
TECHNICAL DEBT-AWARE AND
EVOLUTIONARY ADAPTATION FOR
SERVICE COMPOSITION IN SAAS CLOUDS

by

SATISH KUMAR

A thesis submitted to
The University of Birmingham
for the degree of
DOCTOR OF PHILOSOPHY

School of Computer Science
College of Engineering and Physical Sciences
The University of Birmingham
January 2021

University of Birmingham Research Archive

e-theses repository

This unpublished thesis/dissertation is copyright of the author and/or third
parties. The intellectual property rights of the author or third parties in respect
of this work are as defined by The Copyright Designs and Patents Act 1988 or
as modified by any successor legislation.

Any use made of information contained in this thesis/dissertation must be in
accordance with that legislation and must be properly acknowledged. Further
distribution or reproduction in any format is prohibited without the permission
of the copyright holder.

UNIVERSITYDF
BIRMINGHAM

ABSTRACT

The advantages of composing and delivering software applications in the Cloud-Based

Software as a Service (SaaS) model are offering cost-effective solutions with minimal

resource management. However, several functionally-equivalent web services with diverse

Quality of Service (QoS) values have emerged in the SaaS cloud, and the tenant-specific

requirements tend to lead the difficulties to select the suitable web services for composing

the software application. Moreover, given the changing workload from the tenants, it is not

uncommon for a service composition running in the multi-tenant SaaS cloud to encounter

under-utilisation and over-utilisation on the component services that affects the service

revenue and violates the service level agreement respectively. All those bring challenging

decision-making tasks: (i) when to recompose the composite service? (ii) how to select new

component services for the composition that maximise the service utility over time? at

the same time, low operation cost of the service composition is desirable in the SaaS cloud.

In this context, this thesis contributes an economic-driven service composition framework

to address the above challenges. The framework takes advantage of the principal of

technical debt- a well-known software engineering concept, evolutionary algorithm and

time-series forecasting method to predictively handle the service provider constraints and

SaaS dynamics for creating added values in the service composition. We emulate the

SaaS environment setting for conducting several experiments using an e-commerce system,

realistic datasets and workload trace. Further, we evaluate the framework by comparing

it with other state-of-the-art approaches based on diverse quality metrics.

Keywords: Economic-Driven, Service Composition, SaaS Cloud, Technical Debt

I would like to dedicate this thesis to my guru ji

Professor Sanjay Jasola

Vice-Chancellor

Graphic Era Hill University

Dehradun, India

ACKNOWLEDGEMENTS

I would like to express my earnest obligation and special appreciation to my supervisor

Dr Rami Bahsoon because this complex journey couldn’t be envisaged to be completed

without his inspiration, persistence and profound knowledge. His indefatigable attitude

always fostered me to bring the best out of me. I will always cherish those moments as

the golden period of my life because I got the opportunity to learn a lot from him. I feel

blessed to have Professor Rajkumar Buyya (Director - CLOUDS Laboratory, University

of Melbourne, Australia) and Dr Tao Chen (Loughborough University, UK) as my co-

supervisor. Both of them are my consistent source of motivation in the findings of the

results from scratch till end. Words won’t be able to suffice their contributions.

Secondly, I would like to offer my cordial gratitude to the thesis group members

Professor Uday Reddy, and Dr Per Kristian Lehre, their visionary approach, insightful

comments, constructive criticism and valuable feedback guided me to the right direction of

research work. Along with this, I want to thank Dr Ke Li (University of Exeter, UK), Mr

Prashant Kumar Bamania, Cloud Architect, HCL Technologies, India and Mr Virendra

Kaushik, Software Architect, Adobe Systems, India they also played a vital role in the

development and progress of this project by giving their valuable inputs.

Apart from this, I won’t forget to say thanks to the team members of Birmingham Soft-

ware Engineering Research Group; Vahab Samandi, Francisco Ramirez, Alexandros Evan-

gelidis, Suwichak Fungprasertkul, Paola Yanez, Hargyo Tri Nugroho, Dr Carlos Joseph

Mera Gomez, Dr Sara Hassan, Dr Dalia Sobhy and Rajeev Ranjan Singh (Security Group)

who were always there for me both technically and emotionally. We spent hours and hours

discussing the minute details of topics, and I was always the beneficiary of some extraor-

dinary thought process from the debates and research discussions. I am also pleased to

say thanks to my academic mentors and friends, Dr Rajesh Mishra, Dr Mange Ram, Dr

Vimal Kumar, Dr Avadhesh Kumar Gupta; Rajkumar, Piyush Dixit, Kuldeep Singh,

Laxmi Kant Dhariwal, Anil Kumar, Vinod Sherwal, Pradeep Saini who were always there

for me during odd and even times of my journey. You all really mean a lot to me.

Last but not least, I am grateful to the almighty, my beloved parents, and siblings.

My family always stood beside me both financially and emotionally. Their prayers, moti-

vation, and moral support helped me to achieve this milestone. While discussing my loved

one’s I can’t forget the vital contribution of my loving and caring life partner Dr Priya.

Generally, wives offer sympathy and empathy to their husband, but I found myself lucky

as I am also the recipient of scrupulous advice, both academically and technologically.

