
National and Kapodistrian University of Athens

School of Sciences

Department of Informatics and Telecommunications

Dissertation

Elastic Dataflow Processing on the Cloud

Herald Kllapi

Advisor : Prof. Yannis Ioannidis

Athens

February 2015

Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών

Σχολή Θετικών Επιστημών

Τμήμα Πληροφορικής και Τηλεπικοινωνιών

Διδακτορική Διατριβή

Ελαστική Επεξεργασία Ροών Δεδομένων στο Νέφος

Herald Kllapi

Επιβλέπων : Καθ. Γιάννης Ιωαννίδης

Αθήνα

Φεβρουάριος 2015

Dissertation

Elastic Dataflow Processing on the Cloud

Herald Kllapi

Advisor
Yannis Ioannidis, Professor, University of Athens

Main Advisory Committee
Yannis Ioannidis, Professor, University of Athens

Dimitris Achlioptas, Professor, University of Athens

Alex Delis, Professor, University of Athens

Examination Committee
Yannis Ioannidis Dimitris Achlioptas
Professor Professor
University of Athens and ‘Athena’ RC University of Athens and UCSC

Alex Delis Alkis Polyzotis
Professor Associate Professor
University of Athens and ‘Athena’ RC UCSC

Yannis Kotidis Nektarios Koziris
Associate Professor Professor
Athens University of Economics National Technical University of Athens
and Business

Michael Hatzopoulos
Professor
University of Athens

Examination Date: 25 February, 2015

Διδακτορική Διατριβή

Ελαστική Επεξεργασία Ροών Δεδομένων στο Νέφος

Herald Kllapi

Επιβλέπων:

Γιάννης Ιωαννίδης, Καθηγητής, Πανεπιστήμιο Αθηνών

Επιτροπή Επίβλεψης

Γιάννης Ιωαννίδης, Καθηγητής, Πανεπιστήμιο Αθηνών

Δημήτρης Αχλιόπτας, Καθηγητής, Πανεπιστήμιο Αθηνών

Αλέξης Δελής, Καθηγητής, Πανεπιστήμιο Αθηνών

Επιτροπή Εξέτασης

Γιάννης Ιωαννίδης Δημήτρης Αχλιόπτας

Καθηγητής Καθηγητής

Πανεπιστήμιο Αθηνών και Ε. Κ. `Αθηνά΄ Πανεπιστήμιο Αθηνών και UCSC

Αλέξης Δελής ΄Αλκης Πολυζώτης

Καθηγητής Αναπληρωτής Καθηγητής

Πανεπιστήμιο Αθηνών και Ε. Κ. `Αθηνά΄ UCSC

Γιάννης Κωτίδης Νεκτάριος Κοζύρης

Αναπληρωτής Καθηγητής Καθηγητής

Οικονομικό Πανεπιστήμιο Αθηνών Εθνικό Μετσόβιο Πολυτεχνείο

Μιχάλης Χατζόπουλος

Καθηγητής

Πανεπιστήμιο Αθηνών

Ημερομηνία Εξέτασης: 25 Φεβρουαρίου, 2015

Abstract

Clouds have become an attractive platform for the large-scale processing of modern appli-
cations on Big Data, especially due to the concept of elasticity, which characterizes them:
resources can be leased on demand and used for as much time as needed, offering the abil-
ity to create virtual infrastructures that change dynamically over time. Such applications often
require processing of complex queries that are expressed in a high-level language and are
typically transformed into data processing flows (dataflows). A logical question that arises
is whether elasticity affects dataflow execution and in which way. It seems reasonable that
the execution is faster when more resources are used, however the monetary cost is higher.
This gives rise to the concept eco-elasticity, an additional kind of elasticity that comes from
economics, and captures the trade-offs between the response time of the system and the
amount of money we pay for it as influenced by the use of different amounts of resources.

In this thesis, we approach the elasticity of clouds in a unified way that combines both the
traditional notion and eco-elasticity. This unified elasticity concept is essential for the develop-
ment of auto-tuned systems in cloud environments. First, we demonstrate that eco-elasticity
exists in several common tasks that appear in practice and that can be discovered using a
simple, yet highly scalable and efficient algorithm. Next, we present two cases of auto-tuned
algorithms that use the unified model of elasticity in order to adapt to the query workload:
1) processing analytical queries in the form of tree execution plans in order to maximize
profit and 2) automated index management taking into account compute and storage re-
sources. Finally, we describe EXAREME, a system for elastic data processing on the cloud
that has been used and extended in this work. The system offers declarative languages
that are based on SQL with user-defined functions (UDFs) extended with parallelism primi-
tives. EXAREME exploits both elasticities of clouds by dynamically allocating and deallocating
compute resources in order to adapt to the query workload.

Subject area: Databases, Distributed Systems, Cloud Computing, Auto-Tuned Systems

Keywords: elasticity, query processing, clouds, analytics, big data

Περίληψη

Τα νέφη έχουν μετατραπεί σε μια ελκυστική πλατφόρμα για την πολύπλοκη επεξεργασία δεδομένων

μεγάλης κλίμακας, ειδικά εξαιτίας της έννοιας της ελαστικότητας, η οποία και τα χαρακτηρίζει: οι

υπολογιστικοί πόροι μπορούν να εκμισθωθούν δυναμικά και να χρησιμοποιούνται για όσο χρόνο

είναι απαραίτητο. Αυτό δίνει την δυνατότητα να δημιουργηθεί μια εικονική υποδομή η οποία μπορεί

να αλλάζει δυναμικά στο χρόνο. Οι σύγχρονες εφαρμογές απαιτούν την εκτέλεση πολύπλοκων

ερωτημάτων σε Μεγάλα Δεδομένα για την εξόρυξη γνώσης και την υποστήριξη επιχειρησιακών

αποφάσεων. Τα πολύπλοκα αυτά ερωτήματα, εκφράζονται σε γλώσσες υψηλού επιπέδου και τυπικά

μεταφράζονται σε ροές επεξεργασίας δεδομένων, ή απλά ροές δεδομένων. ΄Ενα λογικό ερώτημα

που τίθεται είναι κατά πόσον η ελαστικότητα επηρεάζει την εκτέλεση των ροών δεδομένων και με

πιο τρόπο. Είναι λογικό ότι η εκτέλεση να είναι πιθανόν γρηγορότερη αν χρησιμοποιηθούν περισ-

σότεροι υπολογιστικοί πόροι, αλλά το κόστος θα είναι υψηλότερο. Αυτό δημιουργεί την έννοια

της οικο-ελαστικότητας, ενός επιπλέον τύπου ελαστικότητας ο οποίος προέρχεται από την οικονο-

μική θεωρία, και συλλαμβάνει τις εναλλακτικές μεταξύ του χρόνου εκτέλεσης και του χρηματικού

κόστους όπως προκύπτει από την χρήση των πόρων.

Στα πλαίσια αυτής της διδακτορικής διατριβής, προσεγγίζουμε την ελαστικότητα με ένα ενοποιη-

μένο μοντέλο που περιλαμβάνει και τις δύο ειδών ελαστικότητες που υπάρχουν στα υπολογιστικά

νέφη. Αυτή η ενοποιημένη προσέγγιση της ελαστικότητας είναι πολύ σημαντική στην σχεδίαση

συστημάτων που ρυθμίζονται αυτόματα (auto-tuned) σε περιβάλλοντα νέφους. Αρχικά δείχνουμε

ότι η οικο-ελαστικότητα υπάρχει σε αρκετούς τύπους υπολογισμού που εμφανίζονται συχνά στην

πράξη και ότι μπορεί να βρεθεί χρησιμοποιώντας έναν απλό, αλλά ταυτόχρονα αποδοτικό και ε-

πεκτάσιμο αλγόριθμο. ΄Επειτα, παρουσιάζουμε δύο εφαρμογές που χρησιμοποιούν αλγόριθμους οι

οποίοι χρησιμοποιούν το ενοποιημένο μοντέλο ελαστικότητας που προτείνουμε για να μπορούν να

προσαρμόζουν δυναμικά το σύστημα στα ερωτήματα της εισόδου: 1) την ελαστική επεξεργασία

αναλυτικών ερωτημάτων τα οποία έχουν πλάνα εκτέλεσης με μορφή δέντρων με σκοπό την μεγι-

στοποίηση του κέρδους και 2) την αυτόματη διαχείριση χρήσιμων ευρετηρίων λαμβάνοντας υπόψη

το χρηματικό κόστος των υπολογιστικών και των αποθηκευτικών πόρων. Τέλος, παρουσιάζουμε

το EXAREME, ένα σύστημα για την ελαστική επεξεργασία μεγάλου όγκου δεδομένων στο νέφος το

οποίο έχει χρησιμοποιηθεί και επεκταθεί σε αυτήν την δουλειά. Το σύστημα προσφέρει δηλωτικές

γλώσσες που βασίζονται στην SQL επεκταμένη με συναρτήσεις οι οποίες μπορεί να οριστούν από

χρήστες (User-Defined Functions, UDFs). Επιπλέον, το συντακτικό της γλώσσας έχει επεκταθεί

με στοιχεία παραλληλισμού. Το EXAREME έχει σχεδιαστεί για να εκμεταλλεύεται τις ελαστικότη-

τες που προσφέρουν τα νέφη, δεσμεύοντας και αποδεσμεύοντας υπολογιστικούς πόρους δυναμικά

με σκοπό την προσαρμογή στα ερωτήματα.

Θεματική Περιοχή: Βάσεις Δεδομένων, Κατανεμημένα Συστήματα, Υπολογισμός στο Νέφος,

Αυτο-ρυθμιζόμενα Συστήματα

Λέξεις Κλειδιά: ελαστικότητα, επεξεργασία ερωτημάτων, υπολογιστικά νέφη, αναλυτικά ερωτήματα,

μεγάλα δεδομένα

To my grandmother Marianthi

Acknowledgements

Initially, I would like to express my sincere gratitudes to my advisor professor Yannis Ioannidis.
I have been a student of Pr. Ioannidis for many years, starting when I was an undergraduate
student at the University of Athens. During my masters, I joined the Management of Data,
Information & Knowledge (MaDgIK) group, that is leaded by him. I want to deeply thank
Mr. Ioannidis for adopting me as a young student and for guiding me all these years. He
has taught me how to think about and approach hard problems, how to research, how to
communicate and present my work, and persist through difficulties. His advices has always
been very valuable to me in and out of academia, and they will always be desirable and
welcomed.

I would also like to deeply thank professor Dimitris Achlioptas with whom I have worked very
closely. We had a plethora of insightful discussions about different topics. He has the rare
gift of easily describing hard problems and make you understand the fundamentals of them
through his ‘visual’ thinking and deep understanding.

During the last year of my PhD, I had the oportunity to work more closely with professor Alex
Delis. It has been a great pleasure to collaborate with him as he has taught me many things
about research, and about life in general.

In the MaDgIK group, the first person I collaborated closely with was Manolis Tsangaris. I
have learned a lot from Manolis and I respect him deeply. He made me understand many
essential characteristics of large distributed systems and software engineering. I want to
thank him for our great collaboration and his helpful advices. Manolis has been a very good
friend of mine ever since we first started working together, although in the beginning it was
hard for me to not call him Mr. Tsangaris!

The first project I was involved with when I joined the group was Health-e-Child. I worked
closely with my friends Eva Sitaridi and Nikolas Oikonomidis. I wanted to thank them both
for the great time we had in the office, having fun and working hard, sometimes very late at
night.

Most of my years in the MaDgIK group, I have been involved in the Extreme system. The
project started by Pr. Ioannidis in 2008. The initial group members were Manolis Tsangaris,
Giorgos Kakaletris, Giorgos Papanikos, Frangkiskos Pentaris, Pavlos Polydoras, Eva Sitaridi,
and Vasilis Stoumpos. I want to thank them all for our great collaboration.

I had the rare opportunity to work closely with my friends Cong Yu and Boulos Harb at Google
Research in New York. They are two of the strongest researchers that I have collaborated
with, and I wanted to thank them for giving me the opportunity to work with them. Along them,
I had the opportunity to see, learn how to think, and approach difficult problems regarding
algorithms on large-scale industrial systems.

During my thesis I have collaborated with many wonderful people. First of all, I want to
thank my close friend Lefteris Stamatogiannakis with whom we have shared the same office
for many years. He has a very broad range of knowledge in computer science and software
engineering. I will always remember our fruitful and passionate discussions, and look forward
to continue with the same passion in the future!

I also want to thank professor Verena Kantere at the University of Geneva for our great
collaboration and discussions about distributed systems in the cloud and its economics.

Many thanks to my co-authors and friends Konstantinos Tsakalozos, Dimitris Paparas, Pan-
nos Sakkos, and professor Dimitris Gunopulos for our great collaboration.

During the two last years of my studies, I was involved in the Optique European project,
where I had the pleasure to meet and work with my friends Christoforos Svingos, Alexan-
dros Papadopoulos, Giannis Chronis, Vangelis Nikolopoulos, Christos Mallios, Dimitris Theo-
dosakis, Dimitris Bilidas, Konstantina Mpereta, and Theofilos Mailis. It has been a great
pleasure to interact with all of them, in and out of work.

During the last year of my studies, I had the great pleasure to intern at Facebook in the Menlo
Park office and work closely with Alon Shalita. Alon is a great mentor and a wonderful person
with deep knowledge about theory and algorithms. I wanted to thank him deeply for our great
collaboration. I also wanted to thank the other members of the team at Facebook, Brian
Karrer, Arun Sharma, Igor Kabiljo, Alessandro Presta, Aaron Adcock, Kenny Lau, and Venkat
Venkataramani who welcomed me and made me part of the team. The overall experience
would not had been the same without them.

I also wanted to thank the other students of Pr. Ioannidis with whom I shared my journey,
Katerina El Raheb, Marialena Kyriakidi, Manos Karvounis, and Omiros Metaxas. Special
thanks to my friends Marialena and Manos for our collaborations and wonderful discussions
about many interesting problems!

During my studies, I had the great pleasure to work closely with many great students and
friends. Orestis Polychroniou and Mattheos Olma were the first ones who did their under-
graduate thesis in the MaDgIK group. After followed Nikos Kokolakis, Argyro Kokogian-
naki and Eri Katsari who worked together, Christos Mallios, Christoforos Svingos, Dimitris
Theodosakis, Giannis Foufoulas, Alexandros Papadopoulos, Giannis Chronis and Vange-
lis Nikolopoulos, Anastasios Giannakopoulos, Harry Hasparis, and Christos Aslanoglou. I
wanted to thank them all for our great collaboration.

I wanted to thank all my officemates Lefteris Stamatogiannakis, Basilis Kourtis, Alex Pa-
padopoulos, Harry Dimitropoulos, Omiros Metaxas, Maria Vayanou, Yannis Fofoulas, Anna
Gogolou, Eleni Zaharia, Mei-Li Triantafilidi, Eva Sitaridi, Nikolas Oikonomidis, Marialena Kyr-
iakidi, Manolis Tsangaris, Eleutheris Kesari, and Konstantinos Morfonios for the great atmo-
sphere at the university and the great time we had together! It has been a pleasure to meet
and interact with them.

I wish also to thank Alkis Polyzotis, Yannis Kotidis, Nectarios Polyzotis, and Michalis Chat-
zopoulos for agreeing to be part of my PhD examination committee and for their insightful
feedback.

Last but not least, I want to express special thanks to Blerina Lika, who have been with me
all these challenging years. I feel indebted to her for being besides me all these years. It is
always good to be next to someone who understands and supports your efforts!

Finally, I wanted to thank my family who raised me as a student since both of my parents are
teachers, and made me to be curious about everything and constantly learn.

I with to dedicate this dissertation to my grandmother Marianthi. She was the one of the
persons who raised me as a child. Sadly, she passed away just before I finished the writing
of my thesis. She was a very quiet and wonderful person. Unfortunately, I did not had the
chance to say goodbye.

This research has been funded in part by the European Commission under research grant
agreement 318338 (Optique Project1).

1Optique Project: http://www.optique-project.eu/

Συνοπτική Παρουσίαση της Διδακτορικής Διατριβής

Τα δεδομένα παίζουν κεντρικό ρόλο στην σύγχρονη εποχή: από τις τηλεπικοινωνίες, στα κοινωνι-

κά δίκτυα, και τα συστήματα υγείας, η επιτυχής διαχείριση των δεδομένων είναι καίριας σημασίας.

΄Ολες οι επιτυχημένες επιχειρήσεις εξαρτώνται σε μεγάλο βαθμό από την αποτελεσματική ανάλυση

μεγάλου όγκου δεδομένων για την υποστήριξη των αποφάσεών τους [203]. Η αποτελεσματική

συλλογή, η αποθήκευση, και η επεξεργασία αυτών των μεγάλων ποσοτήτων δεδομένων που δη-

μιουργούνται, θα διαδραματίσουν ένα ολοένα και πιο σημαντικό ρόλο τα επόμενα χρόνια. Η ανάγκη

για κλιμακούμενα συστήματα διαχείρισης δεδομένων είναι εξαιρετικά σημαντική.

Συστήματα Διαχείρισης Δεδομένων

Τα συστάματα διαχείρισης σχεσιακών βάσεων δεδομένων (Σχεσιακά ΣΔΒΔ) είναι μια αποτελε-

σματική λύση για την διαχείριση δεδομένων για σχεδόν σαράντα χρόνια. Από την αρχική τους

πρόταση στη δεκαετία του 1980, έχουν αναπτυχθεί πολλά συστήματα βάσεων δεδομένων γενικού

σκοπού και πολλά από αυτά διατίθεται στο εμπόριο, όπως η Oracle και η IBM [117, 180]. Κατά την

διάρκεια της τελευταίας δεκαετίας, έχει καταστεί σαφές ότι δεν μπορούν να υποστηριχθούν όλες οι

σύγχρονες ανάγκες διαχείρισης δεδομένων από συστήματα γενικής χρήσης. Το γεγονός αυτό έχει

οδηγήσει στην ανάπτυξη εξειδικευμένων συστημάτων. Παραδείγματα περιλαμβάνουν συστήματα

για συναλλαγές που δουλεύουν εξ ολοκλήρου στην μνήμη [213], αναλυτικά ερωτήματα [119], και

συστήματα επιστημονικών υπολογισμών [212].

Μια πρόσφατη και πολύ δημοφιλής κατηγορία εξειδικευμένων συστημάτων είναι αυτή που βασίζον-

ται στο μοντέλο του MapReduce [69]. Το MapReduce έχει σχεδιαστεί για κατανεμημένη επε-

ξεργασία μεγάλης κλίμακας, με έμφαση στην ανοχή σε σφάλματα. Τα συστήματα αυτά προσφέρουν

περιορισμένες δυνατότητες συναλλαγών και η τυπική τους χρήση είναι η εισαγωγή δεδομένων σε

τακτά χρονικά διαστήματα (π.χ., κάθε μέρα ή κάθε εβδομάδα). Το ισχυρό τους σημείο είναι η

ευκολία χρήσης και η πολύ καλή απόδοση σε συγκεκριμένους τύπους εφαρμογών που μπορούν να

επωφεληθούν από το μοντέλο επεξεργασίας του MapReduce.

Σύγχρονες Ανάγκες Επεξεργασίας Δεδομένων

Η πολυετής έρευνα στις βάσεις δεδομένων, έχει δείξει ότι τα σαφώς καθορισμένα μοντέλα δεδο-

μένων και οι δηλωτικές γλώσσες ερωτημάτων είναι εξαιρετικά χρήσιμα επειδή παρέχουν ανεξαρτησία

αναπαράστασης δεδομένων και πλατφόρμας, αποκρύπτοντας έτσι τα εσωτερικά του συστήματος.

Τα επικρατέστερα είναι το σχεσιακό μοντέλο δεδομένων και η SQL [57, 58]. Η αρχική χρήση

των βάσεων δεδομένων ήταν για την αποθήκευση και την ανάκτηση δεδομένων, και πάνω από

αυτά χτιζόντουσαν οι εφαρμογές που χρειάζονταν πιο σύνθετη επεξεργασία δεδομένων. Αργότε-

ρα, η έρευνα έδειξε ότι η εκτέλεση της επεξεργασίας ‘μέσα’ στις βάσεις δεδομένων, είναι πολύ πιο

αποτελεσματική [159]. Με αυτό τον τρόπο, η επεξεργασία ‘σπρώχνεται’ κοντά στα δεδομένα χρησι-

μοποιώντας κατάλληλες συναρτήσεις που ορίζονται από τους χρήστες (UDFs) [81], μετατρέποντας

ουσιαστικά την βάση δεδομένων σε μια ολοκληρωμένη μηχανή επεξεργασίας δεδομένων, και όχι

απλά ανάκτησης.

Η πολύπλοκη ανάκτηση και επεξεργασία δεδομένων είναι ένα χαρακτηριστικό πολλών εφαρμογών

και συνδυάζει έννοιες όπως οι επερωτήσεις & η αναζήτηση, το φιλτράρισμα των πληροφοριών & η

ανάκτηση, ο μετασχηματισμός δεδομένων & η ανάλυσή τους, και άλλες επεξεργασίες δεδομένων.

Τα παραπάνω επιβάλουν κάποιες ενδιαφέρουσες προκλήσεις για τα συστήματα επεξεργασίας δεδο-

μένων, τα οποία πρέπει να υποστηρίξουν πολύπλοκες συναρτήσεις UDFs που δεν προέρχονται από

ένα προκαθορισμένο σύνολο με γνωστή σημασιολογία. Για να γίνει πιο ξεκάθαρη η πολυπλοκότη-

τα, παρουσιάζουμε το ακόλουθο παράδειγμα: Ας υποθέσουμε ότι μια βάση δεδομένων έχει δύο

πίνακες, Author και Image. Ο πίνακας Author περιέχει συγγραφείς που δημοσιεύουν άρθρα και

ο πίνακας Image περιέχει φωτογραφίες συγγραφέων. Ας υποθέσουμε ότι ένας χρήστης θέλει να

βρει τα ονόματα και τις εικόνες των συγγραφέων που έχουν γκρίζα μαλλιά. Αυτό θα μπορούσε να

εκφράζεται σε SQL ως εξής:

SELECT UNIQUE a.name, i.image
FROM Author a, Image i
WHERE a.name=i.person AND haircolor(i.image) = ‘gray’

Το ερώτημα ζευγαρώνει τους δύο πίνακες και χρησιμοποιεί την συνάρτηση haircolor() για να

εντοπίσει το χρώμα των μαλλιών. Για να εκτελεστεί αποτελεσματικά αυτό το ερώτημα, θα πρέπει

να αναπτυχθεί μια κατάλληλη μηχανή η οποία να είναι σε θέση να εκτελέσει σχεσιακούς τελεστές

μαζί με αυθαίρετους τελεστές (UDFs), όπως ο τελεστής haircolor στο συγκεκριμένο παράδειγμα.

Το σχεσιακό μοντέλο και η SQL παρέχουν ανεξαρτησία δεδομένων και πλατφόρμας, επιτρέποντας

έτσι την ευελιξία στην υλοποίηση της βάσης δεδομένων και την αρχιτεκτονική που χρησιμοποιε-

ίται. Πολυάριθμα συστήματα επεξεργασίας δεδομένων έχουν προταθεί και αναπτυχθεί σε διάφορα

περιβάλλοντα υπολογισμού.

Περιβάλλοντα Υπολογισμού

Οι βάσεις δεδομένων, και τα συστήματα επεξεργασίας δεδομένων γενικότερα, έχουν αναπτυχθεί

σε πολλούς τύπους αρχιτεκτονικών, συμπεριλαμβανομένων παράλληλων συστημάτων, το πλέγμα

(grid), συστήματα ομοτοίμων (peer-to-peer), και συστήματα κοινόχρηστων δίσκων ή κοινόχρηστης

μνήμης [184]. Κάθε μία από αυτές τις αρχιτεκτονικές έχει πλεονεκτήματα και μειονεκτήματα, και

επιλέγοντας την σωστή σε κάθε περίπτωση είναι ζωτικής σημασίας. Οι αρχιτεκτονικές που δεν

έχουν διαμοιραζόμενους πόρους (shared-nothing) έχουν γίνει δημοφιλής για την επεξεργασία

δεδομένων μεγάλης κλίμακας. Οι αρχιτεκτονικές αυτές αποτελούνται από μεμονωμένους κόμβους

που συνδέονται μέσω δικτύου υψηλής ταχύτητας, και ο καθένας από αυτούς έχει ‘ιδιωτικούς’΄

πόρους (CPU πιθανώς με πολλούς πυρήνες, μνήμη, και το δίσκο).

Στα κατανεμημένα συστήματα επεξεργασίας δεδομένων που παρέχουν SQL διεπαφή, τα ερωτήματα

βελτιστοποιούνται [145] και μετατρέπεται σε πλάνα εκτέλεσης που αντιπροσωπεύονται συνήθως

ως γραφήματα επεξεργασίας δεδομένων με αυθαίρετους τελεστές στους κόμβους και τις αλληλε-

πιδράσεις μεταξύ τελεστών παραγωγών-καταναλωτών ως τις άκρες του γραφήματος. Το σύστημα

εκτελεί αυτόματα αυτά τα γραφήματα επεξεργασίας δεδομένων στους διαθέσιμους κόμβους του

συστήματος. Το μέγεθος της υποδομής (ή ισοδύναμα, το πλήθος των κόμβων στο κατανεμημένο

σύστημα) είναι ένας σημαντικός παράγων καθώς επηρεάζει το κόστος, την απόδοση, και τη δια-

θεσιμότητα του συστήματος [101]. Επιλέγοντας το σωστό μέγεθος υποδομής, και δίνοντας την

ευελιξία να αλλάξει εύκολα η υποδομή, είναι ένα σημαντικό και δύσκολο πρόβλημα.

Η ΄Ανοδος του Υπολογισμού στο Νέφος

Φανταστείτε μια ιστοσελίδα στο διαδίκτυο που προσφέρει μια υπηρεσία στην οποία οι χρήστες

μπορούν να αναζητήσουν εστιατόρια. Τα περισσότερα συστήματα σχεδιάζονται με στόχο να χει-

ριστούν φορτίο αιχμής και να παρέχουν ένα καλό επίπεδο ποιότητας υπηρεσιών τους χρήστες σε

κάθε δεδομένη χρονική στιγμή. Τα κατανεμημένα συστήματα αναπτύσσονται συνήθως σε σταθε-

ρές υποδομές (clusters), με εκ των προτέρων επενδύσεις σε πόρους με στόχο να χειριστούν το

φορτίο αιχμής. Ωστόσο, αυτό απέχει πολύ από το βέλτιστο. Είναι λογικό να υποθέσουμε ότι κατά

τη διάρκεια της ημέρας, η υπηρεσία θα χρησιμοποιείται περισσότερο από ό, τι κατά τη διάρκεια της

νύχτας, διότι πολύ περισσότερα εστιατόρια είναι ανοιχτά την ημέρα. ΄Οπως παρατηρείται πολλές

φορές στην πράξη [222], τα περισσότερα συστήματα δεν χρησιμοποιούνται ομοιόμορφα κατά την

πάροδο του χρόνου. Αντιθέτως, παρατηρείται μια περιοδική συμπεριφορά χρήσης, η οποία έχει

περιοδικότητα ημέρας η εβδομάδας. ΄Ετσι, ο σχεδιασμός για φορτίο αιχμής συνεπάγεται χαμηλό

βαθμό χρήσης των πόρων, υψηλό κόστος κατανάλωσης ενέργειας, και σπατάλη χρημάτων.

Τα Νέφη υπόσχονται να ξεπεράσουν αυτά τα μειονεκτήματα [32, 99]. Στις υποδομές νέφους,

οι πόροι μπορεί να αποκτηθούν αυτόματα και να χρησιμοποιούνται για όσο χρόνο απαιτείται, με

αντάλλαγμα κάποιο κόστος υπηρεσιών [21], χωρίς να απαιτείται καμία εκ των προτέρων επένδυση.

Αυτό καθιστά δυνατή τη δημιουργία εικονικών υποδομών που μπορούν να αλλάζουν δυναμικά στο

χρόνου και να προσαρμόζονται αυτόματα στο φορτίο. Αυτή η ικανότητα ενός συστήματος να

αλλάξει δυναμικά τους πόρους που χρησιμοποιεί δυναμικά στην πάροδο του χρόνου, ονομάζεται

ελαστικότητα [99].

Οι υποδομές νέφους αρχικά ξεκίνησαν να παρέχονται σαν υπηρεσίες από την Amazon [23], ενώ

τώρα προσφέρονται από πολλές εταιρίες [5, 116, 179]. Τα νέφη προσφέρουν υπηρεσίες τριών επίπε-

δων: υποδομές (IaaS), πλατφόρμες (PaaS), και λογισμικό (SaaS) [32]. Στο επίπεδο υποδομών, τα

νέφη προσφέρουν υπολογιστικούς πόρους με τη μορφή εικονικών μηχανών (VM) [21] των οποίων

το κόστος είναι κβαντισμένο (π.χ., ανά ώρα χρήσης). Τα IaaS νέφη προσφέρουν επίσης γρήγορα

δίκτυα και αποθηκευτικούς πόρους [1]. Στο επίπεδο PaaS, τα νέφη προσφέρουν πλατφόρμες για

ανάπτυξη εφαρμογών
2
. Τέλος, στο επίπεδο SaaS, προσφέρουν λογισμικό σαν υπηρεσία

3
.

Για σχεδόν μια δεκαετία, τα νέφη έχουν προσελκύσει την προσοχή της επιστημονικής κοινότητας

και της βιομηχανίας λογισμικού, και θεμελιώδεις προβλήματα βάσεων δεδομένων επανεξετάζον-

ται [89]. Η ικανότητα να χρησιμοποιηθούν υπολογιστικοί πόροι που είναι διαθέσιμοι δυναμικά,

αλλάζει δραματικά τον τρόπο ανάπτυξης συστημάτων και εφαρμογών [32]. Η αυτοματοποιημένη

προσαρμογή της εικονικής υποδομής η οποία αλλάζει δυναμικά βασισμένη στο φορτίο, είναι ζωτικής

σημασίας για την ενεργειακή αποδοτικότητα και την εξοικονόμηση κόστους. ΄Ενα εύλογο ερώτημα

που τίθεται για τα συστήματα επεξεργασίας δεδομένων, είναι κατά πόσον η ελαστικότητα επηρεάζει

το χρόνο απόκρισης και με ποιον τρόπο. Είναι λογικό ότι η εκτέλεση των ερωτημάτων θα πρέπει

να είναι ταχύτερη όταν διατεθούν περισσότεροι πόροι, όμως το χρηματικό κόστος της χρήσης τους

είναι υψηλότερο.

΄Ενα Επιπρόσθετο Είδος Ελαστικότητας

Εκτός από την ελαστικότητα που είδαμε στην προηγούμενη ενότητα, υπάρχει ένα επιπλέον είδος

ελαστικότητας η οποία συλλαμβάνει τους συμβιβασμούς μεταξύ του χρόνου απόκρισης του συ-

στήματος και το ποσό των χρημάτων που πληρώνουμε για αυτό [75, 135, 141, 217]. Για να το

διακρίνουμε από την παραδοσιακή έννοια της ελαστικότητας στα νέφη, αναφερόμαστε σε αυτή ως

‘οικο-ελαστικότητα’, δεδομένου ότι ο όρος έχει δανείστηκε από την οικονομική θεωρία [226].

Για να γίνει καλύτερα αντιληπτή η σημασία της οικ-ελαστικότητας, παρουσιάζουμε το ακόλουθο

παράδειγμα: Ας υποθέσουμε ότι η βάση δεδομένων στο παράδειγμα που παρουσιάσαμε νωρίτερα,

έχει έναν επιπλέον πίνακα που ονομάζεται Publication, και ένα από τα πεδία του οποίου είναι

το όνομα του πρώτου συγγραφέα της δημοσίευσης. Το ακόλουθο SQL ερώτημα υπολογίζει τον

αριθμό των δημοσιεύσεων ανά συγγραφέα:

SELECT p.firstauthor, count(*) as publications
FROM Publication p
GROUP BY p.firstauthor

Ας υποθέσουμε επιπλέον ότι ο πίνακας Publication έχει κατατμηθεί οριζοντίως σε 100 μέρη. ΄Ε-

νας αποτελεσματικός τρόπος για την εκτέλεση αυτού του ερωτήματος, χρησιμοποιεί ένα δέντρο με

συναθροιστοικούς τελεστές όπως φαίνεται στο Σχήμα 1. Κάθε τελεστής υπολογίζει ένα μερικό

άθροισμα με τις δημοσιεύσεις για κάθε συγγραφέα χρησιμοποιώντας ένα υποσύνολο της εισόδου.

Για απλότητα, υποθέτουμε ότι ο κάθε τελεστής έχει χρόνο εκτέλεσης 1 λεπτό και παράγει δε-

δομένα μεγέθους 100 MB. Χρησιμοποιούμε τους υπολογιστικούς πόρους στα IaaS νέφη για να

εκτελέσουμε το ερώτημα και υποθέτουμε ότι η ταχύτητα του δικτύου είναι 1 Gbps και το μέγεθος

του κβάντου χρέωσης είναι 1 ώρα.

2Google App Engine, appengine.google.com
3Assembla, www.assembla.com

Aggrega&ons	

A10	 A1	

B10	

in.10	 in.1	

out.0	

B1	

C	

Input	

Output	

A100	 A91	

in.100	 in.91	

...	 ...	

...	

...	

...	 	

Σχήμα 1: ΄Ενα δέντρο συναθροιστικών τελεστών τριών επιπέδων σε έναν πίνακα με 100 μέρη.

Ο Πίνακας 1 παρουσιάζει δύο εναλλακτικές λύσεις: ι) εκτέλεση όλων των τελεστές σε ένα VM και

ιι) εκτέλεση των τελεστών σε διαφορετικά VMs. Για λόγους απλότητας, υποθέστε ότι τα δεδομένα

είναι ήδη φορτωμένα στα VMs και δεν χρειάζεται επιπρόσθετο I/O για αυτό. ΄Οταν χρησιμοποιείτε

μόνο ένα VM, χρειαζόμαστε 111 λεπτά για να εκτελεστούν διαδοχικά όλοι οι τελεστές. Συνεπώς,

το χρηματικό κόστος είναι 2 κβάντα. ΄Οταν χρησιμοποιούνται 111 VMs, κάθε Ai τελεστής θα

εκτελεστεί σε 1 λεπτό. Δεδομένου ότι κάθε τελεστής παράγει 100 MB δεδομένα, οι Bi τελεστές

θα εκτελεστούν σε 1 λεπτό και 12 δευτερόλεπτα, επειδή απαιτείται επιπλέον χρόνος για τη μετα-

φορά των 1 GB δεδομένων που προέρχονται από τους Ai τελεστές
4
. Το ίδιο ισχύει και για τον

τελεστή C. Συνεπώς, ο συνολικός χρόνος που απαιτείται για την εκτέλεση είναι 3 λεπτά και 24

δευτερόλεπτα. Το κόστος ωστόσο είναι 111 κβάντα, αφού πληρώνουμε για το σύνολο του κβάντου

σε κάθε VM. ΄Οπως φαίνεται στην τελευταία στήλη του Πίνακα 1.1, και οι δύο εναλλακτικές λύσεις

αξίζει να εξεταστούν, διότι η καθεμία προσφέρει έναν διαφορετικό συμβιβασμό μεταξύ του χρόνου

εκτέλεσης και του χρηματικού κόστους.

Πίνακας 1: Διαφορετικές εκτελέσεις του δέντρου της Εικόνας 1

VMs Χρόνος Εκτέλεσης Χρηματικό Κόστος Νικητής

1 111 λεπτά 2 κβάντα 55.5x φθηνότερο

111 3.4 λεπτά 111 κβάντα 32.6x γρηγορότερο

Οι συμβιβασμοί αυτοί υπάρχουν ακόμη και με μικρότερα μεγέθη κβάντων λόγω του επιπρόσθετου

κόστους της μεταφοράς δεδομένων [141]. Θεωρητικά, συμβιβασμοί δεν υπάρχουν όταν ο χρόνος

δεν είναι κβαντισμένος (ή ισοδύναμα, το κβάντο είναι πολύ μικρό) και δεν υπάρχουν εξαρτήσεις

μεταξύ των τελεστών [178] ή όταν υπάρχουν εξαρτήσεις, αλλά οι τελεστές δεν παράγουν δεδομένα.

Ο αριθμός, η φύση, και το χρονικό & χρηματικό κόστος των διαθέσιμων εναλλακτικών πλάνων

εκτέλεσης εξαρτάται από πολλούς παράγοντες, όπως, τα χαρακτηριστικά του πλάνου εκτέλεσης

4
Η ταχύτητα του δικτύου Gpbs είναι περίπου 90 MB / sec.

Time	

Demand	

Demand	

Allocated	 Resources	

Money	

Response	 Time	

Time/Money	 Trade-‐offs	 Elas9c	 Infrastructure	

Skyline	 of	 Solu9ons	

Σχήμα 2: Τύποι ελαστικότητα στα νέφη υπολογισμού. Α) ελαστικότητα: δυναμική εικονική υπο-

δομή (αριστερά) και Β) οικο-ελαστικότητα: χρόνο / χρήματα συμβιβασμούς (δεξιά).

(χρόνος εκτέλεσης των τελεστών, το μέγεθος των δεδομένων, κλπ), η τιμολόγηση του νέφους (το

μέγεθος του κβάντου και η τιμή), η ταχύτητα του δικτύου, και άλλα. Η επιλογή του κατάλληλου

παραλληλισμού που πρέπει να χρησιμοποιηθεί, ή ισοδύναμα, ο βέλτιστος συμβιβασμός μεταξύ του

χρόνου εκτέλεσης και του χρηματικού κόστους, εξαρτάται από τις ανάγκες του εκάστοτε χρήστη.

Για παράδειγμα, ένας χρήστης μπορεί να έχει κάποιον χρηματικό περιορισμό αλλά να μην έχει

κάποιον περιορισμό για τον χρόνο εκτέλεσης, κάποιος άλλος χρήστης μπορεί να έχει αυστηρό

χρονικό όριο αλλά να μην έχει περιορισμό χρημάτων, και τέλος, ένας τρίτος χρήστης μπορεί να μην

έχει εκ των προτέρων κανένα περιορισμό, αλλά να θέλει να επιλέξει ο ίδιος το καλύτερο συμβιβασμό.

Η Εικόνα 2 δείχνει και τις δύο ελαστικότητες στα νέφη. Η κλασική ελαστικότητα απεικονίζεται στο

αριστερό μέρος, όπου φαίνεται ότι το σύστημα δεσμεύει επιπρόσθετους πόρους για να είναι σε θέση

να ανταποκριθεί στην αυξημένη ζήτηση, και τα απελευθερώνει όταν η ζήτηση μειώνεται. Η οικο-

ελαστικότητα απεικονίζεται στο δεξί μέρος της εικόνας, η οποία δείχνει διαφορετικές στρατηγικές

εκτέλεσης, με κάθε λύση είναι ένα σημείο στο 2-διάστατο χώρο και αντιστοιχεί σε ένα διαφορετικό

συμβιβασμό μεταξύ του χρόνου εκτέλεσης και του χρηματικού κόστους. Οι βέλτιστοι συμβιβασμοί

είναι εκείνοι που ανήκουν στην κορυφογραμμή [226].

Αυτή η παρατήρηση είναι το κίνητρο για την διατριβή αυτή. ΄Ενα ελαστικό σύστημα που χρησι-

μοποιεί το IaaS νέφος, μπορεί να δεσμεύει και να αποδεσμεύει δυναμικά υπολογιστικούς πόρους

προσπαθώντας να εντοπίσει τον βέλτιστο συμβιβασμό μεταξύ του χρόνου εκτέλεσης ενός δεδο-

μένου φόρτου και του χρηματικού κόστος της χρήσης των πόρων. Για να καταστεί αυτό δυνατό,

πρέπει να θεωρήσουμε ένα ενοποιημένο μοντέλο που περιλαμβάνει και τις δύο ελαστικότητες.

΄Ενα Ενοποιημένο Μοντέλο Ελαστικότητας στα Υπολογιστικά Νέφη

Και τα δύο είδη ελαστικότητας είναι στενά συνδεδεμένα μεταξύ τους. Το μέγεθος της εικονικής

υποδομής αντιστοιχεί στην επένδυση σε πόρους, και μια συγκεκριμένη υποδομή παρέχει μια ορι-

Time	

Demand	

Money	

Response	 Time	

Eco-‐Elas(city	 Elas(city	

Service-‐Level	 Agreement	

Loss	

Profit	

L	

P	

Dynamic	

Sta(c	

Increased	 Load	

Σχήμα 3: Η σχέση των δύο ειδών ελαστικότητας στα IaaS νέφη.

σμένη απόδοση σε αυτήν την επένδυση, η οποία τελικά σχετίζεται με την αμοιβή που χρεώνεται

στους χρήστες της υπηρεσίας, ενδεχομένως με τη μορφή συμφωνιών επιπέδου υπηρεσιών (SLA).
΄Ενα τυπικό SLA είναι μια συνάρτηση που υπολογίζει το χρηματικό κόστος που χρεώνεται για την

παρεχόμενη υπηρεσία με βάση τον χρόνο απόκρισης του συστήματος στα ερωτήματα [239, 243]. Η

αμοιβή αυτή σχετίζεται με τους συμβιβασμούς μεταξύ του χρόνου εκτέλεσης και του χρηματικού

κόστους χρήσης των πόρων του νέφους. Η σχέση αυτή απεικονίζεται στο Σχήμα 3. Το δεξί

μέρος του σχήματος παρουσιάζει ένα τυπικό SLA που καθορίζει την αμοιβή που χρεώνεται για τις

υπηρεσίες δεδομένου του χρόνου απόκρισης. Ταχύτερους χρόνους απόκρισης αντιστοιχεί σε υψη-

λότερες αμοιβές. Το κέρδος που παράγεται από την υπηρεσία υπολογίζεται ως η διαφορά μεταξύ

της αμοιβής που χρεώνεται στους χρήστες και το κόστος της χρήσης των πόρων του νέφους.

Υποθέστε δύο εναλλακτικούς τρόπους δέσμευσης πόρων όπως φαίνεται στο αριστερό μέρος του

Σχήματος 3: στατικό και δυναμικό. Ο κάθε εναλλακτικός τρόπος αντιστοιχεί σε μια στρατηγική

που μεγιστοποιεί το κέρδος, όπως φαίνεται στο δεξί μέρος του ίδιου σχήματος. Υπό κανονικό

φορτίο, τόσο ο στατικός όσο και ο δυναμικός τρόπος δέσμευσης πόρων πρέπει να επιλέξει το σημείο

λειτουργίας P στην κορυφογραμμή των εναλλακτικών λύσεων μεταξύ χρόνου και χρήματος, επειδή

είναι αυτό που μεγιστοποιεί το κέρδος. Ωστόσο, εάν το ίδιο πλήθος πόρων χρησιμοποιείται όταν

το φορτίο αυξάνεται, αυτά μοιράζονται μεταξύ πολλών περισσότερον χρηστών. Κατά συνέπεια, ο

χρόνος απόκρισης του συστήματος μειώνεται, αναγκάζοντάς το να λειτουργεί στο σημείο L, πράγμα
που συνεπάγεται απώλεια δεδομένου ότι το κόστος της εκτέλεσης ερωτημάτων είναι υψηλότερο από

την αμοιβή που χρεώνεται στους χρήστες. Κάνοντας δυναμική δέσμευση πόρων, το σύστημα είναι

σε θέση να δεσμεύσει επιπλέον πόρους όταν το φορτίο αυξάνεται, επιτρέποντάς το να λειτουργεί

και πάλι στο σημείο P . Αυτό το παράδειγμα δείχνει ότι και οι δύο ελαστικότητες είναι πολύ

σημαντικές, και θα πρέπει να λαμβάνονται μαζί υπόψη σε ένα περιβάλλον νέφους σε μια ενοποιημένη

προσέγγιση [89, 141].

Processing	
(dataflow	 DAG)	

A2	

A1	

P2	

P3	

P1	

B2	

In.0	

In.1	

Out.0	

B1	

B3	

C1	

Input	 Output	

Σχήμα 4: ΄Ενα παράδειγμα ροής δεδομένων που έχει ως είσοδο ένα πίνακα (In) με δύο μέρη το

οποίο εκτελεί κάποια επεξεργασία (Ai, Bi), διαμερισμό (P), και συνάθροιση (C1).

Ελαστική Επεξεργασία Δεδομένων στο Νέφος

Το όραμά μας είναι να χτίσουμε ένα ελαστικό σύστημα επεξεργασίας δεδομένων που να οργανώνετε

αυτόματα, αξιοποιώντας και τις δύο ελαστικότητες στα IaaS νέφη σε μια ενιαία προσέγγιση: να

αλλάζει δυναμικά το μέγεθος της εικονικής υποδομής που χρησιμοποιεί και να λαμβάνει υπόψη το

χρηματικό κόστος της χρήσης των πόρων. Σε αυτή την ενότητα, συζητάμε τις προσεγγίσεις μας

στα προβλήματα που ερευνήσαμε στα πλαίσια αυτής της διατριβής, τα οποία είναι εμπνευσμένα και

από τις δύο ελαστικότητες.

Χρονοπρογραμματισμός Ροών Δεδομένων στο Νέφος

Αρχικά ερευνούμε το πρόβλημα της ελαστικού χροπρογραμματισμού ροών δεδομένων σε περιβάλλον

IaaS νεφών [135, 141]. Τα ερωτήματα που εκφράζονται σε δηλωτικές γλώσσες, βελτιστοποιούν-

ται και μετατρέπεται σε ροές δεδομένων τα οποία αναπαραστούνται με τη μορφή κατευθυνόμενων

ακυκλικών γράφων (DAG) με τελεστές στους κόμβους και εξαρτήσεις δεδομένων στις ακμές. ΄Ενα

παράδειγμα απεικονίζεται στο Σχήμα 4. Η ροή δεδομένων διαβάζει την είσοδο, εκτελεί κάποιες

επεξεργασίες και μετασχηματισμούς (ενδεχομένως παράλληλα), και παράγει την έξοδο. Σε ένα

κατανεμημένο περιβάλλον, ο βελτιστοποιητής θα πρέπει να αποφασίσει, μεταξύ άλλων, σε οποίον

κόμβο του συστήματος θα εκτελεστεί ο κάθε τελεστής. Ο χρονοπρογραμματισμός των κόμβων

ενός γραφήματος ροής δεδομένων σε ένα σύνολο διαθέσιμων μηχανημάτων είναι ένα γνωστό NP-

πλήρες πρόβλημα, ακόμη και στην απλούστερη μορφή του [100, 194]. Παραδοσιακά, το μόνο

κριτήριο βελτιστοποίησης είναι ο χρόνος εκτέλεσης της ροής δεδομένων, και πολλοί αλγόριθμοι

έχουν προταθεί για το πρόβλημα αυτό [147].

Σε αυτή την εργασία, δείχνουμε ότι η οικο-ελαστικότητα είναι παρούσα σε πολλά είδη υπολογι-

σμών που εμφανίζονται συχνά στην πράξη. Επίσης προτείνουμε ένα απλό, αλλά αποτελεσματικό

αλγόριθμο αναζήτησης, ο οποίος αναζητά στον 2D-χώρο του χρόνου και χρήματος να βρει τα

χρονοδιαγράμματα τα οποία ανήκουν στην κορυφογραμμή. Η προσέγγισή μας είναι σε θέση να

Par$al	 Aggrega$ons	
Ordering	

Data	
(par$$oned)	

Result	

Joins	 /	 Filters	

…

…

…

Global	 Aggrega$ons	
Ordering	 Ln-‐1	

L1	

L0	

Ln-‐2	

Σχήμα 5: Η γενική μορφή των δεντρικών πλάνων εκτέλεσης.

βρει με επιτυχία συμβιβασμούς μεταξύ του χρόνου εκτέλεσης και του χρηματικό κόστος, και ως

εκ τούτου, να αξιοποιήσει την οικο-ελαστικότητα των νεφών. Επιπλέον, δείχνουμε ότι το επίπεδο

αφαίρεσης στο οποίο εκφράζονται οι ροές δεδομένων, παίζει ένα σημαντικό ρόλο στην ποιότητα

των χρονοδιαγραμμάτων κορυφογραμμής που ανακαλύπτονται. Στην εργασία αυτή ερευνούμε δύο

επίπεδα αφαίρεσης: MapReduce και των γενικών γραφήματα ροής δεδομένων. Χρησιμοποιώντας

τη γενική αφαίρεση, μπορούμε να επιτύχουμε διαχειρίσιμη πολυπλοκότητα στην αναζήτηση και ένα

πολύ σημαντικό κέρδος, με αποτέλεσμα να παράγουμε χρονοπρογράμματα που είναι καλύτερα από

τα αντίστοιχα που εκφράζεται στην αφαίρεση του MapReduce. Δεδομένου ότι η προσέγγισή μας

είναι γενική και ασχολείται με ένα θεμελιώδες πρόβλημα το οποίο βρίσκεται στην καρδιά όλων

των κατανεμημένων συστημάτων επεξεργασίας δεδομένων, ο αλγόριθμός μας θα μπορούσε δυνη-

τικά να χρησιμοποιηθεί για να ενσωματώσει την ελαστικότητα σε πολλά διαφορετικά συστήματα,

συμπεριλαμβανομένων των MapReduce.

Ελαστική Επεξεργασία Αναλυτικών Ερωτημάτων

Το επόμενο πρόβλημα που ερευνούμε είναι η ελαστική εκτέλεση αναλυτικών ερωτημάτων [137].

Πολλά από τα ερωτήματα αυτά περιέχουν πολλές συναθροιστηκές συναρτήσεις, πολύ συχνά σε

μορφή UDFs. Ο πιο αποτελεσματικός τρόπος εκτέλεσης τους είναι χρησιμοποιώντας δεντρικά

πλάνα εκτέλεσης [169]. Η Εικόνα 5 παρουσιάζει την γενική μορφή ενός τέτοιου πλάνου εκτέλεσης.

Στα φύλλα του δέντρου περιέχουν τα δεδομένα, τα οποία είναι κατατμημένα κατάλληλα. Οι συνα-

θροιστικές συναρτήσεις βρίσκονται στους εσωτερικούς κόμβους του δέντρου και η ρίζα παράγει το

αποτέλεσμα του ερωτήματος.

Στην εργασία αυτή, αναπτύσσουμε μια μηχανή με μια σουίτα από εξειδικευμένες τεχνικές που εκμε-

ταλλεύονται τη μορφή των δεντρικών πλάνων εκτέλεσης για να τα εκτελεί πολύ αποτελεσματικά

σε ένα περιβάλλον IaaS νέφους. Η μηχανή προσφέρει τις υπηρεσίες της έναντι μιας αμοιβής η

οποία καθορίζεται από συμφωνίες επιπέδου υπηρεσιών (SLA). Οι πόροι που δεσμεύονται από το

σύστημα διοργανώνονται σε ένα δεντρικό σχήμα, έτσι ώστε τα πλάνα εκτέλεσης των ερωτημάτων

να αντιστοιχίζονται φυσικά στους υπολογιστικούς πόρους. Επιπλέον, προτείνουμε έναν αλγόριθ-

μο ο οποίος εκμεταλλεύεται την ελαστικότητα των νεφών και προσαρμόζει δυναμικά το σύστημα

στον φόρτο ερωτημάτων δεσμεύοντας δυναμικά VMs με στόχο να μεγιστοποιηθεί το κέρδος μετά

την αφαίρεση των δαπανών που συνεπάγονται από την χρήση των πόρων του νέφους. Τέλος πα-

ρουσιάζουμε μια εκτενή πειραματική αξιολόγηση που αναδεικνύει ότι η προσέγγισή μας είναι πολύ

αποδοτική, ελαστική (τροποποιεί με επιτυχία τους πόρους που χρησιμοποιεί καθώς προσαρμόζεται

στις αλλαγές του φόρτου ερωτημάτων), και επικερδής (προσεγγίζει πολύ καλά τη μέγιστη διαφορά

μεταξύ SLA τα έξοδα του νέφους).

Αυτοματοποιημένη Διαχείριση Ευρετηρίων

Τα ευρετήρια είναι ένας τυπικός τρόπος για να επιταχυνθεί η εκτέλεση των ροών δεδομένων [140]. Η

αυτοματοποιημένη διαχείριση των ευρετηρίων, των όψεων, και γενικότερα, των δομών δεδομένων

που βοηθούν την επεξεργασία ερωτημάτων, είναι ένα ενδιαφέρον ερευνητικό πρόβλημα γεμάτο

προκλήσεις. Το παραδοσιακό πρόβλημα περιορίζεται από το συνολικό χώρο αποθήκευσης που

απαιτείται ή τον χρόνο κατασκευή τους. Σε ένα περιβάλλων νέφους, το χρηματικό κόστος είναι

εξίσου σημαντικό.

Σε αυτή την εργασία, χρησιμοποιούμε τους αδρανείς υπολογιστικούς πόρους που χρεώνονται από

τους παρόχους υπηρεσιών νέφους λόγο της κβαντικής χρέωσης, για να εξαλείψουμε το χρηματικό

κόστος της δημιουργίας των ευρετηρίων. Το φαινόμενο αυτό προκύπτει λόγω της φύσης των

ροών δεδομένων που έχουν πολλές εξαρτήσεις και της προπληρωμένης πολιτικής μίσθωσης της

υπολογιστικών πόρων. Για να φανεί αυτό, χρησιμοποιούμε την ροή δεδομένων του Σχήματος 4

και την εκτελούμε σε 3 VMs. Το χρονοδιάγραμμα εκτέλεσης που προκύπτει απεικονίζεται στο

Σχήμα 6. Παρατηρούμε ότι υπάρχει ένα σημαντικό ποσοστό του χρόνου ο οποίος είναι αδρανείς

και δημιουργείται από τις εξαρτήσεις μεταξύ των τελεστών.

Για το πρόβλημα αυτό, προτείνουμε έναν αυτο-ρυθμιζόμενο αλγόριθμο ο οποίος εκτιμά την σημασία

των ευρετηρίων, λαμβάνοντας υπόψη τους συμβιβασμούς μεταξύ της επιτάχυνσης που προσφέρουν

και το χρηματικό κόστος που απαιτείται για την αποθήκευσή τους. Επιπλέον, ο αλγόριθμός μας

εξαλείφει το κόστος για την κατασκευή των ευρετηρίων χρησιμοποιώντας αποτελεσματικά τους

αδρανείς υπολογιστικούς πόρους χωρίς καθυστερήσεις στην εκτέλεση των ροών δεδομένων. Η

πειραματική μας αξιολόγηση δείχνει ότι είμαστε σε θέση να αυξήσουμε τη χρήση των πόρων και να

μειώσουμε σημαντικά τόσο το χρόνο όσο και το χρηματικό κόστος που απαιτείται για την εκτέλεση

των ροών δεδομένων.

Time	

VMs	

A2	

A1	

Q2	

Q0	 Q1	

VM1	

VM2	

VM3	
f2	

f3	

f6	

f5	

f1	

f4	

Q2	

Q2	

Q2	

Q3	

	 	 	 P1	

P2	

P3	

Σχήμα 6: Το Χρονοδιάγραμμα της ροής δεδομένων του Σχήματος 4. Οι αδρανείς πόροι εμφανίζον-

ται με τα βέλη (F1, . . . , F6)

Το Σύστημα Ελαστικής Επεξεργασίας EXAREME

Τέλος, συζητάμε το EXAREME [142, 221], ένα σύστημα για την ελαστική επεξεργασία δεδομένων

μεγάλης κλίμακας στο νέφος που καθορίζει το πλαίσιο στο οποίο ερευνήθηκαν τα προβλήματα που

παρουσιάσαμε στις προηγούμενες ενότητες. Το σύστημα προσφέρει μια δηλωτική γλώσσα που

βασίζεται στην SQL, η οποία έχει επεκταθεί με οδηγίες παραλληλισμού δεδομένων. Χτίζοντας

το κατάλληλο περιβάλλον εκτέλεσης είναι απαραίτητη προυπόθεση για την πλήρη αξιοποίηση της

ελαστικότητας στα νέφη. Στην διατριβή αυτή σχεδιάζουμε και υλοποιούμε την ελαστική λειτουργία

του EXAREME. Παρουσιάζουμε τα βασικά μέρη του συστήματος και τη γλώσσα ροών δεδομένων

που αναπτύξαμε. Η γλώσσα προσφέρει οδηγίες για να δηλωθεί εύκολα παραλληλισμός δεδομένων,

με αποτέλεσμα το σύστημα να μπορεί να αποφασίζει δυναμικά την κατάλληλη παραλληλία σε κάθε

περίπτωση. Τέλος, παρουσιάζουμε τα αποτελέσματα πολλών πειραμάτων που αποδεικνύουν την

αποτελεσματικότητα της προσέγγισής μας. Το EXAREME είναι η πρώτη προσπάθεια να χτιστεί ένα

σύστημα που να εκμεταλλεύεται και τις δύο ελαστικότητες των νεφών.

