good

performance even for non-distributed algorithms i.e. pseudo-distributed installations of

Hadoop.

Hadoop Mahout is appropriate for several use cases including recommendation mining

for example in commercial applications, clustering tasks for example with sets of text

documents and therefore grouping them into groups of topically related documents. For

example Mahout can also be applied to classification by learning from existing

categorized documents. Mahout then tries to find what documents of a specific category

look like and assigns unlabelled documents to the predicted category. Mahout can also

be applied to Frequent item set mining taking a set of item groups and identifying which

individual items usually appear together. This has applications for example on

commercial environments with product transactions lists.

2 http://atbrox.com/2010/05/08/mapreduce-hadoop-algorithms-in-academic-papers-may-2010-update/
3 http://highlyscalable.wordpress.com/2012/02/01/mapreduce-patterns/
4 http://mahout.apache.org/

http://atbrox.com/2010/05/08/mapreduce-hadoop-algorithms-in-academic-papers-may-2010-update/
http://highlyscalable.wordpress.com/2012/02/01/mapreduce-patterns/
http://mahout.apache.org/

18

2.5.4. Hadoop Advantages and Disadvantages

This section presents Hadoop Map Reduce advantages and disadvantages. This is

important because Map Reduce serves as basis for several used tools available to do

data analysis nowadays. Some of these tools are introduced in Chapter 3 and used for

metrics computations on section 3.4. Table 1 gives a summary:

Table 1: Advantages and Disadvantages – Hadoop Map Reduce

Tool Hadoop MR

Advantages Ability to write MapReduce programs in Java, a language which even many

non computer scientists can learn with sufficient capability to meet powerful

data-processing needs

 Ability to rapidly process large amounts of data in parallel

 Can be deployed on large clusters of cheap commodity hardware as

opposed to expensive, specialized parallel-processing hardware

 Can be offered as an on-demand service, for example as part of Amazon's

EC2 cluster computing service Washington (2011)

Disadvantages One-input two-phase data flow rigid, hard to adapt - Does not allow for

stateful multiple-step processing of records

 Procedural programming model requires (often repetitive) code for even the

simplest operations (e.g., projection, filtering)

 Map Reduce nature is not specially directed to implement code that presents

iterations or iterative behavior

 Opaque nature of the map and reduce functions impedes optimization from

Zinn (2010)

2.5.5. Hadoop installation - Physical Architecture

For this thesis we use an HP machine with 12 cores (Intel(R) Core(TM)2 Duo CPU

T7700 @ 2.40GHz) and 55GB RAM lend by FEUP (Faculty of Engineering University

of Porto). The OS installed on FEUP machine is a CentOS 6 Linux distribution. This

machine has a pseudo-distributed installation of Hadoop based on the web page by Noll

(August 5, 2007).

The Hadoop installation procedures for a small test cluster setup are available in this

document in APPENDIX A.

2.6. Map-Reduce

In brief, a map-reduce computation executes as follows and is essentially defined by

the developed map and reduce functions as mentioned by Rajaraman et al. (2012):

19

1. Within the Map tasks scheduler each mapper is given one or more pieces of the

data in the distributed file system. These Map tasks turn the chunk of data into a

sequence of key-value pairs. The way key-value pairs are produced from the input

data is determined by the code written by the user for the Map function.

2. The key-value pairs from each Map task are collected by a master controller and

sorted by key. The keys are divided among all the Reduce tasks, so all key-value

pairs with the same key wind up at the same Reduce task.

3. The Reduce tasks work on one key at a time, and combine all the values associated

with that key in some way. The manner of combination of values is determined by

the code written by the user for the Reduce function.

The following figure translates the Map-Reduce process:

Figure 6: Schematic of Map-Reduce Computation

2.6.1. The Map processing

The role of the map-reduce user is to program/define map and reduce functions, where

the map function outputs key/value tuples, which are processed by reduce functions to

produce the final output. Map function is defined with a Key/value pair as input and that

20

represents some excerpt of the original files/file, for example a single document or

document line. The map function produces zero or more Key/value pairs for that input

but it can have also a filtering purpose when it outputs only if a certain condition is met.

2.6.2. The Reduce processing

The reduce function is called once per each Key outputted by map function and also as

an input to reduce are all the values outputted by map function for some specific key.

Like the map function the reduce function can output from zero to many key/value

pairs, in the end of the process the output can be written to DFS or a database for

example.

2.6.3. The Shuffle and Sort Process

The shuffle and sort phases are responsible for determining the reducer that should

receive the map output key/value pair (called partitioning); and ensuring that, for a

given reducer, all its input keys are sorted.

Map outputs for the same key (such as “Yahoo“ in figure 7) go to the same reducer,

and are then combined together to form a single input record for the reducer. Each

reducer has all of its input keys sorted.

Figure 7 gives an example of the Shuffle & Sorting process used with Map-Reduce

applications. This example is related to text mining documents for company’s news.

The mapper splits each document line into distinct words, and outputs each word (the

key) along with the word's originating filename (the value). MapReduce partitions the

mapper output keys and ensures that the same reducer receives all output records

containing the same key. MapReduce sorts all the map output keys for a single reducer,

and calls a reducer once for each unique output key, along with a list of all the output

values across all the reducers for each unique output key. The reducer collects all the

filenames for each key, and outputs a single record, with the key and a comma-

separated list of filenames.

21

The high-level algorithm for such a task would be like this:

mapper (filename, file-contents):

 for each keyword in file-contents:

 emit (keyword,filename)

reducer (keyword, values):

 for each keyword:

 for each values:

 add values to list-of-filenames

 emit (keyword, list-of-filenames)

Algorithm 1: High-level example of Text mining with Map/Reduce

In this example case we list Google, Yahoo, Microsoft and Apple and following

previous algorithm the Shuffle & Sort would be like in Figure 7:

Figure 7: Schematic of Map-Reduce Shuffle & Sorting

2.7. Resumed evolution over recent times

This section ends this chapter resuming the recent evolution describing the milestones

of large scale graph mining and analysis. The following figure illustrates this evolution

and gives some insight on future developments of this subject. It is a recent subject of

study and the development or use of parallel computing tools to approach big data

22

problems and specifically graph analysis fundamentally starts in the beginning of the

21
st
 Century with the creation of Boost Graph library written in C++. Four years latter

an evolution of the library appear in the form of Parallel Boost Graph Library also

written in C++ and simultaneously the appearance of Hadoop written in JAVA which

would became preponderant some years later. In the years between we also have seen

the development of SNAP framework written in C and OpenMP (for multicore

architectures) but finally Hadoop and the HDFS assumed to be the most used tool

among the vast majority of graph analysis frameworks.

Figure 8: State of the Art – recent evolution

23

3. Graph Analysis Tools

Many of the tools used on this thesis development are parallel/distributed computing

tools not necessarily developed to be used for graph analysis but generically developed

to fulfill the need for tools to analyze big data on machines with many cores/clusters of

computers.

3.1. Tools Introduction

Most graph tools use Hadoop or HDFS as its basis to work with clusters of computers

and distributed data files. Tools like Apache Giraph, Pegasus, Map Reduce, Graphlab

and others use it and depend on it for proper communication between nodes on a

cluster. Another used tool, in fact not dependent of Hadoop is Snap C++ packages

published by Stanford. The introduction to this tool and the experimental results

obtained with it for graph analysis metrics are presented respectively in sections 3.1.4

and 3.4.8.

3.1.1. Pegasus

The first used tool that is based in Hadoop was Pegasus. Pegasus is an open-source,

graph-mining system with massive scalability. It is fully written in JAVA language and

it runs in parallel, distributed manner as mentioned in Kang (2012).

Pegasus provides several algorithms already implemented so the user can apply them

directly to social networks and graphs (section 3.2). The details about Pegasus can be

found on a paper by Kang and Tsourakakis (2009). The instructions for Pegasus

installation procedures can be found also on this document (APPENDIX A).

3.1.2. Graphlab

Graphlab (2012), is a high-level graph-parallel abstraction that efficiently and

intuitively expresses computational dependencies. Unlike Map-Reduce where

computation is applied to independent records, computation in GraphLab is applied to

dependent records which are stored as vertices in a large distributed data-graph.

Computation in GraphLab is expressed as vertex-programs which are executed in

24

parallel on each vertex and can interact with neighboring vertices. In contrast to the

more general message passing and actor models, GraphLab constrains the interaction of

vertex-programs to the graph structure enabling a wide range of system optimizations.

GraphLab programs interact by directly reading the state of neighboring vertices and by

modifying the state of adjacent edges. In addition, vertex-programs can signal

neighboring vertex-programs causing them to be rerun at some point in the future. The

instructions for Graphlab installation procedures can be found on this document,

APPENDIX A and the algorithms available for graph analysis are mentioned on section

3.2.

3.1.3. Giraph

Giraph implements a graph-processing framework that is launched as a typical

Hadoop job to use existing Hadoop infrastructure. Giraph builds upon the graph-

oriented nature of Pregel developed by Google from Malewicz et al. (2010) but

additionally adds fault-tolerance to the coordinator process with the use of ZooKeeper

as its centralized coordination service.

Giraph follows the bulk-synchronous parallel model relative to graphs where vertices

can send messages to other vertices during a given super-step. Checkpoints are initiated

by the Giraph infrastructure at user-defined intervals and are used for automatic

application restarts when any worker in the application fails. Any worker in the

application can act as the application coordinator and one will automatically take over if

the current application coordinator fails as mentioned from Apache (2012). The

instructions for Giraph installation procedures can be found on this document

(APPENDIX A) and the algorithms available for graph analysis are mentioned on

section 3.2.

3.1.4. Snap (Stanford Network Analysis Platform)

As cited on the project’s webpage

5
 Snap from Leskovec (2012) is a general purpose,

high performance system for analysis and manipulation of large networks. The core

SNAP library is written in C++ and optimized for maximum performance and compact

graph representation. It easily scales to massive networks with hundreds of millions of

5 http://snap.stanford.edu/snap/

http://snap.stanford.edu/snap/

25

nodes, and billions of edges. It efficiently manipulates large graphs, calculates structural

properties, generates regular and random graphs, and supports attributes on nodes and

edges. Besides scalability to large graphs, an additional strength of Snap is that nodes,

edges and attributes in a graph or a network can be changed dynamically during the

computation.

Snap was originally developed by Jure Leskovec in the course of his PhD studies. The

first release was made available in Nov, 2009. Snap uses a general purpose STL

(Standard Template Library) like library GLib developed at Jozef Stefan Institute. Snap

and GLib are being actively developed and used in numerous academic and industrial

projects. The instructions for Snap installation procedures can be found on this

document, APPENDIX A and the algorithms available for graph analysis with this tool

are mentioned on section 3.2.

3.2. Comparison of basic features of graph analysis tools

Almost all of the tools proposed in this document are introduced on previous chapters

and include toolkits ready to be used immediately after install.

Pegasus, Graphlab, Snap and Giraph have several algorithms dedicated to networks

analysis. Pegasus is exclusively dedicated to network analysis, Graphlab has several

toolkits available but the graph analytics toolkit is the more appropriate for the subject

of this thesis. Snap is, like other tools, dedicated to graphs analysis and presents a

myriad of algorithms ready to use. Giraph is a tool still under heavy development and

has an algorithm library with some few simple example algorithms as we will see on

Table 2.

http://kt.ijs.si/dunja/TextGarden/
http://www.ijs.si/

26

Table 2: Comparison of tools – Algorithms

Software Pegasus Graphlab Giraph Snap

Algorithms
available from
software install

 Degree

 PageRank

 Random Walk

with Restart

(RWR)

 Radius

 Connected

Components

 approximate

diameter

 kcore

 pagerank

 connected

component

 simple coloring

 directed triangle

count

 simple undirected

triangle count

 format convert

 sssp

 undirected triangle

count

 Simple Shortest

Path (available

from
6
)

 Simple In Degree

Count

 Simple Out

Degree Count

 Simple Page

Rank

 Connected

Components

 cascades

 centrality

 cliques

 community

 concomp

 forestfire

 graphgen

 graphhash

 kcores

 kronem

 krongen

 kronfit

 maggen

 magfit

 motifs

 ncpplot

 netevol

 netinf

 netstat

 mkdatasets

 infopath

Parallel
computing

YES YES YES NO

Can user
configure number
of cores or
machines?

YES YES YES NO

On Table 2, among the toolkits/example algorithms available for each tool it is also

exposed the capacity of these several tools to work on a parallel computing environment

and also if the selected number of processor cores or processing machines is available to

be specified from configuration. This information is important for further use of these

tools scalability and if for example the numbers of computing nodes available on the

user cluster vary.

The algorithms names in Table 2 are self explanatory in considerable amount but for

Snap and Graphlab there are situations where the purpose of the algorithm might not be

clear to the reader. This is a brief explanation on the acronyms in Table 2 and what they

mean:

- For Graphlab:

SSSP: single source shortest path vertex program.

6 https://cwiki.apache.org/confluence/display/GIRAPH/Shortest+Paths+Example

https://cwiki.apache.org/confluence/display/GIRAPH/Shortest+Paths+Example

27

- For SNAP, from readme file on
7
:

cascades: Simulate a SI (susceptible-infected) model on a network and compute

structural properties of cascades.

centrality: Node centrality measures (closeness, eigen, degree, betweenness, page

rank, hubs and authorities).

cliques: Overlapping network community detection (Clique Percolation Method).

community: Network Community detection (Girvan-Newman and Clauset-Newman-

Moore).

concomp: Manipulates connected components of a graph.

dynetinf: Implements stochastic algorithm for dynamic network inference from

cascade data (more at http://snap.stanford.edu/proj/dynamic/).

forestfire: Forest Fire graph generator.

graphhen: Common graph generators (Small-world, Preferential Attachment, etc.).

graphhash: Graph hash table for counting frequencies of small graphs.

kcores: Computes the k-core decomposition of the network.

kronem: Estimates Kronecker graph parameter matrix using EM algorithm.

krongen: Kronecker graph generator.

kronfit: Estimates Kronecker graph parameter matrix.

maggen: Multiplicative Attribute Graph (MAG) generator.

magfit: Estimates MAG model parameter.

motifs: Counts the number of occurrence of every possible subgraph on K nodes in the

network.

ncpplot: Computes Network Community Profile (NCP) plot.

netevol: Computes properties of an evolving network, like evolution of diameter,

densification power law, degree distribution, etc.

netinf: Implements netinf algorithm for network inference from cascade data (more at

http://snap.stanford.edu/netinf).

netstat: Computes statistical properties of a static network, like degree distribution,

hop plot, clustering coefficient, distribution of sizes of connected components, spectral

properties of graph adjacency matrix, etc.

MakeDatasets: creates datasets for the SNAP website. The code demonstrates how to

load different kinds of networks in various network formats and how to compute

7 https://github.com/snap-stanford/snap/blob/master/README.txt

https://github.com/snap-stanford/snap/blob/master/README.txt

28

various statistics of the network, like diameter, clustering coefficient, size of largest

connected component, and similar.

3.3. Advantages and Disadvantages

This section resumes the advantages and disadvantages of the tools used for graph

analysis in this thesis. The following table resumes the general opinion about the tools:

Table 3: Advantages and Disadvantages - Comparison of tools

Tool Pegasus Graphlab Giraph Snap

Advantages Similar positive

points to

Hadoop MR

(please see

section 2.5.4)

 Algorithms can be described

in a node-centric way; same

computation is repeatedly

performed on every node.

 Significant amounts of

computations are performed

on each node.

 Can be used for any Graph

as long as their sparse.

 Several

advantages over

Map Reduce:

- it’s a stateful

computation

- Disk is hit if/only

for checkpoints

- No sorting is

necessary

- Only messages

hit the network as

mentioned from

Martella (2012)

 Optimized for

Graph

processing.

 Written with

C++ which is

intrinsically

considered a

fast language

Disadvantages Similar

negative points

to Hadoop MR

(please see

section 2.5.4)

 Programmability: user must

restructure his algorithm in a

node centric way.

 There is an overhead of

runtime system when the

amount of computation

performed at each node is

small.

 Small world graphs:

Graphlab lock scheme may

suffer from frequent conflicts

for such graphs.

 Still in a very

immature phase

of development

 Lack of a

complete offered

algorithm library

 Not developed

to take

advantage of

parallel or

distributed

processing of

tasks

 Some

algorithms can

be time

consuming

even for

relatively small

graphs due to

the number of

graph

characteristics

covered (eg.

“centrality”

algorithm)

29

3.4. Computing Metrics for Graph Analysis

This section presents an overview of the tools used for computing graph metrics.

These tools are Graphlab, Pegasus, Hadoop Map/Reduce and Snap. There will be also a

brief exposure of the results obtained with each tool. First we will start by explaining

the origin and details of the data networks used for tools tests.

When it was necessary to use Hadoop and HDFS based tools there is a need for

inputting the data files, edge or adjacency lists to HDFS and that task was done with the

following “put” command:

$hadoop fs -put <localsrc> <dst>

where <localsrc> is the path of the local file that we want to send to HDFS and <dst>

is the destination file name we want the source file to have in HDFS.

3.4.1. Case Studies

The experimental evaluation described in Chapter 3 uses several different datasets.

One of the dataset represents the relationships between technological companies spread

around the world and financial organizations. Another dataset is related to relationships

between persons and companies also on the technological universe. Next section, we

explain the datasets characteristics.

