21 research outputs found

    Full Solution Indexing and Efficient Compressed Graph Representation for Web Service Composition

    Get PDF
    Service-oriented computing enhances business scalability and flexibility; providers who expect to benefit from it may bring explosive growth of web services. Searching an optimal composition solution with both functional and non-functional requirements is a computationally demanding problem: the time and space requirements may be infeasible due to the high number of available services. In this thesis, we study QoS-aware service composition problems which satisfy functional requirements as well as non-functional requirements. We use optimization algorithms to enhance accuracy of our searching algorithms. In the first approach, we propose a database-based approach to search a service composition solution. Current in-memory methods are limited by expensive and volatile physical memory, to deal with this problem, we want to use the large space available in relational database on persistence disk. In our database-based approach, all possible service combinations are generated beforehand and stored in a relational database. When a user request comes, SQL queries are composed to search in the database and K best solutions are returned. We test the performance of the proposed approach with a service challenge data set; experiment results demonstrate that this approach can always successfully find top-K valid solutions.We offer three main contributions in this approach. First, we overcome the disadvantages of in-memory composition algorithms, such as volatile and expensive, and provide a solution suitable to cloud environments. Second, we fetch top-K solutions in case the optimal solution is not available as backup solutions to the user. Third, compared with other pre-computing composition methods, we use a single SQL query: there is no need to eliminate spurious services iteratively. Then, we propose the application of a skyline operator to reduce the search space and improve the scalability. Skyline analysis returns all of the elements that are not dominated by another element. We use skyline analysis to find a set of candidate services referred to as "skyline services", therefore, less competitive services are reduced. This allows us to find a solution for a large composition problem with less storage and increased speed. In reality, different users may have same requests, we are motivated to pick some popular requests and generate paths for fast delivery. These paths are stored in a separate table of the relational database. When a user request comes, we first search to find a nearly ready-made solution. Only as a last resort do we search the table with whole paths to find a solution. Finally, to deal with the problem that the search space may explore, we apply a compressed data structure to represent the service composition graph. The goal is to allow algorithms running in in-memory over larger graphs. In this approach, we use compact K2-trees to represent the service composition graph. When a user request comes, we search the K2-tree for a satisfactory solution. We use an array to store values in the last level of the compact tree, which represents relationships between services and concepts. In our algorithms, we find services' inputs (resp. outputs) by locating elements in this array directly, therefore, decompressing the graph is unnecessary. To the best of our knowledge, our work is the first attempt to consider compact structure in solving web service composition problems. Experiment results demonstrate that this approach takes less space and has good scalability when handling a large number of web services. We provide different approaches to search a solution for the user. If the user want to find an optimal solution with fewer services, he may use the database-based approach to search for a solution. If the user want to get a solution in a short time, he may choose the in-memory approach