CONTENTS

1 Introduction 1

1.1 Overview . 1

1.2 Problem Statement . 3

1.3 Research Questions . 5

1.4 Research Methodology . 6

1.5 Thesis Contributions . 7

1.6 Publications . 9

1.7 Thesis Roadmap . 10

2 A Systematic Literature Review on Service Composition 13

2.1 Introduction . 13

2.1.1 Preliminaries and Basic Concepts 15

2.2 Systematic Literature Review Process . 18

2.2.1 Review Protocol . 18

2.2.2 Search Process . 18

2.2.3 Selection of Inclusion and Exclusion Criteria 21

2.2.4 Search Execution . 22

2.2.5 Quality Assessment and Data Extraction 23

2.2.6 Overview of the Included Studies 24

2.3 Data Extraction Results Discussion . 28

2.3.1 RQ 1.1: A Classification Framework for Service Composition . . . 28

2.3.2 RQ 1.2: Discussions on the techniques/Methods taken by service

composition approaches . 35

2.3.3 RQ 1.3: Discussion and Future Outlook for Research 46

2.4 Related Reviews . 51

2.5 Review Threats . 52

2.6 Summary . 53

3 Multi-Tenant Service Composition in SaaS Cloud using Evolutionary

Optimisation 55

3.1 Introduction . 56

3.2 Motivating Scenario . 57

3.3 Problem Formulation . 59

3.4 QoS Computing Model for Service Composition 60

3.5 Modelling of Service Composition using Evolutionary Optimisation 62

3.5.1 Encoding representation . 62

3.5.2 Optimisation process in MOEA/D-STM 63

3.6 MOEA/D-STM Based Service Composition Engine 66

3.7 Evaluation . 67

3.7.1 Experimental Setup and Results . 67

3.7.2 Comparative Approach . 68

3.7.3 RQ 3.1: Computational time-based comparisons 69

3.7.4 RQ 3.2: Assessment of Solutions Quality 70

3.8 Summary . 73

4 Technical Debt-Aware Adaptive Decisions for Service Recomposition in

SaaS Cloud 74

4.1 Introduction . 75

4.2 Preliminaries . 76

4.2.1 Technical Debt . 76

4.2.2 Motivating Scenario . 77

4.3 Technical Debt at Service Composition Level 79

4.3.1 Technical Debt Indicators . 81

4.3.2 Technical Debt Classification . 82

4.4 Time-Series Prediction of Service Workload 83

4.5 Service Debt Model . 85

4.5.1 Recomposition Principal . 86

4.5.2 Accumulated Interest . 86

4.6 Debt-Aware Recomposition . 88

4.6.1 Utility Model . 88

4.6.2 Good and Bad Debt . 89

4.6.3 Trigger and Decision Making of Recomposition 90

4.7 Architecture of DebtCom . 92

4.7.1 Runtime Management Level . 92

4.7.2 Service Execution Level . 94

4.7.3 Back-end Process and Data Repository Level 94

4.8 Experimental Evaluation . 95

4.8.1 Experimental Setup . 95

4.8.2 Comparative Approaches . 96

4.8.3 Metrics . 97

4.8.4 RQ 4.1: Accuracy on Workload Prediction 98

4.8.5 RQ 4.2: Results of DebtCom against Baseline 99

4.8.6 RQ 4.3: Effectiveness of Workload Prediction and Debt-Aware Trig-

ger in DebtCom against Passive and Proactive 102

4.8.7 RQ 4.4: Running Overhead of DebtCom 104

4.8.8 RQ 4.5: Sensitivity of DebtCom to k Value 105

4.9 Threats to Validity . 106

4.10 Summary . 107

5 Self-Adapting Service Composition with Debt-Aware Two Levels Con-

straints Reasoning 108

5.1 Introduction . 109

5.2 Preliminaries . 111

5.2.1 Self-Adaptation in Service Composition 111

5.2.2 Constraints in Service Composition 111

5.2.3 Running Example . 112

5.3 DATESSO Overview . 114

5.4 Two Levels Constraints with different strictness 115

5.4.1 Hard Local Constraints . 116

5.4.2 Soft Global Constraints . 116

5.5 Temporal Debt-Aware Utility Model . 117

5.5.1 Modeling Temporal Debt Value . 118

5.5.2 Time-Series Workload Prediction 120

5.6 Debt-Aware Two Levels Constraint Reasoning 121

5.6.1 Identifying Infeasible Component Services 122

5.6.2 Searching for the Best Long-term Debt-Aware Utility 122

5.7 Evaluation . 126

5.7.1 Experimental Setup . 126

5.7.2 Comparative Approaches . 127

5.7.3 Metrics . 128

5.7.4 RQ 5.1: Performance of DATESSO 129

5.7.5 RQ 5.2: Sustainability of DATESSO 131

5.7.6 RQ 5.3: Running Time of DATESSO 133

5.8 Threats to Validity . 134

5.9 Summary . 134

6 Conclusions, Reflections, and Future Directions 136

6.1 How the research questions have been addressed 136

6.1.1 Research Question 1 . 136

6.1.2 Research Question 2 . 137

6.1.3 Research Question 3 . 138

6.1.4 Research Question 4 . 139

6.2 Reflections on the Research . 140

6.2.1 Simulation Environment . 140

6.2.2 Computational Overhead . 141

6.2.3 Dealing with SaaS Dynamics . 142

6.3 Future Directions . 142

6.3.1 Exploring technical debt-aware supports for service composition in

the SaaS cloud . 142

6.3.2 Dealing uncertainties in the SaaS cloud environment 143

6.3.3 A technical debt perspective for the selection and optimisation of

cloud services/resources . 144

6.4 Conclusion Remarks . 145

Bibliography 146

LIST OF FIGURES

1.1 Thesis Roadmap . 11

2.1 Application Workflow . 16

2.2 Search execution procedure . 23

2.3 Article distribution over publication channel 26

2.4 Articles distribution over the years 2002−2019 28

2.5 Taxonomy of service composition approaches 29

3.1 Motivation Example . 58

3.2 Chromosome encoding . 63

3.3 Solution representation in chromosome encoding 63

3.4 Chromosome encoding for the professional and enterprise application work-

flow . 64

3.5 MOEA/D-STM based service composition engine 66

3.6 Execution time yields MOEA/D-STM and NSGA-II 70

3.7 HV and GD yields MOEA/D-STM and NSGA-II on the application workflow 72

3.8 HV and GD yields MOEA/D-STM and NSGA-II on the enterprise workflow 72

4.1 An example scenario . 78

4.2 Intentional debt for exploring future values in the composition 80

4.3 Technical Debt over Service Recomposition 81

4.4 Example of Good Debt . 83

4.5 Example of Bad Debt . 84

4.6 The architecture of DebtCom . 93

4.7 Predicted and actual workload on the component services 98

4.8 Accumulated debt, accumulated operation cost and accumulated utility

achieved by DebtCom and Baseline over all timesteps 100

4.9 Service debt using DebtCom and Baseline over all timesteps 101

4.10 Service operating cost using DebtCom and Baseline over all timesteps . . . 101

4.11 Service Utility yields DebtCom and Baseline over all timesteps 101

4.12 Accumulated utility and accumulated debt achieved by Passive, Proactive

and DebtCom over all timesteps . 103

4.13 Service utility and debt achieved by Passive over all timesteps 103

4.14 Service utility and debt achieved by Proactive over all timesteps 103

4.15 Service utility and debt achieved by DebtCom over all timesteps 104

4.16 Running time on both approaches (Comparisons between DebtCom and

Baseline statistically significant (p <.05) using Kruskal Wallis test) 105

4.17 Sensitivity of DebtCom to k values in terms of utility and running time. . . 106

5.1 A running example of issues in service composition (L and T mean that the

selected component service of an abstract service can process all T requests

in L seconds) . 112

5.2 The general processes in DATESSO . 114

5.3 Global utilization yield by all approaches over 7200 timesteps (Comparisons

between DATESSO and others are statistically significant (p < .05) and with

large effect size) . 130

5.4 Global latency yield by all approaches over 7200 timesteps (Comparisons

between DATESSO and others are statistically significant (p < .05) and with

large effect size) . 130

5.5 Debt yield by all approaches over 7200 timesteps (Comparisons between

DATESSO and others are statistically significant (p < .05) and with large

effect size) . 132

5.6 Running time on all approaches (Comparisons between DATESSO and others

are statistically significant (p < .05) and with large effect size, except for

DOA) . 133

LIST OF TABLES

2.1 Bibliographical Sources . 21

2.2 Number of search results from each digital databases 22

2.3 An overview of the distribution of research articles with publication details

(e.g., Conference, Journal, and Workshop) 25

2.4 An overview of included research articles with citation rate 26

2.5 List of included research articles for the SLR 27

2.6 Classification of Service Composition Approaches 34

2.7 Representative examples for QoS-aware approach 37

2.8 Representative examples for constraint-aware approach 39

2.9 Representative examples for SLA-aware approach 41

2.10 Representative examples for context-aware approach 42

2.11 Representative examples for uncertain-aware approach 44

2.12 Representative examples for economic-driven approach 45

2.13 Representative examples for adaptive or reconfiguration of composition . . 45

3.1 QoS aggregation functions for sequence and parallel patterns 60

3.2 Workflow Configuration (Note: AS-Abstract Service, CS-Concrete Service) 68

3.3 Parameters for the algorithms . 68

3.4 Mean value of HV and GD for professional and enterprise workflow . 71

3.5 QoS achieved by algorithms on professional and enterprise workflow . 71

4.1 Parameters of the experiments . 95

4.2 Accuracy of time-series prediction for workload 98

4.3 Identified good and bad debt . 99

5.1 Parameters of the experiments . 127

5.2 Sustainability scores . 132

CHAPTER 1

INTRODUCTION

1.1 Overview

The growing popularity of cloud-based service models, mainly Software as a Service (SaaS)

has emerged as a standard model for delivering software application [1]. In such a model,

service composition is a promising technique for building a software application by com-

posing multiple existing web services [2]. The resulting software application, namely

composite service, is often deployed in the cloud, forming the basics of modern SaaS

cloud. A pronounced benefit of deploying composite service in the SaaS cloud is the real-

isation of multi-tenancy, in which a single application instance can serve several tenants1

simultaneously [3]. On the other hand, the SaaS provider has its own optimisation goals

for delivering software application in the SaaS cloud [4]. For example, Salesforce [5] pro-

vides a Sales CRM (Customer Relationship Management) service in the cloud market.