3.4.1.1. Characteristics of the original data

We used networks downloaded from

8
 for this chapter containing computation of

networks metrics. Therefore we are using Amazon’s products network where network

edges represent links of commonly co-purchased products (from now on designated by

Network C) from Leskovec et al. (2005). We use also Youtube’s online social network

(from now on designated by Network D) and LiveJournal online social network (from

now on designated by Network E) from Backstrom et al. (2006). These networks are

available among others from Leskovec (2009).

As mentioned before the Networks A an B represent data that was downloaded from

the CrunchBase website, a directory of technology companies. The Network A

8 http://snap.stanford.edu/data/index.html

http://snap.stanford.edu/data/index.html

30

represents the connections between technological companies and financial organizations

and Network B represents the connections between personalities and technological

companies. For achieving both this networks we used the CrunchBase API from

Thanedar (2012) that provides JSON representations of the data found on CrunchBase.

The output of the items is JavaScript Object Notation, a lightweight format for data

exchange. JSON is pure JavaScript, an alternative to XML. To handle this format is not

necessary to use DOM or any specific framework.

The API currently supports three actions: "show", "seeks" and "list".

Example of original data Entity

For information about a specific entity in CrunchBase, we use a URL as follows:

 http://api.crunchbase.com/v/1/<namespace>/<permalink>.js

The namespaces available are:

 company
 person
 financial-organization
 product
 service-provider

Example Company: Google

http://api.crunchbase.com/v/1/company/google.js?api_key=...

Example Investment Fund: Accel Partners

http://api.crunchbase.com/v/1/financial-organization/accel-partners.js?api_key=...

Example Person: Brad Fitzpatrick

http://api.crunchbase.com/v/1/person/brad-fitzpatrick.js?api_key=...

Please note that for using CrunchBaseAPI commands, we use an API Key previously

obtained after registration on the Crunchbase website. If, for example, your API key is

1234 the previous command would be:

http://api.crunchbase.com/v/1/person/brad-fitzpatrick.js?api_key=1234

Entities List

For a list of all entities of a particular namespace on CrunchBase, we use a URL as

follows:

http://api.crunchbase.com/v/1/<plural-namespace>

31

The plural namespace available are:

 companies
 people
 financial-organizations
 products
 service-providers

In this work we used these following namespaces: companies, people, and financial

organizations.

Number of firms: 88.269

http://api.crunchbase.com/v/1/companies.js?api_key=...

Number of investment funds: 7.697

http://api.crunchbase.com/v/1/financial-organizations.js?api_key=...

Number of persons: 118.394

Therefore and for all the networks used in this chapter we have the following number

of nodes and edges:

- Network A with 16.339 vertexes and 30.313 edges.

- Network B with 107.033 vertexes and 128.746 edges.

- Network C with 334.863 vertexes and 925.872 edges.

- Network D with 1.134.890 vertexes and 2.987.624 edges.

- Network E with 3.997.962 vertexes and 34.681.189 edges.

3.4.1.2. Data Preprocessing

To deal with extraction of the data for networks A and B, a Windows Application

was used, it communicates with the site API. The final output was a directory with

JSON files with all the items available for the selected entities.

After having extracted all items it was necessary to generate statements in order to

export the items to a database and make the relationship between entities, for this task a

Windows Application was used. We were using MySql DBMS initially but after several

performance problems we chose SQL Server. Depending on the tool used for data

32

analysis it might be necessary to translate an edge list originally retrieved from the

database to an adjacency list. This conversion from edge list to adjacency list was done

with programming code made with R language. This code is available on APPENDIX

B, page 84 among other code developed also for preprocessing of data.

3.4.2. Degree Measure with Pegasus

The following command was then used from Pegasus console to run algorithm:

PEGASUS> compute deg comp-finorg

Enter parameters: [in or out or inout] [#_of_reducers]: inout 2

where comp-finorg is the graph name already uploaded on HDFS (“add” command

explained on users guide from Kang et al. (2010)). Pegasus asks if we want to retrieve

in-degree or out-degree or if we want generic degree information. It also asks how many

reducers we want to use and this number is dependent of number of node machines in

the cluster and is calculated with the next assumption:

number of reducers = 2* number of machines

The results are then available on the HDFS directory

pegasus/graphs/[GRAPH_NAME]/results/[ALGORITHM_NAME]. So, to obtain these

results on pegasus/graphs/comp-finorg/results/deg we have to get them from HDFS, the

following command was written on OS console:

$hadoop fs -get /user/110414015/pegasus/graphs/comp-finorg/results/deg /results

the results are then divided in two folders, one with the node degree count where we

can see for each value of degree count the quantity of these occurrences in the graph.

Here goes an example of output:

2 3186

4 1369

6 566

8 258

10 141

12 72

14 45

33

this results expose the existence in this network of 3186 nodes with node degree value

of 2 i.e. two neighbors for each node in this group of nodes and this undirected graph.

The output for the node degree count expectedly outputs the node degree for each

node in the graph, for example, the node with Id 2 has 30 neighbors:

2 30

4 224

6 59

8 13

10 48

12 113

14 12

3.4.3. Triangles with Graph Analytics Graphlab Toolkit

For the next experiences with the data and Graphlab’s Graph Analytics Toolkit from

Graphlab (2012) we followed the website relative to the algorithm available on
9
.

The following command was used on graph analytics toolkit directory:

$./undirected_triangle_count --graph=/home/110414015/Relationships-Companies-

FinancialOrg.tsv --format=tsv

The raw output of this command was:

This program counts the exact number of triangles in the provided graph.

INFO: mpi_tools.hpp(init:63): MPI Support was not compiled.

TCP Communication layer constructed.

INFO: metrics_server(launch_metric_server:219): Metrics server now listening on

http://hpcgrid-centos6:8090

INFO: distributed_graph.hpp(load_from_posixfs:1823): Loading graph from file:

/home/110414015/Relationships-Companies-FinancialOrg.tsv

INFO: distributed_ingress_base.hpp(finalize:166): Finalizing Graph...

INFO: distributed_ingress_base.hpp(exchange_global_info:493): Graph info:

 nverts: 16339

 nedges: 30313

 nreplicas: 16339

 replication factor: 1

Number of vertices: 16339

Number of edges: 30313

Counting Triangles...

INFO: synchronous_engine.hpp(start:1248): Iteration counter will only output every

5 seconds.

INFO: synchronous_engine.hpp(start:1263): 0: Starting iteration: 0

INFO: synchronous_engine.hpp(start:1312): Active vertices: 16339

INFO: synchronous_engine.hpp(start:1361): Running Aggregators

INFO: synchronous_engine.hpp(start:1373): 1 iterations completed.

Updates: 16339

9 http://docs.graphlab.org/graph_analytics.html#graph_analytics_triangle_undirected

http://docs.graphlab.org/graph_analytics.html%23graph_analytics_triangle_undirected

34

Counted in 0.047622 seconds

70 Triangles

Metrics server stopping.

The following command was used on graph analytics toolkit directory and for the

Network B studied:

$./undirected_triangle_count --graph=/home/110414015/Relationships-Persons-

Companies.tsv --format=tsv

The raw output of this command was:

This program counts the exact number of triangles in the provided graph.

INFO: mpi_tools.hpp(init:63): MPI Support was not compiled.

TCP Communication layer constructed.

INFO: metrics_server(launch_metric_server:219): Metrics server now listening on

http://hpcgrid-centos6:8090

INFO: distributed_graph.hpp(load_from_posixfs:1823): Loading graph from file:

/home/110414015/Relationships-Persons-Companies.tsv

INFO: distributed_ingress_base.hpp(finalize:166): Finalizing Graph...

INFO: distributed_ingress_base.hpp(exchange_global_info:493): Graph info:

 nverts: 107033

 nedges: 128746

 nreplicas: 107033

 replication factor: 1

Number of vertices: 107033

Number of edges: 128746

Counting Triangles...

INFO: synchronous_engine.hpp(start:1248): Iteration counter will only output every

5 seconds.

INFO: synchronous_engine.hpp(start:1263): 0: Starting iteration: 0

INFO: synchronous_engine.hpp(start:1312): Active vertices: 107033

INFO: synchronous_engine.hpp(start:1361): Running Aggregators

INFO: synchronous_engine.hpp(start:1373): 1 iterations completed.

Updates: 107033

Counted in 0.103243 seconds

20 Triangles

Metrics server stopping.

with these results we can conclude that both networks present low number of triangles

and therefore have low density and moreover, triangle detection gained recently much

practical importance since they are central in so-called complex network analysis. First,

they are involved in the computation of one of the main statistical property used to

describe large graphs met in practice and that is the clustering coefficient of the node as

mentioned from Latapy (2008). The expected clustering coefficient for both graphs in

study in this section is expected to be low due the low number of triangles presented on

them.

35

3.4.4. Connected Components with Graph Analytics Graphlab Toolkit

For the next experiences with the data and Graphlab we followed the website relative

to the algorithm available on
10

.

The following command was used on graph analytics toolkit directory and for the

Network A studied:

$./connected_component --graph=/home/110414015/Relationships-Companies-

FinancialOrg.tsv --format=tsv

The raw output of this command was:

Connected Component

INFO: mpi_tools.hpp(init:63): MPI Support was not compiled.

TCP Communication layer constructed.

Loading graph in format: tsv

INFO: distributed_graph.hpp(load_from_posixfs:1823): Loading graph from file:

/home/110414015/Relationships-Companies-FinancialOrg.tsv

INFO: distributed_ingress_base.hpp(finalize:166): Finalizing Graph...

INFO: distributed_ingress_base.hpp(exchange_global_info:493): Graph info:

 nverts: 16339

 nedges: 30313

 nreplicas: 16339

 replication factor: 1

INFO: synchronous_engine.hpp(start:1248): Iteration counter will only output every

5 seconds.

INFO: synchronous_engine.hpp(start:1263): 0: Starting iteration: 0

INFO: synchronous_engine.hpp(start:1312): Active vertices: 16339

INFO: synchronous_engine.hpp(start:1361): Running Aggregators

INFO: synchronous_engine.hpp(start:1373): 14 iterations completed.

Updates: 63671

graph calculation time is 0 sec

RESULT:

size count

2 556

3 113

4 36

5 14

6 6

7 3

8 6

10 1

18 1

The following command was used on graph analytics toolkit directory and for the

Network B studied:

10 http://docs.graphlab.org/graph_analytics.html#graph_analytics_connected_component

http://docs.graphlab.org/graph_analytics.html%23graph_analytics_connected_component

36

$./connected_component --graph=/home/110414015/Relationships-Persons-Companies.tsv --

format=tsv

The raw output of this command was:

Connected Component

INFO: mpi_tools.hpp(init:63): MPI Support was not compiled.

TCP Communication layer constructed.

Loading graph in format: tsv

INFO: distributed_graph.hpp(load_from_posixfs:1823): Loading graph from file:

/home/110414015/Relationships-Persons-Companies.tsv

INFO: distributed_ingress_base.hpp(finalize:166): Finalizing Graph...

INFO: distributed_ingress_base.hpp(exchange_global_info:493): Graph info:

 nverts: 107033

 nedges: 128746

 nreplicas: 107033

 replication factor: 1

INFO: synchronous_engine.hpp(start:1248): Iteration counter will only output every

5 seconds.

INFO: synchronous_engine.hpp(start:1263): 0: Starting iteration: 0

INFO: synchronous_engine.hpp(start:1312): Active vertices: 107033

INFO: synchronous_engine.hpp(start:1361): Running Aggregators

INFO: synchronous_engine.hpp(start:1373): 21 iterations completed.

Updates: 801608

graph calculation time is 1 sec

RESULT:

size count

2 1086

3 573

4 306

5 150

6 108

7 61

8 42

9 22

10 22

11 11

12 2

13 6

14 4

15 3

16 3

18 1

19 1

21 1

23 1

98886 1

with these results we can conclude that both networks present one main weakly

connected component composed by almost all nodes from the network evidencing that

both networks A and B have almost all nodes inter-connected by some defined path

37

between them. This represents that both networks have few nodes isolated from the rest

of the network. The study of connected components in social network analysis has

several applications including a key role in the chemistry investigations for organic

compounds derived from Tutte Theorem as cited on
11

.

3.4.5. KCore decomposition with Graph Analytics Graphlab Toolkit

For the next experiences with the data and Graphlab we followed the website relative

to the algorithm available on
12

.

The following command was used on graph analytics toolkit directory and for the

Network A studied:

$./kcore --graph=/home/110414015/Relationships-Companies-FinancialOrg.tsv --format=tsv

The raw output of this command was:

Computes a k-core decomposition of a graph.

INFO: mpi_tools.hpp(init:63): MPI Support was not compiled.

TCP Communication layer constructed.

INFO: distributed_graph.hpp(load_from_posixfs:1823): Loading graph from file:

/home/110414015/Relationships-Companies-FinancialOrg.tsv

INFO: distributed_ingress_base.hpp(finalize:166): Finalizing Graph...

INFO: distributed_ingress_base.hpp(exchange_global_info:493): Graph info:

 nverts: 16339

 nedges: 30313

 nreplicas: 16339

 replication factor: 1

Number of vertices: 16339

Number of edges: 30313

INFO: synchronous_engine.hpp(start:1248): Iteration counter will only output every

5 seconds.

INFO: synchronous_engine.hpp(start:1263): 0: Starting iteration: 0

INFO: synchronous_engine.hpp(start:1312): Active vertices: 0

INFO: synchronous_engine.hpp(start:1373): 0 iterations completed.

Updates: 0

K=0: #V = 16339 #E = 30313

INFO: synchronous_engine.hpp(start:1248): Iteration counter will only output every

5 seconds.

INFO: synchronous_engine.hpp(start:1263): 0: Starting iteration: 0

INFO: synchronous_engine.hpp(start:1312): Active vertices: 0

INFO: synchronous_engine.hpp(start:1373): 0 iterations completed.

Updates: 0

K=1: #V = 16339 #E = 30313

11 http://en.wikipedia.org/wiki/Connected_component_%28graph_theory%29
12 http://docs.graphlab.org/graph_analytics.html#graph_analytics_kcore

http://en.wikipedia.org/wiki/Mathematical_chemistry
http://en.wikipedia.org/wiki/Connected_component_%28graph_theory%29
http://docs.graphlab.org/graph_analytics.html%23graph_analytics_kcore

38

INFO: synchronous_engine.hpp(start:1248): Iteration counter will only output every

5 seconds.

INFO: synchronous_engine.hpp(start:1263): 0: Starting iteration: 0

INFO: synchronous_engine.hpp(start:1312): Active vertices: 6685

INFO: synchronous_engine.hpp(start:1361): Running Aggregators

INFO: synchronous_engine.hpp(start:1373): 8 iterations completed.

Updates: 10212

K=2: #V = 8645 #E = 23354

INFO: synchronous_engine.hpp(start:1248): Iteration counter will only output every

5 seconds.

INFO: synchronous_engine.hpp(start:1263): 0: Starting iteration: 0

INFO: synchronous_engine.hpp(start:1312): Active vertices: 2860

INFO: synchronous_engine.hpp(start:1361): Running Aggregators

INFO: synchronous_engine.hpp(start:1373): 10 iterations completed.

Updates: 16232

K=3: #V = 5037 #E = 16613

INFO: synchronous_engine.hpp(start:1248): Iteration counter will only output every

5 seconds.

INFO: synchronous_engine.hpp(start:1263): 0: Starting iteration: 0

INFO: synchronous_engine.hpp(start:1312): Active vertices: 1683

INFO: synchronous_engine.hpp(start:1361): Running Aggregators

INFO: synchronous_engine.hpp(start:1373): 13 iterations completed.

Updates: 20965

K=4: #V = 2578 #E = 9684

INFO: synchronous_engine.hpp(start:1248): Iteration counter will only output every

5 seconds.

INFO: synchronous_engine.hpp(start:1263): 0: Starting iteration: 0

INFO: synchronous_engine.hpp(start:1312): Active vertices: 929

INFO: synchronous_engine.hpp(start:1361): Running Aggregators

INFO: synchronous_engine.hpp(start:1373): 35 iterations completed.

Updates: 25433

K=5: #V = 645 #E = 2479

INFO: synchronous_engine.hpp(start:1248): Iteration counter will only output every

5 seconds.

INFO: synchronous_engine.hpp(start:1263): 0: Starting iteration: 0

INFO: synchronous_engine.hpp(start:1312): Active vertices: 273

INFO: synchronous_engine.hpp(start:1361): Running Aggregators

INFO: synchronous_engine.hpp(start:1373): 6 iterations completed.

Updates: 26318

The following command was used on graph analytics toolkit directory and for the

Network B studied:

 $./kcore --graph=/home/110414015/Relationships-Persons-Companies.tsv --format=tsv

The raw output of this command was:

Computes a k-core decomposition of a graph.

INFO: mpi_tools.hpp(init:63): MPI Support was not compiled.

TCP Communication layer constructed.

INFO: distributed_graph.hpp(load_from_posixfs:1823): Loading graph from file:

/home/110414015/Relationships-Persons-Companies.tsv

39

INFO: distributed_ingress_base.hpp(finalize:166): Finalizing Graph...

INFO: distributed_ingress_base.hpp(exchange_global_info:493): Graph info:

 nverts: 107033

 nedges: 128746

 nreplicas: 107033

 replication factor: 1

Number of vertices: 107033

Number of edges: 128746

INFO: synchronous_engine.hpp(start:1248): Iteration counter will only output every

5 seconds.