Contents

List of Figures 37

List of Tables 41

1 Introduction 43
1.1 Data Management Systems . 43
1.2 Modern Data Processing Needs . 44
1.3 Computation Environments . 45
1.4 The Rise of Cloud Computing . 45
1.5 An Additional kind of Elasticity . 47
1.6 A Unified Elasticity Model of Clouds . 50
1.7 Elastic Data Processing on the Cloud . 51

1.7.1 Query Optimization Opportunities . 51
1.7.2 Dataflow Scheduling on the Cloud . 55
1.7.3 Analytical Query Workloads . 56
1.7.4 Automated Management of Indexes . 57
1.7.5 The EXAREME Elastic Processing System 58

1.8 Dissertation Organization . 58

2 Background and Related Work 61
2.1 IaaS Cloud Environment Overview . 61
2.2 Distributed Processing Systems Overview . 62

2.2.1 Data Warehouses . 63
2.2.2 Extract-Transform-Load Systems . 63
2.2.3 Multi-Database Systems . 64
2.2.4 Peer-to-Peer Systems . 65
2.2.5 Workflow Management Systems . 65
2.2.6 Grid Systems . 66

2.3 Cloud Systems . 67
2.3.1 Cloud Storage Systems . 67
2.3.2 Systems based on MapReduce . 70
2.3.3 Cloud Processing Systems Overview 72

2.4 Auto-Tuned Systems . 73

2.5 Elasticity . 74
2.6 EXAREME System Overview . 75

2.6.1 Elastic Computation . 75
2.6.2 Data Storage . 75
2.6.3 Data Placement . 76
2.6.4 Data Updates . 78

3 Elastic Dataflow Scheduling on the Cloud 81
3.1 Introduction . 82
3.2 Illustrative Example . 84
3.3 IaaS Cloud and Dataflow Modeling . 86

3.3.1 IaaS Cloud . 86
3.3.2 Dataflow . 87
3.3.3 Dataflow Schedule . 88

3.4 Dataflow Schedule Time and Money Estimations 89
3.4.1 Operator Interactions . 89
3.4.2 Time and Money Estimation Algorithm 91
3.4.3 Extending Starfish Estimator with Monetary Cost 93

3.5 Scheduling Algorithms . 94
3.5.1 Operator Ranking . 94
3.5.2 Dynamic Skyline . 96
3.5.3 Parallel Wave . 99

3.6 Experimental Evaluation . 100
3.6.1 Experimental Setup . 100
3.6.2 Model Validation . 104
3.6.3 Modeling Sensitivity Analysis . 105
3.6.4 Scheduling Algorithm Sensitivity Analysis 105
3.6.5 Skyline Discovery . 106
3.6.6 Effect of Ranking . 106
3.6.7 Compare Algorithms . 107
3.6.8 Elastic Execution . 108
3.6.9 Elastic MapReduce . 108
3.6.10 Compare Abstractions . 110

3.7 Related Work . 112
3.8 Discussion . 114

3.8.1 Nested Loops Family . 114
3.8.2 Skyline 2-D Simulated Annealing . 117
3.8.3 Branch and Bound . 117
3.8.4 Recursive Graph/Space Partitioning Family 120

3.9 Conclusions . 122

4 Elastic Cloud Processing for Analytical Query Workloads 123
4.1 introduction . 123
4.2 Motivation - Tree Queries . 126

4.3 Problem Formulation . 128
4.3.1 Data Partitioning . 128
4.3.2 Properties of Analytical Queries . 128
4.3.3 Service Level Agreement . 130
4.3.4 Profit Maximization Problem . 131

4.4 Illustrative Example . 132
4.5 Overall Approach . 135

4.5.1 Container Layout . 135
4.5.2 Data Partitioning Methodology . 136
4.5.3 Elastic Layout Allocation . 138
4.5.4 Query Tree Scheduler . 141

4.6 Experimental Evaluation . 142
4.6.1 Experimental Setup . 142
4.6.2 Near-Interactive Analytics . 144
4.6.3 Complex Analytics . 145
4.6.4 Elasticity under Dynamic Workloads . 147

4.7 Related Work . 149
4.7.1 Data Warehouses . 149
4.7.2 NoSQL–Systems . 150
4.7.3 Elasticity . 150

4.8 Conclusion . 151

5 Automated Management of Indexes in the Cloud 153
5.1 Introduction . 153
5.2 Related Work . 157

5.2.1 Under-Utilized Resources . 157
5.2.2 Index Management . 157
5.2.3 Pricing Policy . 158
5.2.4 Conclusions . 158

5.3 Problem Setting . 158
5.4 Notation and Modeling . 161

5.4.1 Data Model . 161
5.4.2 IaaS Cloud . 161
5.4.3 Dataflow . 162
5.4.4 Index . 163
5.4.5 Dataflow and Index Management . 164

5.5 Optimization Problem . 164
5.6 Auto-Tuning Algorithm . 167

5.6.1 Index Ranking . 168
5.6.2 Online Index Tuning . 169
5.6.3 Skyline Dataflow Scheduler . 170
5.6.4 Index Interleaving Algorithms . 170

5.7 Experimental Evaluation . 173

5.7.1 Experimental Setup . 173
5.7.2 Estimation Errors . 177
5.7.3 Idle Compute Resources . 178
5.7.4 Dataflow Scheduling Algorithms . 179
5.7.5 Index Interleaving Algorithms . 179
5.7.6 Dynamic Dataflow Workload . 181

5.8 Conclusions . 183

6 The EXAREME Elastic Dataflow Processing System 185
6.1 Introduction . 185
6.2 Data Model & Physical Design . 187

6.2.1 Data Model . 187
6.2.2 Table Partitioning . 187
6.2.3 Table Partition Placement . 188
6.2.4 Indexing . 190
6.2.5 Updates . 190

6.3 Language Abstractions . 190
6.3.1 ExaQL High-Level Language . 191
6.3.2 Data Parallelism Primitives . 192
6.3.3 ExaDFL Dataflow Language . 193

6.4 Query Optimization . 195
6.4.1 Translate ExaQL to ExaDFL . 196
6.4.2 Translate ExaDFL to ExaDMC . 196

6.5 System Components . 197
6.5.1 Worker . 197
6.5.2 Execution Engine . 197
6.5.3 Resource Manager . 198
6.5.4 Visualization Tools . 198

6.6 Experimental Evaluation . 199
6.6.1 Setup . 200
6.6.2 Evaluate Elasticity . 200

6.6.2.1 Elastic Data Layout . 200
6.6.2.2 Elasticity . 201
6.6.2.3 Compare with Baseline . 202

6.6.3 Evaluate Horizontal Scalability . 203
6.6.4 Systems Comparison . 206

6.7 Related Work . 207
6.7.1 Cloud Dataflow Processing Systems . 207
6.7.2 Data Partitioning and Placement . 209
6.7.3 Elasticity . 210

6.8 Conclusions . 211

7 Conclusions and Open Problems 213
7.1 Summary of Contributions . 213

7.2 Future Research Directions . 214
7.2.1 Elastic Stream Processing . 214
7.2.2 Elastic Graph Processing . 215
7.2.3 Elastic Data Layout . 215
7.2.4 Eco-Elasticity under Different Pricing Schemes 216
7.2.5 Generalized Elasticity of Clouds . 216
7.2.6 Elastic Query Optimization . 217

8 Bibliography 219

List of Figures

1 ΄Ενα δέντρο συναθροιστικών τελεστών τριών επιπέδων σε έναν πίνακα με 100 μέρη. 23

2 Τύποι ελαστικότητα στα νέφη υπολογισμού. Α) ελαστικότητα: δυναμική εικονική

υποδομή (αριστερά) και Β) οικο-ελαστικότητα: χρόνο / χρήματα συμβιβασμούς

(δεξιά). 24

3 Η σχέση των δύο ειδών ελαστικότητας στα IaaS νέφη. 25

4 ΄Ενα παράδειγμα ροής δεδομένων που έχει ως είσοδο ένα πίνακα (In) με δύο μέρη

το οποίο εκτελεί κάποια επεξεργασία (Ai, Bi), διαμερισμό (P), και συνάθροιση (C1). 26

5 Η γενική μορφή των δεντρικών πλάνων εκτέλεσης. 27

6 Το Χρονοδιάγραμμα της ροής δεδομένων του Σχήματος 4. Οι αδρανείς πόροι εμ-

φανίζονται με τα βέλη (F1, . . . , F6) . 29

1.1 Cloud levels of services typically offered by providers. 47
1.2 A three-level aggregation tree on top of an input with 100 partitions. 48
1.3 Types of elasticity in clouds. A) elasticity: dynamic virtual infrastructure (left)

and B) eco-elasticity: time/money trade-offs (right). 49
1.4 Relationship of elasticities in IaaS clouds. 50
1.5 The steps of the optimization process. 52
1.6 An example dataflow with one input table (In) with two partitions that performs

processing (Ai, Bi), partitioning (P), and aggregation (C1). 55
1.7 Generic form of tree execution plans. 56
1.8 Timeline of Figure 1.6 dataflow evaluation. Fragmented resources are shown

shown with arrows (F1, . . . , F6) . 58

2.1 Typical IaaS cloud service. 62
2.2 The architecture of HDFS. 68
2.3 Chord ring with keys of 1 byte length (in practice a much larger key space is

used). Each key-value pair is assigned to the first node that is located after it
in the ring. 69

2.4 The computation model of MapReduce. 70
2.5 Overview of the EXAREME system. 76
2.6 EXAREME distributed file system. The partitions are stored in the storage ser-

vice of the cloud and are cached to the allocated VMs using a partitioning
ring. 77

2.7 An example of partition placement using consistent hashing. Worker #6 is
inserted to the system, taking some partitions from worker #5. 78

2.8 Percentage of partitions re-assigned when changing the size of the virtual
infrastructure. 78

2.9 Multi-version file system. Updates create new version of the relevant parts. . . 79

3.1 An example dataflow with one input table (In) with two partitions that performs
processing (Ai, Bi), partitioning (Pi), and aggregation (C1). 82

3.2 Illustration of the execution of scheduling algorithm. 85
3.3 The timeline of the skyline schedules of the dataflow graph of Figure 3.1. . . . 85
3.4 The generic MapReduce dataflow. 88
3.5 Operator A, B, and C executing in the same container. At region X the overall

CPU utilization exceeds 100% and as a result the operators will get a fraction
of the processor and their duration will stretch by 20% during that region. . . . 91

3.6 The operator groups (G1, . . . , G6) of the dataflow of Figure 3.1 assuming Ai
and C1 are store-and-forward and Pi and Bi are pipeline operators. 92

3.7 Structure (left) and derivative (right) rankings. 94
3.8 All solutions for operators A, B, and C. 98
3.9 Scaled down versions of the scientific graphs Montage(A), Ligo(B), and Cy-

bershake(C) scientific dataflow graphs. 101
3.10 Two skylines S (red circle) and T (blue square). Their distance set is ((d1 +

d2)/2, d3). 103
3.11 Real and estimated execution time and money for queries of the TPC-H bench-

mark. 104
3.12 Real and estimated execution time and money for the scientific dataflows. . . . 105
3.13 Modeling sensitivity to operator estimation errors. 106
3.14 Scheduling sensitivity to operators estimation errors. 107
3.15 Skylines of scientific dataflows found by Sky algorithm. 107
3.16 Sky with different ranking algorithms using Ligo dataflow with 100 PL and SnF

operators. 108
3.17 Skyline Distance and # schedules in skyline of different algorithms on scientific

dataflows. 109
3.18 Running time of the algorithms on scientific dataflows. 110
3.19 TPC-H queries on EXAREME using different schedules in the skyline. 110
3.20 PW algorithm and varying all pairs on the Terasort MarReduce dataflow. 111
3.21 MapReduce graphs with SnF and PL operators using Sky and PW algorithms. 111
3.22 Execution time (left) and 2D space of time/money (right) of TPC-H queries on

Hive and EXAREME with 64GB data and 32 VMs. 112
3.23 Branch and Bound for the first three operators A, B, and C. 119
3.24 Branch and Bound 2D space. 119
3.25 Recursive space partitioning. 121

4.1 Generic form of tree execution plans. 124
4.2 Engine for Elastic Analytical Query Processing. 125

4.3 Two SLAs: ‘critical’ and ‘best-effort’. 130
4.4 Profit maximization based on revenue and operational cost. 131
4.5 Execution plans of two queries Q1 and Q2. 132
4.6 The queries of Figure 4.5 using different container layouts. 133
4.7 Profit as a function of the number of VMs in the lowest two levels of the layout.

Profit increases from darker to lighter color. 134
4.8 Container layout showing the fixed containers (in red) and the elastic levels. . . 135
4.9 Partitioning using consistent hashing. 136
4.10 Percentage of partitions assigned to a different container when changing their

number. 137
4.11 A 1-D cut of Figure 6.3 at 125 containers. 137
4.12 Percentage of partitions assigned to a different container when changing their

number. 138
4.13 TPC-H table size distribution at 64 GB and 128 GB scales. 143
4.14 TPC-H with 64 GB on Impala and Exareme using 64 VMs. 145
4.15 TPC-H queries using tree and graph execution plans on 64 containers. 145
4.16 Execution times for Freebase queries. 146
4.17 Query exec. time (left), revenue & cost (middle), and containers allocated per

level (right). 147
4.18 Elastic configuration vs. static layouts. 148
4.19 Elastic containers allocated per tree level and revenue and cost for workload

with different phases. 149

5.1 The setting of the QaaS service. 155
5.2 Example dataflow and build index DAGs. 159
5.3 Timeline of Figure 5.2 dataflow evaluation. The set of idle time segments is

(f1, f2, ..., f6). 160
5.4 Timeline of Figure 5.2 dataflow evaluation with interleaved build index operators.160
5.5 Space priority with different α. Red color is low and yellow is high. 165
5.6 Gain over time of two indexes A and B. 167
5.7 Index ordering based on α at time point t. 168
5.8 The scientific dataflow graphs Montage(A), Ligo(B), and Cybershake(C). 174
5.9 Sensitivity of the algorithm to estimation errors. 177
5.10 Idle time of schedules in the skyline of the dataflows. 178
5.11 Comparison of online and offline scheduling algorithms. 179
5.12 Number of indexes scheduled using different algorithms for Montage dataflow. 180
5.13 Montage with build index ops (green). 180
5.14 Histogram with execution times of build index operators and idle time resources.181
5.15 Total gain using different algorithms using the build index operators and idle

compute times of Figure 5.14. 181
5.16 Executed dataflows and average cost/dataflow (phase dataflow generator). . . 182
5.17 Adaptation of the algorithm to the dataflow workload. 183
5.18 Executed dataflows and average cost per dataflow (random dataflow generator).183

6.1 TPC-H table size distribution. 188
6.2 Partitioning using consistent hashing. 189
6.3 % of partitions assigned to different VMs when changing the size of the virtual

infrastructure. 189
6.4 Input Combinations. 192
6.5 Output Partitioning. 193
6.6 Directed acyclic graph (DAG) produced by the example dataflow. 195
6.7 EXAREME dataflow reports. 199
6.8 % data transferred varying the number of partitions. 201
6.9 Elasticity of EXAREME varying incoming query rate using TPC-H 32GB and

128 partitions. 202
6.10 Comparison of CH with baseline. 202
6.11 Elastic configuration vs. static layouts. 203
6.12 Execution time of TPC-H on EXAREME varying data size with 32 VMs. 204
6.13 Execution time of TPC-H on EXAREME with 64GB of data varying number of

VMs. 204
6.14 Freebase execution time. 206
6.15 Execution time speedup of EXAREME on TPC-H with 64GB data and 32 VMs. . 207

List of Tables

1 Διαφορετικές εκτελέσεις του δέντρου της Εικόνας 1 23

1.1 Different Executions of aggregation tree of Figure 1.2 49

3.1 Running time of operators of example dataflow 85
3.2 Experimental Properties . 101
3.3 Basic Statistics of the Dataflow Operators . 102
3.4 Starfish Parameters Ranges . 109

4.1 Profit of Different Layouts. 133
4.2 Freebase Language Histogram . 146

5.1 Dataflows Issued using Indexes A and B. 167
5.2 Experiment Parameters . 173
5.3 Basic statistics of the scientific dataflows. 174
5.4 Indexes on table lineitem. 175
5.5 Index speedup. 176
5.6 Operators executed. 182

6.1 Freebase Languages . 205

Elastic Dataflow Processing on the Cloud

Chapter 1

Introduction

Data is ubiquitous and is generated everywhere; from telecommunications, to social media
and health-care, the successful management of data is of key importance. Science has
shifted in its 4rth paradigm during the last decade [112]. All successful businesses heavily
depend on efficiently analyzing large amounts of data to support decisions [203]. The effi-
cient collection, storage, and processing of these vast amounts of data generated, will play a
more important role than before in the years to come.

“We are in the era of Big Data.”

The need for efficient and scalable data management systems is extremely important.

1.1 Data Management Systems

Relational database management systems (RDBMSs) have been an efficient solution for
data management for almost forty years. Since their initial proposal in the 1980’s, numer-
ous general purpose database systems have been developed and commercialized by major
vendors, like Oracle and IBM [117, 180].

During the last decade, it has become obvious that “one size does not fit all” for modern data
management needs (the contrary is advocated by general purpose database systems). This
fact has popularized the research and development of specialized systems. Examples in-
clude systems for in-memory transactions [213], analytics [119], science [212], and systems
for specific purposes built by large companies to support their businesses [2, 101, 203].

43 H. Kllapi

Elastic Dataflow Processing on the Cloud

“Specialized data management systems can achieve significantly better perfor-
mance than general purpose systems.”

A recent influential and worth mentioning category of these specialized systems are based
on the MapReduce paradigm [69]. MapReduce is designed for large-scale fault-tolerant
distributed processing. These systems offer limited transaction capabilities and the typical
case is to import data periodically using bulk loading (e.g., every day or week). Their strong
point is the ease of use and the very good performance on specific types of applications that
can benefit from the batch synchronous processing model of MapReduce.

1.2 Modern Data Processing Needs

Database research has shown that well-defined data models and declarative query lan-
guages are extremely useful because they provide data representation and platform inde-
pendence, hiding the internals of the system. The prevailing data model is the relational
model and the standard language to query databases is SQL [57, 58]. The initial use of
databases was for data storage and retrieval by forming SQL queries. Applications that
needed more complex data processing were built on top of them. Later research showed
that performing the processing inside the database address space, is much more efficient,
because it reduces data transfer and context switches [159]. This way, the processing is
“pushed” close to the data using stored procedures or user-defined functions (UDFs) [81],
essentially making the database a full-fledged data processing engine.

“SQL alone is neither sufficient nor efficient to support modern applications that
run inside the database.”

Complex on-demand data retrieval and processing is a characteristic of several applications
and combines the notions of querying & search, information filtering & retrieval, data transfor-
mation & analysis, and other data manipulations. This posses some interesting challenges
for data processing systems, which need to support complex UDFs that do not come from
a pre-defined set of operators with well known semantics. To illustrate this, we present the
following example: Assume a database with two tables, Author and Image. Table Author
contains authors that publish papers and table Image contains photographs of authors. Sup-
pose a user wants to find the names and images of authors who have gray hair (assume that
this information is not in the Image table). This could be expressed in SQL as follows:

SELECT UNIQUE a.name, i.image
FROM Author a, Image i

H. Kllapi 44

Elastic Dataflow Processing on the Cloud

WHERE a.name=i.person AND haircolor(i.image) = ‘gray’

The query joins the two tables and use the haircolor() function to detect the color of the
person’s hair and return it. To be able to run it efficiently, an appropriate engine should be
developed that is able to execute relational operators along with operators that have arbitrary
user code (like haircolor in this particular example).

The relational model and the SQL query language provide data and platform independence,
thus allowing flexibility to the database implementation and the architecture used. Numerous
engines have been proposed and developed in several environments.

1.3 Computation Environments

Databases, and data processing systems in general, have been developed on many types of
architectures including many-core, parallel, grid, peer-to-peer, shared-disk, shared-memory,
and shared-nothing [184]. Each of these architectures have advantages and drawbacks, and
choosing the right one is essential. Shared-nothing (distributed) architectures have become
popular for large-scale data processing. These architectures consists of individual nodes
connected via high-speed network, each of them having “private” (not shared) resources
(CPU possibly with many cores, memory, and disk).

“Distributed computing seems to be a promising solution to store and process the
vast amounts of data that are continuously generated.”

In distributed data processing systems that provide an SQL interface, the queries are op-
timized [145] and transformed into execution plans that are typically represented as data
processing graphs with arbitrary data operators as nodes and their producer-consumer in-
teractions as edges. The system automatically schedules the dataflow graphs to the available
nodes of the system in order to be executed in a distributed fashion. Capacity planning (i.e.,
how large the infrastructure should be) is very important as it affects the cost, the perfor-
mance, and the availability of the system [101]. Choosing the right amount of resources, and
giving the flexibility to easily change the infrastructure, is a challenging task.

1.4 The Rise of Cloud Computing

Imagine an internet web site that offers a service, in which users can search for restaurants.
Most systems are designed to be able to handle peak-load in order to provide a certain

45 H. Kllapi

Elastic Dataflow Processing on the Cloud

quality of service to the users at any given time. Distributed systems are usually deployed in
fixed infrastructures (clusters), by acquiring the appropriate amount of resources to handle
peak-load with investments made up-front. Clusters have a relatively small operational cost
and a large administration cost. However, this is far from optimal. It is reasonable to assume
that during the day, the service will be used more than during the night, since much more
restaurants are open during the day. As also observed in practice [222], most systems are
not used uniformly over time. Instead, a periodic usage behavior is observed, typically with
daily or weekly patterns. Thus, designing for peak-load implies low utilization of resources,
high energy cost, and waste of money.

Clouds promise to overcome these inefficiencies [32, 99]. Using cloud infrastructures, one
can acquire resources automatically and use them for as much time needed, in exchange for
a service fee [21]. No up-front or administration cost is needed. This makes it possible to cre-
ate virtual infrastructures that change dynamically over time and are automatically adapted
to the workload. This ability to change the resources used dynamically over time, is called
elasticity [99].

“The defining characteristic of clouds is elasticity.”

Pioneered by Amazon [23], now cloud services are offered by many providers [5, 116, 179].
Typically, clouds offer three levels of services as shown in Figure 1.1: infrastructure (IaaS),
platform (PaaS), and software (SaaS) [32]. At the IaaS level, clouds offer compute resources
in the form of virtual machines (VM) [21] whose service fee is based on a per quantum pricing
scheme (e.g., constant fee per hour of usage). IaaS clouds also offer network and storage
resources [1]. At PaaS level, clouds offer platforms to develop applications1. Finally, at SaaS
level, they offer software services2.

For almost a decade, clouds have attracted much attention in the research community and
software industry and fundamental database problems are being revisited [89]. The ability
to use computational resources that are available on demand, challenges the way we im-
plement systems and applications [32]. The automated adaptation of the allocated virtual
infrastructure based on the query workload is crucial for energy efficiency and cost savings.
A logical question that arises is whether elasticity affects the response time of the system and
in which way. It seems reasonable that the response should be faster when more resources
are used, however the monetary cost of using them is higher.

1Google App Engine, appengine.google.com
2Assembla, www.assembla.com

H. Kllapi 46

Elastic Dataflow Processing on the Cloud

Infrastructure	 as	 a	 Service	
(IaaS)	

Pla3orm	 as	 a	 Service	
(PaaS)	

So6ware	 as	 a	 Service	
(SaaS)	

Figure 1.1: Cloud levels of services typically offered by providers.

1.5 An Additional kind of Elasticity

In addition to the elasticity discussed in the previous section, there is another kind of elasticity
present in clouds, which captures the trade-offs between the response time of the system
on a query and the amount of money we pay for it [75, 135, 141, 217]. To distinguish it from
the traditional notion, in this dissertation, we refer to it as eco-elasticity, since this term is
borrowed from economics [226].

“Eco-elasticity is related to the trade-offs between response time and monetary
cost of using cloud’s resources.”

To illustrate why eco-elasticity is important, we present the following example: Assume that
our example database presented earlier, has an additional table called Publication and one
of its attributes is the name of the first author of the publication. The following SQL query
computes the number of publications of each author:

SELECT p.firstauthor, count(*) as publications
FROM Publication p

47 H. Kllapi

Elastic Dataflow Processing on the Cloud

GROUP BY p.firstauthor

Further, assume that the Publication table is horizontally partitioned into 100 parts. An effi-
cient way to execute this query is using a tree of aggregate operators as shown in Figure 1.2.
Each operator computes a partial publications count for each author, using a subset of the
input. In fact, as we later discuss, this is an efficient way to execute a large class of SQL
queries with functions that can be computed incrementally [137]. For simplicity, assume that
each operator runs for 1 minute and generates 100 MB of data. We use the compute re-
sources of IaaS clouds to execute the query assuming the network speed is 1 GBit and a
time quantum size of 1 hour.

Aggrega&ons	

A10	 A1	

B10	

in.10	 in.1	

out.0	

B1	

C	

Input	

Output	

A100	 A91	

in.100	 in.91	

...	 ...	

...	

...	

...	 	

Figure 1.2: A three-level aggregation tree on top of an input with 100 partitions.

Table 1.1 shows two alternatives; i) execute all operators in one VM and ii) execute operators
in different VMs. For simplicity, assume that the data is loaded into the allocated VMs and
no additional I/O is needed for that. When using 1 VM, we need 111 minutes to sequentially
execute all operators. Thus, the monetary cost is 2 quanta. When using 111 VMs, each Ai
operator will be executed in 1 minute. Since each operator generates 100 MB of data, the
Bi operators will be executed in 1 minute and 12 seconds because additional time is needed
to transfer 1GB of data for their inputs generated from the A operators 3. The same holds
for the C operator. Thus, the total time needed is 3 minutes and 24 seconds. The monetary
cost however is 111 quanta, since we pay for the entire quantum for each VM. As also shown
in the last column of Table 1.1, both alternatives are worth considering because they offer a
different trade-off between time and monetary cost.

These trade-offs exist even with smaller quantum sizes because of the cost of data trans-
fer [141]. Theoretically, no trade-offs exist when the time is not quantized (or equivalently,

3The speed of a GBit network is around 90 MB/sec.

H. Kllapi 48

Elastic Dataflow Processing on the Cloud

Table 1.1: Different Executions of aggregation tree of Figure 1.2
VMs Execution Time Monetary Cost Winner

1 111 minutes 2 quanta 55.5x cheaper
111 3.4 minutes 111 quanta 32.6x faster

Time	

Demand	

Demand	

Allocated	 Resources	

Money	

Response	 Time	

Time/Money	 Trade-‐offs	 Elas9c	 Infrastructure	

Skyline	 of	 Solu9ons	

Figure 1.3: Types of elasticity in clouds. A) elasticity: dynamic virtual infrastructure (left) and
B) eco-elasticity: time/money trade-offs (right).

the quantum is very small) and no dependencies exist between operators (e.g., bag of
tasks [178]) or when operators generate no data.

The number, nature, and temporal & monetary costs of available alternatives depend on
many parameters, such as the characteristics of the execution plan of the query (execution
time of operators, amount of data generated, etc.), the cloud pricing scheme (quantum length
and price), the network bandwidth, and more. The choice of how much parallelism to use or,
equivalently, the optimal trade-off between completion time and money spent, depends on
the needs of the particular user concerned. For example, a user may have budget constraints
but be relaxed about completion time; another user may have a strict deadline but no concern
about money; finally, a third user may have no a-priori constraints but wants to choose herself
the best trade-off after having been shown all choices.

Figure 1.3 shows both elasticity and eco-elasticity properties of clouds. Elasticity is illustrated
in the left part; The system reserves additional resources to be able to meet the demand,
and releases them when the demand is reduced. Eco-elasticity is illustrated in the right part;
The figure shows different strategies of execution, with each solution being a point in the
2-Dimensional space that corresponds to a different trade-off between time and monetary
cost. The optimal trade-offs are the ones that belong to the skyline [226].

49 H. Kllapi

Elastic Dataflow Processing on the Cloud

Time	

Demand	

Money	

Response	 Time	

Eco-‐Elas(city	 Elas(city	

Service-‐Level	 Agreement	

Loss	

Profit	

L	

P	

Dynamic	

Sta(c	

Increased	 Load	

Figure 1.4: Relationship of elasticities in IaaS clouds.

This observation motivates our work. An elastic IaaS cloud-enabled system may allocate and
de-allocate compute resources dynamically, trying to identify the optimal trade-offs between
execution times of a given workload and the monetary cost of using the resources. To make
this possible, we consider a unified model of both elasticities.

1.6 A Unified Elasticity Model of Clouds

Both elasticities are strongly related to each other. The size of the allocated virtual infrastruc-
ture essentially corresponds to the Investment on resources. A particular virtual infrastruc-
ture size provides a certain Return on Investment (RoI), that is ultimately related to the fee
charged to the users of the service, possibly in the form of service-level agreements (SLAs).
A typical SLA is a function of money charged for the service provided based on the response
time of the system on the issued queries [239, 243]. This fee is related to the trade-offs
between time and monetary cost of using the resources.

"It is essential to take into account both elasticities in a unified model in IaaS cloud
environments."

This relationship is illustrated in Figure 1.4. The right part of the figure shows a typical
SLA that specifies the fee that the service charges given the response time (or quality of
service provided); faster response times correspond to higher fees. The profit generated
is computed as the difference between the fee charged to the users and the cost of the
allocated resources.

H. Kllapi 50

Elastic Dataflow Processing on the Cloud

Consider two resource allocation alternatives as shown in the left part of Figure 1.4: static
and dynamic. Each alternative corresponds to a strategy that maximizes profit as shown in
the right part of the same figure. Under normal load, both static and dynamic should select
the P point of operation in the skyline of time/money alternatives, since that maximizes profit.
However, if the same amount of resources is used when the load is increased, they are
shared among many more users, and the response time of the system is decreased. The
static allocation strategy will force the system to operate at point L, which implies a loss since
the cost of executing queries is higher than the fee charged to the users. Using dynamic
allocation, the system is able to allocate additional resources when the load is increased,
allowing it to operate again at point P . This example illustrates that both elasticities are very
important and should be taken into account in a cloud environment in a unified approach [89,
141].

1.7 Elastic Data Processing on the Cloud

Our vision is to build self-organizing elastic data processing systems that automate capacity
planning, exploiting both elasticities of IaaS clouds in a unified approach: dynamically chang-
ing the size of the allocated virtual infrastructure and taking into account the monetary cost
of using the resources.

"We strongly believe that both elasticities will play an important role in the design
of auto-tuned systems in IaaS cloud environments."

In this section, we first discuss some new challenges and opportunities for query optimization
on data processing system, in the face of modern applications and elastic cloud processing
environments. Next, we discuss our work that is inspired by both elasticities of clouds, and
approaches some of these new challenges from the elasticity point of view of IaaS clouds.

1.7.1 Query Optimization Opportunities

In any database system, independently of its operating environment, the goal of the opti-
mization process is to translate the high-level query into an execution plan expressed in an
appropriate low-level language that can be executed by the database engine.

In principle, the optimization process could proceed in one giant step, examining all execution
plans that could answer the query and choosing the optimal that satisfies the required con-
straints. Given the size of the space alternatives in our setting, this approach is infeasible.
Instead, we model the optimization process in smaller multiple steps, each one operating

51 H. Kllapi

Elastic Dataflow Processing on the Cloud

Parser	

Algebraic	 Transforma2ons	

Implementa2on	 Choice	

Scheduling	

SQL	 Query	

Query	 Tree	

Concrete	 Operator	 Graph	

Execu6on	 Plan	

Operator	 Graph	

Syntax	
Seman2cs	

…	

Join	 Algorithm	
Index	 Use	

…	

Operator	 Placement	
Capacity	 Planning	

Execu2on	 Mode	 (PL,	 SnF)	
Execu2on	 Redundancy	

…	

Op#miza#on	 Choices	 Environment	 Influence	

Available	 tables	
Creden2als	
…	

Available	 number	 of	 VMs	
VM	 layout	
Service-‐level	 agreement	
…	

Available	 operators	
Available	 indexes	
…	

Available	 number	 of	 VMs	
VM	 layout	
Service-‐level	 agreement	
Constraints	
System	 load	
…	

Join	 Order	
Poten2al	 Parallelism	

Distribu2ve	 Func2ons	
Data	 Par22oning	

…	

Figure 1.5: The steps of the optimization process.

at some level and making assumptions about the levels below. This is in analogy to query
optimization in traditional databases but with the following differences. The operators may
represent arbitrary operations and may have performance characteristics that are not known
because they are not restricted to come from a well-known set of operators (e.g., those of
relational algebra). Furthermore, optimality may be subject to quality of service (QoS) de-
scribed as SLAs or other constraints and may be based on multiple criteria, e.g., monetary
cost, energy cost, quality of data, etc., and not just solely on performance. Finally, the re-
sources available for data processing are flexible, reservable on demand from the cloud and
are not fixed a-priori. These differences make query optimization essentially a new chal-
lenging problem; they also generate the need for run-time mechanisms that are not usually
available.

"Elasticity should be deeply embedded into the heart of data processing systems
in order to fully exploit its benefits."

Our optimization process, introduced in [221], is illustrated in Figure 1.5 and has three differ-

H. Kllapi 52

Elastic Dataflow Processing on the Cloud

ent layers of abstractions described below. Each level is influenced by the environment of the
system, such as the size of the virtual infrastructure, the locations of the tables, the available
indexes, and more. Affecting the environment is crucial in order to fully exploit elasticity. For
example, changing the size of the virtual infrastructure (i.e., the number of allocated VMs) is
important to adapt to the workload.

Query Trees

Initially, the SQL query is parsed, checked for syntactic and semantic errors, and transformed
into a tree of operators that contains well-known relational operators (e.g., selects, projects,
joins) [122] and user-defined operators (UDFs) with arbitrary user code. This is the first
phase of query processing as shown in Figure 1.5.

Environment Influence: The environment affects the semantics of the query, such as the
availability of tables or UDFs and the credentials of the issuer.

Operator Graphs

The fist level of optimization is called Algebraic Transformations, as shown in Figure 1.5.
The input is the tree of operators as created by the SQL query and the output is an op-
erator graph. The nodes of the graph are data operators and their (directed) edges are
operator interactions in the form of producing and consuming data. Operators encapsulate
data processing algorithms and may be custom-made by end users as mentioned earlier.
At this abstraction layer, of great importance are algebraic equivalences that operators sat-
isfy. These include typical algebraic transformations, e.g., associativity, commutativity, or
distributivity, (de)compositions, i.e., operators being abstractions of whole operator graphs
that involve compositions, aggregations, and other interactions of more specific operators,
and partitions, i.e., operators being amenable to replication and parallel processing by each
replica of part of the original input, in conjunction with some pre- and post-processing oper-
ators.

Environment Influence: This level of optimization is influenced by several characteristics
of the environment. An important one is the number of available VMs, which directly affects
the parallelism of the graph, i.e., how many physical copies of operators to use in order
to process the query in parallel (e.g., use 100 identical “select” operators to filter the table).
Another influence comes from the layout of the VMs that might have a specific communication
pattern (e.g., hierarchical or flat). This affects the shape of the graph produced (e.g., it might
be a tree with “group by” operators). Finally, the graph produced is affected by the partitioning
scheme (e.g., the partitioned attributes). A table may be replicated or partitioned in many
different ways, and choosing which one is appropriate for the query is essential.

53 H. Kllapi

Elastic Dataflow Processing on the Cloud

Concrete Operator Graphs

The result of the Algebraic Transformation phase is an optimized graph of abstract opera-
tors (e.g., selects are “pushed down”). This graph is transformed into a concrete operator
graph. This graph is similar to the operator graph, but its nodes are concrete operators, i.e.,
software components that implement operators in a particular way and carry all necessary
details for their execution. At this layer, capturing an operator’s available implementation(s)
is the critical information. In general, there may be multiple concrete operators implementing
an operator, e.g., a low-memory but expensive version and a high-memory but fast one; a
multi-threaded version and a single-threaded one; or two totally different but logically equiv-
alent implementations of the same operator. This level of optimization is the Implementation
Choice, as shown in Figure 1.5.

Environment Influence: This level is influenced mainly by the available implementations of
operators, the availability of indexes, and the specialized hardware that may be available in
the cloud (e.g., graphics processor). An example is the join operator, which has multiple
implementations: nested − loops join has low memory consumption but long execution time;
hash-join uses more memory but has short execution time.

Execution Plans

The last level of optimization is called Scheduling, as shown in Figure 1.5. The input is the
concrete operator graph from the previous phase and the output is an execution plan. Exe-
cution plans are similar to concrete operator graphs, but their nodes are concrete operators
that have been allocated resources for execution and have all their parameters set. At this
layer, several things are performed. An important one is the assignment of concrete opera-
tors to VMs. The crucial information here is the resources needed to execute the operators,
e.g., CPU and memory. The operators are assigned to VMs, taking into account the number
of VMs to use, the data transfer cost (edges that cross VMs), and more. Another important
one is the execution mode of the operators that may be store-and-forward (SnF) or pipeline
(PL) depending on the available resources. Finally, multiple copies of each operator may be
scheduled in order to avoid execution skew that is present in large settings [182].

Environment Influence: This level is influenced by numerous things from its environment.
One that directly affects it is the number of available VMs and the current load of the system.
Another important factor is the service-level agreement or constraints of the user that may
prefer specific trade-offs between time and monetary cost (e.g., fast or cheap execution
plans). Finally, the layout of the VMs play an important role in this level as well, which
enforces some constraints in the search space of the scheduling algorithm (e.g., taking into
account the allowed communication between VMs).

H. Kllapi 54

Elastic Dataflow Processing on the Cloud

Processing	
(dataflow	 DAG)	

A2	

A1	

P2	

P3	

P1	

B2	

In.0	

In.1	

Out.0	

B1	

B3	

C1	

Input	 Output	

Figure 1.6: An example dataflow with one input table (In) with two partitions that performs
processing (Ai, Bi), partitioning (P), and aggregation (C1).

1.7.2 Dataflow Scheduling on the Cloud

In Chapter 3, we consider the elastic scheduling of dataflows on an IaaS cloud environ-
ment [135, 141]. Queries expressed in high-level languages are optimized and are typically
transformed into dataflow graphs in the form of directed acyclic graphs (DAG) with opera-
tors as nodes and data dependencies as edges. An example is shown in Figure 1.6. The
dataflow reads the input, perform some processing and transformations (possibly in paral-
lel), and produces the output. In a distributed environment, the optimizer must decide, among
others, where each node of the graph will be executed. This work considers the scheduling
level of optimization as shown in Figure 1.5. Scheduling the processing nodes of a dataflow
graph onto a set of available machines is a well-known NP-complete problem, even in its
simplest form [100, 194]. Traditionally, the only criterion to optimize is the completion time
or makespan of the dataflow, and many heuristic scheduling algorithms have been proposed
for that problem [147].

In this work, we show that eco-elasticity is present in many types of computations that typi-
cally appear in practice. We propose a simple, yet effective search algorithm for the dataflow
scheduling problem on the cloud, to efficiently explore the 2D search space of time and
money to find skyline schedules. The algorithm does not assume a fixed size of virtual in-
frastructure, making it ideal for automated capacity planning for IaaS clouds. Our approach
is able to successfully find trade-offs between execution time and monetary cost, and thus,
exploit the eco-elasticity property of clouds.

Furthermore, we show that the level of abstraction at which dataflows are expressed, plays
an important role on the quality of the skyline schedules produced. We investigate two
abstractions: MapReduce and generic dataflow graphs. Using the generic abstraction, we
achieve manageable complexity and a significant gain, being able to produce schedules

55 H. Kllapi

Elastic Dataflow Processing on the Cloud

Par$al	 Aggrega$ons	
Ordering	

Data	
(par$$oned)	

Result	

Joins	 /	 Filters	

…

…

…

Global	 Aggrega$ons	
Ordering	 Ln-‐1	

L1	

L0	

Ln-‐2	

Figure 1.7: Generic form of tree execution plans.

that are better than the equivalent expressed using the MapReduce abstraction. Since our
approach is generic and deals with a fundamental problem at the heart of all distributed data
processing systems, our algorithms could potentially be used to incorporate elasticity into
many different systems, including MapReduce.

1.7.3 Analytical Query Workloads

In Chapter 4, we consider the elastic execution of analytical query workloads [137]. Many
of these queries perform joins and heavy aggregations and often include UDFs. The most
efficient way to process them is using tree execution plans of a specific form [169]. Figure 1.7
shows a generic image of such a tree execution plan. The leaves of the tree represent the
data, partitioned appropriately based on the application. The aggregations are performed in
the internal nodes of the tree and the root produces the result of the query.

In this work, we develop an engine with a suite of specialized techniques that take advantage
of the form of such plans and process them very efficiently in an IaaS cloud environment.
The engine offers its services for a fee according to service-level agreements (SLAs) asso-
ciated with the incoming queries. We lay out the allocated VMs in a “tree” shape so that
query execution plans are mapped naturally to the processing resources. Furthermore, we
introduce an online algorithm that exploits the elasticity of clouds to dynamically adapt to the
query workload by allocating and deallocating VMs so that the processing engine maximizes
its profit after removing the costs it incurs in using the cloud resources. We present an exten-
sive experimental evaluation that demonstrates that our approach is very efficient (exhibiting

H. Kllapi 56

Elastic Dataflow Processing on the Cloud

fast response times), elastic (successfully modifying the cloud resources it uses as it adapts
to query workload changes), and profitable (approximating very well the maximum differential
between SLA-based income and cloud-based expenses).

This work considers the algebraic transformations of distributive and algebraic operators (as
shown in Figure 1.5) by performing appropriate query re-writing. We also dynamically change
the environment of the system by choosing the appropriate VM layout to maximize the profit
generated.

1.7.4 Automated Management of Indexes

In Chapter 5, we investigate the automated management of indexes, that is a typical way
to accelerate dataflow execution [140]. The automated management of indexes, views, and
in general data structures, has always been an interesting and challenging research topic
for the database community. The traditional problem is constrained by the total storage
needed or the time required to build them. We investigate this problem taking into account
the monetary cost to maintain indexes, which is equally important in a cloud environment.

In this work, we identify the opportunity to use idle compute resources that are charged
by cloud providers to eliminate the monetary cost of building indexes. This phenomenon
emerges because of the nature of dataflows and the prepaid leasing policy of compute re-
sources. To illustrate this, we use the dataflow of Figure 1.6 and schedule it on 3 VMs. The
resulting timeline of execution is shown in Figure 1.8. We observe that there is a significant
amount of idle time resources that are created from the dependencies between operators.

We propose an online auto-tuning algorithm to assess the importance of indexes taking
into account the trade-offs between the dataflow speed-up they offer and the monetary cost
needed to store them, maintaining only beneficial indexes. Furthermore, our algorithm elim-
inates the cost to build indexes by efficiently using idle compute resources without delaying
dataflow execution using appropriate scheduling techniques. Our experimental analysis re-
veals that we are able to increase the utilization of resources and significantly reduce both
execution time and monetary cost needed to execute dataflows.

The auto-tuning algorithm proposed in this work, changes the environment of the system
affecting the Implementation Choice level of optimization (as shown in Figure 1.5) by auto-
matically creating and deleting indexes. This work also focuses on the Scheduling level and
propose algorithms that efficiently use the idle compute resources to build beneficial indexes.

57 H. Kllapi

Elastic Dataflow Processing on the Cloud

Time	

VMs	

A2	

A1	

Q2	

Q0	 Q1	

VM1	

VM2	

VM3	
f2	

f3	

f6	

f5	

f1	

f4	

Q2	

Q2	

Q2	

Q3	

	 	 	 P1	

P2	

P3	

Figure 1.8: Timeline of Figure 1.6 dataflow evaluation. Fragmented resources are shown
shown with arrows (F1, . . . , F6)

1.7.5 The EXAREME Elastic Processing System

In Chapter 6, we discuss EXAREME [142, 221], a system for the elastic large-scale data
processing on the cloud that defines the context in which the three problems discussed in
the previous sections are investigated. The system offers a declarative language based
on SQL with user-defined functions (UDFs) extended with parallelism primitives to declare
potential data parallelism.

Building the appropriate runtime environment is essential to fully exploit the elasticity of
clouds. We design and implement the elastic functionality of the EXAREME system, incor-
porating the techniques proposed in this dissertation. We present the relevant component
design and the dataflow language we developed. The language offers several parallelism
primitives to declare potential data parallelism and let the system make the actual decisions
at runtime. Finally, we present the results of several experiments that demonstrate the effec-
tiveness and promise of our approach. To the best of our knowledge, EXAREME is the first
effort to build a system that exploits both elasticities of clouds.

1.8 Dissertation Organization

This remaining of this dissertation is organized as follows. In Chapter 2, we present the typi-
cal cloud setting we consider in our work that is offered by the majority of cloud providers. We
continue by overviewing the related work, discussing some major categories of distributed
systems proposed. At the end of Chapter 2, we give an overview of the EXAREME system,
that we used and extended in this work. In the next three Chapters, we present the three
problems we have investigated. More specifically, in Chapter 3, we present our techniques
for the elastic dataflow scheduling on IaaS clouds, in Chapter 4, we present a set of special-
ized techniques for elastic processing of analytical queries and in Chapter 5, we investigate

H. Kllapi 58

Elastic Dataflow Processing on the Cloud

the automated management of indexes in the cloud. In Chapter 6, we discuss in details
the EXAREME dataflow processing system along with its main components and features that
makes it elastic. Finally, in Chapter 7, we summarize our main findings, discuss some major
data management research areas that can be influenced by our work, and suggest some
future research directions.

59 H. Kllapi

Elastic Dataflow Processing on the Cloud

H. Kllapi 60

Elastic Dataflow Processing on the Cloud

Chapter 2

Background and Related Work

In this chapter, first, we present the typical IaaS cloud setting that is available by most cloud
providers [5, 23, 116, 179]. Next, we overview some major categories of distributed process-
ing systems, focussing on their query processing and optimization capabilities and compar-
ing them with our approach. We also discuss some of the proposed methodologies to exploit
the elasticity of clouds. Finally, we give an overview of the EXAREME system that defines the
context of cloud data processing we consider in this work. In each of the following chapters
that presents the details of our work, we discuss a more targeted comparison with related
work regarding the particular problem we examine and the solution we propose.

2.1 IaaS Cloud Environment Overview

Figure 2.1 show a typical IaaS cloud service we consider in this work and is offered by the
majority of cloud providers [5, 23, 116, 179]. IaaS clouds typically offer two types of services:
compute and storage. Most providers offer custom APIs to communicate with their services
(e.g., web services) or standards like OpenStack [177] which has become a popular protocol
for IaaS clouds. In addition, many providers also offer a REST API [88] for the storage
service.

Compute resources are offered in the form of virtual machines (VM) and virtual networks.
The compute interface of the cloud typically provides calls (among others) to create or delete
VMs and networks, and connect VMs to a virtual network (see OpenStack [177] for a com-
plete list). The cost of leasing a VM is based on a per time-quantum pricing scheme (e.g.,
1 hour), where one pays for the entire quantum independently of the extent of the use of
the VM resources [21]. Each VM has local disk that can store temporary results or data
read from the storage service. After deleting a particular VM, all the data stored in its local

61 H. Kllapi

Elastic Dataflow Processing on the Cloud

IaaS	 Cloud	 Provider	

Create	 /	 Delete	 VM	
Put	 /	 Get	 /	 Delete	 Files	

Create	 /	 Delete	 Network	

Virtual	 Network	

Virtual	 Machine	

Local	 Disk	

CPU	 /	 Memory	

Virtual	 Machine	

Local	 Disk	

CPU	 /	 Memory	

Compute	 Cloud	 API	 Storage	 Cloud	 API	

…	

Figure 2.1: Typical IaaS cloud service.

disk cannot be recovered. The typical choice to persistently store data is to use the storage
service.

The storage service can be used to persistently store binary files. Cloud providers typically
implement this using a distributed file system in order to provide high availability and fault
tolerance. The storage interface of the cloud provides calls to add a new file, get a particular
file, delete an existing file, and more. This service is charged a constant fee for each GB of
data per month [1]. Some cloud providers also charge each individual get and put request.

2.2 Distributed Processing Systems Overview

Query processing in parallel and distributed databases has been studied for a long time
by the database community [76, 144] and various commercial products are now available
by major database vendors (IBM, Oracle, Teradata, etc.). Several architecture alternatives
have been studied including hierarchical, multi-database, shared-nothing, parallel, peer-to-
peer, grids, and clouds [184]. Recently, lots of attention has been given to shared-nothing

H. Kllapi 62

Elastic Dataflow Processing on the Cloud

architectures, which fit tightly with the compute model of clouds.

2.2.1 Data Warehouses

Data warehouses are designed for the efficient processing of analytical workloads (also
known as On-Line Analytical Processing or OLAP) in which the typical queries have sev-
eral joins and lots of aggregations. These systems implement the data cube operator [172]
in order to efficiently “drill-down” or “drill-up” the fact table [171] that contains the large major-
ity of data in a denormalized form for performance. Both row-stores (traditional approach that
keeps all the columns of each row together) [35] and column-stores (more recent approach
that separate the tables into individual columns) [42] have been proposed and developed,
with the later one being the dominant player in this category.

Column stores [42, 210] store each column in a separate file instead of storing entire rows as
in row-stores. The rationale is that analytical queries often require only a small subset of the
columns, thus keeping them separately, will significantly reduce I/O. Furthermore, compres-
sion techniques are more effective on each individual column, since the data are of the same
type (e.g., all integers), and often sorted. Some of the properties that give column-stores
an advantage for analytical workloads, compared to traditional approaches, are high com-
pression rates, late materialization (construct the resulting table as late as possible), multiple
materialized table orderings, and operating directly on compressed data [10]. However, the
efficiency of column stores degrades when multiple columns are used in a query, since lots
of joins are required to produce the final result [11, 121].

The majority of data warehouse systems are designed for main memory systems deployed
in expensive hardware with lots of CPUs and memory, or for shared-nothing architectures
deployed in dedicated clusters. The drawback is that if one or more machines fail to work,
the entire database stops working. This fact restricts their scalability to some hundreds of
machines, or less. We focus on analytical processing on elastic IaaS clouds and design
algorithms to dynamically change the size of the infrastructure. Elastic environments are
very important since they simplify capacity planning [101].

2.2.2 Extract-Transform-Load Systems

Extract-Transform-Load systems, or simply ETL, are typically used to transfer the “hot” data
from online transactional databases (that are also known as On-Line Transactional Process-
ing or OLTP) to the offline data warehouse for large-scale analysis [206, 227]. This process
typically involve schema matching and de-normalization [165], data cleaning and normal-
ization [231] (e.g., transform all dates to a common time zone), and more. ETL dataflows
present a major challenge for large datasets and much attention has been given on it recently.

63 H. Kllapi

Elastic Dataflow Processing on the Cloud

Building elastic ETL systems is important and challenging. A methodology is presented to
design ETL dataflows based on multiple criteria [207]. To the best of our knowledge, opti-
mization is not automatic for the time being. New approaches focus on optimizing execution
time of dataflows executed over multiple engines (DB, MapReduce, etc.) [208] and identify
essential statistics of the ETL workload [103]. All these are complementary to our work.

2.2.3 Multi-Database Systems

Multi-database systems, also called mediators or federated systems in the literature, are
“meta”-database management systems used to integrate multiple individual databases into
one logical database with common schema [49, 92, 105, 136]. The difference between these
systems and data warehouses is that the data remain to the original databases. The schema
integration is performed using local-as-view (LAV) or global-as-view (GAV) techniques [153].
In the LAV approach, the global schema is designed a-priori and each database specifies a
view over it. In GAV on the other hand, the global schema is defined as a set of views over
the individual databases. On both approaches, the queries issued to the common schema
are decomposed into several partial queries that are executed to each of the relevant par-
ticipating databases. Their results are joined and aggregated in the mediator (possibly in
parallel), typically using bushy trees [104, 154]. Several systems have been proposed and
built in academia [106, 211] and industry [6, 118].

Mariposa [211] was one of the first distributed database systems that took into consideration
the monetary cost. The query is divided into multiple parts, and each individual database
offers bids for some parts of the query in the form of query price as a function of execution
delay. The optimization goal of Mariposa is to maximize the difference of the execution
cost from the cost function provided by the user. Similar works that take into account the
monetary cost, focus on optimization techniques based on query trading [188, 189]. All these
techniques can be used in combination with our work in a federated setting with multiple
individual systems.

One of the advantages of multi-database systems is the ability to integrate modern with
legacy systems, without having to re-write their functionality. Another advantage is the re-
duced storage cost and their low energy consumption, since only a small fraction of the
data is stored in the mediator and the large majority remains to the remote sources. Finally,
mediators have small administration cost since the maintenance is distributed among the
individual databases.

The major drawback of this approach is the large heterogeneity of the system, which heavily
relies on the query optimizer for efficiency. However, because of the huge search space of the
optimizer, often times it results in sub-optimal behavior. Another issue is their unpredictable
behavior due to varying response times of the remote systems and/or slow network speeds.
Furthermore, some sources do not have the processing capabilities needed (e.g., execute

H. Kllapi 64

Elastic Dataflow Processing on the Cloud

a complex UDF) so the data has to move out of the remote database and processed in the
mediator, which results in poor performance. These drawbacks make them not very suitable
for analytical workloads that require denormalized schemas and complex queries with joins
and aggregations. To the best of our knowledge, there is no federated system built for a cloud
environment.

2.2.4 Peer-to-Peer Systems

Peer-to-Peer(P2P) is a large category of distributed systems designed for very large number
of nodes and wide-area networks [70, 149, 209]. This category of systems are designed to be
very dynamic (nodes constantly enter and leave the system) and have no centralized point of
failure. The data is typically stored in the form of key-value pairs [70] and consistent hashing
is used to distribute the keys to the nodes of the system [130]. These systems support
simple queries, typically expressed in a subset of SQL that can be processed efficiently in a
distributed fashion [39, 148].

Cassandra [148, 149] is a P2P system built for large deployments on clusters of commodity
hardware or cloud infrastructures. It offers a data model in the form of multi-dimensional
maps that are indexed by keys. The keys are partitioned and replicated using a modified
version of consistent hashing. Cassandra offers a subset of SQL for querying the data and
also supports atomic transactions in the context of individual keys. The system provides
linear scalability when new nodes are added since it is designed to perform aggressive load
balance when additional nodes are added to the system.

P2P systems are very efficient with OLTP workloads, in which a small subset of the data
is needed to process each individual query. Furthermore, they are robust to failures and
changes in the system, making them appealing for clouds since this is essential for the
elasticity of the system. However, these systems are not very efficient for analytical queries
on large datasets with lots of joins and/or complex functions (UDFs).