Further, Salesforce keeps the good reputation of Sales CRM service in the cloud market

by delivering better application performance and ensuring the minimum Service Level

Agreement (SLA) violations, at the same time, they want to maximise the service rev-

enue at a lower operation cost (e.g., infrastructure execution cost). However, uncertainty

is the common property in the dynamic environment like SaaS cloud. In particular, uncer-

tainty in the request workload generated by the tenants may affect the composite service

1Tenants denote the end-users in the SaaS cloud.

1

performance; because of each participating component service2 in the composition has a

different capacity to process n requests per seconds [6]. More importantly, it may cause

the problem of under-utilisation or over-utilisation on the component service with respect

to their capacities. Consequently, the increasing workload can rise the over-utilisation

for the component services within a composite service, which in turns, would negatively

affect the Quality of Service (QoS) and violates the SLA [3]. On the other hand, the

decreasing workload may lead to under-utilisation of the capacity of component services,

reducing the revenue that should have been achieved as the infrastructural resources also

impose a monetary cost. All those bring challenging tasks: (i) when to recompose the

composite service? (ii) how to select new component services for the composition that

maximise the service utility over time? at the same time, the low operation cost of the

service composition is desirable in the SaaS cloud.

In this thesis, we address the above challenges by taking advantage of technical

debt metaphor [7, 8, 9] that supports an economic-driven decision on the selection and

(re)composition of composite service in the SaaS cloud. In particular, we argue that the

technical debt could be the consequences of taking imperfect or poorly justified run-time

service recomposition decisions. Further, in the SaaS cloud environment, the utilisation

of component services participating in composite service execution may be sub-optimal

due to significant up and drop in the requests workload generated by tenants. The sub-

optimal service composition leads the debt to provide higher capacity service than the

tenant’s service demand. Consequently, the operating cost may outweigh the service

revenue. Furthermore, under-/over utilisation of component service may incur interest

over the debt. For example, over-utilisation of service capacity leads the SLA violation

and the penalty cost against the response time violation can be count as interest over

the technical debt. Additionally, the interest makes the negative impact on the service

utility and continuously grow over the technical debt for a given service execution time.

Therefore, we view the technical debt as a time-sensitive moving target that needs to be

2Component service denotes the individual web service in the service composition.

2

dynamically monitored to estimate the incurred debt and its nature (good or bad) over

service execution. The estimated cost of technical debt facilitates to optimise the present

service utility by making a proactive decision on whether to keep the current service

composition plan or recompose the new composite service. Previous work by Alzaghoul

and Bahsoon [10] has exploited the technical debt metaphor in the design-time service

selection, where they used real options and technical debt analysis to justify the added

value of a selected service from the cloud marketplace. Though run-time composition and

recomposition are critical decisions, which should be judged from added values, techni-

cal debt and economics perspectives, this work is fundamentally different: (i) We focus

on the problem of composition and recomposition at run-time; (ii) We use run-time and

predictive learning techniques to (re)compose the service in the SaaS cloud.

1.2 Problem Statement

The development of modern software delivery systems (e.g., SaaS cloud) for providing

composite software application over the Internet has many benefits and service quality

risks. The former implies that the SaaS cloud offers cost-effective solutions by supporting

the multi-tenancy system architecture, in which a single application instance service the

many users simultaneously [4, 11]. The latter indicates that the dynamic nature of the

SaaS cloud tends to lead the uncertainty in an operating environment and the composite

service running under such operating environment always has some risks, e.g., perfor-

mance, scalability, delayed latency, service availability and SLA violation [6, 12, 13]. In

this environment, composing and deploying a composite application is more complicated

than a traditional service composition environment, for example, it is common in the

SaaS cloud; several tenants may demand a diverse functional and QoS requirements for

the same service [5]. But, most of the current service composition approaches are designed

to optimise the service composition plan for a single end-user system [4]. However, these

approaches have their own limitations and would not be efficient for emerging comput-

3

ing paradigms such as SaaS cloud. To deal with the multi-tenants requirements, He et

al. [4] presented an approach that optimises different QoS of service execution plans (with

similar functionalities) for all the tenants in the SaaS cloud. However, these approaches

tend to ignore the fact that multi-tenant execution environment needs to provide variant

service execution plans, each offering a customised plan for the given tenants with its

functionality, QoS and cost constraints.

Moreover, uncertainties may arise in the operating environment from the dynamic

changing workload generated by tenants on the composite application in the SaaS cloud [6].

Consequently, the composite application encounters under-utilisation and over-utilisation

on the component services that affect the service revenue and violates the SLA. In fact,

both cases are undesirable, and it is, therefore, nature to mitigate them by recomposing

the services to a newly optimised composition plan once they have been detected. The

current recomposition approaches were triggered in the response of QoS constraints viola-

tion or component service failure during the execution [14, 15, 16, 17]. These approaches

also partially support the SaaS provider optimisation goals (e.g., maintaining QoS con-

straints) without considering other essential objectives (e.g., maximise the service revenue

and minimise an operating cost). However, they ignored the fact that temporary effects

can merely cause under-/over-utilisation, and thus the advantages may be short-term,

which hinders the long-term benefits that could have been created by the original com-

position plan while generating unnecessary overhead and disturbance via recomposition.

In this context, this thesis aims to address the stated limitations and the value-added

facts in the composition that are ignored in the existing work. We address the following

problems driven by the existing research works.

• Problem 1 : The limited support of economic-driven perspective in the service

composition in SaaS cloud.

• Problem 2 : The limited support to process different service composition plans for

the tenants with varied functional, QoS and cost constraints.

4

• Problem 3 : The lack of runtime economic-driven decision approach that can

dynamically and predicatively track the value-added benefits in the service compo-

sition, while composite service encounters the under/over-utilisation on the compo-

nent services.

• Problem 4 : The lack of strictness of soft and hard constraints on the different

levels of service composition and the limited support of long-term based economic-

driven service selection in the dynamic service composition.

1.3 Research Questions

In this thesis, we address the following research questions

• RQ1 : Reviewing state-of-the-art service composition approach and identifying the

research gaps in the area of economic-driven service composition in the SaaS cloud −

What is the state-of-the-art service composition approaches with a particular inter-

est in economic aspects? What are the pending research challenges in an economic-

driven service composition in the SaaS cloud?

• RQ2 : Realising diverse functional and QoS requirements from the tenants in the

SaaS cloud − How can we leverage an evolutionary algorithm to support dynamic

optimisation of multi-tenant service compositions in the SaaS Cloud?

• RQ3 : Realising economic-driven service recomposition decisions in the changing

workload from the tenants in the SaaS cloud − How can we leverage the technical

debt metaphor to support an economic-driven decision for dynamic service recompo-

sition in SaaS Cloud? How can the use of predictive analytics of workload improve

the decision making and evaluates the service debt?

• RQ4 : Realising strictness of soft and hard constraints on the different levels of

service composition − How can a debt-aware two-levels constraints reasoning of a

5

service selection create the long-term values in the self-adaptive service composition

in the SaaS cloud?

