
 
 

 

 

 

 

 

 

 

 

 

Large Scale Social Network Analysis 
 

 

By 
 

Rui Portocarrero Sarmento 
 

 

 

2013 
 

 

 

Master Thesis – Data Analysis and Decision Support Systems 
 

 

 

 

 

 

 

Supervisors: 

 

João Gama 

Albert Bifet           



ii 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Keywords: network analysis, large graph networks, parallel computing, network 

community structure 

  



iii 

 

Biography 

 

 

Rui Sarmento has a degree in Electrical Engineering by University of Porto, Faculty 

of Engineering. He has worked in several areas from 3G mobile networks with 

functions in an international technical support center to software development 

companies focusing on Communications and Intranet solutions with Linux based 

Enterprise Operating Systems. Finally he has also worked for the main public 

transportation company in his hometown, Porto, as a project management engineer in 

the informatics and communications area. 

He is currently also collaborating with LIAAD (Laboratory of Artificial Intelligence 

and Data Analysis) in INESCP. 

  



iv 

 

Acknowledgments 

  

 

First, I would like to thank my advisors João Gama and Albert Bifet for their advices 

and support. This thesis would not have been possible without them and without the 

encouragement they have given me over the last two years. I’ll thank specially to João 

Gama for giving me the opportunity for the time I spent at LIAAD (Artificial 

Intelligence and Data Analysis Lab) surrounded by great Doctorate Students. They were 

always supporting and very helpful. I would also like to thank Albert Bifet for being a 

never ending resource of information for new and arising tools used throughout the 

thesis. 

I thank a lot to Marcia Oliveira. The time spent studying with her at LIAAD was great. 

I thank her for the help she gave me understanding important theoretical subjects and 

for making the thesis development task a lot easier. 

I also would like to thank to FEUP (Faculty of Engineering - University of Porto) for 

lending the “grid cluster”. That made the task of dealing with large datasets feasible, for 

that I would like to thank Jonathan Barber for the immense enthusiasm and support 

when I was dealing with supercomputers and clusters without previous knowledge on 

the subject. 

I want to thank Américo Amaral for helping me with the installation of Hadoop on 

VM’s (Virtual Machines). His help was much appreciated and his insight on Hadoop 

install was always of great value on the beginning of thesis research. 

The thesis final phase consisted on the development of an algorithm previously not 

developed with the Green-Marl language and in spite being a relatively fresh language I 

had the pleasure to be guided by Martin Sevenich, Hong Sungpack and Austin Gibbons, 

some of them contributing for the development of the language or that had contributed 

to it in the past. They were all great help in understanding the language syntax and 

behavior in parallel environments. 

Finally I want to thank Tiago Cunha for the great companionship while we were 

studying for the master courses and particularly because he helped me when gathering 

some considerable quantity of data in study on this document. 



v 

 

Abstract 

 

Throughout this document we present an in depth study and analysis of very large 

scale social networks. Besides the explanation of how to use and install several tools 

available, we explain in detail the basis of these tools. Several algorithms will be used to 

give the reader knowledge of different tools and technique results. Using tools like 

Graphlab or using Hadoop and Hadoop Map Reduce based tools like Pegasus or Giraph 

we will compute some important metrics. We will also use an optimized tool for graph 

analysis, it is called Snap (Stanford Network Analysis Platform). Although this tool is 

not inherently a parallel computing one, it can serve as a reference for non parallel 

graph analysis software. 

Several metrics will be computed for several different size networks including a case 

study using data previously achieved from the CrunchBase databases. One of this 

particular Crunchbase network has relationships between technological companies and 

financial organizations. Another network is also derived from Crunchbase databases 

with relationships between persons and technological companies.  

Finally, using parallel computing paradigm, two distinct algorithms will be 

implemented, a community detection algorithm and also a similarity ranking algorithm. 

Both algorithms behavior will also be subject of studies with test networks. 

 

PORTUGUESE VERSION 

 

O objetivo deste documento é explorar em profundidade o estudo das redes sociais de 

grande escala. Além da exposição ao leitor do método de utilização e instalação de 

diversas ferramentas disponíveis também será explicada a arquitetura funcional dessas 

ferramentas. Serão utilizados vários algoritmos para dar ao leitor uma noção das 

técnicas de funcionamento e correspondentes resultados para cada uma das ferramentas. 

Serão calculadas algumas métricas importantes, usando ferramentas como o Graphlab 

ou usando o Hadoop e ferramentas baseadas no Hadoop Map Reduce como o Pegasus 

ou o Giraph. Adicionalmente utilizaremos ferramentas otimizadas para a análise de 

redes sociais como o Snap (Stanford Network Analysis Platform) que embora não sendo 

uma ferramenta de computação paralela serve como referência neste campo. 
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Vários algoritmos serão computados para redes de diferentes tamanhos incluindo um 

caso de estudo com redes obtidas da base de dados Crunchbase. Esta rede Crunchbase é 

composta pelas relações entre empresas tecnológicas e organizações financeiras. 

Também derivada da base de dados Crunchbase está outra rede com as ligações entre 

personalidades e as empresas tecnológicas. 

Finalmente, utilizando as bases da computação paralela, foram desenvolvidos dois 

algoritmos distintos. Um algoritmo de deteção de comunidades e um algoritmo de 

cálculo do ranking de similaridades (simrank) entre nós de uma rede. Ambos os 

algoritmos serão também sujeitos a estudos de comportamento com redes de teste. 
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1. Introduction 

1.1. Motivation 

 

Graphs are the main used representation for the social networks structure. In graph 

theory, a graph is a representation of a network of entities, objects or beings where some 

of them are connected by links. They are abstracted by being represented by nodes, 

vertices or vertexes and the links between them are called edges. They are visually 

presented typically by a diagram with a set of dots for the vertexes and joined by curves 

or lines for the edges. The edges may be directed or undirected. For example, in a 

scientific conference the public will know the orator but the orator might not know all 

the elements in the audience so the connections between the audience and the orator will 

be represented by directed connections. If the orator gets to know some particular 

person in the audience them the connection will be therefore undirected since the orator 

knows the audience member and the audience member knows the orator. 

Graph computations are often completely data-driven, dictated by the vertex and edge 

(node and link) structure of the graph on which it is operating rather than being directly 

expressed in code. In particular, the above properties of graph problems present 

significant challenges for efficient parallelism. As a result, parallelism based on 

partitioning of computation can be difficult to express because the structure of 

computations in the algorithm is not known a priori. 

The data in graph problems are typically unstructured and highly irregular. Graph data 

makes it difficult to extract parallelism by partitioning the problem data. Scalability can 

be quite limited by unbalanced computational loads resulting from poorly partitioned 

data. 

Performance in contemporary processors is predicated upon exploiting locality. Thus, 

high performance can be hard to obtain for graph algorithms, even on serial machines. 

In graph algorithms computation there is typically a higher ratio of data access than for 

other scientific applications computation. Since these accesses tend to have a low 

amount of exploitable locality, runtime can be dominated by the wait for memory 

fetches. All this problems are discussed extensively by Lumsdaine et al. (2007) and will 

be exposed in this document. The majority of tools used for this thesis development 
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address the problems searching for solutions and specifically addressing large graph 

analysis issues. 

1.2. Thesis Overview 

 

This document tries to gather on one single document as much information possible 

about the parallel computing tools available nowadays for the purpose of social 

networks analysis, more concretely for those of large scale. Several tools and different 

algorithms were used to gather information on several different networks of large scale, 

impossible/very difficult to study on a normal commodity machine and with sequential 

software due to time consuming processing. 

On Chapter 2 we describe the state of the art of parallel computing architectures, 

hardware and software approaches to the subject of study in this document, i.e. large 

scale graph analysis. 

Chapter 3 introduces the reader to the tools available for graph analysis, describe their 

functional characteristics and prepare the user to use introduced tools on practical use 

cases. On Section 3.4, previous to explore practical use cases with tools previously 

introduced also on Chapter 3, the characteristics of the data used for this task are also 

explained. 

On Chapter 4 we describe the development process of two parallel algorithms. There 

is an introduction to these metrics and then the developed code results on some test case 

data specifically used to focus on the algorithms characteristics. 

Finally on Chapter 5 we take conclusions on the overall work developed for this 

document and explain also the possible further developments of this work and what we 

think could be a good update for it in the future. 

1.3. Contributions 

 

With this document we tried to compile as much information to compare the tools 

available for graph analysis nowadays. There will be a comparison of these tools 

regarding several important subjects like advantages and disadvantages, offered 

algorithms from installation and also methods for installing and running these tools. 
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Other main contributions of this work are novel implementations of an algorithm for 

community detection and also of a similarity ranking calculation algorithm, with a 

recently developed specific domain language. They were developed and experimented 

with a language for graph analysis domain called Green-Marl. This specific language 

tool is also exposed and explained on this document’s Section 4.4. 

Resuming this document has these main contributions: 

 

1. Aggregation of information: 

a. What tools to use for analyzing large social networks 

b. How to install the tools 

c. What algorithms are already implemented with these tools 

d. How to run the offered algorithms 

 

2. Implementation of algorithms for large scale Social Network analysis: 

a. Community Detection algorithm implementation with Green-Marl 

language 

b. Similarity Ranking algorithm implementation also with Green-Marl 

language 
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2. State of the art 

 

This Chapter introduces the state of the art architectures and software strategies 

available recently, that are scalable to large networks since they use parallel processing.  

Therefore this Chapter is dedicated only to parallel processing. We will write about 

major technologies used by data scientists to approach the problem of big data 

particularly on the large/very large graphs subject. 

Sections 2.1 to 2.3 are an overview based on the important paper by Lumsdaine et al. 

(2007) addressing on parallel computing for graph analysis. This way we intend to 

expose recent research made on this subject and subsequently its evolution as time 

evolved until today. 

2.1. Parallel Architectures & Programming Models 

 

Nowadays most machines are built based on standard microprocessors, with the use of 

hierarchical memory. The processing is usually optimized reducing latency with fast 

memory to store values from memory addresses that are likely to be accessed soon. 

Although for the majority of modern applications, this is a way to improve performance, 

it is not particularly effective for unstructured graphs calculations as we will see. 

 

Distributed Memory Machines 

 

This type of machines is usually programmed by explicit message passing by the user. 

He is responsible for the division of data among the memories and also responsible for 

the assigning of different tasks to the processors. 
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Figure 1: Distributed Memory Machines 

 

The exchanging of data between processors is governed by user controlled messages, 

generally with the help of MPI communication library from Borchers and Crawford 

(1993). This way and for many users applications high performance is achieved but the 

high detail in messages control can be fastidious and errors might be usual. 

Normally programs are written in a way that processors might work independently on 

local data and might also work collective in a group of processors with operations based 

on communications between them as specified from Valiant (1990). However data 

cannot be exchanged instantly and processing demands that it can only be done on 

breaks between computation tasks. This characteristic makes it tedious to explore fine-

grained parallelism making distributed memory machines not suited to this kind of 

parallelism. 

 

Partitioned global address space computing 

 

Partitioned global address such as UPC from El-Ghazawi et al. (2003) is more 

adequate for fine-grained parallelism. The feature of a global address space makes 

easier the writing of applications with data access patterns of higher complexity. 

As can be seen on Fig. 2 UPC is based on a single communication layer therefore 

parallel programs of fine-grained type achieve better performance than using MPI 

library for communication between CPU’s, memory and host machines. 
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One constraint of UPC programs, as for MPI is that the number of threads is limited 

and constant, usually equal to the number of processors. As will be pointed on the 

sections below the lack of dynamic threads makes it generically difficult to build up 

superior performance software for graph analysis. 

 

Figure 2: Global Address Space Computing 

 

2.1.1. Shared-memory computers 

 

UPC features a globally addressable memory by software on distributed memory 

hardware but it can also be provided in plain hardware. Shared memory computers can 

be categorized in several groups. Here it is only considered cache-coherent computers 

and also massively multithreaded computers. 

 

Cache-coherent parallel computers 

 

With SMPs (symmetric multiprocessors) global memory is globally reachable by each 

processor. UPC might be used to program these machines although the most usually 

used is OpenMP from Dagum and Menon (1998) or even a POSIX threading approach 

from Society (1990). In this Thesis we will use exclusively SMPs machines for 

computing metrics for graph analysis in Section 3.4 and will also use OpenMP in 

chapter 4 for the development of graph analysis algorithms.   
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Figure 3: SMP global memory 

 
SMP characteristics make it possible for a program to access any addresses in global 

memory directly and sensibly fast because of its hardware support. Therefore 

unstructured problems can achieve better performance than is possible on distributed 

memory machines. SMPs are therefore dependant of faster hardware for accessing 

memory and subsequently with lower latency. 

As seen above in Fig. 3 processors possess a memory hierarchy in which a small 

amount of data is kept in cache, a faster memory for quick access and to ensure read 

operations get the most recent values for variables. 

In a multiprocessor computer with multiple caches, cache-coherence is a great and 

challenging task adding overhead which can degrade performance. For problems in 

which reads are much more prevalent than writes, cache coherence protocols impact on 

performance and scalability. 

Another challenge with SMPs is thread synchronization and scheduling being possible 

that some threads be blocked for a period of time. Recent versions of OpenMP required 

that the number of threads be equal to the number of processors and therefore a blocked 

thread corresponds to an idle processor and that may impact on performance as will see 

in section 4.6.2 with some practical use cases and for developed algorithms that use 

OpenMP. 
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Massively multithreaded architectures 

 

Massive multithreaded machines are built upon custom processors which are more 

expensive and have much slower clock frequency than mainstream microprocessors. 

MTA-2 from Anderson et al. (2003) is an example of this type of machine and it has 

also a non-standard programming model although it might be considered simple. 

2.2. Mapping Parallel Graph Algorithms to Hardware 

 

Parallel graph algorithms have been classified to be difficult to develop. The 

challenging characteristics of software and hardware to take care with in the 

development process are the following: 

 
Task Granularity: With centrality measures computations it is common to use many 

shortest path calculations and therefore there is a significant quantity of coarse-grained 

parallelism. Resuming, each shortest path could be a separate task, but for the majority 

of graph calculations parallelism is exclusively found on fine-grained parallelism. 

Hardware architecture that makes it easy to use fine-grained parallelism would be more 

suited to run such type of algorithms. 

 
Memory contention: In global address space systems, multiple threads try to 

simultaneously access the same memory. This reduces performance on the majority of 

situations. This problem grows in the same measure the degree of parallelism increases 

and is maximized with multithread machines. A graph algorithm will usually not write 

within the graph input but it has to create and write its own data structures and therefore 

memory addressing must be handled with care. 

 

Load Balancing: For some cases of graph algorithms, for example breadth-first 

search, load balancing might change over time (few vertices to visit in the beginning 

and more in the end). This problem is less worrying with shared-memory machines 

because work tasks can be migrated between processors without having to move data 

from and to memory. 

 

Simultaneous Queries: A large graph may be queried by a group of analysts 

simultaneously, and for that, architecture should focus on throughput. 
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Distributed-memory architectures 

 

Distributed memory and message passing machines have the least propensity to fine-

grained parallelism and are hard to make them perform dynamic load balancing. On the 

other side and with a more generic behavior MPI programs will run on almost all 

parallel platforms. 

With edges and vertices of a graph partitioned among processors in a distributed 

memory system, if a processor owns a vertex, it needs to have a mechanism to find his 

vertex’s neighbors. This issue is solved widely in many applications by keeping a local 

sub-data structure with the information of all the neighbors/adjacent vertex’s (also 

called ghost cells) to the vertex’s owned by the processor or local to a process. This 

kind of solutions is well applied to graph structures where a low amount of edges are 

spread across different processors, and these kind of graphs are usual in scientific graph 

problems. In addition, high-degree vertices cause problems in distributed memory, as 

they may overload the memory available on a single processor. 

An alternative to ghost cells is to use a hashing scheme to assign vertices to 

processors. Although hashing can result in memory savings compared to ghost cells, it 

can incur significant computational overhead. 

 

Partitioned global address space computing 

 

In this case global address space makes it obvious for the need for ghost cells, 

facilitating finer-grained parallelism and dynamic load balancing. Data layout may be 

important for performance though, since the graph is partitioned and non-local accesses 

induce overhead. UPC language implementations might be difficult because of its 

limited support and portability. 

 

Cache-coherent, shared-memory computers 

 

SMPs have all the advantages of partitioned global address space computing. They 

have lower latencies because they provide hardware support for global address access 

though they have a limitation of one thread per processor. They also have complicated 

memory access patterns making processor idles usual while waiting for memory. 
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Massive multithreaded machines 

 

Massive multithreaded machines support both coarse and fine-grained parallelism and 

are amenable to load-balancing and simultaneous queries. Adding to these good features 

they do not have the complexity and performance costs of implementations of cache-

coherence of SMPs. 

The main problem with massively multithreaded algorithms is the amount of threads 

in itself because if it is in numbers much greater than the number of processors memory 

contention issues are more common. This technology is also said to have an uncertain 

future so the commitment to development based on this architecture may not be advised 

or is considered risky. 

2.3. Software Approaches 

 

Parallel Boost Graph Library 

 

By abstracting away the reliance on a particular communication medium, the same 

algorithm in the Parallel BGL (Boost Graph Library) from Gregor et al. (2005) can 

execute on distributed-memory clusters using MPI (relying on message passing for 

communication) or SMPs using Pthreads (relying on shared memory and locking 

processors for communication). 

With parallel BGL, multiple algorithm implementations may be required to account 

for radical differences in architecture, such as the distinction between course-grained 

parallelism that performs well on clusters and some SMPs and fine-grained parallelism 

that performs well on massively multi-threaded architectures like the MTA-2. 

 

Multi-Threaded Graph Library 

 
The MTA-2 and XMT simple programming model assure its high level propensity for 

the generic programming but it had constraints because of its novelty and immature 

status regarding its software library. 

Another solution is the MultiThreaded Graph Library from Berry et al. (2006), 

inspired by the serial Boost Graph Library, developed at Sandia National Laboratories 

to provide a near-term generic programming capability for implementing graph 

algorithms on massively multithreaded machines. Like the Parallel BGL, underlying 

data structures are leveraged to abstract parallelism away from the programmer. The 
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key to performance on MTA/XMT machines is keeping processors busy, and in practice 

this often reduces to performing many communicating, asynchronous, fine-grained tasks 

concurrently. The MTGL provides a flexible engine to control this style of parallelism. 

The MTGL was developed to facilitate data mining on semantic graphs, i.e., graphs 

with vertex and edge types. Furthermore, the XMT usage model allows many users to 

run algorithms concurrently on the same graph. The MTGL is designed to support this 

usage model. 

 
SNAP, small-world network analysis and partitioning framework 

 
SNAP (Small-world Network Analysis and Partitioning) is a modular graph 

infrastructure for analyzing and partitioning interaction graphs, targeting multicore and 

many core platforms. SNAP is implemented in C language and uses POSIX threads and 

OpenMP primitives for parallelization. The source code is freely available online from 

1
. In addition to partitioning and analysis support for interaction graphs, SNAP provides 

an optimized collection of algorithmic “building blocks” (efficient implementations of 

key graph-theoretic kernels) to end-users. Novel parallel algorithms for several graph 

problems were designed and run efficiently on shared memory systems. SNAP 

framework team does implementations of breadth-first graph traversal, shortest paths, 

spanning tree, MST, connected components, and other problems achieve impressive 

parallel (multicore) speedup for arbitrary, sparse graph instances. SNAP provides a 

simple and intuitive interface for network analysis application design, whose objective 

is hiding the parallel programming complexity involved in the low-level kernel design 

from the user, as mentioned by Bader and Madduri (2008). 

 
Recent Approaches 

 
To deal with big data applications, more recently, a new software paradigm has 

appeared. These programming systems are designed to get their parallelism not only 

from a “supercomputer,” but from “computing clusters” – large groups of hardware, 

including conventional processors or “nodes” connected by some particular mean 

(Ethernet cables or switches) on a computer network. The software stack works with a 

new form of file system, called a “distributed file system,” which features an extension 

of any disk array in a conventional operating system. Distributed file systems (“DFS”) 

                                                        
1 http://snap-graph.sourceforge.net/  

http://snap-graph.sourceforge.net/
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are also prepared to protect against the frequent failures that occurs when data is 

distributed over hundreds or thousands of compute nodes, and DFS does it by providing 

replication of data or redundancy. Keeping in mind these kinds of file systems many 

different programming systems have been developed. Map-Reduce was one of them and 

has been used extensively for the most common calculations on large-scale data 

performed on computing clusters. Map-Reduce is used in lots of ways because is 

efficient for most calculation cases and is tolerant of hardware failures during the 

computation. We will deal with this new approach with more detail on the next sections 

of this thesis. 

