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Abstract

In the era of Big Data the prevalence of networks of all kinds has grown dramati-

cally, and analysing (mining) such networks to support decision-making processes

has become an extremely important subject for research, typically with a view

to some social and/or economic gain. This thesis describes research work within

the theme of Movement Pattern Mining (MPM) as applied to large network data.

MPM is a type of frequent pattern mining that provides observation into how

information is exchanged between objects in large networks. In the context of the

work described in this thesis, the focus is on how the concept of Movement Pat-

terns (MPs) can be extracted from large networks efficiently and effectively, and

how such movement patterns can best be utilised so as to predict future move-

ment. The work describes how, by utilising big data facilities like Share/Distribute

Memory Systems and Hadoop/MapReduce, novel data mining based techniques

can be used, not only to extract MPs from large networks, but also how they

can be utilised for prediction purposes. To this end, the works in this thesis are

divided into two parts. The first part is concerned with an investigation of an

efficient mechanism for MPM. The second part is concerned with the utilisation of

the extracted MPs in the context of prediction. For evaluation purposes, two large

network datasets were used: The Great Britain Cattle Tracking System database

and the Jiayuan Social Network. The evaluation indicates that an efficient and

effective mechanism for identifying and extracting MPs form large networks, and

subsequently using then MPs for prediction purposes, has been established.
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1
Introduction

Over the last decade “big network analysis” has attracted considerable attention

because of the large amount of network data that is increasingly generated by

a great variety of application domains: social networks [67], computer networks

[20], Peer-to-Peer Networks [26], road traffic networks [36] and so on. Networks,

by definition, facilitate the exchanging of information between objects. Networks

can feature the virtual exchange of information as in the case of friendship commu-

nications in social networks; or can be physical networks, as in the case of trans-

portation networks, where the information is goods moved between geographic

locations. Whatever the case, such networks can be represented as graphs where

the vertices represent senders and/or receivers of information, and the edges repre-

sent the information (traffic) flow. The analysis of such networks can take different

forms, for example, we might wish to identify communities [83] or “influencers”

[47] within such networks. In this thesis, the focus is on the analysis of how

information moves through networks. More specifically the identification of the

“movement patterns” that may exist in such networks; and how such patterns,

when discovered, can be deployed.

Regardless of the nature of the analysis to be conducted, as the size of the

networks we wish to analyse continues to increase, the established (traditional)

analysis techniques have become increasingly unsuitable. One solution is to adopt

1
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a “big data” solution. Big data tools have shown to have great potential with

respect to many real-world fields of application such as manufacturing, healthcare,

finance, insurance, and retail. The work presented in this thesis is also directed at

large networks; and, in the context of information movement patterns, examines

how the tools of big data can be utilised with respect to movement analysis. Two

specific tools are considered: Hadoop (comprised of MapReduce and the Hadoop

Distributed File System) and the Message Pass Interface (MPI).

From the foregoing, the central research theme of this thesis is the discovery of

movement patterns in large networks and their subsequent utilisation. Movement

Patterns, as defined in this thesis, are three-part patterns, describing information

flow, that occur frequently in a given network. The three parts comprise of From,

Edge and To parts; in this thesis, the acronym FET is used to describe this data

format. Each part in turn consists of a set of one or more attribute values. As

such movement patterns, as conceived of in this thesis, can be thought of as a

special form of a frequent itemset as popularised in the work on Frequent Pattern

Mining (FPM) originating in the early 1990s [6].

The main distinction between movement patterns and traditional frequent

patterns is that movement patterns are more prescriptive, as will become clear

later in this thesis. Note that the term “movement pattern” as used in this thesis

should not be confused with the way the term is used in the context of video

surveillance of individuals, animals or road traffic.

The rest of this introductory chapter is organized as follows. In Section 1.1 the

motivation for the research is discussed. Section 1.3 presents the research question

and associated issues. The adopted research methodology is then presented in

Section 1.4, together with the criteria used to evaluate the research outcomes

and whether the achieved results are accurate and obtained in an efficacy and

effective manner. The research contribution is presented in Section 1.5 followed
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by the organization of the thesis in Section1.6. The details of publications that

have resulted from the work are given in Section 1.7. Finally, in Section 1.8, the

chapter is concluded with a brief summary and a “look ahead”.

1.1 Research Motivation

In the era of big data the prevalence of networks of all kinds has grown dramati-

cally, and analysing (mining) such networks to support decision-making processes

has become an extremely important subject for research, typically with a view to

some social and/or economic gain. The challenge of analysing networks is how

to process such networks so as to extract meaningful information (knowledge) in

an efficient and effective manner. The basic motivation for the research presented

in this thesis is the demand for knowledge relating to the behavior of traffic in

large networks. Thus the need for techniques to predict the nature of “traffic”

movements in networks. In particular the usage of the concept of movement pat-

terns describing the traffic (communication) between vertices (nodes) in networks.

Two examples domains where movement patterns are relevant, and those used as

a focus with respect to the work presented in this thesis, are: (i) the GB cattle

movement database and (ii) the Chinese Jiayuan Social Network. It is suggested

that movement patterns extracted from the GB cattle movement network will pro-

vide significant knowledge for policy and decision makers who wish to monitor and

address issues such as the future expectation of cattle movement; for example in

the context of cattle disease. In the case of the Chinese Jiayuan Social Network,

traffic movement patterns can be used to periodically make recommendations to

existing and new users.

Given the increasing size of the networks that we wish to process alternative

techniques to established mechanisms are required. Thus the motivation for the
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research presented in this thesis is not only the desire to analyse traffic movement

in networks but to do this in the context of large networks. More specifically the

need to utilize big data techniques so that large networks can be analysed in this

manner. Both the GB cattle movement and the Chinese Jiayuan Social Network

are examples of large networks.

1.2 Formal Definitions

Regardless of the precise nature of a network, the networks considered in this

thesis adhere to the formalism presented in this section. Any given network G

is defined in terms of a tuple of the form 〈V,E〉, where V is a set of vertices

and E is a set of edges [33]. The vertices can represent individuals (as in the

case of the Jiayuan Social Network), inanimate entities (as in the case of, say,

computer networks) or locations (as in the case of CTS networks). The edges

then indicate connections between vertices (virtual or actual). These edges might

be indicative of some relationship, such as a friend relationship, as in the case

of social networks; or a “hard” connection as in the case of a wired computer

network or a road traffic network. There is a slightly different in interpretation

between the terminology of Networks and Graphs. The term network is typically

used in the case of transporting/sending “things” along the links between nodes,

whether those things are physical objects (road networks and rail networks) or

information (computer networks and social networks). However, in Graphs, the

edges typically represent types of relationships between the vertices, for instance

as in case of “interest graphs” [80] where the vertices are people and topics, and

each edge links a person to a topic that they are interested in.

A Movement Pattern (MP) is defined as a form of Knowledge extracted from a

given network G and this knowledge is represented as a tuple of the form 〈F,E, T 〉
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where F , E and T are sets of attribute values. The minimum number of attribute

values in each part must be at least one; none of the sets can be empty.

1.3 Research Issues and Question

From the foregoing, the central research question that this thesis seeks to address

is:

“How can the concept of movement patterns, as envisaged in this thesis, be

efficiently and effectively extracted from large networks, and how can those

movement patterns best be utilised”

The provision of an answer to the above necessitates the resolution of a number

of subsidiary questions, as follows:

1. What is the most appropriate mechanism for preprocessing and representing

large network data so that movement patterns can be extracted?

2. Given a solution to (1) what are the most appropriate mechanisms whereby

movement patterns can be mined (learnt/extracted) from network data.

3. Following on from (2), given mechanisms for mining movement patterns from

network data how can these mechanisms be scaled up to address movement

pattern mining from very large networks.

4. Once we have a collection of movement patterns how can they best be applied

to previously unseen network data and how do we know whether the manner

in which movement patterns are applied produces the correct results?
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The following section provides a description of the broad research methodology

adopted to address the above research question and the associated subsidiary

questions.

1.4 Research Methodology

The broad adopted research methodology was to focus on a specific primary, real-

life, application domain, and then support this with a secondary application do-

main. The selected primary application domain was the Great Britain (GB) cattle

movement database, whilst the selected secondary domain was the Chinese Jiayuan

Social Network. The GB cattle movement database is maintained by the Depart-

ment for Environment, Food and Rural Affairs (DEFRA) and it records all cattle

that are moved between pairs of locations in GB. The locations can be viewed as

network vertices and the cattle movement in terms of edges connecting vertices.

The domain was selected because: (i) it exemplified a large network, (ii) it had

not been significantly studied previously and (iii) it had a clear application for the

concept of movement patterns in that they could be used to predict how cattle

moved round related networks to support (say) bovine disease spread studies. The

Jiayuan Social Network was selected, again because it was an exemplar of a large

network, but more importantly, because it provided an alternative application of

the movement pattern idea, as envisioned in this thesis, allowing more extensive

investigation of the movement pattern concept.

To provide an answer to the first subsidiary question, “What is the most ap-

propriate mechanism for preprocessing and representing large network data?” it

was decided to investigate solutions to the second subsidiary question, “what are

the most appropriate mechanisms whereby movement patterns can be mined?” and

then backtrack to provide an answer to the first question. Given that, as already
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noted, movement patterns can be viewed as a special form of Frequent Itemset

Mining (FIM) as popularised in association rule mining [6], the start point for pro-

viding an answer to the second subsubsidiary question was to look at existing FIM

algorithms and attempt to adapt these, more specifically to look at the Apriori

algorithm [6]. A frequently cited disadvantage of FPM is the significant compu-

tation time required to generate large numbers of patterns (many of which may

not be relevant). The anticipation was that any adapted FIM algorithm would

display the same disadvantage. Whatever the case an initial Apriori-based Move-

ment Pattern Mining (MPM) algorithm would provide a benchmark with which to

compare further algorithms. The fundamental idea behind the anticipated further

algorithms was to utilise the known “shape” of the desired movement patterns, in

that they would have three parts, to influence the MPM.

Once a number of MPM algorithms had been established, the next stage

was to consider how these algorithms might be scaled up given a very large net-

work, too large to be effectively processed using a single computer, to provide a

solution to the third subsidiary question. Some form of distributed computing

was envisioned. To this end a number of approaches were available but three

obvious candidates, because of the frequency with which they are cited in the

literature, were: (i) Hadoop/MapReduce [91], (ii) Shared Memory Systems and

(iii) Distributed Memory Systems. It was thus decided that the operation of

the identified algorithms would be considered in terms of these three frameworks

(Hadoop/MapReduce, MPI, OpenMP).

Consideration was then given to how movement patterns, once identified could

be applied. This was done by considering a number of application scenarios in

the context of the identified primary and secondary application domains. The

scenarios were as follows:
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• Given a collection of holding areas similar to those feature in the cattle

movement database what traffic might we expect (predict).

• Given a Social Network Data, such as the Jiayuan, how might movement

patterns be used to make recommendations.

The second part of the fourth subsidiary question was “ how do we know

whether the manner in which movement patterns are applied produces the correct

results?”. The answer to this question clearly depends on the nature of the ap-

plication to which movement patterns are applied, in other words, the nature of

the above-listed scenarios. Part of the research was therefore directed at devising

mechanism to determine whether the right predictions (Scenario 1) or the right

recommendations (Scenario 2) were being made. A number of additional criteria

were also devised for measuring the overall success of the research work conducted

and presented in this thesis, as follows:

• Generality: Any proposed MPM should be generic, it should operate with

respect to networks of various kinds (large or small) and in the context of a

variety of application domains.

• efficiency: The manner in which any proposed movement patterns are

mined and applied should be as efficient as possible. In other words, the

runtime and storage required for mining movement patterns should be min-

imised, as should the runtime and storage requirements for applying move-

ment patterns. In other words, the memory heap size and runtime in second

were considered as an important factor to measure the efficiency of any pro-

posed movement pattern algorithm.

• effectiveness: Clearly any proposed MPM or movement pattern applica-

tion should be effective in that the correct movement patterns should be

discovered and they should be applied in the appropriate manner.
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1.5 Contributions

The main contributions of the research work presented in this thesis are the move-

ment pattern concept and how such patterns can be extracted and applied in the

context of large networks. To the best knowledge of the authors there has been

very little (no?) work on movement patterns as conceptualised in this thesis. The

more specific contributions can be itemized as follows:

1. The Apriori-based Movement Pattern (AMP) algorithm.

2. The Shape-based Movement Pattern (ShaMP) algorithm.

3. Three big data variations of the ShaMP algorithm based on distribution/shared

memory system techniques and Hadoop/MapReduce, with a comparison of

their operation.

4. A mechanism for applying MPs to predict traffic in networks.

5. The RecoMP recommender system, which utilises MPs so as to provide rec-

ommendations in the context of Social Networks.

6. A mechanism for evaluating the effectiveness of the use of movement patterns

in the context of prediction.

7. A mechanism for evaluating the effectiveness of the use of movement patterns

in the context of recommendation.

1.6 Organization of the Thesis

The remainder of thesis is organized into three main parts: (i) Previous work

(Chapter 2), (ii) Pattern mining methods for large networks (Chapters 3, 4 and

5) and (iii) Movement pattern application mechanisms (Chapter 6).
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The connection between each part and the subsidiary research questions iden-

tified in Section 1.3 is presented in Table 1.1. The last, Chapter 7, of the thesis

provides a summary of the work presented, the main findings in relation to the

research question and associated subsidiary questions identified above, and some

ideas for future work.

Table 1.1: Thesis structure.

Content Chapter

Part I: Previous Work.

Research background Chapter

Presents a literature review of the related research from dif-

ferent prospective starting for Data Mining in Social Network

in a team of Movement Pattern, then Prediction Modelling in

Social Network, finally, Processing large Networks by utilizing

big data techniques

2

Part II: Movement Pattern Mining.

Research issue to investigate Chapter

What is the most appropriate mechanism for preprocessing

and representing large network data so that movement pat-

terns can be extracted?

3

What are the most appropriate mechanisms whereby move-

ment patterns can be mined (learnt/extracted) from network

data?

4

Following on from last question, given mechanisms for mining

movement patterns from network data, how can these mecha-

nisms be scaled up to address movement pattern mining from

very large networks?

5

Continued on next page
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Table 1.1 Thesis structure continue

Content Chapter

Part III: Prediction and Recommendation Modelling.

Research issue to investigate Chapter

Once we have a collection of movement patterns how can they

best be applied to previously unseen network data and how

do we know whether the manner in which movement patterns

are applied produces the correct results?

6

In this part, the thesis will summarized and discuss the main

funding and the research contributions with a further vision

for future work.

7

1.7 Published Work

The main contributions of this thesis have been published in three conference

papers. These papers are itemized below.

1. Al-Zeyadi M., Coenen, F. and Lisitsa, A (2017). “Mining Frequent Move-

ment Patterns in Large Networks: A Parallel Approach Using Shapes”. In:

Bramer M. and Petridis M. (Eds), Research and Development in Intelligent

Systems XXXIII, Proc. AI’2017, Springer, pp53-67. Conference paper that

presented the Shape-based Movement Pattern (ShaMP) algorithm, an algo-

rithm for extracting Movement Patterns (MPs) from network data that can

later be used (say) for prediction purposes. The principal advantage offered
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by the ShaMP algorithm is that it lends itself to parallelisation so that very

large networks can be processed. The concept of MPs is fully described to-

gether with the realisation of the ShaMP algorithm. The algorithm is evalu-

ated by comparing its operation with a benchmark Apriori-based approach,

the Apriori-based Movement Pattern (AMP) algorithm, using large social

networks generated from the Cattle Tracking Systems (CTS) in operation in

Great Britain (GB) and artificial networks.

2. Al-Zeyadi M., Coenen, F. and Lisitsa, A (2017). “On the mining and usage

of Movement Patterns in large traffic networks”. Proceedings of the IEEE

International Conference on Big Data and Smart Computing (BigComp), pp.

135-142. This conference paper investigated the efficiency of the ShaMP al-

gorithm when implemented using Hadoop/MapReduce and Massage Passing

Interface (MPI). The paper also presented a prediction mechanism whereby

the identified MPs can be used to predict the nature of movement in a pre-

viously unseen network.

3. Al-Zeyadi M., Coenen, F. and Lisitsa, A (2017). “User-to-User Recom-

mendation using The Concept of Movement Patterns: A Study Using a

Dating Social Network”. Proceeding of the international joint conference

on knowledge discovery, knowledge engineering and knowledge management

(IC3K). This conference paper makes the observation that the MP concept

can equally well be applied in the context of recommender systems, more

specifically recommender systems embedded into Social Networks (SNs).

The idea was to conceive of a SN as a collection of vertices, each repre-

senting an individual, the interchange of messages between vertices can then

be considered to represent the traffic (edges) between vertices. Frequently

occurring MPs can then be extracted and used to generate recommendations

(to existing users and new users).
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1.8 Summary

In summary, this chapter has provided an overview and background for the re-

search described in the reminder of this thesis, including details concerning the

motivation for the work and the research question and subsidiary questions. It

has also provided a brief description of the formalism of network and movement

patterns; as well as the research evaluation criteria and the contributions of the

work. In the following chapter a literature review, intended to provide more de-

tail regarding the background concerning the research described in this thesis, is

presented.



2
Literature Review

Real-world networks often involved millions of nodes and connections between

them. Given the large amounts of interconnected data available, the challenge is

the extraction of useful knowledge from this data in a manner that is both efficient

and effective. The work presented in this thesis considers one aspect of this chal-

lenge, the extraction of patterns from this data, specifically movement patterns.

This chapter provides a review of existing work in this field, and other background

material, so as to contextualise the work presented later in this thesis and to pro-

vide the reader with necessary background knowledge. The chapter is divided into

three main sections. The first section, Section 2.1, discusses social network mining

and places the idea of Movement Pattern Mining (MPM) in this context. The

main motivation for the concept of movement patterns, as espoused in this thesis,

is to predict future movement (traffic) in a current network, or movement in a

related network. The second section, Section 2.2, therefore discusses the nature of

prediction in networks, including related work on link prediction and prediction

in the context of recommender systems. The third section, Section 2.3, reviews

the big data and related techniques that were adopted with respect to the work

presented later in this thesis, particularly the Hadoop/MapReduce and Massage

Passing Interface as used in Distributed Memory Systems so as to process large

data collections. The chapter is concluded with a summary in Section 2.5.

14
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2.1 Data Mining in Social Networks

We live in the era of the big data connected the world in which virtual networks

are intertwined with our daily lives. The prevalence of such networks, of all kinds,

has grown dramatically. The most common examples of virtual networks include:

social networks [67], computer networks [20] and Peer-to-Peer Networks [26]. An-

other example of a virtual network and one used with respect to the evaluation

reported on later in this thesis is social networks. However, networks can also

be physical, the best examples are transportation networks (road, shipping, air,

train) [36]. A specific example of a physical (transportation) network is the cat-

tle movement network also used for evaluation purposes with respect to the work

reported on later in this thesis.