INFO: synchronous_engine.hpp(start:1263): 0: Starting iteration: 0

INFO: synchronous_engine.hpp(start:1312): Active vertices: 0

INFO: synchronous_engine.hpp(start:1373): 0 iterations completed.

Updates: 0

K=0: #V = 107033 #E = 128746

INFO: synchronous_engine.hpp(start:1248): Iteration counter will only output every

5 seconds.

INFO: synchronous_engine.hpp(start:1263): 0: Starting iteration: 0

INFO: synchronous_engine.hpp(start:1312): Active vertices: 0

INFO: synchronous_engine.hpp(start:1373): 0 iterations completed.

Updates: 0

K=1: #V = 107033 #E = 128746

INFO: synchronous_engine.hpp(start:1248): Iteration counter will only output every

5 seconds.

INFO: synchronous_engine.hpp(start:1263): 0: Starting iteration: 0

INFO: synchronous_engine.hpp(start:1312): Active vertices: 52238

INFO: synchronous_engine.hpp(start:1361): Running Aggregators

INFO: synchronous_engine.hpp(start:1373): 11 iterations completed.

Updates: 89208

K=2: #V = 40460 #E = 64567

INFO: synchronous_engine.hpp(start:1248): Iteration counter will only output every

5 seconds.

INFO: synchronous_engine.hpp(start:1263): 0: Starting iteration: 0

INFO: synchronous_engine.hpp(start:1312): Active vertices: 22127

INFO: synchronous_engine.hpp(start:1361): Running Aggregators

INFO: synchronous_engine.hpp(start:1373): 20 iterations completed.

Updates: 138797

K=3: #V = 2437 #E = 5532

INFO: synchronous_engine.hpp(start:1248): Iteration counter will only output every

5 seconds.

INFO: synchronous_engine.hpp(start:1263): 0: Starting iteration: 0

INFO: synchronous_engine.hpp(start:1312): Active vertices: 1278

INFO: synchronous_engine.hpp(start:1361): Running Aggregators

INFO: synchronous_engine.hpp(start:1373): 9 iterations completed.

Updates: 141918

A k-core of a graph G is a maximal connected subgraph of G in which all vertices

have degree at least k. Equivalently, it is one of the connected components of the

subgraph of G formed by repeatedly deleting all vertices of degree less than k. If a non-

empty k-core exists, then, clearly, G has degeneracy at least k, and the degeneracy of G

is the largest k for which G has a k-core.

http://en.wikipedia.org/wiki/Maximal_element
http://en.wikipedia.org/wiki/Connected_component_%28graph_theory%29

40

The concept of a k-core was introduced to study the clustering structure of social

networks from Seidman (1983) and to describe the evolution of random graphs from

Luczak (1991), it has also been applied in bioinformatics by Bader and Hogue (2003)

and network visualization by Alvarez-Hamelin et al. (2005).

3.4.6. Measuring ‘Friends of Friends’ with Hadoop Map-Reduce

The algorithm to be explored by us was “friends of friends” which is basically an

algorithm for searching the friends of friends which have more friends in common with

the iteration origin node.

The book material was downloaded with the following commands available on the

book from Holmes (2012):

$ git clone git://github.com/alexholmes/hadoop-book.git

Then we built the code:

$ cd hadoop-book

$ mvn package

The results were obtained first by putting (to HDFS) the prepared file with the data of

the networks in the form of an adjacency list (a .txt file prepared with R code and as

previously documented)

$ hadoop fs -put adjency_list.txt .

$ bin/run.sh com.manning.hip.ch7.friendsofafriend.Main \adjency_list.txt calc-output

sort-output

For the Network B, the one with relations between persons and companies the

following similar commands were used:

$ hadoop fs -put adjency_list_persons.txt .

$ bin/run.sh com.manning.hip.ch7.friendsofafriend.Main \adjency_list_persons.txt calc-

output sort-output

The result files of these commands were retrieved from HDFS with the get command

similar to previous calls of this command on this document. The results are not made

available on this document because of space reasons. Here is a small sample of the

results achieved with this algorithm and for the network of relations between companies

and financial organizations:

http://en.wikipedia.org/wiki/Social_network
http://en.wikipedia.org/wiki/Social_network
http://en.wikipedia.org/wiki/Random_graph
http://en.wikipedia.org/wiki/Bioinformatics
http://en.wikipedia.org/wiki/Graph_drawing

41

10077 8507:2,17745:1,11077:1,24814:1,85008:1,24937:1,2569:1,2599:1,15721:1,26176:1
1008 73285:1,1469:1,35600:1,247:1,213:1,58475:1,51474:1,7522:1,1991:1,1010:1
1009 14833:1,35600:1,2050:1,11160:1,184:1,2474:1,7313:1,142:1,247:1,73285:1
10099 7613:1,7466:1,109:1,2474:1,12:1,357:1,27658:1,15:1,1135:1,26915:1
101 36:8,15:3,7293:3,26:2,7434:2,513:2,53:2,87:2,6:1,6319:1
1010 7490:4,1875:2,607:2,247:1,35509:1,100:1,1:1,57:1,1008:1,1009:1
1011 939:3,15:3,54:2,7279:2,7377:2,51820:1,5136:1,507:1,5:1,483:1
10116 55775:2,2870:2,39005:2,18924:2,72017:2,26185:1,25966:1,25866:1,25794:1,24768:1
1012 10996:1,1523:1
10120 35585:1,3192:1,31255:1,30752:1,30748:1,30663:1,27754:1,26857:1,26789:1,2665:1
10121 13289:1,11617:1,671:1,18956:1
10127 81082:1,9417:1,813:1,7542:1,7541:1,7227:1,27141:1,24898:1,15759:1,12134:1
10128 59502:1,5822:1,5739:1,56896:1,5344:1,4746:1,4410:1,43497:1,43350:1,4314:1

From the previous results sample and as an example the institution with ID 101 has a

good chance of connecting with the one with ID 36 because both have 8 connections in

common although they are not directly interconnected in the input network.

With these results we can conclude that this algorithm is of good application in the

commercial data networks where the results could serve as basis for a recommender

system. In the case of our network A and B the hypothetical recommender would

recommend connections between companies and financial organizations and for

network B it would recommend connections between persons and companies regarding

consulting services for example.

3.4.7. Centrality Measures with Snap

Several algorithms were used in Snap software, we will write about the results on the

next pages:

The command centrality was used on Snap’s /examples/centrality directory and for the

Network A studied, the usage of the command is as outputted in Snap software:

usage: centrality

 -i:Input un/directed graph (default:'../as20graph.txt')

 -o:Output file (default:'node_centrality.tab')

The command is the following:

./centrality -i:/home/110414015/Relationships-Companies-FinancialOrg.txt -

o:centrality.tab

42

The output from Snap is very extensive so we present just a small sample example:

#Network: /home/110414015/Relationships-Companies-FinancialOrg.txt

#Nodes: 16339 Edges: 30313

#Node

Id

Degree Closeness Betweennes EigenVec

tor

Network

Constraint

Clustering

Coefficient

PageRank HubScore Authority

Score

3 80.00 0.233747 1139257.19

2383

0.000461 0.016776 0.000633 0.001181 0.000094 0.029831

843 14.00 0.193071 164648.965

528

0.000028 0.083915 0.000000 0.000798 0.000000 0.000021

844 16.00 0.207691 287289.050

309

0.000061 0.071393 0.000000 0.000907 0.000000 0.001772

9 33.00 0.213657 310964.724

490

0.000223 0.039056 0.000000 0.000361 0.000008 0.015517

1352 9.00 0.181062 96242.5733

56

0.000015 0.118590 0.000000 0.000539 0.000000 0.000147

The command centrality was used on Snap /examples/centrality directory and also for

the Network B studied, the usage of the command is the same as used before. The

results are of similar format also.

With these results we can, among other conclusions, inspect the role each node plays

on the network regarding its connectivity. Centrality measures allows us to find the

principal actors in a network i.e. the nodes that present strong centrality or betweeness

centrality are nodes of greater importance has they are central in the path of connection

between many nodes of the network.

3.4.8. Communities with Snap

The command community was used on Snap’s /examples/community directory and for

the Network A studied. The usage of the command is as outputted in Snap software:

usage: community

 -i:Input graph (undirected graph) (default:'graph.txt')

 -o:Output file (default:'communities.txt')

 -a:Algorithm: 1:Girvan-Newman, 2:Clauset-Newman-Moore (default:2)

The command is the following:

./community -i:/home/110414015/adjency_list.txt -o:adjency_list_communities.txt

43

The output from Snap is very extensive so we present just a small sample example:

Input: /home/110414015/adjency_list.txt

Nodes: 16339 Edges: 14417

Algoritm: Cluset-Newman-Moore

Modularity: 0.994151

Communities: 1943

#NId CommunityId

3 0

843 0

922 0

1036 0

1268 0

7485 0

1371 0

1744 0

1829 0

2570 0

4346 0

.

.

.

The command community was used on Snap’s /examples/community directory and

also for the Network B studied, the usage of the command is the same as used before

and the results are similar in format but for other graph subject of study.

With these results we can conclude that all nodes belong to the same community with

Id 0 and for the output chunk listed.

The community detection algorithms have large application in several areas including

Psychology, Anthropology, Business and communications, Ecology among many others

as mentioned in
13

 .

3.4.9. Connected Components with Apache Giraph

The algorithm to be explored by us with Apache Giraph was “Connected

Components” which is basically an algorithm available in the examples section of

Giraph.

The results were obtained using a specially prepared JSON kind of file graph input

and by putting (to HDFS) the prepared files (.txt files prepared with R code available in

APPENDIX B on page 84) with the data of the used networks.

For a Network C, the one with Amazon data, the following command was used on the

Giraph binary folder:

13 http://en.wikipedia.org/wiki/Community

http://en.wikipedia.org/wiki/Community

44

$hadoop jar target/giraph-0.2-SNAPSHOT-for-hadoop-0.20.203.0-jar-with-dependencies.jar

org.apache.giraph.GiraphRunner org.apache.giraph.examples.ConnectedComponentsVertex -if

org.apache.giraph.io.JsonBase64VertexInputFormat -ip Amazon-Giraph.txt -of

org.apache.giraph.io.JsonBase64VertexOutputFormat -op CC-Amazon -w 1

Some of these parameters are self explaining but we must now address the –w

parameter. This parameter defines the total number of workers available to handle graph

partitions. Since for this particular test we are running a pseudo-distributed cluster

(single host), it is safe to limit this to one. In a fully-distributed cluster, we would want

multiple workers spread out across different physical hosts.

Unfortunately, at the time of closing this thesis document it was not possible to output

results of this computation. The process of discovering the reason why the Giraph/Map

Reduce task did not complete has not yet finished and we do not have a conclusion

about the reason it was impossible to achieve results. Although the installation was

tested and apparently it worked, the reason it failed might be related to many reasons

inclusively to our test environment and physical architecture. As Giraph is an important

tool in big graph analysis and because we feel it might fulfill some of the readers needs

and because it might work with the user resources we felt it would be logical to refer it

in this document. We did write about the installation procedure, its features, compared

its advantages and disadvantages with other tools but we will not continue its

exploration further in this thesis.

3.5. Processing Time for Graph Analysis

To give the reader a notion of the processing time that takes we run the previous

mentioned algorithms with some networks with different sizes. Networks used in this

section were already described in section 3.4.1, resuming the networks we used for

these tests section have the following characteristics as number of nodes and number of

edges:

- Network A with 16.339 vertexes and 30.313 edges.

- Network B with 107.033 vertexes and 128.746 edges.

- Network C with 334.863 vertexes and 925.872 edges.

- Network D with 1.134.890 vertexes and 2.987.624 edges.

- Network E with 3.997.962 vertexes and 34.681.189 edges.

45

Have a look on the following table:

Table 4: Processing Time (in seconds)

 Hadoop MR

“Friends of Friends”

Pegasus

Degree Measures

Graphlab

Triangles Counting

Snap

Centrality Measures

Network A 16,040s 5,380s 0,048s 374s (06m14s)

Network B 23,880s 7,070s 0,103s 17400s(4h50m)

Network C 138,980s 11,050s 0,305s -14

Network D 430,420s 23,330s 1,211s -15

Network E 1516,257s 35,680s 16,211s -16

Snap expectedly presents processing times of higher magnitude especially due to the

great amount of centrality measures available as results outputted for each network and

because although is an optimized tool for graph analysis it doesn’t belong to the parallel

processing group of tools. Generally the computation is of relatively high speed for all

the algorithms and on parallel processing tools even with networks with millions of

nodes. For these previous results we do some graphics where the evolution of

processing time with higher number of nodes is visible for the networks:

14 * Value too high
15 * Value too high
16 * Value too high

46

Figure 9: Processing time variation for Hadoop Map-Reduce FoF algorithm

Figure 10: Processing time variation for Pegasus Degree algorithm

0

200

400

600

800

1000

1200

1400

1600

16
33

9

10
70

33

33
48

63

11
34

89
0

39
97

96
2

Processing Time Hadoop (seconds)

Processing Time
(seconds) for several
networks with
different number of
nodes

0,00

5,00

10,00

15,00

20,00

25,00

30,00

35,00

40,00

16
33

9

10
70

33

33
48

63

11
34

89
0

39
97

96
2

Processing Time Pegasus (seconds)

Processing Time
(seconds) for several
networks with different
number of nodes

47

Figure 11: Processing time variation for Graphlab Triangles detection algorithm

The previous figures give some insight on the processing time consumption variation

with node degree but we cannot assure that they are good comparison for tools

efficiency because the algorithms are different in complexity; the implementation of the

tools is variable in terms of architecture or language and the only fixed assumption is

that the machine where the computation took place is the same. Our intention is to give

a visual insight on the variation of processing time for each tool.

0,000

2,000

4,000

6,000

8,000

10,000

12,000

14,000

16,000

18,000

16
33

9

10
70

33

33
48

63

11
34

89
0

39
97

96
2

Processing Time Graphlab (seconds)

Processing Time
(seconds) for several
networks with
different number of
nodes

48

4. Communities Detection and Similarity Ranking algorithms

This Chapter gives an introduction on communities and what it represents to study

communities of graphs/social networks. It discusses some algorithm implementations

and the issues to take care of on this type of community detection algorithm. Then we

introduce the SimRank algorithm and the tools used for development of both

algorithms. Finally we present experimental results and a brief comparison with other

similar algorithms regarding results and processing time.

4.1. Case Studies

The experiments in this chapter 4 use several datasets. Three of the datasets represent

the relationships between technological companies spread around the world and

financial organizations but are truncated so that the number of nodes and edges

approximately doubles from one network to the next network. These three undirected

networks will be used for similarity ranking algorithm comparisons regarding

processing time on section 4.6.2. Resuming, this three truncated networks will be

throughout this chapter and from now on designated by Network F, G and H and have

the following characteristics considering the number of nodes and edges:

- Network F with 471 vertexes and 250 edges.

- Network G with 892 vertexes and 500 edges.

- Network H with 1.659 vertexes and 999 edges.

We used other networks for the community detection algorithms, to compare their

results regarding modularity results and processing time. For comparison of modularity

results (4.5.2) we used three undirected networks downloaded from
17

 and compiled by

Newman (2013) for this task, these were the Zachary’s Karate Club, Dolphin Social

Network and the American Colleague Football. The characteristics of these networks

regarding number of nodes and edges are the following:

- Zachary’s Karate Club with 34 vertexes and 78 edges.

- Dolphin Social Network with 62 vertexes and 159 edges.

17 http://www-personal.umich.edu/~mejn/netdata/

http://www-personal.umich.edu/~mejn/netdata/

49

- American Colleague Football with 115 vertexes and 615 edges.

For comparison of the community detection algorithms and regarding processing time

(4.5.3) consuming we used the undirected networks A, B and C previously used for

computing metrics with available graph analysis tools, refreshing the reader’s memory

their characteristics are the following:

- Network A with 16.339 vertexes and 30.313 edges.

- Network B with 107.033 vertexes and 128.746 edges.

- Network C with 334.863 vertexes and 925.872 edges.

4.2. Introduction to Community Detection

In a social network a community represents individuals that form a group

distinguishable by its properties or characteristics. In other words when we say we

encountered a community it might be for example a group of friends, family, work

colleagues or other group of individuals with same characteristics and label inside the

context of a network.

Figure 12: Simple Graph with 3 communities surrounded with dashed squares.

50

Detection of communities on a network has many applications, for example clients

that have the same interests and are geographically near each other might be beneficiary

of the implementation of mirror servers for faster services on the World Wide Web. The

identification of retail clients with similar interests in products enables the retailer to

give better recommendation services and therefore augment the probability of rising

profits and service quality. On telecommunications and computer networks community

structures of nodes can help to improve compactness of routing tables maintaining

efficient choice of communication paths.

Regarding community structure several areas give much importance if the node lives

inside a community or on the boundaries of the community. On the first case the node

might be important as a control and stability function within the community and in the

second case the node might have functions of information exchange between

communities. This seems to have high importance for example in social an metabolic

networks as mentioned from Fortunato (2010).

4.2.1. Community Detection Algorithms

Community detection in graphs has been generally defined but multiple methods of

estimating quality of the detection exist. The majority of current works on community

detection relies on improving the modularity value Newman (2006). Modularity can

therefore be used to compare different approaches to community detection. There is a

good compilation of approaches to communities detection in Fortunato (2010) which

resumes saying that the majority of techniques can be divided into two different

approaches: agglomerative and divisive.