2.4.  Recent Approach: Distributed File System 

 
Normally most computing is done on a single node processor, with its main memory, 

cache, and local disk. Not long ago, applications that called for parallel processing, such 

as large scientific calculations, were done on special-purpose parallel computers with 

many processors and specialized hardware. However, the new computing facilities 

existing today have given rise to a new generation of programming systems. These 

systems take advantage of the power of parallelism and at the same time avoid the 

reliability problems that arise when the computing hardware consists of thousands of 

independent components. This section discusses the characteristics of this type of 

specialized file systems that have been developed to take advantage of large sets of 

nodes. Later in this document’s chapter 3, several tools for graph metrics computations 

will be introduced. The vast majority of these introduced tools are also DFS based, 

typical in a distributed computation environment. 

2.4.1. Architecture of compute nodes 

 
Normally compute nodes might be stored on racks of computers. On each rack 

computers might be connected with gigabit Ethernet switch or even fiber optics network 

cards and switches, if exists more racks these are connected by another network. It is 

expected greater bandwidth capacity for the hardware connecting the racks because it is 

essential for efficient communication between large racks in need for much more 

bandwidth than the communication process between nodes in each individual rack. 

 



13 

 

 

Figure 4: Compute nodes in racks, connected by rack switches interconnected by a cluster switch 

 
For systems such as Fig. 4, the principal points of failure modes are the loss of a single 

node when for example the disk crashes or because of the network card malfunctions or 

the loss of an entire rack when for e.g. the rack switch fails to communicate with the 

cluster switch. 

 

There are solutions to this problem that can take two different shapes: 

 

1. Files are stored redundantly. The files are duplicated at several compute nodes. 

This new file system, often called a distributed file system or DFS: 

 

a. Examples of DFS systems: 

i. Google File System (GFS) 

ii. Hadoop Distributed File System (HDFS) 

iii. CloudStore 

b. DFS systems are often used in these situations: 

i. used with big files, possibly files with terabytes of size. 

ii. Files are rarely updated. 

c. How does “DFS” work? 

i. Normally, both the chunk size and the degree of replication can be 

decided by the user, an example feature of a “DFS” could be: 
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1. Chunks that are replicated, perhaps four times, at four 

different compute nodes. 

2. The nodes containing copies of data are located at different 

racks of computers therefore avoiding loss of data if rack 

fails. 

3. There is a master node or name node controlling the 

location of file chunks and therefore every node using DFS 

knows where the files are located. 

 

2. Division of computations into tasks, such that if any one task fails to execute to 

completion, it can be restarted without affecting other tasks. This strategy is 

followed by the map-reduce programming system. 

2.5. Introduction to Hadoop 

 

 

 

Hadoop is a framework developed for running applications on large clusters. Apache 

Hadoop is the open source implementation of Google’s Map/Reduce methodology, 

where the application is divided into several small fragments of work and each may be 

executed or re-executed on any node in the cluster. For that purpose Hadoop provides a 

distributed file System (HDFS) that stores data on the several nodes. Hadoop 

framework also automatically handles node failures regarding Map/Reduce tasks and 

also the HDFS system as cited by Mazza (2012). 

Map/Reduce is a set of code and infrastructure for parsing and building large data sets. 

A map function generates a key/value pair from the input data and this data is then 

reduced by a reduce function that merges all values associated with equivalent keys. 

Programs are automatically parallelized and executed on a run-time system which 

manages partitioning the input data, scheduling execution and managing 

communication including recovery from machine failures. 

Regarding its architecture, Hadoop Cluster code is written in JAVA and consists of 

compute nodes, also called “TaskTrackers” managed by “JobTrackers”. It is also 

composed by a distributed file system (HDFS) i.e. a “namenode” with “datanodes”. 
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The “JobTracker” coordinates activities across the slave “TaskTracker” processes. It 

accepts Map-Reduce job requests from clients and schedules map and reduce tasks on 

“TaskTrackers” to perform the work. 

The “TaskTracker” is a daemon process that spawns map and reduce child processes 

to perform the actual map or reduce work. Map tasks typically read their input from 

HDFS, and write their output to the local disk. Reduce tasks typically read the map 

outputs over the network and write their outputs back to HDFS. 

Please see Figure 5 explaining interactions between “JobTrackers” and 

“TaskTrackers”: 

 

 

Figure 5: Map-Reduce Job and Task Tracking 

 

 

The “TaskTrackers” send heart beats signaling to the “JobTracker” at regular intervals, 

with the heart beat they also indicate when they can take new map and reduce tasks for 

execution. Then the “JobTracker” consults the Scheduler to assign tasks to the 

“TaskTrackers” and sends the list of tasks as part of the heart beat response to the 

“TaskTrackers”. 

 

 

http://svn.apache.org/repos/asf/hadoop/common/tags/release-0.21.0/mapreduce/src/java/org/apache/hadoop/mapred/TaskTracker.java
http://svn.apache.org/repos/asf/hadoop/common/tags/release-0.21.0/mapreduce/src/java/org/apache/hadoop/mapred/JobTracker.java


16 

 

2.5.1. Physical Architecture 

 
Hadoop’s component ZooKeeper requires an odd-numbered of machines so the 

recommended practice is to have at least three of them in any reasonably sized cluster. 

It’s true that Hadoop can run on any kind of servers, even the old ones, but for better 

results mid-level rack servers with dual sockets, as much RAM as is affordable, and 

SATA drives optimized for RAID storage. Using RAID, however, is strongly 

discouraged on the “DataNodes”, because of HDFS being already implementing the 

replication and error-checking by nature; but on the “NameNode” it’s strongly 

recommended for additional reliability. 

From a network topology perspective with regards to switches and firewalls, all of the 

master and slave nodes must be able to open connections to each other. For small 

clusters, all the hosts would run 1 GB network cards connected to a single, good-quality 

switch. For larger clusters look at 10 GB top-of-rack switches that have at least multiple 

1 GB uplinks to dual-central switches. Client nodes also need to be able to talk to all of 

the master and slave nodes, but if necessary that access can be from behind a firewall 

that permits connection establishment only from the client side as mentioned by Holmes 

(2012). 

2.5.2. Hadoop Users 

 
Hadoop has a high level of penetration in high-tech companies and is spreading across 

other sectors. As a small example the following web companies use Hadoop: 

 

1. Facebook uses Hadoop to store copies of internal log and dimension data 

sources and use it as a source for reporting/analytics and machine learning. 

Currently Facebook has two major clusters, one with 1100-machine with 8800 

cores and about 12 PB raw storage. They have yet another 300-machine cluster 

with 2400 cores and about 3 PB raw storage. For both this clusters each 

commodity node has 8 cores and 12 TB of storage. 

 

2. Yahoo! uses Hadoop in more than 100,000 CPUs on a 40,000 computers 

cluster. Their biggest cluster has 4500 computers. Hadoop is used to support 

http://www.facebook.com/
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research for Ad Systems and Web Search. It is also used to do scaling tests to 

support development of Hadoop on larger clusters. 

 
3. Twitter uses Hadoop to store and process tweets, log files, and many other types 

of data generated across Twitter. They use Cloudera's CDH2 distribution of 

Hadoop, and store all data as compressed LZO files. 

 

This information and additional information for many other web companies is available 

on the Hadoop Wiki page from Leo (2012). 

2.5.3. Hadoop Available Algorithms 

 
For further research about Hadoop algorithms there is a good compilation on 

publications that explain how to implement algorithms with this tool on 
2
. There is also 

a compilation of map-reduce patterns on 
3
 and finally if the reader is more interested on 

machine learning algorithms with Hadoop it might be useful to check the Mahout page 

on 
4
. 

Hadoop Mahout’s algorithms are implemented on top of Apache Hadoop using the 

map/reduce paradigm. Mahout’s core libraries are optimized to allow also for good 

performance even for non-distributed algorithms i.e. pseudo-distributed installations of 

Hadoop. 

Hadoop Mahout is appropriate for several use cases including recommendation mining 

for example in commercial applications, clustering tasks for example with sets of text 

documents and therefore grouping them into groups of topically related documents. For 

example Mahout can also be applied to classification by learning from existing 

categorized documents. Mahout then tries to find what documents of a specific category 

look like and assigns unlabelled documents to the predicted category. Mahout can also 

be applied to Frequent item set mining taking a set of item groups and identifying which 

individual items usually appear together. This has applications for example on 

commercial environments with product transactions lists. 

 

                                                        
2 http://atbrox.com/2010/05/08/mapreduce-hadoop-algorithms-in-academic-papers-may-2010-update/ 
3 http://highlyscalable.wordpress.com/2012/02/01/mapreduce-patterns/ 
4 http://mahout.apache.org/ 

http://atbrox.com/2010/05/08/mapreduce-hadoop-algorithms-in-academic-papers-may-2010-update/
http://highlyscalable.wordpress.com/2012/02/01/mapreduce-patterns/
http://mahout.apache.org/
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2.5.4. Hadoop Advantages and Disadvantages 

 
This section presents Hadoop Map Reduce advantages and disadvantages. This is 

important because Map Reduce serves as basis for several used tools available to do 

data analysis nowadays. Some of these tools are introduced in Chapter 3 and used for 

metrics computations on section 3.4. Table 1 gives a summary: 

 
Table 1: Advantages and Disadvantages – Hadoop Map Reduce 

 
Tool Hadoop MR 

Advantages  Ability to write MapReduce programs in Java, a language which even many 

non computer scientists can learn with sufficient capability to meet powerful 

data-processing needs 

 Ability to rapidly process large amounts of data in parallel 

 Can be deployed on large clusters of cheap commodity hardware as 

opposed to expensive, specialized parallel-processing hardware 

 Can be offered as an on-demand service, for example as part of Amazon's 

EC2 cluster computing service Washington (2011) 

 

Disadvantages  One-input two-phase data flow rigid, hard to adapt - Does not allow for 

stateful multiple-step processing of records 

 Procedural programming model requires (often repetitive) code for even the 

simplest operations (e.g., projection, filtering) 

 Map Reduce nature is not specially directed to implement code that presents 

iterations or iterative behavior 

 Opaque nature of the map and reduce functions impedes optimization from  

Zinn (2010) 

 

2.5.5. Hadoop installation - Physical Architecture 

 

For this thesis we use an HP machine with 12 cores ( Intel(R) Core(TM)2 Duo CPU 

T7700 @ 2.40GHz) and 55GB RAM lend by FEUP (Faculty of Engineering University 

of Porto). The OS installed on FEUP machine is a CentOS 6 Linux distribution. This 

machine has a pseudo-distributed installation of Hadoop based on the web page by Noll 

(August 5, 2007). 

The Hadoop installation procedures for a small test cluster setup are available in this 

document in APPENDIX A. 

2.6. Map-Reduce 

 
In brief, a map-reduce computation executes as follows and is essentially defined by 

the developed map and reduce functions as mentioned by Rajaraman et al. (2012): 
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1. Within the Map tasks scheduler each mapper is given one or more pieces of the 

data in the distributed file system. These Map tasks turn the chunk of data into a 

sequence of key-value pairs. The way key-value pairs are produced from the input 

data is determined by the code written by the user for the Map function. 

2. The key-value pairs from each Map task are collected by a master controller and 

sorted by key. The keys are divided among all the Reduce tasks, so all key-value 

pairs with the same key wind up at the same Reduce task. 

3. The Reduce tasks work on one key at a time, and combine all the values associated 

with that key in some way. The manner of combination of values is determined by 

the code written by the user for the Reduce function. 

 
The following figure translates the Map-Reduce process: 
 
 

 

Figure 6: Schematic of Map-Reduce Computation 

 

2.6.1. The Map processing 

 
The role of the map-reduce user is to program/define map and reduce functions, where 

the map function outputs key/value tuples, which are processed by reduce functions to 

produce the final output. Map function is defined with a Key/value pair as input and that 



20 

 

represents some excerpt of the original files/file, for example a single document or 

document line. The map function produces zero or more Key/value pairs for that input 

but it can have also a filtering purpose when it outputs only if a certain condition is met. 

2.6.2. The Reduce processing 

 
The reduce function is called once per each Key outputted by map function and also as 

an input to reduce are all the values outputted by map function for some specific key. 

Like the map function the reduce function can output from zero to many key/value 

pairs, in the end of the process the output can be written to DFS or a database for 

example. 

2.6.3. The Shuffle and Sort Process 

 
The shuffle and sort phases are responsible for determining the reducer that should 

receive the map output key/value pair (called partitioning); and ensuring that, for a 

given reducer, all its input keys are sorted. 

Map outputs for the same key (such as “Yahoo“ in figure 7) go to the same reducer, 

and are then combined together to form a single input record for the reducer. Each 

reducer has all of its input keys sorted. 

Figure 7 gives an example of the Shuffle & Sorting process used with Map-Reduce 

applications. This example is related to text mining documents for company’s news. 

The mapper splits each document line into distinct words, and outputs each word (the 

key) along with the word's originating filename (the value). MapReduce partitions the 

mapper output keys and ensures that the same reducer receives all output records 

containing the same key. MapReduce sorts all the map output keys for a single reducer, 

and calls a reducer once for each unique output key, along with a list of all the output 

values across all the reducers for each unique output key. The reducer collects all the 

filenames for each key, and outputs a single record, with the key and a comma-

separated list of filenames. 
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The high-level algorithm for such a task would be like this: 

mapper (filename, file-contents): 

  for each keyword in file-contents: 

    emit (keyword,filename) 

 

reducer (keyword, values): 

  for each keyword: 

     for each values: 

  add values to list-of-filenames 

  emit (keyword, list-of-filenames) 

Algorithm 1: High-level example of Text mining with Map/Reduce 

 

In this example case we list Google, Yahoo, Microsoft and Apple and following 

previous algorithm the Shuffle & Sort would be like in Figure 7: 

 

Figure 7: Schematic of Map-Reduce Shuffle & Sorting 

 

2.7. Resumed evolution over recent times 

 
This section ends this chapter resuming the recent evolution describing the milestones 

of large scale graph mining and analysis. The following figure illustrates this evolution 

and gives some insight on future developments of this subject. It is a recent subject of 

study and the development or use of parallel computing tools to approach big data 



22 

 

problems and specifically graph analysis fundamentally starts in the beginning of the 

21
st
 Century with the creation of Boost Graph library written in C++. Four years latter 

an evolution of the library appear in the form of Parallel Boost Graph Library also 

written in C++ and simultaneously the appearance of Hadoop written in JAVA which 

would became preponderant some years later. In the years between we also have seen 

the development of SNAP framework written in C and OpenMP (for multicore 

architectures) but finally Hadoop and the HDFS assumed to be the most used tool 

among the vast majority of graph analysis frameworks. 

 

 
Figure 8: State of the Art – recent evolution 
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3. Graph Analysis Tools 

 

Many of the tools used on this thesis development are parallel/distributed computing 

tools not necessarily developed to be used for graph analysis but generically developed 

to fulfill the need for tools to analyze big data on machines with many cores/clusters of 

computers. 

3.1. Tools  Introduction 

 

Most graph tools use Hadoop or HDFS as its basis to work with clusters of computers 

and distributed data files. Tools like Apache Giraph, Pegasus, Map Reduce, Graphlab 

and others use it and depend on it for proper communication between nodes on a 

cluster. Another used tool, in fact not dependent of Hadoop is Snap C++ packages 

published by Stanford. The introduction to this tool and the experimental results 

obtained with it for graph analysis metrics are presented respectively in sections 3.1.4 

and 3.4.8. 

3.1.1. Pegasus 

 
The first used tool that is based in Hadoop was Pegasus. Pegasus is an open-source, 

graph-mining system with massive scalability. It is fully written in JAVA language and 

it runs in parallel, distributed manner as mentioned in Kang (2012). 

Pegasus provides several algorithms already implemented so the user can apply them 

directly to social networks and graphs (section 3.2). The details about Pegasus can be 

found on a paper by Kang and Tsourakakis (2009). The instructions for Pegasus 

installation procedures can be found also on this document (APPENDIX A). 

3.1.2. Graphlab 

 
Graphlab (2012), is a high-level graph-parallel abstraction that efficiently and 

intuitively expresses computational dependencies. Unlike Map-Reduce where 

computation is applied to independent records, computation in GraphLab is applied to 

dependent records which are stored as vertices in a large distributed data-graph. 

Computation in GraphLab is expressed as vertex-programs which are executed in 
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parallel on each vertex and can interact with neighboring vertices. In contrast to the 

more general message passing and actor models, GraphLab constrains the interaction of 

vertex-programs to the graph structure enabling a wide range of system optimizations. 

GraphLab programs interact by directly reading the state of neighboring vertices and by 

modifying the state of adjacent edges. In addition, vertex-programs can signal 

neighboring vertex-programs causing them to be rerun at some point in the future. The 

instructions for Graphlab installation procedures can be found on this document, 

APPENDIX A and the algorithms available for graph analysis are mentioned on section 

3.2. 

3.1.3. Giraph 

 
Giraph implements a graph-processing framework that is launched as a typical 

Hadoop job to use existing Hadoop infrastructure. Giraph builds upon the graph-

oriented nature of Pregel developed by Google from Malewicz et al. (2010) but 

additionally adds fault-tolerance to the coordinator process with the use of ZooKeeper 

as its centralized coordination service. 

Giraph follows the bulk-synchronous parallel model relative to graphs where vertices 

can send messages to other vertices during a given super-step. Checkpoints are initiated 

by the Giraph infrastructure at user-defined intervals and are used for automatic 

application restarts when any worker in the application fails. Any worker in the 

application can act as the application coordinator and one will automatically take over if 

the current application coordinator fails as mentioned from Apache (2012). The 

instructions for Giraph installation procedures can be found on this document 

(APPENDIX A) and the algorithms available for graph analysis are mentioned on 

section 3.2. 

3.1.4. Snap (Stanford Network Analysis Platform)  

 
As cited on the project’s webpage 

5
 Snap from Leskovec (2012) is a general purpose, 

high performance system for analysis and manipulation of large networks. The core 

SNAP library is written in C++ and optimized for maximum performance and compact 

graph representation. It easily scales to massive networks with hundreds of millions of 

                                                        
5 http://snap.stanford.edu/snap/ 

http://snap.stanford.edu/snap/
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nodes, and billions of edges. It efficiently manipulates large graphs, calculates structural 

properties, generates regular and random graphs, and supports attributes on nodes and 

edges. Besides scalability to large graphs, an additional strength of Snap is that nodes, 

edges and attributes in a graph or a network can be changed dynamically during the 

computation. 

Snap was originally developed by Jure Leskovec in the course of his PhD studies. The 

first release was made available in Nov, 2009. Snap uses a general purpose STL 

(Standard Template Library) like library GLib developed at Jozef Stefan Institute. Snap 

and GLib are being actively developed and used in numerous academic and industrial 

projects. The instructions for Snap installation procedures can be found on this 

document, APPENDIX A and the algorithms available for graph analysis with this tool 

are mentioned on section 3.2. 

3.2. Comparison of basic features of graph analysis tools 

 
Almost all of the tools proposed in this document are introduced on previous chapters 

and include toolkits ready to be used immediately after install. 

Pegasus, Graphlab, Snap and Giraph have several algorithms dedicated to networks 

analysis. Pegasus is exclusively dedicated to network analysis, Graphlab has several 

toolkits available but the graph analytics toolkit is the more appropriate for the subject 

of this thesis. Snap is, like other tools, dedicated to graphs analysis and presents a 

myriad of algorithms ready to use. Giraph is a tool still under heavy development and 

has an algorithm library with some few simple example algorithms as we will see on 

Table 2. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

http://kt.ijs.si/dunja/TextGarden/
http://www.ijs.si/
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Table 2: Comparison of tools – Algorithms 
 

Software Pegasus Graphlab Giraph Snap 

Algorithms 
available from 
software install 

 Degree 

 PageRank 

 Random Walk 

with Restart 

(RWR) 

 Radius 

 Connected 

Components 

 approximate 

diameter 

 kcore 

 pagerank 

 connected 

component 

 simple coloring 

 directed triangle 

count 

 simple undirected 

triangle count 

 format convert 

 sssp 

 undirected triangle 

count 

 Simple Shortest 

Path (available 

from 
6
) 

 Simple In Degree 

Count 

 Simple Out 

Degree Count 

 Simple Page 

Rank 

 Connected 

Components 

 

 cascades 

 centrality 

 cliques 

 community 

 concomp 

 forestfire 

 graphgen 

 graphhash 

 kcores 

 kronem 

 krongen 

 kronfit 

 maggen 

 magfit 

 motifs 

 ncpplot 

 netevol 

 netinf 

 netstat 

 mkdatasets 

 infopath 

Parallel 
computing 

YES YES YES NO 

Can user 
configure number 
of cores or 
machines? 

YES YES YES NO 

 
 

On Table 2, among the toolkits/example algorithms available for each tool it is also 

exposed the capacity of these several tools to work on a parallel computing environment 

and also if the selected number of processor cores or processing machines is available to 

be specified from configuration. This information is important for further use of these 

tools scalability and if for example the numbers of computing nodes available on the 

user cluster vary.  

The algorithms names in Table 2 are self explanatory in considerable amount but for 

Snap and Graphlab there are situations where the purpose of the algorithm might not be 

clear to the reader. This is a brief explanation on the acronyms in Table 2 and what they 

mean: 

 
- For Graphlab: 

SSSP: single source shortest path vertex program. 