Despite variability in semantics, the general theory of networks is the same.

They share a common structure whereby entities (vertices or nodes) are linked

through a specific relationship (edges or links). The entities can represent indi-

viduals (as in the case of social networks), inanimate entities (as in the case of

computer networks) or locations (as in the case of distribution and road traffic

networks). The edges then represent some relationship between these entities.

Thus a network, represented in terms of vertices (nodes) and edges (links), can be

considered to be a form of a graph G(V,E) where V is the set of vertices and E is

the set of edges. The total number of vertices n in a graph is then n = |V | and the

total number of edges is m = |E|. We can identify two types of edges: (i) directed

and (ii) undirected. Directed edges, as the name suggests, imply a direction with

respect to the relationship they represent, in other words, a direction associated

with (say) the flow of information or the traffic they represent. A good example

is the who-follows-whom relation found in the Twitter social network where the

edge direction indicates the follower and the followee. An undirected edge does

not have a specific direction associated with the relation represented. In this case,
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we can think of the flow of information or traffic as being reciprocal. For example,

the messages exchanged using the Facebook social media network. Such reciprocal

flow can, of course, be represented by two opposing directed edges. In the case

of the example networks used for evaluation purposes with respect to the work

presented in this thesis the cattle movement network featured directed edges (in-

dicating the sender and receiver), while the social network features undirected or,

to be exact, reciprocal edges.

Coinciding with the growth in networks of all kinds, there is a corresponding

desire to analyse (mine) such networks and extract valuable, but hidden, knowl-

edge, from them. Network Mining (NM) is the process of representing, analysing,

and extracting actionable information (such as patterns) from network data where

the typically objective is with respect to some social and/or commercial gain. NM

has been investigated in the context of various application domains including: (i)

how law enforcement and intelligence agencies fight organized crime, such as nar-

cotics and money laundering [95] and terrorism [48], and (ii) in commerce so as

to increase sales of products and services by exploiting the relationship between

existing and potential customers [45]. Similarly, a variety of tools and methods

have been proposed to maintain, manipulate and visualise network data to support

NM, and research and business network understanding. Examples of such tools

include: Ctoscape [79], Gephi [15], and JUNG [69].

NM is a branch of the more general domain of Data Mining (DM). Data

Mining is an important element of the current Big Data trend and encompasses

a wide range of techniques for extracting useful knowledge from data, such as

trends, patterns and rules [42]. The research described in this thesis is directed

at the provision of a particular form of NM, directed at the extraction and usage

of Movement Patterns (MPs) from network data. We refer to this as Movement

Pattern Mining (MPM). The concept of MPM, as conceived of in this thesis,

and to the best knowledge of the author, has not been previously addressed in



Chapter 2. Literature Review 17

the literature. However, pattern mining, in general, has been extensively studied

within the context of DM. More specifically the MPM concept has parallels with

the concept of Frequent Pattern Mining (FPM) found in DM. FPM is therefore

discussed in more detail in the following sub-section. The idea of MPM is then

discussed further in Sub-section 2.1.2.

2.1.1 Frequent Pattern Mining

Frequent Patterns (FPs) play an important role with respect to many data mining

applications [4] with the goal of discovering knowledge in the form of repeated

patterns [9]. Many researchers hold the view that frequent pattern identification

is a fundamental intermediate step with respect to a variety of problems [3]. FPs

are of particular interest with respect to the work presented in this thesis because,

as already noted above, the idea of movement patterns shares some similarities

with the idea of frequent patterns.

Frequent Pattern Mining (FPM) is typically directed at Boolean (binary or

zero-one) valued data. The main objective of frequent pattern mining is to discover

sets of attributes that occur together frequently. The first frequent pattern mining

algorithm was presented by Agrawal et al. in 1993 [6]; this was the catalyst for

a wide range of follow-on research. Indeed it can be argued that the research on

movement patterns considered in this thesis can be traced back to this early work

on FPM.

FPM entails some frequently quoted disadvantages as follows:

1. The computation time required to generate large numbers of patterns is

substantial given a large data set [9].
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2. The size of the output (the frequent patterns) may be larger than the size

of the input [71, 84].

3. Many of the patterns identified may not be relevant in the sense that they

are sub/super sets of other patterns [4].

These are all issues which are equally valid in the context of MPM and which are

returned to later in this thesis.

Movement patterns, as envisioned in this thesis, can be regarded as a special

form of a frequent pattern in that, in the abstract, they can be thought of as

three-part frequent patterns comprised of a “sender”, “movement” and “receiver”

part. In other words, the movement patterns considered in this thesis are more

prescriptive than standard FPs.

Given that the MPM concept as presented in this thesis shares similarities

with the concept of FPM it was decided, within the context of the proposed

research methodology, that a good benchmark MPM algorithm would be one

founded on the Apriori algorithm cited above, namely the AMP algorithm pre-

sented later in this thesis in Chapter 4.

2.1.2 Movement Pattern Mining

The term movement pattern is encountered in various contexts in the literature,

with respect to a number of different application domains, and with differing

definitions of what a movement pattern is. Of note is the usage of the term

with respect to various forms of video analysis. One example is in the context

of surveillance and security where the “pattern of movement” of video objects is

tracked across video data; for example, with respect to people, animals, and traffic

[16, 28, 34, 93]. Another application domain where the term movement pattern is
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used is in the context of video event recognition [30]. A further example is with

respect to simulations of animal behavior. For example in [87] what are referred

to as “movement patterns” are extracted from video data and used to drive a

multi-agent based simulation.

The movement patterns, as conceived of in this thesis, and as will become

clearer later in the thesis, are different from the movement patterns found in

video data analysis as described above. The movement patterns central to the

work presented in this thesis can be thought of as network movement patterns as

opposed to video movement patterns. In other words, patterns that describe how

traffic or information moves (flows) round a network. To the best knowledge of

the authors, there has been no previous work on movement patterns as conceived

in this thesis.

2.2 Prediction Modeling in Networks

As noted earlier, the motivation for the MPM idea is to use such patterns to pre-

dict movements in future renditions of the same network to that from which the

patterns were mined, or on closely related networks. There is existing reported

work on prediction in the context networks. Popular examples include: (i) the

prediction of disease spread in a human contact networks using metrics such as

the degree of distribution, clustering and path length [8], (ii) prediction in the

context of best viral marketing strategies by identifying “networks of influencers”

[77], (iii) link prediction of various kinds [63] and (iv) the building of effective

recommendation systems based on vector and edge weightings in dating networks

[104]. All four examples, in one form or another, are potential applications for

the work on MPs presented in this thesis. The last two are considered as exem-

plar applications with respect to the work presented in this thesis and thus are
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considered in further detail below (Sub-sections 2.2.1 and 2.2.2).

2.2.1 Link Prediction in Networks

Link Prediction (LP) can be define as the process of predicting links between pairs

of vertices in a graph [17]. LP has recently received increased attention in both the

physical and computer science communities. The idea is, given a new vertex x, to

predict the existing vertices to which a new vertex will be linked. The idea of LP

has some overlap with the problem of inferring missing links in incomplete graphs

[46]. The goal of LP can be related to one of the applications which motivated

the work on MPM and at which the MPM concept is directed; although the MPM

concept is not just directed at whether a link exists, but also at the nature of the

link. A further distinction between the work on LP and missing link resolution,

and the work presented in this thesis, is that the first two are typically conducted

according to graph structure, dynamic in the case of link prediction [17] and static

in the case of missing link resolution [46], rather than using the concept of MPs.

Whatever the case, because of the similarity with respect to the desired end goal

of the proposed MPM, LP is discussed in some further detail in this subsection.

According to the survey conducted by the athores in [63] LP algorithms can

be categorised as follows:

• Similarity Based Algorithms: LP algorithms in this category are the

simplest and founded on the idea of a similarity score, Sxy, where x is a

new vertex and y is an existing vertex, according to the linked node pairings

that already exist in a given network [56, 63]. If the similarity score is high

then a link is suggested. Many algorithm have been proposed that adopt

this approach. There are many variations of the basic similarity based link

prediction algorithm which can be classified into three groups according to
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the nature of the similarity indices: (i) Local Similarity Indices, (ii) Global

Similarity Indices and (iii) Quasi-Local Indices. Examples of the first in-

clude: (i) Common Neighbours (CN) [25], (ii) Salton Index [24], Jaccard

Index [64], (iii) Srensen Index [59], (iv) Hub Promoted Index [17], (v) Hub

Depressed Index [63], (vi) Leicht Holme Newman Index [53], (vii) Preferen-

tial Attachment Index [66], (viii) Adamic Adar Index [1],(ix)Leicht-Holme-

Newman Index [53] and (x) Resource Allocation Index [62]. Examples of the

second include: (i) Katz Index [44], (ii) Leicht Holme Newman Index [53],

(iii) Average Commute Time [31], (iv) Cosine based on L+ [31], (v)Random

Walk with Restart [85], (vi) SimRank [41] and (vii) Matrix Forest Index [21];

while examples of the third include: (i) Local Path Index [61, 105], (ii) Local

Random Walk [61] and (iii) Superposed Random Walk [60].

• Maximum Likelihood Methods: The algorithms in this category, instead

of using some form of indexing, consider the organisation and structure of

a given network expressed in terms of rules and parameters, which are then

used to indicate the likelihood of a link with respect to a new node [78].

A disadvantage of the Maximum Likelihood approach is that it tends to be

very time consuming and thus not applicable to Big Networks [63].

• Probabilistic Models: In this last category, the prediction of missing links

is conducted by abstracting the underling structure from a given network so

that a model is learned. A variety of models have been proposed, but from

the literature the following three main models can be identified [63]: (i) the

Probabilistic Relational Model [32], (ii) the Probabilistic Entity Relationship

Model [40] and (iii) the Stochastic Relational Model [99].

The proposed MP approach, bearing in mind that we are not only interested

simply in link prediction but also in the nature of the predicted links, does not

fit well into any of these categories. The last category, the Probabilistic Model
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category, is arguably the most suited. The idea is to use identified MPs to predict

the traffic (movement) in future incarnations of a given network, or closely related

networks. More specifically, in the context of the cattle movement prediction

scenario considered as an exemplar application in this thesis.

2.2.2 Recommendation in Network

Recommender systems are used extensively in the retail sector to recommend po-

tential purchases (products and services) to customers. They operate by process-

ing previous customer purchase data to make recommendations. Recommender

systems have been found to provide a significant impact with respect to improv-

ing user satisfaction in online retail settings [82, 90]. Broadly, recommendation

systems can be categorised as being either: (i) Item-to-Item or (ii) User-to-User.

The main difference is that User-to-User recommendation systems need to make

reciprocal recommendations while Item-to-Item systems do not; User-to-User rec-

ommendation system needs to satisfy both parties [72]. Well known examples of

Item-to-Item recommendation systems are those embedded in Amazon, Netflix

and Spotify [7, 58]; we are all familiar with the “users who bought X also bought

Y” mantra. Well known examples of User-to-User recommendation systems are

those embedded in Facebook and Linkedin; the “people you might know” mantra!

Another example application domain and that of interest with respect to this

thesis, where User-to-User recommendation features, is Dating Social Networks

(DSNs).

DSNs have become an important platform for people looking for potential

partners online. In a large dating network, finding potential partners is time

consuming, therefore many DSNs give compatible partner suggestions; in the same

manner as more general recommender systems, see for example [76]. Developing

a recommender system for a DSN is more challenging because the recommender
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system must satisfy the preferences of pairs of users [73] as opposed to single

users; DSN recommender systems thus fall into the User-to-User categorisation of

recommender systems. Later in this thesis, to illustrate the utility of the MPM

concept, a dating recommendation system is proposed that can be embedded into

DSNs. The idea is to conceive of a DSN as a collection of vertices, each representing

an individual, and the interchange of messages between vertices as representing the

traffic (edges) between vertices. Frequently occurring MPs can then be extracted

and used to generate recommendations (to existing users and new users).

There has been much work directed at DSN recommendation. Of key concern

is the quality of the recommended matches; poor quality matching will result in

people looking elsewhere. The context of matching is typically done using either:

(i) user profiles, (ii) expressed preferences or (iii) user behaviour. For example,

in [50] the authors propose a way of modelling both the duality of user simi-

larity to each other and preferences towards other users, by using split-complex

numbers. The authors demonstrated firstly that their unified representation was

capable of modelling both notions of relations between users in a joint expression

and secondly that their system could be applied in the context of recommending

potential partners. In [94] the authors introduced a recommendation system that

made use of profiles and references and provided a list of recommendations that

a user might be compatible with by computing a reciprocal score that measured

the compatibility between a user and each potential dating candidate. In [86],

the authors proposed a DSN recommendation framework founded on a Latent

Dirichlet Allocation (LDA) model that learns user preferences from observed user

messaging behaviour and user profile features. Whatever the case, the majority

of User-to-User DSN recommendation systems are founded on (graph based) Col-

laborative Filtering (CF) algorithms [49, 86] that focuses on user behaviour. The

intuition is that user behaviour is a much better indicator for recommendations

than user profiles or expressed preferences [49]. Examples, where CF filtering has



Chapter 2. Literature Review 24

been used in the context of DSNs, can be found in [19, 51]. Given the popularity,

and claimed benefits, of the CF approach this is the approach with which the

proposed MP based RecoMP algorithm is compared later in this thesis. For the

purpose of the evaluation the authors developed a bespoke CF based DSN recom-

mendation algorithm called RecoCF, this is described in further detail in Chapter

6. The distinguishing feature between the above DSN recommender systems and

the RecoMP based system proposed in this thesis is the MP concept. To the

best of the author’s knowledge, there has been no work directed at user-to-user

recommendation using MPs as presented in this thesis.

2.3 Processing Large Networks

As mentioned earlier, one of the research issues considered in this thesis is how

to process large networks (in terms of both vertices and edges). In general, the

challenges of processing large networks is two-fold. Firstly, network sizes have

increased exponentially comparing to the available memory of a single computer.

Secondly, the computation time required to process a given large network has also

dramatically increased. The essential key tool for addressing these two challenges

is “computational parallelism”, where multiple computer resources are used si-

multaneously to solve a specific computational problem [14]. Processing large

networks by applying computational parallelism tools offer two advantages. First,

operations on a given large network become computationally tractable whereas it

would not be possible to apply the same operations on a single machine. Second,

computational parallelism gives an enormous speed up opportunities. Therefore,

computational parallelism is seen as a key technology for addressing the two chal-

lenges identified above. The usage of such tools in the context of MPM, is reported

on later in this thesis. This section, therefore, presents two mechanisms whereby
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computational parallelism can be achieved. Namely, the Shared Memory mecha-

nism as used with respect to OpenMP and the Distributed Memory mechanism as

used with respect to (i) Massage Pass Interface (MPI) and (ii) Hadoop/MapRe-

duce. The objective of this section is thus to provide the reader with some neces-

sary background concerning these approaches so that material presented later in

the thesis can be readily understood.

The remainder of this section is organised as follows. The generic challenges

of parallel algorithm design are considered in Sub-section 2.3.1, the principle of

shared memory systems is discussed in Sub-section 2.3.2 with a focus on OpenMP

as an example of a particular API to support the idea of shared memory system.

The principle of distributed memory systems is then discussed in Sub-section 2.3.3

with a focus on two particular APIs to support the idea of Distributed Memory

Systems, namely: the Message Passing Interface (MPI) API (Sub-section 2.3.4)

and MapReduce coupled with Haddoop (Sub-section 2.3.5). The relevance of these

APIs, is that these were adopted with respect to work presented later in the thesis.

2.3.1 Challenges of Parallel Algorithm Design

The design of a parallel algorithm involves a number of challenges, in addition

to those associated with the design of more standard serial algorithms, namely:

memory scalability, work partitioning, and load balancing. Memory scalability is

fundamental when working with Big Data. However, as the number of processes

increases, the memory required by each process decreases as indicated by the

following Scalability Equation [9]:

Θ

(
n

p

)
+O (p) (2.1)
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where: (i) n is the size of input dataset, (ii) p is the number of processes executed

in parallel and (iii) Big O and Θ are symbols used in complexity theory, computer

science and mathematics, to describe the asymptotic behaviour of functions (they

indicate how fast a function grows or declines). Also by defination, any fucation

f(x) is O(g)x)) if some constant c × g(x) is greater than or equal to f(x); |f(x)| ≤

c |g(x)| while x > k. Whereas a fucation f(x) is Θ(g(x)) if some constant c1 ×

g(x) is less than or equal to f(x) and some constant c2 × g(x) is greater than or

equal f(x); c1. |g(x)| 6 |f(x)| 6 c2. |g(x)| while x > k.

In the case of the movement patterns of interest with respect to this thesis, the

real challenge is the distribution of the data and the data mining task across the

available processes. Data partitioning has to be undertaken in such way that the

data is distributed equally in manageable chunks. Work partitioning is concerned

with dividing a given problem (the data mining task) into a set of independent

tasks, where each task addresses part of the problem. Ideally, all tasks should

be executed concurrently and thus they need to be independent. There are two

fundamental data partitioning models that can be adapted: the shared memory

model and the distributed memory model. Each is discussed in further detail in

the following two sub-sections.

2.3.2 Principles of Share Memory Systems

A Shared Memory System is a Memory Model in which a single memory space is

shared by all processes. The shared memory model is fast becoming a key model

for designing parallel algorithms due to the increase in multi-core workstations.

An issue with shared memory systems is when two processes attempted to write

to the same memory location at the same time thus resulting in what is called a

race condition. Also, there can be delay when a process running on one physical

machine asks for a particular memory address on another physical machine. In
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the context of this thesis the shared memory concept has been implemented using

Omp4j1; which is an open-source OpenMP preprocessor for Java that provides

high scalability.

2.3.3 Principles of Distributed Memory Systems

A Distributed Memory System (DMS) consists of multiple independent processing

units where each process has an associated local memory space and all processes

are connected by a general interconnected network. The nature of DMS makes

large computing processing possible. However, communication between processing

nodes requires a message-passing model that entails explicit use of send/receive

primitives [74]. There are several APIs that may be used in the context of DMS.

However, in the context of this thesis, two widely used DMS have been used

Message Passing and Hadoop/MapReduce. These are therefore further considered

in the following two sub-sections.

2.3.4 Message Passing

Message Passing is a distribute programming API that provides (at a minimum) a

send and a receive functions. Processes typically identify each other by “ranks” in

the range 0, 1, . . . , p−1, where p is the number of processes [18]. Massage Passing

is a very powerful and versatile form of API for developing parallel programs. there

are a number of Message Passing implementations, but typical such APIs also

provide a wide variety of additional functions. For example, there may be functions

for various “collective” communications, such as “broadcast” or “reduction” [18].