1.4 Research Methodology

To address the above research questions, in this thesis, we adopt the classical research

methodology presented by Peffers et al. [18]. The following steps were carried out to lead

our research in this thesis.

• Identifying the thesis problem : The first step is to get better knowledge of

the dynamic service composition, particularly an economic-driven perspective in the

SaaS cloud environments. For this purpose, we conducted a systematic literature

review that helped to gain a good understanding of the field and guided us to

identify the room for improvement in the current state-of-the-art service composition

approach. Further, based on the understanding of the problem domain and the key

findings, the problem of this thesis is identified and formulated in the form of the

research questions.

• Identifying the thesis objective : Based on the identified problems, the next

step is to define the objective of its solution. We formulated these objectives in the

form of Research Questions in the Section 1.3.

• Design and Development : A review study is conducted for service composi-

tion with the particular focus of an economic-driven perspective in the SaaS cloud.

Based on the results obtained from the survey, we are in the position to identify

the inadequacies of the service composition research in the SaaS cloud, specifically,

for evaluating the run-time decision of service composition/recomposition. In this

regard, we adopt an evolutionary algorithm and technical debt metaphor for optimis-

ing multi-tenant service composition and contributing an economic-driven decision

approach respectively in the SaaS cloud. In particular, technical debt metaphor

6

facilitates to identify, estimate and monitor the good and bad values (e.g., added

values or impacts) in the service composition. We developed the debt-aware mid-

dleware framework that introduces technical debt as a novel metric for analysing

the composite service execution in the SaaS cloud environment.

• Demonstration : We implement an economic-driven framework for service compo-

sition in the SaaS cloud. In particular, to emulate an environment of SaaS cloud, we

deployed 100 web services over 10 Docker containers and each web service exhibits

the different QoS which is associated with real-world WSDream dataset [19]. We

developed an e-commerce system which is formed as service composition. Further,

the e-commerce system is executed under the real-world requests workload collected

from the FIFA 98 World Cup trace [20] and a time-series forecasting method named

Autoregressive Fractionally Integrated Moving Average model (ARFIMA) [21] is

employed for predicting the workload on the service composition.

• Evaluation : The proposed approach is quantitatively evaluated by comparing

with other state-of-the-art approach based on the diverse quality metrics. We used

diverse metrics which are specific to individual contribution in this thesis. Particu-

larly, these metrics include the running overhead, aggregated utility, operating cost,

accumulated debt, global utilization and latency for comparing the performance of

the approaches.

1.5 Thesis Contributions

The research presented in this thesis shows the significant contributions in the area of

service composition, specifically in the multi-tenant SaaS cloud environment. In partic-

ular, the main contribution of this thesis is to present an economic-driven framework for

service composition in the SaaS cloud. Notably, this thesis presents the following research

contributions.

7

1. Systematic Literature Review on Service Composition Based on the Ser-

vice Quality Factors : We conduct a systematic literature review that pro-

vides a better understanding of the state-of-the-art of service composition approach.

Further, we present a classification framework of existing service composition ap-

proaches based on the service quality factors and also discuss the techniques and

algorithms taken by these approaches. We identify the research gap in current ser-

vice composition approaches that allows us to address the research gap in the form

of thesis research questions.

2. A Diverse Requirements-Driven Multi-Tenant Service Composition in

the SaaS Cloud : We formulate the multi-tenant service composition as an op-

timisation problem. In particular, we present a new encoding representation and

fitness function that explicitly model the service selection and composition as an

evolutionary optimisation for the multi-tenant SaaS cloud. For this, we adopted

an evolutionary algorithm as the driver for implementing service composition en-

gine that optimises the different service composition plans for the tenants they have

varied functional, QoS and cost constraints in the SaaS cloud environment.

3. Technical Debt-Aware Adaptive Service Recomposition in SaaS Cloud :

We propose a new concept and model, namely service debt that explicitly maps the

technical debt metaphor in the context of service composition. The proposed service

debt model enhanced by the time-series prediction method that allows us to build

a utility model for identifying and estimating the debt in the service composition.

Overall, we combined all components and developed a holistic debt-aware framework

for recomposing service in the SaaS cloud, namely DebtCom. Particularly, the

DebtCom framework is capable of making an economic-driven decision on whether

to trigger recomposition or not, considering the long-term benefits.

4. Self-Adapting Service Composition with Debt-Aware Two Level Con-

straints Reasoning : We present a Debt-Aware Two lEvels conStraint reasoning

8

for Self-adapt-ing service cOmposition (DATESSO) framework that leverages debt-

aware two level constraints reasoning for self-adapting service composition. Instead

of formalising the constraints at both local and global as hard ones, we refine the

global constraints as the soft one. This has enabled us to tailor the reasoning process

in self -adaptation and mitigate over-optimism. Specifically, we design an efficient

two level-constraint reasoning algorithm in DATESSO that is debt-aware and utilises

different strictness of the two level constraints to reduce the search space.

1.6 Publications

The following research papers [6, 22, 23, 24, 25] are published/in-submission during PhD

research. Moreover, this thesis is an absolute reference of the details discussions, formu-

lation of ideas and core contributions presented in the following research publications.

• S.Kumar, R. Bahsoon, T. Chen, K. Li, and R. Buyya. Multi-Tenant Cloud Service

Composition using Evolutionary Optimization. In the Proceeding of 2018 IEEE 24th

International Conference on Parallel and Distributed Systems (ICPADS), Singapore,

2018.

• S.Kumar, R. Bahsoon, T. Chen, and R. Buyya. Identifying and Estimating Tech-

nical Debt for Service Composition in SaaS Cloud. In the Proceeding of 2019 IEEE

24th International Conference on Web Services (ICWS), Italy, 2019.

• S.Kumar, T. Chen, R. Bahsoon, and R. Buyya. DATESSO: Self-Adapting Service

Composition with Debt-Aware Two Levels Constraints Reasoning. In the Proceed-

ing of 2020 IEEE/ACM 15th International Symposium on Software Engineering

for Adaptive and Self-Managing Systems (SEAMS), South Korea, 2020. [SEAMS

Best Student Paper Award]

• S.Kumar, R. Bahsoon, T. Chen, and R. Buyya. DebtCom: Technical Debt-Aware

Service Recomposition in SaaS Cloud. IEEE Transactions on Service Computing

9

(TSC), 2020. [Review Cycle]

• S.Kumar, R. Bahsoon, T. Chen, and R. Buyya. A Systematic Review and Taxon-

omy on Service Composition based on the Service Quality Factors. ACM Computing

Surveys (CSUR), 2021. [To be submitted]

1.7 Thesis Roadmap

Figure 1.1 illustrates the structure of the thesis roadmap as follows

• Chapter 2 : Reviewing state-of-the-art service composition approach and identify-

ing the research gaps in the area of economic-driven service composition in the SaaS

cloud − In this chapter, we present a systematic literature review on the service

composition and the findings derived from the study is to enable us to introduce a

taxonomy of services composition approaches in the SaaS cloud. Firstly, we present

the general area of service composition including web service technology and then

exploring the dynamic aspects of service composition using different strategies such

as QoS/SLA/Constraints/Requirements aware approaches. We then indicate the

research gaps which we address in this thesis from the finding of this study. This

chapter is derived from our research paper (in preparation for submission) [25].