 

                                                        
6 https://cwiki.apache.org/confluence/display/GIRAPH/Shortest+Paths+Example  

https://cwiki.apache.org/confluence/display/GIRAPH/Shortest+Paths+Example
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- For SNAP, from readme file on 
7
: 

cascades: Simulate a SI (susceptible-infected) model on a network and compute 

structural properties of cascades. 

centrality: Node centrality measures (closeness, eigen, degree, betweenness, page 

rank, hubs and authorities). 

cliques: Overlapping network community detection (Clique Percolation Method). 

community: Network Community detection (Girvan-Newman and Clauset-Newman-

Moore). 

concomp: Manipulates connected components of a graph. 

dynetinf: Implements stochastic algorithm for dynamic network inference from 

cascade data (more at http://snap.stanford.edu/proj/dynamic/). 

forestfire: Forest Fire graph generator. 

graphhen: Common graph generators (Small-world, Preferential Attachment, etc.). 

graphhash: Graph hash table for counting frequencies of small graphs. 

kcores: Computes the k-core decomposition of the network. 

kronem: Estimates Kronecker graph parameter matrix using EM algorithm. 

krongen: Kronecker graph generator. 

kronfit: Estimates Kronecker graph parameter matrix. 

maggen: Multiplicative Attribute Graph (MAG) generator. 

magfit: Estimates MAG model parameter. 

motifs: Counts the number of occurrence of every possible subgraph on K nodes in the 

network. 

ncpplot: Computes Network Community Profile (NCP) plot. 

netevol: Computes properties of an evolving network, like evolution of diameter, 

densification power law, degree distribution, etc. 

netinf: Implements netinf algorithm for network inference from cascade data (more at 

http://snap.stanford.edu/netinf). 

netstat: Computes statistical properties of a static network, like degree distribution, 

hop plot, clustering coefficient, distribution of sizes of connected components, spectral 

properties of graph adjacency matrix, etc. 

MakeDatasets: creates datasets for the SNAP website. The code demonstrates how to 

load different kinds of networks in various network formats and how to compute 

                                                        
7 https://github.com/snap-stanford/snap/blob/master/README.txt 

https://github.com/snap-stanford/snap/blob/master/README.txt
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various statistics of the network, like diameter, clustering coefficient, size of largest 

connected component, and similar. 

3.3. Advantages and Disadvantages 

 
This section resumes the advantages and disadvantages of the tools used for graph 

analysis in this thesis. The following table resumes the general opinion about the tools: 

 
Table 3: Advantages and Disadvantages - Comparison of tools 

 
Tool Pegasus Graphlab Giraph Snap 

Advantages  Similar positive 

points to 

Hadoop MR 

(please see 

section 2.5.4) 

 

 Algorithms can be described 

in a node-centric way; same 

computation is repeatedly 

performed on every node. 

 Significant amounts of 

computations are performed 

on each node. 

 Can be used for any Graph 

as long as their sparse. 

 Several 

advantages over 

Map Reduce: 

- it’s a stateful 

computation 

- Disk is hit if/only 

for checkpoints 

- No sorting is 

necessary 

- Only messages 

hit the network as 

mentioned from 

Martella (2012) 

 

 Optimized for 

Graph 

processing. 

 Written with 

C++ which is 

intrinsically 

considered a 

fast language 

 

Disadvantages  Similar 

negative points 

to Hadoop MR 

(please see 

section 2.5.4) 

 

 Programmability: user must 

restructure his algorithm in a 

node centric way. 

 There is an overhead of 

runtime system when the 

amount of computation 

performed at each node is 

small. 

 Small world graphs: 

Graphlab lock scheme may 

suffer from frequent conflicts 

for such graphs. 

 Still in a very 

immature phase 

of development 

 Lack of a 

complete offered 

algorithm library 

 

 Not developed 

to take 

advantage of 

parallel or 

distributed 

processing of 

tasks 

 Some 

algorithms can 

be time 

consuming 

even for 

relatively small 

graphs due to 

the number of 

graph 

characteristics 

covered (eg. 

“centrality” 

algorithm) 
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3.4. Computing Metrics for Graph Analysis 

 
This section presents an overview of the tools used for computing graph metrics. 

These tools are Graphlab, Pegasus, Hadoop Map/Reduce and Snap. There will be also a 

brief exposure of the results obtained with each tool. First we will start by explaining 

the origin and details of the data networks used for tools tests. 

When it was necessary to use Hadoop and HDFS based tools there is a need for 

inputting the data files, edge or adjacency lists to HDFS and that task was done with the 

following “put” command: 

 

$hadoop fs -put  <localsrc>  <dst> 

 

where  <localsrc> is the path of the local file that we want to send to HDFS and <dst> 

is the destination file name we want the source file to have in HDFS. 

3.4.1. Case Studies 

 

The experimental evaluation described in Chapter 3 uses several different datasets. 

One of the dataset represents the relationships between technological companies spread 

around the world and financial organizations. Another dataset is related to relationships 

between persons and companies also on the technological universe. Next section, we 

explain the datasets characteristics. 

3.4.1.1. Characteristics of the original data 

 
We used networks downloaded from 

8
 for this chapter containing computation of 

networks metrics. Therefore we are using Amazon’s products network where network 

edges  represent links of commonly co-purchased products (from now on designated by 

Network C) from Leskovec et al. (2005). We use also Youtube’s online social network 

(from now on designated by Network D) and LiveJournal online social network (from 

now on designated by Network E) from Backstrom et al. (2006). These networks are 

available among others from Leskovec (2009). 

As mentioned before the Networks A an B represent data that was downloaded from 

the CrunchBase website, a directory of technology companies. The Network A 
                                                        
8 http://snap.stanford.edu/data/index.html  

http://snap.stanford.edu/data/index.html
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represents the connections between technological companies and financial organizations 

and Network B represents the connections between personalities and technological 

companies. For achieving both this networks we used the CrunchBase API from 

Thanedar (2012) that provides JSON representations of the data found on CrunchBase. 

The output of the items is JavaScript Object Notation, a lightweight format for data 

exchange. JSON is pure JavaScript, an alternative to XML. To handle this format is not 

necessary to use DOM or any specific framework. 

The API currently supports three actions: "show", "seeks" and "list". 

 

Example of original data Entity  

 
For information about a specific entity in CrunchBase, we use a URL as follows: 

 
 http://api.crunchbase.com/v/1/<namespace>/<permalink>.js 

 

The namespaces available are: 

 
 company 
 person 
 financial-organization 
 product 
 service-provider 

 

Example Company: Google 

http://api.crunchbase.com/v/1/company/google.js?api_key=... 

 

Example Investment Fund: Accel Partners 

http://api.crunchbase.com/v/1/financial-organization/accel-partners.js?api_key=... 

 

Example Person: Brad Fitzpatrick 

http://api.crunchbase.com/v/1/person/brad-fitzpatrick.js?api_key=... 

 

Please note that for using CrunchBaseAPI commands, we use an API Key previously 

obtained after registration on the Crunchbase website. If, for example, your API key is 

1234 the previous command would be: 

 

http://api.crunchbase.com/v/1/person/brad-fitzpatrick.js?api_key=1234 

 

Entities List 

 
For a list of all entities of a particular namespace on CrunchBase, we use a URL as 

follows: 

http://api.crunchbase.com/v/1/<plural-namespace> 
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The plural namespace available are: 

  
 companies 
 people 
 financial-organizations 
 products 
 service-providers 

  

 

In this work we used these following namespaces: companies, people, and financial 

organizations. 

 

Number of firms: 88.269 

http://api.crunchbase.com/v/1/companies.js?api_key=... 

 

Number of investment funds: 7.697 

http://api.crunchbase.com/v/1/financial-organizations.js?api_key=... 

 

Number of persons: 118.394 

 

Therefore and for all the networks used in this chapter we have the following number 

of nodes and edges: 

 

- Network A with 16.339 vertexes and 30.313 edges. 

- Network B with 107.033 vertexes and 128.746 edges. 

- Network C with 334.863 vertexes and 925.872 edges. 

- Network D with 1.134.890 vertexes and 2.987.624 edges. 

- Network E with 3.997.962 vertexes and 34.681.189 edges. 

3.4.1.2. Data Preprocessing 

 
To deal with extraction of the data for networks A and B, a Windows Application 

was used, it communicates with the site API. The final output was a directory with 

JSON files with all the items available for the selected entities.  

After having extracted all items it was necessary to generate statements in order to 

export the items to a database and make the relationship between entities, for this task a 

Windows Application was used. We were using MySql DBMS initially but after several 

performance problems we chose SQL Server. Depending on the tool used for data 
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analysis it might be necessary to translate an edge list originally retrieved from the 

database to an adjacency list. This conversion from edge list to adjacency list was done 

with programming code made with R language. This code is available on APPENDIX 

B, page 84 among other code developed also for preprocessing of data. 

3.4.2. Degree Measure with Pegasus 

 
The following command was then used from Pegasus console to run algorithm: 

 
PEGASUS> compute deg comp-finorg 

Enter parameters: [in or out or inout] [#_of_reducers]: inout 2 

 
where comp-finorg is the graph name already uploaded on HDFS (“add” command 

explained on users guide from Kang et al. (2010)). Pegasus asks if we want to retrieve 

in-degree or out-degree or if we want generic degree information. It also asks how many 

reducers we want to use and this number is dependent of number of node machines in 

the cluster and is calculated with the next assumption:  

 

number of reducers = 2* number of machines 

 

The results are then available on the HDFS directory 

pegasus/graphs/[GRAPH_NAME]/results/[ALGORITHM_NAME]. So, to obtain these 

results on pegasus/graphs/comp-finorg/results/deg we have to get them from HDFS, the 

following command was written on OS console: 

 
$hadoop fs -get /user/110414015/pegasus/graphs/comp-finorg/results/deg /results 

 
the results are then divided in two folders, one with the node degree count where we 

can see for each value of degree count the quantity of these occurrences in the graph. 

Here goes an example of output: 

 

2       3186 

4       1369 

6       566 

8       258 

10      141 

12      72 

14      45 
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this results expose the existence in this network of 3186 nodes with node degree value 

of 2 i.e. two neighbors for each node in this group of nodes and this undirected graph. 

The output for the node degree count expectedly outputs the node degree for each 

node in the graph, for example, the node with Id 2 has 30 neighbors: 

 

2       30 

4       224 

6       59 

8       13 

10      48 

12      113 

14      12 

 

3.4.3. Triangles with Graph Analytics Graphlab Toolkit 

 
For the next experiences with the data and Graphlab’s Graph Analytics Toolkit from 

Graphlab (2012) we followed the website relative to the algorithm available on 
9
. 

The following command was used on graph analytics toolkit directory: 

 
$ ./undirected_triangle_count --graph=/home/110414015/Relationships-Companies-

FinancialOrg.tsv --format=tsv 

 

The raw output of this command was: 

 

This program counts the exact number of triangles in the provided graph. 

 

INFO:     mpi_tools.hpp(init:63): MPI Support was not compiled. 

TCP Communication layer constructed. 

INFO:     metrics_server(launch_metric_server:219): Metrics server now listening on 

http://hpcgrid-centos6:8090 

INFO:     distributed_graph.hpp(load_from_posixfs:1823): Loading graph from file: 

/home/110414015/Relationships-Companies-FinancialOrg.tsv 

INFO:     distributed_ingress_base.hpp(finalize:166): Finalizing Graph... 

INFO:     distributed_ingress_base.hpp(exchange_global_info:493): Graph info: 

         nverts: 16339 

         nedges: 30313 

         nreplicas: 16339 

         replication factor: 1 

Number of vertices: 16339 

Number of edges:    30313 

 

Counting Triangles... 

INFO:     synchronous_engine.hpp(start:1248): Iteration counter will only output every 

5 seconds. 

INFO:     synchronous_engine.hpp(start:1263): 0: Starting iteration: 0 

INFO:     synchronous_engine.hpp(start:1312):   Active vertices: 16339 

INFO:     synchronous_engine.hpp(start:1361):    Running Aggregators 

INFO:     synchronous_engine.hpp(start:1373): 1 iterations completed. 

Updates: 16339 

                                                        
9 http://docs.graphlab.org/graph_analytics.html#graph_analytics_triangle_undirected 

http://docs.graphlab.org/graph_analytics.html%23graph_analytics_triangle_undirected
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Counted in 0.047622 seconds 

70 Triangles 

Metrics server stopping. 

 

The following command was used on graph analytics toolkit directory and for the 

Network B studied: 

 

$./undirected_triangle_count --graph=/home/110414015/Relationships-Persons-

Companies.tsv --format=tsv 

 

The raw output of this command was: 

 

This program counts the exact number of triangles in the provided graph. 

 

INFO:     mpi_tools.hpp(init:63): MPI Support was not compiled. 

TCP Communication layer constructed. 

INFO:     metrics_server(launch_metric_server:219): Metrics server now listening on 

http://hpcgrid-centos6:8090 

INFO:     distributed_graph.hpp(load_from_posixfs:1823): Loading graph from file: 

/home/110414015/Relationships-Persons-Companies.tsv 

INFO:     distributed_ingress_base.hpp(finalize:166): Finalizing Graph... 

INFO:     distributed_ingress_base.hpp(exchange_global_info:493): Graph info: 

         nverts: 107033 

         nedges: 128746 

         nreplicas: 107033 

         replication factor: 1 

Number of vertices: 107033 

Number of edges:    128746 

Counting Triangles... 

INFO:     synchronous_engine.hpp(start:1248): Iteration counter will only output every 

5 seconds. 

INFO:     synchronous_engine.hpp(start:1263): 0: Starting iteration: 0 

INFO:     synchronous_engine.hpp(start:1312):   Active vertices: 107033 

INFO:     synchronous_engine.hpp(start:1361):    Running Aggregators 

INFO:     synchronous_engine.hpp(start:1373): 1 iterations completed. 

Updates: 107033 

Counted in 0.103243 seconds 

20 Triangles 

Metrics server stopping. 

 

with these results we can conclude that both networks present low number of triangles 

and therefore have low density and moreover, triangle detection gained recently much 

practical importance since they are central in so-called complex network analysis. First, 

they are involved in the computation of one of the main statistical property used to 

describe large graphs met in practice and that is the clustering coefficient of the node as 

mentioned from Latapy (2008). The expected clustering coefficient for both graphs in 

study in this section is expected to be low due the low number of triangles presented on 

them. 
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3.4.4. Connected Components with Graph Analytics Graphlab Toolkit 

 
For the next experiences with the data and Graphlab we followed the website relative 

to the algorithm available on 
10

. 

 

The following command was used on graph analytics toolkit directory and for the 

Network A studied: 

 

$./connected_component --graph=/home/110414015/Relationships-Companies-

FinancialOrg.tsv --format=tsv 

 

The raw output of this command was: 

 

Connected Component 

 

INFO:     mpi_tools.hpp(init:63): MPI Support was not compiled. 

TCP Communication layer constructed. 

Loading graph in format: tsv 

INFO:     distributed_graph.hpp(load_from_posixfs:1823): Loading graph from file: 

/home/110414015/Relationships-Companies-FinancialOrg.tsv 

INFO:     distributed_ingress_base.hpp(finalize:166): Finalizing Graph... 

INFO:     distributed_ingress_base.hpp(exchange_global_info:493): Graph info: 

         nverts: 16339 

         nedges: 30313 

         nreplicas: 16339 

         replication factor: 1 

INFO:     synchronous_engine.hpp(start:1248): Iteration counter will only output every 

5 seconds. 

INFO:     synchronous_engine.hpp(start:1263): 0: Starting iteration: 0 

INFO:     synchronous_engine.hpp(start:1312):   Active vertices: 16339 

INFO:     synchronous_engine.hpp(start:1361):    Running Aggregators 

INFO:     synchronous_engine.hpp(start:1373): 14 iterations completed. 

Updates: 63671 

graph calculation time is 0 sec 

RESULT: 

size    count 

2       556 

3       113 

4       36 

5       14 

6       6 

7       3 

8       6 

10      1 

18      1 

 

 

The following command was used on graph analytics toolkit directory and for the 

Network B studied: 

                                                        
10 http://docs.graphlab.org/graph_analytics.html#graph_analytics_connected_component 

http://docs.graphlab.org/graph_analytics.html%23graph_analytics_connected_component
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$ ./connected_component --graph=/home/110414015/Relationships-Persons-Companies.tsv --

format=tsv 

 

The raw output of this command was: 

 

Connected Component 

 

INFO:     mpi_tools.hpp(init:63): MPI Support was not compiled. 

TCP Communication layer constructed. 

Loading graph in format: tsv 

 

INFO:     distributed_graph.hpp(load_from_posixfs:1823): Loading graph from file: 

/home/110414015/Relationships-Persons-Companies.tsv 

INFO:     distributed_ingress_base.hpp(finalize:166): Finalizing Graph... 

INFO:     distributed_ingress_base.hpp(exchange_global_info:493): Graph info: 

         nverts: 107033 

         nedges: 128746 

         nreplicas: 107033 

         replication factor: 1 

INFO:     synchronous_engine.hpp(start:1248): Iteration counter will only output every 

5 seconds. 

INFO:     synchronous_engine.hpp(start:1263): 0: Starting iteration: 0 

INFO:     synchronous_engine.hpp(start:1312):   Active vertices: 107033 

INFO:     synchronous_engine.hpp(start:1361):    Running Aggregators 

INFO:     synchronous_engine.hpp(start:1373): 21 iterations completed. 

Updates: 801608 

graph calculation time is 1 sec 

RESULT: 

size    count 

2       1086 

3       573 

4       306 

5       150 

6       108 

7       61 

8       42 

9       22 

10      22 

11      11 

12      2 

13      6 

14      4 

15      3 

16      3 

18      1 

19      1 

21      1 

23      1 

98886   1 

 

 

with these results we can conclude that both networks present one main weakly 

connected component composed by almost all nodes from the network evidencing that 

both networks A and B have almost all nodes inter-connected by some defined path 
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between them. This represents that both networks have few nodes isolated from the rest 

of the network. The study of connected components in social network analysis has 

several applications including a key role in the chemistry investigations for organic 

compounds derived from Tutte Theorem as cited on 
11

. 

 

3.4.5. KCore decomposition with Graph Analytics Graphlab Toolkit 

 

For the next experiences with the data and Graphlab we followed the website relative 

to the algorithm available on 
12

. 

The following command was used on graph analytics toolkit directory and for the 

Network A studied: 

 

$./kcore --graph=/home/110414015/Relationships-Companies-FinancialOrg.tsv --format=tsv 

 

The raw output of this command was: 

 

Computes a k-core decomposition of a graph. 

 

 

INFO:     mpi_tools.hpp(init:63): MPI Support was not compiled. 

TCP Communication layer constructed. 

INFO:     distributed_graph.hpp(load_from_posixfs:1823): Loading graph from file: 

/home/110414015/Relationships-Companies-FinancialOrg.tsv 

INFO:     distributed_ingress_base.hpp(finalize:166): Finalizing Graph... 

INFO:     distributed_ingress_base.hpp(exchange_global_info:493): Graph info: 

         nverts: 16339 

         nedges: 30313 

         nreplicas: 16339 

         replication factor: 1 

Number of vertices: 16339 

Number of edges:    30313 

INFO:     synchronous_engine.hpp(start:1248): Iteration counter will only output every 

5 seconds. 

INFO:     synchronous_engine.hpp(start:1263): 0: Starting iteration: 0 

INFO:     synchronous_engine.hpp(start:1312):   Active vertices: 0 

INFO:     synchronous_engine.hpp(start:1373): 0 iterations completed. 

Updates: 0 

K=0:  #V = 16339   #E = 30313 

INFO:     synchronous_engine.hpp(start:1248): Iteration counter will only output every 

5 seconds. 

INFO:     synchronous_engine.hpp(start:1263): 0: Starting iteration: 0 

INFO:     synchronous_engine.hpp(start:1312):   Active vertices: 0 

INFO:     synchronous_engine.hpp(start:1373): 0 iterations completed. 

Updates: 0 

K=1:  #V = 16339   #E = 30313 

                                                        
11 http://en.wikipedia.org/wiki/Connected_component_%28graph_theory%29  
12 http://docs.graphlab.org/graph_analytics.html#graph_analytics_kcore 

http://en.wikipedia.org/wiki/Mathematical_chemistry
http://en.wikipedia.org/wiki/Connected_component_%28graph_theory%29
http://docs.graphlab.org/graph_analytics.html%23graph_analytics_kcore
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INFO:     synchronous_engine.hpp(start:1248): Iteration counter will only output every 

5 seconds. 

INFO:     synchronous_engine.hpp(start:1263): 0: Starting iteration: 0 

INFO:     synchronous_engine.hpp(start:1312):   Active vertices: 6685 

INFO:     synchronous_engine.hpp(start:1361):    Running Aggregators 

INFO:     synchronous_engine.hpp(start:1373): 8 iterations completed. 

Updates: 10212 

K=2:  #V = 8645   #E = 23354 

INFO:     synchronous_engine.hpp(start:1248): Iteration counter will only output every 

5 seconds. 