Community detection is known to be a NP-complete problem. Community detection

can be related to graph partitioning and there are good parallel algorithms for graph

partitioning but for community detection it is a usual problem that relies on parallelism

achievable from sequential algorithms. The top-down approach (divisive approach) or

bottom-up approach (agglomerative approach) have inherent sequential flow with

possibility of being parallelized on a higher amount on the first stages than the later

stages.

Community detection algorithms usually show bad reliance with parallel graph

partitioning algorithms and although they show scalability, because of the high

51

computational overhead of community detection algorithms one cannot usually apply

such algorithms to networks of hundreds of millions of nodes or edges. Thus, an

efficient and high quality algorithm (modularity) for community detection is hard to

achieve and a challenging problem as mentioned by Soman and Narang (2011).

4.3. Similarity Ranking Algorithm

SimRank proposed by Jeh and Widom (2002) has become a measure to compare the

similarity between two nodes using network structure. Although SimRank is applicable

to a wide range of areas such as social networks, citation networks, link prediction and

others, it suffers from heavy computational complexity and space requirements. The

basic recursive intuition behind SimRank approach is “two objects are similar if they

are referenced by similar objects.” As the base case, it is considered that an object is

maximally similar to itself, to which we can assign a similarity score of 1.

The similarity between objects a and b can be designated by s(a, b) є [0, 1]. The

authors of SimRank wrote a recursive equation for s(a, b). If a = b then s(a, b) is

defined to be 1 as told before. Otherwise,

where C is a constant between 0 and 1. A slight technicality here is that either a or b

may not have any in-neighbors. Since we have no way to infer any similarity between a

and b in this case, we should set s(a, b) = 0, so we define the summation in equation

(6.1) to be 0 when I(a) = ø; or I(b) = ø;

One SimRank equation of the form (5.1) is written for each (ordered) pair of objects a

and b, resulting in a set of n
2
 SimRank equations for a graph of size n. Let us defer

discussion of the constant C for now. Equation (5.1) says that to compute s(a, b), we

iterate over all in-neighbor pairs (Ii(a), Ij(b)) of (a, b), and sum up the similarity s(Ii(a),

Ij(b)) of these pairs. Then we divide by the total number of in-neighbor pairs, |I(a)||I(b)|,

to normalize. That is, the similarity between a and b is the average similarity between

in-neighbors of a and in-neighbors of b. From equation (5.1), it is easy to see that

SimRank scores are symmetric, i.e., s(a, b) = s(b, a).

52

We must also explain the purpose of the constant C, which according to the authors of

the algorithm can be thought of either as a confidence level or a decay factor.

Considering a simple example scenario where person x references both persons c and d

as connections in a network, so we conclude some similarity between c and d. The

similarity of x with itself is 1, but we probably do not want to conclude that s(c, d) =

s(x, x) = 1. Rather, we let s(c, d) = C·s(x, x), meaning that we are less confident about

the similarity between c and d than we are between x and itself.

4.4. Green-Marl Language

For the purpose of development of both algorithms we used Green-Marl to explore the

fact that it is a DSL (domain-specific language) designed specifically for graph analysis

algorithms. Users of Green-Marl can describe their graph algorithm using high-level

graph constructs which expose the inherent parallelism in the algorithm. A compiler for

Green-Marl can exploit this high-level information by applying a series of high-level

optimizations and parallelizing the algorithm, and finally producing a parallel

implementation of the given algorithm. The Green-Marl compiler final output is an

implementation written in a general-purpose language, e.g. C++. Green-Marl specific

contributions are as follows from Hong et al. (2012):

 Green-Marl, a DSL in which a user can describe a graph analysis algorithm in

a intuitive way. This DSL captures the high-level semantics of the algorithm

as well as its inherent parallelism.

 The Green-Marl compiler which applies a set of optimizations and

parallelization enabled by the high-level semantic information of the DSL and

produces an optimized parallel implementation targeted at commodity SMP

machines.

 An interdisciplinary DSL approach to solving computational problems that

combines graph theory, compilers, parallel programming and computer

architecture.

Green-Marl is a tool developed by a Stanford team and it was made available recently.

It allows the export of code reusable on other tools like Giraph for example. Leveraging

these exportation characteristics we opted to use the C++ and OpenMP Green-Marl

53

output. We follow the installation procedure available on
18

 to install Green-Marl on the

hardware; it is a simple and direct process and we have no issues or difficulties to

report.

4.4.1. What does Green-Marl offer from start?

Green-Marl offers several algorithms right after install. Some of these algorithms are

translatable within Green-Marl to C++ code with OpenMP, therefore directed to

multiprocessor computational environments and/or directed to Apache Giraph for

cluster computational environments based on Hadoop Map Reduce. The following table

resumes algorithms available and compatibility with mentioned tools:

Table 5: Green-Marl Algorithms

Green-Marl
Software
Algorithms

Brief Description OpenMP C++
compatible

Giraph/GPS
compatible

avg_teen_count Computes the average teen count of a node YES YES

bc Computes the betweenness centrality value for the

graph
YES NO

bc_random Computes an estimation for the betweenness

centrality value for the graph
YES YES

communities Computes the different communities in a graph YES NO

kosaraju Finds strongly connected components using

Kosaraju's Algorithm
YES NO

pagerank Computes the pagerank value for every node in the

graph
YES YES

potential-friends Computes a set of potential friends for every node
using triangle closing

YES NO

sssp Computes the distance of every node from one

destination node according to the shortest path
YES YES

sssp_path Computes the shortest paths from one destination

node to every other node in the graph and returns the

shortest path to a specific node.

YES NO

triangle_counting Computes the number of closed triangles in the graph YES NO

4.5. Communities Detection algorithm with Green Marl

For communities detection implementation with Green-Marl we followed the paper

from Soman and Narang (2011). The pseudo code for this algorithm is also available on

the mentioned paper and is as follows:

18 https://github.com/stanford-ppl/Green-Marl

https://github.com/stanford-ppl/Green-Marl

54

1 Input: Graph ()

2 Output: community of each node

3 foreach Edge e(,) do

4 Find weight of e(,) = w(,)
5 end

6 foreach Node n do

7 community(n)=n

8 end

9 foreach Node n do

10 Find Maximum weighted edge in adjacency list;

11 Store weight in ℎt()

12 end

13 G’= ;

14 foreach Node n do

15 foreach edge e(n,v) do

16 if weight(v)=weight(n) then

17 Add edge (v,n) to G’

18 end

19 end

20 end

21 Find connected components in G’;

22 foreach Node n do

23 community(n)=smallest label in component containing n in G’

24 end

25 while All nodes are not stably labeled do

26 foreach Node n do

27 ′ = Σ ’€N (’). (′,). (’)

28 end

29 Exchange community and community’;

30 End

Algorithm 2: The weighted label propagation algorithm

Although we have followed the paper algorithm there were some alterations we did

which represented ending in not replicating the exact results of the algorithm but

obtaining better modularity results for some test networks, this process is described in

detail throughout the 4.5.1 section. This original algorithm has essentially 4 main phases

that will be from now on declared sequentially as phases A, B, C and D and will be

described in this chapter:

A. Weight Assignment & Propagation Function

B. Core edge detection

C. Epidemic spread Control

D. Overlapping Community extraction

A. Weight Assignment & Propagation Function

For label propagation, the algorithm tries to generate a community structure assigning

weights to edges and determining how the labels propagate through the network. Edge

55

weights that implicitly represent accurate topological structure of the inherent

communities in the network are desirable. As such prior knowledge of the inherent

communities is not available; it is considered that the weight of an edge represents a

measure of the importance of that edge to the nodes at the endpoints of that edge. In

case of an undirected graph, each edge is replaced by two directed edges.

The weight of a directed edge, e = (i, j) (from vertex i to vertex j), is defined as the

ratio between the number of triangles that the edge participates in and the total number

of triangles the node i participates in. For an edge e = (i, j), let edge e represent the

highest weighted edge in the locality of i, then i has a higher chance of being assigned

the same label as j, as compared to any other label in the vicinity. The directed edges

with large weights correspond to connections that have a stronger importance to a node.

Also, the edges with low weights represent weak relations, hence the chance of both

nodes being in the same community is lower. Therefore, weight of an edge e = (i, j) is

given by:

 (,) = (,) / Σ(,)((,)) ; ∈ () (4.2)

where, (,), represents the number of triangles with edge (i, j) as one of the edges in

the triangle.

In case of a weighted graph given as input, the authors suggest the product of the

given weight and topological loops based weight mentioned above. Thus, if an edge e =

(i, j) has weight given by the user as (,), then the weight of the edge considered for the

label propagation algorithm is:

 (,) = (,) * (,) (4.3)

The propagation function to transfer labels from one node to another is then defined

as:

 () = Σ ∈ () (4.4)

where, Ni is the set of neighboring vertices of vertex i; () is the total weight for the

label (j) in the neighborhood of vertex i.

56

B. Core edge detection

For a given weighted graph, for each node i there exists node j* such that for node i,

edge (i, j*) has the maximum weight in its neighborhood. There will exist node pairs

(v1, v2) such that v1 is paired to v2 using the maximum edge weight criterion and also

conversely, v2 is paired to v1 using the maximum edge weight criterion. One can see that

using the propagation function defined by the equation (4.4), the labels on two such

nodes within a pair can oscillate without ever converging. The oscillatory behavior

weakens community detection, as meaningful communities are not formed. This will

lead to low modularity output as well as higher number of iterations in the algorithm.

Such node pairs forms a local maxima and have the tendency to form the cores of

communities. This oscillation problem needs to be addressed meaningfully. Labeling

such local maxima pairs with the same label will improve the qualitative performance of

the algorithm as well as the overall running time. Hence, the authors propose to find

such pairs before the label propagation iterations, and the same label is given to both the

nodes in each pair. An extension of this issue is the presence of multiple overlapping

pairs, where a single node can form such pairs with multiple nodes. Such overlapping

nodes represent local communities in the graph. Hence, such pairs should be part of the

same community. In the author’s algorithm, it is first found the connected components

over such overlapping pairs, and assigned the same label to all the nodes within each

component.

On the pseudo code previously written the lines 13 to 24 represent the core edge

detection and also the measures to avoid oscillation that prevents converging. It

essentially uses one auxiliary generated graph G’ that features manipulation of the

nodes connections for the nodes originally present in the input graph. This graph G’ is

then used to apply Kosaraju Connected Components detection algorithm from Sharir

(1981) to label the nodes with the initial discovered communities. These initial

communities will then be propagated until the final communities labels for every node

is discovered but first we will explain the reader other phases of the original algorithm.

57

C. Epidemic spread Control

Label propagation algorithm has a natural global minima when all the nodes in the

graph have the same label. This is caused by a large community dominating over all the

other communities. Though, the presence of weak edges between communities can

reduce the epidemic spread to a large extent, in graphs with relatively low variation in

edge density, the algorithm can still be susceptible to epidemic spread. To tackle

epidemic spread, the authors present on the paper two methods that work at node level

and as well as use statistics of the spread of the labels in the graph.

The technique proposed by the authors (and also used by us on the programming task)

of improving the epidemic resistance is to control the size of a community. We assign a

weight to each label based on the total degree of the nodes that have that label. Thus, the

weight of a label is given by:

Wl() = 1 – /2 (4.5)

where, c is the label of community c; is sum of the degrees of all nodes inside the

community, c; and 2 is the total number of edges in the graph. The new propagation

function becomes:

() = Σ ∈ [s(∗Wl()] (4.6)

where, is the set of neighboring vertices of vertex ; () is the total weight for the

label () in the neighborhood of vertex . As the size of a community (number of nodes

with same label) increases, the weight of that label decreases. Thus, the ability of a label

to propagate reduces with its size. The weight attached with each label thus acts as a

global objective function and helps in controlling the size of the communities.

D. Overlapping Community extraction

For this task of extraction of overlapping communities we choose to test the variation

of 3 sequential iterations of the code and in the case of having communities labels not

converging i.e. the community label changes continuously between two distinct labels,

from step 1 to 2 but on step 3 it changes again to the same label of step 1 then the

algorithm stops iterating.

58

4.5.1. Development details and variations of the original algorithm

We started the development of the algorithm respecting phase A. which consisted on

the edge weight finding as described in the last section. Following the paper was not

enough to get some small test networks examples with the right results. On the next

figure the reader can see the network that led to a small alteration of the algorithm.

Figure 13: Network used in the development of the algorithm phase A.

 Intuition says that there are two different communities and at an initial point in

developing the algorithm resulted in the propagation of the same community through all

the nodes ending in a graph with only one community as result. At this phase and with

test networks also used in the followed paper from Soman and Narang (2011) the results

were similar but we added a small condition in the code that determined the propagation

of label to be possible only if the edge value was different from 0. In this case the edge

weight is 0 because the number of triangles the edge participates in is 0. This small

alteration implied that the auxiliary graph G’ used in the process did not have a edge

connection between the connected nodes that belong to the two different triangles (note

that both nodes have the same associated weight) and therefore the connected

components obtained for G’ would be not one but two in this particular test graph

exposed in the previous figure, resulting in better modularity results for this graph and

more coherent results also on other tested networks by the authors on the followed

paper. An example of better modularity results is the Karate club undirected network

from Girvan and Newman (2002), please see the next section where a comparison of

our version of the algorithm with other algorithms is made.

59

4.5.2. Modularity Results - Comparison with other algorithms

For the community detection algorithm comparison we used two other algorithms and

the Snap sequential tool. The algorithms selected were the available from Snap, Girvan-

Newman algorithm from Girvan and Newman (2002) and the Clauset-Newman-Moore

algorithm from Clauset et al. (2004). The networks used for these comparisons were

some known small networks already described in chapter 4.1.

The modularity results for the algorithms with small test networks are visible on the

table 6 and the comparison of processing time is available on the next section.

Table 6: Modularity Comparison for Community Detection Algorithms

 Girvan – Newman

Algorithm with Snap

Clauset-Newman-Moore

Algorithm with Snap

Developed

Algorithm with GM

Zachary’s Karate Club 0.401 0.381 0.436

Dolphin Social Network 0.519 0.515 0.333

American College Football 0.599 0.549 0.339

The results obtained from the developed algorithm as we can see from previous table

and for the test networks are significant modularity for every use case i.e. the value for

this metric is above 0.3 and this a significant division in community structure for the

algorithm as mentioned from Clauset et al. (2004). The modularity value is indeed

superior to other algorithms for the Zachary’s Karate Club network for example. The

Girvan-Newman algorithm presents results generally superior to Clauset-Newman-

Moore but as we will see in the next section has a much slower running time and

therefore might be inadequate for larger networks.

4.5.3. Processing Time Results - Comparison with other algorithms

For the developed community detection algorithm and for its comparison regarding

consumed processing time we also used the two algorithms already mentioned in the

previous section and the sequential tool Snap. The undirected networks selected for this

60

comparison were the networks already mentioned before, the network A, network B and

network C:

Table 7: Processing Time comparison for Community Detection Algorithms

 Girvan – Newman

Algorithm with Snap

Clauset-Newman-Moore

Algorithm with Snap

Developed

Algorithm with GM

Network A 288 (hours) 6s 4s

Network B 300+ (hours) 53s 133s

Network C 400+ (hours) *19 45659s

It is visible from the previous table that Girvan-Newman is an algorithm that has much

higher processing time consumption than the other algorithms.

It is also to be noticed that Clauset-Newman-Moore is a very fast algorithm and for

Network B presents faster computing than the algorithm developed with Green-Marl.

The reader must notice Clauset-Newman-Moore achieves this using just one single

core. However the reader must also notice that this algorithm has a high consuming rate

of RAM and for Network C the amount of memory use was around 20.7GB when

eventually failed with segmentation fault (core dumped) error after some few hours of

computation. This occurrence made impossible to conclude the computation.

Our version of the community detection algorithm concluded the computation for

Network C within approximately 12 hours (45k seconds) and with a modularity of 0.34.

Although the value of modularity is significant the number of communities detected is

sensibly lower than the number of communities considered being ground-truth for this

particular network. The number of communities detected was 27864 and the ground-

truth communities mentioned on Leskovec (2009) is around 150000.

Finally and as mentioned already the Girvan-Newman is a considerable time

consuming algorithm but on the other hand it has very low RAM memory consumption

presenting values of 8MB for Network A, 39MB for Network B and 143MB for

Network C. The RAM values consumed by our version of Soman and Narang (2011)

are similar to Girvan-Newman’s algorithm and therefore considerably very low.

19 Failed with segmentation fault (core dumped) error

61

4.6. SimRank algorithm with Green Marl

For the SimRank implementation with Green-Marl we follow the paper from Jeh and

Widom (2002). The pseudo code for this algorithm is as follows:

1 Input: Graph ()

2 Output: Similarity Rank for every pair (u,v) in the network

3 While Any similarity value did not converge do

4 similarity_old()=similarity_new()

5 foreach Node u do

6 foreach Node v do

7 foreach u in-neighbor do

8 foreach v in-neighbor do

9 similarity(u,v) = similarity(u,v) + similarity_old(u in-neighbor, v in-

neighbor)

10 end

11 end

12 similarity_new(u,v) = (C * similarity(u,v))/ (u numInNbrs)*(v numInNbrs))

13 end

14 end

15 End

Algorithm 3: The SimRank algorithm

The code written in Green-Marl language for this pseudo-algorithm is available on

APPENDIX B starting from page 94. The output is a matrix with the similarity between

nodes in the network. Added care was taken to create the empty matrices on the heap to

avoid memory issues like memory segmentation faults with larger networks. Being an

algorithm with O(n
2
) time complexity where n is the number of nodes in the graph, it is

a good choice to develop it in distributed computing environments. Leveraging the

advantages of multicore hardware lower processing time for similar networks can be

achieved. On the 4.6.2 section we write a small comparison between single core

processing with R code and the multicore Green-Marl code (translated to C++ and

OpenMP) developed by us but first we will explain the development details for this

algorithm particularly discussing memory estimations.