    Preserving privacy in edge computing

    Get PDF
    Edge computing or fog computing enables realtime services to smart application users by storing data and services at the edge of the networks. Edge devices in the edge computing handle data storage and service provisioning. Therefore, edge computing has become a  new norm for several delay-sensitive smart applications such as automated vehicles, ambient-assisted living, emergency response services, precision agriculture, and smart electricity grids. Despite having great potential, privacy threats are the main barriers to the success of edge computing. Attackers can leak private or sensitive information of data owners and modify service-related data for hampering service provisioning in edge computing-based smart applications. This research takes privacy issues of heterogeneous smart application data into account that are stored in edge data centers. From there, this study focuses on the development of privacy-preserving models for user-generated smart application data in edge computing and edge service-related data, such as Quality-of-Service (QoS) data, for ensuring unbiased service provisioning. We begin with developing privacy-preserving techniques for user data generated by smart applications using steganography that is one of the data hiding techniques. In steganography, user sensitive information is hidden within nonsensitive information of data before outsourcing smart application data, and stego data are produced for storing in the edge data center. A steganography approach must be reversible or lossless to be useful in privacy-preserving techniques. In this research, we focus on numerical (sensor data) and textual (DNA sequence and text) data steganography. Existing steganography approaches for numerical data are irreversible. Hence, we introduce a lossless or reversible numerical data steganography approach using Error Correcting Codes (ECC). Modern lossless steganography approaches for text data steganography are mainly application-specific and lacks imperceptibility, and DNA steganography requires reference DNA sequence for the reconstruction of the original DNA sequence. Therefore, we present the first blind and lossless DNA sequence steganography approach based on the nucleotide substitution method in this study. In addition, a text steganography method is proposed that using invisible character and compression based encoding for ensuring reversibility and higher imperceptibility.  Different experiments are conducted to demonstrate the justification of our proposed methods in these studies. The searching capability of the stored stego data is challenged in the edge data center without disclosing sensitive information. We present a privacy-preserving search framework for stego data on the edge data center that includes two methods. In the first method, we present a keyword-based privacy-preserving search method that allows a user to send a search query as a hash string. However, this method does not support the range query. Therefore, we develop a range search method on stego data using an order-preserving encryption (OPE) scheme. In both cases, the search service provider retrieves corresponding stego data without revealing any sensitive information. Several experiments are conducted for evaluating the performance of the framework. Finally, we present a privacy-preserving service computation framework using Fully Homomorphic Encryption (FHE) based cryptosystem for ensuring the service provider's privacy during service selection and composition. Our contributions are two folds. First, we introduce a privacy-preserving service selection model based on encrypted Quality-of-Service (QoS) values of edge services for ensuring privacy. QoS values are encrypted using FHE. A distributed computation model for service selection using MapReduce is designed for improving efficiency. Second, we develop a composition model for edge services based on the functional relationship among edge services for optimizing the service selection process. Various experiments are performed in both centralized and distributed computing environments to evaluate the performance of the proposed framework using a synthetic QoS dataset

    Composition adaptative de services pour l’Internet des objets

    Get PDF
    L'internet des objets (IoT) est une technologie émergente, qui représente l’intégration ou la fusion de l'espace d'information et de l'espace physique. Au fil du temps, l’IoT est devenu de plus en plus populaire dans plusieurs endroits. Afin de répondre à la demande compliquée des utilisateurs, la plupart des appareils IoT ne fonctionnent pas seuls, une composition de services multiples doit être effectuée et elle est définie comme la composition de services. Pour des raisons de conductivités, pannes, batterie, charge et autres, la disponibilité des services IoT est imprévisible. Cette imprévisibilité de la disponibilité et l'évolution dynamique des besoins des utilisateurs, font que la composition du service doit gérer cette dynamique et s'adapter à de nouvelles configurations non prévues à la conception. La composition adaptative des services consiste à modifier le système pour lui permettre de se comporter correctement dans différents contextes afin d'assurer la disponibilité des services offerts, afin de répondre à une situation non prévue lors de la phase de conception. De ce fait, notre objectif est de proposer une méthode de composition de services IoT adaptative et sensible au contexte afin de satisfaire les besoins des utilisateurs. Dans notre travail, nous considérons que la croissance de l'Internet des Objets (IoT) implique la disponibilité d'un très grand nombre de services qui peuvent être similaires ou identiques, la gestion de la Qualité de Service (QoS) permet de différencier un service d'un autre. La composition de services offre la possibilité d'effectuer des activités complexes en combinant les fonctionnalités de plusieurs services au sein d'un seul processus. Très peu de travaux ont présenté une solution de composition de services adaptative gérant les attributs de QoS, en plus dans le domaine de la santé, qui est l'un des plus difficiles et délicats car il concerne la précieuse vie humaine. Dans cette thèse, nous présenterons une approche de composition de services adaptative sensible aux QoS basée sur un algorithme génétique multipopulation dans un environnement Fog-IoT. Notre algorithme P-MPGA implémente une méthode de sélection intelligente qui nous permet de sélectionner le bon service. En outre, PMPGA implémente un système de surveillance qui surveille les services pour gérer le changement dynamique des environnements IoT. Les résultats expérimentaux montrent les excellents résultats du P-MPGA en termes de temps d'exécution, de valeurs de fitness moyennes et de rapport temps d'exécution / meilleure valeur de fitness malgré l'augmentation de la population. P-MPGA peut rapidement obtenir un service composite satisfaisant les besoins de QoS de l'utilisateur, ce qui le rend adapté à un environnement IoT à grande échelle