INFO:     synchronous_engine.hpp(start:1263): 0: Starting iteration: 0 

INFO:     synchronous_engine.hpp(start:1312):   Active vertices: 2860 

INFO:     synchronous_engine.hpp(start:1361):    Running Aggregators 

INFO:     synchronous_engine.hpp(start:1373): 10 iterations completed. 

Updates: 16232 

K=3:  #V = 5037   #E = 16613 

INFO:     synchronous_engine.hpp(start:1248): Iteration counter will only output every 

5 seconds. 

INFO:     synchronous_engine.hpp(start:1263): 0: Starting iteration: 0 

INFO:     synchronous_engine.hpp(start:1312):   Active vertices: 1683 

INFO:     synchronous_engine.hpp(start:1361):    Running Aggregators 

INFO:     synchronous_engine.hpp(start:1373): 13 iterations completed. 

Updates: 20965 

K=4:  #V = 2578   #E = 9684 

INFO:     synchronous_engine.hpp(start:1248): Iteration counter will only output every 

5 seconds. 

INFO:     synchronous_engine.hpp(start:1263): 0: Starting iteration: 0 

INFO:     synchronous_engine.hpp(start:1312):   Active vertices: 929 

INFO:     synchronous_engine.hpp(start:1361):    Running Aggregators 

 

INFO:     synchronous_engine.hpp(start:1373): 35 iterations completed. 

Updates: 25433 

K=5:  #V = 645   #E = 2479 

INFO:     synchronous_engine.hpp(start:1248): Iteration counter will only output every 

5 seconds. 

INFO:     synchronous_engine.hpp(start:1263): 0: Starting iteration: 0 

INFO:     synchronous_engine.hpp(start:1312):   Active vertices: 273 

INFO:     synchronous_engine.hpp(start:1361):    Running Aggregators 

INFO:     synchronous_engine.hpp(start:1373): 6 iterations completed. 

Updates: 26318 

 

 

The following command was used on graph analytics toolkit directory and for the 

Network B studied: 

 

  $ ./kcore --graph=/home/110414015/Relationships-Persons-Companies.tsv --format=tsv 

 
The raw output of this command was: 

 

Computes a k-core decomposition of a graph. 

 

INFO:     mpi_tools.hpp(init:63): MPI Support was not compiled. 

TCP Communication layer constructed. 

INFO:     distributed_graph.hpp(load_from_posixfs:1823): Loading graph from file: 

/home/110414015/Relationships-Persons-Companies.tsv 
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INFO:     distributed_ingress_base.hpp(finalize:166): Finalizing Graph... 

INFO:     distributed_ingress_base.hpp(exchange_global_info:493): Graph info: 

         nverts: 107033 

         nedges: 128746 

         nreplicas: 107033 

         replication factor: 1 

Number of vertices: 107033 

Number of edges:    128746 

INFO:     synchronous_engine.hpp(start:1248): Iteration counter will only output every 

5 seconds. 

INFO:     synchronous_engine.hpp(start:1263): 0: Starting iteration: 0 

INFO:     synchronous_engine.hpp(start:1312):   Active vertices: 0 

INFO:     synchronous_engine.hpp(start:1373): 0 iterations completed. 

Updates: 0 

K=0:  #V = 107033   #E = 128746 

INFO:     synchronous_engine.hpp(start:1248): Iteration counter will only output every 

5 seconds. 

INFO:     synchronous_engine.hpp(start:1263): 0: Starting iteration: 0 

INFO:     synchronous_engine.hpp(start:1312):   Active vertices: 0 

INFO:     synchronous_engine.hpp(start:1373): 0 iterations completed. 

Updates: 0 

K=1:  #V = 107033   #E = 128746 

INFO:     synchronous_engine.hpp(start:1248): Iteration counter will only output every 

5 seconds. 

INFO:     synchronous_engine.hpp(start:1263): 0: Starting iteration: 0 

INFO:     synchronous_engine.hpp(start:1312):   Active vertices: 52238 

INFO:     synchronous_engine.hpp(start:1361):    Running Aggregators 

INFO:     synchronous_engine.hpp(start:1373): 11 iterations completed. 

Updates: 89208 

 

K=2:  #V = 40460   #E = 64567 

INFO:     synchronous_engine.hpp(start:1248): Iteration counter will only output every 

5 seconds. 

INFO:     synchronous_engine.hpp(start:1263): 0: Starting iteration: 0 

INFO:     synchronous_engine.hpp(start:1312):   Active vertices: 22127 

INFO:     synchronous_engine.hpp(start:1361):    Running Aggregators 

INFO:     synchronous_engine.hpp(start:1373): 20 iterations completed. 

Updates: 138797 

K=3:  #V = 2437   #E = 5532 

INFO:     synchronous_engine.hpp(start:1248): Iteration counter will only output every 

5 seconds. 

INFO:     synchronous_engine.hpp(start:1263): 0: Starting iteration: 0 

INFO:     synchronous_engine.hpp(start:1312):   Active vertices: 1278 

INFO:     synchronous_engine.hpp(start:1361):    Running Aggregators 

INFO:     synchronous_engine.hpp(start:1373): 9 iterations completed. 

Updates: 141918 

 

A k-core of a graph G is a maximal connected subgraph of G in which all vertices 

have degree at least k. Equivalently, it is one of the connected components of the 

subgraph of G formed by repeatedly deleting all vertices of degree less than k. If a non-

empty k-core exists, then, clearly, G has degeneracy at least k, and the degeneracy of G 

is the largest k for which G has a k-core. 

http://en.wikipedia.org/wiki/Maximal_element
http://en.wikipedia.org/wiki/Connected_component_%28graph_theory%29
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The concept of a k-core was introduced to study the clustering structure of social 

networks from Seidman (1983) and to describe the evolution of random graphs from 

Luczak (1991), it has also been applied in bioinformatics by Bader and Hogue (2003) 

and network visualization by Alvarez-Hamelin et al. (2005).  

3.4.6. Measuring ‘Friends of Friends’ with Hadoop Map-Reduce 

 
The algorithm to be explored by us was “friends of friends” which is basically an 

algorithm for searching the friends of friends which have more friends in common with 

the iteration origin node. 

The book material was downloaded with the following commands available on the 

book from Holmes (2012): 

 
$ git clone git://github.com/alexholmes/hadoop-book.git 

 
Then we built the code: 

 
$ cd hadoop-book 

$ mvn package 

 
The results were obtained first by putting (to HDFS) the prepared file with the data of 

the networks in the form of an adjacency list (a .txt file prepared with R code and as 

previously documented) 

$ hadoop fs -put adjency_list.txt . 

$ bin/run.sh com.manning.hip.ch7.friendsofafriend.Main \adjency_list.txt calc-output 

sort-output 

 
For the Network B, the one with relations between persons and companies the 

following similar commands were used: 

$ hadoop fs -put adjency_list_persons.txt . 

$ bin/run.sh com.manning.hip.ch7.friendsofafriend.Main \adjency_list_persons.txt calc-

output sort-output 

 
The result files of these commands were retrieved from HDFS with the get command 

similar to previous calls of this command on this document. The results are not made 

available on this document because of space reasons. Here is a small sample of the 

results achieved with this algorithm and for the network of relations between companies 

and financial organizations: 

 

http://en.wikipedia.org/wiki/Social_network
http://en.wikipedia.org/wiki/Social_network
http://en.wikipedia.org/wiki/Random_graph
http://en.wikipedia.org/wiki/Bioinformatics
http://en.wikipedia.org/wiki/Graph_drawing
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10077 8507:2,17745:1,11077:1,24814:1,85008:1,24937:1,2569:1,2599:1,15721:1,26176:1 
1008 73285:1,1469:1,35600:1,247:1,213:1,58475:1,51474:1,7522:1,1991:1,1010:1 
1009 14833:1,35600:1,2050:1,11160:1,184:1,2474:1,7313:1,142:1,247:1,73285:1 
10099 7613:1,7466:1,109:1,2474:1,12:1,357:1,27658:1,15:1,1135:1,26915:1 
101 36:8,15:3,7293:3,26:2,7434:2,513:2,53:2,87:2,6:1,6319:1 
1010 7490:4,1875:2,607:2,247:1,35509:1,100:1,1:1,57:1,1008:1,1009:1 
1011 939:3,15:3,54:2,7279:2,7377:2,51820:1,5136:1,507:1,5:1,483:1 
10116 55775:2,2870:2,39005:2,18924:2,72017:2,26185:1,25966:1,25866:1,25794:1,24768:1 
1012 10996:1,1523:1 
10120 35585:1,3192:1,31255:1,30752:1,30748:1,30663:1,27754:1,26857:1,26789:1,2665:1 
10121 13289:1,11617:1,671:1,18956:1 
10127 81082:1,9417:1,813:1,7542:1,7541:1,7227:1,27141:1,24898:1,15759:1,12134:1 
10128 59502:1,5822:1,5739:1,56896:1,5344:1,4746:1,4410:1,43497:1,43350:1,4314:1 

 
From the previous results sample and as an example the institution with ID 101 has a 

good chance of connecting with the one with ID 36 because both have 8 connections in 

common although they are not directly interconnected in the input network. 

With these results we can conclude that this algorithm is of good application in the 

commercial data networks where the results could serve as basis for a recommender 

system. In the case of our network A and B the hypothetical recommender would 

recommend connections between companies and financial organizations and for 

network B it would recommend connections between persons and companies regarding 

consulting services for example. 

3.4.7. Centrality Measures with Snap 

 
Several algorithms were used in Snap software, we will write about the results on the 

next pages: 

The command centrality was used on Snap’s /examples/centrality directory and for the 

Network A studied, the usage of the command is as outputted in Snap software: 

 
usage: centrality 

   -i:Input un/directed graph (default:'../as20graph.txt') 

   -o:Output file (default:'node_centrality.tab') 

 
The command is the following: 

./centrality -i:/home/110414015/Relationships-Companies-FinancialOrg.txt -

o:centrality.tab 
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The output from Snap is very extensive so we present just a small sample example: 

 

#Network: /home/110414015/Relationships-Companies-FinancialOrg.txt 

#Nodes: 16339 Edges: 30313 

#Node

Id 

Degree Closeness Betweennes EigenVec

tor 

Network 

Constraint 

Clustering 

Coefficient 

PageRank HubScore Authority 

Score 

3 80.00 0.233747 1139257.19

2383 

0.000461 0.016776 0.000633 0.001181 0.000094 0.029831 

843 14.00 0.193071 164648.965

528 

0.000028 0.083915 0.000000 0.000798 0.000000 0.000021 

844 16.00 0.207691 287289.050

309 

0.000061 0.071393 0.000000 0.000907 0.000000 0.001772 

9 33.00 0.213657 310964.724

490 

0.000223 0.039056 0.000000 0.000361 0.000008 0.015517 

1352 9.00 0.181062 96242.5733

56 

0.000015 0.118590 0.000000 0.000539 0.000000 0.000147 

 

 

The command centrality was used on Snap /examples/centrality directory and also for 

the Network B studied, the usage of the command is the same as used before. The 

results are of similar format also. 

With these results we can, among other conclusions, inspect the role each node plays 

on the network regarding its connectivity. Centrality measures allows us to find the 

principal actors in a network i.e. the nodes that present strong centrality or betweeness 

centrality are nodes of greater importance has they are central in the path of connection 

between many nodes of the network. 

3.4.8. Communities with Snap 

 
The command community was used on Snap’s /examples/community directory and for 

the Network A studied. The usage of the command is as outputted in Snap software: 

 
usage: community 

   -i:Input graph (undirected graph) (default:'graph.txt') 

   -o:Output file (default:'communities.txt') 

   -a:Algorithm: 1:Girvan-Newman, 2:Clauset-Newman-Moore (default:2) 

 
The command is the following: 

./community -i:/home/110414015/adjency_list.txt -o:adjency_list_communities.txt 
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The output from Snap is very extensive so we present just a small sample example: 

 

 

# Input: /home/110414015/adjency_list.txt 

# Nodes: 16339    Edges: 14417 

# Algoritm: Cluset-Newman-Moore 

# Modularity: 0.994151 

# Communities: 1943 

#NId CommunityId 

3 0 

843 0 

922 0 

1036 0 

1268 0 

7485 0 

1371 0 

1744 0 

1829 0 

2570 0 

4346 0 

. 

. 

. 

The command community was used on Snap’s /examples/community directory and 

also for the Network B studied, the usage of the command is the same as used before 

and the results are similar in format but for other graph subject of study. 

With these results we can conclude that all nodes belong to the same community with 

Id 0 and for the output chunk listed. 

The community detection algorithms have large application in several areas including 

Psychology, Anthropology, Business and communications, Ecology among many others 

as mentioned in 
13

 . 

3.4.9. Connected Components with Apache Giraph 

 
The algorithm to be explored by us with Apache Giraph was “Connected 

Components” which is basically an algorithm available in the examples section of 

Giraph. 

The results were obtained using a specially prepared JSON kind of file graph input   

and by putting (to HDFS) the prepared files ( .txt files prepared with R code available in 

APPENDIX B on page 84) with the data of the used networks. 

For a Network C, the one with Amazon data, the following command was used on the 

Giraph binary folder: 

                                                        
13 http://en.wikipedia.org/wiki/Community  

http://en.wikipedia.org/wiki/Community
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$hadoop jar target/giraph-0.2-SNAPSHOT-for-hadoop-0.20.203.0-jar-with-dependencies.jar 

org.apache.giraph.GiraphRunner org.apache.giraph.examples.ConnectedComponentsVertex -if 

org.apache.giraph.io.JsonBase64VertexInputFormat -ip Amazon-Giraph.txt -of 

org.apache.giraph.io.JsonBase64VertexOutputFormat -op CC-Amazon -w 1 

 
Some of these parameters are self explaining but we must now address the –w 

parameter. This parameter defines the total number of workers available to handle graph 

partitions. Since for this particular test we are running a pseudo-distributed cluster 

(single host), it is safe to limit this to one. In a fully-distributed cluster, we would want 

multiple workers spread out across different physical hosts. 

Unfortunately, at the time of closing this thesis document it was not possible to output 

results of this computation. The process of discovering the reason why the Giraph/Map 

Reduce task did not complete has not yet finished and we do not have a conclusion 

about the reason it was impossible to achieve results. Although the installation was 

tested and apparently it worked, the reason it failed might be related to many reasons 

inclusively to our test environment and physical architecture. As Giraph is an important 

tool in big graph analysis and because we feel it might fulfill some of the readers needs 

and because it might work with the user resources we felt it would be logical to refer it 

in this document. We did write about the installation procedure, its features, compared 

its advantages and disadvantages with other tools but we will not continue its 

exploration further in this thesis. 

3.5. Processing Time for Graph Analysis 

 
To give the reader a notion of the processing time that takes we run the previous 

mentioned algorithms with some networks with different sizes. Networks used in this 

section were already described in section 3.4.1, resuming the networks we used for 

these tests section have the following characteristics as number of nodes and number of 

edges: 

 
- Network A with 16.339 vertexes and 30.313 edges. 

- Network B with 107.033 vertexes and 128.746 edges. 

- Network C with 334.863 vertexes and 925.872 edges. 

- Network D with 1.134.890 vertexes and 2.987.624 edges. 

- Network E with 3.997.962 vertexes and 34.681.189 edges. 
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Have a look on the following table: 

 
Table 4: Processing Time (in seconds) 
 

 Hadoop MR 

“Friends of Friends” 

Pegasus 

Degree Measures 

Graphlab 

Triangles Counting 

Snap 

Centrality Measures 

Network A 16,040s 5,380s 0,048s 374s (06m14s) 

Network B 23,880s 7,070s 0,103s 17400s(4h50m) 

Network C 138,980s 11,050s 0,305s -14 

Network D 430,420s 23,330s 1,211s -15 

Network E 1516,257s 35,680s 16,211s -16 

 
 

Snap expectedly presents processing times of higher magnitude especially due to the 

great amount of centrality measures available as results outputted for each network and 

because although is an optimized tool for graph analysis it doesn’t belong to the parallel 

processing group of tools. Generally the computation is of relatively high speed for all 

the algorithms and on parallel processing tools even with networks with millions of 

nodes. For these previous results we do some graphics where the evolution of 

processing time with higher number of nodes is visible for the networks: 

 
 

                                                        
14 * Value too high   
15 * Value too high   
16 * Value too high   
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Figure 9: Processing time variation for Hadoop Map-Reduce FoF algorithm 

 
 
 
 
 
 
 

 
 

Figure 10: Processing time variation for Pegasus Degree algorithm 
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Figure 11: Processing time variation for Graphlab Triangles detection algorithm 

 

The previous figures give some insight on the processing time consumption variation 

with node degree but we cannot assure that they are good comparison for tools 

efficiency because the algorithms are different in complexity; the implementation of the 

tools is variable in terms of architecture or language and the only fixed assumption is 

that the machine where the computation took place is the same. Our intention is to give 

a visual insight on the variation of processing time for each tool. 
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4. Communities Detection and Similarity Ranking algorithms 

 
This Chapter gives an introduction on communities and what it represents to study 

communities of graphs/social networks. It discusses some algorithm implementations 

and the issues to take care of on this type of community detection algorithm. Then we 

introduce the SimRank algorithm and the tools used for development of both 

algorithms. Finally we present experimental results and a brief comparison with other 

similar algorithms regarding results and processing time. 

4.1. Case Studies 

 

The experiments in this chapter 4 use several datasets. Three of the datasets represent 

the relationships between technological companies spread around the world and 

financial organizations but are truncated so that the number of nodes and edges 

approximately doubles from one network to the next network. These three undirected 

networks will be used for similarity ranking algorithm comparisons regarding 

processing time on section 4.6.2. Resuming, this three truncated networks will be 

throughout this chapter and from now on designated by Network F, G and H and have 

the following characteristics considering the number of nodes and edges: 

 

- Network F with 471 vertexes and 250 edges. 

- Network G with 892 vertexes and 500 edges. 

- Network H with 1.659 vertexes and 999 edges. 

 

We used other networks for the community detection algorithms, to compare their 

results regarding modularity results and processing time. For comparison of modularity 

results (4.5.2) we used three undirected networks downloaded from 
17

 and compiled by 

Newman (2013) for this task, these were the Zachary’s Karate Club, Dolphin Social 

Network and the American Colleague Football. The characteristics of these networks 

regarding number of nodes and edges are the following: 

 

- Zachary’s Karate Club with 34 vertexes and 78 edges. 

- Dolphin Social Network with 62 vertexes and 159 edges. 

                                                        
17 http://www-personal.umich.edu/~mejn/netdata/  

http://www-personal.umich.edu/~mejn/netdata/
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- American Colleague Football with 115 vertexes and 615 edges. 

 

For comparison of the community detection algorithms and regarding processing time 

(4.5.3) consuming we used the undirected networks A, B and C previously used for 

computing metrics with available graph analysis tools, refreshing the reader’s memory 

their characteristics are the following: 

 

- Network A with 16.339 vertexes and 30.313 edges. 

- Network B with 107.033 vertexes and 128.746 edges. 

- Network C with 334.863 vertexes and 925.872 edges. 

4.2. Introduction to Community Detection 

 
In a social network a community represents individuals that form a group 

distinguishable by its properties or characteristics. In other words when we say we 

encountered a community it might be for example a group of friends, family, work 

colleagues or other group of individuals with same characteristics and label inside the 

context of a network. 

 

 

Figure 12: Simple Graph with 3 communities surrounded with dashed squares. 
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Detection of communities on a network has many applications, for example clients 

that have the same interests and are geographically near each other might be beneficiary 

of the implementation of mirror servers for faster services on the World Wide Web. The 

identification of retail clients with similar interests in products enables the retailer to 

give better recommendation services and therefore augment the probability of rising 

profits and service quality. On telecommunications and computer networks community 

structures of nodes can help to improve compactness of routing tables maintaining 

efficient choice of communication paths. 

Regarding community structure several areas give much importance if the node lives 

inside a community or on the boundaries of the community. On the first case the node 

might be important as a control and stability function within the community and in the 

second case the node might have functions of information exchange between 

communities. This seems to have high importance for example in social an metabolic 

networks as mentioned from Fortunato (2010). 

4.2.1. Community Detection Algorithms 

 
Community detection in graphs has been generally defined but multiple methods of 

estimating quality of the detection exist. The majority of current works on community 

detection relies on improving the modularity value Newman (2006). Modularity can 

therefore be used to compare different approaches to community detection. There is a 

good compilation of approaches to communities detection in Fortunato (2010) which 

resumes saying that the majority of techniques can be divided into two different 

approaches: agglomerative and divisive.  

Community detection is known to be a NP-complete problem. Community detection 

can be related to graph partitioning and there are good parallel algorithms for graph 

partitioning but for community detection it is a usual problem that relies on parallelism 

achievable from sequential algorithms. The top-down approach (divisive approach) or 

bottom-up approach (agglomerative approach) have inherent sequential flow with 

possibility of being parallelized on a higher amount on the first stages than the later 

stages. 