4.6.1. Development details – Memory use estimation

The algorithm developed (available in section 5 of APPENDIX B starting from page

94) depends of the creation of two similarity matrices, one with the current iteration

results and one with the previous iteration results. Since we are considering a float

62

number for similarity between any pair of nodes in the graph we can say that the

maximum memory that will be used by the program will be approximately given by:

MEM MAX = 4bytes*2*(number of graph nodes)2 (4.7)

In expression (4.7) the space occupied in memory for a float number is 4bytes and as

we have the creation of two matrices (bi-dimensional arrays) with the size of the

number of nodes for each array, therefore the number of nodes is squared for our

estimation of memory used by the program. As an example, for a graph with 40000

(40k) nodes, the estimated memory use will be around 12 GB.

Due to the considerable use of memory for this algorithm and limitations of resources

available we will be using networks with smaller sizes to take conclusions, and

therefore compare the algorithm behavior in sequential single core machines and this

multicore version we developed with a machine with 12 cores.

4.6.2. Simrank Single Core Vs Multicore

In this section of Chapter 4 we will give an example output retrieved from the

developed algorithm with some small networks. This choice for small networks was

done to make it possible to compare the processing time with sequential processing on

the same machine and with R software. Starting with the test edge list with 7 nodes and

7 undirected edges on the next figure:

Figure 14: Test Network used in the development of the similarity algorithm.

63

and using constant C = 0.6 as mentioned from Lizorkin et al. (2008) and k = 50

iterations the output matrix is the following:

 1 2 3 4 6 5 9

1 1.000000 0.235798 0.168164 0.350434 0.051199 0.209529 0.068624

2 0.235798 1.000000 0.168164 0.350434 0.051199 0.209529 0.068624

3 0.168164 0.168164 1.000000 0.066980 0.177689 0.043468 0.019956

4 0.350434 0.350434 0.066980 1.000000 0.018981 0.353290 0.106580

6 0.051199 0.051199 0.177689 0.018981 1.000000 0.012027 0.005073

5 0.209529 0.209529 0.043468 0.353290 0.012027 1.000000 0.353290

9 0.068624 0.068624 0.019956 0.106580 0.005073 0.353290 1.000000

For the similarity ranking processing time comparisons the following networks were

also used (see previous section 4.1 for data details):

- Network F with 471 vertexes and 250 edges.

- Network G with 892 vertexes and 500 edges.

- Network H with 1.659 vertexes and 999 edges.

- Network A with 16.339 vertexes and 30.313 edges.

Table 8: Processing Time for Similarity Algorithms (in seconds)

 Parallel Simrank with Green-Marl Sequential Simrank with R

Network F 480s 25s

Network G 1073s 491s

Network H 2716s 7560s

Network A 26851s 1022000+ s

with these results we can conclude that the processing time is not clearly smaller for

every comparison available in table 8 and on the same machine. The sequential

operation consumes 1 core with 100% use and the parallel execution of the parallel

implementation of the algorithm consumed in average 1095% of the processing

resources of the machine with 12 cores which is the same to say that it used

64

approximately 11 cores for the task. The results obtained allow us to conclude that the

processing time for sequential execution is lower for the Networks F and G and higher

for the larger networks H and A which is the larger network of this group of networks.

For these last two networks the parallel execution ended in much less amount of time

than the time value for sequential execution of the algorithm. This is a reasonably

expected result and as the size of the network rises it is expected that the difference

from parallel execution to sequential execution to be bigger and bigger due to our

algorithm complexity and due to diluting of importance for overhead generated by

communications between processors and memory accesses on the OpenMP parallel

implementation. This causes the parallel algorithm to run slower than the sequential

version with smaller networks. This is true for networks with approximately less than

1000 nodes.

The following figure represents the variation of parallel and sequential processing time

in respect to the number of nodes of the networks F, G and H:

Figure 15: Processing time for parallel/sequential execution of the similarity algorithm.

It is visible from the previous figures that the parallel execution of the algorithm - for

the networks doubling the number of nodes - appears to have a less pronounced rise of

time with node doubling. This makes the parallel algorithm expected behavior to be

much faster than the sequential execution with larger networks.

0

1000

2000

3000

4000

5000

6000

7000

8000

472 892 1659

Processing Time - Simrank (seconds)

Sequential Simrank

Parallel Simrank

65

The previous figures give some insight of the processing time consumption and its

variation with node degree but because the algorithms are different in the

implementation language the only fixed assumption is that the machine where the

computing took place is the same and therefore the processor speed is the same. Our

intention is to give a visual insight on the variation of processing time for both

algorithm implementations and with previous assumptions.

66

5. Conclusions

We have been witnessing a very big proliferation of software tools aimed at the

analysis of large graphs during the last few years. One of thesis goals was to expose

which tools to look for when dealing with big graphs studies. The amount of algorithms

and tools available make it reasonable to achieve fast processing of general big data

problems and also specifically with graphs studies. We started the thesis with the state

of the art regarding parallel computing for graph analysis and its recent evolution, then

we made the introduction to the tools used nowadays for distributed graph analysis and

then we wrote some practical examples of computing algorithms that leverage the tools

potential for big scale graphs studies. We hope to have gathered and provided sound

information about the tools with this document, we think by reading this work the

reader is incentivized for further exploration of the tools available to use with his/her

big graph data problems.

Other thesis goal was to prove the utility and diversity of the tools and algorithms

available for graph studies and also prove the relatively easy way to achieve a good

approach to large scale social network analysis. We think that this goal was also

achieved and the use of an SDL tool like Green-Marl and the help of C++ programming

made possible the development of two different algorithms that in a way served to

prove that we have huge gains in efficiency and scalability with the use of the parallel

computing paradigm.

The novelty of some tools and subjects approached throughout this Thesis make the

future even more promising and compelling. There is a good chance that the tools

mentioned in this document might evolve to have even more intuitive user interfaces,

new and more complex algorithms and also better use of hardware resources. The future

is also time to develop higher expectations and therefore we also have some thoughts

about future work we would like to write in one of the next sections but first we will

resume what we have learned with the writing of this document.

5.1. Lessons Learned

Writing this document was conclusive about the importance parallel paradigm has in

solving big data problems. The particular problems addressed with big graphs were

approached in this document with the right tools discovered after heavy research. Some

67

tools evolved over time and eventually were substituted by others since new tools and

technologies are constantly appearing nowadays. This positive growing situation we

learned to be related to the increasing importance given to social network analysis in

modern world science. Many areas of research make use of social network analysis on

their daily tasks.

We learned also that the increasing number of SDLs for big graph analysis make the

choice of languages for programming tasks essentially between two generic languages,

C++ and Java. Both are viable and the choice the user does will dictate the compatible

tool he will use for the specific task.

The programming tasks we have done clearly exposed some characteristics we were

not aware before for multicore OpenMP programming. The Green-Marl language was

also a great and previously unknown tool in the set of tools available. As a very recent

SDL for graph analysis with all the expected immaturity nevertheless proved to be a

very intuitive approach and also with a very effective use of the parallel computation

paradigm therefore successfully reducing its implicit programming complexity.

5.2. Future Work

Considering potential evolution of this work we think the following comments in this

section might be of reader’s interest.

Due to the novelty of some of the tools available nowadays and also given the fact that

some are very recent, further exploration in the future might be useful and important.

For example the Apache Giraph tool revealed to be somewhat difficult to use due to the

fast and less mature developing process. The tool evolved in a way that sometimes was

not very clear to us and frequently we and other users felt the support documentation

available did not accompany on these modifications. It was frequent to have console

commands working in one week and not in the next week, specifically following a

version update or other kind of changes the same command would not work anymore.

Also for future work we are planning to do an update to the developed community

detection algorithm. We would like to update it in a way that it features the possibility

of support weighted edge lists as inputs.

As future work we would also like to update the similarity ranking algorithm and

develop it in a way that it would output a file (output is currently a matrix with

68

similarity results) presented as a list of nodes and a top-k set of the most similar nodes

to each node in the network.

Other development that we might be interested in doing would be to develop Clauset-

Newman-Moore algorithm with Green-Marl. We would like to do it leveraging features

of the language like the translation to Java/Giraph language/framework. That would

make possible and interesting to observe the behavior of such a fast algorithm regarding

its memory use in a computing cluster environment. The use of HDFS and a cluster

with good RAM resources would make it a very powerful algorithm for community

detection even with very large scale social networks with billions or even trillions of

nodes.

69

References

Alvarez-Hamelin, J. I., L. Dall'Asta, A. Barrat and A. Vespignani (2005). "k-core
decomposition: a tool for the visualization of large scale networks". CoRR.

Anderson, W., P. Briggs and C. S. Hellberg (2003). "Early experiences with scientific
programs on the Cray MTA-2". In Proc. SC’03.

Apache. (2012). "Apache Giraph." from http://incubator.apache.org/giraph/.

Backstrom, L., D. Huttenlocher, J. M. Kleinberg and X. Lan (2006). "Group Formation in
Large Social Networks: Membership, Growth, and Evolution". KDD, page 44-54.
ACM.

Bader, D. A. and K. Madduri (2008). "SNAP, Small-world Network Analysis and
Partitioning: an open-source parallel graph framework for the exploration of
large-scale networks". IPDPS, page 1-12. IEEE.

Bader, G. D. and C. W. Hogue (2003). "An automated method for finding molecular
complexes in large protein interaction networks". BMC Bioinformatics.

Berry, J. W., B. Hendrickson and S. Kahan (2006). "Graph software development and
performance on the MTA-2 and Eldorado". In Cray User’s Group.

Borchers, B. and D. Crawford (1993). "MPI: A Message Passing Interface". SC, page
878-883. IEEE Computer Society / ACM.

Clauset, A., M. E. J. Newman and C. Moore (2004). "Finding community structure in
very large networks". Physical review E 70(6):066111.

Dagum, L. and R. Menon (1998). "Openmp: An industry-standard api for shared-
memory programming.", IEEE Computational Science and Engineering.

El-Ghazawi, T. A., W. W. Carlson and J. M. Draper (2003). "UPC Language Specification,
1.1 edition".

Fortunato, S. (2010). "Community detection in graphs". Physics Reports 486(3–5):75 -
174, Physics Reports.

Girvan, M. and M. E. J. Newman (2002). "Community structure in social and biological
networks". Proceedings of the National Academy of Sciences 99(12):7821-7826.

Graphlab. (2012). "Graph Analytics Toolkit." 2012, from
http://graphlab.org/toolkits/graph-analytics/.

Graphlab. (2012). "Graphlab The Abstraction." 2012, from
http://graphlab.org/home/abstraction/.

Gregor, D., N. Edmonds and B. Barrett (2005). "The Parallel Boost Graph Library", The
Trustees of Indiana University.

http://incubator.apache.org/giraph/
http://graphlab.org/toolkits/graph-analytics/
http://graphlab.org/home/abstraction/

70

Holmes, A. (2012). Hadoop In Practice, Manning.

Hong, S., H. Chafi, E. Sedlar and K. Olukotun (2012). "Green-Marl: A DSL for Easy and
Efficient Graph Analysis". ASPLOS, page 349-362. ACM.

Jeh, G. and J. Widom (2002). "SimRank: A Measure of Structural-Context Similarity".
Proceedings of the eighth ACM SIGKDD international conference on Knowledge
discovery and data mining, page 538--543. New York, NY, USA, ACM.

Kang, U. (2012). "PEGASUS: Peta-Scale Graph Mining System." Retrieved 11-2012,
from http://www.cs.cmu.edu/~pegasus/.

Kang, U., D. H. Chau and C. Faloutsos (2010). "PEGASUS User’s Guide", Carnegie Mellon
University.

Kang, U. and C. E. Tsourakakis (2009). "PEGASUS: A Peta-Scale Graph Mining System -
Implementation and Observations". Proceeding ICDM '09 Proceedings of the
2009 Ninth IEEE International Conference on Data Mining.

Latapy, M. (2008). "Main-memory Triangle Computations for Very Large (Sparse
(Power-Law)) Graphs". Theor. Comput. Sci. 407(1-3):458-473.

Leo, S. (2012, 2012-12-20 16:00:03). "Hadoop Wiki." Retrieved 16-01-2013, 2013,
from http://wiki.apache.org/hadoop/PoweredBy.

Leskovec, J. (2009). "Stanford Large Network Dataset Collection." Retrieved 25-02-
2013, 2013, from http://snap.stanford.edu/data/index.html.

Leskovec, J. (2012). "Stanford Network Analysis Platform." Retrieved 12-2012, 2012,
from http://snap.stanford.edu/snap/.

Leskovec, J., L. A. Adamic and B. A. Huberman (2005). "The Dynamics of Viral
Marketing". CoRR.

Lizorkin, D., P. Velikhov, M. Grinev and D. Turdakov (2008). "Accuracy Estimate and
Optimization Techniques for SimRank Computation". VLDB J. 19(1):45-66.

Luczak, T. (1991). "On the size and connectivity of the k-core of the random graph".

Lumsdaine, A., D. Gregor, B. Hendrickson and J. Berry (2007). "Challenges in Parallel
Graph Processing". Parallel Processing Letters 17(1):5-20, World Scientific
Publishing Company.

Malewicz, G., M. H. Austern, A. J. C. Bik, J. C. Dehnert, I. Horn, N. Leiser and G.
Czajkowski (2010). "Pregel: A System for Large-Scale Graph Processing".
Proceedings of the 2010 ACM SIGMOD International Conference on
Management of data, page 135--146. New York, NY, USA, ACM.

Martella, C. (2012). "Apache Giraph: Distributed Graph Processing in the Cloud".
FOSDEM 2012, Graph Processing Room.

http://www.cs.cmu.edu/~pegasus/
http://wiki.apache.org/hadoop/PoweredBy
http://snap.stanford.edu/data/index.html
http://snap.stanford.edu/snap/

71

Mazza, G. (2012, 2012-11-30 19:22:49). "FrontPage - Hadoop Wiki." Retrieved 11-
2012, from http://wiki.apache.org/lucene-hadoop/.

Newman, M. (2006). "Modularity and community structure in networks". Proceedings
of the National Academy of Sciences of the United States of America
103(23):8577--82.

Newman, M. (2013). "Network Data." Retrieved 04-2013, from http://www-
personal.umich.edu/~mejn/netdata/.

Noll, M. G. (August 5, 2007, June 29, 2012). "Running Hadoop On Ubuntu Linux (Single-
Node Cluster)." Retrieved 06-11-2012, from http://www.michael-
noll.com/tutorials/running-hadoop-on-ubuntu-linux-single-node-cluster/.

Owens, J. R. (2013). "Hadoop Real-World Solutions Cookbook", PACKT Publishing.

Rajaraman, A., J. Leskovec and J. D. Ullman (2012). "Mining of Massive Datasets".
Cambridge University Press, Cambridge.

Science, C. M. U.-S. o. C. (2012). "Getting Started with PEGASUS." Retrieved 11-2012,
from http://www.cs.cmu.edu/~pegasus/getting%20started.htm.

Seidman, S. B. (1983). "Network structure and minimum degree". Social Networks
5(3):269 - 287.

Sharir, M. (1981). "A strong-connectivity algorithm and its applications in data flow
analysis", NEW YORK UNIVERSITY.

Society, I. C. (1990). "System Application Program Interface (API) [C Language].
Information technology—Portable Operating System Interface (POSIX)", IEEE
Press, Piscataway,NJ.

Soman, J. and A. Narang (2011). "Fast Community Detection AlgorithmWith GPUs and
Multicore Architectures". 2011 IEEE International Parallel & Distributed
Processing Symposium.

Thanedar, V. (2012). "API Documentation." Retrieved 04-2012, 2012, from
http://developer.crunchbase.com/docs.

Valiant, L. G. (1990). "A bridging model for parallel computation", Commun. ACM
33(8):103-111.

Washington, U. o. (2011). "What is Hadoop?" Retrieved 05-03-2013, 2013, from
http://escience.washington.edu/get-help-now/what-hadoop.

Zinn, D. (2010). "MapReduce". Amazon Cloud Computing Workshop in conjunction to
the Bioinformatics Next Generation Sequencing Data Analysis Workshop.

http://wiki.apache.org/lucene-hadoop/
http://www-personal.umich.edu/~mejn/netdata/
http://www-personal.umich.edu/~mejn/netdata/
http://www.michael-noll.com/tutorials/running-hadoop-on-ubuntu-linux-single-node-cluster/
http://www.michael-noll.com/tutorials/running-hadoop-on-ubuntu-linux-single-node-cluster/
http://www.cs.cmu.edu/~pegasus/getting%20started.htm
http://developer.crunchbase.com/docs
http://escience.washington.edu/get-help-now/what-hadoop

72

Appendix A

1. Hadoop Installation - Implementation Procedures

Due to Hadoop’s high importance for the treatment of the thesis data we will write the

steps we follow for the example installation of a small cluster with a set of 3 virtual

machines with Linux Ubuntu Server OS.