The most widely used Message Passing API is the Message Passing Interface (MPI)

which defines a library of functions that can be called from C, C++, Fortran and

1http://www.omp4j.org/home
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Java programs to create parallel programs. There are several well-tested and

efficient implementations of MPI, including some that are free or in the public

domain; examples include: MPICH [38], MPICH-G2cite [43] and G-JavaMPI[22].

However, in the context of the research presented in this thesis MPJ Express has

been used; this is an implementation of MPI in the Java programming language

[12]. MPJ has two ways of configuring the same code; Multicore configuration

and Cluster configuration. In the context of the work presented later in the thesis

both the Multicore configuration (using a single multicore machine) and Cluster

configuration (using a Linux cluster) are considered.

2.3.5 Hadoop/MapReduce

MapReduce is a programming model for processing large datasets, introduced by

Google, to support distributed computing [27]. Hadoop [91] is an open source

implementation of the MapReduce architecture that allows for the distributed

processing of large data sets across a cluster of computers. At a high level, the

MapReduce architecture comprises a master node and a number of worker nodes as

shown in Figure 2.1. The master node is responsible for assigning scheduled tasks

for execution by the worker nodes. To design an algorithm using MapReduce the

user needs to create both a Map and a Reduce functions; the main computation

functions in a MapReduce framework. When a MapReduce “job” is initialized,

the master node first calls a “map” function; a function to filter, sort and produce

a set of intermediate key/value pairs (such as sorting students by first name into

queues, one queue for each name). And then schedules a set of “reduce” tasks that

perform a summary operation by aggregate the values associated with keys (such

as counting the number of students in each queue, yielding name frequencies).

The significant benefit of MapReduce is to allow the processing of large datasets

that can not fit into the memory associated with a single process. This is done
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by loading the data file to be processed into a distributed file system whereby

the data is divided into small chunks or blocks. Figure 2.1 shows the flow of job

executing using Hadoop/MapReduce, once the data has been uploaded into the

Hadoop Distributed File System (HDFS) [29], the map function reads, in parallel,

all the blocks in the file system and produces a set of intermediate key/value

pairs. To this end, the MapReduce library collects all intermediate values related

to the same intermediate key produced by the Map function and sends them to

the reduce function for further processing.

Figure 2.1: The Hadoop/MapReduce job execution flow.[27]

Given the above, MapReduce offers a number advantages:

1. Users are free from manually distributing the data across cluster machines

because MapReduce does this automatically.

2. Since the MapReduce library is designed to help process very large amounts

of data using hundreds or thousands of machines, the library tolerates ma-

chine failures “gracefully”.

3. Total “throughput” is enhanced by re-assigning unfinished tasks of slower

nodes to idle nodes (assuming a heterogeneous cluster).



Chapter 2. Literature Review 30

The development of Hadoop/MapReduce have motivated many data mining re-

searchers to improve the efficiency of existing data mining algorithms. For ex-

ample in the case of Frequent Pattern Mining (see following section), which has

similarities with the MPM proposed in this thesis, examples can be found in

[29, 57, 68, 81, 97, 98].

2.4 Frequent Pattern Mining using Parallel and

Distributed Algorithms

This section discusses recent research on Frequent Pattern Mining (FPM) based

on the parallel computing concept. In [13, 89] the efficiency of FPM was improved

by utilizing multi-core CPUs. In [98] the authors proposed an improvement on

the Apriori algorithm based on Hadoop/MapReduce. Even though the proposed

method used state-of-the-art parallel computing, like any other apriori-based al-

gorithms, it suffered from a large number of candidates being produced which

led to an increase in the number of times that the database of interest needed

to be scanned. The well known FP-growth FPM algorithm was parallaized using

the MapReduce architecture in [54], the proposed Parallel FP-growth algorithm

(the PFP algorithm) was founded on the idea of dividing the dataset into sub-

sets so that the tasks can be distributed between computing nodes independently.

However, the PFP algorithm was unable to cope with big data because of the

large number of data transmissions between computing nodes. The authors in [92]

proposed an Improved Parallel FP-growth (IPFP) based on Hadoop/MapReduce.

IPFP demonstrated a better efficacy compared to PFP, but IPFP also suffered

from network transmission problems with big data.

The authors in [68] introduced two algorithms: Dist-Eclat based on the Eclat

algorithm [101] and BigFIM based on Apriori [6]. The proposed algorithms both
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used Hadoop/Mapreduce technology to implement FPM over a large dataset. The

Dist-Eclat algorithm focused on performance by using a simple load balancing

scheme, while the BigFIM algorithm focused on running large datasets. During the

process, DisEclat generated Tid-Lists; however, when the dataset to be processed

is too large the generated Tid-Lists would override the memory size. Therefore,

BigFIM, based on a hybrid method of Apriori and Eclat, was proposed to solve

the issue of memory overriding. BigFIM operated using a three step process.

During the first step, BigFIM used an Apriori-based method to extract frequent

itemsets of length k. After computing the k − prefixes, the second step was to

compute the possible extensions. During the last step, BigFIM switched to Eclat,

and then utilizes “diff set” operations to mine the subtrees from which frequent

itemsets are generated in a depth-first manner. With respect to the performance,

and compared to [54], the proposed two algorithms were faster. However, BigFIM

still had a memory shortage problem and high communication costs with poor

computing performance.

The authors in [55] proposed Sequence-Growth, a distributed FIM algorithm,

based on Hadoop/MapReduce technology. The algorithm constructs a tree, us-

ing lexicographical ordering, to implement FPM without requiring an exhaustive

search of the databases. The algorithm is able to process up to 20 Million trans-

actions within 24000 seconds of runtime.

In [96] the authors proposed a new approach (FiDoop-DP) for mining frequent

patterns in large transaction datasets based on the Parallel FP-Growth Algorithm

discussed in [54] and a novel data partitioning scheme. The proposed approach

showed significant performance improvement in the runtime over the existing Par-

allel FP-Growth Algorithm by up to 31% with an average of 18%. The FiDoop-DP

approach, focussed on distributing a large dataset across data nodes in a Hadoop

cluster by partition transactions with high similarity together, and grouping highly

correlated frequent items into a list.
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The MPM parallel computation algorithms presented in this thesis are, in

part, influenced by the previous work, described above, on parallel computation

in the context of FPM.

2.5 Summary and Conclusions

This chapter has provided a review of the existing work relevant to this thesis

and has provided details concerning the distributed systems technology referred

to later in the work. More specifically this chapter has reviewed some previous

work on network mining and data mining. In the context of the later, work on

frequent pattern mining was considered in some detail because of its similarity

with the proposed MPM. Previous work on link prediction and recommender sys-

tems was also considered because these are applications similar to those addressed

later in this thesis. To provide a fuller understanding of the MPM approaches

using distributed memory systems, also presented later in the thesis background

information concerning well known parallel approaches was also presented, namely

Shared/Distributed Memory Systems and Hadopp/MapReduce. In the next chap-

ter, Chapter 3, the evaluation data sets referenced later in the thesis are considered

in detail.



3
Evaluation Data

The idea of networks have become widespread since the rapid development of

Web 2.0 [10] which has facilitated, amongst other things, the concept of social

networks. Well, known examples include Facebook, Twiter, and Linkedln, where

users are encouraged to link to friends, followers, and contacts to form a “social

network” through direct and indirect connections to others. From a sociological

perspective, the term social network has a much broader meaning beyond digital

and online networks to include physical social networks representing face-to-face

relationships, political associations and connections, and even co-authoring net-

works across academic communities. However, networks do not necessarily have

to be social networks, the concept can be extended further to: computer networks;

distribution networks; road, rail, and air travel networks; and so on. The work

presented in the thesis considers networks in the terms of this widest possible

context.

This chapter describes the particular network datasets used to drive the work

presented in the thesis and consequently used for evaluating the Movement Pattern

Mining (MPM) and application algorithms developed. A formalism defining the

networks considered in this thesis is presented in Section 3.1. The datasets used

with respect to the work presented in the thesis were drawn from three sources:

(i) the GB Cattle Tracking System (CTS) operated by the UK Department for

33
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Environment, Food and Rural Affairs (DEFRA), (ii) the Chinese Jiayuan Social

Network and (iii) a synthetic data generator. The first was selected because of

its size and because it represented an interesting application domain entailing

networks different to the social network studies that featured in much previous

work on network analysis. The second was selected because it represented a more

“traditional” kind of social network. Both data sets represented real examples of

networks where the movement pattern concept could offer genuine benefits. The

third source was used to generate artificial network data sets where the parameters

could be controlled and hence the effect of changes to these parameters, with

respect to the proposed algorithms, could be analysed (not possible with the real

data sets). These three data sources are considered in further detail in Sections

3.2, 3.3 and 3.4 below. The chapter is concluded with a summary in Section 3.5.

3.1 Network Formalism

Regardless of the precise nature of a network, the networks considered in this

thesis adhere to the formalism presented in this section. Any given network G

is defined in terms of a tuple of the form 〈V,E〉, where V is a set of vertices

and E is a set of edges [33]. The vertices can represent individuals (as in the

case of the Jiayuan Social Network), inanimate entities (as in the case of, say,

computer networks) or locations (as in the case of CTS networks). The edges

then indicate connections between vertices (virtual or actual). These edges might

be indicative of some relationship, such as a friend relationship, as in the case

of social networks; or a “hard” connection as in the case of a wired computer

network or a road traffic network. In this thesis the way that edges are conceived

includes the potential for them to have attributes of some kind; for example: (i)

the number of messages sent from one individual to another in a social network,

(ii) the volume of data exchanges between two computers in a computer network,
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(iii) the quantity of goods sent in a distribution network or (iv) the amount of

traffic flow from one location to another in a road traffic network. As such edges

are directed (not necessarily the case in other forms of network), consequently

vertices can be “sender” (from) vertices or “receiver” (to) vertices. In many cases,

vertices will be both senders and receivers. Thus the set of (from) vertices and the

set of (to) vertices are not necessarily disjoint; vertices can represent senders and

receivers simultaneously.

Figure 3.1: Example network (V = {φ1, φ2, . . . , φ5} and E = {ε1, ε2, . . . , ε9}).

An example network is given in Figure 3.1 where V = {φ1, φ2, . . . , φ5} and

E = {ε1, ε2, . . . , ε9}. Note that some of the vertices featured are both sender (from)

and receiver (to) vertices. Note also that some vertices in the figure are connected

by more than one edge. This may simply indicate traffic flow in both directions as

in the case the Jiayuan Social Network or it may indicate different types of traffic

flow. The work presented in this thesis is not just concerned with traffic flow in

a binary context (whether it exists or does not exist), but also in terms of the

nature of the traffic flow. Thus where vertices in the figure are connected by more

than one edge this might indicate different kinds of traffic flow. For example, in a

distribution network, two edges connecting one vertex to another might indicate

the dispatch of two different commodities.
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Thus, from the foregoing, edges and vertices have sets of attributes associated

with them, AE and AV respectively. The nature of these attribute sets will depend

on the application domain, however, each attribute (where it exists) will have two

or more values associated with it; if an attribute has only one value it will be a

constant and thus not play any part in any form of MPM. Where necessary, in the

remainder of this thesis, we will indicate a particular value j belonging to attribute

i using the notation vij .

Given a network dataset of some form, the idea was to represent this in

a canonical manner. The selected formalism was in terms of “From-Edge-To”

tuples, 〈F,E, T 〉, where F and T comprise attribute values associated with the

set AV , and E comprises attribute values associated with the set AE. We refer

to such tuples as “FETs”, from the acronym FET (From-Edge-To). A network D

thus comprises a set of fets {F1, F2, . . . }. We refer to such a database as a “FET

database”.

3.2 GB Cattle Tracking System (CTS) Database

The GB Cattle Tracking System (CTS) database records all the movements of

cattle registered within or imported into Great Britain (GB). The database is

administered by the Department for Environment, Food, Rural Affairs (DEFRA).

The CTS database comprises a number of tables, the most significant of which are

the animal, location and movement tables.

Each record in the CTS database describes the transportation of a single

animal in terms of: (i) the nature of the animal being transported (bread, gender,

dairy or beef, and so on), (ii) the sender location and (iii) the receiver location. The

locations represent “holding areas” such as farms, markets, and slaughterhouses.

Holding areas are identified by an ID number and geographic Cartesian coordinates
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Table 3.1: CTS Database Location Table Attributes and Value Types

Attribute Name Value Type

Sender ID Number
Sender easting Number
Sender northing Number
Sender location type Nominal
Sender county Nominal
Sender country Nominal
Reciver ID Number
Reciver easting Number
Reciver northing Number
Receiver location type Nominal
Reciver county Nominal
Reciver country Nominal

Table 3.2: CTS Database Animal Table Attributes and value types

Attribute Name Value Type

Animal id Number
Gender Nominal
Birth Date Date
Breed Nominal
Beef Boolean
Dairy Boolean
Transmission date Date

(eastings and northings). Figure 3.2 shows the distribution of different types of

holding area across GB. Tables 3.1 and 3.2 list the attribute names and value types

for the Location and Animal tables featured in the CTS database.

Data from 2003 to 2006 were extracted from the CTS database and used as

the source for the CTS network datasets used for evaluation purposes (as reported

later in this thesis). The data was stored in a single data warehouse where each

record represented an instance of a single cattle movement. The records were

grouped according to their year (episode) and month time stamp; thus 4×12 = 48

groups, a network dataset was generated for each which, for some experiments,

were combined. It should be noted that the maximum number of cattle moved

between any pair of locations at the same time was approximately 40 animals.
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From the foregoing, and as indicated by the maps shown in Figure 3.2, the

movement of cattle represents a “movement” network. Before network data could

be extracted from this data store (warehouse) the data had to be pre-processed;

the CTS database included many missing values. Sub-section 3.2.1 below considers

this pre-processing in further detail. Once the data had been cleaned appropriate

network data sets could be extracted. This is discussed in further detail in Sub-

section 3.2.2 below.

3.2.1 Data Preprocessing

The CTS database featured many missing values indicated by the presence of the

literal “NULL”. From a generic perspective there were two potential ways whereby

this issue could be addressed. The first was to simply remove, and therefore ignore,

all records that had missing values. The second was to infer missing values from

the values held in the most similar record that did not feature missing values. The

disadvantage of the first was that data would be thrown away. The disadvantage

of the second was that there was no guarantee that the substitutions were correct

which might in turn mean that any future analysis would be flawed.

In the context of the CTS data for 2003 to 2006, a particular issue was the

county attribute associated with sender and receiver locations. In approximately

50% of cases this was set to the value NULL. The evidence for this is presented

in Figure 3.3 which shows the distribution values for the county attribute. From

the Figure 3.3, it can be seen that the value “NULL” is the dominant value.

Therefore, discarding records that have a “NULL” value will results in half of the

records being to removed.

It was thus decided to adopt the second option and infer the missing values

for the county attribute. Further inspection of the CTS database indicated that
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(a) Agricultural Holding Area Locations (b) Slaughterhouse Red Meat Area Locations

(c) Show Ground Area Locations (d) Market Area Locations

Figure 3.2: The geographic distribution of holding areas of different type for
the CTS database in 2006
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(a) Sender counties

(b) Reciver counties

Figure 3.3: The distribution values for the county attribute before prepro-
cessing (sender and receiver counties, 2006 data).
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(a) Sender counties

(b) Reciver counties

Figure 3.4: The distribution values for the county attribute after preprocessing
(sender and receiver counties, 2006 data).
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values for the Easting and Northing attributes were always present. These values

were OSGB (Ordinance Survey of GB) grid coordinates for the location. The

adopted mechanism to identify missing values for the county attribute was thus

to find the nearest holding area, using a simple Euclidean distance calculation,

with a known county name and use this value. Euclidean distance calculation

was selected because the numeric values available for the of Easting and Northing

attributes made this an easy calculation to make. The result is a shown in Figure

3.4.

3.2.2 Network Data Generation

Once pre-processing, as described above, was complete, network data generation

(extraction) could commence. The objective was to produce FET datasets of the

form described in Section 3.1. An issue here was that the CTS database com-

prised one record per animal. As already noted, up to 40 animals were sometimes

moved at the same time. Because the work described in the thesis was directed

at patterns describing movement (traffic) between network vertices, records that

were identical, except for the ID of the animal moved, were merged and a “number

of animals moved” attribute included. In total 48 FET (network) datasets were

created, one for each month for the years 2003 to 2006 (4× 12 = 48). Not all at-

tributes included in the CTS database were included in the cattle movement FET

datasets. Those selected are given in Tables 3.3 and 3.4. These were selected be-

cause of their generic nature, it was considered that more specific attributes would

not contribute to the generation of generally applicable Movement Patterns. For

example, the holding area ID attribute would not be generic enough. Some statis-

tics concerning the generated FET datasets, grouped according to year, are given

in Table 3.5.
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Table 3.3: CTS FET data Location Attributes and Value Types the set (AV )

Attribute Name Value Type

Sender and Reciver location type Nominal
Sender and reciver county Nominal

Table 3.4: CTS FET data Edge Attributes and Value Types (the set (AE)

Attribute Name Value Type

Gender Nominal
Breed Nominal
Beef Boolean
Dairy Boolean
Number of cattle moved Number

Table 3.5: Summary of the CTS FET Datasets

Year No of Vertices V No of Types of Edges E No of Edges E

2003 59560 515 7129102
2004 39710 332 12568342
2005 48501 320 5999983
2006 56913 331 3106109

3.3 Jiayuan Social Network

This section discusses the nature of the Jiayuan Social Network (SN) database and

the process of extracting a FET dataset from this SN. The source database was

provided by Jiayuan.com1, the largest internet social network website in China

with more than 170 million users. The database provided comprised of 548, 395

users (344, 552 men and 203, 843 women) and details concerning which user had

messaged which other users (no information quantifying the messaging activity was

available). Unlike the CTS data, the Jiayuan dataset did not feature any missing

attribute-values. Each user had a profile and a set of preferences associated with

it. The user profiles comprise: age, height, education, location, occupation, place

of work, income, home ownership, car ownership and so on. Preferences include

things like: age range, height range, education, and location.

1http://www.jiayuan.com
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Table 3.6: Jiayuan SN Vertex Attributes and Value Types (the set AV )

Attribute Name Type

Year of birth

Nominal

Work Locatio
Work Sub Location
Status
MS Mobile
Education
Houseing
Auto
Marred
Childern
Industry
Privacy
Nation
Range Of Income
Belief
Match Min Age
Match Max Age
Match Marriage
Match Education
Match Work Location
Match Sub Location
High

IntegerMatch Min Height
Match Max Height

Table 3.7: Jiayuan SN Edge Attributes and Value Types (the set AE)

Attribute Name Value Type

Type of edge Nominal (Reciprocal, Non Reciprocal)
Number of messseg Integer

The data was processed firstly so as to identify the set AV . A total of 25

attributes were identified, thus |AV | = 25. The complete set of identified user

profile (Vertex) attributes, the set AV , are listed in Table 3.6. While the two

identified edge attributes, the set AE are listed in Table 3.7.