    GA-Par: Dependable Microservice Orchestration Framework for Geo-Distributed Clouds

    Get PDF
    Recent advances in composing Cloud applications have been driven by deployments of inter-networking heterogeneous microservices across multiple Cloud datacenters. System dependability has been of the upmost importance and criticality to both service vendors and customers. Security, a measurable attribute, is increasingly regarded as the representative example of dependability. Literally, with the increment of microservice types and dynamicity, applications are exposed to aggravated internal security threats and externally environmental uncertainties. Existing work mainly focuses on the QoS-aware composition of native VM-based Cloud application components, while ignoring uncertainties and security risks among interactive and interdependent container-based microservices. Still, orchestrating a set of microservices across datacenters under those constraints remains computationally intractable. This paper describes a new dependable microservice orchestration framework GA-Par to effectively select and deploy microservices whilst reducing the discrepancy between user security requirements and actual service provision. We adopt a hybrid (both whitebox and blackbox based) approach to measure the satisfaction of security requirement and the environmental impact of network QoS on system dependability. Due to the exponential grow of solution space, we develop a parallel Genetic Algorithm framework based on Spark to accelerate the operations for calculating the optimal or near-optimal solution. Large-scale real world datasets are utilized to validate models and orchestration approach. Experiments show that our solution outperforms the greedy-based security aware method with 42.34 percent improvement. GA-Par is roughly 4× faster than a Hadoop-based genetic algorithm solver and the effectiveness can be constantly guaranteed under different application scales

    Technical debt-aware and evolutionary adaptation for service composition in SaaS clouds

    Get PDF
    The advantages of composing and delivering software applications in the Cloud-Based Software as a Service (SaaS) model are offering cost-effective solutions with minimal resource management. However, several functionally-equivalent web services with diverse Quality of Service (QoS) values have emerged in the SaaS cloud, and the tenant-specific requirements tend to lead the difficulties to select the suitable web services for composing the software application. Moreover, given the changing workload from the tenants, it is not uncommon for a service composition running in the multi-tenant SaaS cloud to encounter under-utilisation and over-utilisation on the component services that affects the service revenue and violates the service level agreement respectively. All those bring challenging decision-making tasks: (i) when to recompose the composite service? (ii) how to select new component services for the composition that maximise the service utility over time? at the same time, low operation cost of the service composition is desirable in the SaaS cloud. In this context, this thesis contributes an economic-driven service composition framework to address the above challenges. The framework takes advantage of the principal of technical debt- a well-known software engineering concept, evolutionary algorithm and time-series forecasting method to predictively handle the service provider constraints and SaaS dynamics for creating added values in the service composition. We emulate the SaaS environment setting for conducting several experiments using an e-commerce system, realistic datasets and workload trace. Further, we evaluate the framework by comparing it with other state-of-the-art approaches based on diverse quality metrics