• Chapter 3 : Realising diverse functional and QoS requirements from the tenants in

the SaaS cloud − In this chapter, we introduce a novel multi-tenant service composi-

tion approach. First, we model the problem as an evolutionary optimisation problem

with a new encoding representation and the fitness function. We incorporate our

approach in MOEA/D-STM [26] and develop an evolutionary optimisation based

service composition engine. Further, MOEA/D-STM based service composition en-

gine supports different types of users requests and optimise the service composition

plan for each category of users in a multi-tenant SaaS cloud. We have also incorpo-

rated this encoding representation in NSGA-II [27] for performing the comparative

10

Figure 1.1: Thesis Roadmap

study. This chapter is derived from our research work published in [23]. In par-

ticular, the aim of developing this service composition engine is to accelerate our

DebtCom framework presented in Chapter 4.

• Chapter 4 : Realising economic-driven service recomposition decisions in the

changing workload from the tenants in the SaaS cloud − In this chapter, we con-

tribute to an economic-driven decision approach for dynamic service recomposition

leveraging the principle of technical debt. We provide a systematic connection be-

tween technical debt and service composition and discuss some critical situations

that incurred technical debt in service composition. Further, as the solution, we

present technical debt-aware adaptive decision-making approach which is imple-

mented in our proposed novel DebtCom middleware architecture. This chapter is

derived from our research work published/under review in [6] [24].

• Chapter 5 : Realising strictness of soft and hard constraints on the different levels

of service composition − In this chapter, we first motivate the need for considering

11

the different strictness of two-level constraints using a motivating scenario of an

e-commerce system. And then, we model these constraints for monitoring the com-

posite service execution environment. Further, we develop a temporal debt-aware

utility model that select the suitable component service for repairing the infeasible

component services during the execution. This chapter is derived from our research

work published in [22].

• Chapter 6 : Reflections, future directions and conclusion remarks − In this chap-

ter, we conduct a reflective evaluation on the each contribution of this thesis using

different qualitative criteria (e.g., running overhead, performance metrics, datasets

and practical deployment). Further, we discuss future research directions and sum-

marise the main contributions of this thesis.

NOTE : The algorithms presented in this thesis are not evaluated from the theoretical

computer science perspective. In particular, Software Engineering and Service-Oriented

Computing communities follow the experimental approach, in which, the performance

of an algorithm is evaluated under different types of datasets. This thesis follows the

experimental approach for analysing and testing of our proposed algorithm’s performance

under real-world datasets such as WSDream [19] and FIFA 98 World Cup Trace [20].

12

CHAPTER 2

A SYSTEMATIC LITERATURE REVIEW ON
SERVICE COMPOSITION

In this chapter, we contribute a systematic literature review and taxonomy on service com-

position. In particular, this study aims to provide a better understanding of the field and

review the state-of-the-art practices of service composition in the dynamic environment,

e.g., SaaS cloud. We briefly discuss the background and the concept of technical debt

metaphor, and then present this metaphor in the context of service composition. Further,

we provide a classical taxonomy of the existing service composition approaches based on

the service quality factors. We also discuss the limitations of current service composition

approaches from an economic-driven perspective in the SaaS cloud environment. Overall,

this study identifies the research gaps in the current service composition approaches and

allows us to address these research gaps in the form of research questions.

2.1 Introduction

Service composition is a key technology that allows individual web services to be com-

bined together to create a new value-added service, e.g., composite application [13]. Over

the Internet, many functionally equivalent web services are available with different Qual-

ity of Service (QoS) values [28, 29]. The selection of these web services for composing

a composite application is very challenging due to different QoS requirements. Further,

an end-user may impose several conditions (e.g., normal QoS, hard QoS constraints, or

13

SLA specification) as part of the service demand in the cloud market [30, 31]. Due to

such complex requirements, researchers have started to explore the service composition

from different perspectives such as QoS-aware service composition, Constraint-aware ser-

vice composition, SLA-aware service composition, or context-aware service composition

etc. [32, 33, 34, 35, 36] . Moreover, to satisfying such complex requirements in the service

composition, they transformed the service composition problem into a single-objective

optimisation and multi-objective optimisation problems [2, 13, 37, 38, 31, 39, 40].

Further, deploying a composite application in a dynamic environment like SaaS cloud

tends to lead many challenges, for example, composite service would inevitably operate

under the dynamic changes on the workload that affects the service performance, cause

constraints or SLA violations or reduce the service utility. Researchers investigated these

issues; in which they proposed an adaptive service composition or composite service recon-

figuration approaches [14, 30, 41, 42] in the context of QoS constraints or SLA violations,

and service failure etc. They have ignored the service provider optimisation goals (e.g.,

less operating cost and maximum service revenue). There is a little work done in this

direction [4, 10], but their approaches have not supported and taken the full advantages

of the dynamic environment, e.g., SaaS cloud.

Further, to get the depth understanding of service composition and finding the cur-

rent state of art issues in the field. We aim to conduct a Systematic Literature Review

(SLR) that (i) provides a state-of-the-art service composition approach and a classification

framework of the current service composition approaches based on the service quality fac-

tors, (ii) provide a comprehensive discussions on the techniques/methods taken by these

approaches for dealing with the service quality factors in the composition, and also discuss

an economic-driven perspective for service composition in the SaaS cloud, (iii) identifying

the research gaps for conducting future research. Specifically, in this chapter, we address

the first research question of our thesis:

RQ1: Reviewing state-of-the-art service composition approach and identifying the re-

search gaps in the area of economic-driven service composition in the SaaS cloud − what

14

is the state-of-the-art service composition approaches with a particular inter-

est in economic aspects and what are the pending research challenges in an

economic-driven service composition in the SaaS cloud?. For making a concrete

focus on each point in the research question, we further split it into following sub-research

questions.

RQ 1.1: What are the current state-of-the-art approaches for service composition1,

and what are the quality of service factors addressed in these approaches?. This question

aims to provide a classification framework of existing service composition approaches based

on service quality factors (e.g., QoS, SLA, Constraints, or uncertainty ect.).

RQ 1.2: What are the current techniques/methods taken by these approaches for

supporting service quality factors and what is the current status of an economic-driven

approach in the SaaS Cloud? This question aims to provide an extensive discussion on

the current techniques/methods that were used for implementing the service quality fac-

tors based service composition and an adoption of the SaaS-based economic-driven service

composition.

RQ 1.3: What are the future directions in an economic-driven service composition

research, in particular SaaS cloud? This question provides the state-of-the-art discussions

and gives useful insight into how we can benefit from the existing service composition

approaches to draw the motivation on the key requirements and discussing the pitfalls

when applying these service composition approaches in the SaaS cloud.

2.1.1 Preliminaries and Basic Concepts

2.1.1.1 Web Service

Web service is a software module that supports interoperable machine-to-machine com-

munication over the Internet through standard protocol [43]. Particularly, in the Service-

Oriented Architecture (SOA), web services can be defined as a self-described, self-contained

and modular unit of application that can be published, located and dynamically invoked

1service composition and web service composition are used interchangeably

15

Figure 2.1: Application Workflow

over the Internet for developing a web-based application [44, 45].

2.1.1.2 Service Composition

In the service-based systems, a complex application can be defined as a process of invoking

the suitable web service selected at run-time [46]. In this scenario, service composition is a

logical combination of multiple abstract services resulting into a single unit (e.g., software

application) for performing complex requests submitted by the users in the multi-tenant

SaaS cloud as shown in the Figure 2.1. An abstract service can be realised by a set of

candidate component services [47, 48], each of which comes with different capacities to

process n requests per second. Further, when a user submits the request for a service in

the SaaS cloud, the application engineer selects one suitable service from each candidate

service set and optimise the service composition plan that satisfies the user’s demands.