The resulting FET database contains 3, 311, 076 records. The normal distri-

bution of the users’ activity, in terms of the number of messages sent, is presented

in Figure 3.5. From the figure, it can be seen that a typical of users sent 100
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Figure 3.5: Male and Female Normal Distribution.

messages over the time frame covered by the data received from jiayuan.com.

3.4 Simulated Data

In addition to the above, for experimental purposes, a FET dataset generator was

also constructed. The artificial FET datasets were not processed as described

above but were generated so as to be in the appropriate network form so that

they mimicked the nature of the CTS network discussed in 3.2.2. The pseudo

code for the simulated data generator is given in Algorithm 1. The algorithm

takes as input the attribute sets AV and AE, and outputs a set of FET . The

algorithm operates by selecting randomly F and T values from AV as vertices and

E values from AE. The purpose of the artificially generated networks was that

the parameters could be controlled, especially the number of vertices and edges,
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and the number of attributes in the sets AV and AE. The degree for each vertex

was generated randomly but under the influence of the prescribed parameters; the

average number of inward or outward edges could be calculated using |V |/|E|. As

in the case of the CTS networks (see above) the artificially generated networks

were typically not fully connected in that they featured some vertices with degree

zero. Further detail concerning individual, or groups, of artificial networks, will be

given where relevant in the evaluation sections of Chapters 4 and 5, where results

obtained with respect to the proposed MPM algorithms are considered.

Algorithm 1: Simulated Data Generator

Input:
1 AV Set of vertex attribute values
2 AE Set of edge attribute values
3 Max Number of iteration

Output:
4 G network inform of FET
5 Start:
6 M = ∅
7 while Max 6= 0 do
8 F = select rondom vertex attribute values from AV

9 T = select rondom vertex attribute values from AV

10 if F * T then
11 E = select rondom edge attribute values from AE

12 G = G ∪ 〈F,E, T 〉
13 End

3.5 Summary

This chapter has described the nature of the datasets used for evaluating the pro-

posed Movement Pattern Mining algorithms and Prediction Modelling presented

later in this thesis. The data sources considered were: (i) the GB Cattle Tracking

System (CTS) database, (ii) the Jiayuan Social Network and (iii) simulated data.

The first data source represents a real example of a distribution style network

where vertices represented geographic locations (holding area) and edges cattle
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movement. The second represented what might be considered to be a traditional

social network where the vertices represented users and the edges messaging. The

third provided for the generation of abstract networks where the parameters could

be controlled and consequently, the effect of changing these parameters could be

analysed with respect to the proposed algorithms. The next chapter considers the

proposed Movement Pattern Mining algorithms.



4
Movement Pattern Mining

As noted in Chapter 1 the motivation for the research described in this thesis is the

demand for knowledge relating to the behaviour of traffic in large networks, more

specifically, the need for techniques to predict the nature of “traffic” movements

in such networks. Consequently, this thesis proposes the usage of the concept

of Movement Patterns (MPs) describing the existing traffic (communication) be-

tween vertices (nodes) in networks so as to predict future or related movement,

and consequently provide support for decision and policy makers. Referring back

to the research question and issues presented previously in Section 1.3, this chap-

ter focuses on the second subsidiary question: what are the most appropriate

mechanisms whereby movement patterns can be mined (learnt/extracted) from

network data. The term “appropriate” in this context is defined in terms of the

functionality and efficiency of the MPM. In other words are the “correct” MPs

identified, and are they generated in reasonable time. Correctness in this context

was measured by comparing the MPs generated using the two competing MPM

algorithms proposed in this chapter; in both cases, they should produce the same

set of MPs. Efficiency was measured simply in terms of runtime.

An obvious start point for the work presented in this chapter was the existing

work on Frequent Pattern Mining (FPM), because of the similarity between the

idea of FPs and that of MPs, and particularly the Apriori algorithm presented in

48
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[35] that utilised the “downward closure property” of frequent itemsets. The Apri-

ori algorithm was selected because, although well established, subsequent FPM al-

gorithms have been similarly founded on the downward closure property. The first

algorithm presented in this chapter is, therefore, an MPM algorithm founded on

the Apriori algorithm, namely the Apriori Movement Pattern (AMP) algorithm.

The second MPM algorithm considered is the Shape Movement Pattern (ShaMP)

algorithm, founded on the observation that knowledge of the three-part nature of

MPs allows for efficiency gains to be acquired by utilising this knowledge. Both

algorithms are fully described and evaluated.

The remainder of this chapter is organised as follows. A formalism, used

throughout the rest of this chapter, is first presented in Section 4.1. Section 4.2

then considers the proposed AMP and SHAMP algorithms in turn. The results

obtained from evaluating the two proposed algorithms are then presented and

discussed in Section 4.3. Finally, the chapter is concluded with a summary in

Section 4.4.

4.1 Movement Pattern Formalism

This section presents the formalism for the MPM mining concept which used

throughout the rest of this chapter. As noted previously in Section 3.1, a network

G is conceived of as comprising a set of tuples 〈F,E, T 〉. The 〈F,E, T 〉 tuple then

defines as a set of attribute values that represent the details of the sender (F ),

the receiver (T ) and edge linking the two (E). The network can thus be descried

in terms of a dataset D where each record is a tuple of the above form; we use

the term FET data to describe such data. For example, the network presented

in Figure 3.1 from Chapter 3 can be presented as a FET dataset as shown in
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Figure 4.1 (for ease of understanding the rows are ordered according to the edge

identifiers used in the figure although this is not a requirement for MPM).

An MP is thus also defined as a tuple of the form 〈F,E, T 〉 where F , E and T

are sets of attribute values. The minimum number of attribute values in each part

must be at least one; none of the sets can be empty. The maximum number of

values depends on the size of the attribute sets to which F , E, and T subscribe. An

MP can only feature a maximum of one value per attribute. Thus, the maximum

number of movement patterns for a given network G is thus dependent on the

number of vertex and edge attributes as well as the values that these attributes

can have. The maximum number of MPs given a particular data configuration is

given by Equation 4.1 where VV (sender or receiver attribute values) is the set of

values associated with the attribute set AV , and VE (edgs attribute values) is the

set of values associated with the attribute set AE where F , T ⊂ AV and E ⊂ VE.

|MP | = (2VV − 1)× (2VE − 1)× (2VV − 1) = (2VV − 1)2 × (2VE − 1) (4.1)

Given the above, MPM can be simplistically thought of as the process of

extracting a set M of frequently occurring MPs from a dataset D (representing

G) so as to build a model of D that can then be used to predict traffic or make

recommendations in some previously unseen dataset D′ representing a network

G′ comprised solely of vertices (no known edges, the edges are what we wish to

predict). An MP is said to be frequent, as in the case of traditional FPM [3], if its

occurrence count in D is in excess of some threshold σ expressed as a proportion

of the total number of FETs in D.

Thus, with reference to the exampe network given in Figure 3.1, and assuming

σ = 30%, the set of frequent MPs, M , will be as listed in Figure 4.2, the numbers

indicated using the # symbol are occurrence (frequency) counts.
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Figure 4.1: FET dataset, presented in tabular form, for the network given in
Figure 3.1.

Figure 4.2: The set of frequent MPs (M) extracted from the data listed in
Figure 3.1 using σ = 35%.

4.2 Movement Pattern Mining

Two different MPM approaches are presented in this chapter, the Apriori Move-

ment Pattern (AMP) approach, and the Shape Movement Pattern (ShaMP) ap-

proach. This section details both approaches. The two approaches are similar

in the types of data they can handle and also the types of patterns they can ex-

tract from the input data, the only distinguishing feature between them is the

mechanism for extracting the Movement Patterns as described in the next two

sub-sections. Given that both approaches are directed at the same end result, the

main issue of concern is their respective runtimes with respect to the size of the
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network under consideration and the threshold σ.

4.2.1 Apriori Movement Pattern Mining Algorithm

This section details the proposed Apriori Movement Pattern (AMP) mining algo-

rithm. The first algorithm developed within the context of the research methodol-

ogy presented earlier in Chapter 1. As noted above the AMP algorithm is founded

on the idea of Apriori FPM as presented in [75]. Because of the overlap between

the MP concept, and more traditional FPs, this seemed a natural place to start.

The concept of Apriori, as already noted above, is founded on the downward

closure property of item sets. The property that if an itemset is not frequent none

of its supersets can be frequent. The property can be usefully employed to limit

candidate frequent itemset generation. The approach operates by starting with

a set Ck of candidate itemsets of length k = 1. Those items in Ck that are not

frequent are pruned and the remainder used to generate the k = k + 1 candidate

item sets. The process continues until Ck is empty. Thus Apriori FPM operates

level by level in a breadth-first search manner.

The pseudo code for the AMP algorithm is presented in Algorithm 2. The

input is: (i) a binary valued dataset (where each value represents the presence or

otherwise of a particular attribute value), represented in terms of a FET dataset

D; (ii) a desired support threshold σ; (iii) a set of vertex attribute values VV and

(iv) a set of edge attribute values VE. The output is a set of frequently occurring

MPs stored in a set M , together with their support values, represented as a tuple

of the form 〈MPi, counti〉. As in the case of the Apriori FPM algorithm, the

AMP algorithm adopts a candidate generation, occurrence count and prune cycle.

However, the distinction is that we are dealing with three-part MPs (FETs) and

that none of these parts should be empty. Thus, where the variable k in the
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traditional Apriori algorithm refers to frequent itemset size (starting with k = 1),

the variable k in the AMP algorithm refers to levels and the term itemset to a set

of MPs.

Returning to Algorithm 2 the process commences (line 9) by generating the

level 1 (k = 1) candidate items sets; the pseudo code for this is given in Algorithm

3. We then enter a count-prune-generate loop (lines 10 to 16) and build up the set

M holding the desired frequent MPs, candidate MPs whose occurrence (frequency)

count is greater or equal to sigma. At the end of each iteration the next level,

k + 1, of candidates MPs is generated by adding an attribute value to one of the

components of the previously identified MPs. Because of the three-part nature

of MPs this is not as straightforward as in the case of traditional FPM; it is

not simply a matter of uniformly “growing” K-itemsets to give K + 1-itemsets.

The candidate generation process is presented in Algorithm 4. The count-prune-

generate loop repeats until no more candidates can be generated.

Algorithm 2: Apriori based Movement Pattern (AMP) algorithm

Input:
1 D = Binary valued input data set
2 σ = Support threshold
3 VV Set of vertex attribute values
4 VE Set of edges attribute value

Output:
5 M = Set of frequently occurring MPs {〈MP1, count1〉, 〈MP2, count2〉, . . . }
6 Start:
7 k = level 1
8 M = ∅
9 Ck = generateFirstSetOfCandidates( VV , VE) (see Algorithm 3)

10 while Ck 6= ∅ do
11 Sk = Set of occurance counts for candidates in Ck with reference to D
12 Ck = Set of candidate in Ck where occurrence counts Sk are greater

than σ
13 M = M ∪ Ck

14 k = k + 1
15 Ck = generateCandidates(Ck−1, VV , VE) (see Algorithm 4)

16 end
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Algorithm 3, called from Algorithm 2, shows the pseudo code for the gener-

ation of the k = 1 candidate MPs. The inputs are the set of location (vertex)

attribute values AV and the set of edge attribute values VE. The output is a set of

k = 1 candidate MPs, Ck. The generation process comprises a set of nested loops

where each loop steps through one of the attribute value sets and incrementally

builds up each candidate MP in a depth-first manner.

Algorithm 3: Generate First Set Of Candidates

procedure generateFirstSetOfCandidates(VV , VE)
Input: VV , VE
Output: Ck

1 Set Ck = ∅
forall ai ∈ VV do

forall aj ∈ VE do
forall ak ∈ VV do

Ck = Ck

⋃
〈ai, aj, ak〉

return Ck

end procedure

Algorithm 4, also called from Algorithm 2, gives the pseudo code for the

candidate MP generation process where k > 1. The input is the set of frequent

MPs from the previous iteration, Ck−1, and the sets VV and VE. The output, as in

the case of Algorithm 3, is the level k set of candidate MPs, Ck. To generate the

candidate set we add an attribute value to the frequent MPs from the previous

iteration in such a way that the overall size (number of attribute values) of the

MPs increases by one. Of course, we can only add an attribute value if it is not

already contained in the current MP.

The operation of the AMP algorithm is illustrated in Figure 4.3 using a worked

example. As already noted the algorithm takes as input a network in FET form.

In the figure the network is shown on the left-hand side, the FET representation

is not included. On the first iteration of the approach, the k = 1 set of candidates,

Ck, is generated, where each part has one attribute value. This set of candidates,

a total of 64 possibilities, is listed in the center of the figure. The FET encoded
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Algorithm 4: Generate Candidates

procedure generateCandidates(Ck−1,VV , VE)
Input: Ck−1 Set of frequent MPs from previous generation

VV Set of vertex attribute values
VE Set of Edges attribute value

Output: Ck Set of level K candidates
1 Set Ck = ∅

forall 〈x, y, z〉 ∈ Ck−1 do
forall ai ∈ VV do

if ai /∈ x then Ck = Ck

⋃
〈{x, ai}, y, z〉 ;

forall aj ∈ VE do
if aj /∈ y then Ck = Ck

⋃
〈x, {y, aj}, z〉 ;

forall ak ∈ VV do
if ak /∈ z then Ck = Ck

⋃
〈x, y, {z, ak}〉 ;

return Ck

end procedure

network is then scanned so as to generate frequency counts, also included in the

table given in the middle of the Figure. Any candidate set whose support count

is below the threshold σ is then pruned, these are indicated in red in the figure

(σ = 35 is assumed). This results in a set k1, of six MPs. We then find the

k + 1 = 2 set of candidates, C2, where at least one part of each MP has two

attribute values, as shown on the right hand side of the figure. The process is

repeated until no more candidates can be generated, Ck = ∅. In the example,

this happens when k = 3. Therefore, the complexity of Apriori-based Movement

Pattern (AMP) algorithm is:

1. Candidate generation: Generation of Ck candidate itemset = O( |Fk−1| ×

|F1| ); where F = Frequent itemsets.

2. Support counting = O(|Ck| × n); where n = number of records.

3. Complexcity of one iteration k = O ((|Fk−1|+ |F1) + (|Ck|+ n)).

4. Overall complexity = O
(
|F1| ×

∑k=max
k=2 (|Fk−1 × |F1|) + (|ck|+ n)

)
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Also, the major limitations of the AMP algorithm are:

• The large number of candidate patterns that are generated during the pro-

cess, which limits the size of the networks that can be reasonably considered.

• The excessive runtimes (partly as a consequence of the above) required to

effectively mine large FET datasets.

In the context of runtime it should be noted that AMP runtime is inversely propor-

tional to the σ support threshold value used, however low values of σ are required

to ensure that no significant MPs are missed. Evidence concerning the above

limitations will be presented in the evaluation section given later in this chapter.

The proposed SHAMP algorithm, presented in the following sub-section, seeks to

address the disadvantages associated with the AMP approach.

4.2.2 Shape Movement Pattern Mining Algorithm

The ShaMP algorithm was motivated by the above listed disadvantages associ-

ated with the AMP algorithm. More specifically, because the thesis is aimed at

investigating large networks, the identification of MPs without candidate set gen-

eration. The novel element of the ShaMP algorithm is that it is founded on the

idea of candidate shapes rather than candidate itemsets. A shape in this context

is a movement pattern template with a particular configuration of attributes taken

from AV and AE (note that individual shape definitions do not specify particular

attribute values or combinations of values). Thus, for example, we might have a

shape:

〈{A1, A2}, {E1, E2}{A3, A4}〉
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Figure 4.4: The 27 different shapes when |AV | = 2 and |AE | = 2, as in the
case of the example network given in Figure 3.1.

where A1, A2, A3 and A4 are in AV , A1 6= A2 and A3 6= A4, although A1, can

equal A3 or A4, and/or A2 can equal A3 or A4. Similarly E1 and E2 are in AE

and E1 6= E2.

The total number of shapes that can exist in a FET dataset D, under normal

circumstances, is significantly less than the number of candidates that exist in the

same dataset D. The total number of shapes can be calculated using Equation

4.2, where: (i) |AV | is the size of the attribute set AV and (ii) |AE| is the size of

the attribute set AE. Recall that attributes for F and T are drawn from the same

domain. Thus if |AV | = 2 and |AE| = 2, as in the case of the movement network

given in Figure 3.1, there will be (22 − 1) × (22 − 1) × (22 − 1) = 3 × 3 × 3 = 27

different shapes as listed in Figure 4.4. If we increase |AE| to 5 there will be

(22 − 1)× (25 − 1)× (22 − 1) = 3× 31× 3 = 279 different shapes, and so on. The

efficiency of the ShaMP algorithm is directly related to the number of different

shapes that need to be considered, this will be explored further in Section 4.3

below.

(2|AL| − 1)× (2|AE | − 1)× (2|AL| − 1) (4.2)



Chapter 4. Movement Pattern Mining 59

The pseudo code for the ShaMP Algorithm is given in Algorithm 5. The input

is: (i) a binary valued input data set, represented in terms of a FET dataset D;

(ii) a desired support threshold σ; (iii) a set of vertex attributes AV ; and (iv) a

set of Edges attributes AE. The output is set of frequently occurring MPs, stored

in a set M , together with their support values, represented as a tuple of the form

〈MPi, counti〉. The algorithm commences (line 7) by generating the available set

of shapes, ShapeSet, by calling Algorithm 6, and then setting M to the empty

set (line 8). The algorithm then loops through the ShapeSet (lines 9 to 16); and,

for each shape, loops through D comparing each record rj ∈ D with the current

shape, shapei. A record rj matches a shapei if the attributes featured in the

shape also feature in rj. Where a match is found, the relevant attribute values in

ri form an MP. If the identified MP is already contained in M we simply update

the associated support value, otherwise, we add the MP to M with a support value

of 1. Once all shapes have been processed we loop through M (lines 17 to 19) and

remove all MPs whose support count is less than σ.

The pseudo code for the shape generation is given in Algorithm 6. The algo-

rithm takes as input the attribute sets AV and AE (not attribute value sets as used

in the case of the AMP approach described earlier) and outputs a set of shapes.

The algorithm operates in a similar manner to Algorithm 3 except that we are

dealing with attribute sets rather than attribute value sets.