Community detection algorithms usually show bad reliance with parallel graph 

partitioning algorithms and although they show scalability, because of the high 
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computational overhead of community detection algorithms one cannot usually apply 

such algorithms to networks of hundreds of millions of nodes or edges. Thus, an 

efficient and high quality algorithm (modularity) for community detection is hard to 

achieve and a challenging problem as mentioned by Soman and Narang (2011). 

4.3. Similarity Ranking Algorithm 

 
SimRank proposed by Jeh and Widom (2002) has become a measure to compare the 

similarity between two nodes using network structure. Although SimRank is applicable 

to a wide range of areas such as social networks, citation networks, link prediction and 

others, it suffers from heavy computational complexity and space requirements. The 

basic recursive intuition behind SimRank approach is “two objects are similar if they 

are referenced by similar objects.” As the base case, it is considered that an object is 

maximally similar to itself, to which we can assign a similarity score of 1. 

The similarity between objects a and b can be designated by s(a, b) є [0, 1]. The 

authors of SimRank wrote a recursive equation for s(a, b). If a = b then s(a, b) is 

defined to be 1 as told before. Otherwise, 

 

       
 

            
                

      

   

      

   

               

 
where C is a constant between 0 and 1. A slight technicality here is that either a or b 

may not have any in-neighbors. Since we have no way to infer any similarity between a 

and b in this case, we should set s(a, b) = 0, so we define the summation in equation 

(6.1) to be 0 when I(a) = ø; or I(b) = ø; 

One SimRank equation of the form (5.1) is written for each (ordered) pair of objects a 

and b, resulting in a set of n
2
 SimRank equations for a graph of size n. Let us defer 

discussion of the constant C for now. Equation (5.1) says that to compute s(a, b), we 

iterate over all in-neighbor pairs (Ii(a), Ij(b)) of (a, b), and sum up the similarity s(Ii(a), 

Ij(b)) of these pairs. Then we divide by the total number of in-neighbor pairs, |I(a)||I(b)|, 

to normalize. That is, the similarity between a and b is the average similarity between 

in-neighbors of a and in-neighbors of b. From equation (5.1), it is easy to see that 

SimRank scores are symmetric, i.e., s(a, b) = s(b, a). 
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We must also explain the purpose of the constant C, which according to the authors of 

the algorithm can be thought of either as a confidence level or a decay factor. 

Considering a simple example scenario where person x references both persons c and d 

as connections in a network, so we conclude some similarity between c and d. The 

similarity of x with itself is 1, but we probably do not want to conclude that s(c, d) = 

s(x, x) = 1. Rather, we let s(c, d) = C·s(x, x), meaning that we are less confident about 

the similarity between c and d than we are between x and itself. 

4.4. Green-Marl Language 

 
For the purpose of development of both algorithms we used Green-Marl to explore the 

fact that it is a DSL (domain-specific language) designed specifically for graph analysis 

algorithms. Users of Green-Marl can describe their graph algorithm using high-level 

graph constructs which expose the inherent parallelism in the algorithm. A compiler for 

Green-Marl can exploit this high-level information by applying a series of high-level 

optimizations and parallelizing the algorithm, and finally producing a parallel 

implementation of the given algorithm. The Green-Marl compiler final output is an 

implementation written in a general-purpose language, e.g. C++. Green-Marl specific 

contributions are as follows from Hong et al. (2012): 

 Green-Marl, a DSL in which a user can describe a graph analysis algorithm in 

a intuitive way. This DSL captures the high-level semantics of the algorithm 

as well as its inherent parallelism. 

 The Green-Marl compiler which applies a set of optimizations and 

parallelization enabled by the high-level semantic information of the DSL and 

produces an optimized parallel implementation targeted at commodity SMP 

machines. 

 An interdisciplinary DSL approach to solving computational problems that 

combines graph theory, compilers, parallel programming and computer 

architecture. 

 

Green-Marl is a tool developed by a Stanford team and it was made available recently. 

It allows the export of code reusable on other tools like Giraph for example. Leveraging 

these exportation characteristics we opted to use the C++ and OpenMP Green-Marl 
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output. We follow the installation procedure available on 
18

 to install Green-Marl on the 

hardware; it is a simple and direct process and we have no issues or difficulties to 

report. 

4.4.1. What does Green-Marl offer from start? 

 
Green-Marl offers several algorithms right after install. Some of these algorithms are 

translatable within Green-Marl to C++ code with OpenMP, therefore directed to 

multiprocessor computational environments and/or directed to Apache Giraph for 

cluster computational environments based on Hadoop Map Reduce. The following table 

resumes algorithms available and compatibility with mentioned tools: 

 
Table 5: Green-Marl Algorithms 

 
Green-Marl 
Software 
Algorithms 

Brief Description OpenMP C++ 
compatible 

Giraph/GPS 
compatible 

avg_teen_count Computes the average teen count of a node YES YES 

bc Computes the betweenness centrality value for the 

graph 
YES NO 

bc_random Computes an estimation for the betweenness 

centrality value for the graph 
YES YES 

communities Computes the different communities in a graph YES NO 

kosaraju Finds strongly connected components using 

Kosaraju's Algorithm 
YES NO 

pagerank Computes the pagerank value for every node in the 

graph 
YES YES 

potential-friends Computes a set of potential friends for every node 
using triangle closing 

YES NO 

sssp Computes the distance of every node from one 

destination node according to the shortest path 
YES YES 

sssp_path Computes the shortest paths from one destination 

node to every other node in the graph and returns the 

shortest path to a specific node.  
 

YES NO 

triangle_counting Computes the number of closed triangles in the graph YES NO 

4.5. Communities Detection algorithm with Green Marl 

 
For communities detection implementation with Green-Marl we followed the paper 

from Soman and Narang (2011). The pseudo code for this algorithm is also available on 

the mentioned paper and is as follows: 

                                                        
18 https://github.com/stanford-ppl/Green-Marl  

https://github.com/stanford-ppl/Green-Marl
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1  Input: Graph ( ) 

2  Output: community of each node 

3  foreach Edge e( ,  ) do 

4   Find weight of e( ,  ) = w( ,  ) 
5  end 

6  foreach Node n do 

7   community(n)=n 

8  end 

9  foreach Node n do 

10   Find Maximum weighted edge in adjacency list; 

11   Store weight in     ℎt( ) 

12  end 

13  G’= ; 

14  foreach Node n do 

15   foreach edge e(n,v) do 

16    if weight(v)=weight(n) then 

17    Add edge (v,n) to G’ 

18    end 

19   end 

20  end 

21  Find connected components in G’; 

22  foreach Node n do 

23   community(n)=smallest label in component containing n in G’ 

24  end 

25  while All nodes are not stably labeled do 

26   foreach Node n do 

27             ′  =       Σ ’€N  (          ’).  ( ′,  ). (  ’) 

28   end 

29  Exchange community and community’; 

30  End 

 
Algorithm 2: The weighted label propagation algorithm 

 
Although we have followed the paper algorithm there were some alterations we did 

which represented ending in not replicating the exact results of the algorithm but 

obtaining better modularity results for some test networks, this process is described in 

detail throughout the 4.5.1 section. This original algorithm has essentially 4 main phases 

that will be from now on declared sequentially as phases A, B, C and D and will be 

described in this chapter: 

 
A. Weight Assignment & Propagation Function 

B. Core edge detection 

C. Epidemic spread Control 

D. Overlapping Community extraction 

 

A. Weight Assignment & Propagation Function 

 
For label propagation, the algorithm tries to generate a community structure assigning 

weights to edges and determining how the labels propagate through the network. Edge 
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weights that implicitly represent accurate topological structure of the inherent 

communities in the network are desirable. As such prior knowledge of the inherent 

communities is not available; it is considered that the weight of an edge represents a 

measure of the importance of that edge to the nodes at the endpoints of that edge. In 

case of an undirected graph, each edge is replaced by two directed edges. 

The weight of a directed edge, e = (i, j) (from vertex i to vertex j), is defined as the 

ratio between the number of triangles that the edge participates in and the total number 

of triangles the node i participates in. For an edge e = (i, j), let edge e represent the 

highest weighted edge in the locality of i, then i has a higher chance of being assigned 

the same label as j, as compared to any other label in the vicinity. The directed edges 

with large weights correspond to connections that have a stronger importance to a node. 

Also, the edges with low weights represent weak relations, hence the chance of both 

nodes being in the same community is lower. Therefore, weight of an edge e = (i, j) is 

given by: 

 
  ( ,  ) = ( , ) / Σ( , )( ( , )) ;   ∈  ( )   (4.2) 

 
where,  ( , ), represents the number of triangles with edge (i, j) as one of the edges in 

the triangle. 

In case of a weighted graph given as input, the authors suggest the product of the 

given weight and topological loops based weight mentioned above. Thus, if an edge e = 

(i, j) has weight given by the user as ( ,  ), then the weight of the edge considered for the 

label propagation algorithm is: 

 
 ( ,  ) =   ( ,  ) *   ( ,  )   (4.3) 

 
The propagation function to transfer labels from one node to another is then defined 

as: 

 ( ) =       Σ ∈    (  )   (4.4) 

 
where, Ni is the set of neighboring vertices of vertex i;  (  ) is the total weight for the 

label  (j) in the neighborhood of vertex i. 
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B. Core edge detection 

 
For a given weighted graph, for each node i there exists node j* such that for node i, 

edge (i, j*) has the maximum weight in its neighborhood. There will exist node pairs 

(v1, v2) such that v1 is paired to v2 using the maximum edge weight criterion and also 

conversely, v2 is paired to v1 using the maximum edge weight criterion. One can see that 

using the propagation function defined by the equation (4.4), the labels on two such 

nodes within a pair can oscillate without ever converging. The oscillatory behavior 

weakens community detection, as meaningful communities are not formed. This will 

lead to low modularity output as well as higher number of iterations in the algorithm. 

Such node pairs forms a local maxima and have the tendency to form the cores of 

communities. This oscillation problem needs to be addressed meaningfully. Labeling 

such local maxima pairs with the same label will improve the qualitative performance of 

the algorithm as well as the overall running time. Hence, the authors propose to find 

such pairs before the label propagation iterations, and the same label is given to both the 

nodes in each pair. An extension of this issue is the presence of multiple overlapping 

pairs, where a single node can form such pairs with multiple nodes. Such overlapping 

nodes represent local communities in the graph. Hence, such pairs should be part of the 

same community. In the author’s algorithm, it is first found the connected components 

over such overlapping pairs, and assigned the same label to all the nodes within each 

component. 

On the pseudo code previously written the lines 13 to 24 represent the core edge 

detection and also the measures to avoid oscillation that prevents converging. It 

essentially uses one auxiliary generated graph G’ that features manipulation of the 

nodes connections for the nodes originally present in the input graph. This graph G’ is 

then used to apply Kosaraju Connected Components detection algorithm from Sharir 

(1981) to label the nodes with the initial discovered communities. These initial 

communities will then be propagated until the final communities labels for every node 

is discovered but first we will explain the reader other phases of the original algorithm. 
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C. Epidemic spread Control 

 
Label propagation algorithm has a natural global minima when all the nodes in the 

graph have the same label. This is caused by a large community dominating over all the 

other communities. Though, the presence of weak edges between communities can 

reduce the epidemic spread to a large extent, in graphs with relatively low variation in 

edge density, the algorithm can still be susceptible to epidemic spread. To tackle 

epidemic spread, the authors present on the paper two methods that work at node level 

and as well as use statistics of the spread of the labels in the graph. 

The technique proposed by the authors (and also used by us on the programming task) 

of improving the epidemic resistance is to control the size of a community. We assign a 

weight to each label based on the total degree of the nodes that have that label. Thus, the 

weight of a label is given by: 

 
Wl(  ) = 1 –   /2    (4.5) 

 
where,  c is the label of community c;    is sum of the degrees of all nodes inside the 

community, c; and 2  is the total number of edges in the graph. The new propagation 

function becomes: 

 
( ) =       Σ ∈   [s(    ∗Wl(  )]   (4.6) 

 
where,    is the set of neighboring vertices of vertex  ;  (  ) is the total weight for the 

label  ( ) in the neighborhood of vertex  . As the size of a community (number of nodes 

with same label) increases, the weight of that label decreases. Thus, the ability of a label 

to propagate reduces with its size. The weight attached with each label thus acts as a 

global objective function and helps in controlling the size of the communities. 

 

D. Overlapping Community extraction 

 
For this task of extraction of overlapping communities we choose to test the variation 

of 3 sequential iterations of the code and in the case of having communities labels not 

converging i.e. the community label changes continuously between two distinct labels, 

from step 1 to 2 but on step 3 it changes again to the same label of step 1 then the 

algorithm stops iterating. 
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4.5.1. Development details and variations of the original algorithm 

 

We started the development of the algorithm respecting phase A. which consisted on 

the edge weight finding as described in the last section. Following the paper was not 

enough to get some small test networks examples with the right results. On the next 

figure the reader can see the network that led to a small alteration of the algorithm. 

 

 

Figure 13: Network used in the development of the algorithm phase A. 

 

 Intuition says that there are two different communities and at an initial point in 

developing the algorithm resulted in the propagation of the same community through all 

the nodes ending in a graph with only one community as result. At this phase and with 

test networks also used in the followed paper from Soman and Narang (2011) the results 

were similar but we added a small condition in the code that determined the propagation 

of label to be possible only if the edge value was different from 0. In this case the edge 

weight is 0 because the number of triangles the edge participates in is 0. This small 

alteration implied that the auxiliary graph G’ used in the process did not have a edge 

connection between the connected nodes that belong to the two different triangles (note 

that both nodes have the same associated weight) and therefore the connected 

components obtained for G’ would be not one but two in this particular test graph 

exposed in the previous figure, resulting in better modularity results for this graph and 

more coherent results also on other tested networks by the authors on the followed 

paper. An example of better modularity results is the Karate club undirected network 

from Girvan and Newman (2002), please see the next section where a comparison of 

our version of the algorithm with other algorithms is made. 
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4.5.2. Modularity Results - Comparison with other algorithms 

 

For the community detection algorithm comparison we used two other algorithms and 

the Snap sequential tool. The algorithms selected were the available from Snap, Girvan-

Newman algorithm from Girvan and Newman (2002)  and the Clauset-Newman-Moore 

algorithm from Clauset et al. (2004). The networks used for these comparisons were 

some known small networks already described in chapter 4.1. 

The modularity results for the algorithms with small test networks are visible on the 

table 6 and the comparison of processing time is available on the next section. 

 

Table 6: Modularity Comparison for Community Detection Algorithms 

 

 Girvan – Newman 

Algorithm with Snap 

Clauset-Newman-Moore 

Algorithm with Snap 

Developed 

Algorithm with GM 

Zachary’s Karate Club 0.401 0.381 0.436 

Dolphin Social Network 0.519 0.515 0.333 

American College Football 0.599 0.549 0.339 

 

 

The results obtained from the developed algorithm as we can see from previous table 

and for the test networks are significant modularity for every use case i.e. the value for 

this metric is above 0.3 and this a significant division in community structure for the 

algorithm as mentioned from Clauset et al. (2004). The modularity value is indeed 

superior to other algorithms for the Zachary’s Karate Club network for example. The 

Girvan-Newman algorithm presents results generally superior to Clauset-Newman-

Moore but as we will see in the next section has a much slower running time and 

therefore might be inadequate for larger networks. 

4.5.3. Processing Time Results - Comparison with other algorithms 

 

For the developed community detection algorithm and for its comparison regarding 

consumed processing time we also used the two algorithms already mentioned in the 

previous section and the sequential tool Snap. The undirected networks selected for this 
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comparison were the networks already mentioned before, the network A, network B and 

network C: 

 

Table 7: Processing Time comparison for Community Detection Algorithms 

 

 Girvan – Newman 

Algorithm with Snap 

Clauset-Newman-Moore 

Algorithm with Snap 

Developed 

Algorithm with GM 

Network A 288 (hours) 6s 4s 

Network B 300+ (hours) 53s 133s 

Network C 400+ (hours) *19 45659s 

 

 

It is visible from the previous table that Girvan-Newman is an algorithm that has much 

higher processing time consumption than the other algorithms.  

It is also to be noticed that Clauset-Newman-Moore is a very fast algorithm and for 

Network B presents faster computing than the algorithm developed with Green-Marl. 

The reader must notice Clauset-Newman-Moore achieves this using just one single 

core. However the reader must also notice that this algorithm has a high consuming rate 

of RAM and for Network C the amount of memory use was around 20.7GB when 

eventually failed with segmentation fault (core dumped) error after some few hours of 

computation. This occurrence made impossible to conclude the computation.  

Our version of the community detection algorithm concluded the computation for 

Network C within approximately 12 hours (45k seconds) and with a modularity of 0.34. 

Although the value of modularity is significant the number of communities detected is 

sensibly lower than the number of communities considered being ground-truth for this 

particular network. The number of communities detected was 27864 and the ground-

truth communities mentioned on Leskovec (2009) is around 150000. 

Finally and as mentioned already the Girvan-Newman is a considerable time 

consuming algorithm but on the other hand it has very low RAM memory consumption  

presenting values of 8MB for Network A, 39MB for Network B and 143MB for 

Network C. The RAM values consumed by our version of Soman and Narang (2011) 

are similar to Girvan-Newman’s algorithm and therefore considerably very low. 

                                                        
19 Failed with segmentation fault (core dumped) error 
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4.6. SimRank algorithm with Green Marl 

 
For the SimRank implementation with Green-Marl we follow the paper from Jeh and 

Widom (2002). The pseudo code for this algorithm is as follows: 

 
1 Input: Graph ( ) 

2 Output: Similarity Rank for every pair (u,v) in the network 

3 While Any similarity value did not converge do 

4 similarity_old()=similarity_new() 

5 foreach Node u do 

6  foreach Node v do 

7   foreach u in-neighbor do 

8    foreach v in-neighbor do 

9    similarity(u,v) = similarity(u,v) + similarity_old(u in-neighbor, v in-

neighbor) 

10    end 

11   end  

12  similarity_new(u,v) = (C * similarity(u,v))/ (u numInNbrs)*(v numInNbrs)) 

13  end 

14 end 

15 End 

 
Algorithm 3: The SimRank algorithm 

 
The code written in Green-Marl language for this pseudo-algorithm is available on 

APPENDIX B starting from page 94. The output is a matrix with the similarity between 

nodes in the network. Added care was taken to create the empty matrices on the heap to 

avoid memory issues like memory segmentation faults with larger networks. Being an 

algorithm with O(n
2
) time complexity where n is the number of nodes in the graph, it is 

a good choice to develop it in distributed computing environments. Leveraging the 

advantages of multicore hardware lower processing time for similar networks can be 

achieved. On the 4.6.2 section we write a small comparison between single core 

processing with R code and the multicore Green-Marl code (translated to C++ and 

OpenMP) developed by us but first we will explain the development details for this 

algorithm particularly discussing memory estimations. 

4.6.1. Development details – Memory use estimation 

 

The algorithm developed (available in section 5 of APPENDIX B starting from page 

94) depends of the creation of two similarity matrices, one with the current iteration 

results and one with the previous iteration results. Since we are considering a float 
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number for similarity between any pair of nodes in the graph we can say that the 

maximum memory that will be used by the program will be approximately given by: 

 

MEM MAX = 4bytes*2*(number of graph nodes)2  (4.7) 

 
In expression (4.7) the space occupied in memory for a float number is 4bytes and as 

we have the creation of two matrices (bi-dimensional arrays) with the size of the 

number of nodes for each array, therefore the number of nodes is squared for our 

estimation of memory used by the program. As an example, for a graph with 40000 

(40k) nodes, the estimated memory use will be around 12 GB. 

Due to the considerable use of memory for this algorithm and limitations of resources 

available we will be using networks with smaller sizes to take conclusions, and 

therefore compare the algorithm behavior in sequential single core machines and this 

multicore version we developed with a machine with 12 cores. 

4.6.2. Simrank Single Core Vs Multicore 

 

In this section of Chapter 4 we will give an example output retrieved from the 

developed algorithm with some small networks. This choice for small networks was 

done to make it possible to compare the processing time with sequential processing on 

the same machine and with R software. Starting with the test edge list with 7 nodes and 

7 undirected edges on the next figure: 

 

Figure 14: Test Network used in the development of the similarity algorithm. 
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and using constant C = 0.6 as mentioned from Lizorkin et al. (2008) and k = 50 

iterations the output matrix is the following: 

 

         1                       2                      3                       4                       6                      5                       9 

1       1.000000        0.235798        0.168164        0.350434        0.051199        0.209529        0.068624 

2       0.235798        1.000000        0.168164        0.350434        0.051199        0.209529        0.068624 

3       0.168164        0.168164        1.000000        0.066980        0.177689        0.043468        0.019956 

4       0.350434        0.350434        0.066980        1.000000        0.018981        0.353290        0.106580 

6       0.051199        0.051199        0.177689        0.018981        1.000000        0.012027        0.005073 

5       0.209529        0.209529        0.043468        0.353290        0.012027        1.000000        0.353290 

9       0.068624        0.068624        0.019956        0.106580        0.005073        0.353290        1.000000 

 

For the similarity ranking processing time comparisons the following networks were 

also used (see previous section 4.1 for data details): 

 

- Network F with 471 vertexes and 250 edges. 