2.2.5 Workflow Management Systems

Workflow management systems are used to execute large tasks that are typically expressed
as directed acyclic graphs with nodes that represent arbitrary computations (processes with
input and output files) and the dependencies between them represented as edges [225,
36, 191, 240]. These systems provide mechanism for automated resource management
(allocation and de-allocation), multi-environment support (e.g., clusters), automated recovery
from failures using checkpoints and re-executing failed processes, progress monitoring and
reporting, and more. Workflows are widely spread in several scientific domains including
astronomy [73, 127], physics [59], and medicine [91].

65 H. Kllapi

Elastic Dataflow Processing on the Cloud

The Condor and DAGMan set [160] is the state-of-the-art technology of High Performance
Computing (HPC) and workflow management. DAGMan offers a language to describe work-
flows that can run on thousands of machines using Condor. Nevertheless, Condor was
designed to harvest CPU cycles on idle machines; running data intensive workflows with
DAGMan is very inefficient [202]. Many systems use DAGMan as middleware, like Pega-
sus [74] and GridDB [161]. Proposals for extensions of Condor to deal with data intensive
scientific workflows do exist [202], but to the best of our knowledge, they have not been
materialized yet.

The monetary cost of workflow execution on the cloud is very important. Workflow manage-
ment systems can greatly benefit from eco-elasticity and greatly reduce the monetary cost
of using the resources [75, 141]. Special care should be given to data intensive workflows
since simple load balancing is inefficient [135].

2.2.6 Grid Systems

Grids offer access to large compute and storage resources over the web [146]. They were
initially designed for scientific purposes to be used by researchers to solve large problems
that need computing power that could not be held by individuals or small organizations. With
respect to this, grids can be considered as predecessors of clouds. The grid technology is
widely used at CERN to collect and process the massive amounts of data generated by the
Large Hadron Collider (LHC) [47, 59]. Commercial products have also been developed by
major vendors [37, 181].

Grids are characterized by high heterogeneity, creating the need for interoperability stan-
dards. Open Grid Services Architecture (OGSA) is a standard grid protocol for communi-
cation using web services [90]. It provides abstractions of resources, communications pro-
tocols, and services (e.g., security). Web standards are also used such as XML for data
encoding, Simple Object Access Protocol (SOAP)1 for service calls, and Business Process
Execution Language (BPEL)2 for workflow description.

Database functionality has been also developed on top of grids, with the most popular
among them being the OGSA-DQP [20] service. OGSA-DQP is similar to the mediators
discussed earlier and provides a homogeneous access to different kind of resources (rela-
tional databases, files, etc.).

Most of these grid-based systems are not suitable for data intensive computation, mainly
because they are very heterogenous and complex semantics are needed to perform service
composition (e.g., OWL-S [79]). Furthermore, there is additional overhead of web service
calls with resumption tokens. The web service stack is very inefficient for data intensive

1SOAP, http://www.w3.org/TR/soap/
2BPEL, http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html

H. Kllapi 66

Elastic Dataflow Processing on the Cloud

applications. The first version of EXAREME was built using the grid technology [221]. One
of the lessons we learned is that web services are very useful for interoperability and easy
to use as an interface for the system, but not internally for communication and processing.
We saw a huge performance improvement by just removing the web service calls and using
low-level protocols for communication (HTTP and TCP).

2.3 Cloud Systems

In this section, we give an overview of systems designed for clouds. We begin by presenting
the main storage architectures. Next, we overview MapReduce, that is the most popular
programming paradigm for clouds and continue with an overview of systems that are built
using this abstraction. Finally, we give on overview of some popular processing systems
build for clouds.

2.3.1 Cloud Storage Systems

Modern data processing systems heavily rely on scalable distributed file systems that provide
high availability and throughput [51, 70]. The recent distributed file systems commonly used
in practice are designed for large shared-nothing architectures with commodity hardware.
The goal is to provide a storage system that provides high throughput and high availability
since failures are common on large infrastructures [69]. Here we discuss two widely used
approaches: large partitioned files and key-value stores. The former is mainly designed for
high-throughput of read most data (OLAP workload) and the later typically used for data
updates (OLTP workload).

Large Partitioned Files

This approach was originally proposed by Google when they introduced the Google File
System (GFS) [96] and was almost immediately followed by its open source implementation
Hadoop Distributed File System (HDFS) [26]. The files stored in these systems are typically
very large (e.g., hundreds of GB), are partitioned into multiple parts of fixed size (e.g., 64
MB), and each part is replicated to multiple machines. This way, the systems provide high
availability, high throughput, and most importantly, can handle hardware failures that are
common in clusters with thousands of machines.

The architecture of HDFS is shown in Figure 2.2 in a simplified version. There are two types
of machines: name node and data node. The name node stores the metadata of the files in
the system. These include the directories (that are the same as in traditional file systems),

67 H. Kllapi

Elastic Dataflow Processing on the Cloud

Name	 Node	

N	 P1	 P2	 P3	
1	

2	

3	

4	

File	 X	

Data	 Node	 1	 Data	 Node	 2	 Data	 Node	 3	 Data	 Node	 4	

Loca4on(X,	 1)?	

X.1	

Loca4on(X,	 2)?	

Loca4on(X,	 2)?	

X.2	 X.1	 X.2	

Clients	

X.3	 X.3	

Load	 Balance	

C1	

C2	

C3	

Figure 2.2: The architecture of HDFS.

the metadata of the stored files, the locations of the file partitions, and more. The data nodes
store the actual file partitions. By default, each partition is replicated 3 times. The updates
are typically performed in batches and only append is allowed to existing files. Clients can
request the location of a particular partition from the name node and read the content directly
from where the partition is located. The load is balanced to the data nodes that contain the
replicas. For example, in Figure 2.2, users C2 and C3 both request the second partition of
the file, but they read the content from different data nodes to increase the overall throughput
of the system.

This approach is appealing for clouds because it fits nicely to shared-nothing architectures
and analytical processing, since the data are rarely updated and are mostly appended. This
way it can be used in combination with multi-version concurrency control [9] (i.e., updates
create new versions of the partitions they change).

H. Kllapi 68

Elastic Dataflow Processing on the Cloud

0	

31	 (1	 x	 25	 -‐	 1)	

63	 (2	 x	 25	 -‐	 1)	

95	 (3	 x	 25	 –	 1)	

127	 (4	 x	 25	 –	 1)	

159	 (5	 x	 25	 –	 1)	

191	 (6	 x	 25	 –	 1)	

223	 (7	 x	 25	 –	 1)	

Key	 Space	 (1	 byte)	

25	 Keys	

A	

A	

B	

C	

D	

Object	 (key-‐value)	
Hashed	 on	 Key	

E	

B,	 C	

E,	 D	

Node	 1	

Node	 2	

Node3	

Figure 2.3: Chord ring with keys of 1 byte length (in practice a much larger key space is
used). Each key-value pair is assigned to the first node that is located after it in the ring.

Key-Value Pairs

Another popular design for distributed storage systems are the key-value stores, that store
data in the form of key-value pairs [70]. More complex formats are built on top of them (e.g.,
multi-dimensional tables [148]). This approach is very useful for fast lookups and atomic
updates [149]. To illustrate the typical functionality provided, we describe part of the Chord
algorithm [209]3. Chord uses a distributed hash table that stores key-value pairs that can be
looked-up by their key. A simple ring using 1 byte is shown in Figure 2.3. Each node that
enters the system, is placed in a position in the circle of keys, and it becomes responsible
for the keys that are between it and its previous node in the circle as dictated by the arrow in
Figure 2.3 (clockwise). For example, Node 2 is responsible for keys B and C.

Of key importance for load balance, is the placement of the nodes in the circle. The most
efficient methods for this problem are based on consistent hashing [130]. Notice that the
addition or removal of nodes, affects only the local neighborhood of the ring whose keys are

3The actual lookup mechanism of Chord is out of the score of this thesis.

69 H. Kllapi

Elastic Dataflow Processing on the Cloud

Output
Distributed
File System

Reduce
Phase

Shuffle
Phase

Network

Map
Phase

O1

O2

Om

…

…

…

I1

I2

In

…

Input
Distributed
File System

0:A1

1:B1

0:A2 A2

B1

A1 1:B1

0:A1,A2

Figure 2.4: The computation model of MapReduce.

re-assigned. This property is very appealing for IaaS clouds because the system is very ro-
bust to changes. Nodes can be added and removed without significant data re-organization,
which is essential for the elasticity of the system.

2.3.2 Systems based on MapReduce

The MapReduce programming model, and an efficient implementation demonstrating its po-
tential, were first introduced by Google [69]. The advantages of MapReduce are the ease of
use and the scalability and robustness of the engine. Well-implemented engines can scale
to large clusters of commodity machines and be able to recover from failures, that are typical
in such environments.

Figure 2.4 illustrates the MapReduce model. The input file is stored in a distributed file
system, possibly in multiple partitions. The first phase is called “map”. Each record from the
input file (e.g., a line in a text file) is given to a user-defined map function that produces a key-
value (KV) pair as output. Since the input is processed one record at-a-time, this phase has
high degree of parallelism. After the map phase, the system groups the KV-pairs on the key,
and distribute the keys to machines using a hash function with good properties. This phase
produces a unique group for each distinct key. The final phase is called “reduce”, during
which, each group is given to a user-defined reduce function to produce the final result. The

H. Kllapi 70

Elastic Dataflow Processing on the Cloud

parallelism of this phase depends on the number of keys and their skew. This is where most
of the bottlenecks occur in practice [195].

The simplest example to demonstrate the capability of the MapReduce model is “word count”.
Assume the input is a text file. The map function takes as input one line and produces
the pair (key = w, value = 1) for each word w. The reduce function, sums the values of
each key, thus producing a single count for each distinct word. With clever combinations of
map and reduce functions, one can express complex parallel processing [237]. Even more
complex computation can be expresses when multiple MapReduce programs are composed
into larger programs [138, 170].

From a relational database point of view, the equivalent MapReduce processing on a database
engine that supports UDFs, can be expressed in SQL as follows:

CREATE TABLE output AS
SELECT reduce(key, value)
FROM (SELECT map_key(*) AS key,

map_value(*) AS value
FROM input)

GROUP BY key;

The nested query corresponds to the map phase with map_key() and map_value() being
the UDFs that produce the key-value pairs correspondingly. The resulting table is grouped
by key, and each group is given to the reduce UDF in order to produce the final result. All
MapReduce systems are specialized to efficiently execute the above type of SQL queries
with arbitrary map and reduce functions.

The intuitive appeal of MapReduce and the availability of Hadoop, its main open-source
implementation [27], has fuelled the development of systems and algorithms built on top
of MapReduce, both in industry and academia. Examples include data warehouses [214],
dataflow processing [50, 176], machine learning algorithms [28], and graph processing [166].
These systems offer high-level APIs and/or declarative languages, many of them based on
SQL.

As it turns out, using compositions of the SQL computation described earlier, one can exe-
cute a large subset of SQL. Systems like Hive [214] do exactly that; they produce a series
of MapReduce jobs that are created from the input SQL query and executed on the under-
lying MapReduce engine. The efficiency of this approach however is questionable, since
the underlying system is specialized for the specific queries mentioned previously and not
for arbitrary SQL. This observation has influenced subsequent versions of Hive to use other
execution engines that support more complex primitives for computation [3].

71 H. Kllapi

Elastic Dataflow Processing on the Cloud

2.3.3 Cloud Processing Systems Overview

Many popular systems for data processing on the cloud are based on the MapReduce ab-
straction [69]. Examples include Hive [214], FlumeJava [50], PigLatin [176], and Jaql [40].
Hive is a popular data warehouse solution from Facebook that provides an SQL interface to
issue queries. FlumeJava is a library from Google used to write data pipelines. PigLatin from
Yahoo! offers a dataflow language to easily express data pipelines. Finally, Jaql is a high
level language from IBM used to perform analysis of semistructured data. In all the above
systems, the queries are expressed in some form of high-level language and are transformed
into a dataflow graph of MapReduce jobs. The MapReduce abstraction is relatively restricted
as mentioned above, reducing the opportunities for optimization. We target a broader range
of dataflow graphs that fit better the computations needed for SQL.

YARN [228] is the successor of Hadoop [27], which is the state-of-the-art open-source MapRe-
duce implementation. The fundamental difference of Hadoop and YARN, is the separation
of the resource management from the specific MapReduce paradigm. This way, YARN can
support multiple types of applications, with MapReduce being one of them. We follow a sim-
ilar approach. The optimizer and the execution engine of the system are independent of the
underlying architecture. The execution engine uses the resource manager to allocate the re-
sources needed for the execution of dataflows. In addition, our approach allows optimization
decisions that can change the size of the allocated virtual infrastructure automatically.

Several general dataflow processing systems have been proposed. Examples include Na-
iad [173], Stratosphere [19], and Spark [241]. The optimization goal of these systems is to
balance load of the computations to the available machines. Furthermore, these systems are
not elastic and the monetary cost is ignored. We target a wider variety of optimization criteria
with respect to both time and money. An interesting use-case that we have not explored yet
and the above systems support, is iterative dataflows, i.e., dataflow graphs with cycles. Load
balancing makes sense to be used in this case. For the time being, we have focussed on
computations that can be expressed using directed acyclic graphs (DAGs).

Cloudera Impala [230], is a highly efficient in-memory system that implements a subset of
SQL. Some major features of Impala are dynamic code generation, SIMD extensions ex-
ploitation, and pipeline execution. One major drawback is that it works entirely in-memory
and the datasets (including the intermediate results) should fit in the aggregated memory of
the cluster in order to be processed.

PNUTS [61] from Yahoo, is another massively parallel and geographically distributed stor-
age system. It provides hashed or ordered tables and has low latency for large numbers
of concurrent requests including updates and queries. The system supports relaxed data
consistency in order to be able to scale to large number of clients.

F1 [204] is a distributed relational database engine that combines the best practices from

H. Kllapi 72

Elastic Dataflow Processing on the Cloud

traditional databases and NoSQL systems. It is build on top of Spanner [62]. Spanner
uses random partitioning that changes over time and, as a consequence, F1 cannot take
advantage of data partitioning and data locality. This approach works well only with fast
network, such as the ones available in large data centers. Our approach takes advantage of
data partitioning and locality and we try to avoid data transfer when possible.

Mesa [101] is a recent elastic data warehouse system. It supports data multi-versioning
with incremental updates and offers high throughput on lookup and aggregated queries.
Similar to our approach, Mesa also decouples storage from compute resources helping the
elasticity of the system. Since the system is proprietary, little is known about the resource
allocation algorithm is uses to be able to elastically change it’s size. We model this problem
by taking into account available public clouds and our algorithms can be deployed using
existing services that are typically offered of most cloud providers. One challenge is the
quantized pricing of compute resources that should be modeled and handled properly.

2.4 Auto-Tuned Systems

Automated database tuning has been an interesting area of research for at least fifteen
years. The idea is to build algorithms and tools in order to automatically change the in-
ternal organization of the database system based on some optimization criteria or suggest
these changes to the system administrator if human intervention is needed for the final de-
cision. A typical suggestion is to built or drop indexes and lots of tools are built for this
problem [43, 44, 67, 199, 200]. These tools are extremely helpful because systems are
becoming more complex, operating under rapidly changing conditions, and deployed in dis-
tributed environments which are hard to analyze.

Typically, four orthogonal axes of comparison are used to categorize auto-tuned database
systems: A) operation mode (offline or online), B) execution environment (e.g., centralized,
distributed), C) the need for human intervention (automated changes or suggestions to the
system administrator), and D) optimization goal (e.g., speed, monetary cost, profit). The
common approach for all systems is to collect statistics by monitoring the workload, pre-
dict the future workload based on these statistics, and make decisions that will improve the
system behavior as indicated by the optimization goals.

In the offline approach, the monitoring of the workload is performed before the actual analysis
and decision making. Several offline algorithms have been proposed for centralized systems
[45, 67]. These techniques work in environments where the workload is somewhat stable
and the suggested database optimizations do not change rapidly over time. This is however
not the case for many applications operating in distributed cloud environments.

Recent approaches focus mainly on the online problem. In this approach, the system con-

73 H. Kllapi

Elastic Dataflow Processing on the Cloud

stantly collects statistics and is continuously changing, typically without the need for human
intervention [44, 60, 167, 235]. Cracking was introduced as an online technique to auto-tune
column stores [120]. More recent works change the internal representation of the database
into row, column, or hybrid stores based on the workload [17, 87].

The vast majority of research focuses on improving performance in terms of minimizing query
execution times with some constrains on storage or time to perform the re-organization. The
are some works that focus on clouds environments which also focus on performance [53]
and ignore the monetary cost of using the resources.

The contributions of this dissertation are on this line of work. The automated system tuning
in a cloud environment is of key importance. This setting requires online algorithms without
the need for human intervention to handle the rapid changes in the workload, that can even
be in the period of hours. Elasticity is very important for automated resource management
and capacity planning. A cloud-enabled elastic system may automatically change the size of
the allocated virtual infrastructure taking into account the workload and the monetary cost of
using the resources in a unified approach.

2.5 Elasticity

The large majority of recent works focus on the traditional aspect of elasticity in clouds, i.e.,
change the size of the virtual infrastructure based on workload focusing on scalability and
performance and not much attention has been given to the eco-elasticity property [82, 113,
143, 215, 218]. The proposed algorithms and systems have as optimization goal to minimize
the execution time or the latency (i.e., the time to compute the first result) of the queries [233].
A recent work [198] focuses on minimizing the number of VMs used to save on cost, but this
may not a good strategy in our setting since the optimal solution may not be the one with
minimum number of VMs.

Some works examine the elasticity of clouds for transactional workloads [201, 66]. In our
setting, the tables are updated using bulk loading every day or week, creating new versions
of the partitions that are changed [9], and we do not consider transactions.

Elasticity in the context of array databases has also been investigated recently [80]. The
methodology proposed for array databases is not applicable in our setting since is specific
to the use case of scientific data that only grow in size and are rarely deleted. Thus, this
approach considers only the monetary cost of increasing the size of the virtual infrastructure.
We target a more generic setting in which the virtual infrastructure can grow or shrink in size
dynamically.

With the rise of cloud computing, green infrastructure design and green data management

H. Kllapi 74

Elastic Dataflow Processing on the Cloud

have become very important topics of research [84, 162, 236]. Data management systems
should incorporate energy efficiency internally to be able to efficiently optimize for it [109].
Our work is towards this direction. The monetary cost of using the resources is ultimately
related to the energy cost of the cloud provider. Our approach can be extended and used to
select the best trade-offs between execution time and energy cost.

2.6 EXAREME System Overview

The work in this thesis is done in the context of EXAREME, which is an elastic system build
for analytical query processing. Figure 2.5 illustrates the system setting. The system is
built on top of IaaS clouds using the compute and storage services. It consists of a static
set of VMs used for management and monitoring and a dynamic set of VMs used for query
processing. Users issue queries through the master and are executed in a distributed fashion
in the workers. The workers communicate with the storage service to fetch the data needed
to answer the query.

2.6.1 Elastic Computation

The system automatically changes the size of the allocated virtual infrastructure (i.e., the
number of workers used) based on multiple criteria, such as the query workload and the
monetary cost of using the resources. A worker is deleted when it is not needed and its
currently leased time quantum expires. Notice that it is not beneficial to release a VM pre-
maturely, because it is pre-paid for the entire time quantum.

2.6.2 Data Storage

The tables are horizontally partitioned using hash, range, or random partitioning and stored to
the storage service. The workers fetch the partitions needed for the execution of the queries
and cache them to their local disks for subsequent usage. We do this for two reasons:
flexibility and cost. This scheme is very flexible because it decouples the compute from the
storage resources, helping the elasticity of the system since new workers can be added and
removed easily. Furthermore, storing the data in the compute cloud is very expensive. With
current Amazon rates [21], storing 1 TB of data for 1 month in S3 [1] will cost approximately
$10 and keeping it cached in EC2 [21] without replication will cost approximately $2580,
which is more than two orders of magnitude more expensive. A major challenge is how to
place partitions to workers in order to easily change the number of workers without significant
network overhead needed for data reorganization.

75 H. Kllapi

Elastic Dataflow Processing on the Cloud

IaaS	 Cloud	 Provider	

Compute	 Cloud	 API	 Storage	 Cloud	 API	

Master	

…	

Worker	 Worker	

Dynamic	 Virtual	 Infrastructure	 Sta?c	 VMs	

Management	
Monitoring	

…	

Exareme	 System	

…	

Figure 2.5: Overview of the EXAREME system.

We design a distributed file system for analytical workloads that is also elastic by combining
the idea of large partitioned files and a partition ring similar to key-value stores. The partitions
are stored in the storage service of the cloud (that typically is a distributed file system like
HDFS [26] or S3 [1]), that is available by the majority of cloud providers. We partition tables
into many more parts than the number of maximum workers predicted to use (e.g., 10 times
more). Thus, changing the number of workers will cause only data transfer and not extensive
re-partitioning, which is in general very expensive and require high network traffic [164] (e.g.,
hash partitioning). The allocated workers cache partitions using an approach based on a
modification of consistent hashing [130] that we describe in the following subsection. This
way, we support analytical computation with the elasticity offered by the key-value stores.

2.6.3 Data Placement

The data placement policy is essential for the elasticity of the system. We use a method
based on consistent hashing as follows: The table partitions are placed in a circle as shown
in Figure 2.7. Each partition in the inner circle is assigned to a worker in the outer circle. For

H. Kllapi 76

Elastic Dataflow Processing on the Cloud

IaaS	 Cloud	 Provider	

Compute	 API	 Storage	 Cloud	 API	

Master	
Worker	 1	 Worker	 3	

Dynamic	 Virtual	 Infrastructure	

Exareme	 System	

R1	

R3	

R2	

R4	 R5	

R6	

R7	

R8	

Worker	 2	

select	 …	 from	 R	 …	 where	 …	 group	 by	 …	

W1	

get(R,	 {1,	 2})	 get(R,	 {3,	 4,	 5})	 get(R,	 {6,	 7,	 8})	

W1	

W1	

Figure 2.6: EXAREME distributed file system. The partitions are stored in the storage service
of the cloud and are cached to the allocated VMs using a partitioning ring.

example, partition #3 is assigned to worker #2. Notice that we place each partition multiple
times in the circle. The first time the data is accessed, it is retrieved from the cloud storage
and cached for subsequent usage. When a new worker is added, it is placed in the circle at
the position of the worker with the largest number of partitions, splitting its partitions in half.
For example, the new wker # 6, will be added by splitting the partitions of worker # 5 in half,
as shown in the right part of Figure 2.7.

We use consistent hashing because it has good theoretical bounds on the size of data
needed to move when containers are added or deleted. We also confirm this with the follow-
ing experiment. Figure 6.3 presents an experiment with 128 partitions showing the percent-
age of partitions that are assigned to a different worker when changing the size of the virtual
infrastructure. The x and y axes show the initial and final number of workers respectively. If
the initial number is less than the final number, then new workers are allocated, otherwise
are deleted. We observe that when the changes are near the diagonal of the 2D space,

77 H. Kllapi

Elastic Dataflow Processing on the Cloud

Workers	

Par**ons	

1	
1	

2	
2	
3	
3	

4	
4	 5	 5	

6	
6	
7	
7	

8	 8	
1	

2	

3	

4	

5	

Workers	

Par**ons	

1	
1	

2	
2	
3	
3	

4	
4	 5	 5	

6	
6	
7	
7	

8	 8	
1	

2	

3	

4	

5	

6	

add	 #6	

Figure 2.7: An example of partition placement using consistent hashing. Worker #6 is in-
serted to the system, taking some partitions from worker #5.

Figure 2.8: Percentage of partitions re-assigned when changing the size of the virtual infras-
tructure.

consistent hashing is robust to changes making it ideal for our elastic setting.

2.6.4 Data Updates

Since we target analytical query processing, we perform updates in batches periodically
(every day or week). Depending on the data partitioning scheme, updates can create new
partitions (random partitioning) or update existing ones (hash or range partitioning). Each

H. Kllapi 78

Elastic Dataflow Processing on the Cloud

IaaS	 Cloud	 Provider	

Compute	 Cloud	 API	

Master	

…	

Worker	 Worker	

Dynamic	 Virtual	 Infrastructure	

Exareme	 System	
Storage	 API	

Version	 Part	 1	 Part	 2	 Part	 N	

0	

1	

…	

…	

V	 P1	 P2	 PN	
0	

1	

2	

Version(R,	 P2)?	
Version(R,	 PN)?	

Distributed	 File	 System	

…	
Table	 R	

Table	 R	

Figure 2.9: Multi-version file system. Updates create new version of the relevant parts.

update creates a new version of the partitions that are changed [9] and the old ones are
invalidated along with any indexes that may have been built on them. An illustration of this
approach is shown in Figure 2.9. Queries issued after the update, use the updated versions
of the partitions. Each version of the partitions is read-only, making it ideal for an elastic
cloud environment [184]. In this way, updates do not affect our overall approach for query
processing and optimization.

79 H. Kllapi

Elastic Dataflow Processing on the Cloud

H. Kllapi 80

Elastic Dataflow Processing on the Cloud

Chapter 3

Elastic Dataflow Scheduling on the
Cloud

Processing complex computations is a critical requirement for many modern applications.
Such rich tasks are expressed in a high-level language and typically transformed into data
processing flows, or simply dataflows. Clouds are appealing to execute dataflows due to their
elasticity property that is the ability to create virtual infrastructures that change dynamically
over time and the allocated resources are payed for as much time they are used. Scheduling
dataflow graphs on the cloud has many tradeoffs between monetary cost and processing
time as influenced by the placement of the operators of the graphs to the virtual machines
and the use of different resources. This gives rise to eco-elasticity, an additional kind of
elasticity that comes from economics and is orthogonal to the traditional definition of elasticity
in clouds. Discovering these trade-offs and offering the ability to select the “best” time-money
combination in each case is essential in clouds. In this work, we focus on the eco-elasticity
of dataflow graphs with respect to finding trade-offs between execution time and monetary
cost. The relevant critical questions are the following: a) Does such trade-offs exist? b)
Can they be discovered at an overhead that makes it worth it? We demonstrate that eco-
elasticity exists in several common tasks when using two different dataflow abstractions, one
corresponding to MapReduce and one more general.

The discovery of elasticity is closely related to the level of abstraction at which the optimiza-
tion process operates. There is a related meta-tradeoff in the level of abstraction that affects
the richness of the elasticity present and the computational complexity required to discover
it. The lower the level of abstraction (i.e., the higher the detail), the larger the number of opti-
mizations that are possible and the more extensive the elasticity that is revealed, and at the
same time, the higher the computational complexity of discovering and exposing it. Between
the two abstractions we consider, we show that with the general dataflow graph abstrac-
tion, much more eco-elasticity can be extracted than what is possible under the MapReduce
abstraction, while remaining computationally tractable. Finally, we also demonstrate that

81 H. Kllapi

Elastic Dataflow Processing on the Cloud

Processing	
(dataflow	 DAG)	

A2	

A1	

P2	

P3	

P1	

B2	

In.0	

In.1	

Out.0	

B1	

B3	

C1	

Input	 Output	

Figure 3.1: An example dataflow with one input table (In) with two partitions that performs
processing (Ai, Bi), partitioning (Pi), and aggregation (C1).

eco-elasticity can be discovered in practice using a simple yet highly scalable and efficient
algorithm.

3.1 Introduction

Modern applications face the need to process large amounts of data using complex functions.
Examples include complex analytics [169], similarity joins [138], extract-transform-load (ETL)
processes [206], and graph processing [166]. Such rich tasks are typically expressed using
high-level APIs [50] or high-level languages [214] and are transformed into data intensive
workflows (dataflows).

Clouds have become an atractive platform for large-scale data processing. The ability to use
computational resources that are available on demand, challenges the way we implement
algorithms, systems, and applications [32]. An interesting research topic is the creation of
paradigms that fit closely to the elastic computational model of clouds. Independently of the
high-level language in which data computation is expressed, it is transformed into a low-
level representation that defines the computation steps in a form suitable for execution [184,
144]. The typical representation of dataflows encountered in practice is using directed acyclic
graphs (DAG) that have arbitrary computations as nodes (e.g., select, join, or operators with
arbitrary code) and producer-consumer interactions as edges between the nodes [152]. An
example is shown in Figure 3.1. The dataflow reads the input that is typically partitioned,
performs some processing and transformations in parallel, and produces the output. Under
this modeling, we investigate two abstractions: MapReduce graphs (MRG) [69, 111] that
are of a specific type (complete bipartite) and operator graphs (OG) which are more general
graphs.

We investigate eco-elasticity when scheduling such dataflow graphs on top of elastic IaaS

H. Kllapi 82

Elastic Dataflow Processing on the Cloud

clouds. Scheduling is a well-known NP-complete problem [194]. Traditionally, the main crite-
rion to optimize is the completion time (or makespan) of the dataflows, and many algorithms
have been proposed for that problem [147]. In a cloud environment however, the monetary
cost of using the resources is equally important. Scheduling dataflows on the cloud is a
challenging task since it has a very rich space of alternative schedules and poses some new
challenges, essentially making it a harder problem. Those new challenges are: A) there is no
fixed amount of resources since new VMs can be leased from the cloud at any time, B) the
compute resources are pre-paid based on a quantized policy, and C) the typical dataflows
are data intensive, essentially making load-balance algorithms to be inefficient [54, 72].

Our first contribution is to show that eco-elasticity exists when scheduling dataflows on IaaS
clouds expressed in both MRG and OG abstractions. Further, between the two abstractions,
we show that with OG, much more eco-elasticity can be extracted than what is possible under
the MRG abstraction, while remaining computationally tractable. We propose a simple yet
effective search algorithm for the dataflow scheduling problem on IaaS clouds. Our algorithm
does not assume a fixed-size infrastructure by exploiting the elasticity properties of clouds to
dynamically allocate new VMs, and further, it is able to successfully find trade-offs between
execution time and monetary cost. These trade-offs can then be explored for the final choice
of the point of operation either manually by the user or algorithmically based on specified
user preferences, constraints, or service-level agreements (SLAs). Finally, we demonstrate
that eco-elasticity can be discovered in practice by performing numerous experiments using
the EXAREME system [221] in which we incorporated our scheduling algorithm.

Related works focus mainly on the elasticity of clouds with respect to the adaptation of the
size of the allocated virtual infrastructure [215, 218], but not much attention is given to eco-
elasticity. To the best of our knowledge, our overall approach represents the first attempt
to address the problem of optimizing dataflow processing on the cloud with respect to both
execution time and monetary cost of using the resources, thus, exploiting both elasticity
properties of clouds.

In this work, we make the following contributions:

• We propose a simple, yet effective search algorithm for the dataflow scheduling problem
on IaaS clouds that uses the elasticity property of clouds without assuming a fixed-size
infrastructure. Further, our algorithm is able to successfully find trade-offs between
execution time and monetary cost.

• We show that eco-elasticity is present when scheduling dataflows using both MapRe-
duce and operator graph abstractions. By being generic, our approach can be used
on a variety of data processing systems that use these abstractions, essentially giving
them the ability to exploit the eco-elasticity property of IaaS clouds.

• We show that the level of abstraction at which the dataflows are expressed plays an im-
portant role on the quality of the skyline schedules produced. Using the more detailed

83 H. Kllapi

Elastic Dataflow Processing on the Cloud

OG abstraction, we achieve manageable complexity and a significant gain, producing
schedules that dominate on every dimension the schedules produced by the equivalent
dataflows expressed in the MRG abstraction.

• We show that eco-elasticity can be found in practice by performing numerous large-
scale experiments using the EXAREME system, in which we incorporated our schedul-
ing algorithm.

The remainder of this chapter is organized as follows. In Section 3.2, we present an exam-
ple to illustrate our approach. In Section 3.3, we model the IaaS cloud resources and the
dataflows and in Section 3.4 we present the time and money estimation methodology we use
using the proposed modeling. In Section 3.5, we discuss the scheduling algorithms that we
propose. In Section 3.6 we present our experimental effort and its results. In Section 3.7, we
discuss the related work. In Section 3.8, we present some algorithms that we investigated
regarding scheduling and found to not work very well in practice, and finally, we conclude in
Section 3.9.

3.2 Illustrative Example

In this section, we present an example to illustrate the intuition behind the scheduling algo-
rithm we propose. Assume the datalow of Figure 3.1 is issued to the system. The goal is to
compute schedules with different trade-offs of time and money. We begin by assigning the
operators of the dataflow from producers to consumers. The initial set of operators ready
to be assigned contains A1 and A2. At each step of the algorithm, we select an operator
from this set and place it to the available virtual machines allocated. Each placement of the
assigned operators produces a partial execution plan. We estimate the time and money of
partial plans using the modeling proposed in our previous work [141]. From all these partial
plans, the algorithm keeps only the ones that are in the skyline in each step. We continue
with the next available operator which produces a new skyline of partial plans, until all oper-
ators are considered. The algorithm described above is illustrated in Figure 3.2. The plans
in the final skyline offer different trade-offs between execution time and monetary cost.

To make the algortithm more concrete, we schedule the dataflow of Figure 3.1. Assume the
running times of the dataflow operators are as shown in Table 3.1. The algorithm proceeds
in 9 steps (the number of operators) producing 8 partial skylines. The schedules in the final
skyline are shown in Figure 3.3. The running times and monetary costs of the schedules
are (4.5, 8) and (3.8, 9). Notice the trade-offs between time and money of the schedules
produced. Furthermore, notice the dynamic resource allocation during the execution of the
dataflows. For example, in the first schedule of Figure 3.3, virtual machine 1 is deleted after
Q3.

H. Kllapi 84

Elastic Dataflow Processing on the Cloud

Money	

Time	

i	

i	 +	 1	

Figure 3.2: Illustration of the execution of scheduling algorithm.

Table 3.1: Running time of operators of example dataflow

A1 A2 P1 P2 P3 B1 B2 B3 C1

50 20 20 20 20 60 40 80 100

Time	

VMs	

A2	

A1	

B2	

VM1	

VM2	

P2	

Q1	 Q2	 Q3	 Q4	 Q5	

B1	

B3	

C1	

P1	

P3	

Time	

VMs	

A2	

A1	

B2	

Q1	

VM1	

VM2	

VM3	

P1	

P2	

P3	

Q2	 Q3	 Q4	 Q5	

B1	

B3	

C1	

TIME:	 4.5	 QUANTA,	 MONEY:	 8	 QUANTA	

TIME:	 3.8	 QUANTA,	 MONEY:	 9	 QUANTA	

Figure 3.3: The timeline of the skyline schedules of the dataflow graph of Figure 3.1.

85 H. Kllapi

Elastic Dataflow Processing on the Cloud

An interesting problem is what operator to choose from the ones that are available at each
step of the algorithm. We propose to estimate a global ranking of the dataflow operators
based on the influence they have on time and money of the schedules. Given the ranking,
we consider the most influential operators first. One of the contributions of this work is to
estimate the effect of operators taking into account the interactions with other operators in
the context of the whole dataflow.

3.3 IaaS Cloud and Dataflow Modeling

In this section, we present our modeling of IaaS clouds and dataflows. When choosing a
particular model, the goal is to find one that balances accuracy and complexity. The more
precise the model, the more complex it is and the more time it takes to compute the esti-
mations. This is a challenge for any dataflow execution system. For MapReduce we use
proposed modeling [111] and extended it to estimate the monetary cost of VMs. For the
operator datafow abstraction, we use the same modeling as in our previous work [141]. Both
these models are based on simulating the execution in order to make the predictions. The
scheduling algorithm we propose is independent of the modeling used, requiring only an
estimation of execution time and money given a particular configuration of resources and
dataflow.

3.3.1 IaaS Cloud

We define the notion of the container as the unit of compute resources provided by the
cloud. Containers are responsible for providing the necessary context to execute operators.
A container is a provider of CPU, memory, disk, and network resources and is denoted as
cont(cpu,mem, disk, net), where the parameters indicate the capacity of each resource. CPU
can be measured in operations/sec or as a percentage. We measure it as a percentage (i.e.,
the CPU power of each container is 100%). The cloud offers compute resources through the
allocation of containers that are priced of a fixed amount of money per time quantum. The
allocated containers form the virtual infrastructure of the system. We assume the size of all
containers to be the same. This is typical for many installations: a few VMs are significantly
larger than the others and run critical services (e.g., namenodes of Hadoop [27]), while great
majority of the nodes are of the same size. However, our approach can be generalized to
settings with different machine power. We categorize container resources to time-shared and
space-shared [93]. Time-shared resources can be used by multiple operators concurrently
at very low overhead, whereas space-shared cannot. We consider memory as the only
space-shared resource.

The MapReduce framework and its proposed modeling we use [111] are rack aware, i.e., they

H. Kllapi 86

Elastic Dataflow Processing on the Cloud

take into account the physical topology of the infrastructure. In a cluster environment, this
is reasonable. However this information is not available by cloud providers and the common
use of Hadoop in clouds is to assume that all task trackers are on the same (default) rack.
Thus, the above modeling is generic enough to be used for both abstractions.

The cloud also provides a storage service that stores the data. Containers transfer the
input data from the storage service and process it locally. The output of the dataflow is
writen back to the storage service. This scheme is flexible since we decouple compute from
storage resources. The temporary results that are produces during the execution of the
dataflow are kept to the local disk of the containers. We do not model the I/O cost from the
compute to storage service since the majority of cloud providers do not charge for it when
the communication is inside the same data center [1].

3.3.2 Dataflow

A dataflow is represented as a DAG graph(ops, flows). Nodes (ops) correspond to compu-
tations in the form of arbitrary operators (e.g., a ‘map’ operator) and edges (flows) corre-
spond to flows of data transferred between operators. An operator in comp is indicated as
comp(id, props, behavior) where id is a unique id, props is a set of properties whose content
depend on the dataflow abstraction, and behavior is a flag that is equal to either pipeline
(PL) or store-and-forward (SnF). If behavior is equal to SnF, all inputs to the computation
must be available before execution; if it is equal to PL, execution can start as soon as
some input is available. Two typical examples of the two behaviors from databases are
sort and select: sort is SnF and select is PL. A flow between two computations along
an edge that connects one (the producer) with the other (the consumer), is indicated as
flow(producer, consumer, datasize), where datasize is the size of the data.

An operator is defined as op(time, cpu,mem) where time is the execution time of the operator
and cpu is its average CPU utilization measured as a percentage of the host CPU power when
the operator is executed in isolation (without the presence of other operators), and mem is
the maximum memory required for the effective execution of the operator. We model an
operator as having a uniform resource consumption during its execution (cpu and memory
do not change). This modeling is compatible with the MapReduce modeling we use [111].
Notice that since the MapReduce dataflow is always a complete bipartite graph (Figure 3.4),
the edges can be implicit in this case.

Discovering the properties of the operators is an orthogonal problem to ours and many rea-
sonable methodologies have been proposed [155, 103, 126, 111]. In the data-intensive set-
ting we target, these measurements can be more robust since the statistics do not change
much over time. Even a 10GB update on a TB dataset is not large enough to drastically
change the statistics of the data. This is the typical case for many use cases, especially the
ones that involve exploratory queries submitted by data analysts [152].

87 H. Kllapi

Elastic Dataflow Processing on the Cloud

Reduce	

…
	

Sort	 +	 Shuffle	
Network	 Comm.	

Map	

…
	

out0	

Outr	

in0	

inm	

In1	

Figure 3.4: The generic MapReduce dataflow.

3.3.3 Dataflow Schedule

A schedule SG of a dataflow G is an assignment of its computations onto containers. An
assignment is indicated as follows:

assign(comp, containers, start, end)

where start and end are the start and end time of the operator correspondingly, executed in
the presence of other operators, as specified by the schedule. Notice that the dataflow we
schedule is the physical plan. In this dataflow, the input data is partitioned into chunks that
can be processed by a single container. In MapReduce for example, the logical dataflow has
only two connected operators (map and reduce). However, the dataflow that is scheduled
have several map and reduce operators that are evaluated in parallel on different partitions.

Time t(SG) and money m(SG) indicate the completion time and monetary cost of a schedule
SG of a dataflow graph G. Cloud providers lease computing resources that are typically
charged based on a per time quantum pricing scheme. For this reason, we measure t(SG)
and m(SG) in quanta. We use Qt and Qm to indicate the quantum time and cost of leasing a
container for Qt time respectively.

The cloud is a provider of virtual hosts (containers). We model only the compute service
of the cloud and not the storage service. We do this for two reasons. First, we use the
storage only to read the input and write the output and not to store temporary intermediate
results because is not efficient. We store these results in the containers. Second, a particular
dataflow G will read and write the same amount of data independent of its schedule SG.

H. Kllapi 88

Elastic Dataflow Processing on the Cloud

3.4 Dataflow Schedule Time and Money Estimations

To calculate the completion time of a schedule executed over a set of containers, several
aspects of operator execution must be modeled. This is an issue for any distributed system
and our particular approaches do not depend on having a Cloud underneath or any other
architecture. In this section we present the approach adapted in our work [141, 111]. For
the MapReduce dataflows, we used the Starfish optimizer [111] and extended its proposed
modeling to estimate the monetary cost of resources.

3.4.1 Operator Interactions

There are two types of temporal constraints, those implied by the dataflow graph and those
imposed by the execution environment. The dataflow graph implies constraints based on the
inter-operator dependencies captured by its edges, but also by the nature of the operators
themselves. An S&F operator cannot be executed until all its inputs are available, while a PL
operator must wait for all inputs produced by S&F operators. This raises an important issue
especially when the two operators are in different containers and introduce network costs.

The execution environment constraints are due to resource limitations when multiple oper-
ators use them concurrently. In that respect, we categorize container resources as time-
shared and space-shared [93]. Time-shared resources can be used by multiple operators
concurrently at very low overhead. Concurrent use of space-shared resources, however, im-
plies high overheads beyond container limits of resources. We consider memory as the only
space-shared resource, whereas CPU and network as time-shared resources. Constraints
are imposed only by space-shared resources: in every container, at any given moment,
memory must be sufficient for the execution of the running operators. On the other hand,
CPU and network requires particular treatment.

Given a schedule, we estimate the starting time of every operator and their execution times.
As an illustration to guide intuition, those resources are represented as boxes in a multi-
dimensional space. Operators are boxes with resource requirements and limited time dura-
tion. Containers are boxes with resource availability and infinite time. Intuitively, the problem
becomes one of fitting boxes of the operators into the boxes of the containers.

Operators are modeled with three separate boxes I, P , and O. I are the resources needed
to read the input from the network or the disk, P are the resources needed to process the
data, and O are the resources needed to write the output to the network or the disk. Each
box is indicated with dimensions (time, cpu,mem, inRate, outRate), with inRate and outRate
being the rate (datasize/time) of the input and the output respectively. For SnF operators,
I and O are only disk resources. For data transfer operators, P is always zero. Notice that
the CPU and memory needed for I/O is included in the I and O boxes. Our model takes into

89 H. Kllapi

Elastic Dataflow Processing on the Cloud

account the communication cost which is critical for data-intensive dataflows.

Formally, let T be an operator that belongs to dataflow graphG defined as T (time, cpu,mem,−)
with assign(T,X,−,−). Without loss of generality, assume that T is a PL operator. The only
difference for SnF operators would be to use the disk instead of the network for I/O. The size
of the data that T reads from the network is:

D→T =
∑

U{D : flow(U, T,D), assign(U, Y,−,−), X 6= Y }

Similarly, the size of the data that T writes to the network is:

DT→ =
∑

U{D : flow(T, U,D), assign(U, Y,−,−), X 6= Y }

The three boxes of the operator T are defined as follows:

I(D→T/X.net,DTCPU , DTMEM , X.net, 0)

P (T.time, T.cpu, T.mem, 0, 0)

O(DT→/X.net,DTCPU , DTMEM , 0, X.net)

with DTCPU and DTMEM being system parameters for the CPU and memory needed for
data transfer through the network. Our model assumes that the maximum network speed
can be reached. This is realistic since the network switches are becoming faster and modern
hardware can handle all-to-all communications with very little overhead [62, 204]. In isolation,
box TB of operator T is defined as follows:

TB.time = I.time+ P.time+O.time

TB.cpu =
I.cpu ∗ I.time+ P.cpu ∗ P.time+O.cpu ∗O.time

TB.time

TB.mem = I.mem+ P.mem+O.mem

TB.inRate = I.inRate ∗ I.time/TB.time

TAB.outRate = O.outRate ∗O.time/TB.time

In the context of others, operators may be scaled in the time dimension while reduced in some
of the time-shared resources. An example of scaling due to CPU is shown in Figure 3.5. In
these cases, the following measures do not change at any scale:

(1) AB.time · AB.cpu

(2) AB.time · AB.inRate

H. Kllapi 90

Elastic Dataflow Processing on the Cloud

100%	

120%	

60%	

80%	

CPU	

Time	
A	

B	
C	

X	

Figure 3.5: Operator A, B, and C executing in the same container. At region X the overall
CPU utilization exceeds 100% and as a result the operators will get a fraction of the processor
and their duration will stretch by 20% during that region.

(3) AB.time · AB.outRate

Equation (1) expresses the CPU instructions of the operator and equations (2) and (3) ex-
press the size of the input and the output respectively. We assume that time-shared re-
sources have linear behavior. Some resources have a linear behavior up to a certain level,
but when they are close to the limits, they behave non-linearly. Our model can be extended
to use non-linear equations or curve fitting methods [64].

3.4.2 Time and Money Estimation Algorithm

The estimation algorithm works as follows. The graph is examined from producers to con-
sumers starting from the operators that have no inputs from other operators. The operators
that are ready to be scheduled are divided into groups. An operator group is defined as a
subset of connected operators that can be executed concurrently. Groups can have either
connected PL operators or only one SnF operator. We assume that the execution time of
the operators belonging to the same group is the same. As a consequence, all operators
inside the same group are scaled to reach the most time consuming operator. Formally, a
group P is defined as P (~O, ~S) with ~O being the vector of the operators in the group and ~S
being the vector with the time scale of operators inside the group. The most time consuming
operator is not scaled (i.e., has a scale of 1). All other operators have scales greater than
1. Notice that the scale cannot be less than one because that would mean that is executed
faster in the presence of others than when it is executed in isolation. The time scale vector is
used to model the behavior of concurently running pipeline operators. These operators read
the input one-tuple-at-a-time ins a streaming fashion and produce streaming results. As a
consequence, all operators are synchronized with the most expensive one.

To illustrate the notion of operator groups we use the dataflow of Figure 3.6. Assume that all

91 H. Kllapi

Elastic Dataflow Processing on the Cloud

A2	

A1	

In.0	

In.1	

Out.0	 C1	

P1	

Pipeline	

Store	 and	 Forward	

B1	

B2	

B3	

P2	

P3	

G1	

G2	

G3	

G4	

G5	

G6	

Figure 3.6: The operator groups (G1, . . . , G6) of the dataflow of Figure 3.1 assuming Ai and
C1 are store-and-forward and Pi and Bi are pipeline operators.

operators are pipeline and that all are running on the same machine. Also assume that each
operator consumes 30% of the available memory. As a result, we can execute at most 3 op-
erators concurently. It is much more efficient to execution operators A, B and E concurently
(shown in Group 1) because only the result of E will be materialized. The same with opera-
tors C, D, and F . This speeds-up the evaluation of pipeline operators because intermediate
results are not stored on disk. Another reason we run pipeline operators in groups is for
recovery. Even if all the operators of the dataflow of Figure 3.6 can be evaluated concurently,
is better to evaluate them in groups and materialize the inter-group results. This way, we can
recover from failures without re-computing everything from the beginning. Finally, the data
transfer operators (that are pipeline by definition) are always evaluated in groups and the
size of each group depends on the network capabilities of the containers. We create opera-
tor groups in such a way that the involved containers can handle the network throughput.

Typically, the MapReduce implementations run the operators in a store-and-forward fashion.
In this case, each operator of the dataflow is assigned to a different group, and the interme-
diate results are always materialized.

The set of operator groups is defined as GP (~P , ~GS) with ~P being the vector of operator
groups and ~GS being the vector with the time scales of each group. As mentioned earlier,
the operators in each group have the same execution time. Given the assignments of the
operators in each group, we scale entire groups such that time-shared resources consumed
by the operators are within the limits of each container. The actual scale of a particular
operator opi that belong to group Pj is computed as GS[j] ∗ P [j].S[i]. Given the current
assignments and scaling of active groups, we estimate the time at which the first of the

H. Kllapi 92

Elastic Dataflow Processing on the Cloud

groups will finish assuming uniform resource consumption. At that point in time, we compute
the remaining execution time and data transfer for all the remaining operators. Furthermore,
the operators that were depending on the one that terminated are added to the active ones.
The same process is repeated untill all operators are terminated. The groups are streched
in the time dimension as described earlier.

Notice that we use greedy scheduling technique, i.e., if there are available resources, sched-
ule the operators and do not wait. This strategy is proved to be 2-competitive [63], i.e., at
most two times worse than optimal. For this reason, our search does not include the delay.
The placement of each operator and the dependencies in the graph determines the time at
wich it is executed.

The completion time t(SG) of a schedule SG is defined as the time duration from the start
of the first operator till the termination of the last operator of SG. To compute the monetary
cost m(SG) of a schedule SG, we slice time in each container into windows of length equal to
the quantum size Qt starting from the first operator of the schedule. The monetary cost is a
count of the time-windows that have at least one operator running and is defined as follows:

m(SG) =

|C|∑
i=1

|W |∑
j=1

ε(ci, wj)

with C = {ci} being the set of containers, W = {wj} being the set of time-windows, and
ε(ci, wj) is 1 if at least one operator is active in wj of container ci, otherwise is 0.

The above modeling is compatible with the Starfish optimizer we use for MapReduce [111].
The difference is that all operators are SnF and each map and reduce slot executes only one
operator at a time.

3.4.3 Extending Starfish Estimator with Monetary Cost

The Starfish optimizer estimates only the execution time of MapReduce dataflows. We ex-
tended its estimation algorithm to predict the monetary cost of resources as follows: We use
a bit vector for each job tracker in the VMs (that have map or reduce slots) with granularity
of seconds. Since Starfish also uses a simulation-based approach similar to ours, it predicts
the ‘start’ and ‘end’ time of each operator. Given these estimations, we set to true the bits in
the range [start, end] of the VM in which the operator is assigned. To compute the monetary
cost, we count the number of used seconds used in all VMs taking into account the quantum
size as above.

93 H. Kllapi

Elastic Dataflow Processing on the Cloud

Deriva've	 Ranking	 Structure	 Ranking	
N	

N	

N	

A	

B	

	 C	

S	

	 C’	
S’	

A	

I	

O1	

O2	

weight(A)	 =	 F(I,	 O1,	 O2)	 weight(C)	 =	 G(S,	 S’)	

Figure 3.7: Structure (left) and derivative (right) rankings.

3.5 Scheduling Algorithms

The scheduling algorithm we propose consists of two phases. The first phase ranks the
operators of the dataflow by computing the influence they have on the schedules. The sec-
ond phase computes the skyline of schedules based on the iterative algorithm whose high
level approach we sketched in Section 3.2. The algorithm uses the ranking of the operators
to incrementally compute the skyline. We also propose Parallel Wave that is a generaliza-
tion of the algorithm used for scheduling the MapReduce dataflows. We present these two
algorithms in the following subsections and the methodology we use to rank the operators.

3.5.1 Operator Ranking

A simple way to rank operators is by computing a relative score based on their properties
and their input & output data. We call this ranking Structure Ranking because it takes into
account only the immediate neighborhood of the operators. This is illustrated in the left part
of Figure 3.7. The scoring function we use is defined as follows:

score(op) = a ∗ op.time+ (1− a) ∗ (io_time(op))

with io_time(op) = (indata(op)+outdata(op))/net_speed Functions indata(op) and outdata(op)
can be easily expressed using the notation defined earlier. Parameter a expresses the rela-
tive importance of execution time and I/O time. In our experiments, we have used a = 0.5.
We rank the operators by they score.

Structure Ranking is a good ranking function if there are no long-range correlations between
operators in the graph. A long-range correlation between two operators a and b that are not

H. Kllapi 94

Elastic Dataflow Processing on the Cloud

directly connected, is created when the assignment of a in a particular schedule affects the
assignment of b. To illustrate, we use the dataflow of Figure 3.1. A long-range correlation
between operators A1 and C1 exists when A1 impacts the execution of C1. This is especially
true with pipeline operators: if A1 (the upstream operator) has a slow output rate, will impact
the rate at which C1 (the downstream operator) runs. If there are long-range correlations,
Structure Ranking will not have them into account.

To overcome this problem, we use an algorithm that computes the score for each operator
by measuring the influence on the schedule directly, in the form of the corresponding par-
tial derivative on the space of schedules produced by our model. This is illustrated in the
right part of Figure 3.7. We define a multivariate function F with parameters the operator
assignments to virtual machines as follows:

F (SG) = a ∗ t(SG) + (1− a) ∗m(SG)

with SG = (oa1, oa2, ...) and oai being the assignment of operator i. In our experiments we
set a = 0.5. To measure the influence of each operator, we compute the partial derivative of
function F with respect to all operator assignments as follows:

∇F (SG) = (
θF

θoa1
(SG),

θF

θoa2
(SG), ...)

Essentially, the partial derivative shows how sensitive the dataflow is to the different assign-
ments of the operators. We call this ranking Derivative Ranking. ∇F (SG) is hard to compute
analytically, so instead we use an iterative process to approximate it. We generate a sched-
ule by randomly assigning the operators to containers. Then, each operator is assigned to
every possible container without changing the assignments of the others. At every step, we
measure the difference from the initial schedule. We repeat the above process several times
till the partial derivatives do not change significantly. The ranking is produced by ordering the
operators by their partial derivative.

Intuitively, Structure Ranking and Derivative Ranking should be similar if there are no long-
range correlations between the operators in the dataflow graph. Characteristic example of
this case are graphs with exclusively store-and-forward operators with characteristic coun-
terexamples being graphs with exclusively pipeline operators. Below we present the results
of ranking the Ligo dataflow with 50 operators (shown in Figure 3.9(B)). We measure the
difference of two rankings R1 and R2 using the Kendall τ distance [85] defined as follows:

K(R1, R2) =

∑
oi∈G

∑
oj∈G discordant(opi, R1, opj, R2)

n(n− 1)/2

with function discordant(opi, R1, opj, R2) returning 1 if the pair of operators (opi, opj) is dis-
cordant in the two rankings. A pair is discordant if their relative rank in the R1 and R2 is not

95 H. Kllapi

Elastic Dataflow Processing on the Cloud

the same. If the distance it is 0, the rankings are identical and it is 1, the two ranking are in
reverse order.

When all operators of the Ligo graph are store-and-forward, the Kendall τ distance is 0.088 as
the two ranking are relatively similar and the most influential operators have similar rank. We
show the structure (S) and derivative (D) ranking (from most to least influential), assuming
each operator is represented by a different character.

S: WnoXmMTpiOkRfV NjPQghlUSqY rBAEHKCGJFLID1c2a3b45Zd6e

D: WMXTORNPnomkV pfjQiUShglrqY JDBFGHELKCIA1a42b3Zce6d5

However, when all operators are pipeline, the distance is 0.475 as the ranking are significantly
different due to the existence of long-range correlations.

S: WnoXmMTpiOkRfV NjPQghlUSqY rBAEHKCGJFLID1c2a3b45Zd6e

D: YWNTQXJDRIV CBOLUbGZ4FS3HMEAacPgj1fndKkhi5m6le2oprq

Pipeline operators run concurrently and two connected operators run for the same amount
of time, regardless of their relative speed. This fact affects both the running time and the
monetary cost of the schedules. Structure Ranking would rank a fast operator after a slow
one, although they are both equally influential. An illustrative example is operator D: using
the structure ranking, its rank is 37 while using derivative ranking is, it is 8.