2.1.1.3 Software as a Service (SaaS) Cloud Model

SaaS is a cloud-based software application delivery model over the Internet [49]. A service

consumer can access these software applications through a web browser. In particular,

SaaS cloud offers a cost-effective solution through adopting multi-tenancy system ar-

16

chitecture, in which the single application instance simultaneously serves multiple users

based on the shared resources [11, 50]. For example, deploying a composite application

in the SaaS cloud takes the full advantages of multi-tenancy architecture in terms of least

management of application resources, and delivering an economic-driven service to the

end-users.

2.1.1.4 Technical Debt

Technical debt can be attributed to sub-optimal decisions, shortcut on decisions, and/or

deferred activities that can incur extra cost/rework, if it would be carried in the future as

when compared the current time [6, 51]. Technical debt metaphor was initially coined by

Cunningham in 1992 to explain ”Shipping first-time code is like going into debt. A little

debt speeds development so long as it is paid back promptly with a rewrite. The danger

occurs when the debt is not repaid. Every minute spent on not quite right code counts as

interest on that debt. Entire engineering organizations can be brought to a stand-still under

the debt load of an unconsolidated implementation, object-oriented or otherwise” [7]. In

the recent years, software engineering community presented this metaphor and discussed

its applicability to many software artifacts, covering code, requirements, architecture,

testing and documentation, among the other [9, 52, 53]. The common understanding is

that technical debt is the result of making technical compromises that are expedient in the

short-term but that create a technical context that increases complexity and cost in the

long term [54, 55]. If these technical compromises are not paid back than technical debt

may be incurred and degrade the system quality or the development team productivity

in the long term. By incurring technical debt is not always bad, if organization makes

informed decisions or strategic reasons about to incur the debt [56]. McConnell [57] clas-

sified the term “technical debt” into intentional technical debt and unintentional technical

debt. An intentional technical debt is the debt which is taken by an organization to op-

timise the present value in the software project rather than the future value or to make

informed decisions for gaining short-term benefits. On the other hand, unintentional

17

technical debt can be incurred unknowingly when an organization makes non-strategic or

inappropriate decisions in the software project.

2.1.1.5 Service Debt

One form of Service Debt can be attributed to sub-optimal utilisation of composite service

capacity due to an imperfect decision of web services selection in the composition. We

provide a systematic formulation of service debt in Chapter 4.

2.2 Systematic Literature Review Process

In this section, we describe the Systematic Literature Review (SLR) protocol that will

help to develop the SLR process. Then, we conduct the SLR to compile the primary

studies related to service composition based on the review criteria and objectives.

2.2.1 Review Protocol

We developed a review protocol based on the guidelines and procedure proposed by

Kitchenham [58, 59]. In particular, our review protocol comprises review objective and

background, research questions , search process (e.g., search terms and bibliographical

resources), selection criteria (e.g., inclusion and exclusion), search execution, quality as-

sessment and data extraction and synthesis method. We have reported the review objec-

tive, background, and research questions in the Section 2.1 and the remaining protocol

procedures are explained in the subsequent sections.

2.2.2 Search Process

In the search process, we selected the primary studies that were published from 2002 to

2019. The search process could be performed either an automatic search using biblio-

graphical resources (e.g., IEEE Xplore) or the manual search that retrieves the research

articles from the specified conferences and journals in the field of study. In particular,

18

we used well-known research venues for conducting manual search such as IEEE ICWS,

IEEE TSC, and ICSOC etc. Moreover, our search process used the following points to

identify the relevant studies.

• Applying the preliminary search that aims to identify the existing systematic liter-

ature review.

• Performing trail searches with a different combinations of search terms obtained

from the research questions.

• New search terms were obtained by swapping singular to plural forms or plural to

singular forms.

• Conducting further trail searches that examine the related references and ensures

that we have not missed any significant study.

• Applying “Quasi-Gold Standard (GGS)” [60] in the manual scan process of well-

known venues (e.g., conferences and journal) recognised by the research community

in the field of study.

Further, ensuring the QGS standards in our search process, we included the paper’s

title, abstract and keywords in the manual search process and then conducting the man-

ual and an automatic searches. The results obtained from both search strategies were

examined based on the coverage differences. However, we observed that the manual

search results were covered in the automatic results, that indicated the coverage of QGS

standards.

2.2.2.1 Search Terms Selection

We identified the search terms as guided by [61] and supported the research questions.

Further, the collected set of search terms were the same for all the research questions

because it minimises the duplicate search terms. The search strings were constructed by

considering the abbreviations, synonyms, and alternative spelling. Moreover, advanced

19

search strings were created by boolean AND or OR operators on the identified search

terms. We have picked the most appropriate and related search terms that assist our SLR

study. Therefore, five search terms were chosen; “Economic”, “Driven”, “Web Service”,

“Composition”, and “Approach”. The search query was created using these five major

search terms: Economic AND Driven AND Web Service AND Composition AND

Approach.

Towards developing more sophisticated search queries, we identified several challenges

in automatic search due to miss leading of the service quality attributes in the other

field of studies (e.g. network management service or mobile service quality). To mitigate

these problems, we further classified the service quality requirements either end-user based

requirements (e.g., QoS, SLA, and constraints) or environment-driven service quality (e.g.,

location, context and uncertainty etc.). Besides, the terms service selection, web service

selection, and service composition were used interchangeably in the existing research.

Finally, generating the main search query, we also used these keywords by connecting

boolean OR as follows.

(QoS OR SLA OR Constraint OR Constraints OR Context OR Uncertainty OR

Uncertainties OR Service OR Selection) AND Economic AND Driven AND (Web

Service OR Webservices) AND Composition AND Approach OR SaaS.

We conducted both the manual search and an automatic search. From these searches,

we observed that the manual search is not an efficient method than automatic search

because it encounters the difficulties to manually filtering thousands of the results which

were retrieved in the search. But, we still accepted the manual search process to meet

the quasi-gold standards that ensure the good practice of search queries in this review.

2.2.2.2 Selection of Bibliographical Sources

Table 2.1 provides an overview of the selected electronic databases that give confidence

to covering most of the high impact journals and conference proceedings. However, these

electronic databases enable us to conduct advanced search queries with a variety of search

20

Table 2.1: Bibliographical Sources

Bibliographical Source URL
IEEE Xplore https://ieeexplore.ieee.org/Xplore/home.jsp
ACM Digital Library https://dl.acm.org/
ScienceDirect https://www.sciencedirect.com/
SpringerLink https://link.springer.com/
Google Scholar https://scholar.google.com/

options and constraints such as time frame constraints, boolean operations, title, keywords

and author etc. We have used Google Scholar as a data source because some significant

research studies were not found in the first four electronic databases. We have performed

a pilot test that indicated that the first 300 results were significantly relevant to this

review domain. For maintaining generality and reliability of the results, we extended the

Google scholar resulting coverage up to 500 results.

2.2.3 Selection of Inclusion and Exclusion Criteria

We performed the inclusion and exclusion criteria on the peer-reviewed journals, confer-

ences, and workshops papers published between 2002 and 2019. The reason for choosing

this time frame was that the earliest notable research work in the field of service com-

position was published in 2004 [2]. In the following subsection, we provide a detailed

discussion of applying an inclusion and exclusion criteria based on the review’s scope.

2.2.3.1 Inclusion Criteria

In this criteria, we only included the research papers published in the English languages

in the peer-reviewed journals, conferences and workshops. Following points were applied

for developing inclusion criteria.

• Research papers published between 2002 and 2019.