    Parallel Patterns for Adaptive Data Stream Processing

    Get PDF
    In recent years our ability to produce information has been growing steadily, driven by an ever increasing computing power, communication rates, hardware and software sensors diffusion. This data is often available in the form of continuous streams and the ability to gather and analyze it to extract insights and detect patterns is a valuable opportunity for many businesses and scientific applications. The topic of Data Stream Processing (DaSP) is a recent and highly active research area dealing with the processing of this streaming data. The development of DaSP applications poses several challenges, from efficient algorithms for the computation to programming and runtime systems to support their execution. In this thesis two main problems will be tackled: * need for high performance: high throughput and low latency are critical requirements for DaSP problems. Applications necessitate taking advantage of parallel hardware and distributed systems, such as multi/manycores or cluster of multicores, in an effective way; * dynamicity: due to their long running nature (24hr/7d), DaSP applications are affected by highly variable arrival rates and changes in their workload characteristics. Adaptivity is a fundamental feature in this context: applications must be able to autonomously scale the used resources to accommodate dynamic requirements and workload while maintaining the desired Quality of Service (QoS) in a cost-effective manner. In the current approaches to the development of DaSP applications are still missing efficient exploitation of intra-operator parallelism as well as adaptations strategies with well known properties of stability, QoS assurance and cost awareness. These are the gaps that this research work tries to fill, resorting to well know approaches such as Structured Parallel Programming and Control Theoretic models. The dissertation runs along these two directions. The first part deals with intra-operator parallelism. A DaSP application can be naturally expressed as a set of operators (i.e. intermediate computations) that cooperate to reach a common goal. If QoS requirements are not met by the current implementation, bottleneck operators must be internally parallelized. We will study recurrent computations in window based stateful operators and propose patterns for their parallel implementation. Windowed operators are the most representative class of stateful data stream operators. Here computations are applied on the most recent received data. Windows are dynamic data structures: they evolve over time in terms of content and, possibly, size. Therefore, with respect to traditional patterns, the DaSP domain requires proper specializations and enhanced features concerning data distribution and management policies for different windowing methods. A structured approach to the problem will reduce the effort and complexity of parallel programming. In addition, it simplifies the reasoning about the performance properties of a parallel solution (e.g. throughput and latency). The proposed patterns exhibit different properties in terms of applicability and profitability that will be discussed and experimentally evaluated. The second part of the thesis is devoted to the proposal and study of predictive strategies and reconfiguration mechanisms for autonomic DaSP operators. Reconfiguration activities can be implemented in a transparent way to the application programmer thanks to the exploitation of parallel paradigms with well known structures. Furthermore, adaptation strategies may take advantage of the QoS predictability of the used parallel solution. Autonomous operators will be driven by means of a Model Predictive Control approach, with the intent of giving QoS assurances in terms of throughput or latency in a resource-aware manner. An experimental section will show the effectiveness of the proposed approach in terms of execution costs reduction as well as the stability degree of a system reconfiguration. The experiments will target shared and distributed memory architectures

    IDEAS-1997-2021-Final-Programs

    Get PDF
    This document records the final program for each of the 26 meetings of the International Database and Engineering Application Symposium from 1997 through 2021. These meetings were organized in various locations on three continents. Most of the papers published during these years are in the digital libraries of IEEE(1997-2007) or ACM(2008-2021)