- Network G with 892 vertexes and 500 edges. 

- Network H with 1.659 vertexes and 999 edges. 

- Network A with 16.339 vertexes and 30.313 edges. 

 

Table 8: Processing Time for Similarity Algorithms (in seconds) 

 

 Parallel Simrank with Green-Marl Sequential Simrank with R 

Network F 480s 25s 

Network G 1073s 491s 

Network H 2716s 7560s 

Network A 26851s 1022000+ s 

 

 

with these results we can conclude that the processing time is not clearly smaller for 

every comparison available in table 8 and on the same machine. The sequential 

operation consumes 1 core with 100% use and the parallel execution of the parallel 

implementation of the algorithm consumed in average 1095% of the processing 

resources of the machine with 12 cores which is the same to say that it used 
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approximately 11 cores for the task. The results obtained allow us to conclude that the 

processing time for sequential execution is lower for the Networks F and G and higher 

for the larger networks H and A which is the larger network of this group of networks. 

For these last two networks the parallel execution ended in much less amount of time 

than the time value for sequential execution of the algorithm. This is a reasonably 

expected result and as the size of the network rises it is expected that the difference 

from parallel execution to sequential execution to be bigger and bigger due to our 

algorithm complexity and due to diluting of importance for overhead generated by 

communications between processors and memory accesses on the OpenMP parallel 

implementation. This causes the parallel algorithm to run slower than the sequential 

version with smaller networks. This is true for networks with approximately less than 

1000 nodes. 

The following figure represents the variation of parallel and sequential processing time 

in respect to the number of nodes of the networks F, G and H: 

 

 

 

 

 

 

Figure 15: Processing time for parallel/sequential execution of the similarity algorithm. 

 

It is visible from the previous figures that the parallel execution of the algorithm - for 

the networks doubling the number of nodes - appears to have a less pronounced rise of 

time with node doubling. This makes the parallel algorithm expected behavior to be 

much faster than the sequential execution with larger networks.  
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The previous figures give some insight of the processing time consumption and its 

variation with node degree but because the algorithms are different in the 

implementation language the only fixed assumption is that the machine where the 

computing took place is the same and therefore the processor speed is the same. Our 

intention is to give a visual insight on the variation of processing time for both 

algorithm implementations and with previous assumptions. 
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5. Conclusions 

 
We have been witnessing a very big proliferation of software tools aimed at the 

analysis of large graphs during the last few years. One of thesis goals was to expose 

which tools to look for when dealing with big graphs studies. The amount of algorithms 

and tools available make it reasonable to achieve fast processing of general big data 

problems and also specifically with graphs studies. We started the thesis with the state 

of the art regarding parallel computing for graph analysis and its recent evolution, then 

we made the introduction to the tools used nowadays for distributed graph analysis and 

then we wrote some practical examples of computing algorithms that leverage the tools 

potential for big scale graphs studies.  We hope to have gathered and provided sound 

information about the tools with this document, we think by reading this work the 

reader is incentivized for further exploration of the tools available to use with his/her 

big graph data problems. 

Other thesis goal was to prove the utility and diversity of the tools and algorithms 

available for graph studies and also prove the relatively easy way to achieve a good 

approach to large scale social network analysis. We think that this goal was also 

achieved and the use of an SDL tool like Green-Marl and the help of C++ programming 

made possible the development of two different algorithms that in a way served to 

prove that we have huge gains in efficiency and scalability with the use of the parallel 

computing paradigm. 

The novelty of some tools and subjects approached throughout this Thesis make the 

future even more promising and compelling. There is a good chance that the tools 

mentioned in this document might evolve to have even more intuitive user interfaces, 

new and more complex algorithms and also better use of hardware resources. The future 

is also time to develop higher expectations and therefore we also have some thoughts 

about future work we would like to write in one of the next sections but first we will 

resume what we have learned with the writing of this document. 

5.1. Lessons Learned 

 
Writing this document was conclusive about the importance parallel paradigm has in 

solving big data problems. The particular problems addressed with big graphs were 

approached in this document with the right tools discovered after heavy research. Some 
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tools evolved over time and eventually were substituted by others since new tools and 

technologies are constantly appearing nowadays. This positive growing situation we 

learned to be related to the increasing importance given to social network analysis in 

modern world science. Many areas of research make use of social network analysis on 

their daily tasks. 

We learned also that the increasing number of SDLs for big graph analysis make the 

choice of languages for programming tasks essentially between two generic languages, 

C++ and Java. Both are viable and the choice the user does will dictate the compatible 

tool he will use for the specific task. 

The programming tasks we have done clearly exposed some characteristics we were 

not aware before for multicore OpenMP programming. The Green-Marl language was 

also a great and previously unknown tool in the set of tools available. As a very recent 

SDL for graph analysis with all the expected immaturity nevertheless proved to be a 

very intuitive approach and also with a very effective use of the parallel computation 

paradigm therefore successfully reducing its implicit programming complexity. 

5.2. Future Work 

 
Considering potential evolution of this work we think the following comments in this 

section might be of reader’s interest. 

Due to the novelty of some of the tools available nowadays and also given the fact that 

some are very recent, further exploration in the future might be useful and important. 

For example the Apache Giraph tool revealed to be somewhat difficult to use due to the 

fast and less mature developing process. The tool evolved in a way that sometimes was 

not very clear to us and frequently we and other users felt the support documentation 

available did not accompany on these modifications. It was frequent to have console 

commands working in one week and not in the next week, specifically following a 

version update or other kind of changes the same command would not work anymore. 

Also for future work we are planning to do an update to the developed community 

detection algorithm. We would like to update it in a way that it features the possibility 

of support weighted edge lists as inputs. 

As future work we would also like to update the similarity ranking algorithm and 

develop it in a way that it would output a file (output is currently a matrix with 



68 

 

similarity results) presented as a list of nodes and a top-k set of the most similar nodes 

to each node in the network. 

Other development that we might be interested in doing would be to develop Clauset-

Newman-Moore algorithm with Green-Marl. We would like to do it leveraging features 

of the language like the translation to Java/Giraph language/framework. That would 

make possible and interesting to observe the behavior of such a fast algorithm regarding 

its memory use in a computing cluster environment. The use of HDFS and a cluster 

with good RAM resources would make it a very powerful algorithm for community 

detection even with very large scale social networks with billions or even trillions of 

nodes.   
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Appendix A 

1. Hadoop Installation - Implementation Procedures 

 
Due to Hadoop’s high importance for the treatment of the thesis data we will write the 

steps we follow for the example installation of a small cluster with a set of 3 virtual 

machines with Linux Ubuntu Server OS. 

 

Cluster Architecture 

 

 
1rst machine, Master: 

Name: master  

IP: 192.168.0.1/24  

 

2nd machine, Slave: 

Name: slave  

IP: 192.168.0.2/24  

 

3rd machine, Slave 2: 

Name: slave2  

IP: 192.168.0.3/24  

 
 
1. Install master in Single-Node mode 

2. Make a master mirror image, it will be our slave machine 

3. Configure machines master and slave in Multi-Node mode 

4. Make a slave mirror image, it will be our slave2 

5. Configure machine slave2  

 

Implementation procedure 1(Install master in Single-Node mode) 

 

 

- Install JAVA (1
st
 task to do) 

 

Add the following to /etc/apt/sources.list.d/ file 

 
#JAVA  
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deb http://archive.canonical.com/ lucid partner 

 

Install java on the machine: 

 
$ sudo apt-get update  

$ sudo apt-get install openjdk-6-jdk 

 

- Test JAVA (2
nd

 task to do) 

 
user@ubuntu:~# java -version  

java version "1.6.0_20"  

Java(TM) SE Runtime Environment (build 1.6.0_20-b02)  

Java HotSpot(TM) Client VM (build 16.3-b01, mixed mode, sharing) 

 
- Create a group and an user for Hadoop creation (3

rd
 task to do): 

 

e.g.: create user hduser and the group hadoop.  

 
$ sudo addgroup hadoop  

$ sudo adduser --ingroup hadoop hduser 
 
- Configure SSH (4

th
 task to do) 

 

Generate key for hduser 

 
user@ubuntu:~$ su - hduser  

hduser@ubuntu:~$ ssh-keygen -t rsa -P ""  

 

Generating public/private rsa key pair.  

Enter file in which to save the key (/home/hduser/.ssh/id_rsa):  

Created directory '/home/hduser/.ssh'.  

Your identification has been saved in /home/hduser/.ssh/id_rsa.  

Your public key has been saved in /home/hduser/.ssh/id_rsa.pub.  

The key fingerprint is:  

9b:82:ea:58:b4:e0:35:d7:ff:19:66:a6:ef:ae:0e:d2 hduser@ubuntu  

The key's randomart image is:  

[...snipp...]  

hduser@ubuntu:~$ 

 

- Let SSH access file system with the previously created key (5
th

 task to do) 

 
hduser@ubuntu:~$ cat $HOME/.ssh/id_rsa.pub >> $HOME/.ssh/authorized_keys 

 

- Test SSH (6
th

 task to do) 

 
hduser@ubuntu:~$ ssh localhost  

 

The authenticity of host 'localhost (::1)' can't be established.  

RSA key fingerprint is d7:87:25:47:ae:02:00:eb:1d:75:4f:bb:44:f9:36:26.  

Are you sure you want to continue connecting (yes/no)? yes  

 

Warning: Permanently added 'localhost' (RSA) to the list of known hosts.  

Linux ubuntu 2.6.32-22-generic #33-Ubuntu SMP Wed Apr 28 13:27:30 UTC 2010 i686 

GNU/Linux  

Ubuntu 10.04 LTS  

[...snipp...]  

hduser@ubuntu:~$ 

 

- Disable IPv6 (7
th

 task to do) 

 

This is done by editing sysctl.conf file the following way: 
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hduser@ubuntu:~$nano /etc/sysctl.conf  

 

#disable ipv6  

net.ipv6.conf.all.disable_ipv6 = 1  

net.ipv6.conf.default.disable_ipv6 = 1  

net.ipv6.conf.lo.disable_ipv6 = 1 

 

Warning: Computer must be restarted now 
 
- Install Hadoop (assuming download made to /usr/local/) (8

th
 task to do) 

 

$ wget http://mirrors.fe.up.pt/pub/apache/hadoop/core/stable/hadoop-1.0.4.tar.gz 

 

After download: 

 
$ cd /usr/local  

$ sudo tar xzf hadoop-1.0.3.tar.gz  

$ sudo mv hadoop-1.0.3 hadoop  

$ sudo chown -R hduser:hadoop hadoop  

     
So the directory where Hadoop is installed will be:  /usr/local/hadoop/bin  

 

- Update $HOME/.bashrc (9
th

 task to do) 

 

Add the following text to the end of $HOME/.bashrc file of the user hduser.  

 
# Set Hadoop-related environment variables  

export HADOOP_HOME=/usr/local/hadoop  

# Set JAVA_HOME (we will also configure JAVA_HOME directly for Hadoop later on)  

export JAVA_HOME=/usr/lib/jvm/java-6-sun  

# Some convenient aliases and functions for running Hadoop-related commands  

unalias fs &> /dev/null  

alias fs="hadoop fs"  

unalias hls &> /dev/null  

alias hls="fs -ls"  

# If you have LZO compression enabled in your Hadoop cluster and  

# compress job outputs with LZOP (not covered in this tutorial):  

# Conveniently inspect an LZOP compressed file from the command  

# line; run via:  

#  

# $ lzohead /HDFS/path/to/lzop/compressed/file.lzo  

#  

# Requires installed 'lzop' command.  

# lzohead () {  

hadoop fs -cat $1 | lzop -dc | head -1000 | less  

}  

# Add Hadoop bin/ directory to PATH  

export PATH=$PATH:$HADOOP_HOME/bin 

   

 

- Configure Hadoop (10
th

 task to do) 

 

hadoop-env.sh  

 
The only required environment variable we have to configure for Hadoop in this 

tutorial is JAVA_HOME. Open /conf/hadoop-env.sh file in the editor of your choice 

(if you used the installation path in this tutorial, the full path is  

 

http://mirrors.fe.up.pt/pub/apache/hadoop/core/stable/hadoop-1.0.4.tar.gz
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/usr/local/hadoop/conf/hadoop-env.sh) and set the JAVA_HOME environment 

variable to the Sun JDK/JRE 6 directory. 

 
Alter 
 

# The java implementation to use. Required.  

# export JAVA_HOME=/usr/lib/j2sdk1.5-sun  

 
to 
 

# The java implementation to use. Required.  

export JAVA_HOME=/usr/lib/jvm/java-6-sun 

 

 

Configure the directory where Hadoop will keep the Data files 
 
$ sudo mkdir -p /app/hadoop/tmp  

$ sudo chown hduser:hadoop /app/hadoop/tmp  

$ sudo chmod 750 /app/hadoop/tmp 

 

 

Hadoop config files (xml) 
 

Add the following snippets between the <configuration> ... </configuration> tags in 

the respective configuration XML file. 



 conf/core-site.xml 
 
<!-- In: conf/core-site.xml -->  

<property>  

<name>hadoop.tmp.dir</name>  

<value>/app/hadoop/tmp</value>  

<description>A base for other temporary directories.</description>  

</property>  

<property>  

<name>fs.default.name</name>  

<value>HDFS://localhost:54310</value>  

<description>The name of the default file system. A URI whose scheme and authority 

determine the FileSystem implementation. The  

uri's scheme determines the config property (fs.SCHEME.impl) naming  

the FileSystem implementation class. The uri's authority is used to  

determine the host, port, etc. for a filesystem.</description>  

</property>  

 

conf/mapred-site.xml  
 
<!-- In: conf/mapred-site.xml -->  

<property>  

<name>mapred.job.tracker</name>  

<value>localhost:54311</value>  

<description>The host and port that the MapReduce job tracker runs  

at. If "local", then jobs are run in-process as a single map  

and reduce task.  

</description>  

</property>  

 

conf/HDFS-site.xml  
 
<!-- In: conf/HDFS-site.xml -->  

<property>  

<name>dfs.replication</name>  

 

<value>1</value>  

<description>Default block replication.  
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The actual number of replications can be specified when the file is created.  

The default is used if replication is not specified in create time.  

</description>  

</property> 

 
Format FileSystem (HDFS) 

 
hduser@ubuntu:~$ /usr/local/hadoop/bin/hadoop namenode -format  

10/05/08 16:59:56 INFO namenode.NameNode: STARTUP_MSG:  

/************************************************************  

STARTUP_MSG: Starting NameNode  

STARTUP_MSG: host = ubuntu/127.0.1.1  

STARTUP_MSG: args = [-format]  

STARTUP_MSG: version = 0.20.2  

STARTUP_MSG: build = https://svn.apache.org/repos/asf/hadoop/common/branches/branch-0.20 

-r 911707; compiled by 'chrisdo' on Fri Feb 19 08:07:34 UTC 2010  

************************************************************/  

10/05/08 16:59:56 INFO namenode.FSNamesystem: fsOwner=hduser,hadoop  

10/05/08 16:59:56 INFO namenode.FSNamesystem: supergroup=supergroup  

10/05/08 16:59:56 INFO namenode.FSNamesystem: isPermissionEnabled=true  

10/05/08 16:59:56 INFO common.Storage: Image file of size 96 saved in 0 seconds.  

10/05/08 16:59:57 INFO common.Storage: Storage directory .../hadoop-hduser/dfs/name has 

been successfully formatted.  

10/05/08 16:59:57 INFO namenode.NameNode: SHUTDOWN_MSG:  

/************************************************************  

SHUTDOWN_MSG: Shutting down NameNode at ubuntu/127.0.1.1  

************************************************************/  

hduser@ubuntu:/usr/local/hadoop$  

Starting your single-node cluster  

 
Initialize created node  
 

hduser@ubuntu:~$ /usr/local/hadoop/bin/start-all.sh 

starting namenode, logging to /usr/local/hadoop/bin/../logs/hadoop-hduser-namenode-

ubuntu.out  

localhost: starting datanode, logging to /usr/local/hadoop/bin/../logs/hadoop-hduser-

datanode-ubuntu.out  

localhost: starting secondarynamenode, logging to /usr/local/hadoop/bin/../logs/hadoop-

hduser-secondarynamenode-ubuntu.out  

starting jobtracker, logging to /usr/local/hadoop/bin/../logs/hadoop-hduser-jobtracker-

ubuntu.out  

localhost: starting tasktracker, logging to /usr/local/hadoop/bin/../logs/hadoop-hduser-

tasktracker-ubuntu.out  

hduser@ubuntu:/usr/local/hadoop$  

 

To visualize Hadoop processes running use jps command. 

 

hduser@ubuntu:/usr/local/hadoop$ jps  

2287 TaskTracker  

2149 JobTracker  

1938 DataNode  

2085 SecondaryNameNode  

2349 Jps  

1788 NameNode  

 
How to Stop Node 
 
hduser@ubuntu:/usr/local/hadoop$ bin/stop-all.sh  

stopping jobtracker  

localhost: stopping tasktracker  

stopping namenode  

localhost: stopping datanode  

localhost: stopping secondarynamenode  

hduser@ubuntu:/usr/local/hadoop$ 

 
Note: This ends our Pseudo-Distributed (only one node) Hadoop installation  
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Implementation procedure 2 (Make a master mirror image, it will be our slave machine) 

 

To have multi-node platform we made a copy of master machine and this copy will be 

the first slave machine that we will configure. This description starts with the 

assumption a copy was made. 

 
Implementation procedure 3 (configure master and slave machines in Multi-Node mode) 

 
- Configure platform in Multi-Node mode (11

th
 task to do) 

 
First changes to do: 

 

Change /etc/hostname file of the copy machine to have the name slave  

Change /etc/network/interfaces file of the copy machine to have the IP 192.168.0.2  

Change /etc/hosts file and add the names/IP’s of master and slave (we also included 

slave2)  

 

- Configure Slave machine (12
th

 task to do) 

 

Configure SSH access 

 

The user hduser@master will have to be able to access via SSH to himself master, 

and also the slave machine. For that it is necessary to copy the public key existing on 

master to the slave machine. 

 

hduser@master:~$ ssh-copy-id -i $HOME/.ssh/id_rsa.pub hduser@slave  

 
Test connection to both nodes 
 

hduser@master:~$ ssh master 

 

The authenticity of host 'master (192.168.0.1)' can't be established.  

RSA key fingerprint is 3b:21:b3:c0:21:5c:7c:54:2f:1e:2d:96:79:eb:7f:95.  

Are you sure you want to continue connecting (yes/no)? yes 

 

Warning: Permanently added 'master' (RSA) to the list of known hosts.  

Linux master 2.6.20-16-386 #2 Thu Jun 7 20:16:13 UTC 2007 i686  

...  

hduser@master:~$  

hduser@master:~$ ssh slave 

 

The authenticity of host 'slave (192.168.0.2)' can't be established.  

RSA key fingerprint is 74:d7:61:86:db:86:8f:31:90:9c:68:b0:13:88:52:72.  

Are you sure you want to continue connecting (yes/no)? yes 

 

Warning: Permanently added 'slave' (RSA) to the list of known hosts.  

Ubuntu 10.04  

...  

hduser@slave:~$ 
 
Configure parameterization files 
 

 Update conf/masters file (on master) 
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This file should have only the name of master machine 

master  

 
 Update conf/slaves file (on master)  
 

master  

slave  

slave2  

 
 Update conf/core-site.xml file (on both machines)  
 

<property>  

<name>fs.default.name</name>  

<value>HDFS://master:54310</value>  

<description>The name of the default file system. A URI whose  

scheme and authority determine the FileSystem implementation. The  

uri's scheme determines the config property (fs.SCHEME.impl) naming  

the FileSystem implementation class. The uri's authority is used to  

determine the host, port, etc. for a filesystem.</description>  

</property>  

 

Update conf/core-site.xml file (on both machines)  
 

<!-- In: conf/mapred-site.xml -->  

<property>  

<name>mapred.job.tracker</name>  

<value>master:54311</value>  

<description>The host and port that the MapReduce job tracker runs  

at. If "local", then jobs are run in-process as a single map  

and reduce task.  

</description>  

</property>  



Update conf/HDFS-site.xml file (on both machines) 
  
<!-- In: conf/HDFS-site.xml -->  

<property>  

<name>dfs.replication</name>  

<value>3</value>  

<description>Default block replication.  

The actual number of replications can be specified when the file is created.  

The default is used if replication is not specified in create time.  

</description>  

</property> 

 

Formating FileSystem (HDFS) 

 
hduser@master:/usr/local/hadoop$ bin/hadoop namenode –format  

 

... INFO dfs.Storage: Storage directory /app/hadoop/tmp/dfs/name has been successfully 

formatted. 