• Research papers that explicitly demonstrate the service composition or service se-

lection approaches.

21

Table 2.2: Number of search results from each digital databases

Bibliographic Source Search Results
IEEE Xplore 2368
SpringerLink 1245
ACM Digital Library 1702
ScienceDirect 652
Google Scholar 500

• Research papers that explicitly provide techniques, methods, solutions and evalua-

tions for supporting service composition.

2.2.3.2 Exclusion Criteria

In this criteria, we excluded the research papers that were either published or appeared in

the books, white papers, poster session, technical report, panel report or discussion, and

tutorial summary etc. Following points were applied for developing exclusion criteria.

• Research papers that did not explicitly provide techniques or approaches to facilitate

the service composition.

• Non-peer-reviewed research papers.

• Research papers’ language was other than English.

• Research papers that were not available in full text.

2.2.4 Search Execution

We performed the search execution process, as shown in the Figure 2.2, follow the pro-

cedure discussed in the Section 2.2.2. In our manual search, we determined the set of 17

research articles for comparing with automated search results (e.g., quasi-gold standard).

Further, we conducted an automatic search on the selected databases (Table 2.1) using

search query constructed in the Section 2.2.2.1. In particular, 6467 research articles were

collected through search query applied on the title, keywords, and abstract in the auto-

mated search process, as shown in the Table 2.2. In the next step, we filtered the set

22

Figure 2.2: Search execution procedure

of 50 most relevant research articles in this SLR by applying an inclusion and exclusion

criteria defined in the Section 2.2.3.

2.2.5 Quality Assessment and Data Extraction

Apart from the inclusion and exclusion criteria, we adopted the following quality assess-

ment criteria provided [62]. We guarantee that each research article included in this

review has met the following four criteria [62].

1. Research article has rigorous data analysis based on evidence or theoretical reasoning

rather than non-justified or ad hoc statements.

2. Research article explains the context in which the research was carried out.

3. The design and execution of the research support the aims of the research article.

23

4. Research article contains a description of data collection methods.

The data extraction process was carried out by scanning each of the 50 research articles

thoroughly, and we used the Excel spreadsheet for managing extracted data. Further, we

conducted data analysis process, in which we examined the extracted data with respect

to their similarities. The results discussion of this process is provided in the next section.

2.2.6 Overview of the Included Studies

2.2.6.1 An overview of the distribution of an included articles along with

data sources

We included 50 research articles that were published in the leading conferences, journals

and workshops in the Service-Oriented Computing (SOC) or Service Computing commu-

nity and all these articles meet the quality assessment criteria that we discussed in the

previous section. In the Table 2.3, we give an overview of the distribution of an included

research articles with respect to their publication channels and the number of research

articles included from each publication channel. Table 2.5 provides the an overview of

the included research articles in this SLR. We have also plotted the publication channels

along with included research articles in the Figure 2.3. The results are fairly distributed

over conference, journal and workshop. Moreover, we observed that most of the articles

were published in the conference (48%), followed a journal (48%) and limited articles

published in the workshop (4%). However, these results reflect the maturity and active

research in the field of service composition.

2.2.6.2 Citation status of included articles

In Table 2.4, we give a summary of the citation rate of the included articles in this SLR.

These citation numbers were collected from the Google Scholar. The purpose of collecting

this citation data is to provide a rough indication to know the research article quality,

and not for making comparison study among them. In particular, 5 research articles were

24

Table 2.3: An overview of the distribution of research articles with publication details
(e.g., Conference, Journal, and Workshop)

Sources (Conference/Journal/Workshop) No. of Articles
IEEE International Conference on Web Services 6
IEEE Transactions on Service Computing 6
IEEE International Conference on Service Computing 5
International Conference on Service-Oriented Computing 3
International World Wide Web Conference 3
Expert System with Applications 1
IEEE Transactions on Software Engineering 1
Service-Oriented Computing & Application 2
IEEE Congress on Services 1
Journal of Systems and Software 2
ACM Transactions on Web 1
IEEE Transactions on Systems, Man, and Cybernetics: Systems 2
IEEE Access 1
Information and Software Technology 2
International Semantic Web Conference 1
International Journal of Web and Grid Services 1
International Workshop on Managing Technical Debt 1
Computer & Industrial Engineering 1
IEEE International Conference on Cloud Computing 1
IEEE Transactions on Knowledge and Data Engineering 1
IEEE Congress on Evolutionary Computation 1
IEEE Transactions on Cloud Computing 1
Information Sciences 1
2012 Ninth International Conference on Information
Technology-New Generations 1
International Workshop on Quality of Service 1
Information Systems and E-Business Management 1
2009 IEEE Conference on Commerce and Enterprise Computing 1
Australian Software Engineering Conference 1

25

Figure 2.3: Article distribution over publication channel

Table 2.4: An overview of included research articles with citation rate

Cited By <10 10-50 50-100 >100
No. of articles
(50 articles)

5 15 12 18

cited by less than 10 other sources, and among them, most of the articles were published

between 2017 and 2019. Therefore, it is expected that these articles can not get a high

number of citations in such a short time span. Further, 10-50 other sources cited almost

30% of the research articles (15 articles) and 12 articles followed by 50-100 other sources.

Notably, 36% of the research articles (18 articles) were cited by more than 100 other

sources.

2.2.6.3 Distribution of included articles over year

Figure 2.4 provides an overview of the distribution of included articles over the year.

We observed an increasing trend of the articles published in the web service composition

(or web service selection) area from 2008 to 2016. In general, it shows an active research

interest of the SOC community for exploring service composition in the large scale systems

(e.g., cloud computing).

26

Table 2.5: List of included research articles for the SLR

Source Year Title
Zeng et al. [2] 2004 QoS-aware middleware for web services composition
Keidl et al. [63] 2004 Towards context-aware adaptable web services
Yu et al. [64] 2005 Service selection algorithms for Web services with end-to-end QoS constraints
Maamar et al. [65] 2005 Toward an agent-based and context-oriented approach for web services composition
Berbner et al. [48] 2006 Heuristics for qos-aware web service composition
Hassine et al. [?] 2006 A constraint-based approach to horizontal web service composition
Yu et al. [66] 2007 Efficient algorithms for Web services selection with end-to-end QoS constraints
Canfora et al. [15] 2008 A framework for QoS-aware binding and re-binding of composite web services
Wada et al. [67] 2008 Multiobjective optimisation of sla-aware service composition
Hwang et al. [17] 2008 Dynamic web service selection for reliable web service composition
Halima et al. [68] 2008 A qos-oriented reconfigurable middleware for self-healing web services
Xiong et al. [33] 2008 Sla-based service composition in enterprise computing

Alrifai et al. [69] 2009
Combining global optimisation with local selection for efficient QoS-aware service
composition

Huang et al. [47] 2009 An optimal QoS-based Web service selection scheme
Leitner et al. [70] 2009 Runtime prediction of service level agreement violations for composite services

Zhai et al. [41] 2009
SOA middleware support for service process reconfiguration with end-to-end
QoS constraints

Kapitsaki et al. [71] 2009 Model-driven development of composite context-aware web applications

Lin et al. [72] 2009
An efficient approach for service process reconfiguration in SOA with end-to-end
QoS constraints

Alrifai et al. [28] 2010 Selecting skyline services for QoS-based web service composition
Leitner et al. [73] 2010 Monitoring, prediction and prevention of sla violations in composite services

Lin et al. [14] 2010
The design and implementation of service process reconfiguration with end-to-end
QoS constraints in SOA

Tang et al. [74] 2010
A hybrid genetic algorithm for the optimal constrained web service selection
problem in web service composition