Cluster Architecture

1rst machine, Master:

Name: master

IP: 192.168.0.1/24

2nd machine, Slave:

Name: slave

IP: 192.168.0.2/24

3rd machine, Slave 2:

Name: slave2

IP: 192.168.0.3/24

1. Install master in Single-Node mode

2. Make a master mirror image, it will be our slave machine

3. Configure machines master and slave in Multi-Node mode

4. Make a slave mirror image, it will be our slave2

5. Configure machine slave2

Implementation procedure 1(Install master in Single-Node mode)

- Install JAVA (1
st
 task to do)

Add the following to /etc/apt/sources.list.d/ file

#JAVA

73

deb http://archive.canonical.com/ lucid partner

Install java on the machine:

$ sudo apt-get update

$ sudo apt-get install openjdk-6-jdk

- Test JAVA (2
nd

 task to do)

user@ubuntu:~# java -version

java version "1.6.0_20"

Java(TM) SE Runtime Environment (build 1.6.0_20-b02)

Java HotSpot(TM) Client VM (build 16.3-b01, mixed mode, sharing)

- Create a group and an user for Hadoop creation (3

rd
 task to do):

e.g.: create user hduser and the group hadoop.

$ sudo addgroup hadoop

$ sudo adduser --ingroup hadoop hduser

- Configure SSH (4

th
 task to do)

Generate key for hduser

user@ubuntu:~$ su - hduser

hduser@ubuntu:~$ ssh-keygen -t rsa -P ""

Generating public/private rsa key pair.

Enter file in which to save the key (/home/hduser/.ssh/id_rsa):

Created directory '/home/hduser/.ssh'.

Your identification has been saved in /home/hduser/.ssh/id_rsa.

Your public key has been saved in /home/hduser/.ssh/id_rsa.pub.

The key fingerprint is:

9b:82:ea:58:b4:e0:35:d7:ff:19:66:a6:ef:ae:0e:d2 hduser@ubuntu

The key's randomart image is:

[...snipp...]

hduser@ubuntu:~$

- Let SSH access file system with the previously created key (5
th

 task to do)

hduser@ubuntu:~$ cat $HOME/.ssh/id_rsa.pub >> $HOME/.ssh/authorized_keys

- Test SSH (6
th

 task to do)

hduser@ubuntu:~$ ssh localhost

The authenticity of host 'localhost (::1)' can't be established.

RSA key fingerprint is d7:87:25:47:ae:02:00:eb:1d:75:4f:bb:44:f9:36:26.

Are you sure you want to continue connecting (yes/no)? yes

Warning: Permanently added 'localhost' (RSA) to the list of known hosts.

Linux ubuntu 2.6.32-22-generic #33-Ubuntu SMP Wed Apr 28 13:27:30 UTC 2010 i686

GNU/Linux

Ubuntu 10.04 LTS

[...snipp...]

hduser@ubuntu:~$

- Disable IPv6 (7
th

 task to do)

This is done by editing sysctl.conf file the following way:

74

hduser@ubuntu:~$nano /etc/sysctl.conf

#disable ipv6

net.ipv6.conf.all.disable_ipv6 = 1

net.ipv6.conf.default.disable_ipv6 = 1

net.ipv6.conf.lo.disable_ipv6 = 1

Warning: Computer must be restarted now

- Install Hadoop (assuming download made to /usr/local/) (8

th
 task to do)

$ wget http://mirrors.fe.up.pt/pub/apache/hadoop/core/stable/hadoop-1.0.4.tar.gz

After download:

$ cd /usr/local

$ sudo tar xzf hadoop-1.0.3.tar.gz

$ sudo mv hadoop-1.0.3 hadoop

$ sudo chown -R hduser:hadoop hadoop

So the directory where Hadoop is installed will be: /usr/local/hadoop/bin

- Update $HOME/.bashrc (9
th

 task to do)

Add the following text to the end of $HOME/.bashrc file of the user hduser.

Set Hadoop-related environment variables

export HADOOP_HOME=/usr/local/hadoop

Set JAVA_HOME (we will also configure JAVA_HOME directly for Hadoop later on)

export JAVA_HOME=/usr/lib/jvm/java-6-sun

Some convenient aliases and functions for running Hadoop-related commands

unalias fs &> /dev/null

alias fs="hadoop fs"

unalias hls &> /dev/null

alias hls="fs -ls"

If you have LZO compression enabled in your Hadoop cluster and

compress job outputs with LZOP (not covered in this tutorial):

Conveniently inspect an LZOP compressed file from the command

line; run via:

$ lzohead /HDFS/path/to/lzop/compressed/file.lzo

Requires installed 'lzop' command.

lzohead () {

hadoop fs -cat $1 | lzop -dc | head -1000 | less

}

Add Hadoop bin/ directory to PATH

export PATH=$PATH:$HADOOP_HOME/bin

- Configure Hadoop (10
th

 task to do)

hadoop-env.sh

The only required environment variable we have to configure for Hadoop in this

tutorial is JAVA_HOME. Open /conf/hadoop-env.sh file in the editor of your choice

(if you used the installation path in this tutorial, the full path is

http://mirrors.fe.up.pt/pub/apache/hadoop/core/stable/hadoop-1.0.4.tar.gz

75

/usr/local/hadoop/conf/hadoop-env.sh) and set the JAVA_HOME environment

variable to the Sun JDK/JRE 6 directory.

Alter

The java implementation to use. Required.

export JAVA_HOME=/usr/lib/j2sdk1.5-sun

to

The java implementation to use. Required.

export JAVA_HOME=/usr/lib/jvm/java-6-sun

Configure the directory where Hadoop will keep the Data files

$ sudo mkdir -p /app/hadoop/tmp

$ sudo chown hduser:hadoop /app/hadoop/tmp

$ sudo chmod 750 /app/hadoop/tmp

Hadoop config files (xml)

Add the following snippets between the <configuration> ... </configuration> tags in

the respective configuration XML file.

 conf/core-site.xml

<!-- In: conf/core-site.xml -->

<property>

<name>hadoop.tmp.dir</name>

<value>/app/hadoop/tmp</value>

<description>A base for other temporary directories.</description>

</property>

<property>

<name>fs.default.name</name>

<value>HDFS://localhost:54310</value>

<description>The name of the default file system. A URI whose scheme and authority

determine the FileSystem implementation. The

uri's scheme determines the config property (fs.SCHEME.impl) naming

the FileSystem implementation class. The uri's authority is used to

determine the host, port, etc. for a filesystem.</description>

</property>

conf/mapred-site.xml

<!-- In: conf/mapred-site.xml -->

<property>

<name>mapred.job.tracker</name>

<value>localhost:54311</value>

<description>The host and port that the MapReduce job tracker runs

at. If "local", then jobs are run in-process as a single map

and reduce task.

</description>

</property>

conf/HDFS-site.xml

<!-- In: conf/HDFS-site.xml -->

<property>

<name>dfs.replication</name>

<value>1</value>

<description>Default block replication.

76

The actual number of replications can be specified when the file is created.

The default is used if replication is not specified in create time.

</description>

</property>

Format FileSystem (HDFS)

hduser@ubuntu:~$ /usr/local/hadoop/bin/hadoop namenode -format

10/05/08 16:59:56 INFO namenode.NameNode: STARTUP_MSG:

/**

STARTUP_MSG: Starting NameNode

STARTUP_MSG: host = ubuntu/127.0.1.1

STARTUP_MSG: args = [-format]

STARTUP_MSG: version = 0.20.2

STARTUP_MSG: build = https://svn.apache.org/repos/asf/hadoop/common/branches/branch-0.20

-r 911707; compiled by 'chrisdo' on Fri Feb 19 08:07:34 UTC 2010

**/

10/05/08 16:59:56 INFO namenode.FSNamesystem: fsOwner=hduser,hadoop

10/05/08 16:59:56 INFO namenode.FSNamesystem: supergroup=supergroup

10/05/08 16:59:56 INFO namenode.FSNamesystem: isPermissionEnabled=true

10/05/08 16:59:56 INFO common.Storage: Image file of size 96 saved in 0 seconds.

10/05/08 16:59:57 INFO common.Storage: Storage directory .../hadoop-hduser/dfs/name has

been successfully formatted.

10/05/08 16:59:57 INFO namenode.NameNode: SHUTDOWN_MSG:

/**

SHUTDOWN_MSG: Shutting down NameNode at ubuntu/127.0.1.1

**/

hduser@ubuntu:/usr/local/hadoop$

Starting your single-node cluster

Initialize created node

hduser@ubuntu:~$ /usr/local/hadoop/bin/start-all.sh

starting namenode, logging to /usr/local/hadoop/bin/../logs/hadoop-hduser-namenode-

ubuntu.out

localhost: starting datanode, logging to /usr/local/hadoop/bin/../logs/hadoop-hduser-

datanode-ubuntu.out

localhost: starting secondarynamenode, logging to /usr/local/hadoop/bin/../logs/hadoop-

hduser-secondarynamenode-ubuntu.out

starting jobtracker, logging to /usr/local/hadoop/bin/../logs/hadoop-hduser-jobtracker-

ubuntu.out

localhost: starting tasktracker, logging to /usr/local/hadoop/bin/../logs/hadoop-hduser-

tasktracker-ubuntu.out

hduser@ubuntu:/usr/local/hadoop$

To visualize Hadoop processes running use jps command.

hduser@ubuntu:/usr/local/hadoop$ jps

2287 TaskTracker

2149 JobTracker

1938 DataNode

2085 SecondaryNameNode

2349 Jps

1788 NameNode

How to Stop Node

hduser@ubuntu:/usr/local/hadoop$ bin/stop-all.sh

stopping jobtracker

localhost: stopping tasktracker

stopping namenode

localhost: stopping datanode

localhost: stopping secondarynamenode

hduser@ubuntu:/usr/local/hadoop$

Note: This ends our Pseudo-Distributed (only one node) Hadoop installation

77

Implementation procedure 2 (Make a master mirror image, it will be our slave machine)

To have multi-node platform we made a copy of master machine and this copy will be

the first slave machine that we will configure. This description starts with the

assumption a copy was made.

Implementation procedure 3 (configure master and slave machines in Multi-Node mode)

- Configure platform in Multi-Node mode (11

th
 task to do)

First changes to do:

Change /etc/hostname file of the copy machine to have the name slave

Change /etc/network/interfaces file of the copy machine to have the IP 192.168.0.2

Change /etc/hosts file and add the names/IP’s of master and slave (we also included

slave2)

- Configure Slave machine (12
th

 task to do)

Configure SSH access

The user hduser@master will have to be able to access via SSH to himself master,

and also the slave machine. For that it is necessary to copy the public key existing on

master to the slave machine.

hduser@master:~$ ssh-copy-id -i $HOME/.ssh/id_rsa.pub hduser@slave

Test connection to both nodes

hduser@master:~$ ssh master

The authenticity of host 'master (192.168.0.1)' can't be established.

RSA key fingerprint is 3b:21:b3:c0:21:5c:7c:54:2f:1e:2d:96:79:eb:7f:95.

Are you sure you want to continue connecting (yes/no)? yes

Warning: Permanently added 'master' (RSA) to the list of known hosts.

Linux master 2.6.20-16-386 #2 Thu Jun 7 20:16:13 UTC 2007 i686

...

hduser@master:~$

hduser@master:~$ ssh slave

The authenticity of host 'slave (192.168.0.2)' can't be established.

RSA key fingerprint is 74:d7:61:86:db:86:8f:31:90:9c:68:b0:13:88:52:72.

Are you sure you want to continue connecting (yes/no)? yes

Warning: Permanently added 'slave' (RSA) to the list of known hosts.

Ubuntu 10.04

...

hduser@slave:~$

Configure parameterization files

 Update conf/masters file (on master)

78

This file should have only the name of master machine

master

 Update conf/slaves file (on master)

master

slave

slave2

 Update conf/core-site.xml file (on both machines)

<property>

<name>fs.default.name</name>

<value>HDFS://master:54310</value>

<description>The name of the default file system. A URI whose

scheme and authority determine the FileSystem implementation. The

uri's scheme determines the config property (fs.SCHEME.impl) naming

the FileSystem implementation class. The uri's authority is used to

determine the host, port, etc. for a filesystem.</description>

</property>

Update conf/core-site.xml file (on both machines)

<!-- In: conf/mapred-site.xml -->

<property>

<name>mapred.job.tracker</name>

<value>master:54311</value>

<description>The host and port that the MapReduce job tracker runs

at. If "local", then jobs are run in-process as a single map

and reduce task.

</description>

</property>

Update conf/HDFS-site.xml file (on both machines)

<!-- In: conf/HDFS-site.xml -->

<property>

<name>dfs.replication</name>

<value>3</value>

<description>Default block replication.

The actual number of replications can be specified when the file is created.

The default is used if replication is not specified in create time.

</description>

</property>

Formating FileSystem (HDFS)

hduser@master:/usr/local/hadoop$ bin/hadoop namenode –format

... INFO dfs.Storage: Storage directory /app/hadoop/tmp/dfs/name has been successfully

formatted.

hduser@master:/usr/local/hadoop$

Initiate created platform

Initiate FileSystem:

hduser@master:/usr/local/hadoop$ bin/start-dfs.sh

starting namenode, logging to /usr/local/hadoop/bin/../logs/hadoop-hduser-namenode-

master.out

slave: Ubuntu 10.04

slave: starting datanode, logging to /usr/local/hadoop/bin/../logs/hadoop-hduser-

datanode-slave.out

79

master: starting datanode, logging to /usr/local/hadoop/bin/../logs/hadoop-hduser-

datanode-master.out

master: starting secondarynamenode, logging to /usr/local/hadoop/bin/../logs/hadoop-

hduser-secondarynamenode-master.out

hduser@master:/usr/local/hadoop$

Initiate Map/Reduce processes

hduser@master:/usr/local/hadoop$ bin/start-mapred.sh

starting jobtracker, logging to /usr/local/hadoop/bin/../logs/hadoop-hadoop-jobtracker-

master.out

slave: Ubuntu 10.04

slave: starting tasktracker, logging to /usr/local/hadoop/bin/../logs/hadoop-hduser-

tasktracker-slave.out

master: starting tasktracker, logging to /usr/local/hadoop/bin/../logs/hadoop-hduser-

tasktracker-master.out

hduser@master:/usr/local/hadoop$

To stop both processes you should execute them on the following order (Stop Map

Reduce first):

hduser@master:/usr/local/hadoop$ bin/stop-mapred.sh

stopping jobtracker

slave: Ubuntu 10.04

master: stopping tasktracker

slave: stopping tasktracker

hduser@master:/usr/local/hadoop$

hduser@master:/usr/local/hadoop$ bin/stop-dfs.sh

stopping namenode

slave: Ubuntu 10.04

slave: stopping datanode

master: stopping datanode

master: stopping secondarynamenode

hduser@master:/usr/local/hadoop$

Implementation procedure 4 (make a slave image, it will be our slave2 machine)

Having machines master and slave correctly configured we will add one more slave

machine to the platform, this will have the name slave2. The configuration of this new

slave will have slave1 has its base, first thing to do will be to copy slave1.

Implementation procedure 5 (Configure machine slave2)

- Configure Slave2 machine (13

th
 task to do)

On this new copy it is necessary to do following updates:

 Update /etc/hostname file to be slave2

 Update /etc/network/interfaces file on the copy machine to have IP 192.168.0.3

80

Once slave2 is a copy of slave1 the multi-node configuration is correctly done and we

lack only some minor adjustments on some parameters.

Configure SSH access

The user hduser@master will have to access via SSH to itself, master and also slave

machine. For that it is necessary to copy public key existing on master to the new

slave.

hduser@master:~$ ssh-copy-id -i $HOME/.ssh/id_rsa.pub hduser@slave2

Testing access to the machine

hduser@master:~$ ssh slave2

The authenticity of host 'slave2 (192.168.0.3)' can't be established.

RSA key fingerprint is 74:d7:61:86:db:86:8f:31:90:9c:68:b0:13:88:52:72.

Are you sure you want to continue connecting (yes/no)? yes

Warning: Permanently added 'slave2' (RSA) to the list of known hosts.

Ubuntu 10.04

...

hduser@slave:~$

Directory /app/hadoop/tmp/dfs/data

Being slave2 a copy of slave1, regarding Hadoop there are references to the original

machine that avoid this new machine to be integrated correctly on the created platform

so now we must remove the following directory:

/app/hadoop/tmp/dfs/data

This directory will be again created on the first time the machine is integrated on the

platform.

In case Hadoop is being executed it is possible to add slave2 machine with the

following command on the OS:

ubuntu@slave2:/usr/local/hadoop/bin$./hadoop-daemon.sh start datanode

Finally we have a Hadoop in Multi-Node mode working with the architecture defined

on the beginning of this document.

81

2. Installation Procedures for Pegasus

We followed install procedures available on the project website (Science 2012)

fundamentally it was needed to download PEGASUS files, unzip them and it’s done.