 

hduser@master:/usr/local/hadoop$ 

 

 
Initiate created platform 

  
Initiate FileSystem: 

 
hduser@master:/usr/local/hadoop$ bin/start-dfs.sh  

 

starting namenode, logging to /usr/local/hadoop/bin/../logs/hadoop-hduser-namenode-

master.out  

slave: Ubuntu 10.04  

slave: starting datanode, logging to /usr/local/hadoop/bin/../logs/hadoop-hduser-

datanode-slave.out  
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master: starting datanode, logging to /usr/local/hadoop/bin/../logs/hadoop-hduser-

datanode-master.out  

master: starting secondarynamenode, logging to /usr/local/hadoop/bin/../logs/hadoop-

hduser-secondarynamenode-master.out  

 

hduser@master:/usr/local/hadoop$  


Initiate Map/Reduce processes 
 

hduser@master:/usr/local/hadoop$ bin/start-mapred.sh  

 

starting jobtracker, logging to /usr/local/hadoop/bin/../logs/hadoop-hadoop-jobtracker-

master.out  

slave: Ubuntu 10.04  

slave: starting tasktracker, logging to /usr/local/hadoop/bin/../logs/hadoop-hduser-

tasktracker-slave.out  

master: starting tasktracker, logging to /usr/local/hadoop/bin/../logs/hadoop-hduser-

tasktracker-master.out  

hduser@master:/usr/local/hadoop$  

 

To stop both processes you should execute them on the following order (Stop Map 

Reduce first):  

 

hduser@master:/usr/local/hadoop$ bin/stop-mapred.sh  

 

stopping jobtracker  

slave: Ubuntu 10.04  

master: stopping tasktracker  

slave: stopping tasktracker  

hduser@master:/usr/local/hadoop$  

 

 

hduser@master:/usr/local/hadoop$ bin/stop-dfs.sh  

 

stopping namenode  

slave: Ubuntu 10.04  

slave: stopping datanode  

master: stopping datanode  

master: stopping secondarynamenode  

hduser@master:/usr/local/hadoop$ 

 

Implementation procedure 4 (make a slave image, it will be our slave2 machine) 

 

Having machines master and slave correctly configured we will add one more slave 

machine to the platform, this will have the name slave2. The configuration of this new 

slave will have slave1 has its base, first thing to do will be to copy slave1. 

 
Implementation procedure 5 (Configure machine slave2 ) 

 
- Configure Slave2 machine (13

th
 task to do) 

 
On this new copy it is necessary to do following updates: 

 

 Update /etc/hostname file to be slave2  

 Update /etc/network/interfaces file on the copy machine to have IP 192.168.0.3  
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Once slave2 is a copy of slave1 the multi-node configuration is correctly done and we 

lack only some minor adjustments on some parameters. 

 
Configure SSH access 

 
The user hduser@master will have to access via SSH to itself, master and also slave 

machine. For that it is necessary to copy public key existing on master to the new 

slave.  

 
hduser@master:~$ ssh-copy-id -i $HOME/.ssh/id_rsa.pub hduser@slave2  

 
Testing access to the machine 
 
hduser@master:~$ ssh slave2 

 
The authenticity of host 'slave2 (192.168.0.3)' can't be established.  

RSA key fingerprint is 74:d7:61:86:db:86:8f:31:90:9c:68:b0:13:88:52:72.  

Are you sure you want to continue connecting (yes/no)? yes  

Warning: Permanently added 'slave2' (RSA) to the list of known hosts.  

Ubuntu 10.04  

...  

hduser@slave:~$  

 

Directory /app/hadoop/tmp/dfs/data 

 
Being slave2 a copy of slave1, regarding Hadoop there are references to the original 

machine that avoid this new machine to be integrated correctly on the created platform 

so now we must remove the following directory: 

 

/app/hadoop/tmp/dfs/data  

 

This directory will be again created on the first time the machine is integrated on the 

platform. 

 

In case Hadoop is being executed it is possible to add slave2 machine with the 

following command on the OS: 

 

ubuntu@slave2:/usr/local/hadoop/bin$ ./hadoop-daemon.sh start datanode  

 
Finally we have a Hadoop in Multi-Node mode working with the architecture defined 

on the beginning of this document. 
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2. Installation Procedures for Pegasus 

 
We followed install procedures available on the project website (Science 2012) 

fundamentally it was needed to download PEGASUS files, unzip them and it’s done. 

 
$ wget http://www.cs.cmu.edu/~pegasus/PEGASUSH-2.0.tar.gz 

$ tar -xzpf PEGASUSH-2.0.tar.gz 

 
Following install we run Pegasus by opening install directory and inputting the 

following command: 

 
$cd PEGASUS 

/PEGASUS$ ./pegasus.sh 

 
After previous commands Pegasus console is open and an algorithm for retrieval of 

vertexes degree was used with very fast results obtained for the data used. It took less 

than two minutes to get the degree of around 130000 vertexes. 

 

To obtain results, first we had to follow Pegasus manual by Kang et al. (2010) to 

prepare graph and transfer it to Hadoop file system (HDFS). 

3. Installation Procedures for Giraph 

 
The installation of Giraph was made following the SVN checkout of the latest Giraph 

source, located at the official Apache site: 

 
$ svn co https://svn.apache.org/repos/asf/giraph/trunk 

 
After that we changed the folder to /trunk and compiled the code with the following 

command: 

 
$ mvn compile 

 

Once the build finishes, we navigated to the target folder created in the trunk folder 

and could see the JAR file giraph-0.2-SNAPSHOT-jar-with-dependencies.jar. 

 

Then, we tested with the following command: 

 
$ hadoop jar target/giraph-0.2-SNAPSHOT-for-hadoop-0.20.203.0-jar-with-dependencies.jar 

org.apache.giraph.benchmark.PageRankBenchmark -V 1000 -e 1 -s 5 -w 1 -v 

 

https://svn.apache.org/repos/asf/giraph/trunk
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If the installation was successful the reader should see the job execute and the Map-

Reduce command line output show success. Please pay attention that depending on the 

version of your Hadoop and Giraph installation, the previous command for testing 

installation might be different. You will have to change it accordingly. 

 

Note: Some of this procedures for Giraph install were taken from Owens (2013). 

4. Installation Procedures for Graphlab 

 

The install of Graphlab was made following the next install procedures, essentially we 

downloaded Graphlab package from 
20

 and after uncompressing it, in the directory 

graphlabapi we had to compile the source files, resuming the following commands 

where used: 

 
$ wget http://graphlabapi.googlecode.com/files/graphlabapi_v2.1.4434.tar.gz 

$ tar -xzpf graphlabapi_v2.1.4434.tar.gz 

 

Running ./configure in the graphlabapi directory, will create two sub-directories, 

release/ and debug/. Then we compiled only the graph analytics toolkit with the 

following command on the graphlabapi/toolkits/graph_analytics directory: 

 
$ make -j 4 

 
The command will perform up to 4 build tasks in parallel. There are several toolkits 

available from Graphlab and more information on the toolkits can be retrieved from 

webpage 
21

. 

5. Installation Procedures for Hadoop Map Reduce (from book) 

 
For implementation of Map/Reduce algorithms the book Hadoop In Practice Holmes 

(2012) was followed. On this book there are some algorithms developed by the author 

available for use by the reader of the book. There are also algorithms simply referred by 

the author but developed by other persons. All the algorithms are written in JAVA 

language. For further information please consult the book. 

                                                        
20 http://code.google.com/p/graphlabapi/downloads/list 
21 http://docs.graphlab.org/toolkits.html 

http://code.google.com/p/graphlabapi/downloads/list
http://docs.graphlab.org/toolkits.html


83 

 

6. Installation Procedures for Snap (Stanford Network Analysis Platform) 

 
The install of Snap was made following install procedures, essentially we downloaded 

Snap package from 
22

 and after uncompressing it, in the directory Snap we had to 

compile the source files using instructions for Linux OS available in 
23

. 

7. Installation Procedures for Green-Marl 

 
The install of Green-Marl was made following the install procedures in 

24
, essentially 

we downloaded Green-Marl package from Github and after that, in the directory Green-

Marl we had to compile the source files, resuming the following commands where used: 

 
$ git clone git://github.com/stanford-ppl/Green-Marl.git 

$ cd /Green-Marl 

$ make compiler 

 

 
  

                                                        
22 http://snap.stanford.edu/snap/download.html 
23 http://snap.stanford.edu/snap/install.html 
24 https://github.com/stanford-ppl/Green-Marl  

http://snap.stanford.edu/snap/download.html
http://snap.stanford.edu/snap/install.html
https://github.com/stanford-ppl/Green-Marl
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Appendix B 

1. Edge List to Adjacency List – R code 

 

graph <- read.csv("Relationships-Companies-FinancialOrg.txt", sep=" ",header=FALSE) 

relations <- list() 

nodes <- unique(c(graph[,1],graph[,2])) 

 

for (k in 1:length(nodes)){ 

relations <-

c(relations,list(unique(c(nodes[k],graph[graph[,1]==nodes[k],2],graph[graph[,2]==

nodes[k],1])))) 

} 

lapply(relations, write, "adjency_list.txt", append=TRUE, ncolumns=10000) 

2. Edge List to Giraph JSON Input Format – R code 

 

edges <- readLines("com-amazon.ungraph.tsv"); 

 

for (i in 1:length(edges)){ 

 if(edges[i]!=""){ 

  node1 <- strsplit(edges[i],split="\t")[[1]][1] 

  node2 <- strsplit(edges[i],split="\t")[[1]][2] 

 write(paste("[", node1 ,",0,","[[",node2,",0]]]",sep=""), "Amazon-

Giraph.txt", sep="\n", append=TRUE) 

 } else {break} 

} 
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3. Community Detection – Green-Marl code (core .gm file) 

 

Proc label_node_1(G: Graph, Gaux: Graph, EWN: Node_Prop<Float>(G), COMM: 

Node_Prop<Int>(G), EW: E_P<Float>(G)) //: Int 

{ 

 N_P<Bool>(G) Covered; 

 

    // Compute Edge-Weight 

 [printf("\nProcessing...Computing Graph Edges Weight!")]; 

    Foreach(s: G.Nodes) { 

  G.Covered = False; 

  Int counting = 0; 

  Foreach(x: s.OutNbrs){ 

   Foreach(y: x.OutNbrs)(!y.Covered){ 

   If(y.HasEdgeTo(s)) 

   counting ++; 

   } 

  x.Covered = True; 

  } 

         

  Foreach (t: s.Nbrs) { 

            Int triangles = 0; 

            Foreach (u: s.Nbrs) { 

                If (t.HasEdgeTo(u)) { 

                    triangles ++; 

     //[printf("\nOn node %i - neighbour %i has edge to 

neighbour %i",$s,$t,$u)]; 

                } 

            } 

            Edge(G) e = t.ToEdge(); 

            e.EW = (triangles == 0) ? 0 : counting / (Float) triangles; 

   //[printf("\n Node %i to %i - counting = %i - Triangles = %i - 

Edge weight = %f",$s,$t,$counting,$triangles,$e.EW)]; 

        } 

    } 

 

    // Initialize 

    Edge_Prop<Bool>(G) VC; 

 Node_Prop<Int>(G) membership; 

 Node_Prop<Bool>(G) Covered2; 

    G.Covered2 = False; 

    G.EWN = 0; 

 Int counter = 0; 

  

 //has to be sequential to be respectful to node sequence 

 [printf("\nProcessing...Setting Initial Community Labels for every node!")]; 

    For(n: G.Nodes) { 

        n.COMM = counter; //Community initiation - each node belongs to its community 

  counter++; 

    } 

    G.VC = False; 

 

    // Cover & Compute EWN 

    // Sequential Execution 

    // (becomes non-deterministic if parallelized) 

 [printf("\nProcessing...Computing Graph Maximum Neighbor's Edge Weight and for 

every node!")]; 
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    Foreach (s:G.Nodes)(!s.Covered2) { 

        Edge(G) e_sel = NIL; 

        Float maxval = -1; 

        Node(G) from, to; 

 

        Foreach(t: s.OutNbrs) { 

            Edge(G) e1 = t.ToEdge(); 

            <maxval; from, to, e_sel> max= <e1.EW; s, t, e1> @t; 

        } 

        // there can be nodes that has no edges 

        If (e_sel!= NIL) { 

            e_sel.VC = True; 

            from.Covered2 = True; 

            //to.Covered2 = True; 

            s.EWN = maxval; 

        } 

    } 

     

 //Gaux has no edges yet, just nodes, lets add edges 

 //has to be sequential or else it makes segmentation fault 

    [printf("\nProcessing...Computing/Creating Auxiliary Graph Edges!")]; 

 For(n:G.Nodes){ 

  For(v: n.OutNbrs) (v.EWN==n.EWN){ 

            //To do  

   Edge(G) e2 = v.ToEdge(); 

   If(e2.EW != 0){ 

    [Gaux.add_edge($v,$n)]; 

    //[Gaux.add_edge($n,$v)]; 

    //[printf("\nAdded edge %i to %i, %f = 

%f",$v,$n,$v.EWN,$n.EWN)]; 

   } 

  } 

 }  

  

} 

 

Proc label_node_2(G: Graph, Gaux: Graph, COMM: Node_Prop<Int>(Gaux)) //: Int 

{ 

  

 //To do Find connected components in Gaux 

 [printf("\nProcessing...Computing Auxiliary Graph Kosaraju Strong Connected 

Components!")]; 

 //Kosaraju connected components initialization 

 Node_Prop<Int>(Gaux) mem; 

 // Initialize membership 

    Gaux.mem = -1; 

 

    N_P<Bool>(Gaux) Checked; 

    Gaux.Checked = False; 

 

    // [Phase 1] 

    // Obtain reverse-post-DFS-order of node sequence. 

    // Node_Order can be also used here but Node_Seq is faster 

    Node_Seq(Gaux) Seq;  

    For(t:Gaux.Nodes) (!t.Checked) 

    { 

        InDFS(n:Gaux.Nodes From t)[!n.Checked]  

        {} // do nothing at pre-visit 
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        InPost{ // check at post-visit 

            n.Checked = True; 

            Seq.PushFront(n); 

        } 

    } 

 

    // [Phase 2] 

    // Starting from each node in the sequence 

    //   Do BFS on the transposed graph G^. 

    //   and every nodes that are (newly) visited compose one SCC. 

    Int compId = 0; 

 Map<Int,Int> Node_community; 

    For(t:Seq.Items)(t.mem == -1) 

    { 

        InBFS(n:Gaux^.Nodes From t)[n.mem == -1]  

        { 

             

   n.mem = compId; 

   //[printf("\n Node %i member of component %i",$n,$n.mem)]; 

     

        } 

        compId++; 

    } 

  

  

 //Label each component nodes with the lower label of community 

 [printf("\nProcessing...Labeling each node in component with its lower label!")]; 

 Int comp_aux_label = 0; 

 Int mem_aux = -1; 

 N_P<Bool>(Gaux) Checked2; 

 Gaux.Checked2=False; 

 Foreach(s:Gaux.Nodes)(!s.Checked2){  

  If(mem_aux != s.mem){ 

   comp_aux_label = s.COMM; //New component, from now on this label 

will be the same for all nodes in this new component 

   Foreach(t:Gaux.Nodes)(t.mem==s.mem && !t.Checked2){ 

    t.COMM=comp_aux_label; 

    //[printf("\nProcedure 2 - Node %i member of community 

%i",$t,$t.COMM)]; 

    t.Checked2=True; 

   } 

  } 

 mem_aux = s.mem; 

 s.Checked2 = True; 

    } 

 

} 

 

Proc label_node_3(G: Graph, Gaux: Graph, calc_mod: Int, EWN: Node_Prop<Float>(G), 

COMM: Node_Prop<Int>(G), EW: Edge_Prop<Float>(G)) //: Int 

{ 

 

[FILE *myfile]; 

[myfile=fopen("results-raw.txt","a")];  

Edge_Prop<Bool>(G) VC; 

 

// Initialize before converging loop 

Bool Converged = False; 
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N_P<Int>(G) prev_COMM; 

N_P<Int>(G) prev_prev_COMM; 

G.prev_COMM = -1; 

G.prev_prev_COMM = -1; 

Int iter = 0; 

  

While(!Converged && iter < 10){ 

iter = iter + 1; 

[printf("\nAlgorithm Iteration %i", $iter)]; 

Converged=True; 

  

//Calculate total degree of members of the same community 

Map<Int,Int> communityDegree; 

 

Foreach(n: G.Nodes) { 

  Int d = n.OutDegree(); 

  communityDegree[n.COMM] += d; 

  //[printf("\nProcedure 3 - Node %i on community %i", $n,$n.COMM)]; 

} 

 

 // Initialize 

 Node_Prop<Float>(G) labelWeight; 

 Node_Prop<Bool>(G) Covered; 

 G.labelWeight = -1; 

  

 Int CommDegree = 0; 

 Int nedges = G.NumEdges(); 

 //[printf("\nNumber of Edges: %i",$nedges)]; 

  

 //Calculate labelWeight depending of size of community 

 Foreach(s:G.Nodes){ 

 CommDegree = communityDegree[s.COMM]; 

 s.labelWeight = (1 - (CommDegree)/(Float)(2*nedges)); 

 //[printf("\nCD for Node %i and community %i: %i - LabelWeight: 

%.2f",$s,$s.COMM,CommDegree,$s.labelWeight)]; 

 } 

  

 //Initialize vars to final step of algorithm - node final label 

 G.Covered = False; 

 G.VC = False; 

 Map<Int,Float> TEW_COMM; //Total edge weight of intra communities nodes 

 

 // Cover & Compute COMM label 

    // Sequential Execution 

    // (becomes non-deterministic if parallelized) 

 For(s: G.Nodes)(!s.Covered) { // Choose an edge that has maximum edge weight 

 Edge(G) e_sel1 = NIL; 

    Float maxval1 = -1; 

    Node(G) from1, to1; 

 TEW_COMM.Clear(); 

   

  Foreach(r: s.OutNbrs){ 

  //Edge(G) e = r.ToEdge(); 

  TEW_COMM[r.COMM] += r.EWN; 

  //TEW_COMM[r.COMM] += e.EW; 

  } 

     

  For(t: s.OutNbrs){ // value among remaining nodes 
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  Edge(G) e2 = t.ToEdge(); 

  //Edge(G) e1 = t.ToEdge(); 

   

  //<maxval1; from1, to1, e_sel1> max= <t.labelWeight * t.EWN; s, t, e1> 

@s;//@s?? 

  <maxval1; from1, to1, e_sel1> max= <t.labelWeight * TEW_COMM[t.COMM]; s, 

t, e2> @t; 

  } 

  

 If (e_sel1!= NIL) { 

            e_sel1.VC = True; 

            from1.Covered = True; 

            to1.Covered = True; 

   s.prev_prev_COMM = s.prev_COMM;//save previous to previous 

COMMUNITY 

   s.prev_COMM= s.COMM;//save previous COMMUNITY 

            s.COMM = to1.COMM; 

   //If((s.COMM != s.prev_COMM) && (s.COMM == 

s.prev_prev_COMM)){Converged=False;} 

   If(s.COMM != s.prev_COMM && s.prev_COMM != 

s.prev_prev_COMM){Converged=False;} 

       } 

 } 

 

} 

 

N_P<Bool>(G) Covered2; 

G.Covered2 = False; 

For(s: G.Nodes)(!s.Covered2){ 

[char buffer[100]]; 

[if (myfile != NULL){ 

 sprintf(buffer,"%i\t%i\r\n",$s,$s.COMM); 

 fputs(buffer,myfile); 

} else throw("Unable to open file results-raw.txt")];  

s.Covered2=True; 

} 

[fclose(myfile)]; 

 

 

 If (calc_mod == 1){ 

 //Calculate Modularity - Modularity algorithm 

 [printf("\nCalculating Modularity. Please Wait...")]; 

 // Initialize 

    Node_Prop<Bool>(G) Covered3; 

 G.Covered3 = False; 

 Float Mod = 0.0; 

   

  Foreach(u:G.Nodes)(!u.Covered3) 

  { 

            Foreach(v:G.Nodes)(v.COMM == u.COMM && v!=u){ 

    

    If (u.HasEdgeTo(v)){ 

     Mod += 1 - 

(u.NumNbrs()*v.NumNbrs())/(2*G.NumEdges()); //New_deg[u] 

    } Else { 

     Mod +=  -

(u.NumNbrs()*v.NumNbrs())/(2*G.NumEdges()); //New_deg[u] 

    } 
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   } 

  u.Covered3 = True; 

  } 

 Mod = Mod/(2*G.NumEdges()); //Because we duplicated number of edges on graph 

input, other way it would have to be 2*G.NumEdges??? 