A worked example illustrating the operation of the ShaMP algorithm is given

in Figure 4.5 using the same input data as for the AMP worked example given in

Figure 4.3; left hand side of the figure. The set of shapes is given in the middle-

left of the figure. Recall that each indivual shape consists of three parts with a

particular configuration of attributes taken from AV and AE. The list of shapes,

in this case, is the same as the list given in Figure 4.4. Only some of the shapes

exist in the input data. Note also that for each shape there will be a number

of alternative MP that fit the shape; some examples are indicated in the figure
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Algorithm 5: Shape-based Movement Pattern Algorithm

Input:
1 D = Binary valued input data set
2 σ = Support threshold
3 AV = Set of vertex attributes
4 AE = Set of Edges attributes

Output:
5 M = Set of frequently occurring MPs {〈MP1, count1〉, 〈MP2, count2〉, . . . }
6 Start:
7 ShapeSet = Generate shapes set {shape1, . . . , shapen} (See Algorithm 6)
8 M = ∅
9 forall shapei ∈ ShapeSet do

10 forall ri ∈ D do
11 if ri matches shapei then
12 MPk = MP extracted from ri
13 if MPk in M then increment support
14 else M = M

⋃
〈MPk, 1〉

15 end

16 end
17 forall MPi ∈M do
18 if count for MPi < σ then remove MPi from M
19 end

Algorithm 6: Generate Shapes

procedure generateShapes(AV , AE)
Input: AV Set of vertex attributes; AE Set of Edges attributes
Output: ShapeSet

1 Set ShapeSet = ∅
forall av ∈ AV do

forall ae ∈ AE do
forall av ∈ AV do

ShapeSet = ShapeSet
⋃
〈av, ae, av〉

return ShapeSet
end procedure
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together with their frequency counts. The final stage is to prune the identified

MPs that are not frequent according to the predefined σ threshold. Therefore,

The complexity of Shape-based Movement Pattern Algorithm is:

1. Shape generation = O( number of shape).

2. MP generation = O(n × number of shape); where n = number of records.

3. Overall complexity = O (Shape generation + (n + number of shape))

In comparison with the AMP algorithm, the ShaMP algorithm offers four

advantages:

• The nature of the value of σ has very little (no?) effect on the algorithm’s

runtime (as will be demonstrated later in this chapter in Section 4.3.1).

• It is faster than AMP when the number of shapes is relatively small, which

in turn is dictated by the values for |AV | and |AE|.

• There are no conflicts between shapes as each individual shape can be con-

sidered in isolation, hence the algorithm is well suited to parallelisation. Not

the case with respect to the AMP algorithm which operates level by level in

a top-down manner and, when parallelised, will feature significant message

passing after each level.

• The nature of the shapes can be controlled in that it would be possible

to specify only the (application dependent) particular shapes we might be

interested in.

Evidence with respect to the first two of the above advantages will be pre-

sented in the following section where the evaluation of the two algorithms, AMP

and ShaMP, is reported on. The third advantage will be elaborated on in the next

chapter, Chapter 5.
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4.3 Experiments and Evaluation

This section reports on the experiments conducted to analyse the operation of

the proposed ShaMP and AMP algorithms. The evaluation was conducted using

two categories of network data: (i) networks extracted from the CTS database

introduced in Section 3.2 and (ii) artificial networks, as introduced in Section 3.4,

where the parameters can be easily controlled. The objectives of the evaluation

were as follows:

1. To determine how the nature of the σ support threshold would affect the

operation of the ShaMP and AMP algorithms, and if so what this effect

might be.

2. To determine the effect, on the operation of the AMP and ShaMP algorithms,

of the size of the networks under consideration, in terms of the size of FETs

(the number of attributes featured in FETs).

3. To determine the effect, on the operation of the AMP and ShaMP algorithms

of the size of the networks under consideration, in terms of the number of

FETs.

The remainder of this section is divided into three Sub-sections, Subsections

4.3.1, 4.3.2 and 4.3.3. All the experiments were conducted using a single machine

with a processor 3.5 GHz Intel Core i5 processor with 32 GB, 1600 MHz, DDR3

of RAM and running under the OS operating systems.

4.3.1 Effect of Selected Support Threshold

In the context of Frequent Itemset Mining (FIM) it is clear that the lower the σ

threshold value the more frequent itemsets that will be identified; although low σ
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Table 4.1: Recorded Runtimes (seconds) using a range of values for σ and the
CTS network data

Runtime for AMP Runtime for ShaMP
σ 2003 2004 2005 2006 2003 2004 2005 2006

1.0 57 54 39 62 137 137 139 140
0.75 140 171 107 161 142 143 148 149
0.5 706 600 534 535 126 128 130 137
0.25 2681 2432 2492 2749 155 158 159 162

Table 4.2: Number of frequent MPs discovered using a range of values for σ
and the CTS network data

No. of MPs using AMP No. of MPs usin ShaMP
σ 2003 2004 2005 2006 2003 2004 2005 2006

1.0 2299 2273 2382 2279 2299 2273 2382 2279
0.75 3264 3308 3477 3337 3264 3308 3477 3337
0.5 5610 5584 5912 5602 5610 5584 5912 5602
0.25 13153 13226 13844 13170 13153 13226 13844 13170

values are thus seen as desirable because by finding many frequent itemsets there

is less chance of missing anything significant. It was anticipated that this would

also be true with respect to the AMP algorithm. How this would affect the ShaMP

algorithm was unclear, although it was conjectured that changing σ values would

have little effect.

The first set of experiments conducted to analyse the effect of the σ value

on the ShaMP and AMP algorithms used CTS data quouted into four movement

networks according to year: 2003, 2004, 2005 and 2006. A range of σ values, from

1.0 to 0.25, decreasing in steps of 0.25, was used. The results are presented in

Tables 4.1 and 4.2. Tables 4.1 gives the runtimes, in seconds, while Table 4.2 the

number of MPs generated in each case.

Considering the runtime results first, these are simplest to interpret by consid-

ering them in graph form as shown in Figure 4.6. The figure presents two graphs

one for the AMP algorithm runtimes and one for the ShaMP algorithm runtimes.

For each graph, the x-axis gives the σ values and the y-axis the runtime values
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in seconds. Note that the y-axis scales are not the same for both graphs. From

the graphs, it can be seen that in both cases the required runtime increases as

the value of σ decreases. However, the increase is exponential in the case of the

AMP algorithm whilst it is linear in the case of the ShaMP algorithm. Closer in-

spection of the graphs shows that the increase is much more marked with respect

to the AMP algorithm than the ShaMP algorithm. In fact, the largest increase

in runtime, between σ = 1.00 and σ = 0.25, using the ShaMP algorithm, is 22

seconds for the 2006 CTS network data, whilst the difference with respect to the

AMP algorithm, for the same data set, is 2687 seconds. In other words, it would

appear that changes in the value of σ have little effect on ShaMP runtime (as

conjectured). From the graphs, it is also interesting to note that it is not till σ

drops below 1.0 that usage of the ShaMP algorithm becomes more advantageous,

in terms of efficiency than usage of the AMP algorithm. This last is significant

because we wish to identify as many relevant MPs as possible and to do this we

would need to use low σ values (σ ≤ 1.0).

Considering the number of MPs generated (Table 4.2), the first thing to note

is that both the AMP and ShaMP algorithms, working entirely independently,

produced the same number of MPs, thus indicating that both algorithms are op-

erating correctly. Plotting the ShaMP results in graph form, Figure 4.7, it can

clearly be seen that the number of frequent MPs generated increases as the value of

σ decreases; this is to be expected. It can also be seen that the four CTS data sets

feature different numbers of MPs explaining the differences in the corresponding

runtimes given in Figure 4.6.

4.3.2 Effect of Size of FETs

This subsection considers the experiments conducted to determine the effect on

the AMP and ShaMP algorithms with respect to the size of the FETs considered
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(a) AMP Algorithm

(b) ShaMP Algorithm

Figure 4.6: Runtimes (secs.), using ShaMP and AMP, applied to the CTS
network datasets, and a range of σ values.
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Figure 4.7: Number of Movement Pattern, using ShaMP and AMP, applied
to the CTS network datasets, and a range of σ values.

Table 4.3: Number of ShaMP shapes for a range of different AV and AE

configurations |AE | 2 to 10 in steps of 2 and |AV | from 1 to 5 in steps of 1

AV
AE

2 4 6 8 10

1 3 15 63 255 1023
2 27 135 567 2295 9207
3 147 735 3087 12495 50127
4 675 3375 14175 57375 230175
5 2883 14415 60543 245055 983103

in terms of the number of attributes.

Before considering the conducted experimentation it should be noted that the

time complexity of the ShaMP algorithm can be calculated in terms of the number

of shapes to be considered. Table 4.3 shows the number of shapes associate with

different configurations of AV and AE. From the table, it can be seen that as the

size of AV or AE is increased the number of shapes increases exponentially.
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For the evaluation, a sequence of artificial datasets were generated where the

number of shapes increased from 500 to 5000 in steps of 500. The value for |AV |

was maintained at a constant so as to allow the AMP algorithm to perform to its

best advantage where each attribute had two possible attribute-values. For the

experiments σ = 2 was used, as discussed in Sub-section 4.3.1 using low σ value can

affect the runtime of the AMP algorithm. The results are presented in Figure 4.8.

In the figure, the x-axis represents the number of shapes (an amalgamation of |AV |

and |AE| and not just |AE|). It was thus conjectured that there must be a “cut-off”

point where the number of shapes was such that any efficiency benefits that the

ShaMP algorithm might have to offer, through avoiding candidate generation, were

negated to the extent that it would be more effective to use the AMP algorithm

instead (when using a single machine).

Figure 4.8 shows the impact of increasing the number of shapes with respect

to AV and AE on the runtime of the ShaMP and AMP algorithms. From the

Figure, the first observation that can be made, as to be expected, is that the

runtime for both algorithms increased as the number of Shapes (attribute values)

increased. Inspection of the table also demonstrates that this “cross-over” point

(“cut-off” point), when it is no longer effective to use the ShaMP algorithm, is when

the number of shapes reaches about 2, 600. In practice, given the applications

where the proposed MP mining might be applied, it was anticipated that the

traffic of interest could normally be described in terms of 2, 600 attributes or less.

Reference to Table 4.3 indicates the kinds of combinations of AV and AE that can

be considered. It should also be noted that for most applications the number of

attribute values can be expected to be considerably more than 2 as used in the

reported experiments, in which case the cut off point will be higher.
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Figure 4.8: Runtime versus numbers of shapes (σ = 2).

4.3.3 Effect of Number of FETs

The third objective of the experimentation reported on here was to determine the

effect of the size of the FET datasets considered on the operation of the AMP and

ShaMP algorithms in terms of runtime. Two sets of experiments were conducted

using artificial datasets. The first considered the effect of increasing the size of

the dataset under consideration in terms of the number of FETs in the dataset

whilst maintaining AV and AE at a constant size (and the corresponding numbers

of attribute values). The second considered the effect of increasing the size of AV

and AE whilst maintaining the number of FETs at a constant value. In both cases,

values of σ equating to 0.5 and 1.0 were used.

For the first set of experiments ten artificial datasets, featuring a range of

number of FETs from 1M to 10M , increasing in steps of 1M , were generated.
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For each dataset the same attribute sets, and corresponding attribute values were

used, |AV | = 2 and |AE| = 5. The AMP and ShaMP algorithms were applied to

these datasets using σ = 1.0 and σ = 0.5. The results are shown in Tables 4.4 and

4.5. The first table gives the runtime results (seconds) with respect to the AMP

algorithm, and the second with respect to the ShaMP algorithm.

Table 4.4: Recorded Runtimes (seconds) using artificial datasets featuring
increasing numbers of FETs and the AMP algorithm

Num FETS in Data Set
σ = 1.0 σ = 0.5

Runtime (secs) Runtime (secs)

1 M 349 2255

2 M 623 4318

3 M OutOfMemoryError OutOfMemoryError

4 M OutOfMemoryError OutOfMemoryError

5 M OutOfMemoryError OutOfMemoryError

Table 4.5: Recorded Runtimes (seconds) using artificial datasets featuring
increasing numbers of FETs and the ShaMP algorithm

Num FETS in Data Set
σ = 1.0 σ = 0.5

Runtime (secs) Runtime (secs)

1 M 77 77

2 M 149 151

3 M 153 240

4 M 247 315

5 M 387 374

6 M 474 468

7 M 551 559

8 M 607 952

9 M 1150 954

10 M 1102 1236

15 M 1968 2245

20 M OutOfMemoryError OutOfMemoryError
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Inspection of the tables clearly indicates that, as was to be expected, the

AMP algorithm was not able to handle a dataset when the number of FETs in-

creased beyond 2 million FET; the reason for this was because the AMP algorithm

operated by generating a large number of candidates that required a significant

amount of memory resource not typically available on a single machine. How-

ever, the ShaMP algorithm was able to extract movement patterns from artificial

datasets with up to 15M FET. It was also shown that the ShaMP runtime was

relatively stable using two different σ values. However, when the number of FETs

reached the 20 million, the ShaMP algorithm, operating on a single machine, was

no longer able to cope. How this issue can be addressed is considered in the next

chapter.

4.4 Summary

In this chapter two algorithms, AMP and ShaMP, have been proposed for iden-

tifying Movement Pattens (MPs) in network data. The first was founded on a

traditional approach to MP mining, while the second adopted the novel approach

of considering the “shape” of the MPs to be identified. In other words, the second

approach used knowledge of the nature of MPs to realise anticipated efficiency

gains. From the reported evaluation it was concluded that both algorithms could

successfully identify MPs in large networks, however, the ShaMP algorithm was

considerably more efficient at low support threshold (σ) values, provided that the

number of shapes was not excessive. The evaluation established that the cut-off

point, where the number of shapes was such that it was no longer beneficial to use

the ShaMP algorithm, was at 2, 600 shapes (assuming binary valued attributes,

the worst case scenario). However, it was conjectured that the real strength of

the ShaMP algorithm was that it readily leant itself to parallelisation. This is
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therefore explored in further detail in the next chapter where three different par-

allelisation approaches are considered with respect to the ShaMP algorithm. The

primary objective of the work presented in this chapter was to provide an answer

to the second subsidiary question presented in section 1.3, namely “what are the

most appropriate mechanisms whereby movement patterns can be mined (learn-

t/extracted) from network data”. The main finding of this chapter was that the

ShaMP algorithm was more efficient in term of the runtime, comparing to the

AMP algorithm.



5
Movement Pattern Mining Using Big Data

Facilities

The main objective of this thesis, as noted earlier in Chapter 1, was to develop

learning mechanisms that are able to extract the behaviour of traffic in large

networks. Large in this context was defined as networks that could not easily be

processed on a single machine. The aim was then to use the extracted behaviours

(Movement Patterns) to predict the nature of traffic movements in the context of

networks that were either similar to those from which the patterns were extracted;

or, in the case of time-variant networks, future (or past) renditions of the network.

As evidenced in Chapter 4, when using a single machine, the proposed ShaMP

algorithm was able to extract movement patterns (traffic behaviour) from networks

more efficiently than the comparator AMP algorithm, if and only if there was

enough memory on the single machine for the given network, otherwise the ShaMP

algorithm failed. The work reported on in this chapter was directed at addressing

this issue using “big data” mechanisms of various kinds. More specifically, the

work presented in this chapter focuses on the third subsidiary question (see Section

1.3):“given mechanisms for mining movement patterns from network data how can

these mechanism be scaled up to address movement pattern mining from very large

networks” in other words the network presented in this chapter is concerned with

the most appropriate mechanisms whereby the mechanisms reported on in earlier

73
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chapters, for mining movement patterns from network data, could be scaled up to

address movement pattern mining in very large networks (networks that cannot

be processed on a single machine).

The particular “big data” mechanisms considered in this chapter is Paral-

lelisation. The idea is to parallelise the operation of the ShaMP algorithm across

a number of processes. There has been extensive published research directed at

discovering frequent patterns in large datasets using the distributing computing

concept of various kinds [2, 5, 11, 23, 39, 70, 88, 100, 102, 103]; however, most

of the proposed distributed solution were based on the Apriori concept. The na-

ture of the “shapes” used in the ShaMP algorithm means that each individual

shape can be processed independently from other shapes. The ShaMP algorithm

is therefore well suited to distribution/parallelisation; this was conjectured to be

the main advantage of the ShapMP algorithm. On another hand, the AMP algo-

rithm, which operates level by level in a top-down manner and, when parallelised,

will feature significant message passing after each level, makes the AMP algorithm

entirely unsuited to distribution/parallelisation.

Three distinct big data mechanisms are considered in this chapter: (i) Shared-

Memory, (ii) Distributed-Memory and (iii) Hadoop/MapReduce. The Shared-

Memory approach assumes, as the name implies, that tasks will be executed in

parallel using n processes and that the available memory is shared between them.

For evaluation purposes Omp4j1 was used to produce a shared-memory variation

of the ShaMP algorithm; Omp4j is an open-source OpenMP preprocessor for Java.

The Distributed-Memory approach assumes that tasks will be executed in parallel

by a number of processes each of which will have its own private memory; there

is no shared memory. As such the processes need to communicate interim results

between each other by message passing. For the evaluation presented in this

1http://www.omp4j.org/home
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chapter MPJ Express2 was used to produce a distributed-memory variation of

ShaMP. MPJ Express is an open source Java message passing library that allows

application developers to write and execute parallel applications for computer

clusters. The third approach for processing large networks using ShaMP adopted

Hadoop/MapReduce. Formally speaking, Hadoop is an open source framework for

writing and running distributed user applications with respect to large amounts

of data [52]. Unlike in the case of the previous two approaches (the Shared- and

Distributed-Memory approaches), Hadoop adopts a philosophy to processing large

datasets by “moving” the code to the data, rather than the other way round. In

summary, the chapter presents three proposed “big data” variations of the ShaMP

algorithm presented in the previous chapter: (i) The ShaMP Shared Memory

System (ShaMP SMS), (ii) ShaMP Distribute Memory System (ShaMP DMS)

and (iii) ShaMP Hadoop/MapReduce System (ShaMP HMS).

The remainder of this chapter is organised as follows. The proposed three

“big data” approaches are discussed in Sections 5.1, 5.2 and 5.3 respectively. The

performance of the three approaches was evaluated and compared using a set of

experiments directed at a number of large networks. The results of this evaluation

are presented and discussed in Section 5.4. Finally, the chapter is concluded with

a summary and some conclusions in Section 5.5.