$ wget http://www.cs.cmu.edu/~pegasus/PEGASUSH-2.0.tar.gz

$ tar -xzpf PEGASUSH-2.0.tar.gz

Following install we run Pegasus by opening install directory and inputting the

following command:

$cd PEGASUS

/PEGASUS$./pegasus.sh

After previous commands Pegasus console is open and an algorithm for retrieval of

vertexes degree was used with very fast results obtained for the data used. It took less

than two minutes to get the degree of around 130000 vertexes.

To obtain results, first we had to follow Pegasus manual by Kang et al. (2010) to

prepare graph and transfer it to Hadoop file system (HDFS).

3. Installation Procedures for Giraph

The installation of Giraph was made following the SVN checkout of the latest Giraph

source, located at the official Apache site:

$ svn co https://svn.apache.org/repos/asf/giraph/trunk

After that we changed the folder to /trunk and compiled the code with the following

command:

$ mvn compile

Once the build finishes, we navigated to the target folder created in the trunk folder

and could see the JAR file giraph-0.2-SNAPSHOT-jar-with-dependencies.jar.

Then, we tested with the following command:

$ hadoop jar target/giraph-0.2-SNAPSHOT-for-hadoop-0.20.203.0-jar-with-dependencies.jar

org.apache.giraph.benchmark.PageRankBenchmark -V 1000 -e 1 -s 5 -w 1 -v

https://svn.apache.org/repos/asf/giraph/trunk

82

If the installation was successful the reader should see the job execute and the Map-

Reduce command line output show success. Please pay attention that depending on the

version of your Hadoop and Giraph installation, the previous command for testing

installation might be different. You will have to change it accordingly.

Note: Some of this procedures for Giraph install were taken from Owens (2013).

4. Installation Procedures for Graphlab

The install of Graphlab was made following the next install procedures, essentially we

downloaded Graphlab package from
20

 and after uncompressing it, in the directory

graphlabapi we had to compile the source files, resuming the following commands

where used:

$ wget http://graphlabapi.googlecode.com/files/graphlabapi_v2.1.4434.tar.gz

$ tar -xzpf graphlabapi_v2.1.4434.tar.gz

Running ./configure in the graphlabapi directory, will create two sub-directories,

release/ and debug/. Then we compiled only the graph analytics toolkit with the

following command on the graphlabapi/toolkits/graph_analytics directory:

$ make -j 4

The command will perform up to 4 build tasks in parallel. There are several toolkits

available from Graphlab and more information on the toolkits can be retrieved from

webpage
21

.

5. Installation Procedures for Hadoop Map Reduce (from book)

For implementation of Map/Reduce algorithms the book Hadoop In Practice Holmes

(2012) was followed. On this book there are some algorithms developed by the author

available for use by the reader of the book. There are also algorithms simply referred by

the author but developed by other persons. All the algorithms are written in JAVA

language. For further information please consult the book.

20 http://code.google.com/p/graphlabapi/downloads/list
21 http://docs.graphlab.org/toolkits.html

http://code.google.com/p/graphlabapi/downloads/list
http://docs.graphlab.org/toolkits.html

83

6. Installation Procedures for Snap (Stanford Network Analysis Platform)

The install of Snap was made following install procedures, essentially we downloaded

Snap package from
22

 and after uncompressing it, in the directory Snap we had to

compile the source files using instructions for Linux OS available in
23

.

7. Installation Procedures for Green-Marl

The install of Green-Marl was made following the install procedures in

24
, essentially

we downloaded Green-Marl package from Github and after that, in the directory Green-

Marl we had to compile the source files, resuming the following commands where used:

$ git clone git://github.com/stanford-ppl/Green-Marl.git

$ cd /Green-Marl

$ make compiler

22 http://snap.stanford.edu/snap/download.html
23 http://snap.stanford.edu/snap/install.html
24 https://github.com/stanford-ppl/Green-Marl

http://snap.stanford.edu/snap/download.html
http://snap.stanford.edu/snap/install.html
https://github.com/stanford-ppl/Green-Marl

84

Appendix B

1. Edge List to Adjacency List – R code

graph <- read.csv("Relationships-Companies-FinancialOrg.txt", sep=" ",header=FALSE)

relations <- list()

nodes <- unique(c(graph[,1],graph[,2]))

for (k in 1:length(nodes)){

relations <-

c(relations,list(unique(c(nodes[k],graph[graph[,1]==nodes[k],2],graph[graph[,2]==

nodes[k],1]))))

}

lapply(relations, write, "adjency_list.txt", append=TRUE, ncolumns=10000)

2. Edge List to Giraph JSON Input Format – R code

edges <- readLines("com-amazon.ungraph.tsv");

for (i in 1:length(edges)){

 if(edges[i]!=""){

 node1 <- strsplit(edges[i],split="\t")[[1]][1]

 node2 <- strsplit(edges[i],split="\t")[[1]][2]

 write(paste("[", node1 ,",0,","[[",node2,",0]]]",sep=""), "Amazon-

Giraph.txt", sep="\n", append=TRUE)

 } else {break}

}

85

3. Community Detection – Green-Marl code (core .gm file)

Proc label_node_1(G: Graph, Gaux: Graph, EWN: Node_Prop<Float>(G), COMM:

Node_Prop<Int>(G), EW: E_P<Float>(G)) //: Int

{

 N_P<Bool>(G) Covered;

 // Compute Edge-Weight

 [printf("\nProcessing...Computing Graph Edges Weight!")];

 Foreach(s: G.Nodes) {

 G.Covered = False;

 Int counting = 0;

 Foreach(x: s.OutNbrs){

 Foreach(y: x.OutNbrs)(!y.Covered){

 If(y.HasEdgeTo(s))

 counting ++;

 }

 x.Covered = True;

 }

 Foreach (t: s.Nbrs) {

 Int triangles = 0;

 Foreach (u: s.Nbrs) {

 If (t.HasEdgeTo(u)) {

 triangles ++;

 //[printf("\nOn node %i - neighbour %i has edge to

neighbour %i",$s,$t,$u)];

 }

 }

 Edge(G) e = t.ToEdge();

 e.EW = (triangles == 0) ? 0 : counting / (Float) triangles;

 //[printf("\n Node %i to %i - counting = %i - Triangles = %i -

Edge weight = %f",$s,$t,$counting,$triangles,$e.EW)];

 }

 }

 // Initialize

 Edge_Prop<Bool>(G) VC;

 Node_Prop<Int>(G) membership;

 Node_Prop<Bool>(G) Covered2;

 G.Covered2 = False;

 G.EWN = 0;

 Int counter = 0;

 //has to be sequential to be respectful to node sequence

 [printf("\nProcessing...Setting Initial Community Labels for every node!")];

 For(n: G.Nodes) {

 n.COMM = counter; //Community initiation - each node belongs to its community

 counter++;

 }

 G.VC = False;

 // Cover & Compute EWN

 // Sequential Execution

 // (becomes non-deterministic if parallelized)

 [printf("\nProcessing...Computing Graph Maximum Neighbor's Edge Weight and for

every node!")];

86

 Foreach (s:G.Nodes)(!s.Covered2) {

 Edge(G) e_sel = NIL;

 Float maxval = -1;

 Node(G) from, to;

 Foreach(t: s.OutNbrs) {

 Edge(G) e1 = t.ToEdge();

 <maxval; from, to, e_sel> max= <e1.EW; s, t, e1> @t;

 }

 // there can be nodes that has no edges

 If (e_sel!= NIL) {

 e_sel.VC = True;

 from.Covered2 = True;

 //to.Covered2 = True;

 s.EWN = maxval;

 }

 }

 //Gaux has no edges yet, just nodes, lets add edges

 //has to be sequential or else it makes segmentation fault

 [printf("\nProcessing...Computing/Creating Auxiliary Graph Edges!")];

 For(n:G.Nodes){

 For(v: n.OutNbrs) (v.EWN==n.EWN){

 //To do

 Edge(G) e2 = v.ToEdge();

 If(e2.EW != 0){

 [Gaux.add_edge($v,$n)];

 //[Gaux.add_edge($n,$v)];

 //[printf("\nAdded edge %i to %i, %f =

%f",$v,$n,$v.EWN,$n.EWN)];

 }

 }

 }

}

Proc label_node_2(G: Graph, Gaux: Graph, COMM: Node_Prop<Int>(Gaux)) //: Int

{

 //To do Find connected components in Gaux

 [printf("\nProcessing...Computing Auxiliary Graph Kosaraju Strong Connected

Components!")];

 //Kosaraju connected components initialization

 Node_Prop<Int>(Gaux) mem;

 // Initialize membership

 Gaux.mem = -1;

 N_P<Bool>(Gaux) Checked;

 Gaux.Checked = False;

 // [Phase 1]

 // Obtain reverse-post-DFS-order of node sequence.

 // Node_Order can be also used here but Node_Seq is faster

 Node_Seq(Gaux) Seq;

 For(t:Gaux.Nodes) (!t.Checked)

 {

 InDFS(n:Gaux.Nodes From t)[!n.Checked]

 {} // do nothing at pre-visit

87

 InPost{ // check at post-visit

 n.Checked = True;

 Seq.PushFront(n);

 }

 }

 // [Phase 2]

 // Starting from each node in the sequence

 // Do BFS on the transposed graph G^.

 // and every nodes that are (newly) visited compose one SCC.

 Int compId = 0;

 Map<Int,Int> Node_community;

 For(t:Seq.Items)(t.mem == -1)

 {

 InBFS(n:Gaux^.Nodes From t)[n.mem == -1]

 {

 n.mem = compId;

 //[printf("\n Node %i member of component %i",$n,$n.mem)];

 }

 compId++;

 }

 //Label each component nodes with the lower label of community

 [printf("\nProcessing...Labeling each node in component with its lower label!")];

 Int comp_aux_label = 0;

 Int mem_aux = -1;

 N_P<Bool>(Gaux) Checked2;

 Gaux.Checked2=False;

 Foreach(s:Gaux.Nodes)(!s.Checked2){

 If(mem_aux != s.mem){

 comp_aux_label = s.COMM; //New component, from now on this label

will be the same for all nodes in this new component

 Foreach(t:Gaux.Nodes)(t.mem==s.mem && !t.Checked2){

 t.COMM=comp_aux_label;

 //[printf("\nProcedure 2 - Node %i member of community

%i",$t,$t.COMM)];

 t.Checked2=True;

 }

 }

 mem_aux = s.mem;

 s.Checked2 = True;

 }

}

Proc label_node_3(G: Graph, Gaux: Graph, calc_mod: Int, EWN: Node_Prop<Float>(G),

COMM: Node_Prop<Int>(G), EW: Edge_Prop<Float>(G)) //: Int

{

[FILE *myfile];

[myfile=fopen("results-raw.txt","a")];

Edge_Prop<Bool>(G) VC;

// Initialize before converging loop

Bool Converged = False;

88

N_P<Int>(G) prev_COMM;

N_P<Int>(G) prev_prev_COMM;

G.prev_COMM = -1;

G.prev_prev_COMM = -1;

Int iter = 0;

While(!Converged && iter < 10){

iter = iter + 1;

[printf("\nAlgorithm Iteration %i", $iter)];

Converged=True;

//Calculate total degree of members of the same community

Map<Int,Int> communityDegree;

Foreach(n: G.Nodes) {

 Int d = n.OutDegree();

 communityDegree[n.COMM] += d;

 //[printf("\nProcedure 3 - Node %i on community %i", $n,$n.COMM)];

}

 // Initialize

 Node_Prop<Float>(G) labelWeight;

 Node_Prop<Bool>(G) Covered;

 G.labelWeight = -1;

 Int CommDegree = 0;

 Int nedges = G.NumEdges();

 //[printf("\nNumber of Edges: %i",$nedges)];

 //Calculate labelWeight depending of size of community

 Foreach(s:G.Nodes){

 CommDegree = communityDegree[s.COMM];

 s.labelWeight = (1 - (CommDegree)/(Float)(2*nedges));

 //[printf("\nCD for Node %i and community %i: %i - LabelWeight:

%.2f",$s,$s.COMM,CommDegree,$s.labelWeight)];

 }

 //Initialize vars to final step of algorithm - node final label

 G.Covered = False;

 G.VC = False;

 Map<Int,Float> TEW_COMM; //Total edge weight of intra communities nodes

 // Cover & Compute COMM label

 // Sequential Execution

 // (becomes non-deterministic if parallelized)

 For(s: G.Nodes)(!s.Covered) { // Choose an edge that has maximum edge weight

 Edge(G) e_sel1 = NIL;

 Float maxval1 = -1;

 Node(G) from1, to1;

 TEW_COMM.Clear();

 Foreach(r: s.OutNbrs){

 //Edge(G) e = r.ToEdge();

 TEW_COMM[r.COMM] += r.EWN;

 //TEW_COMM[r.COMM] += e.EW;

 }

 For(t: s.OutNbrs){ // value among remaining nodes

89

 Edge(G) e2 = t.ToEdge();

 //Edge(G) e1 = t.ToEdge();

 //<maxval1; from1, to1, e_sel1> max= <t.labelWeight * t.EWN; s, t, e1>

@s;//@s??

 <maxval1; from1, to1, e_sel1> max= <t.labelWeight * TEW_COMM[t.COMM]; s,

t, e2> @t;

 }

 If (e_sel1!= NIL) {

 e_sel1.VC = True;

 from1.Covered = True;

 to1.Covered = True;

 s.prev_prev_COMM = s.prev_COMM;//save previous to previous

COMMUNITY

 s.prev_COMM= s.COMM;//save previous COMMUNITY

 s.COMM = to1.COMM;

 //If((s.COMM != s.prev_COMM) && (s.COMM ==

s.prev_prev_COMM)){Converged=False;}

 If(s.COMM != s.prev_COMM && s.prev_COMM !=

s.prev_prev_COMM){Converged=False;}

 }

 }

}

N_P<Bool>(G) Covered2;

G.Covered2 = False;

For(s: G.Nodes)(!s.Covered2){

[char buffer[100]];

[if (myfile != NULL){

 sprintf(buffer,"%i\t%i\r\n",$s,$s.COMM);

 fputs(buffer,myfile);

} else throw("Unable to open file results-raw.txt")];

s.Covered2=True;

}

[fclose(myfile)];

 If (calc_mod == 1){

 //Calculate Modularity - Modularity algorithm

 [printf("\nCalculating Modularity. Please Wait...")];

 // Initialize

 Node_Prop<Bool>(G) Covered3;

 G.Covered3 = False;

 Float Mod = 0.0;

 Foreach(u:G.Nodes)(!u.Covered3)

 {

 Foreach(v:G.Nodes)(v.COMM == u.COMM && v!=u){

 If (u.HasEdgeTo(v)){

 Mod += 1 -

(u.NumNbrs()*v.NumNbrs())/(2*G.NumEdges()); //New_deg[u]

 } Else {

 Mod += -

(u.NumNbrs()*v.NumNbrs())/(2*G.NumEdges()); //New_deg[u]

 }

90

 }

 u.Covered3 = True;

 }

 Mod = Mod/(2*G.NumEdges()); //Because we duplicated number of edges on graph

input, other way it would have to be 2*G.NumEdges???