    Elastic Dataflow Processing on the Cloud

    Get PDF
    Τα νεφη εχουν μετατραπει σε μια ελκυστικη πλατφορμα για την πολυπλοκη επεξεργασια δεδομενων μεγαλης κλιμακας, ειδικα εξαιτιας της εννοιας της ελαστικοτητας, η οποια και τα χαρακτηριζει: οι υπολογιστικοι ποροι μπορουν να εκμισθωθουν δυναμικα και να χρησιμοποιουνται για οσο χρονο ειναι απαραιτητο. Αυτο δινει την δυνατοτητα να δημιουργηθει μια εικονικη υποδομη η οποια μπορει να αλλαζει δυναμικα στο χρονο. Οι συγχρονες εφαρμογες απαιτουν την εκτελεση πολυπλοκων ερωτηματων σε Μεγαλα Δεδομενα για την εξορυξη γνωσης και την υποστηριξη επιχειρησιακων αποφασεων. Τα πολυπλοκα αυτα ερωτηματα, εκφραζονται σε γλωσσες υψηλου επιπεδου και τυπικα μεταφραζονται σε ροες επεξεργασιας δεδομενων, η απλα ροες δεδομενων. Ενα λογικο ερωτημα που τιθεται ειναι κατα ποσον η ελαστικοτητα επηρεαζει την εκτελεση των ροων δεδομενων και με πιο τροπο. Ειναι λογικο οτι η εκτελεση να ειναι πιθανον γρηγοροτερη αν χρησιμοποιηθουν περισ- σοτεροι υπολογιστικοι ποροι, αλλα το κοστος θα ειναι υψηλοτερο. Αυτο δημιουργει την εννοια της οικο-ελαστικοτητας, ενος επιπλεον τυπου ελαστικοτητας ο οποιος προερχεται απο την οικονο- μικη θεωρια, και συλλαμβανει τις εναλλακτικες μεταξυ του χρονου εκτελεσης και του χρηματικου κοστους οπως προκυπτει απο την χρηση των πορων. Στα πλαισια αυτης της διδακτορικης διατριβης, προσεγγιζουμε την ελαστικοτητα με ενα ενοποιημενο μοντελο που περιλαμβανει και τις δυο ειδων ελαστικοτητες που υπαρχουν στα υπολογιστικα νεφη. Αυτη η ενοποιημενη προσεγγιση της ελαστικοτητας ειναι πολυ σημαντικη στην σχεδιαση συστηματων που ρυθμιζονται αυτοματα (auto-tuned) σε περιβαλλοντα νεφους. Αρχικα δειχνουμε οτι η οικο-ελαστικοτητα υπαρχει σε αρκετους τυπους υπολογισμου που εμφανιζονται συχνα στην πραξη και οτι μπορει να βρεθει χρησιμοποιωντας εναν απλο, αλλα ταυτοχρονα αποδοτικο και ε- πεκτασιμο αλγοριθμο. Επειτα, παρουσιαζουμε δυο εφαρμογες που χρησιμοποιουν αλγοριθμους οι οποιοι χρησιμοποιουν το ενοποιημενο μοντελο ελαστικοτητας που προτεινουμε για να μπορουν να προσαρμοζουν δυναμικα το συστημα στα ερωτηματα της εισοδου: 1) την ελαστικη επεξεργασια αναλυτικων ερωτηματων τα οποια εχουν πλανα εκτελεσης με μορφη δεντρων με σκοπο την μεγι- στοποιηση του κερδους και 2) την αυτοματη διαχειριση χρησιμων ευρετηριων λαμβανοντας υποψη το χρηματικο κοστος των υπολογιστικων και των αποθηκευτικων πορων. Τελος, παρουσιαζουμε το EXAREME, ενα συστημα για την ελαστικη επεξεργασια μεγαλου ογκου δεδομενων στο νεφος το οποιο εχει χρησιμοποιηθει και επεκταθει σε αυτην την δουλεια. Το συστημα προσφερει δηλωτικες γλωσσες που βασιζονται στην SQL επεκταμενη με συναρτησεις οι οποιες μπορει να οριστουν απο χρηστες (User-Defined Functions, UDFs). Επιπλεον, το συντακτικο της γλωσσας εχει επεκταθει με στοιχεια παραλληλισμου. Το EXAREME εχει σχεδιαστει για να εκμεταλλευεται τις ελαστικοτη- τες που προσφερουν τα νεφη, δεσμευοντας και αποδεσμευοντας υπολογιστικους πορους δυναμικα με σκοπο την προσαρμογη στα ερωτηματα.Clouds have become an attractive platform for the large-scale processing of modern applications on Big Data, especially due to the concept of elasticity, which characterizes them: resources can be leased on demand and used for as much time as needed, offering the ability to create virtual infrastructures that change dynamically over time. Such applications often require processing of complex queries that are expressed in a high-level language and are typically transformed into data processing flows (dataflows). A logical question that arises is whether elasticity affects dataflow execution and in which way. It seems reasonable that the execution is faster when more resources are used, however the monetary cost is higher. This gives rise to the concept eco-elasticity, an additional kind of elasticity that comes from economics, and captures the trade-offs between the response time of the system and the amount of money we pay for it as influenced by the use of different amounts of resources. In this thesis, we approach the elasticity of clouds in a unified way that combines both the traditional notion and eco-elasticity. This unified elasticity concept is essential for the development of auto-tuned systems in cloud environments. First, we demonstrate that eco-elasticity exists in several common tasks that appear in practice and that can be discovered using a simple, yet highly scalable and efficient algorithm. Next, we present two cases of auto-tuned algorithms that use the unified model of elasticity in order to adapt to the query workload: 1) processing analytical queries in the form of tree execution plans in order to maximize profit and 2) automated index management taking into account compute and storage re- sources. Finally, we describe EXAREME, a system for elastic data processing on the cloud that has been used and extended in this work. The system offers declarative languages that are based on SQL with user-defined functions (UDFs) extended with parallelism primi- tives. EXAREME exploits both elasticities of clouds by dynamically allocating and deallocating compute resources in order to adapt to the query workload