5.1 The ShaMP Shared Memory System

This section discusses the implementation of the ShaMP algorithm in the context

of the Shared-Memory “big data” mechanism. The approach is referred to as

ShaMP SMS (Shared Memory System). ShaMP SMS was realised using the Omp4j

implementation of OpenMP in java. The main principle of the share-memory

2http://mpj-express.org
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approach is that a single memory space is shared by N processes each of which

has read/write access to it. The nature of the “shapes” featured in the ShaMP

algorithm makes the algorithm well suited to being implemented in the context

of SMS. The general principle behind ShaMP SMS was that there will be an

administrator node responsible for generating all possible shapes and splitting

them into N subsets according to the number of worker nodes available. To this

end, all worker nodes share the same memory space to which a given large network

D is allocated. As a consequence, the workers can operate in parallel to extract

the desired Movement Patterns. The idea is illustrated in the Figure 5.1 which

gives an example of ShaMP SMS where four worker nodes share the same memory

space.

Algorithm 7: ShaMP SMS Algorithm
Input:

1 D = Binary valued input data set
2 σ = Support threshold
3 AV = Set of vertex attributes
4 AE = Set of Edges attributes
Output:

5 M = Set of frequently occurring MPs {〈MP1, count1〉, 〈MP2, count2〉, . . . }
6 In a given Mater node do:
7 ShapeSet = Generate shapes set {shape1, . . . , shapen} from the sets (AV , AE)

(See Algorithm 6 in Chapter 4)
8 M = ∅
9 N = Number of worker nodes in a cluster

10 Split and Distribute ShapeSet across all worker nodes P1,2,..,N

11 ShapeSet = SubShapeSet1 t SubShapeSet2 t . . . t SubShapeSetN
12 SubShapeSet = {SubShapeSet1, SubShapeSet2, . . . , SubShapeSetN}
13 In parallel and for all worker nodes do:
14 forall P1,2,...N work in parallel & on a same memory space do
15 forall shapei ∈ SubShapeSet do
16 forall ri ∈ D do
17 if ri matches shapei then
18

19 MPk

20 = MP extracted from ri if MPk in M then increment support
21 else M = M

⋃
〈MPk, 1〉

22 forall MPi ∈M do
23 if count for MPi < σ then remove MPi from M
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The operation of ShaMP SMS is given by the pseudocode presented in Al-

gorithm 7. The input to the algorithm is: (i) a Binary valued FET dataset D;

(ii) a desired support threshold σ; (iii) a set of vertex attributes AV ; (iv) a set

of edge attributes AE; and (v) the number of processes to be run in parallel, PN .

The output is set of frequently occurring MPs stored in a set M , together with

their support values, each represented as a tuple of the form 〈MPi, counti〉. The

algorithm commences with the administrator node (line 7) which first generates

the complete set of shapes, ShapeSet, by calling Algorithm 6, and then setting

M to the empty set (line 8). The administrator node then divides the ShapeSet

equally into N subsets according to the number of worker nodes available (line

10). Note that all worker nodes work in parallel and they share the same memory

space where D is stored. For each worker node, the algorithm loops through the

dataset D and compare each record rj ∈ D with the current shape shapei. A

record rj matches a shapei if all the attributes featured in shapei are also featured

in rj (rj may include additional attributes not featured in shapei). Where a match

is found the relevant attribute values in ri form an MP. If the identified MP is

already contained in M we simply update the support value, otherwise, we add

the newly discovered MP to M with a support value of 1. Once all shapes have

been processed by the worker nodes, the administrator node will loop through M

and remove all MPs whose support count is less than σ.

5.2 The ShaMP Distributed Memory System

This section discusses the distributed memory implementation of the ShaMP al-

gorithm, ShaMP Distributed-Memory System (ShaMP DMS), a parallel approach

for extracting Movement Patterns from FET data. ShaMP DMS was realised us-

ing the MPJ Express java implementation of the Message Passing Interface (MPI).

The main principle of any DMS is that each worker node has its own privet memory
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space, thus “message passing” is the only way that worker nodes can communicate

with one another. This is often seen as a disadvantage of DMS in the context of

algorithms which feature a high message passing overhead. However, as noted

previously, the advantage offered by the ShaMP algorithm, with respect to the

alternative AMP algorithm, is that there is no requirement for any inter-worker

communication. The basic ShaMP algorithm was modified so as the benefit from

the DMS principle. The general idea was that a single administrator node would

control N worker nodes who in turn would work in parallel, but using their pri-

vate memory space, to extract the desired Movement Patterns. The Administrator

node would be responsible for generating a set of shapes that feature in a given

FET dataset D representing a network G, and then distribute the shapes across

the N worker nodes by splitting the generated shape set into N subsets, one for

each worker node. The process is illustrated with a worked example in Figure

5.2. An obvious disadvantage of ShaMP DMS is the large amount of memory,

compared to ShaMP SMS, that needs to be available to each worker node so that

a full copy of D can be stored at each worker node.

The operation of ShaMP DMS is similar to that of ShpMP SMS, and is given

by the pseudocode presented in Algorithm 8 (ShaMP MPJ). The input, as in

the case of ShaMP SMS, is: a Binary valued FET dataset D, a desired support

threshold σ, a set of vertex attributes AL, set of Edges attributes AE and the

number of processes to be run in parallel PN . The output, as before, is a set of

frequently occurring MPs stored in a set M , together with their support values,

each represented as a tuple of the form 〈MPi, counti〉. The algorithm commences

with the administrator node (line 7) first generating the complete set of shapes,

ShapeSet, by calling Algorithm 6, and then setting M to the empty set (line

8). The administrator node then divides the ShapeSet equally into N subsets

according to the number of worker nodes available (line 10). Note that all worker

nodes work in parallel and they have their private memory space; this is the main



Chapter 5. Movement Pattern Mining Using Big Data Facilities 80

M
in

 S
up

po
rt

 T
hr

es
ho

ld
 =

 3
5%

T
oy

 n
et

w
or

k
 e

xa
m

pl
e

á{
x 1

	}	
,	{
a 1

	}	
,	{
x 1

	}ñ
,	3

.		
			
			
			
			
			
			
			
			
		.
			
			
			
			
			

.		
			
			
			
			
			
			
			
			
		.

.		
			
			
			
			
			
			
			
			
		.

á{
y 1
}	,
	{b

1}
	,	
{y

2}
ñ,
	3

M
ov
em

en
t	P

at
te
rn
	>
=	
M
in
	S
up

po
rt
	

Th
re
sh
ol
d

Fi
na
l	o
ut
pu

t
M
as
te
r	N

od
e

Sl
av
e1

Su
b 

Sh
ap

es
 s

et
 1

Sl
av
e2

Su
b 

Sh
ap

es
 s

et
 2

Sl
av
e3

Su
b 

Sh
ap

es
 s

et
 3

Sl
av
e4

Su
b 

Sh
ap

es
 s

et
 4

Sh
ap
es
	

ge
ne

ra
te
	&
	

sp
lit
tin

g	
ac
ro
ss
	

sla
ve
	m

ac
hi
ne

s		

F
ig
u
r
e
5
.2
:

W
o
rk

ed
ex

a
m

p
le

il
lu

st
ra

ti
n

g
th

e
op

er
at

io
n

S
h

aM
P

D
M

S
as

im
p

le
m

en
te

d
u

si
n

g
M

P
J

ex
p

re
ss

(σ
=

3
5%

).



Chapter 5. Movement Pattern Mining Using Big Data Facilities 81

difference between ShaMP SMS and ShaMP DMS. The parallelization commences

at (line 14) where all PN work in parallel. For each shape the algorithm loops

through the dataset D and compare each record rj ∈ D with the current shape,

shapei. A record rj matches a shapei if all the attributes featured in shapei are

also featured in rj (rj may include additional attributes not featured in shapei).

Where a match is found the relevant attribute values in ri form an MP. As in the

case of the ShaMP SMS algorithm, if the identified MP is already contained in

M we simply update the support value, otherwise we add the newly discovered

MP to M with a support value of 1. Once all shapes have been processed by the

worker nodes the administrator node loops through M and remove all MPs whose

support count is less than σ.

Algorithm 8: ShaMP DMS Algorithm
Input:

1 D = Binary valued input data set
2 σ = Support threshold
3 AV = Set of vertex attributes
4 AE = Set of Edges attributes
Output:

5 M = Set of frequently occurring MPs {〈MP1, count1〉, 〈MP2, count2〉, . . . }
6 In a given Mater node do:
7 ShapeSet = Generate shapes set {shape1, . . . , shapen} from the sets (AV , AE)

(See Algorithm 6 in Chapter 4)
8 M = ∅
9 N = Number of woker nodes in a cluster

10 Split and Distribute ShapeSet across all worker nodes P1,2,...,N :
11 ShapeSet = SubShapeSet1 t SubShapeSet2 t . . . t SubShapeSetN
12 SubShapeSet = {SubShapeSet1, SubShapeSet2, . . . , SubShapeSetN}
13 In parallel and for all worker nodes do:
14 ∀ PN has SubShapeSeti and D
15 forall shapei ∈ SubShapeSet do
16 forall ri ∈ D do
17 if ri matches shapei then
18

19 MPk

20 = MP extracted from ri if MPk in M then increment support
21 else M = M

⋃
〈MPk, 1〉

22 forall MPi ∈M do
23 if count for MPi < σ then remove MPi from M
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5.3 The ShaMP Hadoop/MapReduce System

This section presents the proposed coupling ShaMP system with Hadoop and

MapReduce (ShaMP HMS). The utilisation of the Hadoop framework for any dis-

tributed computing process is not straightforward; there are number of stages that

need to be addressed. With respect to the ShaMP algorithm, movement patterns

can be extracted from a large network, using Hadoop and MapReduce, using a five

stage process: (i) uploading of the given data set D to the Hadoop Distributed File

System (HDFS), (ii) shape generation, (iii) map function execution, (iv) shuffle

and (v) reduce function execution. Each of these stages is discussed in further de-

tail in the remainder of this section. A worked example illustrating the operation

of ShaMP MRS, with σ = 35%, is given in Figures 5.3.

The first ShaMP HMS stage is the loading of a given FET dataset D into the

Hadoop Distributed File System (HDFS)3. For the Hadoop framework, HDFS is

written in Java. The input data should be uploaded into the same directory where

Hadoop is located so that it can be used by MapReduce nodes. After the given

data has been uploaded successfully HDFS will divide/split it into small chunks

with a typical size of several dozen megabytes (i.e 46MB or 128MB) and store them

at DataNodes as indicated in Figure 5.3 by the three blue cylinders; DataNodes

represent worker nodes in a computer cluster, each with its own storage, they are

controlled by a single administrator node called the NameNode.

The second stage is shape generation, indicated in Figure 5.3 by the green

rectangle. In this stage, all possible shapes are generating in a similar manner

to that described for ShaMP SMS and ShaMP DMP above. Every DataNode

generates the same set of shpes to make sure each individual DataNode can work

independently without a need for shape transfer between DataNodes.

3https://hadoop.apache.org/
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Like any other MapReduce programme, two functions need to be defined, the

Map and Redcue functions. The third stage is then the execution of the given

map function whereby the identified data chunks from stage two are processed.

The input for this stage is a defined set of shapes. The mapping task, conducted

at each DataNode, is done by looping through the given shapes and for each

shape will loop through the dataset D to extract an intermediate set of movement

patterns S which is temporarily held in the form of a set of 〈Key, V alue〉 pairs;

where in this case Key is an MP and V alue is the occurrence count for the MP

which at this stage will equate to 1. This stage is shown by orange rectangles in

Figure 5.3.

The fourth stage is the shuffle stage where Hadoop groups together all inter-

mediate 〈Key, V alue〉 pairs produced by the Map function which have the same

key so as to produce a list of n values for each key {Key, value1, value2, . . . } as

indicated by blue rectangles in Figure 5.3.

The final stage is the execution of the reduce function. This is the function

responsible for outputting the result to the HDFS. This stage is indicated by the

blue cylinder on the right-hand side of Figure 5.3.

The operation of ShaMP HMS is given by the pseudocode presented in Al-

gorithm 9 (ShaMP Hadoop). Note that all of the above five stages are executed

in parallel at each DataNode. The algorithm comprises both Map and Reduce

functions. The input for the Map function is again a network G represented in

terms of a FET dataset D, and a desired support threshold σ; while the output

is a set S comprised of a set of tuples of the form 〈Key, V alue〉 where, as already

noted, Key is an MP and V alue is the corresponding occurrence count value. The

input to the Reduce function is the set S, whilst the output is the desired set of

MPs, M . The Map task commences by generating the available set of shapes. For

each shape, the algorithm loops through D comparing each record rj ∈ D with
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the current shape shapei, where a match is found, a key-value 〈MP, 1〉 is created.

The Reduce function aggregates all the MPs with the same key (MP) so as to

produce frequency counts for each key (MP). After that, the set S is processed

and any MPs that have a frequency count greater than σ are appended to the set

M .

Algorithm 9: ShaMP Haddop Algorithm

Input:
1 D = Binary valued input data set
2 σ = Support threshold
3 AV = Set of vertex attributes
4 AE = Set of Edges attributes

Output:
5 M = Set of frequently occurring MPs {〈MP1, count1〉, 〈MP2, count2〉, . . . }
6 Start:
7 ShapeSet = Generate shapes set {shape1, . . . , shapen} from the sets (AV ,

AE) (See Algorithm 6 in Chapter 4)
8 Map Function:
9 Begin:

10 S = ∅
11 ShapeSet = The set of possible shapes
12 {shape1, shape2, . . . }
13 forall shapei ∈ ShapeSet do
14 forall ri ∈ D do
15 MPk = MP extracted from ri
16 MPkSupportCount = Count (MPk,1)

17 S = S
⋃
〈MPk, 1〉

18

19 Reduce Function:
20 Begin:

Input:
21 S set from Map Function

Output:
22 M = Set of frequently occurring MPs M =
23 {〈MP1, count1〉, 〈MP2, count2〉, . . . }
24 forall 〈MPs, 1〉 pairs ∈ S do
25 〈MPs, count〉 = Aggregation all 〈MPs, counter〉
26 pairs that have same MP
27 if count for MP > σ then M = M ∪ 〈MPs, count〉

A perceived disadvantage of the Hadoop framework, in the context of ShaMP,

is that it requires significant interchange with the HDFS. It was conjectured that
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this would slow down the operation of ShaMP HMS compared with ShaMP SMS

and SgaMP DMS.

5.4 Experiments and Evaluation

This section reports on the experiments conducted to analyse the operation of the

proposed ShaMP parallel and distributed variations considered in this chapter: (i)

ShaMP SMS, (ii) ShaMP DMS and (iii) ShaMP HMS. The evaluation was con-

ducted using two categories of network data: (i) networks extracted from the CTS

database introduced in Section 3.2 and (ii) artificial networks, as introduced in

Section 3.4. The first was used to investigate the operation of the variations with

respect to real data, and the second to investigate the operation of the variations

under changing parametric conditions (the parameters can be easily controlled

when using artificial data). The objective of the evaluation was to compare the

operation of the ShaMP algorithm, using three different parallel variations, so as

to determined which variation was most suitable with respect to large networks;

the metric used was run time. In the context of the experiments conducted to de-

termine the effect of distributing the ShaMP algorithm the desired parallelisation

was achieved using a 4 Xeon Phi node cluster where each node had 40 cores. In

the remainder of this section the experiments with regard to the CTS dataset are

reported on in Sub-section 5.4.1, while those with respect to the artificial datasets

are reported on in Sub-section 5.4.2.

5.4.1 Evaluation Results Using CTS Data

This section presents the results obtained with respect to experiments conducted to

compare the efficiency of the operation of the three proposed distribution ShaMP

variations. For this purpose the four CTS network datasets used with respect to
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Figure 5.4: Runtime comparison between ShaMP SMS, ShaMP DMS and
ShaMP HMS using CTS network data.

the evaluation presented in chapter 4 “were again used”: 2003, 2004, 2005, and

2006. The efficiency results obtained are presented in Figure 5.4. From the figure,

it can clearly be seen that the runtime for ShaMP DMS is much faster than that for

ShaMP SMS and ShaMP HMS. The reason for this was because the nature of the

MPI, implement using MPJ Express in the case of the evaluation of ShaMP DMS,

was more beneficial when the amount of messages passing between processes is not

too large (a number of FETs of less than 3 million). With respect to ShaMP HMS,

usage of the Hadoop framework involved many saves to the Hadoop Distributed

File System (HDFS), this made the Hadoop framework slower in comparison to

ShaMP SMS and ShaMP DMS.

5.4.2 Evaluation Results Using Artificial Data

It was clear that, whatever ShaMP variation used, as the number of edges in-

creased, the runtimes for ShaMP SMS, ShaMP DMS, and ShaMP HMS would also

increase. However, there would be a point where one of these algorithms could
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Table 5.1: Runtime comparison between ShaMP SMS, ShaMP DMS and
ShaMP HMS using artificial data sets.

# RunTime
Dataset Size in million Using DMS Using SMS Using Hadoop

5 5 5 148
10 10 10 320
15 15 15 370
20 22 20 505
25 30 26 615
30 35 30 Unable to process
35 43 36 Unable to process
40 48 43 Unable to process
45 56 51 Unable to process
50 66 64 Unable to process

no longer process the number of edges to be considered. To determine where this

point might be a sequence of five artificial datasets was generated that featured

increasing numbers of edges ranging from 5, 000, 000 to 50, 000, 000 in steps of

5, 000, 000. In addition, for the artificial datasets |Av| = 2 and |AE| = 5 were used

because these were the values featured in the CTS datasets. For the experiments,

σ = 1.0 was used. Table 5.1 presents the results obtained using the artificial data

sets. From the Table, it can be seen that there are no significant differences in

operation between ShaMP DMS and ShaMP SMS with respect to the artificial

data sets. However, as the number of edges increased, the ShaMP HMS algorithm

was eventually no longer able to process the data as the extent of the message

passing between machines became restrictive. This occurred when the numbers

of edges were more than 25 million. The reason for this relates to the Hadoop

Distributed File System (HDFS) and the MapReduce process. Hadoop splits files

into blocks and distributes them across nodes in a cluster and when the size of

the dataset becomes large some machines will no longer have enough disk space to

store the temporary files generated. However, with respect to ShaMp DMS and

ShaMP SMS, the two algorithms were able to process data in an efficient manner

even when 50 million edges were considered (less than ∼ 65 minutes). To give a

better feel for the ShaMP SMS and ShaMP DMS runtimes these are presented in

the form of a plot in Figure 5.5.
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Figure 5.5: Runtime (minutes) comparison between ShaMP DMS and ShaMP
SMS using artificial data sets.

5.5 Summary and Conclusions

In this chapter, a number of variations of the ShaMP algorithm from the previous

chapter have been proposed that incorporate various “big data” mechanisms so

as to be able to apply the MP mining concept to large datasets. Three ShaMP

variations were proposed: The ShaMP Shared Memory System (ShaMP SMS),

the ShaMP Distribute Memory System (ShaMP DMS) and the ShaMP Hadoop

MapReduce System (ShaMP HMS). The first was founded on the Shared Mem-

ory System (SMS) and implemented using Omp4j. The second was founded on

the Distributed Memory System (DMS) and implemented using MPJ Express.