3.5.2 Dynamic Skyline

The scheduling algorithm we propose is called Dynamic Skyline (Sky) and is shown in Algo-
rithm 3.1. Sky is an iterative algorithm that incrementally computes the skylines of schedules.
Formally, we are given a directed graph D = (V,E) whose vertices represent computations
and whose arcs represent dependence relations. Our goal is to come up with a plan for
acquiring, releasing, and assigning computational resources that allows for the execution of
the computations represented by D. We currently do this as follows:

Say that a sequence Fk = v1, v2, . . . , vk of vertices from V is feasible if for every i ∈ [k], all
computations necessary for computation i to be feasible belong in {v1, . . . , vi−1} as defined
by the dependencies in D. Given a feasible sequence F = Fk, let

A = A(F) = {v ∈ V : Fk, v is a feasible sequence}

We employ a black box for selecting elements from A starting with F0 = ∅ and considering the

H. Kllapi 96

Elastic Dataflow Processing on the Cloud

Algorithm 3.1 Dynamic Skyline
Input: G: A dataflow graph.
Output: skyline: The solutions.

1: ready ←{operators in G that have no dependencies}
2: op1 ← maxRank(ready)
3: vm1 ← allocateNewVM()
4: schedule1 ← {assign(op1, vm1,−,−)}
5: skyline← {schedule1}
6: while ready 6= � do
7: next← maxRank(ready)
8: S ← �
9: for s ∈ skyline do

10: for all containers c of s do
11: S ← S ∪ {s+ assign(next, c,−,−)}
12: end for
13: // Consider allocating a new VM for the operator
14: new_vm← allocateNewVM()
15: S ← S ∪ {s+ assign(next, new_vm,−,−)}
16: // Release the VMs of s that are not needed
17: releaseNotNeeded(s)
18: end for
19: // Only skyline schedules (i.e., prune search space)
20: skyline← skyline of S
21: ready ← ready − {next} ∪ {operators in G that dependency constraints no longer exist}
22: end while
23: return skyline

operators from producers to consumers. F1 contains operators with no inputs. To produce
Fi with i > 1, we consider the operator type and their score as refined earlier as follows: A
store-and-forward operator is a candidate as soon as all the operators that produce its inputs
have been completed, while a pipeline operator is a candidate as soon as all of its inputs
come from assigned pipeline or from completed store-and-forward operators. This produces
a partial ordering. To produce the global ordering, we rank the vertices using their score as
presented earlier. We thus see that this repeated process yields a single ordering O of the
vertices of V .

For i ∈ [|V |] we will maintain Si of partial solutions, where all solutions in Si are assignments
of the tasks in Oi. Each partial solution amounts to a set of timed actions where an action is
one of the following:

• Acquire a virtual machine, thus making the machine active (we will assume that all
machines are equivalent). Notice that here we can create a different set of actions for
all available virtual machine types.

• Release an active virtual machine, thus making it inactive.

97 H. Kllapi

Elastic Dataflow Processing on the Cloud

• Assign a vertex of D to an active virtual machine.

C	

Assign	 A	
1	 Choice	 A	

AB	

ABC	 AB	

B	 A	

B	 AC	 BC	 A	 B	 A	 C	

Assign	 B	
2	 Choices	

Assign	 C	
5	 Choices	

…	 …	 …	 …	 …	

Figure 3.8: All solutions for operators A, B, and C.

We define S0 = ∅. For i ∈ [|V |], to go from Si−1 to Si by adding a new vertex vi to each
different relative position of the vertices in Si−1. An example is shown in Figure 3.8. S1

contains only one solution with vertex A and only one virtual machine allocated (for simplicity,
assume that only one type of virtual machines is available). S2 contains two partial solutions:
i) both operators placed in the same container (AB) and ii) operators placed to two different
containers (A,B). Notice that for the second schedule, we acquire a new virtual machine.
To produce S3, we add C to all partial solutions of S2. This produces five partial solutions for
S3. Notice that the decision of releasing a machine is done automatically when it is not used
by any computation and the leasing quantum finishes.

Sky algorithm becomes exhaustive when all partial solutions are kept at each step. We can
compute the number of partial solutions using the Stirling numbers of the second kind [185]
as follows. The number of leafs at the sub-tree starting with k virtual machines already
nonempty and n remaining vertices to assign satisfies the following:

ss(n, k) = k · ss(n− 1, k) + ss(n− 1, k + 1)

With ss(0, k) = 1 ∀k. The root of the tree is ss(N, 0). A generalization is to use at most C
virtual machines.

ssg(n, k, C) = k · ssg(n− 1, k, C) + ssg(n− 1, k + 1, C)

with
ssg(0, k, C) =

{
1, ∀k ≤ C
0, otherwise

H. Kllapi 98

Elastic Dataflow Processing on the Cloud

The number of solutions using exactly k machines is:

sc(N, k, C) =

(
C

k

)
· k! · S(N, k)

with S(N, k) being the Stirling numbers of the second kind.

S(N, k) =
1

k!
·

k∑
i=o

(−1)i ·
(
k

i

)
· (k − i)N

The Stirling numbers of the second kind is the number of ways of partitioning a set with N
elements into k nonempty sets. For large graphs this number is very large and in practice is
infeasible to keep all the solutions. For this reason, we prune all the partial solutions of Si at
step i that are not in the skyline of the partial schedules of Si.

Even with this pruning, the skyline produced at each stage may contain too many solutions
[187]. Although in the experiments in this thesis, we keep all the points in the skyline, in
practice this is infeasible. To manage this problem, one may keep k representative schedules
(for some system parameter k) from the skyline at each stage: the fastest, the cheapest, and
k − 2 that could be chosen according to one of several criteria: equally distributed, on the
time or money dimension exhibiting equal derivative (rate of change) of the time as a function
of money or vice versa, etc. Experimenting with the the different choices is beyond the scope
of this work.

3.5.3 Parallel Wave

While Sky algorithm operates on the search space formed by the different assignments of
operators in the graph and the allocated containers, Parallel Wave navigates into the search
space formed by the different degree of parallelism for the map and reduce phases and the
number of VMs used. Parallel Wave is shown in Algorithm 3.2. The operators of each MR
job are scheduled using the scheduling algorithm of Starfish, that performs a load balancing
of the operators of each phase to the available task trackers. This way, Parallel Wave can be
easily embedded into systems that use this abstraction (like Hive [214] or FlumeJava [50])
since it does not modify the job scheduling algorithm of these systems.

In our experiments, we show that parallelism is much more important to discover elasticity
than the other parameters of Starfish (e.g., the size of the sort buffers). This is the reason we
first use recursive random search [111] to find a solution taking into account only execution
time and then discover the trade-offs by using different number of VMs and reducers.

99 H. Kllapi

Elastic Dataflow Processing on the Cloud

Algorithm 3.2 Parallel Wave using Starfish
Input: G: A MapReduce dataflow.
Output: skyline: The solutions.

1: skyline← �
2: // Run recursive search algorithm to optimize job configuration
3: Configuration jobConf = runRRS(G)
4: ClusterConfiguration clusterConf
5: for vms ∈ [1, C] do
6: setupCluster(clusterConf, vms)
7: S ← �
8: for reduce ∈ [1, 2 ∗ vms] do
9: setupJob(jobConf, reduce)

10: (time,money) = Starfish.estimate(clusterConf, jobConf)
11: S ← S ∪ {time,money, clusterConf, jobConf}
12: end for
13: skyline← compute skyline of {skyline ∪ S}
14: end for
15: return skyline

3.6 Experimental Evaluation

In this section we present the results of our experimental effort using real scientific dataflows,
the Terasort MapReduce dataflow, and the TPC-H benchmark1.

3.6.1 Experimental Setup

We begin by presenting the experimental setup. The parameters of the experiment are sum-
marized in Table 3.6.1.

Dataflow Graphs: We examine five families of dataflow graphs: Montage [127] (Fig. 5.8A),
Ligo [73] (Figure 5.8B), Cybershake [71] (Figure 5.8C), Terasort MapReduce [111] (Fig-
ure 3.4), and the first 10 queries of the TPC-H benchmark. The first three dataflows are
abstractions of dataflows that are used in scientific applications: Montage is used by NASA
to generate mosaics of the sky, Ligo is used by the Laser Interferometer Gravitational-wave
Observatory to analyze galactic binary systems, and Cybershake is used by the Southern
California Earthquake Center to characterize earthquakes. The TPC-H dataflows are created
using traditional distributed database techniques [145].

The scientific dataflows are produced using standard generators [41]. Figure 3.9 shows the

1http://www.tpc.org/tpch/

H. Kllapi 100

Elastic Dataflow Processing on the Cloud

Table 3.2: Experimental Properties

Property Values
Dataflow Montage, Ligo, Cybershake, Terasort (MR), TPC-H
Operator type SnF, PL
Ranking Derivative, Structure
Search Nested Loops, Sky, 2D-SA, PW, Exh
Data transfer DTCPU = 0.1, DTMEM = 0.05
Max Containers 200
Quantum size 60 seconds

Figure 3.9: Scaled down versions of the scientific graphs Montage(A), Ligo(B), and Cyber-
shake(C) scientific dataflow graphs.

scaled down version of the graphs. We generated much larges graphs that have up to 100
operators. The basic statistics of the distribution of the execution time of the operators and
the amount of data they generate are shown in Table 3.3. We set the memory of operators
to 10% of the container capacity. We have used dataflows with both SnF and PL operators.

The TPC-H benchmark has eight tables:

region(1), partsupp(32, ps_partkey), orders(32, o_orderkey),
lineitem(32, l_orderkey), customer(32, c_custkey),
part(32, p_partkey), nation(1), and supplier(1).

In parenthesis we show the number of partitions we created for each table and the key based
on which the partitioning was performed. In Hive, we used the CLUSTERED BY when we

101 H. Kllapi

Elastic Dataflow Processing on the Cloud

Table 3.3: Basic Statistics of the Dataflow Operators

Exec Time (sec) Min Max Mean Stdev Skew
Montage 3.82 49.32 11.32 2.95 9.58
Ligo 4.03 689.39 222.33 241.42 0.52
Cybershake 0.55 199.43 22.97 25.08 1.24
Data Size (MB) Min Max Mean Stdev Skew
Montage 0.00 350.02 5.64 10.44 28.97
Ligo 0.01 0.98 0.31 0.33 1.04
Cybershake 0.02 514.44 192.63 208.74 0.40

created the tables. The replication of Hadoop is set to 1. After loading the data to Hadoop we
used the balancer to evenly distribute the data to the cluster. The acquire properties of each
operator, we run each one in isolation using only one container and collected the statistics.

Optimization Algorithms: We used our earlier algorithm Nested Loops (NL) [141], Ex-
haustive (Exh), Parallel Wave (PW), Dynamic Skyline (Sky), and 2D Simulated Annealing
(2D-SA). For the NL algorithm, we used the greedy algorithm in the inner loop and 10 differ-
ent number of containers in the range [1 − N] with N being the number of operators in the
graph. We used both structure and derivative methods for ranking. For the initialization of the
2D-SA algorithm, we used Sky, Exh10 using the 10 most influential operators, and random.
For the neighbor selection we used random and random based on ranking.

We also use an exhaustive algorithm that enumerates all the different schedules and keeps
only the ones in the skyline. We use this algorithm for two purposes: (i) to compare the
results of the proposed algorithms with the truly optimal and (ii) to find the optimal assignment
for the k most influential operators (e.g., the 10 operators with the highest ranking) as an
initialization step for simulated annealing. Let N be the number of operators and C be the
number of containers. The naive way to measure the size of the space of all the different
solutions is CN . For N = 2 and C = 2 the assignments are 22. However, the solution space
has several symmetries. In the above example, only two solutions are different: i) assign
both operators to the same container or ii) assign them to different containers. The algorithm
is iterative and at every step it assigns each operator to all the relative positions with respect
to the already assigned operators.

Measurements: For each experiment we generated 10 different dataflow graphs with differ-
ent seeds. For Montage, Ligo, and Cybershake, we used the generator in [41] and generated
graph with up to 100 operators. We run all the algorithms for each different graph and com-
puted the generalized skyline distance from the results and show the average values.

Skyline Comparison: To compare solutions from different optimization algorithms, we de-
fine the distance between two skylines. Let S and T be two skylines produced by different

H. Kllapi 102

Elastic Dataflow Processing on the Cloud

algorithms. Assume that S is dominated by T , i.e., the skyline of the union of the schedules
in S and T is equal to T . Let |S| be the number of points in skyline S. We define the distance
of S from T as:

DIST (S, T) = (

|S|∑
i=1

distp(Si, T))/|S|

with distp(Si, T) being the distance of a single schedule Si ∈ S from skyline T . Intuitively,
this distance shows the average distance in quanta between the schedules of the two sky-
lines. Several works has faced the issue of defining the distance between a point and a
skyline [114, 133]. In general, the goal is to minimize the total effort of making Si part of T ,
i.e., make it a point in the skyline. In this work, we define this distance as being the minimum
L2 length that Si needs to be moved to be part of T . For example in Figure 3.10, the distance
of schedule S1 from the skyline is d1.

Money	

Time	

d1	

d2	
d3	

S1	

S2	

T3	

Figure 3.10: Two skylines S (red circle) and T (blue square). Their distance set is ((d1 +
d2)/2, d3).

For two arbitrary skylines S and T , we first compute their common skyline C and define their
distance set as follows:

DISTSET (S, T) = (DIST (S,C), DIST (T,C))

Figure 3.10 shows an example where both s and t are positive.

Distance set can be generalized to n skylines (S1, ..., Sn) as follows:

DISTSET (S1, ..., Sn) = (DIST (S1, C), ..., DIST (Sn, C))

with C being the common skyline of all individual skylines. To compare the algorithms in the
experimental section, we compute the distance set of the skylines resulting from all of them.

Cloud Execution Environment: The resources used for our experiments were kindly pro-

103 H. Kllapi

Elastic Dataflow Processing on the Cloud

vided by Okeanos2, the cloud of GRNet3. We used 32 virtual machines, each with 1 CPU,
8 GB of memory, and 60 GB of disk. The versions of the systems used were Hadoop 1.1.2
and Hive 0.11.

IaaS Cloud Simulator: We do not possess the actual code for the scientific dataflows, and
only use the provided generators to accuire the properties of the operators. One possibility
is to create operators that consuming CPU and generate random data in order to execute
the dataflows in a real environment. However, this is equivalent as running the dataflows in
a simulated setting. For this reason, we have simulated the behavior of a typical compute
and storage cloud. The allocated containers cache the file partitions read from the cloud
storage. The operators of the execution plans are executed as soon as the memory needed
is available. The network is also simulated and the execution of an operator is delayed until
its input data is all transferred. If a container’s cache becomes full, the LRU policy is used
to create empty space. Containers are deleted when they do not have any operator running
and their quantum time slot expires. We measure the monetary cost based on the Amazon
EC2 cloud policy [21].

3.6.2 Model Validation

We begin by presenting the experiments we performed to validate our model. We used the
TPC-H dataflows using 8 VMs with a scale factor of 8 and the scientific dataflows.

TPC-H Dataflow: Figure 3.11 shows the real and estimated execution time and monetary
cost of the queries. We show the fastest plan in the skyline. We observe that our model is
able to successfully predict both time and money and in the worst case, the predicted values
are less than 10% of the real ones. As stated earlier, any reasonable model that predicts the
time and money of the dataflows would be sufficient for our algorithms to work.

0	

50	

100	

150	

1	 2	 3	 4	 5	 6	 7	 8	 9	 10	

Ti
m
e	
(s
ec
on

ds
)	

Query	 #	

TPC-‐H	 Es7mated	 and	 Real	 Time	

Time	 (est)	

Time	 (real)	
0	

10	

20	

30	

40	

50	

1	 2	 3	 4	 5	 6	 7	 8	 9	 10	

M
on

ey
	 ($

)	

Query	 #	

TPC-‐H	 Es7mated	 and	 Real	 Money	

Money	 (est)	

Money	 (real)	

Figure 3.11: Real and estimated execution time and money for queries of the TPC-H bench-
mark.

2okeanos.grnet.gr
3www.grnet.gr

H. Kllapi 104

Elastic Dataflow Processing on the Cloud

Scientific Dataflows: In Figure 3.12, we show the results for the Scientific datafows using
different number of containers. We observe that our modeling is robust.

0	

1	

2	

3	

4	

5	

5	 10	 15	 20	 25	 30	

Ti
m
e	
(in

	 q
ua

nt
a)
	

#	 Containers	

Montage	 Es5mated	 and	 Real	 Time	

Time	 (est)	

Time	 (real)	

0	

10	

20	

30	

40	

50	

5	 10	 15	 20	 25	 30	

M
on

ey
	 (i
n	
qu

an
ta
)	

#	 Containers	

Montage	 Es5mated	 and	 Real	 Money	

Money	 (est)	

Money	 (real)	

0	
2	
4	
6	
8	
10	
12	

5	 10	 15	 20	 25	 30	

Ti
m
e	
(in

	 q
ua

nt
a)
	

#	 Containers	

Cybershake	 Es5mated	 and	 Real	 Time	

Time	 (est)	

Time	 (real)	

0	

20	

40	

60	

80	

100	

5	 10	 15	 20	 25	 30	

M
on

ey
	 (i
n	
qu

an
ta
)	

#	 Containers	

Cybershake	 Es5mated	 and	 Real	 Money	

Money	 (est)	

Money	 (real)	

0	

20	

40	

60	

80	

5	 10	 15	 20	 25	 30	

Ti
m
e	
(in

	 q
ua

nt
a)
	

#	 Containers	

Ligo	 Es5mated	 and	 Real	 Time	

Time	 (est)	

Time	 (real)	

0	

100	

200	

300	

400	

5	 10	 15	 20	 25	 30	

M
on

ey
	 (i
n	
qu

an
ta
)	

#	 Containers	

Ligo	 Es5mated	 and	 Real	 Money	

Money	 (est)	

Money	 (real)	

Figure 3.12: Real and estimated execution time and money for the scientific dataflows.

3.6.3 Modeling Sensitivity Analysis

In this set of experiments, we examine the sensitivity of the estimations to measurements
errors of operator time and data denerated. To do this, we modify the running time of each
operator and the data they generate randomly within a percentage of their running time and
data size correspondingly. For example, if the running time of a particular operator is 100
seconds and the added error is 10%, then its running time will be a random value in the
range [100 - 110]. We do the same for the produced data. We measure the difference
between the estimated time and money when adding errors to the one original dataflow. We
performed two sets of experiments: in the first one we added the error and in the second one
we subtracted it. Figure 5.9 shows the results. We observe that the estimations are robust,
especially considering that more than 50% error in estimations is high in our setting.

3.6.4 Scheduling Algorithm Sensitivity Analysis

In this set of experiments, we measure the sensitivity of the scheduling algorithm to operator
estimation errors. Similarly to the previous experiment, we modify the running time of the
operators and measure the difference of the real time, money, and fragmentation from the
estimated values.

105 H. Kllapi

Elastic Dataflow Processing on the Cloud

-‐80	

-‐60	

-‐40	

-‐20	

0	

20	

40	

60	

0	 20	 40	 60	 80	 100	

Es
#
m
a#

on
	 e
rr
or
	 (%

)	

CPU	 error	 (%)	

Montage	 (#me	 error)	

Time-‐	

Money-‐	

Time+	

Money+	

-‐4	

-‐3	

-‐2	

-‐1	

0	

1	

0	 20	 40	 60	 80	 100	

Es
#
m
a#

on
	 e
rr
or
	 (%

)	

Data	 error	 (%)	

Montage	 (data	 error)	

Time-‐	

Money-‐	

Time+	

Money+	

-‐100	

-‐50	

0	

50	

100	

0	 20	 40	 60	 80	 100	

Es
#
m
a#

on
	 e
rr
or
	 (%

)	

CPU	 error	 (%)	

Ligo	 (#me	 error)	

Time-‐	

Money-‐	

Time+	

Money+	

-‐0.001	

0	

0.001	

0.002	

0	 20	 40	 60	 80	 100	 Es
#
m
a#

on
	 e
rr
or
	 (%

)	

CPU	 error	 (%)	

Ligo	 (data	 error)	

Time-‐	

Money-‐	

Time+	

Money+	

-‐60	

-‐40	

-‐20	

0	

20	

40	

0	 20	 40	 60	 80	 100	

Es
#
m
a#

on
	 e
rr
or
	 (%

)	

CPU	 error	 (%)	

Cybershake	 (#me	 error)	

Time-‐	

Money-‐	

Time+	

Money+	

-‐15	

-‐10	

-‐5	

0	

5	

0	 20	 40	 60	 80	 100	

Es
#
m
a#

on
	 e
rr
or
	 (%

)	

CPU	 error	 (%)	

Cybershake	 (data	 error)	

Time-‐	

Money-‐	

Time+	

Money+	

Figure 3.13: Modeling sensitivity to operator estimation errors.

Figure 3.14 shows the results. We observe that the skyline algorithm produces robust sched-
ules and is not very sensitive to operator estimation errors.

3.6.5 Skyline Discovery

Figure 3.15 shows the skylines produced for the scientific dataflows. We observe that there
is significant elasticity in all scientific dataflows and that Sky algorithm is able to find many
trade-offs.

3.6.6 Effect of Ranking

In this set of experiments, we measured the effect of ranking the operators. We used both
structure and derivative ranking with Sky and 2D-SA algorithms on scientific dataflows with
SnF and PL operators. As a baseline for ranking, we compare with the FIFO ranking algo-
rithm, i.e., the operators are assigned with the same ordering they become available.

Sky Algorithm: Figure 3.16 shows the results of the Sky algorithm. We observe that ranking
improves dramatically the solutions compared to FIFO for both PL and SnF dataflows. As
expected, for SnF operators the results are similar because the rankings do not differ much
as discussed in Section 3.5. For PL operators however, we see that the ranking based on
derivative is much more beneficial than the ranking based on structure.

H. Kllapi 106

Elastic Dataflow Processing on the Cloud

-‐10	

10	

30	

50	

70	

0	 100	 200	 300	 400	 500	

%
	 D
iff
er
en

ce
	

%	 Error	 Added	

Montage	 Added	 CPU	 and	 Data	 Error	

CPU	 Time+	

CPU	 Money+	

Data	 Time+	

Data	 Money+	

-‐20	

30	

80	

130	

0	 20	 40	 60	 80	 100	

%
	 D
iff
er
en

ce
	

%	 Subtracted	 Added	

Montage	 Subtracted	 CPU	 and	 Data	 Error	

CPU	 Time-‐	

CPU	 Money-‐	

Data	 Time-‐	

Data	 Money-‐	

-‐10	

10	

30	

50	

70	

0	 100	 200	 300	 400	 500	

%
	 D
iff
er
en

ce
	

%	 Error	 Added	

Ligo	 Added	 CPU	 and	 Data	 Error	

CPU	 Time+	

CPU	 Money+	

Data	 Time+	

Data	 Money+	

-‐20	

30	

80	

130	

0	 20	 40	 60	 80	 100	

%
	 D
iff
er
en

ce
	

%	 Subtracted	 Added	

Ligo	 Subtracted	 CPU	 and	 Data	 Error	

CPU	 Time-‐	

CPU	 Money-‐	

Data	 Time-‐	

Data	 Money-‐	

-‐10	

10	

30	

50	

70	

0	 100	 200	 300	 400	 500	

%
	 D
iff
er
en

ce
	

%	 Error	 Added	

Cybershake	 Added	 CPU	 and	 Data	 Error	

CPU	 Time+	

CPU	 Money+	

Data	 Time+	

Data	 Money+	

-‐20	

30	

80	

130	

0	 20	 40	 60	 80	 100	

%
	 D
iff
er
en

ce
	

%	 Subtracted	 Added	

Cybershake	 Subtracted	 CPU	 and	 Data	 Error	

CPU	 Time-‐	

CPU	 Money-‐	

Data	 Time-‐	

Data	 Money-‐	

Figure 3.14: Scheduling sensitivity to operators estimation errors.

1	
1.2	
1.4	
1.6	
1.8	
2	

20	 30	 40	 50	 60	 70	

Ti
m
e	
(Q
ua

nt
a)
	

Money	 (Quanta)	

Montage	 Skyline	

0	

40	

80	

120	

160	

360	 365	 370	 375	 380	 385	 390	

Ti
m
e	
(Q
ua

nt
a)
	

Money	 (Quanta)	

Ligo	 Skyline	

0	

5	

10	

15	

20	

40	 50	 60	 70	 80	 90	 100	
Ti
m
e	
(Q
ua

nt
a)
	

Money	 (Quanta)	

Cybershake	 Skyline	

Figure 3.15: Skylines of scientific dataflows found by Sky algorithm.

3.6.7 Compare Algorithms

In this set of experiments, we compare all algorithms. Figure 3.17 shows the results. We
observe that the combination of the Sky algorithm to find the initial skyline and further re-
finement with 2D-SA using random neighbor selection is the best choice. In some cases,
the skyline produced is one order of magnitude better than result of the other algorithms.
Sky performs better than our previously proposed algorithm NL [141] because it operates
directly in the 2D space while NL optimizes each dimension separately. Furthermore, Exh10
algorithm does not give very good results compared to Sky+2D-SA. We also measured the
number of schedules in the skyline produced by each algorithm. In general, Sky finds more
schedules in the skyline compared to the others and 2D-SA improves the skyline even more,
both in terms of quality and number of solutions.

Finally, we measured the time it takes for the different algorithms to run in order to measure
the overhead they have on the system. Figure 3.18 shows the results. We observe that the

107 H. Kllapi

Elastic Dataflow Processing on the Cloud

 0

 1

 2

 3

SnF
PL

S
k
y
lin

e
 D

is
ta

n
c
e

Skyline Scheduler for Ligo 100

Derivative
Structure

FIFO

Figure 3.16: Sky with different ranking algorithms using Ligo dataflow with 100 PL and SnF
operators.

Sky algorithm has the fastest running time. The algorithms that use Exh, have very long
running times because they examine a very large number of schedules.

3.6.8 Elastic Execution

In this experiment we examine the eco-elasticity of TPC-H dataflows. We used TPC-H with
replication factor 32. Figure 3.19 shows the results of the most characteristic dataflows (the
other dataflows have similar characteristics). We observe that there are many different types
of elasticities. Two different examples are queries 1 and 2. Query 1 is inelastic, meaning that
there are no tradeoffs between time and money and, as a result, the skyline has only one
schedule. Query 2 is a typical example of elastic dataflow for which money can be traded for
time.

3.6.9 Elastic MapReduce

In this set of experiments, we examine the eco-elasticity of MapReduce dataflows. We mod-
ified the Starfish optimizer in two ways: 1) added estimation of monetary cost and 2) imple-
mented Algorithm 3.2 using time and money estimations. The Starfish optimizer is modeled
after Hadoop, and the latter has a large number of parameters including the ones shown in
Table 3.4 which are very important to set right [111]. The first important question is what
parameters to choose in order to discover eco-elasticity.

H. Kllapi 108

Elastic Dataflow Processing on the Cloud

 0.01

 0.1

 1

 10

 100

N
e
ste

d
 L

o
o
p
s

S
ky

S
ky+

2
D

-S
A

S
ky+

2
D

-S
A

(R
a
n
k)

E
xh

+
2
D

-S
A

E
xh

+
2
D

-S
A

(R
a
n
k)

S
k
y
lin

e
 D

is
ta

n
c
e

 (
lo

g
 s

c
a

le
) Distance for Montage, Ligo, and Cybershake (50 Ops)

Montage
Ligo

Cybershake

 0

 5

 10

 15

 20

 25

 30

N
e
ste

d
 L

o
o
p
s

S
ky

S
ky+

2
D

-S
A

S
ky+

2
D

-S
A

(R
a
n
k)

E
xh

+
2
D

-S
A

E
xh

+
2
D

-S
A

(R
a
n
k)

#
 p

o
in

ts
 i
n

 s
k
y
lin

e

points in skyline for Montage, Ligo, and Cybershake (50 Ops)

Montage
Ligo

Cybershake

Figure 3.17: Skyline Distance and # schedules in skyline of different algorithms on scientific
dataflows.

Table 3.4: Starfish Parameters Ranges

Property Min Max Step
io.sort.factor 10.00 100.00 5.00
io.sort.mb 10.00 500.00 10.00
io.sort.record.percent 0.01 1.00 0.05
io.sort.spill.percent 0.01 1.00 0.05
mapred.inmem.merge.threshold 100.00 1000.00 100.00
mapred.job.reduce.input.buffer.percent 0.01 1.00 0.05
mapred.job.shuffle.input.buffer.percent 0.01 1.00 0.05
mapred.job.shuffle.merge.percent 0.01 1.00 0.05
min.num.spills.for.combine 1.00 9.00 1.00
mapred.reduce.tasks 1.00 400.00 5.00

Figure 3.20 shows the skyline of solutions found by Parallel Wave algorithm and all the so-
lutions found by varying all different pairs (except reduce taks) of parameters in the ranges
shown in Table 3.4. We observe that there are no trade-offs when varying the other param-
eters (the fastest schedule is also the cheapest one). This is the reason we first run the al-
gorithm that optimizes only for time and then discover eco-elasticity varying only parallelism.
Another observation is that Parallel Wave is able to successfully find trade-offs between time
and money.

We also implemented Sky algorithm within Starfish. Figure 3.21 shows the results of Sky and
Parallel Wave on the Terasort dataflow. We observe that we have significant improvement
when using Sky algorithm. We are able to find schedules that are as expensive as the ones
of MapReduce, but a lot faster. The reason is that load balance (which is used by Starfish

109 H. Kllapi

Elastic Dataflow Processing on the Cloud

 1

 10

 100

N
ested Loops

Sky
Sky+SA

Sky+SA(R
ank)

Exh+SA

Exh+SA(R
ank)

R
u
n
 T

im
e
 (

S
e
c
o
n
d
s
 -

 l
o
g
 s

c
a
le

)

Alg Run Time (50 Ops)

Montage
Ligo

Cybershake

Figure 3.18: Running time of the algorithms on scientific dataflows.

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 5 10 15 20 25

M
o

n
e

y
 (

Q
u

a
n

ta
)

Time (Quanta)

Elastic TPC-H Queries

Q1
Q2
Q3
Q4
Q5

Figure 3.19: TPC-H queries on EXAREME using different schedules in the skyline.

and Hadoop) is not able to find as good operator packing as the Sky algorithm.

3.6.10 Compare Abstractions

In this set of experiments, we compare the MapReduce and the general graph abstractions
using the TPC-H queries. We converted the queries into MapReduce dataflows using Hive
explain capability. The left part of Figure 3.22 shows the execution time of the fastest sched-
ules in the skyline, since Hive’s optimization goal is to minimize time. We observe that the
difference of Hive with our system is not significant when evaluating dataflows using the

H. Kllapi 110

Elastic Dataflow Processing on the Cloud

0	
1	
2	
3	
4	
5	
6	
7	
8	
9	

10	

40	 60	 80	 100	 120	 140	 160	

Ti
m
e	
(q
ua

nt
a)
	

Money	 (quanta)	

Elas3c	 Terasorst	 using	 Starfish	 op3mizer	

Parallel	 Wave	

other	 pairs	

Figure 3.20: PW algorithm and varying all pairs on the Terasort MarReduce dataflow.

0	
1	
2	
3	
4	
5	
6	
7	
8	
9	

10	

40	 60	 80	 100	 120	 140	 160	

Ti
m
e	
(q
ua

nt
a)
	

Money	 (quanta)	

Elas3c	 Terasorst	 using	 Starfish	 op3mizer	

Parallel	 Wave	

Sky	

Figure 3.21: MapReduce graphs with SnF and PL operators using Sky and PW algorithms.

MapReduce abstraction. However, when the same queries are expressed using the general
dataflow abstraction, the results are up to two orders of magnitude faster. This reveals that
the abstraction of the dataflow on which the optimization algorithm operates is very impor-
tant. The right part of Figure 3.22 shows the same results in the 2D space of time and money.
In order to find the monetary cost of the queries in Hive, we used the total CPU time spent
that is provided by the system. This measurement do not include the time spent for I/O, and
thus, is a lower bound of the actual monetary cost. This is the reason why in the plot of
Figure 3.22, the MR queries on Hive are cheaper than the corresponding ones on EXAREME.
Again, we observe that the queries are up to two orders of magnitude cheaper when using
the general graph abstraction.

111 H. Kllapi

Elastic Dataflow Processing on the Cloud

Figure 3.22: Execution time (left) and 2D space of time/money (right) of TPC-H queries on
Hive and EXAREME with 64GB data and 32 VMs.

The main reason for the reduced performance is the MapReduce abstraction used for the
SQL queries. The general graph abstraction fits better the model of SQL. An example is
the group-by operator. The best way to execute it, is with a tree of group-by operators. In
MapReduce however, we need several jobs to support that when the height of the tree is
more than two, introducing substantial accidental complexity. We also have to be careful
with the intermediate MapReduce jobs, especially with the way we assign keys to pairs.
Assigning as key the group-by column will not work for trees with height greater than two.
Another factor that affect the performance is the Synchronization of each MapReduce Job.
Delays are common in clusters due to network or disk latencies and cause machines to
waste valuable time waiting for a small number of map or reduce jobs to finish. By allowing
the system to blend together different phases of evaluation, any possible delays do not affect
the whole execution of the dataflow.

3.7 Related Work

Several high-lever query languages and applications have been developed on top of MapRe-
duce abstraction [69] and a plethora of systems are built using this abstraction. Examples
include Jaql [40], HiveQL [214], and PigLatin [176]. Several methodologies have been pro-
posed to model the cost and optimize MapReduce dataflows [15, 111]. The MapReduce
abstraction is relatively restricted and the optimizer can choose only the degree of paral-
lelism for the map and reduce phases, and thus reducing the opportunities for optimization.
In addition, the MapReduce abstraction is not efficient for heavy aggregations: the multi-level
aggregations can only be expressed using multiple jobs, making it much less efficient that
the tree abstraction. We target a broader range of dataflow graphs that fits much better the

H. Kllapi 112

Elastic Dataflow Processing on the Cloud

complex dataflows produced by SQL. Finally, the optimization goal of these systems is to
minimize the number of MapReduce jobs they produce, while at the same time, to maximize
parallelization for each job minimizing the total execution time. The monetary cost of using
the resources is ignored.

We used and extended the Starfish MapReduce optimizer [111, 157], which is a cost based
optimizer for MapReduce. Our methodology is also simulation based, but we target a broader
range of dataflow graphs.

An aspect that is crucial for the discovery of eco-elasticity for data intensive flows, is the
data transfer modeling and we payed special attention in our model to capture it. Many
scheduling algorithms ignore that because it creates inter-machine dependencies and focus
on the optimization of independent tasks [94, 205].

Several general dataflow processing systems have been proposed. Examples include Na-
iad [173], Stratosphere [83], and Spark [242]. The optimization goal of the schedulers of
these systems is to perform load balancing of the computation to the available machines, are
not elastic, and the monetary cost is ignored. We target a wider variety of optimization cri-
teria with respect to both time and monetary cost. Furthermore, the above systems support
iterative dataflows, i.e., dataflow graphs with cycles. Load balancing makes sense to be used
by these systems since they do the scheduling on-line because not all the dataflow graph is
available a-priori. For the time being, we target acyclic dataflow graphs and do not support
iterations.

Recently, there are some works focusing on adaptive query execution, i.e., constantly chang-
ing the execution plan based on statistics collected during execution [38, 46]. The motivation
of these works is that data have inaccurate or missing statistics. EXAREME also collects
statistics during the execution of the dataflow, but the execution plans of the running queries
do no change. We use the updated statistics to make better decisions for future queries. The
rationale behind this is that the properties of large datasets do not change faster than the
rate that we query them [103]. This way, each query will refresh the statistics for subsequent
ones.

Extract-Transform-Load (ETL) dataflows present a major challenge and much attention has
been given on it recently. A methodology is presented to design ETL dataflows based on
multiple criteria [207]. To the best of our knowledge, optimization is not automatic for the
time being. New approaches focus on optimizing execution time of dataflows executed over
multiple engines (DB, MapReduce, etc.) [208] and identify essential statistics of the ETL
workload [103]. All these are complementary to our work.

Recently, trade-offs between time and money are also studied in the context of clouds [75,
217] and it has been shown that money can be traded for time in many cases. These are
complementary to our work.

113 H. Kllapi

Elastic Dataflow Processing on the Cloud

3.8 Discussion

In this section, we list some of the algorithms we implemented and found that are inferior to
the Skyline algorithm 3.1. Some of the algorithms are inferior in terms of prohibitive running
times and some in terms of the quality of the solutions they produce. We found that Skyline
offers a good balance between running time and quality.

3.8.1 Nested Loops Family

This family of algorithms [141], follow a nested loop approach. The outer loop calls the
inner optimizer several times with different limits on the number of containers to use in the
schedule, and stops when the optimality criterion doesn’t improve much after a particular
number of consecutive iterations. The inner loop, optimizes on either time or money under a
constraint on the other. We use a suite of greedy and probabilistic search algorithms for the
inner loop that are presented in the following subsections. This family of algorithms does not
produce very good results in practice because the decision about the number of containers
is independent of the search algorithm in the inner loop. In contrast, the Skyline algorithm
considers changing the size of the allocated virtual infrastructure along with the scheduling
of the operators.

The generic nested loop optimizer we have implemented is shown in Algorithm 3.3. The
algorithm solves different problems depending on the values of its parameters.

The parameters of Algorithm 3.3 are as follows: 1) The dataflow graphG as defined earlier. 2)
CONST is a boolean routine returning whether or not a schedule is satisfying the constraints.
If CONST returns always true (time < ∞ & money < ∞) is sufficient to express the lack
of constraints. 3) FILTER is a routine that is applied on a set of schedules and returns a
reduced set, removing the schedules that are dominated by others, according to time, money,
or both (skyline). 4) LIMIT is a generator of container limits. In its simplest form, it just has
to generate limits up to the total number of operators in the dataflow. However, in most cases,
this is a very loose upper bound. In this work, we use the parallelism PG of the graph that is
defined as the total CPU time of operators divided by the CPU time of the critical path (the
operator path with the maximum length). 5) STOP is a boolean routine determining whether
or not to stop the exploration based on some of many possible criteria. The simplest way
is to call the lower level sequentially for all limits generated by LIMIT . Another possibility
is to end the exploration when the difference between the values of the OPT parameter
for a specified number of consecutive schedules is below a particular threshold. Finally,
OPT is a single-objective optimizer that tries to optimally assign the operators to containers,
minimizing either the time or the money related to the schedule. Below we outline how some
of the parameters of Algorithm 3.3 are instantiated based on the particular problem that we
want to solve.

H. Kllapi 114

Elastic Dataflow Processing on the Cloud

Algorithm 3.3 Nested Loop Optimizer
Input: G: The dataflow graph

CONST: Solution constraints
FILTER: Solution space filter
LIMIT: Container limit sequence generator
STOP: Stopping condition
OPT: Lower level optimizer

Output: space: The space of solutions

1: space← �
2: while LIMIT.hasNext() and STOP.continue() do
3: limit← LIMIT.getNext()
4: next← OPT(G, limit, CONST)
5: space← FILTER(space ∪ {next})
6: STOP.addFeedback(next)
7: LIMIT.addFeedback(next)
8: end while
9: return space

• Minimize Execution Time Given Budget: CONST checks if a schedule is covered
by the given financial budget. FILTER returns only the fastest schedule. LIMIT
generates at most 20 limits splitting equally the [1, PG] range. Condition STOP is the
last five schedules to not differ significantly with respect to completion time. Using
linear regression, we compute the line in the time/iteration space using the five last
iterations. If the slope of that line is less than 0.1 the exploration stops. OPT minimizes
completion time having a budget limitation as constraint.

• Minimize Monetary Cost given Time Limit: CONST checks whether or not a sched-
ule is within the given time limit. FILTER return only the cheapest schedule. LIMIT
is the same as in the previous problem. STOP is calculated in the same way as in C1
but the line is computed on the money/iteration space. OPT minimizes money having
the time limitation as constraint.

• Skyline Problem: CONST accepts any schedule. FILTER returns the skyline of
solutions. LIMIT is the same as C1 and the STOP condition is always false. OPT
can be any algorithm described in the following subsections. The size of the skyline is
at most the number of container limits produced by LIMIT .

In the following subsections we present the various single objective optimization algorithms
we have explored with respect to OPT .

115 H. Kllapi

Elastic Dataflow Processing on the Cloud

Algorithm 3.4 Generic Greedy (GG)
Input: G: The dataflow graph

C: The maximum number of parallel containers to use
CONST: Solution constraints
NEXT: Next operator to assign
ASSIGN: Container the next operator is assigned to

Output: SG: The schedule of G with at most C containers

1: SG.assigns← �
2: ready ←{operators in G that has no dependencies}
3: while ready 6= � do
4: n← NEXT(ready)
5: candidates← {containers that assignment of n satisfy CONST}
6: if candidates = � then
7: return ERROR
8: end if
9: c← ASSIGN(n, candidates)

10: ready ← ready − {n}
11: ready ← ready+{operators in G that constraints no longer exist}
12: SG.assigns← SG.assigns+ {assign(n, c,−,−)}
13: end while
14: return SG

Greedy Scheduling Algorithms

We have implemented several greedy scheduling algorithms [134] using different heuristics.
In Algorithm 3.4, shows the generic greedy algorithm we implemented. The algorithm is
greedy in the sense that once it makes the decision about the assignment of a particular
operator, it does not change it in the future. Only two routines have to be defined: NEXT
returns the next operator to be assigned choosing from a set of operators ready for that and
ASSIGN returns the container where the next operator will be assigned to. Each operator
having no inputs, is a candidate for assignment. An S&F operator is a candidate, as soon as
all of its inputs are available. A PL operator is a candidate, as soon as all of its inputs come
from PL or from completed S&F operators.

We define four algorithms: G-BRT balances container utilization, G-MNT minimizes network
traffic, G-MPT minimizes completion time, and G-MPM minimizes monetary cost. In particu-
lar, at every step, G-BRT assigns the operator with maximum running time to the container
that will minimize the standard deviation of the utilization of the containers in the schedule.
The latter is the summation of the execution time of the operators assigned to the container.
G-MNT assigns the operator with the maximum output size to the container that minimizes
the data transferred through the network. G-MPT assigns the operator with the maximum
execution time to the container that minimizes completion time. Finally, G-MPM assigns the

H. Kllapi 116

Elastic Dataflow Processing on the Cloud

operator with the maximum output size to the container that minimizes monetary cost.

Local Search Scheduling Algorithms

The local search method we use is simulated annealing [124]. We implemented a generic
algorithm that requires the definition of three routines: INIT specifies the initial schedule
from which the search begins, COST returns the value of the optimization parameter for
a particular schedule, and NEIGHBOR returns a neighbor of a particular schedule. The
algorithms does not considers neighbors that do not satisfy the constraints.

We define the following algorithms: SA-MPT begins with a random schedule and the COST
routine returns the completion time of a schedule, SA-MPT2 begins with the output of G-MPT
as its initial schedule and has the same COST routine as SA-MPT, SA-MPM begins with a
random schedule and the COST routine returns the money of a schedule, and SA-MPM2
begins with the output of G-MPM as its initial schedule and has the same COST routine
as SA-MPM. All algorithms produce a random neighbor by assigning a randomly chosen
operator to a different container, also chosen randomly.

3.8.2 Skyline 2-D Simulated Annealing

We have also implemented a version of the simulated annealing that works directly in the
2-D space, and is shown in Algorithm 3.5. The algorithm moves from skyline to skyline with
moves that follow the SA philosophy. At each move, a schedule is chosen randomly from the
current skyline. A neighbor of that schedule is computed by assigning an operator to another
container. The neighbor is chosen randomly or based on ranking. The later, chooses the
operators with probability proportional to their relative ranking scores. If the newly produced
schedule dominates the old one, only that schedule is kept. If they do not dominate each
other, both schedules are kept. If the old one dominates the new, the new one is kept with
probability that depends on the schedule distance between them and the temperature. The
lower the temperature, the smaller the probability of keeping a dominated schedule. The
result of this algorithm, is the skyline of the explored solutions. By starting from a good initial
skyline (e.g., using the Skyline algorithm), it manages to produce good results. However, this
algorithm is relatively expensive, and some times it takes many iterations to converge.

3.8.3 Branch and Bound

Branch and bound is an exhaustive algorithm that computes the optimal skyline schedules.
Assume and ordering of the operators that is computed from their dependencies in the

117 H. Kllapi

Elastic Dataflow Processing on the Cloud

Algorithm 3.5 2D Simulated Annealing
Input: G: A dataflow graph, K: Maximum number of iterations, C: Maximum number of containers
Output: skyline: The solutions.

1: skyline← DynamicSkyline(G,C)
2: S ← skyline
3: k ← 0
4: while k < K do
5: s← a random schedule in S
6: n← RandNeighbor(s)
7: if n.time < s.time and n.money < s.money then
8: s← next // Dominate
9: else

10: if n.time < s.time or n.money < s.money then
11: S ← S ∪ {next} // Tradeoff
12: else
13: if e−

L2Distance(s,next)
T (k) > rand[0,1] then

14: s← next
15: end if
16: end if
17: end if
18: skyline← skyline of (skyline ∪ S)
19: k ← k + 1
20: end while
21: return skyline

dataflow graph. The search space navigated by the branch and bound algorithm is illus-
trated in Figure 3.23 assuming the ordering of operators is (A,B,C, . . .). The figure shows
the unique assignments of the first three operators assuming the containers are of the same
size. The idea here is to prune a sub-tree when we are sure that it can only produce sub-
optimal solutions, based on the partial solutions seen so far. To do this, a lower and upper
bound of the cost of the solutions needs to be computed at each node of the search tree.
Since we want to find trade-offs of time and money, we compute bounds for both dimensions.

Assume that the bounding boxes of the first three levels of the tree are as shown in Fig-
ure 3.24. We observe that we can prune the search space, since some bounding boxes
dominate others. A bounding box dominates another if they do not overlap and the most
expensive and time consuming schedule of the first is better than the cheapest and fastest of
the other. Given that, we can safely prune the schedules shown in red color in Figure 3.24:
(A,BC...) and (AC,B...).

Computing tight lower and upper bounds is crucial for this algorithm, since the smaller the
bounding boxes, the better the pruning of the search space. We also use the heuristic of
putting the “heavy” (long running) operators as high as possible in the tree. This way, we can
prune the wrong assignments of those operators earlier in the search process. In this work,
we compute the bounds as follows. Assume we have fixed the assignments of the first N

H. Kllapi 118

Elastic Dataflow Processing on the Cloud

C	

Assign	 A	
1	 Choice	 A	

AB	

ABC	 AB	

B	 A	

B	 AC	 BC	 A	 B	 A	 C	

Assign	 B	
2	 Choices	

Assign	 C	
5	 Choices	

…	 …	 …	 …	 …	
Figure 3.23: Branch and Bound for the first three operators A, B, and C.

ABC	 …	

AB,C	 …	

A,B,C	 …	 AC,B	 …	

A,BC	 …	

Money	

Time	

Figure 3.24: Branch and Bound 2D space.

operators in the schedule and we need to assign the rest |V | −N operators. The estimation
of the execution time and money for the first N operators is computed as shown earlier. For
the remaining operators, we compute the lower and upper bounds of time and money as
follows:

• Min Time: Compute the longest (critical) path of the graph of remaining operators
ignoring network traffic. This is the theoretical lowest execution time.

• Max Time: Assign all operators to one container and compute the running time. Since
this does not involve parallelism, is the theoretical maximum execution time.

119 H. Kllapi

Elastic Dataflow Processing on the Cloud

• Min Money: Assign all operators to one container and compute the cost taking into
account the quantum size. Since we cannot do less work besides executing operators,
this is the lowest possible cost. Using more containers, will also produce additional cost
from the network usage.

• Max Money: Assign all operators to different containers and compute the cost, again
taking into account the quantum size. This is the theoretical maximum monetary cost
since all operators will use different containers, causing a lot of network transfer.

The bounding box of a node of the search tree is computed by adding the estimations of the
first N operators to the above values.

This algorithms produces optimal solutions, however, is typically slow because it does not
reduce the search space enough, i.e., the lower and the upper bounds are not significantly
separated. The computation of tighter bounds is crucial for this algorithm.

3.8.4 Recursive Graph/Space Partitioning Family

This family of algorithms, iteratively divides the graph and the containers into two parts, and
continues until no more divisions are possible or is not efficient to continue further. The
algorithm takes as parameter the maximum number of resources to use (CPU and memory).
The search starts by creating two very large containers, each one having half of the total
resources, and schedules the operators to these two containers by partitioning the graph in
half. It then recursively performs the same on the two parts, splitting each container in half.
This algorithm is appealing because the division can stop at different container sizes. Most
cloud providers offer VMs with different capacities. Figure 3.25 illustrates the execution of
the algorithm.

We implemented two alternatives to partition the graph: greedy load balance and linear
programming. We discuss both in the following subsections.

Greedy Balanced Partitioning

This algorithm divides the graph into two parts by balancing the load on each of the two con-
tainers and breaking the ties by selecting the schedule with the minimum network traffic. The
operators are considered from producers to consumers. This method is very fast, however,
did not produced very good results since is a greedy algorithm.

H. Kllapi 120

Elastic Dataflow Processing on the Cloud

Container	 with	 R	 Resources	

R	 /	 2	 R	 /	 2	

R	 /	 4	 R	 /	 4	

B2	

C4	 C3	

D2	

B1	

C2	

C1	

D1	

A	

E	

Figure 3.25: Recursive space partitioning.

Algorithm 3.6 LP Binary Balanced Partitioning
Input: G(V,E): The dataflow graph, Total: Container size.
Return: ni: The assignments of the operators.

1: Minimize:
∑

ei∈Edges ei · we
i

2: Subject to: nj − nk − ei ≤ 0
3: nk − nj − ei ≤ 0
4: . . .
5:
∑

ni∈Nodes ni · wn
i ≤ 3/4 · Total

6: return ni

Binary Integer Programming

This algorithms formulates the graph scheduling with a linear program [55] that essentially
performs balanced graph partitioning. The linear program is shown in Algorithm 3.6 and we
solve it using a standard tool (lp_solve). Each node of the graph is associated with a binary
variable that has value 0 or 1 depending on which of the two partitions is assigned. We also
create a variable for each link that is 0 if the nodes it connects are on the same partition and
1 otherwise. The weight of the nodes are computed by their CPU usage and the weights
of the edges are essentially the time it takes to transfer the data though the network. The
objective is to minimize network traffic while keeping a relative balance of the CPU load (at
most 3/4 of the total load is assigned to one container). The two constraints of each edge
force the binary variable ei to be 1 if the edge connects operators that are not in the same
partition and 0 otherwise. Notice that the balance constraint is crucial since we do not want
small cuts, that may be optimal in terms of network traffic. This variation is very slow for large
graphs, although it produces very good results.

121 H. Kllapi

Elastic Dataflow Processing on the Cloud

3.9 Conclusions

In this chapter, we presented an efficient algorithm for the scheduling of dataflows on the
cloud considering its eco-elasticity property with respect to the completion time and the mon-
etary cost of using the compute resources. Furthermore, we showed that our methodology
is useful for systems using the MapReduce abstraction and that eco-elasticity can be em-
bedded into those systems with minimal changes. Through several experiments we show
that our methods can efficiently explore the 2D space of time and money and are able to
find good tradeoffs using both MapReduce and generic graph abstractions. Furthermore, we
showed that using generic graphs, much more eco-elasticity can be found.

H. Kllapi 122

Elastic Dataflow Processing on the Cloud

Chapter 4

Elastic Cloud Processing for Analytical
Query Workloads

Many modern applications require the evaluation of analytical queries on large amounts of
data. Such queries entail joins and heavy aggregations that often include user-defined func-
tions (UDFs). The most efficient way to process these specific type of queries is using tree
execution plans. In this work, we develop an engine for analytical query processing and
a suite of specialized techniques that collectively take advantage of the tree form of such
plans. The engine dynamically deploys these tree plans in an IaaS cloud infrastructure by
either allocating or releasing pertinent resources based on the query workload monitored
over a sliding time window. The engine offers its services for a fee according to service-
level agreements (SLAs) associated with the incoming queries; its management of cloud
resources aims at maximizing the profit after removing the costs of using these resources.
We have fully implemented our algorithms in the EXAREME dataflow processing system. We
present an extensive evaluation that demonstrates that our approach is very efficient (exhibit-
ing fast response times), elastic (successfully adjusting the cloud resources it uses as the
engine continually adapts to query workload changes), and profitable (approximating very
well the maximum difference between SLA-based income and cloud-based expenses).

4.1 introduction

Many modern applications face the need to process voluminous data using ad-hoc analyt-
ical queries [139, 190, 206]. They also call for the use of complex user-defined functions
(UDFs) that do not come from a pre-defined set of operators with well known semantics for
which SQL proper is often not sufficient or efficient to use. Furthermore, these queries must
demonstrate very fast and near-interactive response times [4, 14, 169]. It has been shown

123 H. Kllapi

Elastic Dataflow Processing on the Cloud

Par$al	 Aggrega$ons	
Ordering	

Data	
(par$$oned)	

Result	

Joins	 /	 Filters	

…

…

…

Global	 Aggrega$ons	
Ordering	 Ln-‐1	

L1	

L0	

Ln-‐2	

Figure 4.1: Generic form of tree execution plans.

that, in appropriate computational environments such as shared-nothing, specific tree exe-
cution plans, can answer queries of the above kind on trillions of objects in seconds [169].
Figure 4.1 shows a generic image of such a tree execution plan: the leaves of the tree rep-
resent the data that are partitioned appropriately based on the application. The remaining
nodes represent operators (e.g., such as group bys) and the connections between them cor-
respond to dataflow dependencies. The operators at the first level (L0) typically perform joins
and filtering. The internal operators (levels L1 to Ln−2) perform partial aggregations. Finally,
the root operator (level Ln−1) performs global aggregations and produces the final result.

Several systems have been proposed for large-scale data processing [4, 52, 169, 214]; they
are typically built on top of IaaS clouds [32, 99] which have emerged as an attractive plat-
form for query processing. The defining characteristic that favors IaaS clouds over other
competing environments (such as distributed, cluster-based, grid, etc.) is elasticity, i.e., the
ability to lease compute and storage resources on–demand and use them only for as long
as needed. This makes possible to create an elastic virtual infrastructure that may change
over time. IaaS clouds offer compute resources in the form of virtual machines (VMs). The
cost of leasing a VM is determined based on a per time-quantum pricing scheme, where one
pays for the entire quantum independently of the extent of the use of the VM resources [23].
An elastic cloud-enabled engine may either allocate or de-allocate VMs, trying to identify the
optimal trade-off between the need to minimize execution times for a given workload and the
requirement to minimize the monetary cost of using the cloud resources [89, 141].

H. Kllapi 124

Elastic Dataflow Processing on the Cloud

IaaS	 Cloud	 (VMs	 and	 Storage)	

Elas5c	 Analy5cs	 Service	

Q1,	 (SLA2)	
Q5,	 (SLA3)	

…	

Q1,	 (SLA1)	
Q2,	 (SLA2)	

…	

L0	 (Data)	 …
L1	

L2	

Ln	

…

Layout	 Virtual	 Infrastructure	 in	 a	 “Tree”	 Shape	

Monitor	 Query	 Load	

Query	 &	 Get	 Results	

	 .	 .	 .	

Add/Remove	 VMs	 Dynamically	 based	 on	 Load	

Figure 4.2: Engine for Elastic Analytical Query Processing.

In this chapter, we develop an elastic processing engine operating atop an IaaS infrastructure
that is capable of executing efficiently and cost-effectively a large class of analytical queries
demonstrating a tree execution plan of a specific form. We have implemented the function-
ality within EXAREME [221, 136], our system for dataflow execution on the cloud. Figure 4.2
depicts the salient characteristics of our engine: arbitrarily complex queries, possibly having
UDFs with arbitrary user–code, are continually submitted to the engine. Each query is asso-
ciated with an SLA that designates the price that a query instigator must pay for answering
the query depending on its response time (faster response times are associated with higher
prices). The data is originally stored on the cloud (e.g., Amazon S3[1]) and is partitioned to
increase flexibility and performance.

In this context, our proposed engine and its requisite mechanisms make the following contri-
butions:

• We introduce an online algorithm that exploits the elasticity of IaaS clouds to dynami-

125 H. Kllapi

Elastic Dataflow Processing on the Cloud

cally adapt the size of the virtual infrastructure to the query workload at hand by either
allocating or de-allocating VMs. This is done so that our engine maximizes its profit
while taking into account the monetary cost of expended cloud resources as well as
the SLAs of the submitted queries.