    End-to-End Trust Fulfillment of Big Data Workflow Provisioning over Competing Clouds

    Get PDF
    Cloud Computing has emerged as a promising and powerful paradigm for delivering data- intensive, high performance computation, applications and services over the Internet. Cloud Computing has enabled the implementation and success of Big Data, a relatively recent phenomenon consisting of the generation and analysis of abundant data from various sources. Accordingly, to satisfy the growing demands of Big Data storage, processing, and analytics, a large market has emerged for Cloud Service Providers, offering a myriad of resources, platforms, and infrastructures. The proliferation of these services often makes it difficult for consumers to select the most suitable and trustworthy provider to fulfill the requirements of building complex workflows and applications in a relatively short time. In this thesis, we first propose a quality specification model to support dual pre- and post-cloud workflow provisioning, consisting of service provider selection and workflow quality enforcement and adaptation. This model captures key properties of the quality of work at different stages of the Big Data value chain, enabling standardized quality specification, monitoring, and adaptation. Subsequently, we propose a two-dimensional trust-enabled framework to facilitate end-to-end Quality of Service (QoS) enforcement that: 1) automates cloud service provider selection for Big Data workflow processing, and 2) maintains the required QoS levels of Big Data workflows during runtime through dynamic orchestration using multi-model architecture-driven workflow monitoring, prediction, and adaptation. The trust-based automatic service provider selection scheme we propose in this thesis is comprehensive and adaptive, as it relies on a dynamic trust model to evaluate the QoS of a cloud provider prior to taking any selection decisions. It is a multi-dimensional trust model for Big Data workflows over competing clouds that assesses the trustworthiness of cloud providers based on three trust levels: (1) presence of the most up-to-date cloud resource verified capabilities, (2) reputational evidence measured by neighboring users and (3) a recorded personal history of experiences with the cloud provider. The trust-based workflow orchestration scheme we propose aims to avoid performance degradation or cloud service interruption. Our workflow orchestration approach is not only based on automatic adaptation and reconfiguration supported by monitoring, but also on predicting cloud resource shortages, thus preventing performance degradation. We formalize the cloud resource orchestration process using a state machine that efficiently captures different dynamic properties of the cloud execution environment. In addition, we use a model checker to validate our monitoring model in terms of reachability, liveness, and safety properties. We evaluate both our automated service provider selection scheme and cloud workflow orchestration, monitoring and adaptation schemes on a workflow-enabled Big Data application. A set of scenarios were carefully chosen to evaluate the performance of the service provider selection, workflow monitoring and the adaptation schemes we have implemented. The results demonstrate that our service selection outperforms other selection strategies and ensures trustworthy service provider selection. The results of evaluating automated workflow orchestration further show that our model is self-adapting, self-configuring, reacts efficiently to changes and adapts accordingly while enforcing QoS of workflows
    corecore