The third was founded on Hadoop/MapReduce. From the reported evaluation de-

signed to compare the efficiency of the proposed variations it was concluded that

both ShaMP SMS and ShaMP DMD could successfully be applied in reasonable

runtime; however, ShaMP HMS was found to be slow and was unable to process

large networks (25 million edges and above). The primary objective of the work

presented in this chapter was to provide an answer to the third subsidiary question

presented in section 1.3, namely “given mechanisms for mining movement patterns
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from network data how can these mechanisms be scaled up to address movement

pattern mining from very large networks”. The work and evaluation presented

in this chapter have established that ShaMP algorithm is well suitable to handle

very large networks by utility big data facilities, like Share/Distribute Memory

Systems and Hadoop/MapReduce, because of the nature the shapes concept used

that makes the algorithm well suitable to be implemented in a parallized man-

ner. The next chapter will focus on how to utilize the extracted traffic behaviour

(Movement Patterns) to predict the nature of traffic movement.



6
The Application Of Movement Patterns

The fourth subsidiary research question (see Section) 1.3 was “Once we have a

collection of movement patterns how can they best be applied to previously unseen

network data and how do we know whether the manner in which movement pat-

terns are applied produces the correct results? . The work presented in this chapter

was directed at providing an answer to this subsidiary research question. The

fundamental idea of the Movement Pattern (MP) concept, the main motivation,

was that they can be used to predict traffic movement. This prediction can be

considered in two contexts:

1. The Global Context: The prediction of the nature of traffic movement

(the network connectivity) in the context of entire networks that were either

similar to those from which the MPs were extracted; or, in the case of time-

variant networks, future (or past) renditions of the network.

2. The Local Context: The prediction of the nature of traffic movement

(connectivity) between a newly introduced network node and the remainder

of a given network.

The first scenario was considered in the context of the CTS network, thus

predicting cattle movement in future or related networks. The idea was to investi-

gate a mechanism that might be used to provide answers to questions of the form:

91
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“given the nature and volume of ‘traffic’ in a given network N at time t what

will the nature and volume of traffic be at time t + δ?”, or alternatively “given

the nature and volume of ‘traffic’ in a given large network N what will be the

nature and volume of traffic in a closely related network M?”. Note that this form

of prediction is distinct from other applications that involve movements such as

trajectory or link prediction.

The second scenario was considered in the context of the DSN network; thus

predicting the nature of the message flow with respect to a newly introduced node.

Predictions of this form could then be used to make “dating” recommendations.

The aim was to illustrate the idea that the MP concept also has application in the

context of recommender systems, more specifically recommender systems embed-

ded into Social Networks.

The remainder of this chapter is organised as follows. Mechanisms for achiev-

ing Global MP Prediction are discussed in Sections 6.1; the section also reports

on the results of experiments directed at measuring the accuracy of the proposed

mechanism with respect to the CTS network data. Mechanisms for Local MP

prediction are then discussed in Section 6.2 with a focus on local MP prediction

in the context of recommender systems. Finally, the chapter is concluded with a

summary and some conclusions in Section 6.3.

6.1 Global Movement Pattern Prediction

The fundamental idea of Global MP prediction, as presented in this section, is to

use frequently occurring MPs extracted from a given network, where the traffic is

known, and apply these patterns to a related network where the traffic is unknown.

In other words, to apply extracted MPs to a network work where we only have

descriptions of the vertices and not the edges; it is the edges and their nature that
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we wish to predict. More formally the idea is to use the frequently occurring MPs

that have been mined from a network G = {V,E} to predict movement (traffic) in

a previously unseen but related network G′ = {V ′, E ′ where E ′ = ∅ (the previously

unseen network is thus comprised solely of vertices).

In the case of the DSN application, we might wish to apply global MP pre-

diction to establish what the traffic in the network might be in the future. Alter-

natively, we might wish to predict the traffic in a parallel DSN. In the case of the

CTS network, we might wish to apply global MP prediction to determine what

the traffic in the CTS will be in the future. Alternatively, we might wish to apply

global MP prediction to determine the cattle movement in a related network; for

example, a CTS set up in a neighboring country. The work presented in this sec-

tion focuses on the later although the proposed mechanism could equally well be

applied to the first.

The remainder of this section is divided into two subsections. Sub-section

6.1.1 presents the proposed global movement pattern prediction mechanism. The

evaluation of this mechanism is then presented in Sub-section 6.1.2.

6.1.1 The Global Movement Pattern Prediction Mecha-

nism

The basic challenge, given a previously unseen network comprised only of vertices,

is to predict the edges that will exist. To do this, every pair of vertices in G′ needs

to be compared with the vertices in the collected set of movement patterns M .

The matching can be conducted in various ways that can be categorised as either:

(i) exact matching or (ii) partial matching. The intuition was that exact matching

would be too restrictive and thus partial matching was adopted. More specifically,

given two vertices vi ∈MPi (either the From or To vertex) and vj ∈ V ′ a match
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exists if vi ⊆ vj, in other words vj can include additional attribute values but

must include the attribute values making up vi. The novel mechanism proposed

for populating E ′, using partial matching as described above, was to first predict

the MPs that exist in G′ and to then use these to populate E ′.

The pseudocode for predicting the MPs that exist in G′ is given in Algorithm

10. The algorithm takes as input a set of previously derived MPs M and a network

G′ = {V ′, E ′} where E ′ = ∅. Note that there is no requirement for any direct

correspondence between V and V ′. The output is a set of predicted MPs I; on

startup I = ∅. The algorithm commences by looping through all MPs in M . For

each MP the “from” and “to” vertex attribute-value sets (Fromi and Toi) are

extracted. The algorithm then loops through V ′ to check if Fromi is a subset of

any vj ∈ V ′. If so the algorithm loops through V ′ again to check if Toi is a subset

of any vk ∈ V ′. If so the edge attribute-value set is extracted from MPi and used

to form the tuple 〈Fromi, Edgei, T oi〉 which is added to the set i so far (the set

of predicted MPs). The set of predicted MPs is then used to populate E ′.

6.1.2 The Accuracy Of Movement Pattern Prediction

The accuracy of the proposed prediction mechanism was tested using the CTS

network training and test datasets (20003, 2004, 2005 and 2006). The idea was

to compare the set of predicted MPs, M ′, with the set of MPs known to exist

in the test data. More specifically the evaluation was conducted by applying the

MPs extracted with respect to one year to the vertices of all other years and

determining the frequent MPs that resulted (using the same σ value). In each

case, the resulting set M ′ of predicted MPs was compared with the set of known

“ground truth” MPs MT .

As noted above, the performance measures used were Precision, Recall and
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Algorithm 10: Prediction Mechanism

Input:
1 M = Set of frequently occurring MPs M =
2 {〈MP1, count1〉, 〈MP2, count2〉, . . . }
3 describing trafic a network G
4 G′ = A previously unseen net work G′ = {V ′, E ′}
5 where E ′ = ∅

Output:
6 I = Set of predicted MPs in G′, I =
7 {〈MP ′1, count

′
1〉, langleMP ′2, count

′
2〉, . . . }

8 Start:
9 for all MPi ∈M do

10 Fromi = From attribute value set extracted
11 from MPi

12 Toi = To attribute value set extracted
13 from MPi

14 for all vj ∈ V ′ do
15 if Fromi ⊆ vj then
16 for all vk ∈ V ′ do
17 if Toi ⊆ vk and vj 6= vk then
18 Edgei = Edge attribute values
19 set extracted from MPi

20 I = I ∪ 〈Fromi, Edgei, T oi〉

the F1 measure [65]. Note that high precision relates to a low false positive rate,

and high recall relates to a low false negative rate. High scores for precision

and recall show that the predictor is performing well. The F1 measure combines

both precision and recall and is thus the most significant measure. The results

are presented in Tables 6.1, 6.2, 6.3 and 6.4. Each table shows the test results

from using the MPs extracted from one year of data (2003, 2004, 2005 and 2006

respectively) to the remaining three years. Concentrating on the F1 measure,

average values of 0.945, 0.951, 0.935 and 0.932 were generated, an overall average

of 0.941, a very good result. The overall average values for precision and recall

were 0.965 and 0.919 respectively, again a very good result.

In summary, from the main findings, it may be concluded that the proposed
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Table 6.1: Accuracy of proposed prediction mechanism using MPs generated
from the 2003 CTS data set.

Network from which G′ network = 2003
MPs were extracted Percision Recall F1

2004 0.978 0.967 0.973
2005 0.967 0.89 0.927
2006 0.961 0.929 0.945

average 0.961 0.929 0.945

Table 6.2: Accuracy of proposed prediction mechanism using MPs generated
from the 2004 CTS data set.

Network from which G′ network = 2004
MPs were extracted Percision Recall F1

2003 0.971 0.971 0.971
2005 0.979 0.895 0.935
2006 0.946 0.948 0.947

average 0.965 0.938 0.951

Table 6.3: Accuracy of proposed prediction mechanism using MPs generated
from the 2005 CTS data set.

Network from which G′ network = 2005
MPs were extracted Percision Recall F1

2003 0.95 0.917 0.933
2004 0.962 0.918 0.939
2006 0.954 0.913 0.933

average 0.955 0.916 0.935

Table 6.4: Accuracy of proposed prediction mechanism using MPs generated
from the 2006 CTS data set.

Network from which G′network = 2006
MPs were extracted Percision Recall F1

2003 0.957 0 .863 0.907
2004 0.968 0.889 0.927
2005 0.991 0.817 0.896

Average 0.979 0.892 0.932
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prediction mechanism can be effectively used to accurately predict traffic (move-

ment) in previously unseen networks.

6.2 Local Movement Pattern Prediction

This section discusses the usage of the concept of Movement Patterns (MPs) in

the local context where a new node is added to a network and we wish to predict

the likely traffic to and from this new node with respect to the rest of the network.

Recall that the distinctions between global movement pattern prediction and local

movement pattern prediction are:

1. For global movement pattern prediction |G′| > 1 while for local movement

pattern prediction |G′| = 1.

2. For global movement pattern prediction we are interested in predicting the

MPs within G′, while for local movement pattern prediction we are interested

in predicting the MPs that link G′ to G.

In the case of the CTS network this would be the situation where a new holding

area is added to the network and we wish to establish the cattle to and from

movements between this new holding area and the rest of the network. In the

case of the DSN application, this is where a new participant joins the network and

we wish to predict the traffic to and from this new participant. As noted above,

in the case of the DSN application, movement pattern prediction is equivalent to

making “recommendations”. Thus, in the remainder of this section, we consider

local MP prediction in terms of recommendation.

There are two types of interaction between users of social networks: (i) re-

ciprocal interaction and (ii) non-reciprocal interaction. The first is exemplified by
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the interaction between friends on facebook (the traffic is two-way), the second by

followers on Twitter (the traffic is one way). In recommender systems the inter-

action is typically non-reciprocal, a recommendation is made to a user, the traffic

is one-way. This is not the case in DSNs where the recommendation is two way,

users are recommended to each other.

The fundamental motivation for recommendation system is to help overcome

information overload. Recommender systems have also been found to provide a

significant impact with respect to improving user satisfaction in online retail set-

tings [82, 90]. Many recommendation algorithms and systems have been proposed,

however, improving recommendation accuracy, data sparsity, and “cold-start” is-

sues remain challenges for any form of automated recommendation. This is equally

true in the context of DSNs which have become an impotent platform for people

looking for potential partners online. According to a recent survey1, conducted in

the USA, more than 49 million single people (out of 54 million) have used DSNs

such as eHarmony and Match.com. Moreover, according to the same survey, 20%

of current committed relationships began online. In a large dating network find-

ing potential partners is time consuming, therefore many DSNs give compatible

partner suggestions; in the same manner as more general recommender systems,

see for example [76]. A further challenge for DSN recommendation is that the

recommender system must satisfy the preferences of pairs of users [73] as opposed

to single users. The basic operation of DSNs, regardless of the adopted recom-

mendation system used, is as follows.

1. Joining the network. When a new user joins a DSN a new user profile

is created using information provided by the new user; information such as:

age, gender, location, job, education, income, smoking, drinking, hobbies,

and so on.

1see http://www.statisticbrain.com/online-dating-statistics/



Chapter 6. The Utilization Of Movement Patterns 99

2. Browsing. After the creation of the profile, the new user can browse the

profiles of existing users (as can existing users).

3. One sides match. While browsing, users may send messages to other users.

4. Reciprocal match. On receipt of a message a user can return a message

(reciprocate). Where this happens an edge is established in the DSN. The

strength of an edge can be defined in terms of the quantity and/or duration of

the messages. A degradation factor can also be applied to take into account

the temporal nature of the network.

Given the large number of users, browsing is unlikely to be successful, hence DSN

systems also provide recommendations. Recommendations can be made when a

new user joins the network and periodically for existing users. The most com-

monly adopted techniques for automated recommendation generation are founded

on some form of Collaborative Filtering [49, 86]. A recommendation system based

on the concept of frequently occurring Movement Patterns (MPs), as proposed

in this section, represents a novel and alternative approach to automated recom-

mendation. More specifically the next section proposes the RecoMP system which

uses the MP concept to provide a set of “recommendations”. The remainder of

this section is organised as follows. The proposed RecoMP algorithm is presented

in Sub-section 6.2.1. To evaluate the proposed algorithm the idea was to compare

its operation with that of a system that adopted the established Collaborative Fil-

tering approach. To this end a second recommendation system was developed, the

RecoCF system, which is presented in Sub-section 6.2.2. The evaluation outcomes

are then presented in Sub-section 6.2.3.
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6.2.1 The Recommendation Based on Movement Patterns

Algorithm (RecoMP)

In this section, the proposed RecoMP algorithm is presented. Recall that the idea

is to use knowledge of existing frequently occurring MPs in the DSN to make

recommendations. A particular challenge of finding frequently occurring MPs in

DSNs is the size of the networks to be considered. The exemplar dataset used for

the evaluation reported on in the following sub-section comprised 548,395 vertices

and some 3.5 million edges. In other words, it was not possible to mine and

maintain all the MPs that might feature in the data set using a single machine.

Note that, although the number of MPs generated can be reduced by using a high

σ threshold, this is undesirable as we need to use a low σ threshold so as to ensure

no significant MPs are missed (the most appropriate value for σ will be considered

in Section 4.3). The proposed solution is to mine MPs as required with respect

to a specific user and to consequently generate recommendations with respect to

that specific user. Users would be considered in turn, but recommendations would

be made periodically. It would therefore not be necessary to consider all DSN

users in one processing run. In addition, by mining MPs on a required basis, the

continuously evolving (dynamic) nature of DSNs can be taken into account.

The pseudo code for the RecoMP process is presented in Algorithm 11. The

inputs are: (i) a given user profile unew, (ii) the set of all user profiles U , (iii)

the DSN represented as a FET dataset D and (iv) a desired support threshold σ.

Note that for illustrative purposes, in Algorithm 11, we have assumed a new user,

but this could equally well be an existing user for whom a new set of recommen-

dations is to be generated. The output is a set R of recommendations (matches).

The algorithm comprises two sub-processes: (i) M ining (lines 7 to 21) and (ii)

Recommendation (lines 22 to 28).

The mining sub-process is where the relevant MPs are generated. MPs are
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Algorithm 11: The RecoMPA Algorithm

Input:
1 unew = new joined user profile vector
2 U = Collection of all user profile vectors
3 D = Collection of FETs {r1, r2, ...} describing network G
4 σ = Support threshold

Output:
5 R = Set of recommended users
6 Start:
7 M ining Part:
8 M = ∅
9 Dnew = Pruning D by looping through D and considering only FETi where

F or T similar to unew
10 ShapeSet = the set of possible shapes {shape1, shape2, . . . }
11 forall shapei ∈ ShapeSet do
12 forall rj ∈ Dnew do
13 if rj matches shapei then
14 MPk = MP extracted from rj
15 if MPk in M then increment support
16 else M = M

⋃
〈MPk, 1〉

17 forall MPi ∈M do
18 if count for MPi < σ then remove MPi from M

19 Recommendation Part:
20 forall ui ∈ U do
21 forall MPj ∈M do
22 if ui ⊆MPj and ui * R then
23 R = R

⋃
ui

stored in a set M = {〈MP1, count1〉, 〈MP1, count1〉, . . . }. On startup (line 8) M is

set to the empty set ∅. The sub-process commences (line 8) by pruning D to create

Dnew (Dnew ⊂ D) so that we are left with a set of FETs where either the From

and/or the To part correspond (are similar) to unew. The benefit of this pruning

is that it results in a significantly reduced search space. Similarity measurement

was conducted using the well known Cosine similarity metric calculated as shown

in Equation 6.1 where A and B are the set of attribute values of a newly joined

user, and a selected user in the network, respectively.
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cos(A,B) =

∑n
i=1A.B√∑n

i=1A
2
i

√∑n
i=1B

2
i

(6.1)

Next (line 9) a “shape set” is generated to support MP extraction. A shape,

as in the case of the ShaMP algorithm described in Chapter 4, is an MP template

(prototype) with a particular configuration of attributes taking from the attribute

sets AV and AE without considering the associated attribute values. Once gen-

erated shapes can be populated with attribute values to give candidate MPs. As

demonstrated in the context of the ShaMP algorithm presented earlier, the shape

concept enhances the efficiency of the MPM in comparison with the more standard

Apriori approach. This is because the size of the set of attributes will be less than

the size of the set of attribute values. Recall, from Chapter 4 that the maximum

number of shapes that can exist in a FET dataset can be determined using Equa-

tion 6.2. To calculate the maximum number of MPs Equation 6.2 can be used

again but with |Av| and |AE| replaced with the size of the set of vertex and edge

attribute value sets respectively. Thus if |Av| = 2 and |AE| = 2 the maximum

number of shapes will be (22−1)×(22−1)×(22−1) = 27; if each attribute can have

two values the maximum number of MPs will be 24−1)×(24−1)×(24−1) = 3375;

a considerable difference. Note also that of the 3375 potential MPs in this example

many of them will not feature in the given dataset. Thus the shape concept was

used in the context of RecoMP because, although both increase exponentially with

the size of the attribute sets, the maximum number of shapes increases at a lower

rate than the maximum number of MPs.

(2|Av | − 1)× (2|AE | − 1)× (2|Av | − 1) (6.2)

Returning to algorithm 11 the next step is to populate the set of generated

shapes (lines 11 to 18). For each shape shapei in the shape set, and for each
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FET (record) rj in Dnew, if rj matches shapei then rj is temporarily stored in a

variable MPk. Note that a record rj matches a shapei if the attributes featured in

the shape also feature in rj. If MPk is already contained in M we increment the

associated count (line 15), otherwise we add MPk to M with a count of 1. Once

all shapes have been processed we loop through M (lines 19 to 20) and remove all

MPs whose support count is less than σ.