 [printf("\nModularity: %f", Mod)]; 

    //print "Modularity: %f" % Mod 

 } 

} 
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4. Community Detection – Main File (C++) code (core .cc file) 

#include "communities-algo.h"         // header generated by gm_comp 

#include <sys/time.h> 

#include <iostream> 

#include <fstream> 

#include <string> 

#include <stdio.h> 

#include <map> 

#define WONT_OPEN 20 

 

#include <sys/types.h> 

#include <dirent.h> 

using namespace std; 

 

//todo - convert to hash_map as desired. 

typedef map<long, string> NodeMap; 

typedef map<string, long> NameMap; 

 

void add_node(gm_graph *G, gm_graph *Gaux, NameMap *names, NodeMap *nodes, long id, 

string name) { 

  G->add_node(); 

  Gaux->add_node(); 

  (*names)[name] = id; 

  (*nodes)[id] = name;   

} 

 

//void load_edge_list(gm_graph *G, gm_graph *Gaux, NameMap *names, NodeMap *nodes, 

string filename, char separator, string directed,string weighted) {  

void load_edge_list(gm_graph *G, gm_graph *Gaux, NameMap *names, NodeMap *nodes, string 

filename, char separator, string directed) {  

  ifstream file; 

  file.open(filename, fstream::in); 

  cout << "\nOpened File " << filename; 

  if (!(file.is_open())) { 

 cout << "\nFile is not open... "; 

    throw WONT_OPEN;   

  } 

   

  cout << "\nInitializing Variables... "; 

  if(directed.compare("n")==0){ 

  cout << "\nGraph is undirected!"; 

  } else if(directed.compare("y")==0){ 

  cout << "\nGraph is directed!"; 

  } 

  //TO DO - PREPARE CODE FOR WEIGHTED GRAPHS 

  /* 

  if(weighted.compare("n")==0){ 

  cout << "\nGraph is not weighted!"; 

  } else if(weighted.compare("y")==0){ 

  cout << "\nGraph is weighted!"; 

  } 

  */ 

  string line; 

  long int node_counter = 0; 

  long int edge_counter = 0; 

  cout << "\nBegining While Loop to read the edge list file... "; 

  while(file.good()) { 

 getline(file, line); 

    if (line.find('#') != std::string::npos) continue; 

    if(file.eof()) break; 

    size_t split = line.find(separator); 

    string u = line.substr(0, split); 

    string v = line.substr(split+1); 

    if(names->count(u) == 0) { 

      add_node(G, Gaux,names, nodes, node_counter++, u); 

    }  

    if(names->count(v) == 0) { 

      add_node(G, Gaux,names, nodes, node_counter++, v); 

    } 

 if (directed.compare("n")==0){//graph is undirected 

 G->add_edge((*names)[u], (*names)[v]); 

 G->add_edge((*names)[v], (*names)[u]); 

 edge_counter++; 

 } else if (directed.compare("y")==0) {//graph is directed 

 G->add_edge((*names)[u], (*names)[v]); 
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 edge_counter++; 

 } 

  } 

  cout << "\nGraph has "<< node_counter << " Nodes!"; 

  cout << "\nGraph has "<< edge_counter << " Edges!"; 

  cout << "\nClosing Edge List file!"; 

  file.close(); 

} 

 

 

//function to translate internal green-marl nodes Ids to edge list nodes 

void compile_results(NameMap *names, NodeMap *nodes) { 

  //for reading raw results file 

  ifstream file; 

  //for writing final results file 

  ofstream resultsfile; 

  resultsfile.open("results-communities.txt",fstream::in | fstream::out | fstream::app); 

   

   

  //for reading raw results file 

 long size; 

 char *buf; 

 char *ptr; 

 size = pathconf(".", _PC_PATH_MAX); 

 if ((buf = (char *)malloc((size_t)size)) != NULL) 

 ptr = getcwd(buf, (size_t)size); 

 file.open(string(buf).append("/results-raw.txt"), fstream::in); 

 cout << "\nOpening Raw Results File "; 

  if (!(file.is_open())) { 

 cout << "\nFile is not open... "; 

    throw WONT_OPEN;   

  } 

  string line; 

  long int node_counter = 0; 

  long int edge_counter = 0; 

  cout << "\nBegining While Loop to read the Raw file... "; 

  while(file.good()) { 

 getline(file, line); 

    if (line.find('#') != std::string::npos) continue; 

    if(file.eof()) break; 

    size_t split = line.find('\t'); 

    string u = line.substr(0, split); 

    string v = line.substr(split+1); 

 //for writing final results file 

 char buffer[100]; 

 if (resultsfile !=NULL){ 

 string s_u = (*names).find((*nodes).find(stol(u))->second)->first; 

 string s_v = (*names).find((*nodes).find(stol(v))->second)->first; 

 resultsfile << s_u.c_str() << "\t" << s_v.c_str() << "\r\n"; 

 } else  

 { 

 printf("Unable to open file results-communities.txt to write results"); 

 throw WONT_OPEN; 

 }  

} 

//fclose(resultsfile); 

resultsfile.close(); 

} 

 

int main(int argc, char** argv) { 

gm_graph G, Gaux; 

NameMap names; 

NodeMap nodes; 

string directed; 

string weighted; 

string file_name; 

string calc_mod_aux; 

time_t timer, timer_end; 

struct tm * ptm_start; 

struct tm * ptm_end; 

float ptm_interval; 

int calc_mod;  

 

 puts("\n############################################"); 

 puts("#####  Community Detection Algorithm   #####"); 

 puts("############################################\n"); 
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if( remove( "results-raw.txt" ) != 0 ) 

    puts( "No need for cleaning tasks...continuing..." ); 

  else 

    puts( "1st Cleaning Task Successfully Done" ); 

if( remove( "results-communities.txt" ) != 0 ) 

    puts( "No need for cleaning tasks...continuing..." ); 

  else 

    puts( "2nd Cleaning Task Successfully Done" ); 

 

printf("Is the graph directed? Answer y (yes) or n (no): "); 

cin >> directed; 

//printf("Is the graph weighted? Answer y (yes) or n (no): "); 

//cin >> weighted; 

printf("Input graph file name (only unweighted edge list is accepted!!): "); 

cin >> file_name; 

printf("Do you want to calculate Modularity? It can make the algorithm slow! Answer y 

(yes) or n (no): "); 

cin >> calc_mod_aux; 

if(calc_mod_aux.compare("n")==0){calc_mod=0;} else 

if(calc_mod_aux.compare("y")==0){calc_mod=1;} 

time(&timer);  /* get current time; same as: timer = time(NULL)  */ 

ptm_start = gmtime(&timer); 

cout << "Started Computation of Communities Algo at: " << ptm_start->tm_hour << ":" << 

ptm_start->tm_min << "\n"; 

cout << "Loading Edge List..."; 

 

//load_edge_list(&G, &Gaux ,&names, &nodes, file_name, '\t', directed, weighted); 

load_edge_list(&G, &Gaux ,&names, &nodes, file_name, '\t', directed); 

cout << "\nCalculating Communities Labels for every node..."; 

 

//Variables for .gm procedures 

// Create an array to hold the node property 

int32_t* comm = new int32_t[G.num_nodes()](); 

// Create an array to hold the node property 

float* ewn = new float[G.num_nodes()](); 

float* ew = new float[G.num_edges()](); 

 

label_node_1(G, Gaux, ewn, comm, ew);//1rst Phase - Calculate Edge weights and store 

them in each node 

Gaux.freeze(); 

label_node_2(G, Gaux, comm); //2Phase - Build auxiliary graph - calculate connected 

components on graph aux  

 

label_node_3(G, Gaux, calc_mod, ewn, comm, ew); //3rd Phase -  final labels for our 

original graph 

time(&timer_end);  /* get current time; same as: timer_end = time(NULL)  */ 

ptm_end = gmtime(&timer_end); 

cout << "\nEnded Computation of Communities Algorithm at: " << ptm_end->tm_hour << ":" 

<< ptm_end->tm_min << "\n"; 

ptm_interval = difftime(timer_end,timer); 

cout << "Processing Time - " << ptm_interval/3600 << " hours, " << ptm_interval/60  << " 

minutes OR "<< ptm_interval <<" seconds \n"; 

cout << "Compiling Results..."; 

compile_results(&names, &nodes); 

cout << "\nFile results-communities.txt has the algorithm results! Enjoy!\n"; 

 

 puts("\n############################################"); 

 puts("#####  Community Detection Algorithm   #####"); 

 puts("############################################\n"); 

 

return 0; 

} 

  



94 

 

5. SimRank – Green-Marl code (core .gm file) 

 

Proc simrank(G: Graph ) 

{ 

 

    [FILE *myfile]; 

    Float r = 0.9; 

 Float s_uv = 0.0; 

 Int iter = 100; 

 Float eps = 0.0001; 

 [bool FLAG_CONV = false]; 

 Int n_nodes = 0; 

 Node_Prop<Bool> Covered; 

 n_nodes = G.NumNodes(); 

 G.Covered = False; 

  

 [float** sim_df = new float*[$n_nodes]]; 

 [float** sim_df_old = new float*[$n_nodes]]; 

 

    [for(int i = 0; i < $n_nodes; i++) { 

        sim_df[i] = new float[$n_nodes]; 

  sim_df_old[i] = new float[$n_nodes]; 

    }]; 

 

 //initialize matrices 

 Foreach(s:G.Nodes){ 

 Foreach(t:G.Nodes){ 

 [ 

 if($s==$t){ 

 sim_df[$s][$t]=1; 

 sim_df_old[$s][$t]=1; 

 sim_df[$t][$s]=1; 

 sim_df_old[$t][$s]=1; 

 }else{ 

 sim_df[$s][$t]=0; 

 sim_df_old[$s][$t]=0; 

 sim_df[$t][$s]=0; 

 sim_df_old[$t][$s]=0; 

 } 

 ]; 

 } 

 } 

  

  

 Node_Prop<Int> numNbrs; 

 G.numNbrs = 0; 

 Int j = 0; 

  

 While(j <= iter){ 

  

 [if (!FLAG_CONV) {FLAG_CONV=true;} else {break;}];//test convergence FLAG 

  

 [for(int k = 0; k < $n_nodes;k++){ 

 memcpy(sim_df_old[k], sim_df[k], sizeof(float) * $n_nodes); 

 }]; 

  

  Foreach(u: G.Nodes) { 

  u.numNbrs = u.NumOutNbrs(); 

   Foreach(v: G.Nodes){ 

   [if ($u == $v) { 

   continue; 

   } else {$s_uv=0.0;}]; 

   v.numNbrs = v.NumOutNbrs(); 

    Foreach(n_u: u.OutNbrs)  

    { 

     Foreach(n_v: v.OutNbrs){ 

      [$s_uv = $s_uv + 

sim_df_old[$n_u][$n_v]]; 

     } 

    } 

   [ 

    sim_df[$u][$v] = ($r * $s_uv)/ (float) 

(($u.numNbrs)*($v.numNbrs)); 

    sim_df[$v][$u] = sim_df[$u][$v]; 
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    if(sim_df[$u][$v] - sim_df_old[$u][$v] >= (float) 

$eps || sim_df[$v][$u] - sim_df_old[$v][$u] >= (float) $eps){ 

    FLAG_CONV=false; 

    } //if there is no convergence 

in any value of simrank then FLAG_CONV=FALSE 

    ]; 

 

   } 

  } 

 j = j+1; 

 } 

 

// TO DO - Write file with top 10 of similarity ranking for all nodes   

G.Covered=False; 

[myfile=fopen("results-simrank-raw.txt","a")]; 

[char buffer[100]]; 

Int line = 1; 

For(s:G.Nodes){ 

[if (myfile !=NULL && $line == 1){ 

 sprintf(buffer,"\t"); 

 fputs(buffer,myfile); 

  

}]; 

For(u:G.Nodes){ 

[if (myfile !=NULL && $line == 1){ 

 sprintf(buffer,"%i\t",$u); 

 fputs(buffer,myfile); 

  

}]; 

} 

If(line == 1){ 

[sprintf(buffer,"\n")]; 

[fputs(buffer,myfile)]; 

} 

line = 0; 

[if (myfile !=NULL){ 

 sprintf(buffer,"%i\t",$s); 

 fputs(buffer,myfile); 

  

} else {puts("Unable to open file results-simrank-raw.txt");}]; 

For(t:G.Nodes){ 

[if (myfile !=NULL){ 

 sprintf(buffer,"%f\t",sim_df[$s][$t]); 

 fputs(buffer,myfile); 

  

} else {puts("Unable to open file results-simrank-raw.txt");}];  

} 

[sprintf(buffer,"\n")]; 

[fputs(buffer,myfile)]; 

} 

[fclose(myfile)]; 

} 
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6. SimRank – Main File (C++) code (core .cc file) 

 

#include "simrank.h"         // header generated by gm_comp 

#include <sys/time.h> 

#include <iostream> 

#include <fstream> 

#include <string> 

#include <map> 

#include <stdlib.h> 

#include <unistd.h> 

 

#define WONT_OPEN 20 

 

#include <sys/types.h> 

#include <dirent.h> 

using namespace std; 

 

//todo - convert to hash_map as desired. 

typedef map<long, string> NodeMap; 

typedef map<string, long> NameMap; 

 

void add_node(gm_graph *G, NameMap *names, NodeMap *nodes, long id, string name) { 

  G->add_node();  

  (*names)[name] = id; 

  (*nodes)[id] = name; 

} 

 

//void load_edge_list(gm_graph *G, NameMap *names, NodeMap *nodes, char filename[256], 

char separator, char directed[256]) { 

void load_edge_list(gm_graph *G, NameMap *names, NodeMap *nodes, string filename, char 

separator, string directed) {  

  ifstream file; 

  file.open(filename, fstream::in ); 

  cout << "\nOpened File " << filename; 

  if (!(file.is_open())) { 

 cout << "\nFile is not open... "; 

    throw WONT_OPEN;   

  } 

   

  cout << "\nInitializing Variables... "; 

  if(directed.compare("n")==0){ 

  cout << "\nGraph is undirected!"; 

  } else if(directed.compare("y")==0){ 

  cout << "\nGraph is directed!"; 

  } 

  string line; 

  long int node_counter = 0; 

  long int edge_counter = 0; 

  cout << "\nBegining While Loop to read the edge list file... "; 

  while(file.good()) {   

 getline(file, line); 

    if (line.find('#') != std::string::npos) continue; 

    if(file.eof()) break; 

    size_t split = line.find(separator); 

    string u = line.substr(0, split); 

    string v = line.substr(split+1); 

 if(names->count(u) == 0) { 

      add_node(G, names, nodes, node_counter++, u); 

    }  

    if(names->count(v) == 0) { 

      add_node(G, names, nodes, node_counter++, v); 

    } 

 if (directed.compare("n")==0){//graph is undirected 

 G->add_edge((*names)[u], (*names)[v]); 

 G->add_edge((*names)[v], (*names)[u]); 

 edge_counter++; 

 } else if(directed.compare("y")==0){//graph is directed 

 G->add_edge((*names)[u], (*names)[v]); 

 edge_counter++; 

 } 

  } 

  cout << "\nGraph has "<< node_counter << " Nodes!"; 

  cout << "\nGraph has "<< edge_counter << " Edges!"; 

  cout << "\nIMPORTANT NOTE: With this Graph, memory use will be approximately around " 

<< 2*node_counter*node_counter*4/1000000 << "MB MAX"; 
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  cout << "\nPLEASE MAKE SURE YOUR MACHINE'S MEMORY IS ENOUGH TO RUN THE ALGORITHM!!"; 

  cout << "\nClosing Edge List file..."; 

  file.close(); 

  cout << "\nClosed Edge List file!"; 

} 

 

//function to translate internal green-marl nodes Ids to edge list nodes 

void compile_results(NameMap *names, NodeMap *nodes) { 

  //for reading raw results file 

  ifstream file; 

  //for writing final results file 

  ofstream resultsfile; 

  resultsfile.open("results-simrank.txt",fstream::in | fstream::out | fstream::app); 

   

  //for writing final results file 

  //resultsfile=fopen("results-communities.txt","a"); 

   

  //for reading raw results file 

long size; 

char *buf; 

char *ptr; 

size = pathconf(".", _PC_PATH_MAX); 

if ((buf = (char *)malloc((size_t)size)) != NULL) 

    ptr = getcwd(buf, (size_t)size); 

 //cout << string(buf).append("/results-simrank-raw.txt"); 

  file.open(string(buf).append("/results-simrank-raw.txt"), fstream::in ); 

  //file.open("/home/110414015/Green-Marl/apps/output_cpp/bin/results-simrank-raw.txt", 

fstream::in | fstream::out | fstream::app); 

  cout << "\nOpening Raw Results File "; 

  if (!(file.is_open())) { 

 cout << "\nFile is not open... "; 

    throw WONT_OPEN;   

  } 

  string line; 

  long int node_counter = 0; 

  long int edge_counter = 0; 

  long int line_counter = 0; 

  cout << "\nBegining While Loop to read the Raw file... "; 

  while(file.good()) { 

 //cout << "\nRead Lines started..." ; 

    //line = (char) file.get(); 

 getline(file, line); 

 line_counter++; 

 //std::stringstream(line); 

 //cout << "\nRead Line: " << line; 

    if (line.find('#') != std::string::npos) continue; 

    if(file.eof()) break; 

 if (line_counter==1){ 

 size_t split = line.find('\t'); 

 string v = line.substr(split+1); 

 size_t split2 = v.find('\t'); 

 string node1 = v.substr(0, split2); 

 v = v.substr(split2+1); 

 //cout << "\nNode1: " << node1; 

 string s_u = (*names).find((*nodes).find(stol(node1))->second)->first; 

 resultsfile << '\t' << s_u.c_str() ; 

 do{ 

 if (v.find('\t')==std::string::npos){ 

 //cout << "\nNo tab and End of line " << v; 

 break; 

 } else if (v.find('\t')!=std::string::npos) 

 { 

 split = v.find('\t'); 

 string node = v.substr(0, split); 

 //cout << "\nTab and Node: "<< node; 

 v = v.substr(split+1); 

 s_u = (*names).find((*nodes).find(stol(node))->second)->first; 

 resultsfile << '\t' << s_u.c_str(); 

 }  

 }while(true); 

 //for writing final results file 

 if (resultsfile !=NULL){ 

 resultsfile << "\r\n"; 

 } else  

 { 

 printf("Unable to open file results-simrank.txt to write results"); 

 throw WONT_OPEN; 
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 }  

 } else { 

 size_t split = line.find('\t'); 

 string node1 = line.substr(0, split); 

 //cout << "\n New Line: " << line; 

 //cout << "\nNode: " << node1; 

 string s_u = (*names).find((*nodes).find(stol(node1))->second)->first; 

 resultsfile << s_u.c_str() ; 

 string v = line.substr(split+1); 

 do{ 

 if (v.find('\t')==std::string::npos){ 

 //cout << "\n New Line: " << line; 

 //cout << "\nNode: " << v; 

 resultsfile << '\t' << v; 

 break; 

 } else if (v.find('\t')!=std::string::npos) 

 { 

 split = v.find('\t'); 

 string value = v.substr(0, split); 

 v = v.substr(split+1); 

 resultsfile << '\t' << value; 

 }  

 }while(true); 

 //for writing final results file 

 if (resultsfile !=NULL){ 

 resultsfile << "\r\n"; 

 } else  

 { 

 printf("Unable to open file results-simrank.txt to write results"); 

 throw WONT_OPEN; 

 } 

 } 

} 

//fclose(resultsfile); 

resultsfile.close(); 

} 

 

 

int main(int argc, char** argv){ 

gm_graph G; 

NameMap names; 

NodeMap nodes; 

string directed; 

string file_name; 

time_t timer, timer_end; 

struct tm * ptm_start; 

struct tm * ptm_end; 

float ptm_interval;  

 

 puts("\n################################"); 

 puts("#####  SimRank Algorithm   #####"); 

 puts("################################\n"); 

 

if( remove( "results-simrank-raw.txt" ) != 0 ) 

    puts( "No need for 1st cleaning task...continuing..." ); 

  else 

    puts( "1st Cleaning Task Successfully Done" ); 

if( remove( "results-simrank.txt" ) != 0 ) 

    puts( "No need for 2nd cleaning task...continuing..." ); 

  else 

    puts( "2nd Cleaning Task Successfully Done" ); 

 

printf("Is the graph directed? Answer y (yes) or n (no): "); 

cin >> directed; 

printf("Input graph file name (only unweighted edge list is accepted!!): "); 

cin >> file_name; 

time(&timer);  /* get current time; same as: timer = time(NULL)  */ 

ptm_start = gmtime(&timer); 

cout << "Started Computation of Similarity Ranking (Simrank): " << ptm_start->tm_hour << 

":" << ptm_start->tm_min << "\n"; 

cout << "Loading Edge List..."; 

load_edge_list(&G, &names, &nodes, file_name, '\t', directed); 

cout << "\nCalculating Simrank for every node..."; 

cout.flush(); 

simrank(G); 

time(&timer_end);  /* get current time; same as: timer_end = time(NULL)  */ 

ptm_end = gmtime(&timer_end); 
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cout << "\nEnded Computation of Simrank at: " << ptm_end->tm_hour << ":" << ptm_end-

>tm_min << "\n"; 

ptm_interval = difftime(timer_end,timer); 

cout << "Processing Time - " << ptm_interval/3600 << " hours, " << ptm_interval/60  << " 

minutes OR "<< ptm_interval <<" seconds \n"; 

cout << "Compiling Results..."; 

compile_results(&names, &nodes); 

cout << "\nFile results-simrank.txt has the algorithm results! Enjoy!\n"; 

 

 puts("\n################################"); 

 puts("#####  SimRank Algorithm   #####"); 

 puts("################################\n"); 

 

return 0; 

}  