• We propose to lay out the VMs allocated in a “tree” shape (Figure 4.2), so that query
execution plans are mapped naturally to IaaS processing elements. The VMs at the
leaf-level fetch data from the cloud storage and cache it to their local (virtual) disk for
processing, thereby decoupling compute and storage resources. For partition assign-
ments, we use a novel extension of consistent hashing and devise a simple, yet quite
accurate, analytical formula to approximate the cost of partition reassignment; we use
this formula when our online algorithm searches for an optimal choice when considering
changes in the deployment of resources (i.e., Figure 4.2) at the data level L0.

• We have performed an extensive experimental evaluation using the enhanced version
of EXAREME and have obtained significant and very promising results. Our method
compares favorably to Cloudera Impala [4] on sheer performance offering near-interactive
response times, it adapts quickly to workload changes, and it increases the processing
engine profit significantly.

The rest of this chapter is organized as follows. Section 4.2 offers motivating query exam-
ples from two key classes of contemporary query processing and Section 4.3 discusses the
operating environment. Section 4.4 outlines the intuition for our suggested solution and Sec-
tion 4.5 presents the proposed query engine. Section 4.6 furnishes our key experimental
findings while related work and conclusion are found in Sections 4.7 and 4.8 respectively.

4.2 Motivation - Tree Queries

We draw our motivation from key classes of analytic queries frequently encountered in data
warehouses and NoSQL-systems.

i) Data Warehouses store historical data used to help understand market trends and create
management reports [214]. Typical queries perform joins and extensive aggregations, and
usually return only heavy hitters (the top records as ordered on some columns) [192]. The
following query shows such an example in SQL that is inspired by the TPC-H benchmark [8]:

SELECT year, country,
sum(l_extendedprice) as revenue,
SUMMARY(l_extendedprice) as report

FROM lineitem, supplier, nation
WHERE l_suppkey = s_suppkey

H. Kllapi 126

Elastic Dataflow Processing on the Cloud

AND s_nationkey = n_nationkey
GROUP BY year, country ORDER BY year, country;

The query joins three tables, groups the results by each country and year, and computes the
revenue for each group. It also uses the SUMMARY UDF to generate a report on the overall
output.

The typical schema of a data warehouse is a star or a snowflake [171] and is heavily denor-
malized for performance. The fact table lineitem in the example, is very large compared to
other two tables. To expedite processing, the data placement here has the fact table parti-
tioned horizontally and the other tables replicated at all locations where partitions exist. Thus,
all query joins are local to each machine and heavy aggregations can be executed as a tree.

ii) NoSQL–systems provide techniques to store and process data that is typically in the form
of key-value pairs, graphs, or documents [69, 164, 176]. Typical queries involve filtering
and transformations on a single input table while joins are usually avoided as they are often
expensive; required joins can be realized atop such systems [175]. The following dataflow
shows an code snippet of intrusion detection analysis on server logs expressed in Flume-
Java [50]:

PCollection<String> in = ReadInput("log.txt");
// Parse and convert to log entry objects
PCollection<KV<IP, LogEntry>> entries =

in.parallelDo(new LogTransform());
PTable<IP, Collection<LogEntry>> g =

entries.groupByKey();
// Perform analysis on each group g
PTable<IP, Report> result =

g.combineValues(new IntrusionAnalysis());
FlumeJava.run();

The dataflow reads the input from file log.txt (one row per line) and converts it to key-value
pairs using the LogTransform UDF using the respective IP as key. It then groups entries by
IP and performs an intrusion detection analysis on each group using the IntrusionAnalysis
UDF. The usual data placement has the files partitioned in blocks of fixed size and distributed
to different VMs, typically using a distributed file system [96]. In this example, LogTransform
is executed in parallel on all blocks of the file and IntrusionAnalysis is executed again in
parallel on the formed groups.

The solutions proposed in the past for the above categories of queries are not sufficient for
cloud environments for they a) treat all resources indistinguishably with no attention to the
nature of the queries, b) are not elastic, and c) they only target performance by evaluating

127 H. Kllapi

Elastic Dataflow Processing on the Cloud

queries as fast as possible, treating the monetary cost as a secondary consideration or
ignoring it completely. Our work comes to fill this gap.

4.3 Problem Formulation

We present in details key aspects of the problem we address together with the relevant
notation and definitions. We use the same notation for IaaS clouds as defined in Section 3.3.

A) IaaS Cloud: A container or VM is the unit of cloud compute resources and may includes
CPU(s), memory, disk(s), and network resources. All containers furnished for general use
have the same size, i.e., the same capacity in every type of resource they provide, e.g., equal
memory size. By and large, this is typical of most clouds where only a limited number of VMs
has substantially enhanced resources to help them run core services (e.g., namenodes for
Hadoop [27]). The price M c

Q for using a container is a fixed amount in $ per time quantum TQ.
The set of containers allocated to a cloud application, such as our query processing engine,
constitutes the virtual infrastructure of the application. The cloud also offers data storage
resources, which are decoupled from its compute resources for flexibility. VMs transfer data
from these storage resources and cache it to their local virtual disks for processing.

4.3.1 Data Partitioning

Tables are partitioned and replicated so that joins (if any) are local to containers and only
aggregations require data transfer. Hence, partitioning is based on foreign keys used in joins.
If the database has only one table (the usual case in NoSQL–systems), it is partitioned ran-
domly into shards of equal size. If the database has multiple tables as it happens in data
warehouses, the largest tables (one or more, depending on the available storage) are par-
titioned and all others are replicated wherever the partitions are stored. In this regard, in
the TPC-H benchmark, it may be most beneficial to partition the two largest tables lineitem
and orderswith hash partitioning on l_orderkey, which is a foreign key in orders, and repli-
cate the other tables. This is precisely the partitioning scheme we use for TPC-H in our
experiments.

4.3.2 Properties of Analytical Queries

Issued SQL queries may include filters, joins, and two types of group aggregate functions:
distributive and algebraic [107]. Distributive functions are directly parallelizable, as they
are commutative, associative, and for a table T with two partitions T1, T2, satisfy the prop-

H. Kllapi 128

Elastic Dataflow Processing on the Cloud

erty f(T) = f(f(T1) ∪ f(T2)). Examples of such functions from SQL include min, max, and
sum.Algebraic functions are indirectly parallelizable, as they can be expressed as algebraic
combinations of distributive or other algebraic functions. Examples from SQL include count,
avg, stdev,all expressed as increasingly more complex combinations of count and sum.More
importantly, our queries also include UDFs with arbitrary code that may correspond to dis-
tributive or algebraic functions. A UDF -example is the function of reservoir sampling [229]
which randomly selects a subset of a table’s records with equal probability.

Using the above properties, we may readily transform flat queries into tree plans by recur-
sively unwrapping all algebraic functions until only distributive functions are left. For example,
consider two tables R(A,B,...) and S(B,...), both partitioned on column B,and the following
flat query:

select avg(A) as AA from R, S where R.B = S.B

We transform the above SQL-statement into a tree-based one using the following four “con-
ceptual queries”: leaf, internal-initial, internal-recursive, and root. The particulars of each
query are as follows:

• Leaf: carrying out filtering and joins

select A from R, S where R.B = S.B;

• Internal-initial: executing the distributive aggregate initialization

select sum(A) as SA, count(*) as CA from leaf;

• Internal-recursive: producing partial distributive aggregation(s)

select sum(SA) as SA, sum(CA) as CA
from internal-initial;

• Root: compiling sought algebraic aggregation(s)

select sum(SA) / sum(CA) as AA
from internal-recursive;

The above conceptual queries have to be placed on the morphed query execution tree (e.g.,
Figure 4.1). The leaf queries are placed at level 0 of the execution tree in order to be parallel

129 H. Kllapi

Elastic Dataflow Processing on the Cloud

0	
20	
40	
60	
80	
100	

0	 20	 40	 60	 80	 100	 120	

Pr
ic
e	
($
)	

Execu-on	 Time	 (seconds)	

Types	 of	 SLAs	

Cri+cal	

Best	 Effort	

Figure 4.3: Two SLAs: ‘critical’ and ‘best-effort’.

executed on each partition. Since internal-initial also functions on each partition, this type
of query can be part of level 0. Between level 1 of the tree (e.g., Figure 4.1) and its root,
we place internal-recursive queries. Given the commutativity and associativity of distributive
functions, there may be an arbitrary number of levels of internal-recursive queries, without
affecting correctness. The actual number of the internal level of the resulting query–tree
depends on the size of the original tables and the affordable degree of parallelization. Also,
for efficiency, the internal-initial and leaf queries may be merged into one, as they are both
local to each partition. Finally, note that, for a query without algebraic functions, the root
query is identical to the internal-recursive query.

4.3.3 Service Level Agreement

An SLA is a function having query execution time as input and money as output, namely,
SLA : R+ → R, both in appropriate units often in seconds and dollars respectively. SLAs can
be step-wise or more sophisticated [239, 218]. Inspired by other works, we use a generic
form of SLAs defined as follows: SLA(u, q, t) = α · e−t/γ, where α and γ are respectively
regulators of the maximum amount of money a user pays and the monetary cost reduction
rate with time. A small γ indicates a critical query that should be rapidly executed as its
value drops drastically. Alternatively, a large γ indicates a best-effort query. We avoid using
a step function because smoothness plays an important role in our optimization problem as
we describe in Section 4.5.

An example of two different SLAs as shown in Figure 4.3. The critical SLA has α = 100 &
γ = 40 and the best-effort has α = 20 & γ = 500. Notice that the critical SLA is very profitable
for low execution times but its price drops quickly. SLA can be extended to include negative
values: A penalty that the service provider pays if the delay is large. We leave the exploration

H. Kllapi 130

Elastic Dataflow Processing on the Cloud

Containers	 (C)	

Money	 /	 Time	 Quantum	

opera5onal	
cost	 (O)	

revenue	 (R)	

max	 profit	

M	

profit	

Figure 4.4: Profit maximization based on revenue and operational cost.

of this alternative as future work.

4.3.4 Profit Maximization Problem

The queries are issued to the engine in a streaming fashion. Each query is associated
with its own SLA. The price of the query charged is computed using both its SLA and its
execution time. The revenue generated by the engine during a particular time period p is
computed as the summation of the prices all queries launched during the period in question.
The operational cost in p using c containers is computed as: O = c · p/M c

Q. The profit P
during the same period is computed as P = R−O. Our optimization objective is to maximize
the provider’s profit during the operation of the engine, i.e., maximize the difference between
operational cost and revenue.

Figure 4.4 illustrates our optimization goal; it shows a typical revenue curve per time quantum
as affected by the number of containers. The y-axis indicates the rate with which the revenue
is generated. The figure also shows the operational cost of the engine per time quantum,
which is linear to the number of containers allocated as the incurred expense for every VM
by the provider is the same. Our goal is to identify a point M , that is the optimal number
of containers that help maximize profit, i.e., the difference between revenue and operational
cost is maximized. Notice that that the revenue function is a “moving target” as it highly

131 H. Kllapi

Elastic Dataflow Processing on the Cloud

Q1	
Q2	

Figure 4.5: Execution plans of two queries Q1 and Q2.

depends on the query workload and so, M does change over time. The engine should be
able to dynamically adapt to workload changes and find the optimal point of operation at any
moment.

4.4 Illustrative Example

In this section, we present an example to give a high level overview of our approach. Fig-
ure 4.5 depicts two queries that are issued concurrently to the engine. Each query is trans-
formed into a tree execution plan with its data at the leaves of the tree and respective oper-
ators at the internal nodes. For simplicity, assume that the execution time of each operator
is 1 second and generates some amount of data that is negligible. Further, assume that the
SLAs for both queries are identical and defined as: price(t) = 15 · e−t/20 where t is the query
execution time measured in seconds and the price is measured in $ (we define the generic
type of SLA we use in Section 4.3).

The engine has allocated several VMs from the cloud and the data is appropriately parti-
tioned. We lay out the deployed VMs in a “tree” shape, to naturally map the execution plans
of both discussed queries onto the allotted virtual infrastructure. This tree-shaped use of
resources may lead to diverse deployments as Figure 4.6 illustrate; here, we depict three
different execution VM layouts that help materialize Q1 and Q2. More specifically, layout b of
Figure 4.6 works with 9 VMs of which 4 are at the data level (L0), 2 VMs at each intermediate
levels (L1–L2), and 1 VM at the root (L3).

The three different layouts of Figure 4.6 render different processing costs when concurrently
materializing Q1 and Q2. For example in layout (ii), Q1 and Q2 complete at 9th and 10th
seconds respectively. The turnaround times are computed by summing the delay each query
faces at each level of the layout. Given that we have 16 operators at L0 and each one runs
for 1second, the total delay using 4 VMs is 4seconds. At L1, we have 6 operators (2 from Q1
and 4 from Q2) that yield a delay of 3seconds since 2 VMs are used. Similarly at levels L2

H. Kllapi 132

Elastic Dataflow Processing on the Cloud

1	

2	

3	

4	 L0	
(Data)	

L1	

L2	

L3	

L0	
(Data)	

L1	

L2	

L3	

L0	
(Data)	

L1	

L2	

L3	 1	

2	

3	

8	

1	

2	

2	

2	

Delay	 /	 Level	 Q1:	 13	 sec	
Q2:	 14	 sec	 Q2:	 10	 sec	

Q1:	 	 	 9	 sec	
Q2:	 7	 sec	
Q1:	 6	 sec	

Infrastructure	 1	 Infrastructure	 2	 Infrastructure	 3	
7	 VMs	 9	 VMs	 15	 VMs	

Figure 4.6: The queries of Figure 4.5 using different container layouts.

and L3 the respective delays stand at 2 and 1second.

Table 4.1: Profit of Different Layouts.
layout a layout b layout c

Q1 Time (sec) 13 9 6
Q1 Price ($) 7.83 9.57 11.11
Q2 Time (sec) 14 10 7
Q2 Price ($) 7.44 9.09 10.57
Revenue ($) 15.27 18.66 21.68
VM Cost ($) 7.00 9.00 15.00
Profit ($) 8.27 9.66 6.68

Assuming that the costs of each VM is $1 for simplicity, using the above execution times for
each level, the price formula computes the charged price for each query. Table 4.1 shows
both revenue (i.e., sum of prices) and profit made on the provided service. The latter is
computed as the difference revenue-cost and yields layout (ii) as the best of the three choices
in Figure 4.6.

If we are to automate the above procedure, we need to articulate execution times in diversi-
fied layouts given a number of VMs li at each level Li. Provided that the number of operators
drops exponentially from the leaves to the root of the query tree, the two lower levels L0−L1

have the greatest impact as far as the turnaround time of queries is concerned. Should we
assume that the VM numbers l2 and l3 do not change, the execution times for Q1 and Q2
required for these two levels are 2 and 3 seconds respectively. The potential profit generated
by levels L0−L1 when different numbers of VMs are deployed to materialize the two queries
is as follows:

133 H. Kllapi

Elastic Dataflow Processing on the Cloud

profit(l0, l1) = price(tQ1) + price(tQ2)− cost(l0 + l1) =

15e(−tQ1/20) + 15e(−tQ2/20) − (l0 + l1) =

15e(−(t(l0,l1)+3)/20) + 15e(−(t(l0,l1)+2)/20) − (l0 + l1)

where t(l0, l1) = 16/l0 + 6/l1 is the time required for the concurrent execution of the two
queries at levels L0 − L1; here, 16 is the total time needed by all operators at L0 carried out
by l0 VMs(assuming perfect load-balancing) and 6 is the total time required by operators at
L1 which are ultimately carried out by l1 VMs. Figure 4.7 plots the contour of the expected
profit() as a function of l0 and l1; the profit increases as we move from darker to lighter
color. For this specific version of the layout problem, the contour plot points out that the
optimal solution is around 4 VMs at L0 and 3 VMs at L1.

level	 l1	

level	 l0	
1	

2	

3	

4	

5	

6	

2	 4	 6	 8	 10	 12	 14	 16	

Figure 4.7: Profit as a function of the number of VMs in the lowest two levels of the layout.
Profit increases from darker to lighter color.

We have to generalize the solution for layout selection discussed above when we consider
multiple parameters including the li numbers of VMs allotted to every level, number of queries
considered together, potential data re-organization, SLAs as well as timing aspects of the
engine’s operation. In doing so, the following challenges arise: A) how to find the optimal
number of VMs given a query workload, B) how to schedule the query execution trees on
the available VMs, C) how to dynamically change the layout and adapt to changes in the
workload, and D) how to partition the data in order to add or remove VMs without significant
network overhead. We address each of these challenges in the following sections.

H. Kllapi 134

Elastic Dataflow Processing on the Cloud

L0	
(Data)	

…	

L1	

L2	

Ln	

…	

…	

Figure 4.8: Container layout showing the fixed containers (in red) and the elastic levels.

4.5 Overall Approach

In this section, we present the overall approach we use to maximize profit. Time is separated
into windows of fixed length (e.g., epochs of 300 seconds) and inside each window we do not
adjust the virtual infrastructure. All queries issued within a window, are scheduled assuming
a fixed container layout. In the beginning of each window, we compute the new layout based
on the measurements collected from the queries in a number of previous time windows while
taking into account data re-configuration cost. In this section, we discuss the data partitioning
scheme we employ, the elastic container layout, our online elastic layout allocation approach,
and the query scheduler we use.

4.5.1 Container Layout

A container layout is a hierarchical overlay on top of the allocated containers that defines
the allowed communication channels between them. Figure 4.8 shows this generic layout.
Each level has a fixed number of initial containers (shown in red in the figure) and is elastic,
i.e., can change in size by allocating or deleting containers while enforcing optional mini-
mum/maximum thresholds. The table partitions are located at the lowest level of the layout.
Each VM found at internal level Li can communicate only with the levels above (Li+1) and
below (Li−1). Trees with height of 5 or more are rarely needed in practice and only appear in
very large data centers [169]. For this reason, we use 4 levels in our setting.

135 H. Kllapi

Elastic Dataflow Processing on the Cloud

Containers	

Par,,ons	

1	
1	

2	
2	
3	
3	

4	
4	 5	 5	

6	
6	
7	
7	

8	 8	
1	

2	

3	

4	

5	
Containers	

Par,,ons	

1	
1	

2	
2	
3	
3	

4	
4	 5	 5	

6	
6	
7	
7	

8	 8	
1	

2	

3	

4	

5	

6	

add	 6	

(a)	 (b)	

Figure 4.9: Partitioning using consistent hashing.

4.5.2 Data Partitioning Methodology

Our method is based on consistent hashing (CH) [130] as its present good theoretical bounds
on the size of data required to move when containers are added or deleted. In CH, table
partitions are placed in a logical circle as shown in the inner-circle of Figure 6.2(a). The
outer circle consists of the deployed containers at L0 with each one assigned one or more
partitions. For example, partition 3 is assigned to container 2. Notice that we place each
partition multiple times in the inner circle. The first time a partition is accessed from the cloud
storage is cached for subsequent usage. When a new container is added, it is placed in the
outer circle at a position next to the container having the largest number of partitions; the
latter sheds half of its data partitions to the new arrival. For example, when new container
#6 is added, is placed next to #5; Containers #5 and #6 then split the existing partitions as
shown Figure 6.2(b).

To increase parallelism and flexibility we use over-partitioning and replication. We partition
the tables into many more parts than the number of maximum data containers predicted to
use (e.g., 10 times more). Thus, changing the number of containers will cause only data
transfers between the cloud storage and VMs, yet, it does not call for extensive re-partitioning
(e.g., using hashing) on the cloud storage; this last operation is in general very expensive
and incurs high network traffic [164]. Furthermore, we employ replication by adding each
partition multiple times to the inner circle of Figure 6.2 in adjacent positions. Thus, when
high parallelism is needed, the same partition will be assigned to multiple containers. Here,
we balance the load between the containers that are assigned replicas of a partition. If more
than one replicas happen to be assigned to the same container, we keep only one copy.

Load balance is crucial in our setting since the execution time of the operators at each level
of the layout is bounded by the operator with the maximum execution time. Partitioning skew
will delay the execution of all queries and affect revenue. For this reason, we extend the
baseline–CH to make it “more aggressive” when adding or removing containers as follows:

H. Kllapi 136

Elastic Dataflow Processing on the Cloud

Figure 4.10: Percentage of partitions assigned to a different container when changing their
number.

0	

20	

40	

60	

80	

100	

0	 20	 40	 60	 80	 100	 120	 140	

D
at
a	
M
ov
e	
(%

)	

Container	 Difference	

Data	 Move	 per	 Container	 Diff	

Data	 Move	

Linear	 Fit	

Figure 4.11: A 1-D cut of Figure 6.3 at 125 containers.

instead of splitting partitions between two containers, we perform a local balancing around
the insertion point and split partitions among the nodes in vicinity of Arc+1 containers. This
way, the re-organization is still local in the circle but the partitioning is more balanced. In
practice, we use a window of size Arch=4.

Figure 6.3 presents the outcome of an experiment using CH with 128 partitions and replica-
tion degree 3 whose goal is both to demonstrate the robustness of the method.The x and y
axes show the initial and final number of containers (i.e., going from x to y VMs). If x<y, then
new containers are allocated, otherwise are deleted. We observe that when the changes are
near the diagonal of the 2d–space, CH is robust to changes as the percentage of partitions
requiring for re-assignment remains low (≤10%). This characteristic makes CH ideal as a
partition placement policy in our elastic setting.

137 H. Kllapi

Elastic Dataflow Processing on the Cloud

Ini$al	 Containers	

Fi
na
l	 C
on

ta
in
er
s	

f(x)	 =	 x	

α	 =	 y1	 /	 x1	

f(x)	 =	 α	 *	 x	

X	

Y	

(x1,	 y1)	

Figure 4.12: Percentage of partitions assigned to a different container when changing their
number.

We need to model the above behavior of CH to use it in our optimization process and thus,
take into account data re-organization when adjusting the size of the deployed virtual in-
frastructure. Figure 4.11 shows a 1-D cut of the two dimensional plot of Figure 4.12 at 125
containers which reveals a strong linear correlation between the number of containers and
the percentage of partitions moved. Figure 4.12(b) provides the sought model that predicts
the data needed to be transferred when the number of VMs changes. Let x and y be the
previous and new number of containers. The size of data that have to move is modeled as:
sized(x, y) = (1 −min(x/y, y/x)) · data_size, with data_size is the total volume of the tables
taking into account partitioning and replication. Factor min(x/y, y/x) is used to remove the
symmetry of the 2 − d space on the diagonal for sized(x, y) = sized(y, x). We measured the
modeling error by computing the difference between the actual number of partitions moved
(as shown in Figure 4.12) and the predictions of our model and found that the estimation
error to be on the average 6.4%, which is deemed very robust.

4.5.3 Elastic Layout Allocation

Our suggested algorithm for Elastic Layout Allocation helps dynamically change the con-
tainer layout based on the query workload received to maximize profit. The proposed online
algorithm works as follows: it uses the queries issued on a historical window WH , their CPU

H. Kllapi 138

Elastic Dataflow Processing on the Cloud

load, and the data the queries transferred through the network. Using these statistics, the al-
gorithm makes predictions for a window of size WP in the future [25, 80]. We model the profit
as a multivariable function, representing each level of the container layout with a variable that
indicates the number of containers allocated (li). The goal is to find the optimal number of
containers in each level that maximize profit in the prediction window. In our experiments, we
use a historical window of 2 epochs (i.e., 600 seconds) to make predictions for the upcoming
window of 300 seconds. We experimentally ascertained that these window sizes behave well
and leave for future work the automated learning of these numbers. Next we formally define
our optimization function.

The queries are separated into a finite number of classes each having its own SLA which
is usual case in practice [218]. We denote as −→α and −→γ the vectors carrying the respective
values for all SLAs. Let

−→
QH be the vector with the number of queries per SLA that have

been executed during the historical window WH . The total number of queries is numQH =∑
i(
−→
QH [i]). We denote as

−→
LH the current number of containers allocated at each level of the

layout. Similarly,
−−−−→
CPUH is the vector with the sum of CPU loads at every level of the layout

within the historical window and
−−−−→
NETH is the total amount of data transferred outwards

every level. Furthermore, we designate conc to be the average number of queries running
concurrently at any point in time. We compute conc by summing the execution times of all
queries within the historical window and divide this number by the length of this window. All
the concurrently running queries share the same resources, and thus, they implicitly affect
each other.

Dealing with the prediction window WP , we denote as
−→
LP the container topology computed.

Using the historical measurements and
−→
LP , we can predict the average running time of the

queries in the prediction window as follows:

tP =
conc

numQH

[−−−−→CPUH [1]
−→
LP [1]

+

|
−→
LP |∑
i=2

(−−−−→CPUH [i]
−→
LP [i]

+

−−−−→
NETH [i]

net_speed ·min(
−→
LP [i− 1],

−→
LP [i])

)]
where

−−−−→
CPUH [i]/

−→
LP [i] is the CPU load per container at level i of the layout. The factor

1/numQH above calculates the average time expended per query and we have to multi-
ply by conc in order model the delay that each query poses on others running concurrently.
At this point, our model assumes that it can achieve perfect load-balance at every level of the
layout. The rationale behind this is that we have many operators at each level, and each of
them is not expensive to execute. Given that, we can solve the relaxed problem and round
the solution to integer values. The total network time of each container at level i is computed
as: −−−−→

NETH [i]/(net_speed ·min(
−→
LP [i− 1],

−→
LP [i])

139 H. Kllapi

Elastic Dataflow Processing on the Cloud

The maximum network throughput between two consecutive level i-1 and i is determined by
the minimum number of containers in these two levels.

We separate the prediction window into two parts: the first involving data re-organization
along with query execution (denoted as tdP) and the second involving query execution only.
The length of the first period is estimated by the time needed to perform data re-organization
using the model of sized(x, y) defined above as follows:

tdP =
sized(

−→
LH [1],

−→
LP [1])

|
−→
LH [1]−

−→
LP [1]| · Arc · net_speed

where (|
−→
LH [1] −

−→
LP [1]| · Arc) is the number of containers Arc in the circle affected by the

change. These containers will transfer table partition from the cloud storage through the
network with net_speed being the network speed. Thus, the length of the second period
exclusively dedicated to query processing is WP − tdP . Notice that the faster the time to re-
organize the data is, the longer the period of time spent to execute queries becomes. This
is the reason why our method prefers to perform changes to the number of data containers
that are near the diagonal as shown in Figure 4.12(a).

We compute the estimated number of queries per SLA in each of the two parts of the predic-
tion window as follows: −→

Qd
P =
−→
QH · tdP/WH

−→
QP =

−→
QH · (WP − tdP)/WH

Using the estimated number of queries, the predicted revenue per SLA class for the two part
of the prediction period is: −→

Rd
P =
−→
Qd
P · −→α · e(−(t

d
P+tP)/

−→γ)

−→
RP =

−→
QP · −→α · e(−tP /

−→γ)

Notice that we include the time to perform data re-organization tdP in the calculation of the
revenue in the first period (

−→
Rd
P) of the prediction window. The total revenue in the prediction

window is as follows:
R =

∑
i

(
−→
Rd
P [i]) +

∑
i

(
−→
RP [i])

The operational cost is computed by adding the time quanta TQ of the allocated containers
in the prediction window WP and multiplying by the quantum cost M c

Q as follows:

O =M c
Q ·

WP

TQ

∑
i

(
−→
LP [i])

H. Kllapi 140

Elastic Dataflow Processing on the Cloud

The profit generated is computed as R − O. We seek to find
−→
LP that maximizes profit.Since

the number of container layouts is limited assuming a maximum number of containers per
level (e.g., 100), we could potentially compute the revenue enumerating all different layouts.
The total number of layouts with height 4 and a maximum of 100 containers/level is 108. In
practice, this number is infeasible to compute exhaustively. Instead, we maximize the profit
function using the L-BFGS-B Algorithm [48] which is a general purpose iterative optimiza-
tion method that finds local maxima/minima of multivariable functions. Since the L-BFGS-B
finds solutions with real numbers, we round the solutions to the ceiling (e.g., a value of 13.4
becomes 14 containers).

We seed L-BFGS-B with the previous layout (
−→
LH) as the starting point. Extensive experi-

mentation through enumeration of all solutions and comparison of outcomes to those derived
with the help of L-BFGS-B showed that solutions are very close (yet, they are not identical
due mostly to rounding). This was expected as changes is the topology are mostly grad-
ual because of the data re-organization cost. The seeding the L-BFGS-B with the previous
container layout (

−→
LH) is sufficient to adequately guide the algorithm.

4.5.4 Query Tree Scheduler

The execution tree plan is scheduled by performing load balance on every level of the layout
while considering current load at each container. The load is quantified as the number of
running and queued operators. First, we find the rank of each operator that is the height of
the node in the execution tree (Figure 4.1). The rank of an operator determines the level of
the layout at which is scheduled. As there is at least one container allocated in each level,
we can always find at least one valid schedule. Once we determine the levels in which all
operators are placed, we order containers at each level according to their load. The sched-
uler maps the operators of the each level of the query tree to the corresponding containers
using the increasing ordering in a round robin fashion. For generic dataflow graphs, the
scheduling problem is a much harder and more advanced methods should be used [141].
However, in this work we consider only tree–query plans. The specialized scheduling algo-
rithm discussed here works because of the following two reasons: i) individual operators are
not expensive to execute and they do not generate voluminous data as they use aggregate
functions. This has as a consequence that even sub-optimal assignments of operators will
not cause much imbalance, ii) operators that are at the same level of the execution tree, will
have approximately the same execution time since the data is balanced.

Our scheduling method is robust to use in practice since it neither assumes a particular oper-
ator behavior nor uses a model to predict execution times. The elastic layout allocation algo-
rithm exclusively uses historical measurements taken after queries have been executed and
so actual running times of their operators are known. Our proposed algorithm is ideal when
used for queries featuring UDFs unknown properties. UDFs are encountered frequently and

141 H. Kllapi

Elastic Dataflow Processing on the Cloud

their modeling and behavior prediction remains an open problem.

Cloud providers typically charge for the entire time quantum even when containers are re-
leased before their quantum elapses. We take this into account when shrinking the size of
the virtual infrastructure. The containers that are scheduled to be deleted, are kept until their
entire quantum has finished. If the virtual infrastructure needs to grow in size, we opportunis-
tically re-use any available containers from those scheduled to be deleted. Ongoing queries
are not affected by changes in the container layout as partitions located at the respective
VMs are not deleted even if they are re-assigned elsewhere. This is possible because of the
de-coupled nature of the used compute and storage resources.

4.6 Experimental Evaluation

The objectives of our experimentation are to: A) evaluate our engine and show that we can
achieve near-interactive response times for analytical queries, B) show that we can efficiently
execute complex analytical queries with UDFs that have arbitrary user code, and C) examine
the effectiveness of the proposed elastic container layout algorithm and ascertain its ability
to adapt to the workload.

4.6.1 Experimental Setup

Experimental Environment: We have implemented the functionality presented within EXAREME [221],
our system for dataflow execution on the cloud. We compare our approach with the latest
version of Cloudera Impala widely considered as the state-of-the-art platform in-memory an-
alytics [4]. We experimented with compute and storage nodes of the Okeanos cloud 1 and
used to 64 VMs, each with 1 CPU, 4 GB of memory, and 20 GB of disk. We measured the
network bandwidth to be around 150 Mbps. We set the quantum TQ to 300 seconds and the
cost of the quantum M c

Q to $0.41 (or equivalently ∼$5/hour).

Datasets: we used two datasets namely, TPC-H [8] that typically models data warehouse
settings, and Freebase, an RDF dataset2. The TPC-H benchmark has eight tables:

lineitem(128, l_orderkey), orders(128, o_orderkey), part(1),
partsupp(1), supplier(1), customer(1), region(1), nation(1)

In parentheses, we indicate the number of partitions we have created for each table and
the key(s) based on which we performed table partitioning. We partition tables lineitem and

1okeanos.grnet.gr
2developers.google.com/freebase/data

H. Kllapi 142

okeanos.grnet.gr
developers.google.com/freebase/data

Elastic Dataflow Processing on the Cloud

orders on their foreign key using hash partitioning and replicate all other (smaller) tables. We
used the 8 (∼8GB), 64 (∼64GB), and 128 (∼128 GB) as the TPC-H scale–factors. Figure 6.1
shows the sizes of the benchmark tables illustrating the large size difference between the fact
table lineitem and the rest of the tables.

0	
20	
40	
60	
80	
100	
120	

lin
eit
em
	

or
de
rs	

pa
rts
up
p	

pa
rt	

cu
sto
me
r	

su
pp
lie
r	

re
gio
n	

na
7o
n	

Si
ze
	 (G

B)
	

128	 scale	

64	 scale	

Figure 4.13: TPC-H table size distribution at 64 GB and 128 GB scales.

Freebase contains approximately 2.5 billion tuples in the form of RDF triples: <subject>
<predicate> <object> “.” and its volume stands at 250 GB. If the object is text, it is tagged
at its end with the appropriate language symbol (e.g., @en means text in English). We load
Freebase data into a 3-column table.

Queries: we use a subset of the TPC-H queries that cover a wide range of the types of
queries we target. In particular, we choose queries 1, 3, 4, 5, 7, and 9. 1 uses only table
lineitem and has 8 aggregate functions. Queries 3 and 4 have a small number of joins (less
than 3) and a small number of aggregate functions while queries 5, 7, and 9 feature a large
number of joins and several aggregate functions. With Freebase, we utilize two queries with
complex UDFs to create a histogram of the languages that appear in the dataset. The first
query uses regular expressions to separate the language of each object and then counts the
number of languages encountered. The query is as follows:

SELECT lang, count(lang) as c
FROM (SELECT REGEXPR(’.*@(.*)’, o) as lang

FROM freebase WHERE o like "%@%")
GROUP BY lang ORDER BY c desc;

The second query uses reservoir sampling to sample 1 million rows from the table and com-
putes the histogram though a UDF that is applied on the sample and detects the language
of a given text using a statistical model. The query is the following:

SELECT lang, count(lang) as c

143 H. Kllapi

Elastic Dataflow Processing on the Cloud

FROM (SELECT DETECTLANG(sobj) as lang
FROM (SELECT SAMPLE(1000000, obj) as sobj

FROM freebase))
GROUP BY lang ORDER BY c desc;

SLAs and Query Generator Client: We use two types of SLAs: “normal” with α = 10 &
γ = 80 and “high priority” with α = 20 & γ = 40. We also created a generator that launches
queries with a Poisson distribution. More specifically, the generator computes the arrival time
k (in seconds) of the next query as f(k;λ) = Pr(X = k) = λke−λ

k!
where λ is the expected

value of X (in seconds). We can achieve desired query rates by setting λ appropriately. For
example, if λ = 10, one query is issued to the engine every 10 seconds on average.

Algorithms and Measurements: We use our elastic VM layout allocation algorithm to adjust
the size of the virtual infrastructure. As a baseline, we select a static layout that remains fixed
over time. We use two such static allocations: small with (10, 4, 1), medium (26, 8, 2), and
large (42, 12, 3); here, we designate within parentheses the number of containers per layout
level starting from the lower level L0 that contains the data. We bootstrap our dynamic layout
allocation algorithm with the medium static configuration. Finally while experimenting, we
measure the following: average execution time for queries, total revenue, total cost, and
average number of VMs used at each layout level.

4.6.2 Near-Interactive Analytics

In our first set of experiments, we validate the efficiency of the system by executing a single
type of query at a time and measuring corresponding turnaround time. We run each query
4 times and report the average of the last 3 measurements a technique also followed by
others [238]. In this way, the observed execution times reflects the behavior of the system
in live operation. We use the TPC-H benchmark with 64 VMs on Okeanos and a 3-level
execution tree. Figure 4.14 compares performance of our implementation, termed Exa-Tree,
with that of Impala while using 64 GB of data on 64 VMs. We observe that Exa-Tree is
significantly more efficient for the types of queries we focus on due to our data partitioning
scheme (that reduce network traffic during query execution due to replication) and the tree
execution. As Impala runs entirely in memory, we were not able to run query 9 as we reached
memory limit.

We also compared with a previous version of Exareme that uses graphs to execute queries.
Figure 4.15 shows the results.

We observe that queries executed using tree execution plans run significantly faster. The
main reason is the tree execution in combination with the exploitation of data partitioning.
The baseline system uses a lattice (all-to-all connections) to partition the data and perform

H. Kllapi 144

Elastic Dataflow Processing on the Cloud

0	
50	
100	
150	
200	
250	
300	
350	
400	

Q1	 Q3	 Q4	 Q5	 Q7	 Q9	

Ti
m
e	
(s
ec
)	

TPC-‐H	 on	 Exareme	 and	 Impala	 (64	 GB,	 64	 VMs)	

Exa-‐Tree	

Impala	

Figure 4.14: TPC-H with 64 GB on Impala and Exareme using 64 VMs.

0	

200	

400	

600	

800	

1000	

1200	

1400	

Q1	 Q3	 Q4	 Q5	 Q7	 Q9	

Ti
m
e	
(s
ec
)	

TPC-‐H	 Benchmark	

Exa-‐Tree	 (64	 GB)	

Exa-‐Plain	 (64	 GB)	

Exa-‐Tree	 (128	 GB)	

Exa-‐Plain	 (128	 GB)	

Figure 4.15: TPC-H queries using tree and graph execution plans on 64 containers.

aggregations in parallel. Using tree execution plans, we radically reduce the number of
connections, improving the system performance by up to an order of magnitude and offer
near-interactive response times (as small as 35 seconds on the 64 GB scale).

4.6.3 Complex Analytics

In the second set of experiments, we assess the efficiency of our engine on complex analytics
expressed in UDFs, again by executing a single query at a time and measuring respective
execution times. As previously, we run each query 4 times and report the average of the

145 H. Kllapi

Elastic Dataflow Processing on the Cloud

1	

10	

100	

1000	

10000	

All	 (2.4	 B)	 Sample	 (1	 M)	 Prep	 (No	 Index)	 Prep	 (Index)	

Ti
m
e	
(s
ec
on

ds
	 -‐	
lo
g	
sc
al
e)
	

Freebase	 Language	 Histogram	

Figure 4.16: Execution times for Freebase queries.

last 3 times. We use the Freebase dataset and the two queries mentioned earlier in the
section using 64 VMs. Figure 6.14 depicts the attained execution times for the two queries
(All and Sample). In the first query (All), operators at the leaves of the execution tree take
most of the time as computing 2.4 billion regular expressions is expensive. The second query
(Sample) being highly selective completes in 339 seconds. It is worth mentioning that both
queries produce similar results. We also pre-processed the <object>-column by extracting
the language tag and created an additional column on the table hosting the Freebase. Here,
the histogram on the entire dataset is computed in merely 107 seconds without indexes and
in 27 seconds using indexes. This performance highlights the near–real-time capabilities of
our engine in large datasets.

Table 6.1 shows the results of the two queries, which correspond to very similar distributions.

All (2.4B) Sample (1M)
lang count lang count
en 134096634 en 115335
fr 28091737 fr 23991
de 27890842 de 23906
es 26934217 es 23462
it 26516667 it 23148
...

Table 4.2: Freebase Language Histogram

H. Kllapi 146

Elastic Dataflow Processing on the Cloud

0	
20	
40	
60	
80	

100	
120	

0	 1000	 2000	 3000	

A
vg
.	 E
xe
c.
	 T
im

e	
(s
ec
)	

Time	 (sec)	

Average	 Execu3on	 Time	 /	 Query	

	 exec.	 -me	

0	

10	

20	

30	

40	

0	 1000	 2000	 3000	 M
on

ey
	 /
	 Q
ua

nt
um

	 ($
)	

Time	 (seconds)	

Revenue	 and	 Cost	

cost	

revenue	
0	

10	

20	

30	

40	

50	

0	 1000	 2000	 3000	

#	
Co

nt
ai
ne

rs
	

Time	 (seconds)	

Containers	 /	 Level	

	 level	 0	

	 level	 1	

	 level	 2	

Figure 4.17: Query exec. time (left), revenue & cost (middle), and containers allocated per
level (right).

4.6.4 Elasticity under Dynamic Workloads

In this set of experiments, we examine both the effect that the elasticity has on query execu-
tion time and the profit generated. For these experiments we used TPC-H with scale factor
8 in order to be able to run the queries with a variety of infrastructure sizes (as small as 10
containers). The clients connected to the system issue the queries 1 and 3 of the benchmark.

Layout Stabilization

Here, we examine the stabilization of the virtual infrastructure. We use a workload with Q1
using the “normal” SLAand Poisson parameter λ = 60. The left part of Figure 4.17 shows
the average execution time of the queries over time. We observe that our algorithm is able
to stabilize quickly after 800 seconds. The delay to reach steady state in the beginning is
due to the initial data transfer from the cloud storage to the containers. This explains the
high average running time of the queries during that period. The middle part of Figure 4.17,
shows the revenue and the corresponding cost of the allocated virtual infrastructure. In the
beginning, the revenue is actually lower than the cost, and thus, there is a loss instead of
profit. After the data transfer has finished, the profit is stabilized at a significantly high value.
Finally, the right part of Figure 4.17 shows the number of containers at each level of the
layout over time. We observe that the virtual infrastructure adapts to the workload taking the
shape of a tree, with most of the allocated containers located at the data level.

Compare with Static Infrastructures

Figure 4.18 depicts the profit gained when the static VM configurations are used to handle
the workload as well as the profit generated by our approach. We run the system for one
hour using a client that issue Q1 in three phases, each of 20 min duration. In the first and

147 H. Kllapi

Elastic Dataflow Processing on the Cloud

0	

100	

200	

300	

400	

500	

600	

Elas-c	 Sta-c	 Small	 Sta-c	 Large	

M
on

ey
	 ($

)	

Comparison	 wth	 Sta5c	 Infrastructure	

Revenue	

Cost	

Profit	

Figure 4.18: Elastic configuration vs. static layouts.

third phase, the Poisson parameter λ is set to 60 and in the second phase to 30 (the rate is
doubled).

We readily ascertain that smaller-sized infrastructures produce less revenue as expected.
Similarly, the expended costs increase as more VMs and time quanta are used. The elastic
layout allocator however produces a better-fitted layout that adapts to the workload changes
and yields the highest profit compared to all static choices. Lastly, the elastic approach does
generate less revenue than the large infrastructure. However, this is in sequence with our
design as we optimize for profit and not for revenue.

Measure adaptivity with Dynamic Workload

In our final experiments, we evaluate the adaptability of our elastic online algorithm in pres-
ence of workloads whose features change over time. In particular, we employ a workload
consisting of three stages, of 1 hour each, where query workload characteristics are per-
turbed between the stages. As a default workload we issue Q1 with a Poisson parameter
λ = 60 and using the “normal” SLA . We change the default query workload in the second
stage using the following three options:

• Varying Query Rates: we vary the rate with which queries are issued by setting the
Poisson parameter to λ = 60, λ = 30, and λ = 60 during the 3 stages respectively. The
left part of Figure 4.19 shows the VMs allocated per layout level as well as revenue. Our
approach does rapidly adapt to varying workload and starts adjusting the number of VMs
exactly at the phase boundaries. We also observe the number of containers allocated is
increased along with the query rate as more revenue is generated.

• Varying SLAs: we vary the SLA type to “high priority” during stage 2, while phases 1 and
3 have queries with the “normal” SLA. The middle part of Figure 4.19 shows our execution

H. Kllapi 148

Elastic Dataflow Processing on the Cloud

0	

20	

40	

60	

0	 5000	 10000	

#	
Co

nt
ai
ne

rs
	

Time	 (seconds)	

Cont.	 /	 Level	 Varying	 Poisson	 Param	 λ	
(60	 -‐	 30	 -‐	 60)	

	 level0	

	 level1	

	 level2	

phase	
0	

20	

40	

60	

0	 5000	 10000	

#	
Co

nt
ai
ne

rs
	

Time	 (seconds)	

Cont.	 /	 Level	 Varying	 SLA	
(normal	 -‐	 high	 -‐	 normal)	

	 level0	

	 level1	

	 level2	

phase	

0	

20	

40	

60	

80	

0	 5000	 10000	

M
on

ey
	 /
	 Q
ua

nt
um

	 ($
)	

Time	 (seconds)	

Revenue	 &	 Cost	 Varying	 SLA	
(normal	 -‐	 high	 -‐	 normal)	

rev	

cost	

phase	 0	

20	

40	

60	

80	

0	 5000	 10000	 M
on

ey
	 /
	 Q
ua

nt
um

	 ($
)	

Time	 (seconds)	

Revenue	 &	 Cost	 Varying	 Poisson	 Param	
λ	 (60	 -‐	 30	 -‐	 60)	

rev	

cost	

phase	 0	

10	

20	

30	

40	

0	 5000	 10000	 M
on

ey
	 /
	 Q
ua

nt
um

	 ($
)	

Time	 (seconds)	

Revenue	 &	 Cost	 Varying	 Query	
(Q1	 -‐	 Q2	 –	 Q1)	

rev	

cost	

phase	

0	

20	

40	

60	

0	 5000	 10000	

#	
Co

nt
ai
ne

rs
	

Time	 (seconds)	

Cont.	 /	 Level	 Varying	 Query	
(Q1	 -‐	 Q2	 -‐	 Q1)	

	 level0	

	 level1	

	 level2	

phase	

Figure 4.19: Elastic containers allocated per tree level and revenue and cost for workload
with different phases.

results: for queries with a higher price, our algorithm designates more VMs to generate
additional revenue.

• Varying Query: in our final experiment, we vary the type of the queries issued. In stages
1 and 3, we use Q1 and in stage 2 we use Q3. The right part of Figure 4.19 shows once
again the superiority of the elastic algorithm when it comes to the rapid adaption of the
virtual infrastructure. We observe that for Q3 the profit drops because it is more expensive
to execute. The algorithm allocates more containers in order to be able to keep the profit
positive.

4.7 Related Work

There are several areas of data management where related work has been conducted. We
briefly outline here key results from the fields of data warehouses, NoSQL-systems, and
elasticity.

4.7.1 Data Warehouses

Data Warehouses store very large volumes of data and are typically used for report genera-
tion and historical data analyses to discover trends. Several systems have been implemented

149 H. Kllapi

Elastic Dataflow Processing on the Cloud

that are open–source (Hive [214]), proprietary (Tenzing [52]), or commercial (Vertica [150]).
The most popular open–source warehouses are based on MapReduce [69, 214] and typ-
ically offer high level languages (e.g., SQL) to express queries. The latter are ultimately
transformed to one or more MapReduce jobs [151]. The MapReduce abstraction however is
not efficient for heavy aggregate queries that we target in this work. In MapReduce, multi-
level aggregations can only be expressed using multiple jobs, rendering the approach less
efficient than that of a tree abstraction. Moreover, the optimization goal of MapReduce-based
systems is to both minimize the number of jobs they produce as well as to maximize paral-
lelization in order to minimize their total execution time. The monetary cost of the resources
is by and large ignored. The same holds for Dremel [169] and Cloudera Impala [4] which
has been recently proposed as specialized systems targeting query–tree executions, and,
furthermore, to the best of our knowledge, are not elastic.

4.7.2 NoSQL–Systems

Several systems have been proposed to manage data in formats different than relational
tables. Examples of such systems include MongoDB [56], Sawzall [190], PigLatin [176], and
FlumeJava [50]. All of the above are built either on top of MapReduce and so, they inherit
all pertinent weaknesses. Alternatively, they are built from scratch by following approaches
that are not suitable for the queries we target here [56]. Furthermore, no such system offers
a clean and simple way to define new UDFs and their properties so that they may be used
during optimization.

4.7.3 Elasticity

Several works focus on cloud elasticity [215, 218, 220], and dynamically allocating resources
to increase performance. Recent work [198] focuses on how to minimize the number of
VMs used to save on cost, but this is not a plausible strategy in our setting where queries
are associated with SLAs and the goal is to maximize profit. Some works examine cloud
elasticity in the context of in-memory distributed transactions [66]. In our setting, the data
are updated using bulk loading every day or week.

Elasticity for array databases is examined recently [80]. This work, similarly to our method-
ology, makes predictions about the future based on past queries. However, the proposed
algorithm is only applicable to array-based scientific data (that only grow in size and rarely
deleted) and considers only increasing the size of the virtual infrastructure. We focus on a
more generic problem.

To the best of our knowledge, none of the proposed solutions is suitable for our setting. Our
proposal exploits cloud elasticity by automatically adjusting the size of the allocated virtual

H. Kllapi 150

Elastic Dataflow Processing on the Cloud

infrastructure to maximize profit by taking into account SLAs and the monetary cost for using
cloud resources that has been in general ignored thus far.

4.8 Conclusion

In this chapter, we have propose an elastic engine built on top of IaaS clouds to execute
queries with a tree execution plan encountered in a large set of analytical SQL queries that
involve heavy aggregations. We suggest to layout the allocated infrastructure IaaS nodes in a
tree shape so that we can naturally map the execution plans of these queries. Our elastic VM
allocation algorithm dynamically changes the container layout based on the query workload
monitored over a sliding time window. Our objective is to maximize the profit generated
taking into account the monetary cost of the resources as well as the revenue generated by
the query workload. Finally, we shown that our approach offers near-interactive response
times and adapts quickly to workload changes.

151 H. Kllapi

Elastic Dataflow Processing on the Cloud

H. Kllapi 152

Elastic Dataflow Processing on the Cloud

Chapter 5

Automated Management of Indexes in
the Cloud

A typical way to accelerate the execution of data intensive workflows (dataflows) is to create
indexes or to materialize views. The automated management of indexes, views, and in gen-
eral data structures, has always been a challenging research topic. The traditional problem
is constrained by the total storage needed or the time required to build them. In a cloud
environment, the monetary cost is equally important. In this work, we focus on automated
management of indexes to speed-up dataflow execution, taking into account the monetary
cost of using the compute and storage resources of IaaS clouds. We identify the opportu-
nity to use idle compute resources that are charged by cloud providers. This phenomenon
emerges because of the nature of complex dataflows and the prepaid leasing policy of com-
pute resources. We propose an online auto-tuning algorithm to assess the importance of
indexes taking into account the trade-offs between the dataflow speed-up they offer and the
monetary cost needed to maintain them. Our approach is able to dynamically adapt to the
workload, it eliminates the cost to build indexes by efficiently using idle resources without
delaying dataflow execution, and significantly reduce both execution time and the average
monetary cost spent per dataflow.

5.1 Introduction

Clouds have evolved to attractive platforms for large-scale data processing. The lack of any
upfront investment and the elasticity, i.e., the ability to lease resources available on demand
and use them for as long as needed, are major benefits over other approaches (e.g., ad-hoc
clusters). Typically, clouds offer three levels of services [99, 244], Infrastructure-as-a-Service

153 H. Kllapi

Elastic Dataflow Processing on the Cloud

(IaaS) (e.g, Amazon [23]), Platform-as-a-Service (PaaS) (e.g., Google AppEngine1), and
Software-as-a-Service (SaaS)(e.g., Dropbox2).

Modern applications running on clouds, face the need to process large amounts of data
using complex functions for analysis [190], data mining [139], Extract-Transform-Load pro-
cesses (ETL) [206], and more. Such rich tasks are typically expressed in high-level lan-
guages [176], optimized [144, 141, 221] and transformed into data processing workflows,
or simply, dataflows. The execution of dataflows in the cloud is appealing due to its elastic
property, i.e., additional resources can be leased for complex dataflows. Several systems
have been proposed for this purpose [101, 148, 214] and are typically built on top of IaaS
clouds.

At the IaaS level, clouds offer compute resources in the form of virtual machines (VM). Each
VM is charged based on a per quantum pricing scheme (typically one hour) that is prepaid
independently of its usage of resources (e.g., Amazon EC2 [21]). In addition, clouds offer
storage resources that are typically charged per GB per month [1]. The monetary cost,
and especially the quantized charging policy of compute resources, are very important and
should be taken into account in a cloud environment [89].

We propose a Query-as-a-Service (QaaS) platform to execute dataflows in clouds (like
Google’s BigQuery3). QaaS is at the same level as PaaS and is used to execute complex
data-intensive dataflows. Figure 5.1 shows a graphical representation of the setting. The typ-
ical users of the service that we envision, are data scientists that issue exploratory queries to
extract knowledge from the data. The user interacts with the service by issuing dataflows that
are expressed in an appropriate high-level language (e.g., SQL, Pig Latin [176], Flume [50]).
The dataflows are optimized and transformed into directed acyclic graphs (DAG) with oper-
ators as nodes and edges that represent producer-consumer data dependencies [141]. The
left part of Figure 5.2 shows an example of a dataflow DAG. Dataflows read data from tables
or files and perform complex processing and aggregations. The data is partitioned for flexi-
bility, performance, and fault tolerance. The common characteristic of these dataflows is that
they are expensive to execute (a dataflow may run for several minutes of hours [139, 50]),
have lots of overlaps since they are exploratory tasks issued sequentially [152], and they
evolve over time.

Indexes are very useful in this setting as they can speed-up dataflow execution and signif-
icantly affect both the efficiency and the monetary cost of the service [86, 196]. Inspired
by other works [196], the dataflows issued to our service have as additional information a
set of potential indexes whose existence can benefit their execution. This setting is flexible
because the indexes can either be specified by users (who know better the characteristics of
the dataflows they issue) or can be computed automatically using an index advisor [67, 199].
These indexes are only a suggestion and the service provider can choose not to build a

1Google AppEngine, http://developers.google.com/appengine
2Dropbox, www.dropbox.com
3Google Big Query, https://cloud.google.com/products/big-query

H. Kllapi 154

Elastic Dataflow Processing on the Cloud

Compute	 Service	 (VMs)	 Storage	 Service	 (Files)	

QaaS	 Service	

Dataflow1,	 (idx1,	 idx2)	
Dataflow2,	 (idx1,	 idx3)	

…	

Time	

Money	

Historical	

Running	

Data	 ScienGst	

Figure 5.1: The setting of the QaaS service.

suggested index at all. The service offers automated management of suggested indexes by
creating and deleting them based on their usefulness on the dataflow workload. This way,
data scientists can focus on the dataflows they issue (which is what most users want) and
the service will be automatically tuned on their behalf [44].

The problem is challenging due to the following: A) The data volume is typically large and
the dataflows are complex DAGs with a large number of dependencies between operators.
Although online scheduling algorithms (that typically perform load balancing) work well for
independent operators (also called jobs in the literature), they are inefficient with complex
data-intensive DAGs, as we also show in our experiments. B) Since the data volume is large,
the time to build indexes is significant and we should be able to build them in parallel. C)
The workload is not known a-priori and is hard to model and predict the set of beneficial
indexes that the service should build and maintain. In addition, this set of indexes changes
dynamically over time. D) Finally, we should take into account the monetary cost of leasing
compute and storage resources. Major challenges are the quantized prepaid leasing policy
of compute resources and the storage cost that can increase significantly over time [75]. It
is important to find a good trade-off between the dataflow execution speed-up that indexes
offer and the monetary cost needed to maintain them.

To address the above challenges, we propose an online scheduling algorithm to assess the

155 H. Kllapi

Elastic Dataflow Processing on the Cloud

usefulness of indexes by finding trade-offs between the dataflow execution speed-up they
offer and the monetary cost needed to maintain them. We identify the opportunity to build
indexes using idle compute resources that are charged by cloud providers. These idle re-
sources are created because of the nature of data-intensive dataflows (that have operators
with many dependencies) and the quantized pricing policy of compute resources. Our algo-
rithm eliminates the cost to build indexes by efficiently using these idle compute resources.
The latter however, is non-trivial. For large data volume, it is hard, or even impossible, to build
entire indexes sequentially using idle compute resources. For this reason, we build indexes
on each partition of tables or files independently [196]. In this way, we can build indexes in
parallel, and most importantly, they can fit inside the idle compute time. Our approach is
elastic in terms of changing the size of the virtual infrastructure but also in terms of finding
trade-offs between execution time and monetary cost. Finally, the algorithms proposed in
this work are generic and can be used in several large-scale data processing platforms, like
Hadoop [27], Hive [214], or Pig [176].