When the set of frequently occurring MPs has been generated the recom-

mender sub-process is commenced (line 22). For each MP MPj in M , and each

user profile (vertex) ui in U , if ui is a subset of either the From or To part of MPj,

and has not previously been recorded in R, ui is appended to R (line 23). In this

manner, a set of recommended users is generated.

6.2.2 The Recommendation Based on Collaborative Fil-

tering Algorithm (RecoCF)

To evaluate the proposed RecoMP algorithm described above its operation was

compared with a Collaborative Filtering based approach. As noted above, a bench-

mark Collaborative Filtering system, the RecoCF system, was developed for this

purpose. Details concerning this system are presented in this section.

The general methodology for Collaborative Filtering based recommendation,

for any system, can be described in terms of the following two steps:

1. Identify users who share the same vector pattern with the service user (the

user for whom the prediction is for).

2. Use the preferences of those users founded in step 1 to create a prediction

(recommendation) for the service user.
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The same methodology was adopted with respect to the RecoCF system. The

pseudo code for this system is presented in Algorithm 12. As in the case of the

RecoMP algorithm, the RecoCF algorithm takes the same input except there is

no need for a σ threshold. The output, as before, is a set of recommended users

R. The algorithm commences (line 6), as in the case of the RecoMP algorithm,

by pruning the dataset D to give Dnew. Then for each record (FETs) in Dnew the

From and To attribute value sets are extracted (lines 8 and 9), the sets Fromi and

Toi. If Fromi is a subset of unew (the new user profile) the user profile associated

with Fromi is added to R if it has not already been included. Similarly, if Toi is

a subset of unew the user profile associated with Toi is added to R, again provided

if has not already been included. The result is a set R of recommended users

(matches).

Algorithm 12: The RecoCF Algorithm

Input:
1 unew = new joined user profile vector
2 U = Collection of all user profile vectors
3 D = Collection of FETs {r1, r2, ...} describing network G

Output:
4 R = Set of recommended users
5 Start:
6 Dnew = Pruning D by looping through D and considering only FETi where

F or T similar to unew
7 forall Di ∈ Dnew do
8 Fromi = return From part from Di

9 Toi = return To part from Di

10 if Fromi ⊆ unew and Fromi * R then
11 R = R

⋃
Toi

12 else if Toi ⊆ unew and Toi * R then
13 R = R

⋃
Fromi

6.2.3 Evaluation

This section reports on the comparison of the operation of the RecoMP system

with the RecoCF system. The evaluation was conducted using the DSN dataset
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presented earlier. The metrics used for the evaluation were: (i) Recall (R), (ii)

Precision and (iii) F-score (F) calculated as follows:

R =
TP

TP + FN
(6.3)

P =
TP

TP + FP
(6.4)

F = 2× recall × precision
recall + precision

(6.5)

where: TP (True Positives) is the number of recommendation correctly predicted,

FN (False Negatives) is the number of recommendations we should have predicted

but did not predict and FP (False Positives) is the number of incorrect recommen-

dations made. Thus precision is the ratio of the number of correct recommenda-

tions over the total number of recommendations, if this is 1.000 we have all the

correct recommendations and no wrong ones (we have got all the right recommen-

dations and made no incorrect recommendations). Recall in turn is the ratio of

the number of correct recommendations over the total number of recommenda-

tions we should have made, if this is 1.000 we have not missed anything. Thus

if we have good recall this does not necessarily mean we will have good precision

and vice-versa. The F-score, the (harmonic) mean of recall and precision, is thus

a good overall measure.

Two sets of experiments were conducted. The first focussed on a random sam-

ple of 50 users (without repetition), the aim being to conduct a detailed analysis of

the operation of RecoMP compared to RecoCF in the context of individual users.

The second used a variation of Ten Cross Validation (TCV) whereby the entire

Jiayuan.com FET database was divided into tenths and the process run ten times
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with a different tenth used for testing. More specifically for each run a random

sample of ten users was extracted from the testing tenth and used for the evalua-

tion. In this manner, the process of TCV could be conducted without processing

all 548, 395 vertices represented in the database. For both sets of experiments, a

threshold value of σ = 1.0 was used.

The results with respect to the first set of experiments are presented in Table

6.5. From the table it can be seen that recommendations made using the RecoMP

algorithm were generally better (more accurate) than those generated using the

RecoCF approach, although for some users (#3, #12, #25, #29, #44, #50) the

collaborative filtering approach produced recall, precision and F-score values of

1.000. The average recall, precision and F-score using RecoMP were 0.904, 1.000

and 0.941; compared to average recall, precision and F-score values of 0.435, 0.888

and 0.503 using RecoCF. Note also that SD values produced using RecoMP are

small compared to when RecoCF is used. It is also interesting to note that the

precision using RecoMP was frequently 1.000.

The results with respect to the second set of experiments are given in Tables

6.6 and 6.7; Table 6.6 gives the results using the RecoMP algorithm while Table

6.7 gives the results using the RecoCF algorithm. The tables give the average

Precision (P), Recall (R) and F-score (F) for each tenth, and a total average and

Standard Deviation (SD). Inspection of the tables clearly indicates that the rec-

ommendations made using the RecoMP are better than those generated using the

RecoCF. The total average recall, precision and F-score using RecoMP were 0.928,

1.000 and 0.961; compared to total average recall, precision and F-score values of

0.322, 0.744 and 0.392 using RecoCF with small SD values were recorded. Again

it is interesting to note that the total average precision using RecoMP, as before,

was frequently 1.000; meaning we often make all the correct recommendations and

no incorrect recommendations.
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Table 6.5: Comparative performance of RecoMP and RecoCF over 50 ran-
domly selected users

#User RecoMP RecoCF

ID Percision Recall F1 Percision Recall F1

#1 1.000 1.000 1.000 0.21 0.12 0.355

#2 1.000 1.000 1.000 0.229 0.833 0.359

#3 1.000 1.000 1.000 1.000 1.000 1.000

#4 0.8 00 1.000 0.888 0.072 0.958 0.135

#5 0.966 1.000 0.982 0.986 0.986 0.986

#6 0.857 1.000 0.923 0.651 0.978 0.782

#7 0.764 1.000 0.866 0.344 0.917 0.501

#8 0.915 1.000 0.955 0.976 0.991 0.983

#9 0.980 1.000 0.990 0.892 0.992 0.939

#10 1.000 1.000 1.000 0.047 0.096 0.063

#11 0.887 1.000 0.940 0.356 0.884 0.507

#12 1.000 1.000 1.000 1.000 1.000 1.000

#13 0.997 1.000 0.998 0.382 0.949 0.545

#14 1.000 1.000 1.000 0.647 0.952 0.770

#15 0.932 1.000 0.964 0.991 0.991 0.991

#16 0.822 1.000 0.902 0.994 0.994 0.994

#17 1.000 1.000 1.000 0.148 0.967 0.257

#18 1.000 1.000 1.000 0.158 0.983 0.273

#19 0.971 1.000 0.985 0.676 0.872 0.761

#20 0.949 1.000 0.973 0.042 0.9 00 0.080

#21 0.838 1.000 0.912 0.988 0.988 0.988

#22 1.000 1.000 1.000 0.013 0.794 0.026

#23 0.920 1.000 0.958 0.574 1.000 0.729

#24 1.000 1.000 1.000 0.110 1.000 0.198

#25 0.993 1.000 0.996 1.000 1.000 1.000

#26 0.937 1.000 0.967 0.231 0.941 0.372

#27 0.585 1.000 0.738 0.180 0.9 00 0.300

#28 0.631 1.000 0.774 0.958 0.958 0.958

#29 1.000 1.000 1.000 1.000 1.000 1.000

#30 0.799 1.000 0.888 0.006 1.000 0.012

#31 0.953 1.000 0.976 0.186 0.805 0.303

#32 0.352 1.000 0.521 0.305 0.916 0.458

#33 1.000 1.000 1.000 0.034 0.739 0.065

#34 0.878 1.000 0.935 0.986 0.99 0.988

#35 0.931 1.000 0.964 0.144 0.405 0.212

#36 0.96 1.000 0.979 0.082 0.815 0.149

#37 0.839 1.000 0.912 0.788 0.976 0.872

#38 0.872 1.000 0.931 0.261 0.941 0.409

#39 0.966 1.000 0.983 0.067 0.853 0.125

#40 1.000 1.000 1.000 0.125 0.941 0.222

#41 0.886 1.000 0.94 0.056 0.885 0.107

#42 0.327 1.000 0.493 0.021 0.950 0.042

#43 0.932 1.000 0.965 0.447 0.985 0.615

#44 1.000 1.000 1.000 1.000 1.000 1.000

#45 0.895 1.000 0.945 0.129 0.838 0.224

#46 1.000 1.000 1.000 0.034 0.931 0.065

#47 1.000 1.000 1.000 0.010 0.900 0.021

#48 1.000 1.000 1.000 0.017 0.681 0.033

#49 0.915 1.000 0.956 0.238 0.922 0.378

#50 1.000 1.000 1.000 1.000 1.000 1.000

Average 0.905 1.000 0.942 0.436 0.888 0.503

SD 0.149 0.00 0.105 0.391 0.192 0.372
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Table 6.6: TCV results using the RecoMP algorithm

# RecoMP

Tenth Percision Recall F1

# 1 0.938 1.000 0.978

# 2 0.908 1.000 0.949

# 3 0.917 1.000 0.956

# 4 0.948 1.000 0.972

# 5 0.948 1.000 0.972

# 6 0.948 1.000 0.972

# 7 0.928 1.000 0.961

# 8 0.928 1.000 0.961

# 9 0.952 1.000 0.974

# 10 0.867 1.000 0.917

Avarage 0.928 1.000 0.961

SD 0.02 0.00 0.02

Table 6.7: TCV results using the RecoCF algorithm

# RecoCF

Tenth Percision Recall F1

# 1 0.217 0.764 0.298

# 2 0.369 0.831 0.470

# 3 0.325 0.760 0.416

# 4 0.305 0.722 0.364

# 5 0.305 0.722 0.364

# 6 0.305 0.722 0.364

# 7 0.333 0.756 0.424

# 8 0.354 0.763 0.416

# 9 0.265 0.683 0.361

# 10 0.446 0.717 0.439

Avarage 0.322 0.744 0.392

SD 0.058 0.038 0.048
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6.3 Summary and Conclusions

This chapter has explored the utility if extracted MPs in the global and local con-

texts. In the global context to predict traffic within a previously unseen network,

either a future rendition of the network from which the MPs were mined or a

separate but closely related network. In the local context to predict the traffic to

and from a given network to a newly added node. In the context of the latter,

it was noted that local prediction could be viewed as a form of recommendation

and this local MP prediction was discussed in this context. From the reported

evaluation it was firstly concluded, in the context of global prediction, that the

proposed mechanism could successfully predict MPs in large networks. Secondly,

it was concluded, in the context of local prediction, that the usage of movement

patterns for recommendation purposes provide for a significant improvement in

accuracy compared to the traditional collaborative filtering based approach. The

work presented in this chapter thus provided a satisfactory answer to the fourth

subsidiary research question considered in this thesis. In the following chapter, this

thesis is concluded with a summary of the main findings and some suggestions for

future work.



7
Conclusion And Future Vision

Large networks are very powerful representations of data and they are everywhere

in real life, The Web, social networks and traffic flow are only a few examples

of large networks, which often involved hundreds of millions or even billions of

nodes and edges. The main challenge within this abundance of nodes and edges

is how to efficiently and effectively extracted knowledge from such large networks.

Therefore, the overarching theme of this thesis has been knowledge extraction

from the large network. The idea was to develop learning mechanisms able to

extract the behaviour of traffic in large networks. More specifically, the idea was

to extract this behaviour and express this in the form of Movement Pattern (MPs)

which could then can be used to predict the nature of traffic movements in the

context of networks that were either similar to those from which the patterns were

extracted; or, in the case of time-variant networks, future (or past) renditions of

the network. To this end, the work in this thesis was divided into two parts,

the first part was based on investigating and developing an efficient mechanism

for Movement Pattern Mining (MPM), while the second part was based on the

utilization of the extracted MPs in term of prediction. This chapter presents a

summary of the research presented in this thesis in terms of the research issues

addressed, the research contributions and how the research can be progressed

further.

115
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7.1 Summary And Main Findings

As stated in Chapter 1, the key aim of the work described in this thesis was to

provide an answer to the research question: “How can the concept of movement

patterns, as envisaged in this thesis, be efficiently and effectively extracted from

large networks, and how can those movement patterns best be utilised”. Five further

subsidiary questions were identified which needed to be answered before an answer

to the overriding research question could be postulated. This section presents

a summary of the work presented in this thesis. The summary commences by

considering the subsidiary questions first and then goes on to consider the main

research question, as follow:

Q1: What is the most appropriate mechanism for preprocessing and repre-

senting large network data so that movement patterns can be extracted?

After considering various potential models it was decided that the most ap-

propriate mechanism was to process the networks so that they were represented

in the form of a three-part tuple 〈From,Edge, To〉, where each part had a num-

ber of attributes associated with it. This representation was termed the FET

representation.

Q2: Given a solution to (1) what are the most appropriate mechanisms whereby

movement patterns can be mined (learnt/extracted) from network data?

This question was answered in Chapter 4 where two different Movement Pat-

tern Mining approaches were investigated, the Apriori Movement Pattern (AMP)

approach and the ShaMP Movement Pattern (ShaMP) approach. The two ap-

proaches are similar in that they take FET data as input and output collections

of MPs, the only distinguishing feature between them was the mechanism for ex-

tracting the MPs. The first was founded on a traditional Apriori approach to

pattern mining, while the second adopted the novel approach of considering the
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“shape” of the MPs to be identified. In other words, the second approach used

knowledge of the nature of MPs to realise anticipated efficiency gains.

Q3: Following on from (2), given mechanisms for mining movement patterns

from network data how can these mechanisms be scaled up to address movement

pattern mining from very large networks?

This question was answered in Chapter 5, where it was noted that the nature

of the ShaMP algorithm was well suitable to scaling up, given a very large network,

because shapes could be processed independently. Three different distributed ap-

proaches were investigated, namely: (i) Hadoop/MapReduce, (ii) Shared Memory

Systems and (iii) Distributed Memory System. Consequently, three ShaMP vari-

ations were proposed: (i) The ShaMP Shared Memory System (ShaMP SMS),

(ii) the ShaMP Distribute Memory System (ShaMP DMS) and (iii) the ShaMP

Hadoop/MapReduce System (ShaMP HMS). The main finding was, as antici-

pated, that the ShaMP algorithm was well suited to handle very large networks

by utilizing big data facilities.

Q4: Once we have a collection of movement patterns how can they best be

applied to previously unseen network data and how do we know whether the manner

in which movement patterns are applied produces the correct results?

This question was answered in Chapter 6. Two prediction contexts were

considered: the Global Context and Local Context. In the Global Context MPs

were used to predict the nature of traffic movement (network connectivity) in the

context of entire networks that were either similar to those from which the MPs

were extracted; or, in the case of time-variant networks, future (or past) renditions

of the network. In the Local Context, MPs were utilized to predict the nature of

traffic movement (connectivity) between a newly introduced network node and

the remainder of a given network. The main findings were that MP concept could

be successfully employed for prediction purpose. The prediction accuracy in the
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Global Context was tested using CTS network training and test datasets (2003,

2004, 2005 and 2006). The idea was to compare the set of predicted MPs, M ′, with

the set of MPs known to exist in the test data. More specifically the evaluation

was conducted by applying the MPs extracted with respect to one year to the

vertices of all other years and extracting MPs. In each case, the resulting set

M ′ of predicted MPs was compared with the set of known “ground truth” MPs

MT . The prediction accuracy in the Local Context was tested by considering a

recommendation system that might be embedded in a DSN. The main finding was

that MPs can be successfully employed for the purpose of recommendation with

a high degree of accuracy.

Referring to Section 1.4 in Chapter 1, A number of additional criteria were

also devised for measuring the overall success of the research work conducted and

presented in this thesis, as follows:

• Generality: The proposed MPM is generic. The proposed algorithms were

applied to two different datasets, the CTS dataset, and the DSN dataset.

However, clearly, MPM has wider application.

• Efficiency: For each conducted experiment, when using the ShaMP algo-

rithm reasonable runtimes were recorded comparing to a more traditional

Apriori approach. The memory resource required to process and store the

MPs was also found not to be excessive.

• Effectiveness: Clearly the proposed MPM algorithms and prediction mech-

anisms were also effective in that the correct movement patterns were ex-

tracted and high prediction accuracy was achieved when applying the MPs.
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7.2 Research Contributions

The main contributions of the research work considered in this thesis were pre-

sented in section 1.5. For convenience these are listed again here as follows:

1. The Apriori-based Movement Pattern (AMP) algorithm

2. The Shape-based Movement Pattern (ShaMP) algorithm

3. Three variations of the ShaMP algorithm based on distributed/shared mem-

ory systems and Hadoop/MapReduce, with a comparison of their operation.

4. A mechanism for applying MPs to predict traffic in networks.

5. The RecoMP recommender system RecoMPA which utilize MPs so as to

provide recommendations in the context of DSN.

6. A mechanism for evaluating the effectiveness of the use of movement patterns

in the context of prediction.

7. A mechanism for evaluating the effectiveness of the use of movement patterns

in the context of recommendation.

7.3 Future Vision

Although the contributions of the thesis are significant with respect to MPM and

traffic prediction, there are a number of areas which merit further investigation

and future consideration so as to enhance the functionality and increase the overall

quality of the work. The research described in this thesis has indicated a number

of future interesting research direction to enhance the operation of the MPM and

prediction mechanisms as follows:
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1. ShaMP algorithm improvements: The efficiency of the ShaMP algo-

rithm can be improved by making a hybrid model comprised of both the

ShaMP and AMP algorithm. The possible scenario can benefit from the

advantages of both algorithms. By first pruning any attribute values that

occurred below a specified support threshold, and then generate a shape set

for those who pass the support threshold.

2. Using Movement Pattern to build a technique for DDoS attack

detection: The concept of MPs could be used to detect Denial-of-service

attack (DoS attacks) over a network, by implementing in-time movement

pattern mining over the traffic network and comparing the extracted MPs

with MPs for the normal behaviour so as to check for DoS attacks in real

time.

3. Traffic prediction Using GAN: The current traffic prediction mechanisms

can be further investigated in terms of traffic prediction modeling based on

Generative Adversarial Networks (GAN) [37]. This would also be of interest

with respect to the wider research vision.
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