 [printf("\nModularity: %f", Mod)];

 //print "Modularity: %f" % Mod

 }

}

91

4. Community Detection – Main File (C++) code (core .cc file)

#include "communities-algo.h" // header generated by gm_comp

#include <sys/time.h>

#include <iostream>

#include <fstream>

#include <string>

#include <stdio.h>

#include <map>

#define WONT_OPEN 20

#include <sys/types.h>

#include <dirent.h>

using namespace std;

//todo - convert to hash_map as desired.

typedef map<long, string> NodeMap;

typedef map<string, long> NameMap;

void add_node(gm_graph *G, gm_graph *Gaux, NameMap *names, NodeMap *nodes, long id,

string name) {

 G->add_node();

 Gaux->add_node();

 (*names)[name] = id;

 (*nodes)[id] = name;

}

//void load_edge_list(gm_graph *G, gm_graph *Gaux, NameMap *names, NodeMap *nodes,

string filename, char separator, string directed,string weighted) {

void load_edge_list(gm_graph *G, gm_graph *Gaux, NameMap *names, NodeMap *nodes, string

filename, char separator, string directed) {

 ifstream file;

 file.open(filename, fstream::in);

 cout << "\nOpened File " << filename;

 if (!(file.is_open())) {

 cout << "\nFile is not open... ";

 throw WONT_OPEN;

 }

 cout << "\nInitializing Variables... ";

 if(directed.compare("n")==0){

 cout << "\nGraph is undirected!";

 } else if(directed.compare("y")==0){

 cout << "\nGraph is directed!";

 }

 //TO DO - PREPARE CODE FOR WEIGHTED GRAPHS

 /*

 if(weighted.compare("n")==0){

 cout << "\nGraph is not weighted!";

 } else if(weighted.compare("y")==0){

 cout << "\nGraph is weighted!";

 }

 */

 string line;

 long int node_counter = 0;

 long int edge_counter = 0;

 cout << "\nBegining While Loop to read the edge list file... ";

 while(file.good()) {

 getline(file, line);

 if (line.find('#') != std::string::npos) continue;

 if(file.eof()) break;

 size_t split = line.find(separator);

 string u = line.substr(0, split);

 string v = line.substr(split+1);

 if(names->count(u) == 0) {

 add_node(G, Gaux,names, nodes, node_counter++, u);

 }

 if(names->count(v) == 0) {

 add_node(G, Gaux,names, nodes, node_counter++, v);

 }

 if (directed.compare("n")==0){//graph is undirected

 G->add_edge((*names)[u], (*names)[v]);

 G->add_edge((*names)[v], (*names)[u]);

 edge_counter++;

 } else if (directed.compare("y")==0) {//graph is directed

 G->add_edge((*names)[u], (*names)[v]);

92

 edge_counter++;

 }

 }

 cout << "\nGraph has "<< node_counter << " Nodes!";

 cout << "\nGraph has "<< edge_counter << " Edges!";

 cout << "\nClosing Edge List file!";

 file.close();

}

//function to translate internal green-marl nodes Ids to edge list nodes

void compile_results(NameMap *names, NodeMap *nodes) {

 //for reading raw results file

 ifstream file;

 //for writing final results file

 ofstream resultsfile;

 resultsfile.open("results-communities.txt",fstream::in | fstream::out | fstream::app);

 //for reading raw results file

 long size;

 char *buf;

 char *ptr;

 size = pathconf(".", _PC_PATH_MAX);

 if ((buf = (char *)malloc((size_t)size)) != NULL)

 ptr = getcwd(buf, (size_t)size);

 file.open(string(buf).append("/results-raw.txt"), fstream::in);

 cout << "\nOpening Raw Results File ";

 if (!(file.is_open())) {

 cout << "\nFile is not open... ";

 throw WONT_OPEN;

 }

 string line;

 long int node_counter = 0;

 long int edge_counter = 0;

 cout << "\nBegining While Loop to read the Raw file... ";

 while(file.good()) {

 getline(file, line);

 if (line.find('#') != std::string::npos) continue;

 if(file.eof()) break;

 size_t split = line.find('\t');

 string u = line.substr(0, split);

 string v = line.substr(split+1);

 //for writing final results file

 char buffer[100];

 if (resultsfile !=NULL){

 string s_u = (*names).find((*nodes).find(stol(u))->second)->first;

 string s_v = (*names).find((*nodes).find(stol(v))->second)->first;

 resultsfile << s_u.c_str() << "\t" << s_v.c_str() << "\r\n";

 } else

 {

 printf("Unable to open file results-communities.txt to write results");

 throw WONT_OPEN;

 }

}

//fclose(resultsfile);

resultsfile.close();

}

int main(int argc, char** argv) {

gm_graph G, Gaux;

NameMap names;

NodeMap nodes;

string directed;

string weighted;

string file_name;

string calc_mod_aux;

time_t timer, timer_end;

struct tm * ptm_start;

struct tm * ptm_end;

float ptm_interval;

int calc_mod;

 puts("\n##");

 puts("##### Community Detection Algorithm #####");

 puts("##\n");

93

if(remove("results-raw.txt") != 0)

 puts("No need for cleaning tasks...continuing...");

 else

 puts("1st Cleaning Task Successfully Done");

if(remove("results-communities.txt") != 0)

 puts("No need for cleaning tasks...continuing...");

 else

 puts("2nd Cleaning Task Successfully Done");

printf("Is the graph directed? Answer y (yes) or n (no): ");

cin >> directed;

//printf("Is the graph weighted? Answer y (yes) or n (no): ");

//cin >> weighted;

printf("Input graph file name (only unweighted edge list is accepted!!): ");

cin >> file_name;

printf("Do you want to calculate Modularity? It can make the algorithm slow! Answer y

(yes) or n (no): ");

cin >> calc_mod_aux;

if(calc_mod_aux.compare("n")==0){calc_mod=0;} else

if(calc_mod_aux.compare("y")==0){calc_mod=1;}

time(&timer); /* get current time; same as: timer = time(NULL) */

ptm_start = gmtime(&timer);

cout << "Started Computation of Communities Algo at: " << ptm_start->tm_hour << ":" <<

ptm_start->tm_min << "\n";

cout << "Loading Edge List...";

//load_edge_list(&G, &Gaux ,&names, &nodes, file_name, '\t', directed, weighted);

load_edge_list(&G, &Gaux ,&names, &nodes, file_name, '\t', directed);

cout << "\nCalculating Communities Labels for every node...";

//Variables for .gm procedures

// Create an array to hold the node property

int32_t* comm = new int32_t[G.num_nodes()]();

// Create an array to hold the node property

float* ewn = new float[G.num_nodes()]();

float* ew = new float[G.num_edges()]();

label_node_1(G, Gaux, ewn, comm, ew);//1rst Phase - Calculate Edge weights and store

them in each node

Gaux.freeze();

label_node_2(G, Gaux, comm); //2Phase - Build auxiliary graph - calculate connected

components on graph aux

label_node_3(G, Gaux, calc_mod, ewn, comm, ew); //3rd Phase - final labels for our

original graph

time(&timer_end); /* get current time; same as: timer_end = time(NULL) */

ptm_end = gmtime(&timer_end);

cout << "\nEnded Computation of Communities Algorithm at: " << ptm_end->tm_hour << ":"

<< ptm_end->tm_min << "\n";

ptm_interval = difftime(timer_end,timer);

cout << "Processing Time - " << ptm_interval/3600 << " hours, " << ptm_interval/60 << "

minutes OR "<< ptm_interval <<" seconds \n";

cout << "Compiling Results...";

compile_results(&names, &nodes);

cout << "\nFile results-communities.txt has the algorithm results! Enjoy!\n";

 puts("\n##");

 puts("##### Community Detection Algorithm #####");

 puts("##\n");

return 0;

}

94

5. SimRank – Green-Marl code (core .gm file)

Proc simrank(G: Graph)

{

 [FILE *myfile];

 Float r = 0.9;

 Float s_uv = 0.0;

 Int iter = 100;

 Float eps = 0.0001;

 [bool FLAG_CONV = false];

 Int n_nodes = 0;

 Node_Prop<Bool> Covered;

 n_nodes = G.NumNodes();

 G.Covered = False;

 [float** sim_df = new float*[$n_nodes]];

 [float** sim_df_old = new float*[$n_nodes]];

 [for(int i = 0; i < $n_nodes; i++) {

 sim_df[i] = new float[$n_nodes];

 sim_df_old[i] = new float[$n_nodes];

 }];

 //initialize matrices

 Foreach(s:G.Nodes){

 Foreach(t:G.Nodes){

 [

 if($s==$t){

 sim_df[$s][$t]=1;

 sim_df_old[$s][$t]=1;

 sim_df[$t][$s]=1;

 sim_df_old[$t][$s]=1;

 }else{

 sim_df[$s][$t]=0;

 sim_df_old[$s][$t]=0;

 sim_df[$t][$s]=0;

 sim_df_old[$t][$s]=0;

 }

];

 }

 }

 Node_Prop<Int> numNbrs;

 G.numNbrs = 0;

 Int j = 0;

 While(j <= iter){

 [if (!FLAG_CONV) {FLAG_CONV=true;} else {break;}];//test convergence FLAG

 [for(int k = 0; k < $n_nodes;k++){

 memcpy(sim_df_old[k], sim_df[k], sizeof(float) * $n_nodes);

 }];

 Foreach(u: G.Nodes) {

 u.numNbrs = u.NumOutNbrs();

 Foreach(v: G.Nodes){

 [if ($u == $v) {

 continue;

 } else {$s_uv=0.0;}];

 v.numNbrs = v.NumOutNbrs();

 Foreach(n_u: u.OutNbrs)

 {

 Foreach(n_v: v.OutNbrs){

 [$s_uv = $s_uv +

sim_df_old[$n_u][$n_v]];

 }

 }

 [

 sim_df[$u][$v] = ($r * $s_uv)/ (float)

(($u.numNbrs)*($v.numNbrs));

 sim_df[$v][$u] = sim_df[$u][$v];

95

 if(sim_df[$u][$v] - sim_df_old[$u][$v] >= (float)

$eps || sim_df[$v][$u] - sim_df_old[$v][$u] >= (float) $eps){

 FLAG_CONV=false;

 } //if there is no convergence

in any value of simrank then FLAG_CONV=FALSE

];

 }

 }

 j = j+1;

 }

// TO DO - Write file with top 10 of similarity ranking for all nodes

G.Covered=False;

[myfile=fopen("results-simrank-raw.txt","a")];

[char buffer[100]];

Int line = 1;

For(s:G.Nodes){

[if (myfile !=NULL && $line == 1){

 sprintf(buffer,"\t");

 fputs(buffer,myfile);

}];

For(u:G.Nodes){

[if (myfile !=NULL && $line == 1){

 sprintf(buffer,"%i\t",$u);

 fputs(buffer,myfile);

}];

}

If(line == 1){

[sprintf(buffer,"\n")];

[fputs(buffer,myfile)];

}

line = 0;

[if (myfile !=NULL){

 sprintf(buffer,"%i\t",$s);

 fputs(buffer,myfile);

} else {puts("Unable to open file results-simrank-raw.txt");}];

For(t:G.Nodes){

[if (myfile !=NULL){

 sprintf(buffer,"%f\t",sim_df[$s][$t]);

 fputs(buffer,myfile);

} else {puts("Unable to open file results-simrank-raw.txt");}];

}

[sprintf(buffer,"\n")];

[fputs(buffer,myfile)];

}

[fclose(myfile)];

}

96

6. SimRank – Main File (C++) code (core .cc file)

#include "simrank.h" // header generated by gm_comp

#include <sys/time.h>

#include <iostream>

#include <fstream>

#include <string>

#include <map>

#include <stdlib.h>

#include <unistd.h>

#define WONT_OPEN 20

#include <sys/types.h>

#include <dirent.h>

using namespace std;

//todo - convert to hash_map as desired.

typedef map<long, string> NodeMap;

typedef map<string, long> NameMap;

void add_node(gm_graph *G, NameMap *names, NodeMap *nodes, long id, string name) {

 G->add_node();

 (*names)[name] = id;

 (*nodes)[id] = name;

}

//void load_edge_list(gm_graph *G, NameMap *names, NodeMap *nodes, char filename[256],

char separator, char directed[256]) {

void load_edge_list(gm_graph *G, NameMap *names, NodeMap *nodes, string filename, char

separator, string directed) {

 ifstream file;

 file.open(filename, fstream::in);

 cout << "\nOpened File " << filename;

 if (!(file.is_open())) {

 cout << "\nFile is not open... ";

 throw WONT_OPEN;

 }

 cout << "\nInitializing Variables... ";

 if(directed.compare("n")==0){

 cout << "\nGraph is undirected!";

 } else if(directed.compare("y")==0){

 cout << "\nGraph is directed!";

 }

 string line;

 long int node_counter = 0;

 long int edge_counter = 0;

 cout << "\nBegining While Loop to read the edge list file... ";

 while(file.good()) {

 getline(file, line);

 if (line.find('#') != std::string::npos) continue;

 if(file.eof()) break;

 size_t split = line.find(separator);

 string u = line.substr(0, split);

 string v = line.substr(split+1);

 if(names->count(u) == 0) {

 add_node(G, names, nodes, node_counter++, u);

 }

 if(names->count(v) == 0) {

 add_node(G, names, nodes, node_counter++, v);

 }

 if (directed.compare("n")==0){//graph is undirected

 G->add_edge((*names)[u], (*names)[v]);

 G->add_edge((*names)[v], (*names)[u]);

 edge_counter++;

 } else if(directed.compare("y")==0){//graph is directed

 G->add_edge((*names)[u], (*names)[v]);

 edge_counter++;

 }

 }

 cout << "\nGraph has "<< node_counter << " Nodes!";

 cout << "\nGraph has "<< edge_counter << " Edges!";

 cout << "\nIMPORTANT NOTE: With this Graph, memory use will be approximately around "

<< 2*node_counter*node_counter*4/1000000 << "MB MAX";

97

 cout << "\nPLEASE MAKE SURE YOUR MACHINE'S MEMORY IS ENOUGH TO RUN THE ALGORITHM!!";

 cout << "\nClosing Edge List file...";

 file.close();

 cout << "\nClosed Edge List file!";

}

//function to translate internal green-marl nodes Ids to edge list nodes

void compile_results(NameMap *names, NodeMap *nodes) {

 //for reading raw results file

 ifstream file;

 //for writing final results file

 ofstream resultsfile;

 resultsfile.open("results-simrank.txt",fstream::in | fstream::out | fstream::app);

 //for writing final results file

 //resultsfile=fopen("results-communities.txt","a");

 //for reading raw results file

long size;

char *buf;

char *ptr;

size = pathconf(".", _PC_PATH_MAX);

if ((buf = (char *)malloc((size_t)size)) != NULL)

 ptr = getcwd(buf, (size_t)size);

 //cout << string(buf).append("/results-simrank-raw.txt");

 file.open(string(buf).append("/results-simrank-raw.txt"), fstream::in);

 //file.open("/home/110414015/Green-Marl/apps/output_cpp/bin/results-simrank-raw.txt",

fstream::in | fstream::out | fstream::app);

 cout << "\nOpening Raw Results File ";

 if (!(file.is_open())) {

 cout << "\nFile is not open... ";

 throw WONT_OPEN;

 }

 string line;

 long int node_counter = 0;

 long int edge_counter = 0;

 long int line_counter = 0;

 cout << "\nBegining While Loop to read the Raw file... ";

 while(file.good()) {

 //cout << "\nRead Lines started..." ;

 //line = (char) file.get();

 getline(file, line);

 line_counter++;

 //std::stringstream(line);

 //cout << "\nRead Line: " << line;

 if (line.find('#') != std::string::npos) continue;

 if(file.eof()) break;

 if (line_counter==1){

 size_t split = line.find('\t');

 string v = line.substr(split+1);

 size_t split2 = v.find('\t');

 string node1 = v.substr(0, split2);

 v = v.substr(split2+1);

 //cout << "\nNode1: " << node1;

 string s_u = (*names).find((*nodes).find(stol(node1))->second)->first;

 resultsfile << '\t' << s_u.c_str() ;

 do{

 if (v.find('\t')==std::string::npos){

 //cout << "\nNo tab and End of line " << v;

 break;

 } else if (v.find('\t')!=std::string::npos)

 {

 split = v.find('\t');

 string node = v.substr(0, split);

 //cout << "\nTab and Node: "<< node;

 v = v.substr(split+1);

 s_u = (*names).find((*nodes).find(stol(node))->second)->first;

 resultsfile << '\t' << s_u.c_str();

 }

 }while(true);

 //for writing final results file

 if (resultsfile !=NULL){

 resultsfile << "\r\n";

 } else

 {

 printf("Unable to open file results-simrank.txt to write results");

 throw WONT_OPEN;

98

 }

 } else {

 size_t split = line.find('\t');

 string node1 = line.substr(0, split);

 //cout << "\n New Line: " << line;

 //cout << "\nNode: " << node1;

 string s_u = (*names).find((*nodes).find(stol(node1))->second)->first;

 resultsfile << s_u.c_str() ;

 string v = line.substr(split+1);

 do{

 if (v.find('\t')==std::string::npos){

 //cout << "\n New Line: " << line;

 //cout << "\nNode: " << v;

 resultsfile << '\t' << v;

 break;

 } else if (v.find('\t')!=std::string::npos)

 {

 split = v.find('\t');

 string value = v.substr(0, split);

 v = v.substr(split+1);

 resultsfile << '\t' << value;

 }

 }while(true);

 //for writing final results file

 if (resultsfile !=NULL){

 resultsfile << "\r\n";

 } else

 {

 printf("Unable to open file results-simrank.txt to write results");

 throw WONT_OPEN;

 }

 }

}

//fclose(resultsfile);

resultsfile.close();

}

int main(int argc, char** argv){

gm_graph G;

NameMap names;

NodeMap nodes;

string directed;

string file_name;

time_t timer, timer_end;

struct tm * ptm_start;

struct tm * ptm_end;

float ptm_interval;

 puts("\n################################");

 puts("##### SimRank Algorithm #####");

 puts("################################\n");

if(remove("results-simrank-raw.txt") != 0)

 puts("No need for 1st cleaning task...continuing...");

 else

 puts("1st Cleaning Task Successfully Done");

if(remove("results-simrank.txt") != 0)

 puts("No need for 2nd cleaning task...continuing...");

 else

 puts("2nd Cleaning Task Successfully Done");

printf("Is the graph directed? Answer y (yes) or n (no): ");

cin >> directed;

printf("Input graph file name (only unweighted edge list is accepted!!): ");

cin >> file_name;

time(&timer); /* get current time; same as: timer = time(NULL) */

ptm_start = gmtime(&timer);

cout << "Started Computation of Similarity Ranking (Simrank): " << ptm_start->tm_hour <<

":" << ptm_start->tm_min << "\n";

cout << "Loading Edge List...";

load_edge_list(&G, &names, &nodes, file_name, '\t', directed);

cout << "\nCalculating Simrank for every node...";

cout.flush();

simrank(G);

time(&timer_end); /* get current time; same as: timer_end = time(NULL) */

ptm_end = gmtime(&timer_end);

99

cout << "\nEnded Computation of Simrank at: " << ptm_end->tm_hour << ":" << ptm_end-

>tm_min << "\n";

ptm_interval = difftime(timer_end,timer);

cout << "Processing Time - " << ptm_interval/3600 << " hours, " << ptm_interval/60 << "

minutes OR "<< ptm_interval <<" seconds \n";

cout << "Compiling Results...";

compile_results(&names, &nodes);

cout << "\nFile results-simrank.txt has the algorithm results! Enjoy!\n";

 puts("\n################################");

 puts("##### SimRank Algorithm #####");

 puts("################################\n");

return 0;

}