Related work focus mainly on performance (i.e., minimize execution time) or target different
environments that are not elastic [196, 44, 53, 60, 216]. To the best of our knowledge, there
is no index management solution that takes into account the monetary cost of using cloud’s
resources, which is essential in IaaS cloud environments.

In this work, we make the following contributions:

•We identify the opportunity to use idle compute resources that are created when executing
dataflows. These idle resources emerge because of the nature of data-intensive flows that
have a large number of dependencies between operators and the quantum-based pricing
policy of compute resources in IaaS clouds.

• We propose an online auto-tuning algorithm to assess the importance of indexes based
on the trade-offs between the dataflow execution speed-up they offer and the monetary cost
needed to maintain them. Our algorithm uses efficiently the idle time of compute resources
to build indexes in parallel without additional monetary cost charged by the cloud provider
and without delaying the execution of dataflows.

•We present an extensive experimental study showing that our approach significantly speeds-
up the execution and, more importantly, it greatly reduces the monetary cost spent per
dataflow. Further, our algorithm is able to dynamically and quickly adapt to the workload
changes by maintaining only those indexes that are beneficial to the user.

The rest of this chapter is organized as follows. In Section 5.2, we discuss the related
work. In Section 5.3, we present the problem setting and in Section 5.4, we introduce the
definitions and notation we use throughout the chapter. In Section 5.5, we formally present
the optimization problem and in Section 5.6, we discuss the online auto-tuning algorithm we
propose. In Section 5.7, we present the results of our experimental effort, and finally, in
Section 5.8, we conclude.

H. Kllapi 156

Elastic Dataflow Processing on the Cloud

5.2 Related Work

5.2.1 Under-Utilized Resources

A large body of works propose consolidation as an approach to exploit under-utilized re-
sources in distributed environments [64, 234]. Consolidation works well for independent jobs
(each running on a single machine). However, for complex dataflows is a different and hard
problem, especially when they are data-intensive [54, 72]. Online load balancing techniques
do not work well in this setting, as we also show in our experiments. Furthermore, it may not
always be possible to consolidate because of constraints imposed by applications, e.g., criti-
cal service-level agreements, or operators that should not fail together to be able to recover
from failures. Finally, consolidation techniques are better fitted for multi-user environments
with shared data and compute resources. Given all the above, proposed solutions for con-
solidation are not suitable for the setting we consider.

5.2.2 Index Management

We use two orthogonal axes of comparison to categorize auto-tuned database systems: A)
operation mode (offline or online) and B) execution environment (centralized or distributed).
The common approach for all auto-tuned systems is to collect statistics by monitoring the
workload, predict the future workload based on these statistics, and make decisions that will
improve the system behavior as indicated by the optimization goals.

Several offline algorithms have been proposed for centralized systems [45, 67]. We target
a dynamic environment that requires an online solution, i.e., the service is unaware of the
dataflows and it cannot a-priori predict how long to keep and when to delete indexes. There
are techniques proposed to reduce the number of what-if calls to the optimizer [67] that can
be used in combination with our work to speed-up the computation index usefulness.

Online algorithms have also been proposed [44, 167, 235]. We share some similarities
with these works (e.g., we have more than one criteria to optimize) however, we target a
distributed and elastic environment (i.e., VMs are allocated dynamically) with pre-paid com-
pute resources (i.e., we pay up-front for the whole time quantum of each VM). More recent
works incorporate feedback from the administrators to generate better index recommenda-
tions [128, 199]. These are complementary to our work and user feedback can be beneficial
for the computation of index usefulness. Finally, a large body of work consider the problem
of index interactions [200]. We can leverage these efforts and delete indexes that become
obsolete if we identify index interactions in the dataflow workload.

The majority of recent studies focus on distributed environments and propose online so-

157 H. Kllapi

Elastic Dataflow Processing on the Cloud

lutions. Several approaches study replicated databases [196, 60, 78, 216] and propose
algorithms to build different sets of indexes on each replica and route queries appropriately
to take advantage of them. This can be used in combination with our proposed algorithm
since, in a distributed environment, the typical case is to create multiple replicas for each
partition to increase efficiency and fault tolerance [96]. Recent works on clouds focus mainly
on performance [53]. All the above efforts ignore the monetary cost of using the resources.

5.2.3 Pricing Policy

Several methodologies have been proposed to distribute the costs of creation and main-
tenance of data structures among multiple users [129, 224]. These works are extremely
important in a multi-user environment. However, we consider a single-user environment in
which the resources allocated on behalf of the user are dedicated and the data structures
built are not shared among multiple users. Our goal is to speed-up dataflow execution and
reduce the average cost that the user spends per dataflow. This way, since each user is in-
dependent, the pricing policy of compute the storage resources available by cloud providers
can be directly used (e.g., Amazon Elastic MapReduce [22]), without considering complex
cost-sharing policies that the users may or may not agree with.

5.2.4 Conclusions

To the best of our knowledge, there is no index management algorithm that takes into ac-
count the monetary cost of using cloud resources or use two-dimensional time and money
optimization techniques that are essential in IaaS clouds. Our approach is elastic, both in
terms of changing the size of the allocated virtual infrastructure, but also in terms of finding
trade-offs between the execution time and the monetary cost. Furthermore, our auto-tuning
algorithm is able to quickly adapt to workload changes by maintaining only the beneficial in-
dexes without the need for human intervention, which is crucial in an elastic and constantly
changing cloud environment.

5.3 Problem Setting

Figure 5.1 illustrates the setting of the QaaS service. The user is a data scientist who is-
sues dataflows sequentially, typically observing the results before issuing the next dataflow.
The dataflows are expressed in an appropriate language (e.g., SQL, PigLatin [176]) and are
transformed into DAGs with nodes that represent operators and edges between operators
that represent producer-consumer data dependencies. The left part of Figure 5.2 shows an

H. Kllapi 158

Elastic Dataflow Processing on the Cloud

Dataflow	 DAG	 Build	 Index	 DAG	

Q1	

Q1	

P	

P	

P	

Q2	
A
.0
	

A
.1
	

O
ut
.0
	

DS0	

DS1	

A
.0
	

A
.1
	

A
_D

S.
0	

A
_D

S.
1	 Q2	

Q2	

Q3	

Figure 5.2: Example dataflow and build index DAGs.

example of a dataflow DAG with one input table (called A) that has two partitions and per-
forms processing (Q1, Q2), partitioning (P), and aggregations (Q3). The typical dataflows of
the QaaS service are complex data-intensive transformations that are expensive to execute;
dataflows may run for several minutes or hours. Each dataflow is associated with a set of
potential indexes whose existence can speed-up its execution.

The service executes the dataflows on top of IaaS clouds, using its compute and storage
services that are typically offered by most cloud providers [23]. The VMs are dynamically
allocated and de-allocated based on the workload. A VM is deleted when it is not used
and its currently leased time quantum expires. Notice that releasing a VM prematurely is
sub-optimal since the resources are pre-paid [21]. Each VM has local disk that can store
temporary results or data read from the storage service. After deleting a particular VM, all
the data stored in its local disk cannot be recovered. To persistently store tables, we use the
storage service.

The tables are partitioned and stored to the cloud’s storage. Allocated VMs cache table
partition to their local disk to avoid network traffic when possible. This enables the service
to easily change the size of its virtual cluster because the compute resources are loosely
coupled with storage. Data updates are performed in batches periodically (every day or
week). Each update creates a new version of the table partitions that are changed [9],
invalidating the old ones along with the indexes that were build on them. In this way, updates
do not affect our overall approach.

Figure 5.3 shows the timeline with the evaluation of the dataflow of Figure 5.2 using 3 VMs.
The x-axis in the figure shows the time (in quanta) and the y-axis shows the VMs. Notice
that the dataflow processes the input table in parallel. We observe that there is a significant
amount of idle time resources that are created from the dependencies between operators,
e.g., Q3 cannot be executed until all Q2 operators have finished. These idle periods are
charged by cloud providers (e.g., f1). In our example, the idle compute resources that can
be used without additional cost are marked with red arrows (f1− f6).

159 H. Kllapi

Elastic Dataflow Processing on the Cloud

Time	

VMs	

Q1	

	 	 	 P	 Q1	

P	

P	 Q2	

quantum0	 quantum1	

VM1	

VM2	

VM3	
f2	

f3	

f6	

f5	

f1	

f4	

quantum2	

Q2	

Q2	

Q3	

Figure 5.3: Timeline of Figure 5.2 dataflow evaluation. The set of idle time segments is
(f1, f2, ..., f6).

Time	

VMs	

Q1	

	 	 	 P	 Q1	

P	

P	 Q2	

quantum0	 quantum1	

VM1	

VM2	

VM3	

quantum2	

Q2	

Q2	

Q3	 A0	 A1	

B0	

x	
B1	

B2	 x	
A2	

Figure 5.4: Timeline of Figure 5.2 dataflow evaluation with interleaved build index operators.

In this setting, we build indexes on each partition of tables or files. Each operator that pro-
cesses a particular partition, can take advantage of the indexes built on that. Dataflows
scheduled for execution, use only proposed indexes that are currently available. As shown
in the right part of Figure 5.2, the building of indexes can be expressed as a dataflow DAG
with operators that take as input one partition and build the partial index on that partition.
The DAG produced has no edges between operators, and as a consequence, has a large
degree of parallelism. This makes possible to build indexes incrementally (i.e., not all parti-
tions have to be built in order to use them) and in parallel (i.e., two or more partitions can be
built simultaneously). These properties are very important in a cloud environment. Having
small operators to build indexes is better than having a single big one, due to the following
reasons: 1) Building indexes is time consuming on large data volumes. Since we want to
use idle resources, it is harder, or even impossible, to fit large operators without paying more
money or delaying dataflow execution. 2) We can build indexes in parallel and significantly
accelerate their creation. 3) Index partitions that are ready, can be used immediately without
having to wait for the other partitions of the index to be built. 4) Finally, we can stop build
index operators and recover from failures with minimal overhead.

Figure 5.4 shows an example of interleaving dataflows with indexes. Dataflow operators are
shown with blue color and index build operators with magenta. Notice that we can build
indexes in parallel (A0 and B0). A1 is stopped before completion because we do not delay
dataflow execution. B2 is also stopped because the leased quantum has expired and we

H. Kllapi 160

Elastic Dataflow Processing on the Cloud

do not use additional money to build indexes. The indexes created are stored in the cloud’s
storage.

5.4 Notation and Modeling

In this section, we model a typical IaaS cloud and the cost of dataflows and indexes (i.e.,
create, and maintain) with respect to both execution time and money. We denote as TQ the
time quantum size, as M c

Q the amount of money (in dollars) of leasing a VM for TQ, and as
M st

Q the amount of money (in dollars) to store one GB of data for TQ time.

5.4.1 Data Model

Our data modeling is inspired from the relational algebra because is well defined and easy
to explain, however, similar reasoning can be used for raw files [16]. Let D be a database
with tables. A table t ∈ D is modeled by its schema, its ordered set of partitions, and its
statistics, i.e., t(schema, P, S). The schema contains the names and types of its columns,
i.e., schema({(c1, type1), (c2, type2), ...}). A partition p ∈ P is modeled by its id, its number
of records, and a particular path in the storage service where the partition is located, i.e.,
p(id, n, path). The statistics contain the average size of the fields of each column, i.e.,
S = ({(c1, avg_size1), (c2, avg_size2), ...}).

5.4.2 IaaS Cloud

We define the notion of the container as the unit of compute resources provided by the
cloud. A container is a provider of CPU, memory, disk, and network resources and is denoted
as
cont(cpu,mem, disk, net), where the parameters indicate the capacity of each resource. The
cloud offers compute resources through the allocation of containers that are priced of a fixed
amount of money (M c

Q) per time quantum (TQ). The allocated containers form the virtual
infrastructure of the engine. We assume the size of all containers to be the same. This
is typical for many installations: a few VMs are significantly larger than the others and run
critical services (e.g., namenodes of Hadoop [27]), while great majority of the nodes are of
the same size.

The cloud also provides a storage service that stores the data. Containers transfer the data
from the storage service and cache it to their local disks. This scheme is flexible since we
decouple compute from storage resources. Typically, cloud providers charge a fixed amount

161 H. Kllapi

Elastic Dataflow Processing on the Cloud

of money per GB per month (MC). We measure the cost of storing data (M st
Q) in GB per

time quantum. A year has approximately 365.25 days and, assuming that TQ is measured in
minutes, we compute M st

Q as (MC · 12 · TQ)/(365.25 · 24 · 60).

5.4.3 Dataflow

A dataflow d is modeled as d(expr,R,N, t), where expr is its definition expressed in an
appropriate language, R is the set of input tables, N is the set of indexes that can speed-
up its execution, and t is the time point that the dataflow is issued to the service. The
dataflow is optimized and transformed into a dataflow DAG. A dataflow DAG is modeled
as graph(ops, flows) with nodes (ops) that correspond to operators and edges (flows) that
correspond to data dependencies between operators. An operator in ops is modeled as
op(cpu,memory, disk, time), where cpu is the CPU utilization, mem is the maximum memory
needed for its normal operation, disk is the disk resources, and time is its execution time. A
flow between two operators, producer and consumer, is modeled as
flow(producer, consumer, data), where data is the size of the data transferred from the pro-
ducer to the consumer. The estimations of operators can be computed analytically or col-
lected by the system at runtime [155]. Since we target large datasets, the statistics (e.g.,
histograms) do not change radically over time (a 10GB update on 1TB dataset is not large
enough to change the statistics). The dataflow processing rate is much higher than the rate
at which the data is updated. This is the typical case in many settings: updates are done
every few days and the datasets are processed much frequently [103]. Furthermore, oper-
ators come from a set that does not change frequently, which is typical for exploratory data
analysis [152].

A schedule SG of a dataflow graph G is a set of assignments of its operators to containers,
i.e., SG = {(G.ops[1], c1), (G.ops[2], c2), ...}, where c1 is the container that operator G.ops[1] is
assigned to. The execution time (td(SG)) and the monetary cost (md(SG)) of the evaluation
of SG are computed taking into account the network communication cost using proposed
modeling [141]. The execution time (td) is defined as the time period from the time the
first operator starts executing till the time the last operator has finished. The monetary cost
(md) is compute by adding the total time quanta leased during the execution of the dataflow.
When only one container is used to execute dataflow d, then td(d) = md(d) and when many
containers are used, then td(d) � md(d). Both time and money are measured in quanta in
order to have the same unit.

An idle time period f(id, q, c, SG) is defined as the continuous time period inside the leased
time quantum q of container c that has no operators running during the execution of dataflow
schedule SG. An example is f1 in Figure 5.3. The fragmentation F (SG) = {f1, f2, ...} of
schedule SG is the set of all idle time periods that are created during its execution. Frag-
mentation represents the compute resources that are not used, but are charged by the cloud
provider.

H. Kllapi 162

Elastic Dataflow Processing on the Cloud

5.4.4 Index

An index idx built on table t is modeled as idx(t, C, T), where C ⊆ t.schema.C is the ordered
set of columns based on which the index is built and T is the ordered set with the respective
creation time points of its partitions. Each index consists of several index partitions, and
each of them is built on a different partition of the table. Index partitions may be built on
different points in time.

Given the type of a particular index (e.g., Hash, B+Tree), we can estimate its size and the
time and monetary cost to build it as follows. Without loss of generality, in our analysis we
use B+Trees. The index size is computed by adding the sizes of its partitions. The size of a
particular partition p of index idx is computed as follows:

sp(idx, p) = (1− klogk(p.n)) ∗RecSize/(1− k)

where RecSize is the average size of the record in the index (computed from column statis-
tics) and k is the width of the tree computed from the block size (on disk) and RecSize.
Assuming the tree is balanced, its size is computed using geometric series as follows: The
total number of records, including the non-leaf blocks, is

∑m
i=0 k

i = (1 − km)/(1 − k), where
m is the height of the tree computed as m = logkN , where N is the number of records in the
partition.

The monetary cost to store index idx for time period W is computed by adding the costs of
storing each of its partitions. The storage cost of a particular partition p for time period W is
computed as follows:

stp(idx, p,W) = W ∗ sp(idx, idx.t.P [p]) ∗M st
Q

The time to build an index idx (denoted as ti(idx)) is computed by adding the time to build
all the index partitions of the corresponding table. The time to build the index on a particular
partition p is computed as follows:

tip(idx, p) = tio(idx, p) + C(idx) ∗ p.n ∗ logk(p.n)/TQ

where C(idx) is a constant calculated using the columns in the index and tio(p) is the time to
read and write the partition, which is defined as follows:

tio(idx, p) = (p.n ∗RecSize+ sp(idx, p))/cont.net

where cont is the container in which the build index operator is assigned to to be executed.

We denote as I the evolving ordered set of indexes built and maintained by the service.
The set of indexes available at time t is denoted as I(t) and the set of all indexes created

163 H. Kllapi

Elastic Dataflow Processing on the Cloud

during the operation of the service (independently if they are deleted or not) is denoted as I.

The efficiency an index offers is specific to each dataflow and, furthermore, the operators
have arbitrary user code that is often impossible to analyze and model. These two facts
make hard to build a generic model that captures dataflows and indexes, which is an open
research problem. For this reason, we identify five generic categories of dataflows that can
benefit from indexes as follows:

• lookup: Without any data structure, the complexity of finding a particular record is O(n).
This can be reduced to O(log n) or O(1) if a hash index is used.

• range select: Selecting records inside a particular range from the input is efficiency per-
formed using a B-Tree index because the leafs of the tree are sorted. The complexity is
O(log n) + k where k is the number of records in the range.

• sorting: Operators that need to access the data sorted, can reduce their complexity from
O(n · log n) to O(n) using a B-Tree index.

• grouping: Grouping is efficiently executed using sorting (as described above).

• join: Several algorithms can be used, e.g., nested loops join, hash join, sort-merge join. All
these algorithms are faster if an appropriate index is provided. For example, the complexity
of sort-merge join is O(n+m) if the inputs (with sizes n and m) are sorted.

Each dataflow specifies the categories of the indexes it uses and the operators that use them.
This way, the service can estimate the speedup the indexes offer to the dataflow. Notice that
the same index can be used in different ways by different dataflows.

5.4.5 Dataflow and Index Management

The dataflows are issued sequentially to the service. Historical dataflows are stored in a
list called Hd. Indexes are stored in the available (Ai), currently building (Bi), and potential
(Pi) lists. The latter is a set of indexes that are associated with one or more dataflows, but
they are not beneficial to build. To support updates, indexes built on table partitions that are
updated, are deleted and marked as not built.

5.5 Optimization Problem

In this section, we formally define the optimization problem. We express the preference
between time and money with a weighted linear function that combines both as follows:

H. Kllapi 164

Elastic Dataflow Processing on the Cloud

Time	 Time	 Time	

M
on

ey
	

α	 	 =	 0.3	 α	 	 =	 0.5	 α	 	 =	 0.7	

Figure 5.5: Space priority with different α. Red color is low and yellow is high.

α · time + (1 − α) · money. Parameter α essentially expresses how much money a time
quantum is worth. Low α means that money is more important while large α means that time
is more important. Figure 5.5 shows the 2D space priority for three different values of α.
Notice that with α = 0 or α = 1 the optimization problem becomes one-dimensional.

Let d be a dataflow defined as d(−, R,N, t). The optimization goal is to find the best trade-
off between the savings in time and money when using indexes to speed-up execution taking
into account the storage cost needed to maintain them:

max
I

[∑
i

M c
Q · (α · δtd(di) + (1− α) · δmd(di))−

∑
j

st(I[j])
]

(5.1)

where
δtd(di) = td(di(−,−, ∅, ti))− td(di(−,−, Ni ∩ I(ti), ti))

δmd(di) = md(di(−,−, ∅, ti))−md(di(−,−, Ni ∩ I(ti), ti))

with the constraint that the dataflow execution is not affected to ensure that we do not
increase the time and the monetary cost of dataflows when indexes are interleaved with their
execution.

In a dynamic environment where arbitrary dataflows are issued at arbitrary time points using
different sets of potential indexes, it is hard to reason about Equation 5.1 and find the optimal
sequence of index sets (I(t)), i.e., find when to build and when to delete indexes. Given that,
we rewrite the problem in a more suitable form to be able to compute it in an online fashion
as follows.

To measure how beneficial indexes are, we define two functions gt(idx, t) and gm(idx, t)
that compute the gain in time and money respectively when using a particular index idx
at time point t and within a time window of predefined size W (e.g., 2 quanta). gm(idx, t)
is computed by adding the time gain of index idx on all the dataflows that use it and are

165 H. Kllapi

Elastic Dataflow Processing on the Cloud

evaluated inside time window [t −W, t] and the one that is currently running. From that we
subtract the monetary cost to store the index for time period W as follows:

gm(idx, t) =∑
i

(
δ(di, t) · dc(δTdi) ·M c

Q · gmd(idx, di)
)
− st(idx,W) (5.2)

where δ(di, t) is 1 if the dataflow f has been executed during time period [t−W, t] or else 0,
δTdi is the number of quanta passed since the dataflow di was executed (0 for the one that
is currently running), and dc(t) is a function that reduces with time in order to fade the gain
of the historical dataflows. For the latter, we use the following function: dc(t) = e−t/D, where
D is a controller of how much the historical dataflows affect the gain. Small D means that
dc(t) approaches quickly to 0 and, as a consequence, gm(idx) becomes quickly negative. An
interesting problem is to use different D’s for each individual index and automatically learn
them based on future predictions. In this work, we assume that D is the same for all indexes
and leave the learning of D for future work. Finally, gmd(idx, di) is the gain in money of
dataflow di when using index idx. This also includes the monetary cost spend to read the
index from the storage service, which is equivalent to the time to read the index since both
are measured in quanta. If dataflow di does not use index idx, then gmd(idx, di) = 0.

Similarly, the time gain gt(idx, t) of index idx at time point t, is computed by adding the
gains of index idx on the dataflows executed within time window W and subtracting the time
needed to build it as follows:

gt(idx, t) =
∑
i

(
δ(di, t) · dc(δTdi) ·M c

Q · gtd(idx, di)
)

−M c
Q · ti(idx)

(5.3)

where gtd(idx, di) is the gain in time of dataflow di when using index idx. An index idx is said
to be beneficial at time point t if gt(idx, t) ≥ 0 and gm(idx, t) ≥ 0 and at least one of them is
positive. Based on the functions of gain, the optimization goal becomes as follows:

I(t) = max
I

[∑
idx∈I

(α · gt(idx, t) + (1− α) · gm(idx, t))
]

(5.4)

Equation 5.4 can be computed in an online fashion by computing Equations 5.2 and 5.3 at
any given point in time.

We present an example to illustrate our approach. Assume the dataflows shown in Table 5.1
are issued to the service at the time points specified. The dataflows use two indexes A (of
size 100 MB) and B (of size 500 MB) and the gain they provide on time and money on each
dataflow is shown in Table 5.1. Figure 5.6 shows the gain of the two indexes computed over
time with α = 0.5 and D = 60. We observe that the gain of both A and B is negative in

H. Kllapi 166

Elastic Dataflow Processing on the Cloud

Table 5.1: Dataflows Issued using Indexes A and B.
Dataflow Time Gain Money Gain
d1(−,−, {B}, 10) gtd(B, d1) = 1.0 gmd(B, d1) = 3.0
d2(−,−, {B}, 30) gtd(B, d1) = 2.0 gmd(B, d1) = 5.0
d3(−,−, {A,B}, 50) gtd(A, d1) = 2.0 gmd(A, d1) = 8.0

gtd(B, d1) = 3.0 gmd(B, d1) = 8.0
d4(−,−, {A}, 100) gtd(A, d1) = 3.0 gmd(B, d1) = 5.0

-‐0.50	

0.00	

0.50	

1.00	

0	 20	 40	 60	 80	 100	 120	 140	 160	 180	 200	

G
ai
n	

Time	 (sec)	

Index	 Gain	

	 A	 	

	 B	

Figure 5.6: Gain over time of two indexes A and B.

the beginning because of their storage cost. As dataflows specify them as useful, their gain
changes and some of them become beneficial. Notice that the gain of both indexes degrades
over time because of D.

An approximation of Equation 5.4, is to compute the gains for each index individually and
build or maintain only those that contribute in a positive way to the summation. To do this, we
build indexes as soon as they become beneficial and delete them as soon as they become
non beneficial. Using this approach, in our example, index B will be built at time point 30 and
deleted at time point 125.

5.6 Auto-Tuning Algorithm

Our overall approach is online; the algorithm continuously collects statistics from the issued
dataflows. The algorithm uses historical dataflows along with the indexes they specified to
make decisions concerning what indexes to build or delete and when. Issued dataflows use
only the indexes that are currently available. New indexes needed to be built, are scheduled
with the currently issued dataflow. Given that the beneficial indexes that should be built may
not fit in the idle resources of the current dataflow, we should select which ones to build.
Since our goal is to maximize Equation 5.4, we rank indexes based on how beneficial they

167 H. Kllapi

Elastic Dataflow Processing on the Cloud

Time	

Money	

1	
2	

3	

3	
4	

7	 5	

6	
8	

Figure 5.7: Index ordering based on α at time point t.

are and select the best subset worth building in the idle compute resources of the dataflow
ready to be executed.

In this section, first we present our methodology to rank indexes, next we introduce the online
auto-tuning algorithm we propose, and finally, we discuss the dataflow and index schedulers
that we use.

5.6.1 Index Ranking

We use the functions of gain (gt(...) and gm(...)) to compute the ranking of potential indexes
at any point in time. These functions map indexes to points in the 2D space of gain as shown
in Figure 5.7. All indexes with positive gain in time or money are beneficial. On the other
hand, indexes X1, X2, X3, and X4 are not beneficial, and they are not built or are deleted
if they are available. Notice that if a particular index is not used for a long time, it becomes
non-beneficial because its storage cost increases.

To rank indexes, we use parameter α that create an ordering of the time/money space. Fig-
ure 5.7 shows how the ranking is computed using α = 0.7. The beneficial indexes are
scheduled by prioritizing them using their ranking.

H. Kllapi 168

Elastic Dataflow Processing on the Cloud

Algorithm 5.1 Online Index Tuning
Input:
Hd: The historical dataflows.
Ai, Bi, Pi: The index lists.
df : The next dataflow to schedule.
Return:
Sdf : The schedule of the dataflow.
SBI : The schedule of the build indexes.
DI: The indexes that should be deleted.

1: GAINS ← ∅
2: for i ∈ Pi do
3: // compute the index gains using the dataflows
4: gt← gt(i,Hd ∪ df)
5: gm← gm(i,Hd ∪ df)
6: if gt > 0 and gm > 0 then
7: GAINS ← GAINS ∪ {i}
8: end if
9: end for

10: // rank the index gain space
11: RANK ← rank2Dspace(GAINS)
12: // call scheduler to select the best indexes to build
13: // without using additional money
14: skyline← schedule(df,Ai, RANK)
15: // Select the best schedule of the skyline
16: Sdf , SBI ← select(skyline)
17: // compute the indexes that should be deleted
18: DI ← ∅
19: for i ∈ Ad do
20: gt← gt(i,Hd ∪ df)
21: gm← gm(i,Hd ∪ df)
22: if gt ≤ 0 and gm ≤ 0 then
23: DI ← DI ∪ {i}
24: end if
25: end for
26: return (Sdf , SBI , DI)

5.6.2 Online Index Tuning

The online index tuning algorithm that we propose is shown in Algorithm 5.1. The algorithm
schedules the issued dataflow along with the subset of potential indexes that maximize gain
and can be scheduled using the idle compute time without violating the constraints, i.e., the
time and the monetary cost of the dataflow are not affected.

In lines 2-11 of Algorithm 5.1, we compute the 2D space of index gain as described in Sec-

169 H. Kllapi

Elastic Dataflow Processing on the Cloud

tion 5.6.1. In line 14, we call the index interleaving algorithm that computes the skyline of
schedules of the dataflow interleaved with build index operators. This scheduler has as con-
straint not to increase the running time or the monetary cost of dataflows when scheduling
build index operators. We discuss the index interleaving algorithms we use in the following
sub-sections. In line 16, the algorithm selects to execute the best schedule from the skyline.
Several methodologies can be used. In this work, we select the fastest schedule. Finally,
in lines 18-25, the algorithm computes the index partitions that should be deleted because
they are not beneficial. Algorithm 5.1 runs every time a new dataflow is issued, a dataflow
has finished, or the current global time quantum elapses. We keep a global time quantum
clock that triggers events. This is useful in cases where no dataflow is issued and indexes
that become non beneficial should be deleted.

Notice that the indexes that are currently scheduled to be built are not used during the exe-
cution of the dataflow. Further, the partitions of a particular index can be built in the context
of several dataflows if the empty space of resources is insufficient to build it entirely in the
context of one dataflow.

5.6.3 Skyline Dataflow Scheduler

We use the dataflow scheduler algorithm presented in Section 3.5. An important phase of
Algorithm 3.1 is in line 15 where the new skyline is selected. Due to the quantized policy of
container leasing, there is a considerable amount of alternative schedules that correspond
to the same point in the 2D space of time and money, i.e., with the same execution time and
monetary cost. Since we want to schedule indexes without additional money, we break the
ties by keeping the schedule with the most sequential idle compute time.

Notice that we schedule each dataflow offline before it is executed because data-intensive
dataflows should be handled carefully. Data placement is very important for these dataflows
and can introduce significant overheads if not handled properly [72]. Online schedulers work
well for independent operators, but not very well for dataflows with large amounts of data and
lots of dependencies, as we also show in our experiments.

5.6.4 Index Interleaving Algorithms

We use two approaches to schedule dataflows interleaved with build index operators with-
out using additional monetary cost. The first algorithm (Algorithm 5.2), initially schedules
dataflows and finds the idle compute resources. After, it uses a linear programming algo-
rithm to find the subset of potential index partitions that fit into these idle resources using
their ranking as a scoring function. The second algorithm schedules the dataflows and the
build index together by modifying Algorithm 3.1 to use optional operators. We describe both

H. Kllapi 170

Elastic Dataflow Processing on the Cloud

Algorithm 5.2 Schedule Indexes after Dataflow
Input:
df : The current dataflow from the input.
Ai: The available indexes.
I: The ranked list of indexes.
Return:
skyline: The skyline of solutions.

1: // update the running time of operators because
2: // of the available indexes
3: for op ∈ df do
4: if op uses indexes in Ai then
5: update(op, Ai)
6: end if
7: end for
8: // call Algorithm 3.1
9: skyline← Skyline(df)

10: for s in skyline do
11: idle_time← FindIdleTime(s)
12: ordered_idle_time← OrderBySize(idle_time)
13: indexes← ∪(I.P)
14: for i in ordered_idle_time do
15: // call Linear Programming Algorithm
16: maxset← SolveLinearProgram(i, indexes)
17: for m in maxset do
18: schedule(m, i)
19: end for
20: indexes← indexes - maxset
21: end for
22: add indexes to s
23: end for
24: return skyline

in the following sub-sections.

Schedule Indexes after Dataflows

Algorithm 5.2 shows our first algorithm to interleave indexes with dataflows. Initially, it up-
dates the operators in the dataflow to use the available index partitions by estimating their
new running times (state-of-the-art techniques can be used [232]). Algorithm 3.1 is used in
line 9 to find the skyline of schedules. The algorithm continues by examining each schedule
in the skyline. For each schedule, it finds the set of idle resources and orders them by de-
creasing size. For each of them, it solves a linear program (discussed below) that selects the
subset of potential indexes which maximize gain.

171 H. Kllapi

Elastic Dataflow Processing on the Cloud

Algorithm 5.3 LP Index Scheduler
Input:
f : The size of the idle time segment.
pi: The sizes of all the build index partition operators.
gi: The gain of all the build index partition operators.
Return:
The subset of the build index operators that maximize Equation 5.4

1: max
[∑

i(wi ∗ gi)
]

w.r.t
2:
∑

i(wi ∗ pi) ≤ f
3: 0 ≤ wi ≤ 1,∀i
4: integer(wi),∀i
5: return (w1, w2, ...wn)

The problem of fitting build index operators into the idle compute time, is a variation of the
Knapsack [131] problem and is proved to be NP-hard. We propose an approximate algorithm
that works as follows. We solve a 0/1 knapsack problem for each idle time period using the
linear program shown in Algorithm 5.3. The algorithm first solves the relaxed problem (it sets
the weights of the build index operators to be in the range [0, 1]), and then uses a branch
and bound algorithm to find integer values.

By definition, Algorithm 5.2 does not violate the constraints because it does not interfere with
dataflow execution and does not use additional money to build indexes. As an additional
guarantee, because of delays or estimation errors, we order the build index operators inside
each idle time period by gain and stop the ones that did not manage to finish before the
quantum ends or a dataflow operator is scheduled (as shown in Figure 5.4). The build index
operators that did not successfully finished, are queued and scheduled with the next dataflow
that is issued to the service.

Schedule Indexes along Dataflows

The second algorithm used for index interleaving, is a modification of Algorithm 3.1 to use
optional build index operators. The operators in the dataflow are decorated with a boolean
variable that is true if the operator is optional; we set as optional all the build index operators.
In the initial algorithm, all the schedules in the skyline have the same operators at every
step. We modified this as follows: If the next operator in line 6 of Algorithm 3.1 is optional,
then S (in line 8) is unioned with skyline before the new skyline is computed in line 15.
As a consequence, the newly produced skyline have schedules with different numbers of
operators.

H. Kllapi 172

Elastic Dataflow Processing on the Cloud

Table 5.2: Experiment Parameters
Parameter Values
Quantum size 60 seconds
Quantum cost $0.1
Storage Cost $10−4 per MB per Quantum
Max Containers 100
Dataflow Montage, Ligo, Cybershake
Operators / Dataflow 100
α 0.5
Index gain fading D 1 quantum
Poisson Generator λ 1 quantum
Total Time 720 quanta

Similarly as before, there are a lot of different schedules with the same execution time and
money. We break the ties by keeping the schedules that have the greatest number of oper-
ators. While in Algorithm 5.2, the scheduling of indexes does not affect the dataflow, this is
not the case for this algorithm. To ensure that the produced skyline does not have schedules
that violate the constraints, we additionally keep the schedules that have no optional opera-
tors. This guarantees that the constraints are not violated because the schedules that violate
them, will be dominated by the ones that do not have build index operators.

5.7 Experimental Evaluation

In this section, we present our experimental evaluation. The objectives of our experimen-
tation are: A) show that our modeling is robust to estimation errors, B) show that a large
amounts of idle compute resources are created during the execution of complex dataflows,
and C) examine the effectiveness of our auto-tuning algorithm in terms of the execution
speed-up it provides and the reduction of monetary cost per dataflow, and ascertain its abil-
ity to adapt to workload changes.

5.7.1 Experimental Setup

We begin by presenting the setup. Table 5.2 summarizes the parameters of the experiment.

IaaS Cloud Environment: All containers have the same resources (CPU, memory, disk, and
network). Each container has one CPU and one disk. The CPU and memory needs of each
operator is specified as a percentage of container’s CPU and memory respectively. We set

173 H. Kllapi

Elastic Dataflow Processing on the Cloud

Table 5.3: Basic statistics of the scientific dataflows.
Time (sec) # Min Max Mean Stdev
Montage 100 3.82 49.32 11.32 2.95
Ligo 100 4.03 689.39 222.33 241.42
Cybershake 100 0.55 199.43 22.97 25.08
Input (MB) # Min Max Mean Stdev
Montage 20 0.01 4.02 3.22 1.65
Ligo 53 0.86 14.91 14.24 2.70
Cybershake 52 1.81 19169.75 1459.08 5091.69

the quantum TQ to 60 seconds, the cost of the quantum M c
Q to $0.1, and storage cost per MB

per quantum to $10−4.

Dataflow Graphs: We examine three families of dataflows: Montage [127] (Fig. 5.8A),
Ligo [73] (Figure 5.8B), and Cybershake [71] (Figure 5.8C). These dataflows are abstrac-
tions of real dataflows that are used in scientific applications: Montage is used by NASA
to generate mosaics of the sky, Ligo is used by the Laser Interferometer Gravitational-wave
Observatory to analyze galactic binary systems, and Cybershake is used by the Southern
California Earthquake Center to characterize earthquakes. The dataflows are produced us-
ing a standard generator from the literature [41] which specifies the dependencies between
the operators, and furthermore, it specifies the execution time and the amount of data each
operator generates that are modeled after the real scientific dataflows used in practice. The
basic statistics of the operators are shown in Table 5.3.

Figure 5.8: The scientific dataflow graphs Montage(A), Ligo(B), and Cybershake(C).

Input Files and Potential Indexes: We used the inputs of the scientific dataflows (shown in
Table 5.3) as a database with files. The total number of files is 125 and their total size is 76.69

H. Kllapi 174

Elastic Dataflow Processing on the Cloud

GB. We set the maximum size of a file partition to 128 MB; the total number of file partitions
becomes 713.

Since the scientific dataflows specify only the size and not the actual data, we used the
TPC-H benchmark[8] to compute the sizes of some typical indexes and the speed-ups they
provide. We use table lineitem with scale 2 that has approximately 12 million rows and its
size is 1.4 GB. Table 5.4 shows the sizes of indexes on four different columns of the table.

Table 5.4: Indexes on table lineitem.
Column Type Index Size % Table Size
comment text 422.30 MB 30.16 %
shipinstruct 20 chars 248.95 MB 17.78 %
commitdate date 225.91 MB 16.13 %
orderkey integer 146.99 MB 10.49 %

To measure the speed-up that indexes offer, we created the following SQL queries inspired
from the index categories presented in Section 5.4:

Order by:

SELECT orderkey FROM lineitem
ORDER BY orderkey;

Select range (large):

SELECT orderkey FROM lineitem
WHERE orderkey > 1000000

AND orderkey < 2000000;

Select range (small):

SELECT orderkey FROM lineitem
WHERE orderkey > 10000

AND orderkey < 20000;

Lookup:

SELECT orderkey FROM lineitem
where orderkey = 1000000;

175 H. Kllapi

Elastic Dataflow Processing on the Cloud

Table 5.5: Index speedup.
Query No-Index Index Speedup
Order by 44.730 sec 6.010 sec 7.44x
Select range (large) 5.103 sec 0.054 sec 94.44x
Select range (small) 4.921 sec 0.016 sec 307.50x
Lookup 4.393 sec 0.007 sec 627.14x

Table 5.5 shows the speed-up that the index on column orderkey offers. In our experiments,
we use four potential indexes for each file. Each index size is computed using the percent-
ages shown in table 5.4 and its speed-up is chosen at random from the values of table 5.5.

Dataflow Generator Client: We have implemented a generator that issues dataflows at
time points that follow a Poisson distribution. More specifically, the generator computes the
arrival time k (in seconds) of the next dataflow as f(k;λ) = Pr(X = k) = λke−λ/k!, with λ
equal to 60 seconds. We generate dataflows in two ways: at random and with phases. The
latter generates dataflows as follows: Cybershake dataflows for 33.3 quanta (10000 sec),
Ligo dataflows for 16.6 quanta (5000 sec), Montage dataflows for 66.6 quanta (20000 sec),
and finally, Cybershake dataflows for 27.3 quanta (8200 sec). Notice that each generated
dataflow has different speed-ups for the indexes it uses. We use the phase generator to
measure the adaptability of our algorithm to workload changes.

Algorithms: We compare the skyline dataflow scheduler we propose (offline) and the on-
line load balance scheduler that is typically used in elastic clouds. The latter examines the
dataflow graph in an online greedy fashion, and performs scheduling by balancing the opera-
tors to the available containers. To schedule indexes we use the two variations of interleaving
indexes with dataflows presented in Section 5.6. In addition, we use two baselines: no in-
dexes and random. The former does not create indexes at all while the latter selects random
indexes from the potential set and assigns them to be built at random containers.

Service Simulator: Since we do not have the actual code of the scientific dataflows, one
possibility to ‘execute’ them would be to create ‘dummy’ operators that burn CPU and gener-
ate random data according to the values given by the generator. However, this is identical to
simulating their execution. For this reason, we simulated the behavior of a typical compute
and storage cloud. Allocated containers cache the table partitions and indexes read from the
storage service. Each container has a disk size of 100 GB and speed 250 MB/sec (typical
SSD). Each operator has a priority and each container has a queue with operators that are
executed as soon as the memory needed is sufficient. Dataflow operators have priority 1 and
build index operators have priority −1. Operators with negative priority are stopped when
operators with positive priority arrive to the container or its current time quantum expires.
The network is also simulated and the execution of an operator is delayed until its input data
are transferred. We used a network speed of 1 Gbps. If the container cache gets full, LRU
policy is used to create empty space. We measure the monetary cost based on Amazon’s

H. Kllapi 176

Elastic Dataflow Processing on the Cloud

Figure 5.9: Sensitivity of the algorithm to estimation errors.

billing policy [23].

5.7.2 Estimation Errors

In our first set of experiments, we examine the sensitivity of our algorithms to estimation
errors. To do this, we modified the running time of operators and the data they generate ran-
domly (within a percentage) after the scheduling is performed and measured the difference
of the real time, money, and fragmentation from the estimated values. For example, if the
running time of a particular operator is 100 seconds and the added error is 10%, then its
running time will be a random value in the range [90 - 110]. Figure 5.9 shows the results. We
observe that the estimations are robust, especially considering that more than 50% error in
estimations is high in our setting.

177 H. Kllapi

Elastic Dataflow Processing on the Cloud

Figure 5.10: Idle time of schedules in the skyline of the dataflows.

5.7.3 Idle Compute Resources

We examine the amount of idle compute resources that is available when executing complex
dataflows, as the scientific ones we consider in this work. Figure 5.10 shows the execution
time and the fragmentation as a function of monetary cost of the schedules in the skyline
produced by Algorithm 3.1. Since the schedules are in the skyline, time and money are
anti-correlated. The first observation is that there is a significant amount of idle compute
time that could be potentially used (up to 20 quanta for Ligo). Furthermore, we observe a
strong correlation of fragmentation and monetary cost. Faster and expensive schedules use
more containers, and thus, more idle compute resources exist. However, this is not always
the case. For example, the fastest schedule of Cybershake has less fragmentation than its
second fastest. This is because the packing of operators to containers is better in this case.
Figure 5.10 also shows the histogram with the sizes of the fragmented resources of the
fastest schedule in the skyline. We observe that there is a significant amount of idle compute
time with a variety of sizes and a lot of potential to build beneficial indexes.

H. Kllapi 178

Elastic Dataflow Processing on the Cloud

5.7.4 Dataflow Scheduling Algorithms

An important factor that affects the performance of the service is the dataflow scheduling
algorithm. Here, we compare the skyline dataflow scheduler we propose with the online
load balance scheduler typically used in IaaS clouds. We use the Cybershake dataflow
(results are similar for the other dataflows) and measure the quality of the algorithm by scaling
operators running time and the data they generate. Since the online scheduler produces
only one schedule, we compare it with the fastest one produced by the skyline scheduler.
Figure 5.11 shows the results. The y-axis shows the percentage difference between the
offline (skyline) and online (load-balance) dataflow schedulers (offline - online).

In the left part of Figure 5.11, we scale the running times of the operators up to 10x while
keeping the data size they generate low (scaled to 0.01 of their original size). We observe
that the online load balancer works very well for these type of dataflows. The dataflows run
faster, but they are slightly more expensive. For independent operators or for dataflows with
few data dependencies, load balancing is a good choice.

Figure 5.11: Comparison of online and offline scheduling algorithms.

The right part of Figure 5.11 shows the results when scaling the amount of data the oper-
ators generate up to 100x. We observe that the online scheduler does not work well for
data-intensive dataflows. The schedules produced are up to 2x slower and up to 4x more
expensive. Data placement plays an important role and this is the main reason that online
schedulers do not work very well for data-intensive dataflows.

5.7.5 Index Interleaving Algorithms

In this experiment, we evaluate the index interleaving algorithms we propose. Figure 5.12
shows the number of build indexes scheduled by the two algorithms on the schedules in the
skyline of Montage dataflow (we have seen similar behavior for the other two dataflows). The
first observation is that LP is able to schedule much more build index operators. This was
expected since all the information about the fragmented resources is available before the al-
gorithm runs. In contrast, the online algorithm does not, because it schedules the build index

179 H. Kllapi

Elastic Dataflow Processing on the Cloud

0	

20	

40	

60	

80	

20	 22	 24	 26	 28	 30	

#	
In
de

xe
s	

Money	 (in	 quanta)	

Indexes	 Scheduled	 for	 Montage	 Dataflow	

Online	

LP	

Figure 5.12: Number of indexes scheduled using different algorithms for Montage dataflow.

Time	 (in	 quanta)	

Container	

1	 2	 3	
1	

5	

10	

Figure 5.13: Montage with build index ops (green).

and the dataflow operators at the same time. Another observation is that the two skylines
of schedules are not the same. This was also expected since the online algorithm interferes
with dataflow operator scheduling. Its advantage is that is produces cheaper schedules.

Figure 5.13 shows an example with the timeline of Montage interleaved with build index
operators scheduled by the LP algorithm. Dataflow operators are shown in blue color and
build index operators are shown in green. The red line indicates idle compute resources. We
observe that LP uses a significant amount of idle compute time. The initial idle time is 7.14
quanta and after the assignment of the build index operators, the fragmentation is reduced
to 1.6 quanta.

We can compute an upper bound of the quality of the solution found by the LP algorithm
by merging all the individual idle time periods and solving the knapsack problem using only
one large continuous time segment. We do this using the example of Figure 5.14, which
shows the times of the build index operators and the fragmented resources we used. For
simplicity, we set the gain of each operator to be equal to its execution time. As a baseline, we
compare with the following greedy algorithm (inspired by Graham [100]): first, we order the
operators by descending execution times (and gain in this case) and proceed by assigning
each operator to the idle time segment with the most remaining time. A build index operator
that does not fit anywhere is not scheduled. Figure 5.15 shows the results of LP compared
to the baseline and the upper bound. We observe that LP is able to find a solution that is

H. Kllapi 180

Elastic Dataflow Processing on the Cloud

0	

0.2	

0.4	

0.6	

1	 2	 3	 4	 5	 6	 7	 8	

Si
ze
	 (i
n	
qu

an
ta
)	

Idle	 Time	 Segment	

Idle	 Time	 Resources	

0	

0.05	

0.1	

0.15	

0.2	

1	 5	 9	 13	 17	 21	

Ti
m
e	
(in

	 q
ua

nt
a)
	

Build	 Index	 Par;;on	 Operator	

Build	 Index	 Operator	 Times	

Figure 5.14: Histogram with execution times of build index operators and idle time resources.

1	
1.1	
1.2	
1.3	
1.4	
1.5	
1.6	

Graham	 Linear	 Prog.	 Upper	 Bound	

To
ta
l	 g
ai
n	

Total	 Gain	 using	 Different	 Algorithms	

Figure 5.15: Total gain using different algorithms using the build index operators and idle
compute times of Figure 5.14.

very close to the theoretical upper bound (within 5.0% in this experiment).

5.7.6 Dynamic Dataflow Workload

In our final experiment, we measure the efficiency and the adaptability of our auto-tuning
algorithm we propose (shown in Algorithm 5.2). We compare our methodology with the two
baseline algorithms: no-indexes and random.

Dataflow Generator with Phases

Here, we use the dataflow generator client with phases. Figure 5.16 shows the number
of dataflows finished after 720 time quanta using different algorithms. We observe that the
number of dataflows executed is doubled when using our algorithm compared to the baseline
where no index is used. Furthermore, the monetary cost spent per dataflow is significantly
reduced. We also observe that the random algorithm does not affect much the number of
finished dataflows, however, it increases significantly the average monetary cost per dataflow.
This is because the random algorithm does not take into account the gain of indexes and their

181 H. Kllapi

Elastic Dataflow Processing on the Cloud

0	

100	

200	

300	

400	

500	

No	 Index	 Random	 Gain	 	 	 	 	 	 	 	 	 	 	 	
(no	 delete)	

Gain	

#	
D
at
afl

ow
	

Num	 Dataflows	 Finished	 (phase)	

0	

5	

10	

15	

20	

25	

No	 Index	 Random	 Gain	 	 	 	 	 	 	 	 	 	 	 	
(no	 delete)	

Gain	

Co
st
	 /
	 D
at
afl

ow
	

Cost	 /	 Dataflow	 (phase)	

Figure 5.16: Executed dataflows and average cost/dataflow (phase dataflow generator).

storage cost is significantly larger than the speed-up they provide. Finally, we observe that
when non-beneficial indexes are maintained, we increase the cost of dataflows.

Table 5.6 shows the total number of operators executed and stopped due to quantum expi-
ration or preemption because of dataflow operator execution. We observe that the packing
achieved by LP is much better compared to the random algorithm and fewer build index
operators are stopped prematurely.

Table 5.6: Operators executed.
Algorithm Total Ops Killed Ops Percentage
No Index 22402 0 0
Random 25649 1143 4.4
Gain 49549 1418 2.8

Figure 5.17 shows the number of indexes built and the total storage cost over time. We
observe that our algorithm adapts to the workload by creating and deleting indexes when
they become non-beneficial. Notice that when Cybershake is re-issued in the final phase,
some previously deleted indexes become beneficial again and are re-created.

Random Dataflow Generator

In our final experiment, we used the random dataflow generator client. Figure 5.18 shows
the dataflows finished after 720 time quanta. Again, we observe that the number of dataflows
executed is increased compared to the baseline. Furthermore, the cost per dataflow is de-
creased, but not as much as in the previous experiment where the phase dataflow generator
client was used. This is because the input is totally at random and, as a consequence, in-
dexes are stored for a much longer time and they essentially never become non-beneficial.
Even in this case, our algorithm is able to perform better than the baseline.

H. Kllapi 182

Elastic Dataflow Processing on the Cloud

Figure 5.17: Adaptation of the algorithm to the dataflow workload.

0	
100	
200	
300	
400	
500	
600	

No	 Index	 Random	 Gain	 	 	 	 	 	 	 	 	 	 	 	
(no	 delete)	

Gain	

#	
D
at
afl

ow
	

Num	 Dataflows	 Finished	 (rand)	

0	
2	
4	
6	
8	
10	
12	

No	 Index	 Random	 Gain	 	 	 	 	 	 	 	 	 	 	 	
(no	 delete)	

Gain	

Co
st
	 /
	 D
at
afl

ow
	

Cost	 /	 Dataflow	 (rand)	

Figure 5.18: Executed dataflows and average cost per dataflow (random dataflow generator).

5.8 Conclusions

In this chapter, we propose an online auto-tuning algorithm to assess the importance of
indexes and the trade-offs they offer between the speed-up they provide and the monetary
cost needed to maintain them in the context of a QaaS service on top of IaaS clouds. Our
auto-tuning algorithm is able to adapt to workload changes by creating and delete indexes
based on how beneficial they are. Further, we showed that there exist significant idle time
of compute resources that we can use to do beneficial work. We efficiently use these idle
compute resources to build beneficial indexes without additional monetary cost and without
delaying the execution of dataflows. Our algorithm is able to significantly reduce both the
execution time and the monetary cost that the user pays per dataflow.

183 H. Kllapi

Elastic Dataflow Processing on the Cloud

H. Kllapi 184

Elastic Dataflow Processing on the Cloud

Chapter 6

The EXAREME Elastic Dataflow
Processing System

Clouds have become an attractive platform for highly scalable processing of Big Data, espe-
cially due to the concept of elasticity, which characterizes them: resources can be leased on
demand and used for as much time as needed. Several languages and systems for cloud-
based data processing have been proposed in the past, with the most popular among them
being based on MapReduce. In this chapter, we introduce EXAREME, a system for elastic
large-scale data processing on the cloud that follows a more general paradigm. The sys-
tem offers a declarative dataflow language that is based on SQL with user-defined functions
(UDFs) extended with parallelism primitives to declaratively express data parallelism. Users
can extend the functionality of the system by writing new UDFs using a clean and simple
interface. EXAREME is designed to take advantage of clouds by dynamically allocating and
deallocating compute resources, offering trade-offs between execution time and monetary
cost. We present the system architecture along with its main components, the language ab-
stractions, and several techniques that we use to scale the system horizontally (scale out)
and make it elastic. Finally, we present the results of several experiments that demonstrate
the effectiveness of our approach.

6.1 Introduction

Cloud have become an attractive platform for large-scale dataflow processing [66, 80, 201,
215]. The main advantage of clouds compared to ad-hoc clusters, that are typically used
to execute dataflows, is elasticity. Clouds offer the ability to create dynamic virtual infras-
tructures that can change in size by allocating and deallocating compute and/or storage
resources [143, 215, 218].

185 H. Kllapi

Elastic Dataflow Processing on the Cloud

Several languages and systems have been proposed that can benefit from clouds and the
most popular paradigm today is MapReduce [69]. The intuitive appeal of MapReduce, and
the availability of platforms such as Hadoop [27], has fuelled the development of platforms
built on top of it. Examples include Hive [214], Tenzing [52], HadoopDB [13], Jacl [40], and
Pregel [166]. These systems support high-level APIs or languages to express computation
that is translated to MapReduce jobs and executed using the underlying engine.

In clouds, both elasticity and eco-elasticity are very important. The monetary cost of using
the resources is directly related to the energy spend on the cloud provider’s side. It has been
argued that to fully exploit IaaS cloud potential, elasticity has to be deeply embedded into the
core of data processing systems [109, 184]. Current data management techniques proposed
for the cloud focus on performance. To take advantage of elasticity, these techniques and
systems have to be revisited. However, to account for elasticity, many critical components of
data processing systems must be revisited and changed, including the storage manager, the
optimization algorithms, and the execution engine. Thus, it is extremely difficult to change
existing systems since their goal is performance. All the above call for a new system.

In this chapter, we introduce EXAREME1, a system for elastic large-scale dataflow processing
on the cloud. With EXAREME, our goal has been to developing a system that fits closely to
the computational model of clouds by i) defining language abstractions that can declaratively
express data parallelism and complex computations, ii) designing an architecture with clear
separation of components with well-defined functionality, and iii) exploiting both elasticity and
eco-elasticity. To the best of our knowledge, EXAREME is the first effort to build a system that
exploits both properties in clouds.

The contributions of EXAREME are summarized as follows:

Elasticity: EXAREME exploits both elasticities of clouds and critical system components are
especially designed for that. The system changes dynamically the size of the allocated virtual
infrastructure and it deals with the concept of multi-dimensional optimization offering trade-
offs between time and money. A major challenge is the data partitioning scheme in order to
avoid significant network traffic.

Declarative Languages: The system offers two languages at different levels of abstraction.
The high-level language (ExaQL) is based on SQL enhanced with a syntax that makes it
easy to write data pipelines. The dataflow language (ExaDFL) offers a set of primitives to
declare data parallelism, which enables the system to scale automatically and choose the
appropriate degree of parallelism in each case.

The remainder of this chapter is organized as follows. In Section 6.2, we present the data
model and the physical design. In Section 6.3, we discuss the language abstractions and the

1The name is inspired, on the one hand, by hexareme, an ancient Greek type of warship with six rows of
oars moving in a coordinated fashion to obtain great speed and agility, and on the other hand, by the long-term
goal of exascale data processing.

H. Kllapi 186

Elastic Dataflow Processing on the Cloud

UDFs interface along with some examples, and in Section 6.4, we discuss the optimization
techniques we use. In Section 6.5, we present the main components of the system and in
Section 6.6, we present our experimental effort. In Section 6.7, we discuss the related work,
and finally, we conclude in Section 6.8.

6.2 Data Model & Physical Design

6.2.1 Data Model

Offering a flexible data model is a requirement for modern applications [40, 174, 176]. Un-
structured data models (text) are very flexible but limit opportunities for optimizations. On the
other hand, well structured data models (relational) are often restrictive. Inspired by other
systems, EXAREME adopts the relational data model extended with complex field types,
nested tables, and table partitioning. Essentially, the system allows the transformation to
Non-First Normal Form [31] to optimize for analytical workloads.

Complex Field Types: Fields can have complex types including JSON, CSV, and TSV.
Nested Tables are a special case of complex field type that allows entire tables as fields of
other tables. We provide the pack and expand primitives to manipulate nested tables.

Table Partitions: A partition is defined as a set of records having a particular property (e.g,
the value of a hash function applied on one column is the same in each partition). This
property can be used as an optimization choice to perform distributed hash-joins and group
by’s. We support random, hash, and range partitioning.

6.2.2 Table Partitioning

The typical schema of databases optimized for analytical workloads (e.g., warehouse) is star
or snowflake [171] and is heavily denormalized for performance. Figure 6.1 shows the sizes
of the tables of TPC-H benchmark (www.tpc.org/tpch) illustrating the large size difference
between the ‘fact’ table (lineitem) and the rest of the tables. Our partitioning scheme is
based on this observation. Tables are partitioned or replicated depending on the available
storage. If the database has only one table (e.g., NoSQL–systems), it is partitioned randomly
into shards of equal size. If the database has multiple tables, the largest tables (one or more,
depending on the available storage) are partitioned and all others are replicated wherever the
partitions are stored. In this case, the partitioning is based on foreign keys used in joins. In
this regard, in TPC-H, it is beneficial to partition the two largest tables lineitem and orders
with hash partitioning on l_orderkey, which is a foreign key in orders, and replicate the other

187 H. Kllapi

Elastic Dataflow Processing on the Cloud

tables. Data partitioning is specified by the user when the database is created.

0	
20	
40	
60	
80	
100	
120	

lin
eit
em
	

or
de
rs	

pa
rts
up
p	

pa
rt	

cu
sto
me
r	

su
pp
lie
r	

re
gio
n	

na
7o
n	

Si
ze
	 (G

B)
	

128	 scale	

64	 scale	

Figure 6.1: TPC-H table size distribution.

6.2.3 Table Partition Placement

Data placement is crucial for performance and elasticity. We use a modification of consistent
hashing (CH) [130] because it has good theoretical bounds on the size of data needed to
move when the infrastructure changes. The table partitions are placed in a circle as shown
in Figure 6.2. We assign each partition in the inner circle to a VM in the outer circle. For
example, partition 3 is assigned to VM # 2. The first time partitions are accessed, they
are retrieved from the cloud storage and cached for subsequent usage. The rings of tables
connected with foreign keys are aligned in order to be able to join them. When a new VM is
added, it is placed in the circle at the position of the VM with the largest number of partitions,
splitting its partitions in half. For example, the new VM # 6, will be added by splitting the
partitions of VM # 5 in half, as shown in Figure 6.2.

To increase flexibility we use over-partitioning and replication. We partition tables into
many more parts than the maximum number of VMs predicted to use (2-5x is a good trade-
off as we show in our experiments). This way, changing the infrastructure size will cause only
data transfer and not the computation of a new partitioning, that is in general very expensive
(e.g., hash). The replication of partitioned tables is achieved by adding each partition multiple
times to the circle in adjacent positions (Figure 6.2). Thus, when high parallelism is needed,
the same partition will be placed to multiple VMs. In this case, we balance the load between
the replicas. If more than one replicas happen to be assigned to the same container, we
keep only one copy.

Figure 6.3(a) shows the percentage of partitions assigned to a different VM when changing
the infrastructure size using 128 partitions. The x and y axes show the initial and final num-
ber of VMs respectively. If the initial number is less than the final number, then new VMs
are added, otherwise they are removed. We observe that when a large number of VMs is
allocated, the system is more robust to changes. In particular, when changing the number

H. Kllapi 188

Elastic Dataflow Processing on the Cloud

Containers	

Par,,ons	

1	
1	

2	
2	
3	
3	

4	
4	 5	 5	

6	
6	
7	
7	

8	 8	
1	

2	

3	

4	

5	
Containers	

Par,,ons	

1	
1	

2	
2	
3	
3	

4	
4	 5	 5	

6	
6	
7	
7	

8	 8	
1	

2	

3	

4	

5	

6	

add	 6	

(a)	 (b)	

Figure 6.2: Partitioning using consistent hashing.

Ini$al	 Containers	

Fi
na
l	 C
on

ta
in
er
s	

f(x)	 =	 x	

α	 =	 y1	 /	 x1	

f(x)	 =	 α	 *	 x	

X	

Y	

(x1,	 y1)	

Figure 6.3: % of partitions assigned to different VMs when changing the size of the virtual
infrastructure.

of VMs in the range [90-110], the percentage of partitions moved is no more than 15%. This
was expected due to the properties of CH.

Another advantage of this approach is that it can be accurately modeled and used in the
optimization process to predict the cost incurred when changing the infrastructure size [137].
Figure 6.3(b) provides the sought model that predicts this cost. Let x and y be the previous
and new number of VMs. The size of data that have to move is modeled as: sized(x, y) =
(1 − min(x/y, y/x)) · data_size, where data_size is the total size of the tables taking into
account partitioning and replication. Factor min(x/y, y/x) is used to remove the symmetry
of the 2D-space on the diagonal for sized(x, y) = sized(y, x). We measured the modeling
error by computing the difference between the actual number of partitions moved and the

189 H. Kllapi

Elastic Dataflow Processing on the Cloud

predictions and found the error to be on average 6.4%, which is deemed very robust.

6.2.4 Indexing

Motivated by other works [77], we build indexes on each partition independently, which makes
possible to build indexes incrementally and in parallel. These properties are important in
clouds due to the following reasons: i) Building indexes is time consuming on large data
volumes. We can build indexes in parallel and significantly accelerate their creation. ii)
Index partitions that are ready can be used immediately without having to wait for the other
partitions. For the time being, indexes are specified by the user.

6.2.5 Updates

Updates are performed in batches periodically (e.g., every day or week). Depending on data
partitioning, updates can create new partitions (random) or update existing ones (hash or
range). Each update creates a new version of the partitions that are changed, invalidating
the old ones [9]. Dataflows issued after the update, are executed on the updated versions and
the old versions are deleted after the currently running dataflows have finished executing.

6.3 Language Abstractions

EXAREME offers two languages at different levels of abstractions: ExaQL is the high-level
language and ExaDFL is the dataflow language. Both are based on SQL. The optimizer of
the system automatically transforms ExaQL to ExaDFL, although, ExaDFL can be issued
directly. We choose to expose both languages to the end users. This way, the system can
be used for quick experimentation (ExaQL) but also can be tuned for specific applications
(ExaDFL). In the following sections, we describe both languages and present an example
using the following subset of TPC-H:

lineitem (l_orderkey, l_comment, ...);
orders (o_orderkey, o_clerk, ...);

Assume that both tables are partitioned to 4 parts using the same hash function (e.g. MD5)
on l_orderkey for table lineitem and on o_orderkey for table orders.

H. Kllapi 190

Elastic Dataflow Processing on the Cloud

6.3.1 ExaQL High-Level Language

We adopted the language of madIS [7] as the high-level language of the system. We briefly
describe it here for completeness. The language of madIS is based on the SQL-92 stan-
dard [68]. Standard SQL alone is not sufficient to support modern applications [110]. How-
ever, the relational primitives are very good to express relations and data combinations. We
use SQL to combine data and process them with UDFs whenever the SQL abstractions
are not sufficient or efficient to use. UDFs are supported by most data processing sys-
tems [4, 238]. In addition to the standard use of UDFs, madIS supports an enhanced syntax
to easily combine virtual table functions (UDTFs) into data pipelines. In ExaSQL, SQL is
used to combine data and process them with UDFs whenever the SQL abstractions are not
sufficient or efficient to use.

We present an example to help illustrate the features of the language. We will use the same
example when presenting ExaDFL. Suppose we want to find the most frequent words that
some clerks use in their comments when they buy or sell products. We have the names of
the clerks in a compressed XML file that is accessible via an HTTP site. In ExaQL, we can
express it as follows:

select word, count(*) as count
from(select STRSPLITV(l_comment) as word

from lineitem, orders,
(XMLPARSE ‘["/name"]’
FILE ‘http://../clerk.xml.gz’) as clerk

where l_orderkey = o_orderkey
and o_clerk = name) as words

group by word
order by count desc;

The query uses the FILE UDTF to fetch, uncompress, and load the data on-the-fly from the
HTTP server. It is not needed to import the data; all the details are handled automatically.
The output of FILE is given to XMLPARSE UDTF that parses the XML content and produces
a table with the clerks names. The path of the name attribute in the XML file is given as a
parameter in a simplified version of XPath (www.w3.org/TR/xpath/). Notice the syntax used
for FILE and XMLPARSE to simplify data pipelines. Row function STRSPLITV produces one
nested table for each comment by splitting the words into rows. This behavior is different from
the row functions typically supported by database systems which produce a single value.
This is an extension of EXAREME for row and aggregate UDFs.

191 H. Kllapi

Elastic Dataflow Processing on the Cloud

Tree	 Direct	 Cartesian	 Product	

R	 S	 R	 S	
in	 in	

out	 out	

in	

out	

Q	

Q	

Q	

Figure 6.4: Input Combinations.

6.3.2 Data Parallelism Primitives

Before presenting ExaDFL, we discuss the parallelism primitives it uses. One of the advan-
tages of the system is the support of simple primitives to declaratively express potential data
parallelism in the dataflow language itself. This is very helpful for the elasticity of the system
since the queries are expressed independently of the parallelism used. We separate the
primitives into input and output.

Input

Assume a query Q that uses two tables R and S that are both partitioned. Figure 6.4 shows
the types of input partition combinations we support. Q is executed on each combination of
the input partitions.

Direct: The direct combination (Figure 6.4(left)) is used to combine tables that have the
same number of partitions, by pairing partitions with the same id. In our example, the pairs
that will be produced are: [(R0, S0), (R1, S1), (R2, S2)]. This is useful when Q performs a
distributed hash-join and the tables are partitioned on the join attributes. This combination
can be generalized to more than two tables.

Cartesian product: The Cartesian product combination (Figure 6.4(middle)) computes all
combinations of the table partitions. This is useful when one of the tables is small and is
replicated to the locations of the partitions of the other table in order to perform the join. This
combination can also be generalized to more than two input tables.

Tree reduction: The tree combination (Figure 6.4(right)) is used to perform a multi-level
reduction that generalizes the two-level (combine and reduce) reduction of MapReduce [69].
It has been shown that tree execution plans provide very good performance in practice [137,
169]. This is used when Q has aggregate functions that are algebraic or distributive [107].

H. Kllapi 192

Elastic Dataflow Processing on the Cloud

Same	 Re-‐Par**on	

out	

in	
in	

out	

Replicate	

in	

out	

Q	
Q	

Q	 par**on	

union	 replicate	

union	

Figure 6.5: Output Partitioning.

Tree is used with only one input table.

Output

Figure 6.5 show the output partitioning types we support.

Same: The default mode (Figure 6.5(left)) does not perform any changes to the output. As
a consequence, the output number of partitions is determined by the input.

Partition: The partition type (Figure 6.5(middle)) can be hash or range. This requires two
steps: i) partition each of the input parts and ii) union each of the sub-partitions with the same
key into the final output. Examples of usage are data import and distributed hash-joins.

Replicate: Replication (Figure 6.5(right)) is useful for joins when one of the tables is relatively
small. The replication consists of two phases: i) create a single partition using a tree of union
operators on top of the partitions (this is no-op when the table has only one partition) and ii)
copy the table using an inverted binary tree.

6.3.3 ExaDFL Dataflow Language

The ExaDFL dataflow language is similar to ExaQL but has additional notation for data par-
titioning using the primitives presented in the previous subsection. This makes it easy to
express potential data parallelism and let the system decide the actual degree of parallelism
at runtime. The syntax of the dataflow language is defined as follows:

ExaDFL := (<query>)+
query := <parallelism> <ExaQL> ;
parallelism := create distributed [temp]

193 H. Kllapi

Elastic Dataflow Processing on the Cloud

table <name> [<output_comb>]
as [<input_comb>]

output := [to <number>] [(hash | range)]
partition on <name>(,<name>)*

input := direct | cprod | tree | extern
(the rest is omitted due to space)

Each query of the script has two semantically different parts: parallelism and ExaQL. The
first part describes the input and output data parallelism primitives used and the second part
is the ExaQL query executed on each input combination. The following ExaDFL dataflow is
equivalent to the ExaQL query of our example:

// Query 1
create distributed temp table clerk to 4 as extern

select name
from (XMLPARSE ‘["/name"]’

FILE ‘http://../clerk.xml.gz’);

// Query 2
create distributed temp table words as direct

select word, count(*) as count_partial
from (select STRSPLITV(l_comment) as word

from lineitem, orders, clerk
where l_orderkey = o_orderkey

and o_clerk = name)
group by word;

// Query 3
create distributed table result as tree

select word, sum(count_partial) as count
from wordcount
group by word
order by count desc;

Figure 6.6 shows the dataflow DAG produced by the ExaDFL dataflow of our example. The
first query is executed to download and parse the XML file. The extern directive declares that
the query uses an external source and only one instance of the query should be created. The
result is a table called clerk that is replicated to 4 partitions. The second query combines
tables lineitem, orders, and clerk using the direct input combination. Notice that the
result of the join is correct since tables lineitem and orders are partitioned on the join
column and table clerk is replicated. Finally, the third query is used to create table result
using a tree aggregation. This is possible because sum is a distributive function. All temporary
tables are deleted automatically.

H. Kllapi 194

Elastic Dataflow Processing on the Cloud

0	

0	

0	

0	

0	

1	

1	

1	

1	

2	

2	

2	

2	

3	

3	

3	

3	

Query	 1	 Query	 2	 Query	 3	

clerk	
lineitem	

orders	

words	

result	

Figure 6.6: Directed acyclic graph (DAG) produced by the example dataflow.

6.4 Query Optimization

The goal of the optimizer is to transform ExaQL to ExaDFL, and finally, to ExaDMC that is
the low-level distributed machine code of the system used to express operator dependencies
and is similar to the DAGMan language [160]. In principle, the optimization process could
proceed in one giant step, examining all execution plans that could answer the query and
choosing the optimal that satisfies the required constraints. Given the size of the alternatives
space in our setting, this approach is infeasible. Instead, our optimization process proceeds
in multiple smaller steps, each one operating at some level and making assumptions about
the levels below. This is in analogy to query optimization in traditional databases but with
the following differences. Optimality may be subject to QoS or other constraints and may
be based on multiple criteria, e.g., monetary cost of resources, quality of data, etc., and
not just solely on performance. Further, the resources available for the execution of a data
processing graph are flexible and reservable on demand and are not fixed a-priori. Similar to
other distributed data processing systems [145], our optimization process has three different
layers of abstractions [221].

I) Operator Graphs: The nodes are data operators and the (directed) edges are data pro-
duced and consumed by operators. Operators encapsulate data processing algorithms and
may be custom-made UDFs. At this abstraction layer, of great importance are algebraic
equivalences that operators satisfy. This level of optimization transforms the high-level Ex-
aQL language into the ExaDFL dataflow language.

II) Concrete Operator Graphs: These are similar to operator graphs but their nodes are
concrete operators, i.e., software components that implement operators in a particular way
and carry all necessary details for their execution. At this layer, capturing an operator’s
available implementation(s) is the critical information. This level of optimization operates on
ExaDFL.

195 H. Kllapi

Elastic Dataflow Processing on the Cloud

III) Execution Plans: These are similar to concrete operator graphs, but their nodes are
concrete operators that have been allocated resources for execution and have all their pa-
rameters set. At this layer, the assignment of concrete operators to VMs is performed. This
level of optimization translates ExaDFL into ExaDMC.

The result of the optimization process is a skyline of solutions, each with a different trade-
off between completion time and monetary cost. In the following subsections, we give an
overview of the techniques we use in the levels of optimization described above.

6.4.1 Translate ExaQL to ExaDFL

The system transforms queries expressed in ExaQL to trees of operators based on traditional
techniques [123]. The tree contains relational operators (e.g., select, join) and UDFs. The
typical pattern of queries we observe in practice is as follows: Virtual table functions appear
at the leafs of the tree and are mainly used to access external data. Row functions are used
for filtering and data transformations and the combination of tables is done using relational
operators (e.g., joins, group by). Finally, the aggregate functions appear at the higher levels
of the tree.

We re-order relational operators (e.g., select, joins) having as an optimization goal the min-
imization of intermediate results. For the time being, we do not re-order UDFs. The default
behavior for joins is to perform distributed hash-joins if both tables are large. If one of the
two tables is small, we replicate it and transfer it to the locations of the partitions of the other
table using the Cartesian product type. For star-joins, we re-partition the tables in parallel
and compute the join combining them using the direct type. The tree combination type is
used for algebraic or distributive aggregate functions. All pre-defined aggregate functions in
SQL (e.g., sum, count) are either algebraic or distributive. These properties of aggregate
UDFs are specified by the user.

6.4.2 Translate ExaDFL to ExaDMC

ExaDFL queries can be issued directly to the system, bypassing the level of optimization de-
scribed in the previous subsection. The goal on this level is to transform ExaDFL to ExaDMC
and create the dataflow DAG to be executed. The DAG contains two types of operators: Ex-
ecSQL and UnionReplicator. The ExecSQL operator executes a particular ExaQL query on
its input table partitions and possibly re-partitions the output. The UnionReplicator operator
performs a union of all its input partitions and replicates the result to all its outputs. Notice
that each worker that runs a complex ExaQL query, can decide to run it using a different
execution plan depending on the statistics. We do not enforce an execution plan across all
instances of the query.

H. Kllapi 196

Elastic Dataflow Processing on the Cloud

The dataflow scheduler we use is called Dynamic Skyline (Sky) and is shown in Algo-
rithm 3.1. Sky is an iterative algorithm that incrementally computes the skylines of schedules
using a cost model to predict the execution time and monetary cost of schedules [141]. Sky
takes as input the dataflow DAG and assigns its operators at the nodes to workers. The al-
gorithm begins by scheduling the operators from producers to consumers as defined by the
DAG. Each operator with no inputs is a candidate for assignment. An operator is a candidate
as soon as all of its inputs are available. We add gravity operators pinned to the location of
the tables. This way, the movement of the original tables out of their initial location becomes
an optimization choice. In the final schedule, the gravity operators that are scheduled in a
different worker than their input table partition, transfer only the columns needed to answer
the query. The result is a skyline of schedules. The final execution plan can be selected
either manually or automatically based on SLAs [137].

6.5 System Components

6.5.1 Worker

The worker is responsible for the caching of table partitions, the execution of ExaQL queries,
and transferring of intermediate results to other workers. It is well understood that the perfor-
mance of individual nodes affects the whole performance of the distributed system. We have
paid special attention to implement an efficient query engine with native support for UDFs.
The core processing engine of the container is madIS [7]. madIS is very efficient, espacially
with queries that have many UDFs because it uses Just-In-Time (JIT) tracing compilation
techniques [197].

6.5.2 Execution Engine

The execution engine is responsible for the coordination and monitoring of dataflow execu-
tion. We have designed and developed from scratch an asynchronous event-based engine.
The input dataflows are expressed in ExaDMC. The engine monitors the dataflow execution
and handle failures by materializing intermediate results and by restarting failed operators. All
system components, including the execution engine itself, create events that are processed
by the execution engine. The engine stores the events in a queue and process the inde-
pendent events in parallel using a thread pool. Independent events typically involve different
workers, e.g., instantiate two operators to different workers.

All events have access to a global index with common state. The events read and manipulate
the global state. The index stores information about the currently running dataflows. For

197 H. Kllapi

Elastic Dataflow Processing on the Cloud

each dataflow, it stores the successfully finished, running, and failed operators. The same
information is kept for data transferring. This design is flexible because it allows the addition
of new events with minimal effort. Next we discuss in details two examples of events.

Close Session: All the communication of the execution engine with the workers is performed
in the context of sessions. We do this to organize the management of resources (remote
connections, temporary files, etc.). All resources allocated in the context of a particular
session, are deleted when the session is closed.

Quantum Finished: Each worker sends to the resource manager an event every time its
current cloud quantum slot is about to finish. In the default setting, we send this event at
90% of the quantum size, or 6 minutes before it expires for a quantum size of one hour. The
resource manager can decide to keep the VM or to deallocate it if is not needed. Notice that
premature VM deallocation is not beneficial since the resources are pre-paid.

6.5.3 Resource Manager

The execution engine communicates with the resource manager to allocate the resources
needed for the execution of dataflows by providing the output of the optimizer, that is es-
sentially an estimated timeline with operators and workers. In a cluster environment, the
total number of physical machines is fixed and load balancing techniques are adequate. In
a cloud environment however, the number of allocated VMs is not fixed and the size of the
virtual infrastructure is automatically adjusted based on the dataflow demand. To do this, the
resource manager takes into account the monetary cost of leasing new VMs and performing
data re-organization cost [137].

6.5.4 Visualization Tools

Good visualization tools are very important in distributed systems. It is essential to know
what is happening under the hood. EXAREME generates reports from the statistics collected
during the execution. Figure 6.7 shows a part of the report generated for the query 4 of
the TPC-H benchmark using 32 VMs. Each query of the dataflow forms a category. Each
category contains all the instances of ExecSQL operators that were executed for that query.
The report shows the average time, the output data, and the throughput for each category. It
also shows the distribution of the above in order to detect data skew. The timeline also shows
the execution of the whole dataflow in a Gantt Chart. This way, we can observe the actual
parallelism of the dataflow by showing one bar per category. Finally, it shows the resource
utilization of the allocated machines.

H. Kllapi 198

Elastic Dataflow Processing on the Cloud

Figure 6.7: EXAREME dataflow reports.

6.6 Experimental Evaluation

Here we present our experimental effort. The goals of the experiments are: A) show the elas-
tic capabilities of the system, B) examine the horizontal scalability, and C) compare EXAREME
with state-of-the-art systems.

199 H. Kllapi

Elastic Dataflow Processing on the Cloud

6.6.1 Setup

Execution Environment: We used up to 64 VMs, each with 1 CPU, 4 GB of memory, and
60 GB of disk. The average network speed measured was 150 Mbps. The resources were
kindly provided by Okeanos (okeanos.grnet.gr).

Datasets: We use TPC-H to evaluate the system with a typical data warehouse workload
and Freebase (www.freebase.com) to create a typical workload for NoSQL systems. For
TPC-H we generated a total of 256 GB of data. The benchmark has the following eight
tables:

region(1), partsupp(1), orders(128, o_orderkey), supplier(1),
lineitem(128, l_orderkey), customer(1), part(1), nation(1)

In parenthesis, we show the number of partitions we created for each table and the key on
which the partitioning was performed (hash partitioning).

The size of the Freebase dataset is 250 GB and contains approximately 2.5 billion records
in the form of RDF triples: < subject > < predicate > < object > “.”. Text objects are tagged
with the language symbol (e.g., ‘X@en’ means that ‘X’ is in English). We load the data into
one table with three columns and partition it to 128 parts.

Queries: We use the first 10 queries of TPC-H. For Freebase we created two queries with
complex UDFs that produce a histogram of the languages appearing in the dataset.

Measurements: We run each query 4 times and report the average of the last 3 measure-
ments, a technique also followed by others [238]. In this way, the observed execution times
reflects the behavior of the system in live operation.

6.6.2 Evaluate Elasticity

Elasticity is an important feature of EXAREME. In our first set of experiments, we evaluate the
elasticity of the system.

6.6.2.1 Elastic Data Layout

We begin by examining the behavior of our data partitioning and placement technique. An
important question is how many partitions to create. Figure 6.8 shows the percentage of
data transferred when varying the number of partitions. In the experiment of Figure 6.8(left),
the partitions are assigned to 100 VMs and we measure the percentage of data transferred

H. Kllapi 200

Elastic Dataflow Processing on the Cloud

10	
15	
20	
25	
30	
35	

1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 %
	 D
at
a	
Tr
an

sf
er
re
d	

Replica2on	 Factor	 (parts/VMs)	

%	 Data	 Transferred	 varying	 (parts/	 VMs)	
(10%	 VM	 change)	

50	 VMs	

100	 VMs	

150	 VMs	 0	

30	

60	

90	

120	

0	 50	 100	 150	

%
	 D
at
a	
Tr
as
fe
rr
ed

	

#	 Par22ons	

%	 Data	 transferred	 varying	 #	 parts	 on	
100	 VMs	

	 +-‐5%	 VMs	

	 +-‐10%	 	 VMs	

	 +-‐15%	 VMs	 0	

30	

60	

90	

120	

0	 50	 100	 150	 %
	 D
at
a	
Tr
an

sf
er
re
d	

#	 Par22ons	

%	 Data	 transferred	 varying	 #	 parts	
(10%	 VM	 change)	

50	 VMs	

100	 VMs	

150	 VMs	

Figure 6.8: % data transferred varying the number of partitions.

when changing the number of VMs by 5, 10, and 15%. We observe that the data transferred
is stabilized after 100 partitions. As expected, the higher the change in the infrastructure,
the more data is transferred. Figure 6.8(middle), shows how the size of the infrastructure
affects the behavior. We change the number of VMs by 10%. We observe that for larger
infrastructures more partitions are needed in order to be robust in changes.

From the experiments presented here, it is indicated that the number of VMs and the number
of partitions must have some relationship to provide good stability. To examine this, we mea-
sured the percentage of data transferred when varying the following fraction: #parts/#VMs.
Figure 6.8(right) shows the results. As expected, we observe that the higher the ratio is, the
better the consistent hashing algorithm behaves. In practice, a ratio of 2 or more is adequate.
In our experiments presented later in this section, we use 128 partitions on an infrastructure
of at most 64 VMs.

6.6.2.2 Elasticity

Here, we evaluate the adaptability of EXAREME in the presence of workloads whose features
change over time. In particular, we employ a workload consisting of three stages, of 1 hour
each, where the rate of the queries issued during the second phase is doubled. We created a
generator that launches queries with a Poisson distribution. More specifically, the generator
computes the arrival time k (in seconds) of the next query as f(k;λ) = Pr(X = k) = λke−λ/k!,
where λ is the expected value of X (in seconds). We can achieve desired query rates by
setting λ appropriately. For example, if λ = 10, one query is issued to the engine every 10
seconds on average. We used TPC-H with 32 GB of data and a client that issues query 1.
The revenue generated from each query is measured in $ and is computed as: price(t) =
10 · ε−t/100, where t is the query execution time (in sec). We set the quantum size to 300 sec
and the quantum cost to $0.41 ($5/hour). The skyline schedule is selected automatically such
that the profit is maximized as shown in our previous work [137]. EXAREME uses statistics
collected on a historical window (HW) of 600 seconds to make predictions for a window of
300 seconds. Notice that a large HW will cause the engine to adapt slowly to the workload
and small HW may cause it to change rapidly [25]. We experimentally ascertained that
these window sizes behave well and leave for future work the automated learning of these

201 H. Kllapi

Elastic Dataflow Processing on the Cloud

20	
40	
60	
80	
100	
120	

0	 5000	 10000	

Ex
ec
.	 T
im

e	
(s
ec
)	

Time	 (seconds)	

Query	 Execu4on	 Time	 Varying	
Poisson	 Param	 λ	 (60	 -‐	 30	 -‐	 60)	

)me	

phase	 0	

30	

60	

90	

0	 5000	 10000	

M
on

ey
	 /
	 Q
ua

nt
um

	 ($
)	

Time	 (seconds)	

Revenue	 &	 Cost	 Varying	 Poisson	
Param	 λ	 (60	 -‐	 30	 -‐	 60)	

rev	

cost	

phase	
20	

40	

60	

80	

0	 5000	 10000	

#	
V
M
s	

Time	 (seconds)	

Cont.	 /	 Level	 Varying	 Poisson	
Param	 λ	 (60	 -‐	 30	 -‐	 60)	

VMs	

phase	

Figure 6.9: Elasticity of EXAREME varying incoming query rate using TPC-H 32GB and 128
partitions.

numbers.

The results are shown in Figure 6.9. The figure shows the execution time, the profit generated
& the infrastructure cost, and the number of VMs used over time. Initially, the execution time
of the queries is high because the data is transferred from the storage service. Our approach
does rapidly adapt to varying workload and starts adjusting the number of VMs close to the
phase boundaries. We also observe the number of VMs allocated is increased along with
the query rate as more revenue is generated.

6.6.2.3 Compare with Baseline

Here, we compare with the baseline. In the first experiment, we examine our data partitioning
approach and compare with the baseline that performs perfect balancing of partitions to VMs.
Figure 6.10 shows the results. We observe that the data needed to move is much less when
using CH. We also measured the variance of the number of partitions in VMs. The baseline
has a variance of 0.25 (is not 0 due to rounding) and our approach 1.89, which is higher as
expected, however it indicates that is quite balanced.

0	

50	

100	

150	

0	 20	 40	 60	 80	 100	

%
	 D
at
a	
Tr
an

sf
er
re
d	

%	 VM	 change	

Data	 Transferred	 using	 CH	 and	 Base	
(500	 parts	 on	 100	 VMs)	

	 CH	

	 baseline	

Figure 6.10: Comparison of CH with baseline.

Next, we examine the elasticity of the system. As a baseline we use three static infrastruc-
tures that do not change over time: small with 15 VMs, medium with 30 VMs, and large

H. Kllapi 202

Elastic Dataflow Processing on the Cloud

with 60 VMs. Figure 6.11 depicts the profit generated when the static VM configurations are
used to handle the workload as well as our approach that is elastic. We run the system for 3
hours using a client that issues Q1 in three phases, each of 1 hour duration. In the first and
third phase, the Poisson parameter λ is set to 60 and in the second phase to 30 (the rate is
doubled).

-‐1200	

-‐600	

0	

600	

1200	

Small	 Medium	 Large	 Elas5c	

M
on

ey
	 ($

)	
Comparison	 wth	 Sta5c	 Infrastructure	

Cost	

Profit	

Figure 6.11: Elastic configuration vs. static layouts.

We readily ascertain that smaller-sized infrastructures produce less revenue as expected.
Similarly, the expended cost increases as more VMs and time quanta are used. The elastic
layout allocator however adapts to the workload changes and yields the highest profit com-
pared to all static choices. Lastly, the elastic approach does generate less revenue (profit =
revenue - cost) than the large infrastructure. However, this is in sequence with our design as
we optimize for profit and not for revenue.

6.6.3 Evaluate Horizontal Scalability

Here we examine the horizontal scalability of EXAREME under typical data warehouse and
NoSQL workloads.

Data Warehouse Workload

We measure the scalability of EXAREME varying the size of the data. Figure 6.12 shows
the execution time of the TPC-H queries varying the data size from 64 GB to 256 GB. We
observe that our system can handle large amounts of data. Query 9 is a difficult query since
it produces a large amount of intermediate results, and we run out of disk space for the 256
GB data size.

Figure 6.13 shows the execution time of the TPC-H queries varying the number of VMs
from 8 to 32. We used the 64GB dataset to be able to run with 8 VMs. We observe that
EXAREME can effectively exploit the available resources and run faster when the number of

203 H. Kllapi

Elastic Dataflow Processing on the Cloud

0	

500	

1000	

1500	

2000	

2500	

Q1	 Q2	 Q3	 Q4	 Q5	 Q6	 Q7	 Q8	 Q9	 Q10	

Ti
m
e	
(s
ec
)	

TPC-‐H	 Queries	 on	 Exareme	 with	 32	 VM	 varying	 Scale	 Factor	

64	

128	

256	

Figure 6.12: Execution time of TPC-H on EXAREME varying data size with 32 VMs.

VMs increases. Two interesting cases are query 7 and 10. Notice that they run slower with 32
VMs than when running with 16 VMs. This is a typical behavior of distributed environments
when more parallelism than needed is used. It is essential to choose the correct degree of
parallelism in each case.

0	

500	

1000	

1500	

2000	

Q1	 Q2	 Q3	 Q4	 Q5	 Q6	 Q7	 Q8	 Q9	 Q10	

Ti
m
e	
(s
ec
)	

TPC-‐H	 Queries	 on	 Exareme	 with	 64GB	 varying	 #	 VMs	

8	

16	

32	

Figure 6.13: Execution time of TPC-H on EXAREME with 64GB of data varying number of
VMs.

NoSQL Workload

One of the advantages of EXAREME is the support of complex UDFs with arbitrary user code.
In this experiment, we use the Freebase dataset to create a histogram of the languages using
two queries. The first query uses regular expressions to separate the language of the object
and then counts the languages that appear in the dataset. The query is defined as follows:

select lang, count(lang) as c
from (select REGEXPR(’.*@(.*)’, o) as lang

from freebase

H. Kllapi 204

Elastic Dataflow Processing on the Cloud

where o like "%@%")
group by lang
order by c desc;

The second query uses reservoir sampling [229] to sample 1 million records and compute the
histogram of languages detected by the DETECTLANG UDF that uses a statistical model.
The query is defined as follows:

select lang, count(lang) as c
from (select DETECTLANG(lang) as lang

from (select SAMPLE(1000000, lang) as lang
from freebase)),

group by lang
order by c desc;

Both queries are executed using the tree input combination since both count and SAMPLE are
distributive. Table 6.1 shows the results. We observe that the histogram computed using
sampling is proportionally similar to the one using the entire table.

Table 6.1: Freebase Languages
All (2.4B) Sample (1M)

lang count lang count
en 134096634 en 115335
fr 28091737 fr 23991
de 27890842 de 23906
es 26934217 es 23462
it 26516667 it 23148
...

The execution time of the queries is shown in Figure 6.14. The first query that uses regular
expressions, was executed in 1966 seconds. The operators at the leafs of the execution
tree took most of the time, since computing 2.4 billion regular expressions is expensive. The
second query that uses sampling finished in 339 seconds.

We also did a pre-processing of the object column by extracting the language tag and created
an additional column on the table. In this case, the histogram on the whole dataset was
computed in 107 seconds without indexes and in 27 seconds using indexes.

205 H. Kllapi

Elastic Dataflow Processing on the Cloud

1	

10	

100	

1000	

10000	

All	 (2.4	 B)	 Sample	 (1	 M)	 Prep	 (No	 Index)	 Prep	 (Index)	

Ti
m
e	
(s
ec
	 -‐	
lo
g	
sc
al
e)
	

Freebase	 Language	 Histogram	

Figure 6.14: Freebase execution time.

6.6.4 Systems Comparison

We compare EXAREME with Hive 13 (Stinger) [214] using the Tez backend, Impala [4] in in-
memory mode, and Shark [238] using TPC-H. The system versions we used are Hive 0.13.1,
Hadoop 2.5.1, Tez 0.5.0 (using Snappy compression), Impala 1.4.0 (runtime code generation
enabled), and Shark 0.9.1 running on Spark 0.9.1 [242].

The files are stored on HDFS using a block size of 128MB and replication 3. We also en-
abled the following flags ‘tables-stats’ and ‘short-circuit reads’. The file format used for Hive
and Shark was ORC and for Impala PARQUET (http://parquet.incubator.apache.org/). In
EXAREME we use LZ4 (https://code.google.com/p/lz4/) to compress data sent throught the
network.

Figure 6.15 shows the execution times of TPC-H queries on all systems as a fraction of
time on EXAREME (time(sys X) / time(EXAREME)). Shark and Impala are very efficient for
queries with aggregations on lineitem table and they do not produce much network traffic.
We observe that EXAREME is efficient for queries with several tables and aggregations. We
were not able to execute queries 8 and 9 on Impala because of memory limits (all data should
fit in memory).

The major factors that affect the performance are: 1) We exploit the locality of table parti-
tioning. If the data is partitioned on the same attribute as the join keys, we perform hash-join
without re-partitioning, reducing network traffic. Further, our scheduling algorithm takes into
account data locality, which is crucial for data intensive queries. 2) The tree abstraction is
very efficient with aggregate functions. This affects the performance, since the queries of
TPC-H have many aggregate functions.

In addition, for systems that use the MapReduce (MR) abstraction, we make the following ob-
servations: 1) We support complex dataflows that fit better the model of SQL. MR dataflows
are restricted to 2 phases. An example that illustrates this restriction is the group-by opera-

H. Kllapi 206

Elastic Dataflow Processing on the Cloud

0.1	

1	

10	

100	

Q1	 Q2	 Q3	 Q4	 Q5	 Q6	 Q7	 Q8	 Q9	 Q10	 Ex
ar
em

e	
Sp
ee
du

p	
(lo

g	
sc
al
e)
	

TPC-‐H	 with	 64GB	 on	 32	 VMs	

Impala	

Shark	 (mem)	

Hive-‐S>nger	

Figure 6.15: Execution time speedup of EXAREME on TPC-H with 64GB data and 32 VMs.

tor. The most efficient way to execute it is with a tree of group-by operators [169]. Several
MR jobs are needed when the height of the tree is more than two, introducing substantial
accidental complexity. 2) The initialization cost also influences performance. This becomes
a problem especially when the number of jobs is large. Tenzing [52] solved this problem by
having a pool of pre-initialized Map and Reduce jobs. The initialization cost in EXAREME
is minimal. 3) Finally, performance is also affected by the synchronization of each MR job.
Delays are common due to network or disk latencies and cause VMs to waste valuable time
waiting for a small number of jobs to finish. EXAREME creates a single dataflow per query.
Thus, different phases of execution are blended together and possible delays do not affect
the entire query.

In conclusion, EXAREME is comparable and in some cases much faster than state-of-the
art data processing systems. That, combined with the elasticity and the efficiency of UDF
execution, makes it a flexible and efficient dataflow processing engine for IaaS cloud envi-
ronments.

6.7 Related Work

6.7.1 Cloud Dataflow Processing Systems

Query processing in parallel and distributed databases has been studied for a long time by
the database community [76, 144, 184]. Research on parallel databases has concentrated
mostly on shared-nothing architectures and various commercial products are now available
by major relational database vendors (IBM, Oracle, Teradata, etc.). Research on query
processing for distributed databases has studied various architectural alternatives including
client-server, hierarchical multi-tier systems, and peer-to-peer systems.

The most popular platforms for data processing on the cloud are based on MapReduce [69],

207 H. Kllapi

Elastic Dataflow Processing on the Cloud

presented by Google. On top of MapReduce, Google has build systems like FlumeJava [50],
Sawzall [190], and Tenzing [52]. FlumeJava is a library used to write data pipelines that are
transformed into MapReduce jobs. Sawzall is a scripting language that can express simple
data processing over huge datasets. Tenzing [52] is an analytical query engine that uses
pool of pre-allocated machines to minimize the star-up latency of MapReduce jobs.

YARN [228] is the successor of Hadoop. Their fundamental difference is the separation of
the resource management from the specific MR paradigm. This way, YARN can support
multiple types of applications, with MR being one of them. We follow a similar approach.
The optimizer and the execution engine are independent of the underlying architecture and
the resource manager is used to allocate the resources. In addition, our approach allows
optimization decisions that can change the size of the virtual infrastructure.

Tez [30] is a dataflow execution engine that supports generic DAG execution plans. Our
execution engine follows a similar approach. Tez also offers the ability to change dynamically
the parallelism used at runtime. However, this decision is not automated. The monetary cost
of resources in clouds can be substantial if not taken into account. Recent versions of Hive
also support Tez (Hive Stinger), speeding up the query execution substantially.

Dryad [125] has a more general architecture than MR since it can parallelize any dataflow. Its
optimization relies heavily on hints requiring knowledge of node proximity, which are generally
not available in a cloud environment. It also deals with job migration by instantiating another
copy of a job and not by moving the job to another machine. This might be acceptable when
optimizing solely time but not when the monetary cost of allocating additional VMs matters.

HadoopDB [13, 34] is recent hybrid system that combines MapReduce with databases. It
uses multiple single node databases and rely on Hadoop to schedule the jobs to each
database. The optimization goal is to create as much parallelism as possible by assign-
ing sub-queries to the singe node databases. The U.S. startup Hadapt [102] is currently
commercializing HadoopDB.

Shark [238] is an SQL processing engine built on top of Spark. UDFs are not efficiently
integrated in the core of the system and are called as external processes. In contrast, we
have built an engine that executes UDFs natively. Furthermore, EXAREME offers a cleaner
syntax to use UDFs as part of the language itself.

Cloudera Impala [230], is a highly efficient system that implements a subset of SQL. Some
major features of Impala are dynamic code generation, SIMD extensions exploitation, and
pipeline execution. One major drawback is that it works entirely in-memory and the datasets
(including the intermediate results) should fit in the aggregated memory of the cluster in order
to be processed. Furthermore, Impala supports only row and aggregate functions.

Dremel [169] is a system for interactive analysis of very large datasets. The system is de-
signed for a subclass of SQL queries that return relatively small results. The optimization

H. Kllapi 208

Elastic Dataflow Processing on the Cloud

techniques in this work target a more broad class of SQL queries.

Nefeli [219] is a cloud gateway that uses hints for efficient execution of workloads. It uses the
cloud at a lower level than our work, being aware of the physical resources and the actual
locations of the virtual machines. This information may not be generally available, however,
especially in commercial clouds.

F1 [204] is a distributed relational database engine build on top of Spanner [62]. Spanner
uses random partitioning that changes over time and, as a consequence, F1 cannot take
advantage of data partitioning and locality. This approach works well on fast networks, such
as the ones available in large data centers. EXAREME takes advantage of data partitioning
and locality, avoiding data transfer when possible.

Stratosphere [18] is a system for dataflow computation on the cloud. It has been build on
similar ideas as our system. The main difference is the declarative query language and
the UDFs. We support a much higher level language than Stratosphere. Also, our UDFs
have simple and clear interface that makes them easy to use. One of the advantages of
Stratosphere is the ability to do static code analysis [115] in order to find properties of UDFs.

Much work has also been carried out recently to develop appropriate storage layers on top
of which distributed computations can take place. BigTable [51] is a key-value distributed
storage system designed and implemented at Google. BigTable is used for managing struc-
tured data and is designed to scale to petabytes of data using a large number of commodity
servers. HBase [95] is the open source version of BigTable that can be used with Hadoop.
Cassandra [148], initially developed by Facebook, is also a key-value store that provides
scalability and high availability with no single point of failure. PNUTS [61] from Yahoo, is an-
other massively parallel and geographically distributed storage system. It provides hashed
or ordered tables and has low latency for large numbers of concurrent requests including
updates and queries. All these are complementary to our work.

6.7.2 Data Partitioning and Placement

Data placement is essential for the elasticity of cloud-based systems. Our data partitioning
and placement scheme is a hybrid of distributed file systems (e.g., GFS [96]), in which tables
are partitioned in large chunks, and key-value stores (e.g., Dynamo [70]), which are at a more
fine-level than our approach; we use consistent hashing in entire blocks and not individual
records. Several recent approaches use consistent hashing [130] due to its good theoretical
guarantees. Examples include data shuffling [156] and multi-dimensional arrays [80]. Finally,
research for data placement has beed done for distributed transactions [168]. We target
analytical workloads where the data are updated in batches.

209 H. Kllapi

Elastic Dataflow Processing on the Cloud

6.7.3 Elasticity

The large majority of recent works focus on the traditional aspect of elasticity of clouds [82,
215, 218] (i.e., change the # of VMs based on workload) and not much attention has been
given to the eco-elasticity property. The proposed algorithms and systems have as optimiza-
tion goal to minimize the execution time of the dataflows. A recent work [198] focuses on
minimizing the number of VMs used to save on cost, but this may not be a good strategy in
our setting since we offer several trade-offs and target profit.

Mariposa [211] was one of the first distributed systems that took into consideration the mon-
etary cost. The system consists of several autonomous databases. The optimization goal is
to maximize the difference between the execution cost and the user’s cost function. Similar
works that take into account the monetary cost, focus on optimization techniques based on
query trading [189]. All these techniques can be used in combination with our work in a
federated setting.

Recently, trade-offs between time and money are also studied [75, 141, 217] and it has been
shown that money can be traded for time in many cases. Our optimization process takes into
account money using the modeling we proposed in our previous work [141]. A crucial as-
pect for the discovery of eco-elasticity is the modeling of network cost and we payed special
attention to take it into account. Many scheduling algorithms ignore that because it cre-
ates inter-machine dependencies and focus on the optimization of independent tasks [94].
Recently, a methodology has been proposed for join re-ordering taking into account the mon-
etary cost [217]. This is complementary to our work.

Some works examine the elasticity of clouds in the context of in-memory distributed trans-
actions [66, 201]. In our setting we target analytical workloads and the tables are updated
using bulk loading every day or week.

Mesa [101] is an elastic data warehouse. It supports multi-versioning with incremental up-
dates and offers high throughput on lookup and aggregated queries. Similar to our approach,
it decouples storage from compute resources helping the elasticity of the system. Since the
system is proprietary, little is known about the resource allocation algorithm it uses to elas-
tically change it’s size. We model this after available public clouds typically offered by most
providers. One challenge is the quantized pricing of compute resources that should be mod-
eled and handled properly.

Finally, elasticity in the context of array databases has also been investigated recently [80].
The methodology proposed for array databases is not applicable in out setting since it is spe-
cific to the use case of scientific data that only grow in size and are rarely deleted. Thus, this
approach considers only the monetary cost of increasing the size of the virtual infrastructure.
We target a more generic setting.

H. Kllapi 210

Elastic Dataflow Processing on the Cloud

6.8 Conclusions

In this chapter, we have introduced EXAREME, a system for the elastic execution of data
intensive queries on the cloud. To the best of our knowledge, EXAREME is the first attempt
to build a system that exploits both elasticities of clouds, i.e., dynamically change the size
of the allocated virtual infrastructure and offer trade-offs between time and monetary cost of
using cloud resources. Both are essential for auto-tuned systems in IaaS clouds. Through
several experiments, we showed that the system is scalable and able to efficiently process
large amounts of data, while being elastic and offering trade-offs between execution time and
monetary cost.

211 H. Kllapi

Elastic Dataflow Processing on the Cloud

H. Kllapi 212

Elastic Dataflow Processing on the Cloud

Chapter 7

Conclusions and Open Problems

Our vision is to build auto-tuned data processing systems on IaaS clouds that automatically
adjust the amount of resources they use by exploiting the elasticity property. In this disser-
tation, we have investigated dataflow processing techniques that exploit both elasticities of
IaaS clouds: the traditional elasticity that is related to the ability to create virtual infrastruc-
tures that change dynamically over time, and eco-elasticity that is related to the trade-offs
between execution time and monetary cost of using compute and storage resources. Our
work shows that both cloud elasticities are essential and should be taken into account in
IaaS clouds in a unified approach. We strongly believe that both elasticities will play an
important role in the design of modern data processing systems in the cloud.

In the following sections, we summarize our main findings and lessons learned, discuss
some areas of data management that can greatly benefit from a unified model of elasticity,
and suggest some research directions that can be pursued to extend this work.

7.1 Summary of Contributions

Initially, in Chapter 3, we showed that eco-elasticity exists in several common tasks, including
complex scientific dataflows, analytical queries, and MapReduce. We also showed that eco-
elasticity can be found in practice using a simple, yet efficient scheduling algorithm. Our
approach could potentially be used by several distributed processing systems with minimal
changes, including those using the MapReduce abstraction. Another important finding is
that the level of abstraction at which the dataflows are expressed plays an important role
on the quality of the results produced. Using the generic dataflow abstraction, we can find
schedules that are better than the equivalent ones produced by MapReduce abstraction,
both in terms of execution time and monetary cost.

213 H. Kllapi

Elastic Dataflow Processing on the Cloud

In Chapter 4, we proposed a set of specialized techniques for the elastic execution of ana-
lytical queries in the form of tree execution plans. These types of queries constitute a large
subset of analytical SQL queries that involve heavy aggregations. We propose to layout the
VMs in a “tree” shape in order to naturally map the execution plans of the queries to the vir-
tual infrastructure. Our elastic allocation algorithm dynamically change the layout of the VMs
based on the query workload in order to maximize the profit generated. A major challenge
that affect elasticity is the data partitioning and placement. We used a technique based on
consistent hashing since is robust to changes in the infrastructure and can be accurately
modeled. We found in practice that is essential for the elasticity of the system.

In Chapter 5, we proposed techniques for automated index management. We exploit the idle
compute resources of the cloud to build beneficial indexes. The phenomenon of idle compute
resources emerges because of the nature of complex dataflows and the prepaid leasing
policy of compute resources. We propose an online algorithm to assess the importance of
indexes and the trade-offs they offer between the speed-up they provide and the monetary
cost needed to maintain them. Our algorithm efficiently uses the idle compute time and build
indexes without additional monetary cost and without delaying dataflow execution. We found
that by efficiently using idle time, we are able to dramatically reduce the monetary cost of
executing dataflows.

Finally, in Chapter 6, we discuss EXAREME, a system for the elastic dataflow processing on
the cloud that defines the context in which all the above problems were investigated, and is
extended in this work. The system is able to elastically change the size of the allocated virtual
infrastructure and gives the ability to easily implement different optimization and auto-tuning
algorithms.

7.2 Future Research Directions

We believe that having a unified model of elasticity, opens up whole new possibilities for auto-
tuned data processing systems on the cloud. In this section, we list some of the major areas
of data management that can benefic from our work, and suggest some future directions.

7.2.1 Elastic Stream Processing

Stream processing has recently become very important since large amounts of data are
generated constantly at high rates. Examples include energy industry [97, 132, 136], so-
cial media [14, 158], and high-energy physics [59]. Several distributed stream processing
systems have been proposed and developed [29, 24]. Many of these systems offer mecha-
nisms to recover from failures and the ability to change in size, however not in an automated

H. Kllapi 214

Elastic Dataflow Processing on the Cloud

way [29]. Automated solutions do exist, however research prototypes proposed so far, ignore
the monetary cost and focus only on performance [163]. Industrial elastic stream processing
services also exist, but it is not clear how they work because they are proprietary [24].

Stream processing systems can greatly benefit from elasticity. The rates at which the data
is generated is changing rapidly, making static solutions suboptimal. Furthermore, complex
operations may be dynamically applied on streams [183], and thus appropriate scheduling
techniques should be investigated. Finally, computing approximate results by incorporating
lossy compression techniques is also important for high velocity streams [65, 98]. We be-
lieve that a unified approach that addresses the above challenges, taking into account the
monetary cost, is promising to investigate.

7.2.2 Elastic Graph Processing

Large-scale graph processing has become very popular topic of research, especially with
the rise of social media [223]. Several distributed graph processing systems have been
proposed [2, 164, 166]. Most of these systems support iterative graph algorithms, like pager-
ank [33] and graph partitioning [193, 222]. The common characteristic of a large class of
these algorithms, is that not all iterations are expensive to compute [83, 108]. For example,
in graph partitioning, the first few iterations are much more expensive than the subsequent
ones [193]. This fact creates the potential to use more resources in the beginning and gradu-
ally release them, greatly reducing the monetary cost, and possibly increasing the efficiency
because data locality is increased.

An interesting area of research is to create elastic algorithms and systems that automatically
choose the optimal amount of resources for each iteration, taking into account the monetary
cost. This poses some new challenges for the runtime environment of such systems. High
quality graph partitioning is very important to balance the load. In addition, hierarchical graph
partitioning techniques should be investigated in order to be able to change the amount of
processing resources used with minimal data re-organization cost [164].

7.2.3 Elastic Data Layout

The data layout, the partitioning scheme, and the data placement are essential for the elas-
ticity of cloud-based data processing systems. Several systems have been proposed that
change dynamically the data layout based on the workload [17, 87]. In this work, we inves-
tigated a hybrid approach that combines distributed file systems techniques which partition
the data and consistent hashing techniques used for data placement. However, other kinds
of query workloads or data types may require different handling.

215 H. Kllapi

Elastic Dataflow Processing on the Cloud

An interesting use case comes from graph processing. In order to benefit from edge locality,
most distributed graph processing systems use balanced graph partitioning techniques [193].
However, producing a partitioning for a particular number of machines, may not preserve
good edge locality for a different number of machines. In practice, partitioning the graph
into multiple hierarchies [12] has been shown to be a promising approach [164], since this
partitioning is near-optimal for a large number of machine configurations. This is a charac-
teristic example that shows the benefits of hierarchical multi-resolution data partitioning in an
elastic environment. Further investigation of cloud-friendly partitioning schemes and elas-
tic algorithms for automated data partitioning and placement that adapt based on various
workloads, is a very promising research direction.

7.2.4 Eco-Elasticity under Different Pricing Schemes

Another interesting direction is to investigate how eco-elasticity is affected by different cloud
pricing schemes. An example is Amazon Spot Instances1 in which the price of the VMs
changes depending on the demand in the “VM market”. Further, most cloud providers offer
special monthly or annual contracts. This affects the monetary cost of using the resources
because their price is determined by the size of the allocated virtual infrastructure and the
time duration (e.g., annual rates are typically cheaper than monthly or hourly rates and large
infrastructures are relatively cheaper than small ones). It is interesting to investigate how to
model and use this in the optimization process.

In our work, we proposed algorithms to tune the system based on the workload for a given
pricing scheme of the cloud provider. Investigating what the optimal pricing scheme should
be for a given query workload (the other direction) is also very interesting.

7.2.5 Generalized Elasticity of Clouds

In this work, we studied eco-elasticity, i.e, the trade-offs between execution time and mone-
tary cost of using the resources. However, other trade-offs also exist. Examples include data
completeness (some users may want only 80% of the answer), aggregate functions accuracy
(some functions like ‘avg’ can be approximated with high accuracy without using all the data),
and data freshness (some users may not want up-to-date values).

Examining all these trade-offs in the context of clouds is a promising direction. For example,
many cloud providers charge for I/O. Since in our work we compute the whole result, this
cost is the same and independent of the parallelism used to answer the query. However, this
is not the case when considering incomplete results. Different trade-offs between execution

1http://aws.amazon.com/ec2/purchasing-options/spot-instances/

H. Kllapi 216

Elastic Dataflow Processing on the Cloud

time and data completeness are affected by the cost of the compute resources but also by
the I/O cost, that should be taken into account in this case.

7.2.6 Elastic Query Optimization

Elasticity should be deeply embedded into the heart of data processing systems in order
to fully exploit its benefits. The query optimizer and the runtime environment should be
designed appropriately for elastic clouds. In this work, we have investigated some aspects
of query optimization with respect to elasticity. Some future research directions regarding
query optimization are the following:

Theoretical Bounds: An interesting extension of this work would be to provide theoretical
bounds on the quality of the skylines solutions produced. It has been shown that skyline
approximation is a tractable problem [186, 187]. This could also be very useful for algorithms
like Branch and Bound [63], that need tight bounds to be able to prune the search space
efficiently.

Elasticity Prediction: Some results presented in this work, indicate that it may be feasible
to predict eco-elasticity using the ranking of operators. Dataflows with low elasticity tend to
have few operators that dominates all others. On the other hand, dataflows with high eco-
elasticity do not have “heavy” operators. The investigation of this is promising since it can
produce enhanced algorithms as follows: if a particular dataflow is not eco-elastic, run a
simpler optimization algorithm that minimizes only execution time. Given that the dataflow is
not eco-elastic, the monetary cost will also be minimized.

Specialized Dataflow Graphs: In our work, we consider arbitrary complex dataflow graphs.
An extremely important direction is to develop optimization techniques for specialized dataflow
graphs. The rationale is that high-level languages, like the dataflow language of EXAREME,
do not produce arbitrary graphs. In the contrary, the complex graphs produced, typically
consists of simpler smaller graphs that can be bipartite, trees, or one-to-one mappings. Han-
dling these simpler graphs properly, will also help reduce the search space by eliminating
symmetries.

Elasticity on the other Levels of Optimization: In our work, we investigated trade-offs at
the scheduling level of optimization, i.e., how much parallelism to use, how to assign the
operators to the VMs, and choose the mode of operation (pipeline or store-and-forward)
as defined in Chapter 1. This is at the heart of all distributed processing systems and our
approach may be used in many different environments (e.g., data warehouses, MapReduce,
workflow management systems). It is worth extending this and explore time/money trade-offs
in the other levels of optimization as well. Some recent works have started investigating this
direction [217].

217 H. Kllapi

Elastic Dataflow Processing on the Cloud

Adaptive Query Execution: Another possibility worth investigating is blending the dataflow
execution with the optimization process itself. In this way, optimizer may collect statistics
from the runtime engine while the dataflow is being executed, and possibly reconsider opti-
mization decisions based on the actual numbers and not solely on predictions. This can also
minimize estimation errors that occur from modeling simplifications or inaccurate statistics
(histograms).

H. Kllapi 218

Elastic Dataflow Processing on the Cloud

Chapter 8

Bibliography

[1] Amazon Simple Storage Service (S3), http://aws.amazon.com/s3/.

[2] Apache Giraph, http://giraph.apache.org/.

[3] Apache Tez, http://tez.apache.org/.

[4] "Cloudera Impala: Open source, interactive SQL for
Hadoop, http://www.cloudera.com/content/cloudera/en/products-and-
services/cdh/impala.html".

[5] Google Cloud Platform, http://www.google.com/appserve/.

[6] JBoss Teiid, http://www.jboss.org/teiid/.

[7] madIS : an extensible relational database, https://code.google.com/p/madis/.

[8] TPC-H Benchmark, http://www.tpc.org/tpch/.

[9] Multi-version concurrency control algorithms. In Encyclopedia of Database Systems,
page 1870. 2009.

[10] D. J. Abadi, S. Madden, and N. Hachem. Column-stores vs. row-stores: how different
are they really? In Proceedings of the ACM SIGMOD International Conference on
Management of Data, SIGMOD 2008, Vancouver, BC, Canada, June 10-12, 2008,
pages 967–980, 2008.

[11] D. J. Abadi, D. S. Myers, D. J. DeWitt, and S. Madden. Materialization strategies
in a column-oriented DBMS. In Proceedings of the 23rd International Conference on
Data Engineering, ICDE 2007, The Marmara Hotel, Istanbul, Turkey, April 15-20, 2007,
pages 466–475, 2007.

219 H. Kllapi

http://tez.apache.org/
http://www.tpc.org/tpch/

Elastic Dataflow Processing on the Cloud

[12] A. Abou-Rjeili and G. Karypis. Multilevel algorithms for partitioning power-law graphs.
In 20th International Parallel and Distributed Processing Symposium (IPDPS 2006),
Proceedings, 25-29 April 2006, Rhodes Island, Greece, 2006.

[13] A. Abouzeid, K. Bajda-Pawlikowski, D. J. Abadi, A. Rasin, and A. Silberschatz.
HadoopDB: An architectural hybrid of MapReduce and DBMS technologies for ana-
lytical workloads. PVLDB, 2(1):922–933, 2009.

[14] L. Abraham, J. Allen, O. Barykin, V. R. Borkar, B. Chopra, C. Gerea, D. Merl, J. Met-
zler, D. Reiss, S. Subramanian, J. L. Wiener, and O. Zed. Scuba: Diving into data at
facebook. PVLDB, 6(11):1057–1067, 2013.

[15] F. N. Afrati, A. D. Sarma, S. Salihoglu, and J. D. Ullman. Upper and lower bounds on
the cost of a Map-Reduce computation. PVLDB, 6(4):277–288, 2013.

[16] I. Alagiannis, R. Borovica, M. Branco, S. Idreos, and A. Ailamaki. Nodb: efficient query
execution on raw data files. In SIGMOD Conference, pages 241–252, 2012.

[17] I. Alagiannis, S. Idreos, and A. Ailamaki. H2O: a hands-free adaptive store. In Interna-
tional Conference on Management of Data, SIGMOD 2014, Snowbird, UT, USA, June
22-27, 2014, pages 1103–1114, 2014.

[18] A. Alexandrov, D. Battré, S. Ewen, M. Heimel, F. Hueske, O. Kao, V. Markl, E. Nijkamp,
and D. Warneke. Massively parallel data analysis with pacts on nephele. PVLDB,
3(2):1625–1628, 2010.

[19] A. Alexandrov, R. Bergmann, S. Ewen, J.-C. Freytag, F. Hueske, A. Heise, O. Kao,
M. Leich, U. Leser, V. Markl, F. Naumann, M. Peters, A. Rheinländer, M. Sax, S. Schel-
ter, M. Höger, K. Tzoumas, and D. Warneke. The stratosphere platform for big data
analytics. The VLDB Journal, pages 1–26, 2014.

[20] M. N. Alpdemir, A. Mukherjee, A. Gounaris, N. W. Paton, P. Watson, A. A. A. Fernan-
des, and D. J. Fitzgerald. OGSA-DQP: A service for distributed querying on the grid.
In Advances in Database Technology - EDBT 2004, 9th International Conference on
Extending Database Technology, Heraklion, Crete, Greece, March 14-18, 2004, Pro-
ceedings, pages 858–861, 2004.

[21] Amazon. Amazon Elastic Compute Cloud (EC2), http://aws.amazon.com/ec2/.

[22] Amazon. Amazon Elastic Map Reduce.

[23] Amazon. Amazon Web Services, http://aws.amazon.com.

[24] Amazon. Kinesis stream processing engine on the cloud.

[25] K. H. Ang, G. Chong, and Y. Li. PID control system analysis, design, and technology.
IEEE Trans. Contr. Sys. Techn., 13(4):559–576, 2005.

H. Kllapi 220

Elastic Dataflow Processing on the Cloud

[26] Apache. Apache, hadoop file system, http://hadoop.apache.org/docs/r1.2.1/hdfs_design.html.

[27] Apache. Apache hadoop, http://hadoop.apache.org/.

[28] Apache. Mahout : Scalable machine-learning and data-mining library,
http://mahout.apache.org/.

[29] Apache. Storm: Highly Scaleble and Fault-Tolerant Stream Processing.

[30] Apache. Tez, http://tez.apache.org/.

[31] M. Arenas. Normal forms and normalization. In Encyclopedia of Database Systems,
pages 1917–1920. 2009.

[32] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. H. Katz, A. Konwinski, G. Lee, D. A.
Patterson, A. Rabkin, I. Stoica, and M. Zaharia. A view of cloud computing. Commun.
ACM, 53(4):50–58, 2010.

[33] B. Bahmani, K. Chakrabarti, and D. Xin. Fast personalized pagerank on mapreduce. In
Proceedings of the ACM SIGMOD International Conference on Management of Data,
SIGMOD 2011, Athens, Greece, June 12-16, 2011, pages 973–984, 2011.

[34] K. Bajda-Pawlikowski, D. J. Abadi, A. Silberschatz, and E. Paulson. Efficient pro-
cessing of data warehousing queries in a split execution environment. In SIGMOD
Conference, pages 1165–1176, 2011.

[35] C. Ballinger. Evolving teradata decision support for massively parallel processing with
UNIX. In Proceedings of the 1994 ACM SIGMOD International Conference on Man-
agement of Data, Minneapolis, Minnesota, May 24-27, 1994., page 490, 1994.

[36] A. Barker and J. I. van Hemert. Scientific workflow: A survey and research directions.
In Parallel Processing and Applied Mathematics, 7th International Conference, PPAM
2007, Gdansk, Poland, September 9-12, 2007, Revised Selected Papers, pages 746–
753, 2007.

[37] E. Bayeh. The websphere application server architecture and programming model.
IBM Systems Journal, 37(3):336–348, 1998.

[38] S. Bellamkonda, H.-G. Li, U. Jagtap, Y. Zhu, V. Liang, and T. Cruanes. Adaptive and
big data scale parallel execution in oracle. PVLDB, 6(11):1102–1113, 2013.

[39] P. A. Bernstein, F. Giunchiglia, A. Kementsietsidis, J. Mylopoulos, L. Serafini, and I. Za-
ihrayeu. Data management for peer-to-peer computing : A vision. In WebDB, pages
89–94, 2002.

[40] K. S. Beyer, V. Ercegovac, R. Gemulla, A. Balmin, M. Y. Eltabakh, C. Kanne, F. Öz-
can, and E. J. Shekita. Jaql: A scripting language for large scale semistructured data
analysis. PVLDB, 4(12):1272–1283, 2011.

221 H. Kllapi

http://tez.apache.org/

Elastic Dataflow Processing on the Cloud

[41] S. Bharathi, A. Chervenak, E. Deelman, G. Mehta, M.-H. Su, and K. Vahi. Characteri-
zation of scientific workflows. pages 1 –10, nov. 2008.

[42] P. A. Boncz, M. Zukowski, and N. Nes. Monetdb/x100: Hyper-pipelining query execu-
tion. In CIDR, pages 225–237, 2005.

[43] N. Bruno and S. Chaudhuri. Automatic physical database tuning: A relaxation-based
approach. In SIGMOD Conference, pages 227–238, 2005.

[44] N. Bruno and S. Chaudhuri. An online approach to physical design tuning. In ICDE,
pages 826–835, April 2007.

[45] N. Bruno and S. Chaudhuri. Constrained physical design tuning. VLDB J., 19(1):21–
44, 2010.

[46] N. Bruno, S. Jain, and J. Zhou. Continuous cloud-scale query optimization and pro-
cessing. PVLDB, (11):961–972, 2013.

[47] J. J. Bunn, H. B. Newman, S. McKee, D. G. Foster, R. Cavanaugh, and R. Hughes-
Jones. Bandwidth challenge - high speed data gathering, distribution and analysis
for physics discoveries at the large hadron collider. In Proceedings of the ACM/IEEE
SC2006 Conference on High Performance Networking and Computing, November 11-
17, 2006, Tampa, FL, USA, page 241. ACM Press, 2006.

[48] R. H. Byrd, P. Lu, J. Nocedal, and C. Zhu. A limited memory algorithm for bound
constrained optimization. SIAM J. Sci. Comput., 16(5):1190–1208, Sept. 1995.

[49] D. Calvanese et al. Optique: Obda solution for big data. In ESWC, pages 293–295,
2013.

[50] C. Chambers, A. Raniwala, F. Perry, S. Adams, R. R. Henry, R. Bradshaw, and
N. Weizenbaum. Flumejava: easy, efficient data-parallel pipelines. In Proceedings
of the 2010 ACM SIGPLAN Conference on Programming Language Design and Im-
plementation, PLDI 2010, Toronto, Ontario, Canada, June 5-10, 2010, pages 363–375,
2010.

[51] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Burrows, T. Chandra,
A. Fikes, and R. Gruber. Bigtable: A distributed storage system for structured data
(awarded best paper!). In OSDI, pages 205–218, 2006.

[52] B. Chattopadhyay, L. Lin, W. Liu, S. Mittal, P. Aragonda, V. Lychagina, Y. Kwon, and
M. Wong. Tenzing A SQL implementation on the mapreduce framework. PVLDB,
4(12):1318–1327, 2011.

[53] G. Chen, H. T. Vo, S. Wu, B. C. Ooi, and M. T. Özsu. A framework for supporting
dbms-like indexes in the cloud. PVLDB, 4(11):702–713, 2011.

H. Kllapi 222

Elastic Dataflow Processing on the Cloud

[54] A. L. Chervenak, E. Deelman, M. Livny, M.-H. Su, R. Schuler, S. Bharathi, G. Mehta,
and K. Vahi. Data placement for scientific applications in distributed environments. In
GRID, pages 267–274, 2007.

[55] A. Cheung, O. Arden, S. Madden, and A. C. Myers. Automatic partitioning of database
applications. PVLDB, 5(11):1471–1482, 2012.

[56] K. Chodorow and M. Dirolf. MongoDB - The Definitive Guide: Powerful and Scalable
Data Storage. O’Reilly, 2010.

[57] E. F. Codd. A relational model of data for large shared data banks. Commun. ACM,
13(6):377–387, 1970.

[58] E. F. Codd. The Relational Model for Database Management, Version 2. Addison-
Wesley, 1990.

[59] C. Collaboration and R. Adolphi. The cms experiment at the cern lhc. Jinst,
3(S08004):50, 2008.

[60] M. P. Consens, K. Ioannidou, J. LeFevre, and N. Polyzotis. Divergent physical design
tuning for replicated databases. In SIGMOD Conference, pages 49–60, 2012.

[61] B. F. Cooper, R. Ramakrishnan, U. Srivastava, A. Silberstein, P. Bohannon, H.-A. Ja-
cobsen, N. Puz, D. Weaver, and R. Yerneni. Pnuts: Yahoo!’s hosted data serving
platform. PVLDB, 1(2):1277–1288, 2008.

[62] J. C. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost, J. J. Furman, S. Ghemawat,
A. Gubarev, C. Heiser, P. Hochschild, W. C. Hsieh, S. Kanthak, E. Kogan, H. Li,
A. Lloyd, S. Melnik, D. Mwaura, D. Nagle, S. Quinlan, R. Rao, L. Rolig, Y. Saito, M. Szy-
maniak, C. Taylor, R. Wang, and D. Woodford. Spanner: Google’s globally distributed
database. ACM Trans. Comput. Syst., 31(3):8, 2013.

[63] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms
(3. ed.). MIT Press, 2009.

[64] C. Curino, E. P. C. Jones, S. Madden, and H. Balakrishnan. Workload-aware database
monitoring and consolidation. In SIGMOD Conference, pages 313–324, 2011.

[65] A. Cuzzocrea and S. Chakravarthy. Event-based lossy compression for effective and
efficient OLAP over data streams. Data Knowl. Eng., 69(7):678–708, 2010.

[66] S. Das, D. Agrawal, and A. El Abbadi. Elastras: An elastic, scalable, and self-managing
transactional database for the cloud. ACM Trans. Database Syst., 38(1):5, 2013.

[67] D. Dash, N. Polyzotis, and A. Ailamaki. Cophy: A scalable, portable, and interactive
index advisor for large workloads. PVLDB, 4(6):362–372, 2011.

223 H. Kllapi

Elastic Dataflow Processing on the Cloud

[68] C. J. Date and H. Darwen. A Guide to the SQL Standard (4th Ed.): A User’s Guide
to the Standard Database Language SQL. Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA, 1997.

[69] J. Dean and S. Ghemawat. MapReduce: Simplified Data Processing on Large Clus-
ters. In 6th Symposium on Operating System Design and Implementation, pages 137–
150, 2004.

[70] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman, A. Pilchin,
S. Sivasubramanian, P. Vosshall, and W. Vogels. Dynamo: amazon’s highly available
key-value store. In Proceedings of the 21st ACM Symposium on Operating Systems
Principles 2007, SOSP 2007, Stevenson, Washington, USA, October 14-17, 2007,
pages 205–220, 2007.

[71] E. Deelman, S. Callaghan, E. Field, H. Francoeur, R. Graves, N. Gupta, V. Gupta,
T. H. Jordan, C. Kesselman, P. Maechling, J. Mehringer, G. Mehta, D. Okaya, K. Vahi,
and L. Zhao. Managing large-scale workflow execution from resource provisioning to
provenance tracking: The cybershake example. In Second International Conference
on e-Science and Grid Technologies (e-Science 2006), 4-6 December 2006, Amster-
dam, The Netherlands, page 14, 2006.

[72] E. Deelman and A. L. Chervenak. Data management challenges of data-intensive
scientific workflows. In CCGRID, pages 687–692, 2008.

[73] E. Deelman, C. Kesselman, G. Mehta, L. Meshkat, L. Pearlman, K. Blackburn,
P. Ehrens, A. Lazzarini, R. Williams, and S. Koranda. Griphyn and ligo, building a
virtual data grid for gravitational wave scientists. In 11th IEEE International Sympo-
sium on High Performance Distributed Computing (HPDC-11 2002), 23-26 July 2002,
Edinburgh, Scotland, UK, page 225, 2002.

[74] E. Deelman, G. Mehta, G. Singh, M.-H. Su, and K. Vahi. Pegasus: Mapping Large
Scale Workflows to Distributed Resources in Workflows in e-Science. Springer, 2006.

[75] E. Deelman, G. Singh, M. Livny, G. B. Berriman, and J. Good. The cost of doing
science on the cloud: the montage example. In IEEE/ACM SC, page 50, 2008.

[76] D. J. DeWitt and J. Gray. Parallel database systems: The future of high performance
database systems. Communications of the ACM, 35(6):85–98, 1992.

[77] J. Dittrich et al. Hadoop++: Making a yellow elephant run like a cheetah (without it
even noticing). PVLDB, 2010.

[78] J. Dittrich, J.-A. Quiané-Ruiz, S. Richter, S. Schuh, A. Jindal, and J. Schad. Only
aggressive elephants are fast elephants. PVLDB, 5(11):1591–1602, 2012.

H. Kllapi 224

Elastic Dataflow Processing on the Cloud

[79] J. Dong, Y. Sun, and S. Yang. OWL-S ontology framework extension for dynamic web
service composition. In Proceedings of the Eighteenth International Conference on
Software Engineering & Knowledge Engineering (SEKE’2006), San Francisco,
CA, USA, July 5-7, 2006, pages 544–549, 2006.

[80] J. Duggan and M. Stonebraker. Incremental elasticity for array databases. In SIGMOD
2014, Snowbird, UT, USA, June, 2014, pages 409–420, 2014.

[81] A. Eisenberg. New standard for stored procedures in SQL. SIGMOD Record,
25(4):81–88, 1996.

[82] A. J. Elmore, S. Das, D. Agrawal, and A. El Abbadi. Zephyr: live migration in shared
nothing databases for elastic cloud platforms. In Proceedings of the ACM SIGMOD
International Conference on Management of Data, SIGMOD 2011, Athens, Greece,
June 12-16, 2011, pages 301–312, 2011.

[83] S. Ewen, S. Schelter, K. Tzoumas, D. Warneke, and V. Markl. Iterative parallel data
processing with stratosphere: an inside look. In SIGMOD Conference, pages 1053–
1056, 2013.

[84] Facebook. Open compute project.

[85] R. Fagin, R. Kumar, and D. Sivakumar. Comparing top k lists. In SODA, pages 28–36,
2003.

[86] W. Fan, F. Geerts, and F. Neven. Making queries tractable on big data with prepro-
cessing. PVLDB, 6(9), 2013.

[87] F. Färber, S. K. Cha, J. Primsch, C. Bornhövd, S. Sigg, and W. Lehner. SAP HANA
database: data management for modern business applications. SIGMOD Record,
40(4):45–51, 2011.

[88] R. T. Fielding. Architectural Styles and the Design of Network-based Software Archi-
tectures. PhD thesis, 2000. AAI9980887.

[89] D. Florescu and D. Kossmann. Rethinking cost and performance of database systems.
SIGMOD Record, 38(1):43–48, 2009.

[90] I. Foster. The physiology of the grid: An open grid services architecture for distributed
systems integration. 2002.

[91] J. Freund, D. Comaniciu, Y. E. Ioannis, P. Liu, R. McClatchey, E. Morley-Fletcher,
X. Pennec, G. Pongiglione, and X. S. Zhou. Health-e-child: An integrated biomedi-
cal platform for grid-based paediatric applications. In Challenges and Opportunities of
HealthGrids - Proceedings of Healthgrid 2006, Valencia, Spain, 7-9 June, 2006, pages
259–270, 2006.

225 H. Kllapi

Elastic Dataflow Processing on the Cloud

[92] H. Garcia-Molina, D. Quass, Y. Papakonstantinou, A. Rajaraman, Y. Sagiv, J. D. Ull-
man, and J. Widom. The TSIMMIS approach to mediation: Data models and lan-
guages. In Next Generation Information Technologies and Systems (NGITS ’95), Sec-
ond International Workshop, Naharia, Israel, June 27-29, 1995, page 0, 1995.

[93] M. N. Garofalakis and Y. E. Ioannidis. "Parallel Query Scheduling and Optimization
with Time- and Space-Shared Resources". In VLDB, pages 296–305, 1997.

[94] S. Genaud and J. Gossa. Cost-wait trade-offs in client-side resource provisioning with
elastic clouds. In IEEE CLOUD, pages 1–8, 2011.

[95] L. George. HBase - The Definitive Guide: Random Access to Your Planet-Size Data.
O’Reilly, 2011.

[96] S. Ghemawat, H. Gobioff, and S.-T. Leung. The google file system. In SOSP, pages
29–43, 2003.

[97] M. Giese, D. Calvanese, P. Haase, I. Horrocks, Y. Ioannidis, H. Kllapi, M. Koubarakis,
M. Lenzerini, R. Möller, M. Rodriguez-Muro, Ö. Özcep, R. Rosati, R. Schlatte,
M. Schmidt, A. Soylu, and A. Waaler. Scalable end-user access to big data. In R. Ak-
erkar, editor, Big Data Computing. CRC Press, 2013.

[98] A. C. Gilbert, Y. Kotidis, S. Muthukrishnan, and M. Strauss. One-pass wavelet decom-
positions of data streams. IEEE Trans. Knowl. Data Eng., 15(3):541–554, 2003.

[99] L. M. V. Gonzalez, L. R. Merino, J. Caceres, and M. Lindner. A break in the clouds:
towards a cloud definition. Computer Communication Review, pages 50–55, 2009.

[100] R. L. Graham. Bounds on Multiprocessing Timing Anomalies. SIAM Journal of Applied
Mathematics, 17(2):416–429, 1969.

[101] A. Gupta, F. Yang, J. Govig, A. Kirsch, K. Chan, K. Lai, S. Wu, S. Dhoot, A. Ku-
mar, A. Agiwal, S. Bhansali, M. Hong, J. Cameron, M. Siddiqi, D. Jones, J. Shute,
A. Gubarev, S. Venkataraman, and D. Agrawal. Mesa: Geo-replicated, near real-time,
scalable data warehousing. In VLDB, 2014.

[102] Hadapt. Hadapt Analytical Platform, http://www.hadapt.com/, 2011.

[103] R. Halasipuram, P. M. Deshpande, and S. Padmanabhan. Determining essential statis-
tics for cost based optimization of an etl workflow. In EDBT, pages 307–318, 2014.

[104] A. Y. Halevy. Answering queries using views: A survey. VLDB J., 10(4):270–294, 2001.

[105] A. Y. Halevy, A. Rajaraman, and J. J. Ordille. Data integration: The teenage years. In
VLDB, pages 9–16, 2006.

H. Kllapi 226

Elastic Dataflow Processing on the Cloud

[106] J. Hammer, H. Garcia-Molina, K. Ireland, Y. Papakonstantinou, J. D. Ullman, and
J. Widom. Information translation, mediation, and mosaic-based browsing in the TSIM-
MIS system. In Proceedings of the 1995 ACM SIGMOD International Conference on
Management of Data, San Jose, California, May 22-25, 1995., page 483, 1995.

[107] J. Han and M. Kamber. Data Mining: Concepts and Techniques. Morgan Kaufmann,
2000.

[108] M. Han, K. Daudjee, K. Ammar, M. T. Özsu, X. Wang, and T. Jin. An experimental
comparison of pregel-like graph processing systems. PVLDB, 7(12):1047–1058, 2014.

[109] S. Harizopoulos, M. A. Shah, J. Meza, and P. Ranganathan. Energy efficiency: The
new holy grail of data management systems research. In CIDR 2009, Fourth Biennial
Conference on Innovative Data Systems Research, Asilomar, CA, USA, January 4-7,
2009, Online Proceedings, 2009.

[110] J. M. Hellerstein, C. Ré, F. Schoppmann, D. Z. Wang, E. Fratkin, A. Gorajek, K. S. Ng,
C. Welton, X. Feng, K. Li, and A. Kumar. The madlib analytics library or MAD skills,
the SQL. PVLDB, 5(12):1700–1711, 2012.

[111] H. Herodotou and S. Babu. Profiling, what-if analysis, and cost-based optimization of
mapreduce programs. PVLDB, 4(11):1111–1122, 2011.

[112] T. Hey, S. Tansley, and K. M. Tolle, editors. The Fourth Paradigm: Data-Intensive
Scientific Discovery. Microsoft Research, 2009.

[113] P. Hoenisch, S. Schulte, S. Dustdar, and S. Venugopal. Self-adaptive resource allo-
cation for elastic process execution. In 2013 IEEE Sixth International Conference on
Cloud Computing, Santa Clara, CA, USA, June 28 - July 3, 2013, pages 220–227,
2013.

[114] J. Huang, B. Jiang, J. Pei, J. Chen, and Y. Tang. Skyline distance: a measure of
multidimensional competence. Knowl. Inf. Syst., 34(2):373–396, 2013.

[115] F. Hueske, M. Peters, M. Sax, A. Rheinländer, R. Bergmann, A. Krettek, and
K. Tzoumas. Opening the black boxes in data flow optimization. PVLDB, 5(11):1256–
1267, 2012.

[116] IBM. "IBM Cloud, http://www.ibm.com/cloud-computing/us/en/".

[117] IBM. "IBM Database, http://www-01.ibm.com/software/data/db2/".

[118] IBM. "IBM GaianDB, https://www.ibm.com/developerworks/community/blogs/gaiandb/?lang=en".

[119] S. Idreos, F. Groffen, N. Nes, S. Manegold, K. S. Mullender, and M. L. Kersten. Mon-
etdb: Two decades of research in column-oriented database architectures. IEEE Data
Eng. Bull., 35(1):40–45, 2012.

227 H. Kllapi

Elastic Dataflow Processing on the Cloud

[120] S. Idreos, M. L. Kersten, and S. Manegold. Database cracking. In CIDR 2007, Third
Biennial Conference on Innovative Data Systems Research, Asilomar, CA, USA, Jan-
uary 7-10, 2007, Online Proceedings, pages 68–78, 2007.

[121] S. Idreos, M. L. Kersten, and S. Manegold. Self-organizing tuple reconstruction in
column-stores. In Proceedings of the ACM SIGMOD International Conference on Man-
agement of Data, SIGMOD 2009, Providence, Rhode Island, USA, June 29 - July 2,
2009, pages 297–308, 2009.

[122] Y. E. Ioannidis. Query optimization. ACM Comput. Surv., 28(1):121–123, 1996.

[123] Y. E. Ioannidis. Query optimization. In The Computer Science and Engineering Hand-
book, pages 1038–1057. 1997.

[124] Y. E. Ioannidis and E. Wong. "Query Optimization by Simulated Annealing". In SIG-
MOD Conference, pages 9–22, 1987.

[125] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly. Dryad: distributed data-parallel
programs from sequential building blocks. In EuroSys, pages 59–72, 2007.

[126] Z. István, L. Woods, and G. Alonso. Histograms as a side effect of data movement for
big data. In SIGMOD Conference, pages 1567–1578, 2014.

[127] J. C. Jacob, D. S. Katz, G. B. Berriman, J. Good, A. C. Laity, E. Deelman, C. Kesselman,
G. Singh, M. Su, T. A. Prince, and R. Williams. Montage: a grid portal and software
toolkit for science-grade astronomical image mosaicking. IJCSE, 4(2):73–87, 2009.

[128] I. Jimenez, H. Sanchez, Q. T. Tran, and N. Polyzotis. Kaizen: a semi-automatic index
advisor. In SIGMOD Conference, pages 685–688, 2012.

[129] V. Kantere, D. Dash, G. Gratsias, and A. Ailamaki. Predicting cost amortization for
query services. In SIGMOD Conference, pages 325–336, 2011.

[130] D. R. Karger, E. Lehman, F. T. Leighton, R. Panigrahy, M. S. Levine, and D. Lewin. Con-
sistent hashing and random trees: Distributed caching protocols for relieving hot spots
on the world wide web. In Proceedings of the Twenty-Ninth Annual ACM Symposium
on the Theory of Computing, El Paso, Texas, USA, May 4-6, 1997, pages 654–663,
1997.

[131] H. Kellerer, U. Pferschy, and D. Pisinger. Knapsack problems. Springer, 2004.

[132] E. Kharlamov, E. Jiménez-Ruiz, D. Zheleznyakov, D. Bilidas, M. Giese, P. Haase,
I. Horrocks, H. Kllapi, M. Koubarakis, Ö. L. Özçep, M. Rodriguez-Muro, R. Rosati,
M. Schmidt, R. Schlatte, A. Soylu, and A. Waaler. Optique: Towards OBDA systems
for industry. In The Semantic Web: ESWC 2013 Satellite Events - ESWC 2013 Satel-
lite Events, Montpellier, France, May 26-30, 2013, Revised Selected Papers, pages
125–140, 2013.

H. Kllapi 228

Elastic Dataflow Processing on the Cloud

[133] Y. Kim, G. won You, and S. won Hwang. Escaping a dominance region at minimum
cost. In DEXA, pages 800–807, 2008.

[134] J. Kleinberg and E. Tardos. Algorithm Design. Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA, 2005.

[135] H. Kllapi, D. Achlioptas, and Y. Ioannidis. Time is money but how much? elastic
dataflow processing on the cloud. Manuscript submitted for review, 2014.

[136] H. Kllapi et al. Distributed query processing on the cloud: the optique point of view
(short paper). In OWLED, Montpellier, France, 2013., 2013.

[137] H. Kllapi et al. Elastic processing of analytical query workloads on iaas clouds. CoRR,
abs/1501.01070, 2015.

[138] H. Kllapi, B. Harb, and C. Yu. Near neighbor join. In ICDE 2014, USA, March 31 - April
4, 2014, pages 1120–1131, 2014.

[139] H. Kllapi, B. Harb, and C. Yu. Near neighbor join. In ICDE, pages 1120–1131, 2014.

[140] H. Kllapi, V. Kantere, and Y. Ioannidis. Automated management of data structures in
the cloud. Manuscript submitted for review, 2014.

[141] H. Kllapi, E. Sitaridi, M. M. Tsangaris, and Y. E. Ioannidis. Schedule optimization for
data processing flows on the cloud. In SIGMOD Conference, pages 289–300, 2011.

[142] H. Kllapi, L. Stamatogiannakis, M. Tsangaris, and Y. Ioannidis. Exareme: Sailing
through flows of big data. Manuscript submitted for review, 2014.

[143] I. Konstantinou, E. Angelou, D. Tsoumakos, C. Boumpouka, N. Koziris, and S. Sioutas.
TIRAMOLA: elastic nosql provisioning through a cloud management platform. In Pro-
ceedings of the ACM SIGMOD International Conference on Management of Data, SIG-
MOD 2012, Scottsdale, AZ, USA, May 20-24, 2012, pages 725–728, 2012.

[144] D. Kossmann. The state of the art in distributed query processing. ACM Computing
Surveys, 32(4):P422–469, 2000.

[145] D. Kossmann. "The state of the art in distributed query processing". ACM Comput.
Surv., 32(4):422–469, 2000.

[146] K. Krauter, R. Buyya, and M. Maheswaran. A taxonomy and survey of grid resource
management systems for distributed computing. Softw., Pract. Exper., 32(2):135–164,
2002.

[147] Y.-K. Kwok and I. Ahmad. Benchmarking and Comparison of the Task Graph Schedul-
ing Algorithms. J. Parallel Distrib. Comput., 59(3):381–422, 1999.

229 H. Kllapi

Elastic Dataflow Processing on the Cloud

[148] A. Lakshman and P. Malik. Cassandra: structured storage system on a p2p network.
In PODC, page 5, 2009.

[149] A. Lakshman and P. Malik. Cassandra: a decentralized structured storage system.
Operating Systems Review, 44(2):35–40, 2010.

[150] A. Lamb et al. The vertica analytic database: C-store 7 years later. PVLDB,
5(12):1790–1801, 2012.

[151] R. Lee, T. Luo, Y. Huai, F. Wang, Y. He, and X. Zhang. Ysmart: Yet another sql-to-
mapreduce translator. In ICDCS, pages 25–36, 2011.

[152] J. LeFevre, J. Sankaranarayanan, H. Hacigümüs, J. Tatemura, N. Polyzotis, and M. J.
Carey. MISO: souping up big data query processing with a multistore system. In In-
ternational Conference on Management of Data, SIGMOD 2014, Snowbird, UT, USA,
June 22-27, 2014, pages 1591–1602, 2014.

[153] M. Lenzerini. Data integration: A theoretical perspective. In Proceedings of the Twenty-
first ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems,
June 3-5, Madison, Wisconsin, USA, pages 233–246, 2002.

[154] A. Y. Levy, A. Rajaraman, and J. J. Ordille. Querying heterogeneous information
sources using source descriptions. In VLDB, pages 251–262, 1996.

[155] J. Li, A. C. König, V. R. Narasayya, and S. Chaudhuri. Robust estimation of resource
consumption for sql queries using statistical techniques. PVLDB, 5(11):1555–1566,
2012.

[156] Y. Li et al. Numa-aware algorithms: the case of data shuffling. In CIDR, 2013.

[157] H. Lim, H. Herodotou, and S. Babu. Stubby: A transformation-based optimizer for
mapreduce workflows. PVLDB, 5(11):1196–1207, 2012.

[158] J. Lin and D. V. Ryaboy. Scaling big data mining infrastructure: the twitter experience.
SIGKDD Explorations, 14(2):6–19, 2012.

[159] V. Linnemann, K. Küspert, P. Dadam, P. Pistor, R. Erbe, A. Kemper, N. Südkamp,
G. Walch, and M. Wallrath. Design and implementation of an extensible database
management system supporting user defined data types and functions. In Fourteenth
International Conference on Very Large Data Bases, August 29 - September 1, 1988,
Los Angeles, California, USA, Proceedings., pages 294–305, 1988.

[160] M. J. Litzkow, M. Livny, and M. W. Mutka. Condor - A hunter of idle workstations. In
Proceedings of the 8th International Conference on Distributed Computing Systems,
San Jose, California, USA, June 13-17, 1988, pages 104–111, 1988.

[161] D. T. Liu and M. J. Franklin. "The Design of GridDB: A Data-Centric Overlay for the
Scientific Grid". In VLDB, pages 600–611, 2004.

H. Kllapi 230

Elastic Dataflow Processing on the Cloud

[162] L. Liu, H. Wang, X. Liu, X. Jin, W. B. He, Q. B. Wang, and Y. Chen. Greencloud: A new
architecture for green data center. In Proceedings of the 6th International Conference
Industry Session on Autonomic Computing and Communications Industry Session,
ICAC-INDST ’09, pages 29–38, New York, NY, USA, 2009. ACM.

[163] S. Loesing, M. Hentschel, T. Kraska, and D. Kossmann. Stormy: an elastic and highly
available streaming service in the cloud. In Proceedings of the 2012 Joint EDBT/ICDT
Workshops, Berlin, Germany, March 30, 2012, pages 55–60, 2012.

[164] Y. Low, J. Gonzalez, A. Kyrola, D. Bickson, C. Guestrin, and J. M. Hellerstein. Dis-
tributed graphlab: A framework for machine learning in the cloud. PVLDB, 5(8):716–
727, 2012.

[165] J. Madhavan, P. A. Bernstein, and E. Rahm. Generic schema matching with cupid. In
VLDB 2001, Proceedings of 27th International Conference on Very Large Data Bases,
September 11-14, 2001, Roma, Italy, pages 49–58, 2001.

[166] G. Malewicz, M. H. Austern, A. J. C. Bik, J. C. Dehnert, I. Horn, N. Leiser, and G. Cza-
jkowski. Pregel: a system for large-scale graph processing. In Proceedings of the
ACM SIGMOD International Conference on Management of Data, SIGMOD 2010, In-
dianapolis, Indiana, USA, June 6-10, 2010, pages 135–146, 2010.

[167] T. Malik, X. Wang, D. Dash, A. Chaudhary, A. Ailamaki, and R. C. Burns. Adaptive
physical design for curated archives. In SSDBM, pages 148–166, 2009.

[168] M. Mehta and D. J. DeWitt. Data placement in shared-nothing parallel database sys-
tems. VLDB, 1997.

[169] S. Melnik, A. Gubarev, J. J. Long, G. Romer, S. Shivakumar, M. Tolton, and T. Vas-
silakis. Dremel: Interactive analysis of web-scale datasets. PVLDB, 3(1):330–339,
2010.

[170] A. Metwally and C. Faloutsos. V-smart-join: A scalable mapreduce framework for all-
pair similarity joins of multisets and vectors. PVLDB, 5(8):704–715, 2012.

[171] K. Morfonios and Y. E. Ioannidis. Snowflake schema. In Encyclopedia of Database
Systems, pages 2665–2666. 2009.

[172] K. Morfonios and Y. E. Ioannidis. Revisiting the cube lifecycle in the presence of hier-
archies. VLDB J., 19(2):257–282, 2010.

[173] D. G. Murray, F. McSherry, R. Isaacs, M. Isard, P. Barham, and M. Abadi. Naiad:
a timely dataflow system. In ACM SIGOPS 24th Symposium on Operating Systems
Principles, SOSP ’13, Farmington, PA, USA, November 3-6, 2013, pages 439–455,
2013.

231 H. Kllapi

Elastic Dataflow Processing on the Cloud

[174] M. Nicola and B. V. der Linden. Native XML support in DB2 universal database. In
VLDB. ACM, 2005.

[175] A. Okcan and M. Riedewald. Processing theta-joins using mapreduce. In SIGMOD
Conference, pages 949–960, 2011.

[176] C. Olston, B. Reed, U. Srivastava, R. Kumar, and A. Tomkins. Pig latin: a not-so-foreign
language for data processing. In SIGMOD, pages 1099–1110, 2008.

[177] OpenStack. OpenStack, http://www.openstack.org/.

[178] A. Oprescu and T. Kielmann. Bag-of-tasks scheduling under budget constraints. In
Cloud Computing, Second International Conference, CloudCom 2010, November 30 -
December 3, 2010, Indianapolis, Indiana, USA, Proceedings, pages 351–359. IEEE,
2010.

[179] Oracle. "Oracle Cloud, https://cloud.oracle.com/home".

[180] Oracle. "Oracle Database, https://www.oracle.com/database".

[181] Oracle. Oracle database 10g: The database for the grid. Technical report, Oracle,
2003.

[182] K. Ousterhout, P. Wendell, M. Zaharia, and I. Stoica. Sparrow: distributed, low la-
tency scheduling. In ACM SIGOPS 24th Symposium on Operating Systems Principles,
SOSP ’13, Farmington, PA, USA, November 3-6, 2013, pages 69–84, 2013.

[183] Ö. L. Özçep, R. Möller, and C. Neuenstadt. A stream-temporal query language for on-
tology based data access. In Informal Proceedings of the 27th International Workshop
on Description Logics, Vienna, Austria, July 17-20, 2014., pages 696–708, 2014.

[184] M. T. Özsu and P. Valduriez. Principles of Distributed Database Systems. Prentice-
Hall, 2 edition, 1999.

[185] C. H. Papadimitriou and K. Steiglitz. Combinatorial Optimization: Algorithms and Com-
plexity. Prentice-Hall, 1982.

[186] C. H. Papadimitriou and M. Yannakakis. On the approximability of trade-offs and opti-
mal access of web sources. In FOCS, pages 86–92, 2000.

[187] C. H. Papadimitriou and M. Yannakakis. "Multiobjective Query Optimization". In PODS,
2001.

[188] F. Pentaris and Y. E. Ioannidis. Distributed query optimization by query trading. In
EDBT, pages 532–550, 2004.

[189] F. Pentaris and Y. E. Ioannidis. Query optimization in distributed networks of au-
tonomous database systems. ACM Trans. Database Syst., 31(2):537–583, 2006.

H. Kllapi 232

Elastic Dataflow Processing on the Cloud

[190] R. Pike, S. Dorward, R. Griesemer, and S. Quinlan. Interpreting the data: Parallel
analysis with Sawzall. Scientific Programming, 13(4):277–298, 2005.

[191] J. Pokorn. Workflow management systems: A survey of possibilities. In Proceed-
ings of the Fourth European Conference on Information Systems, ECIS 1996, Lisbon,
Portugal, 1996, pages 253–264, 1996.

[192] O. Polychroniou and K. A. Ross. High throughput heavy hitter aggregation for modern
simd processors. In DaMoN, page 6, 2013.

[193] A. Presta, A. Shalita, B. Karrer, A. Sharma, I. Kabiljo, A. Adcock, and H. Kllapi. Large-
scale graph partitioning with apache giraph. Technical report, Facebook Engineering,
2014. http://goo.gl/z2c0ML.

[194] G. M. R., J. D. S., and S. Ravi. The Complexity of Flowshop and Jobshop Scheduling.
Mathematics of operations research, 1(2):117–129, 1976.

[195] S. R. Ramakrishnan, G. Swart, and A. Urmanov. Balancing reducer skew in mapre-
duce workloads using progressive sampling. In M. J. Carey and S. Hand, editors, ACM
Symposium on Cloud Computing, SOCC ’12, San Jose, CA, USA, October 14-17,
2012, page 16. ACM, 2012.

[196] S. Richter, J.-A. Quiané-Ruiz, S. Schuh, and J. Dittrich. Towards zero-overhead static
and adaptive indexing in hadoop. VLDB J., 23(3):469–494, 2014.

[197] A. Rigo and S. Pedroni. Pypy’s approach to virtual machine construction. In Compan-
ion to the 21th Annual ACM SIGPLAN Conference on Object-Oriented Programming,
Systems, Languages, and Applications, OOPSLA 2006, October 22-26, 2006, Port-
land, Oregon, USA, pages 944–953, 2006.

[198] J. Schaffner, T. Januschowski, M. Kercher, T. Kraska, H. Plattner, M. J. Franklin, and
D. Jacobs. RTP: robust tenant placement for elastic in-memory database clusters. In
Proceedings of the ACM SIGMOD International Conference on Management of Data,
SIGMOD 2013, New York, NY, USA, June 22-27, 2013, pages 773–784, 2013.

[199] K. Schnaitter and N. Polyzotis. Semi-automatic index tuning: Keeping dbas in the loop.
PVLDB, 5(5), 2012.

[200] K. Schnaitter, N. Polyzotis, and L. Getoor. Index interactions in physical design tuning:
Modeling, analysis, and applications. PVLDB, 2(1):1234–1245, 2009.

[201] M. Serafini, E. Mansour, A. Aboulnaga, K. Salem, T. Rafiq, and U. F. Minhas. Ac-
cordion: Elastic scalability for database systems supporting distributed transactions.
PVLDB, 7(12):1035–1046, 2014.

[202] S. Shankar and D. J. DeWitt. Data driven workflow planning in cluster management
systems. In HPDC, pages 127–136, 2007.

233 H. Kllapi

Elastic Dataflow Processing on the Cloud

[203] J. Shute, M. Oancea, S. Ellner, B. Handy, E. Rollins, B. Samwel, R. Vingralek, C. Whip-
key, X. Chen, B. Jegerlehner, K. Littlefield, and P. Tong. F1: the fault-tolerant distributed
RDBMS supporting google’s ad business. In Proceedings of the ACM SIGMOD Inter-
national Conference on Management of Data, SIGMOD 2012, Scottsdale, AZ, USA,
May 20-24, 2012, pages 777–778, 2012.

[204] J. Shute, R. Vingralek, B. Samwel, B. Handy, C. Whipkey, E. Rollins, M. Oancea,
K. Littlefield, D. Menestrina, S. Ellner, J. Cieslewicz, I. Rae, T. Stancescu, and H. Apte.
F1: A distributed SQL database that scales. PVLDB, 6(11):1068–1079, 2013.

[205] J. N. Silva, L. Veiga, and P. Ferreira. Heuristic for resources allocation on utility com-
puting infrastructures. In MGC, page 9, 2008.

[206] A. Simitsis. Modeling and managing etl processes. In VLDB PhD Workshop, 2003.

[207] A. Simitsis, K. Wilkinson, M. Castellanos, and U. Dayal. Qox-driven etl design: reduc-
ing the cost of etl consulting engagements. In SIGMOD Conference, 2009.

[208] A. Simitsis, K. Wilkinson, M. Castellanos, and U. Dayal. Optimizing analytic data flows
for multiple execution engines. In SIGMOD Conference, pages 829–840, 2012.

[209] I. Stoica, R. Morris, D. Liben-Nowell, D. R. Karger, M. F. Kaashoek, F. Dabek, and
H. Balakrishnan. Chord: a scalable peer-to-peer lookup protocol for internet applica-
tions. IEEE/ACM Trans. Netw., 11(1):17–32, 2003.

[210] M. Stonebraker, D. J. Abadi, A. Batkin, X. Chen, M. Cherniack, M. Ferreira, E. Lau,
A. Lin, S. Madden, E. J. O’Neil, P. E. O’Neil, A. Rasin, N. Tran, and S. B. Zdonik. C-
store: A column-oriented DBMS. In Proceedings of the 31st International Conference
on Very Large Data Bases, Trondheim, Norway, August 30 - September 2, 2005, pages
553–564, 2005.

[211] M. Stonebraker, P. M. Aoki, W. Litwin, A. Pfeffer, A. Sah, J. Sidell, C. Staelin, and A. Yu.
Mariposa: A wide-area distributed database system. VLDB J., 5(1):48–63, 1996.

[212] M. Stonebraker, P. Brown, A. Poliakov, and S. Raman. The architecture of scidb. In Sci-
entific and Statistical Database Management - 23rd International Conference, SSDBM
2011, Portland, OR, USA, July 20-22, 2011. Proceedings, pages 1–16, 2011.

[213] M. Stonebraker and A. Weisberg. The voltdb main memory DBMS. IEEE Data Eng.
Bull., 36(2):21–27, 2013.

[214] A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka, N. Zhang, S. Anthony, H. Liu, and
R. Murthy. Hive - a petabyte scale data warehouse using hadoop. In Proceedings of
the 26th International Conference on Data Engineering, ICDE 2010, March 1-6, 2010,
Long Beach, California, USA, pages 996–1005, 2010.

H. Kllapi 234

Elastic Dataflow Processing on the Cloud

[215] C. Tinnefeld, D. Kossmann, M. Grund, J. Boese, F. Renkes, V. Sikka, and H. Plat-
tner. Elastic online analytical processing on ramcloud. In Joint 2013 EDBT/ICDT Con-
ferences, EDBT ’13 Proceedings, Genoa, Italy, March 18-22, 2013, pages 454–464,
2013.

[216] Q. T. Tran, I. Jimenez, R. Wang, N. Polyzotis, and A. Ailamaki. Rita: An index-tuning
advisor for replicated databases. CoRR, abs/1304.1411, 2013.

[217] I. Trummer and C. Koch. Approximation schemes for many-objective query optimiza-
tion. In SIGMOD, UT, USA, June 22-27, 2014, pages 1299–1310, 2014.

[218] K. Tsakalozos, H. Kllapi, E. Sitaridi, M. Roussopoulos, D. Paparas, and A. Delis. Flex-
ible use of cloud resources through profit maximization and price discrimination. In
Proceedings of the 27th International Conference on Data Engineering, ICDE 2011,
April 11-16, 2011, Hannover, Germany, pages 75–86, 2011.

[219] K. Tsakalozos, M. Roussopoulos, V. Floros, and A. Delis. Nefeli: Hint-based execution
of workloads in clouds. In IEEE ICDCS, pages 74–85, 2010.

[220] K. Tsakalozos, M. Roussopoulos, V. Floros, and A. Delis. Nefeli: Hint-based Execution
of Workloads in Clouds . In ICDCS, 2010.

[221] M. M. Tsangaris, G. Kakaletris, H. Kllapi, G. Papanikos, F. Pentaris, P. Polydoras,
E. Sitaridi, V. Stoumpos, and Y. E. Ioannidis. Dataflow processing and optimization on
grid and cloud infrastructures. IEEE Data Eng. Bull., 32(1):67–74, 2009.

[222] J. Ugander and L. Backstrom. Balanced label propagation for partitioning massive
graphs. In Sixth ACM International Conference on Web Search and Data Mining,
WSDM 2013, Rome, Italy, February 4-8, 2013, pages 507–516, 2013.

[223] J. Ugander, B. Karrer, L. Backstrom, and C. Marlow. The anatomy of the facebook
social graph. CoRR, abs/1111.4503, 2011.

[224] P. Upadhyaya, M. Balazinska, and D. Suciu. How to price shared optimizations in the
cloud. PVLDB, 5(6), 2012.

[225] W. M. P. van der Aalst and K. M. van Hee. Workflow Management: Models, Methods,
and Systems. MIT Press, 2002.

[226] H. R. Varian. Intermediate Microeconomics : A Modern Approach, chapter 15, Market
Demand. W. W. Norton and Company, 7th edition, Dec. 2005.

[227] P. Vassiliadis, A. Simitsis, and E. Baikousi. A taxonomy of ETL activities. In DOLAP
2009, ACM 12th International Workshop on Data Warehousing and OLAP, Hong Kong,
China, November 6, 2009, Proceedings, pages 25–32, 2009.

[228] V. K. Vavilapalli. Apache Hadoop YARN: Yet Another Resource Negotiator. In Proc.
SOCC, 2013.

235 H. Kllapi

Elastic Dataflow Processing on the Cloud

[229] J. S. Vitter. Random sampling with a reservoir. ACM Trans. Math. Softw., 11(1):37–57,
1985.

[230] S. Wanderman-Milne and N. Li. Runtime code generation in cloudera impala. IEEE
Data Eng. Bull., 37(1):31–37, 2014.

[231] J. Wang, S. Krishnan, M. J. Franklin, K. Goldberg, T. Kraska, and T. Milo. A sample-
and-clean framework for fast and accurate query processing on dirty data. In Interna-
tional Conference on Management of Data, SIGMOD 2014, Snowbird, UT, USA, June
22-27, 2014, pages 469–480, 2014.

[232] R. Wang, Q. T. Tran, I. Jimenez, and N. Polyzotis. Inum+: A leaner, more accurate and
more efficient fast what-if optimizer. In ICDE Workshops, pages 50–55, 2013.

[233] X. Wang, Y. Wang, and H. Zhu. Energy-efficient task scheduling model based on
mapreduce for cloud computing using genetic algorithm. JCP, 7(12):2962–2970, 2012.

[234] P. Wong, Z. He, and E. Lo. Parallel analytics as a service. In SIGMOD Conference,
pages 25–36, 2013.

[235] E. Wu and S. Madden. Partitioning techniques for fine-grained indexing. In ICDE,
pages 1127–1138, 2011.

[236] L. Wu, O. Polychroniou, R. J. Barker, M. A. Kim, and K. A. Ross. Energy analysis of
hardware and software range partitioning. ACM Trans. Comput. Syst., 32(3):8, 2014.

[237] C. Xiao, W. Wang, X. Lin, and J. X. Yu. Efficient similarity joins for near duplicate
detection. In WWW, 2008.

[238] R. S. Xin, J. Rosen, M. Zaharia, M. J. Franklin, S. Shenker, and I. Stoica. Shark:
SQL and rich analytics at scale. In Proceedings of the ACM SIGMOD International
Conference on Management of Data, SIGMOD 2013, New York, NY, USA, June 22-
27, 2013, pages 13–24, 2013.

[239] P. Xiong et al. Admission control in cloud databases under service level agreements,
July 1 2014. US Patent 8,768,875.

[240] J. Yu and R. Buyya. A taxonomy of workflow management systems for grid computing.
J. Grid Comput., 3(3-4):171–200, 2005.

[241] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauly, M. J. Franklin,
S. Shenker, and I. Stoica. Resilient distributed datasets: A fault-tolerant abstraction
for in-memory cluster computing. In Proceedings of the 9th USENIX Symposium on
Networked Systems Design and Implementation, NSDI 2012, San Jose, CA, USA,
April 25-27, 2012, pages 15–28, 2012.

H. Kllapi 236

Elastic Dataflow Processing on the Cloud

[242] M. Zaharia et al. Resilient distributed datasets: A fault-tolerant abstraction for in-
memory cluster computing. In USENIX Conference, NSDI’12, pages 2–2, Berkeley,
CA, USA, 2012. USENIX Association.

[243] L. Zhang and D. Ardagna. SLA based profit optimization in web systems. In S. I.
Feldman, M. Uretsky, M. Najork, and C. E. Wills, editors, WWW 2004, New York, USA,
pages 462–463. ACM, 2004.

[244] Q. Zhang, L. Cheng, and R. Boutaba. Cloud computing: state-of-the-art and research
challenges. J. Internet Services and Applications, 1(1):7–18, 2010.

237 H. Kllapi

	List of Figures
	List of Tables
	Introduction
	Data Management Systems
	Modern Data Processing Needs
	Computation Environments
	The Rise of Cloud Computing
	An Additional kind of Elasticity
	A Unified Elasticity Model of Clouds
	Elastic Data Processing on the Cloud
	Query Optimization Opportunities
	Dataflow Scheduling on the Cloud
	Analytical Query Workloads
	Automated Management of Indexes
	The Exareme Elastic Processing System

	Dissertation Organization

	Background and Related Work
	IaaS Cloud Environment Overview
	Distributed Processing Systems Overview
	Data Warehouses
	Extract-Transform-Load Systems
	Multi-Database Systems
	Peer-to-Peer Systems
	Workflow Management Systems
	Grid Systems

	Cloud Systems
	Cloud Storage Systems
	Systems based on MapReduce
	Cloud Processing Systems Overview

	Auto-Tuned Systems
	Elasticity
	Exareme System Overview
	Elastic Computation
	Data Storage
	Data Placement
	Data Updates

	Elastic Dataflow Scheduling on the Cloud
	Introduction
	Illustrative Example
	IaaS Cloud and Dataflow Modeling
	IaaS Cloud
	Dataflow
	Dataflow Schedule

	Dataflow Schedule Time and Money Estimations
	Operator Interactions
	Time and Money Estimation Algorithm
	Extending Starfish Estimator with Monetary Cost

	Scheduling Algorithms
	Operator Ranking
	Dynamic Skyline
	Parallel Wave

	Experimental Evaluation
	Experimental Setup
	Model Validation
	Modeling Sensitivity Analysis
	Scheduling Algorithm Sensitivity Analysis
	Skyline Discovery
	Effect of Ranking
	Compare Algorithms
	Elastic Execution
	Elastic MapReduce
	Compare Abstractions

	Related Work
	Discussion
	Nested Loops Family
	Skyline 2-D Simulated Annealing
	Branch and Bound
	Recursive Graph/Space Partitioning Family

	Conclusions

	Elastic Cloud Processing for Analytical Query Workloads
	introduction
	Motivation - Tree Queries
	Problem Formulation
	Data Partitioning
	Properties of Analytical Queries
	Service Level Agreement
	Profit Maximization Problem

	Illustrative Example
	Overall Approach
	Container Layout
	Data Partitioning Methodology
	Elastic Layout Allocation
	Query Tree Scheduler

	Experimental Evaluation
	Experimental Setup
	Near-Interactive Analytics
	Complex Analytics
	Elasticity under Dynamic Workloads

	Related Work
	Data Warehouses
	NoSQL–Systems
	Elasticity

	Conclusion

	Automated Management of Indexes in the Cloud
	Introduction
	Related Work
	Under-Utilized Resources
	Index Management
	Pricing Policy
	Conclusions

	Problem Setting
	Notation and Modeling
	Data Model
	IaaS Cloud
	Dataflow
	Index
	Dataflow and Index Management

	Optimization Problem
	Auto-Tuning Algorithm
	Index Ranking
	Online Index Tuning
	Skyline Dataflow Scheduler
	Index Interleaving Algorithms

	Experimental Evaluation
	Experimental Setup
	Estimation Errors
	Idle Compute Resources
	Dataflow Scheduling Algorithms
	Index Interleaving Algorithms
	Dynamic Dataflow Workload

	Conclusions

	The EXAREME Elastic Dataflow Processing System
	Introduction
	Data Model & Physical Design
	Data Model
	Table Partitioning
	Table Partition Placement
	Indexing
	Updates

	Language Abstractions
	ExaQL High-Level Language
	Data Parallelism Primitives
	ExaDFL Dataflow Language

	Query Optimization
	Translate ExaQL to ExaDFL
	Translate ExaDFL to ExaDMC

	System Components
	Worker
	Execution Engine
	Resource Manager
	Visualization Tools

	Experimental Evaluation
	Setup
	Evaluate Elasticity
	Elastic Data Layout
	Elasticity
	Compare with Baseline

	Evaluate Horizontal Scalability
	Systems Comparison

	Related Work
	Cloud Dataflow Processing Systems
	Data Partitioning and Placement
	Elasticity

	Conclusions

	Conclusions and Open Problems
	Summary of Contributions
	Future Research Directions
	Elastic Stream Processing
	Elastic Graph Processing
	Elastic Data Layout
	Eco-Elasticity under Different Pricing Schemes
	Generalized Elasticity of Clouds
	Elastic Query Optimization

	Bibliography