Lin et al. [75] 2011 A relaxable service selection algorithm for QoS-based web service composition
Li(li2011adaptive) 2011 Adaptive QoS-aware service process reconfiguration
aschoff et al. [42] 2011 QoS-driven proactive adaptation of service composition
Wu et al. [76] 2012 Tree-based search algorithm for web service composition in SaaS
Lin et al. [36] 2012 Dynamic service selection based on context-aware QoS
Benouaret et al. [77] 2012 Selecting skyline web services from uncertain qos
Ye et al. [78] 2012 QoS-aware cloud service composition based on economic models
He et al. [4] 2012 QoS-driven service selection for multi-tenant SaaS

Leitner et al. [79] 2013
Data-driven and automated prediction of service level agreement violations
in service compositions

Wang et al. [35] 2013 Constraint-aware approach to web service composition
Feng et al. [80] 2013 Dynamic service composition with service-dependent QoS attributes
Alzaghoul et al. [10] 2013 CloudMTD Using real options to manage technical debt in cloud-based service selection
Deng et al. [81] 2014 Service selection for composition with QoS correlations
Wu et al. [82] 2014 Broker-based SLA-aware composite service provisioning
Wen et al. [83] 2014 Probabilistic top-K dominating services composition with uncertain QoS
Alzaghoul et al. [84] 2014 Evaluating technical debt in cloud-based architectures using real options
Ding et al. [85] 2015 A transaction and QoS-aware service selection approach based on genetic algorithm
Wang et al. [86] 2015 Automatic web service composition based on uncertainty execution effects
Mostafa et al. [13] 2015 Multi-objective service composition in uncertain environments

Chen et al. [87] 2016
A flexible QoS-aware Web service composition method by multi-objective
optimisation in cloud manufacturing

Chen et al. [38] 2016 Multi-objective service composition with QoS dependencies
Xu et al. [88] 2016 Context-aware QoS prediction for web service recommendation and selection
Laleh et al. [30] 2017 Constraint adaptation in Web service composition

Wang et al. [11] 2017
Efficient QoS-aware service recommendation for multi-tenant service-based
systems in cloud

Sun et al. [89] 2018 A fluctuation-aware approach for predictive web service composition
Niu et al. [90] 2019 Towards the optimality of QoS-aware web service composition with uncertainty
Liang et al. [32] 2019 QoS-aware web service composition with internal complementarity
Zhang et al. [91] 2019 Composition Context-Based Web Services Similarity Measure

27

Figure 2.4: Articles distribution over the years 2002−2019

2.3 Data Extraction Results Discussion

In this section, we answer the sub-research questions defined in Section 2.1:

RQ 1.1: What are the current state-of-the-art approaches for service composition?, and

what are the service quality factors addressed in these approaches? ; RQ 1.2: What are

the current techniques/methods taken by these approaches for supporting service quality

factors and what is the current status of an economic-driven approach in the SaaS Cloud?

However, the existing systematic literature reviews and surveys [92, 93, 94, 95, 96, 97]

supported us to design and develop the following classification framework.

2.3.1 RQ 1.1: A Classification Framework for Service Compo-

sition

In this section, we provide a classification framework for existing service composition

approaches as shown in the Figure 2.5. The aim of developing this classification framework

is to answer the RQ 1.1.

28

Figure 2.5: Taxonomy of service composition approaches

2.3.1.1 QoS-Aware Service Composition

QoS-aware service composition approaches are explicitly considered the end-user QoS

requirements in the composition process [48, 98]. In general, QoS is used to describes the

non-functional properties of web services and also play a key role for differentiating similar

functional equivalent web services over the Internet [38]. The aim of web service selection

in service composition is not only to meet an end-user functional requirements but also

guarantee the service QoS throughout composite application execution. However, several

quality of service factors are involved in the QoS-aware composition process, which may

be imposed by service provider or an end-user [47].

• QoS Correlation: QoS correlation denotes the correlation of QoS values in the

service composition [38, 80, 81], and it is common in the real-life service compo-

29

sition. Suppose, there are three service providers, namely A, B and C they offer

similar functional web services with different quality of services (e.g., response time,

throughput, or cost) in the cloud market. Let’s consider a service provider A pro-

vides a discount if the candidate service Ax and Ay are selected together in the

composition. On the other side, service provider B gives a discount if candidate

service Bx and Cy are selected together due to some business collaboration between

service providers B and C. In this scenario, the selection of candidate services exhibit

the QoS correlation in the service composition.

• Internal Complimentary QoS: Liang et al. [32] introduced the concept of inter-

nal complimentary in the QoS-aware web service selection. Internal complimentary

allows multiple candidate services selection within the same service class to form a

new composite candidate service in the service composition. However, such candi-

date service selection improves the overall QoS of the service composition plan.

• Optimal QoS: It refers to a QoS-aware selection of suitable web services from

the service repository and optimises a service composition plan that maximises an

end-user satisfaction in terms of QoS requirements [47].

2.3.1.2 SLA-Aware Service Composition

The SLA-aware service composition approach is intended to build the composite ap-

plication based on the type of SLA and its requirements [67]. This approach is more

sophisticated than the QoS-aware service composition because the QoS-aware approach

aims to meet an end-user’s QoS requirements or to maximise an end-user satisfaction

by providing higher capacity service instances [82]. The QoS-aware approach blocks the

service resources and fails to take into account that other existing users are requesting

similar services and their decisions for service composition can impact the QoS [82]. On

the other hand, the SLA-aware approach provisions the service instance in the composite

service demanded by multiple end-users based on their SLA types.

30

• SLA Type : In the SaaS cloud environment, end-users can be differentiated based

on their SLA type. Moreover, end-users may have different SLA2 (e.g., silver, gold

or platinum) [67] that exhibits the different level of functional and QoS requirements

for the same service.

• SLA Violation : SLA violation is the consequences of not satisfying the service

constraints, which are legally bound in the SLA [34, 82]. The penalty cost would

be paid against each request violation in the composition, and it would negatively

affect the service utility and reputation in the SaaS cloud.

• SLA Prevention : SLA prevention denotes as a process of proactive prevention of

SLA violation using some predictive techniques. It helps to improve the composite

service utility.

2.3.1.3 Constraints-Aware Service Composition

This approach implements the constraints usually imposed by either service provider or

service consumer (e.g., end-user) [46]. In general, constraints denote the minimum expec-

tations (or strict conditions), for example, a service consumer may specify the constraints,

such as service response time should be below 10 ms. Further, the service provider has its

own optimisation goals [4], such as the utilization of service capacity should be above 85%

throughout execution. However, all web services in the real world could not be universally

applicable, and there might be some process restrictions (or constraints) imposed by the

service provider [35]. For example, the process constraints could be related to a service

location. The following service quality factor are involved in composing constraints-driven

service composition.

• End-to-End QoS Constraints : End-to-End constraints guarantee that the com-

posite service or newly recomposed service should meet an end-user’s specified con-

straints throughout execution time [14].

2SLA is a legal agreement binding between the service provider and the user.

31

• Local and Global Constraints : Local constraints are applied at the individual

component service selection, whereas global constraints are specified for the entire

service composition [99].

• Process Constraints : Process constraints denote web service restrictions, e.g., let

us take an item delivery service in an e-commerce system, there are many function-

ally equivalent web services they can process item delivery. But these web services

have restrictions to deliver the item in the specified zone (or location) in the country

or around the world [35].

2.3.1.4 Context-Aware Service Composition

This approach employs context-awareness, which refers to information about the geo-

graphical service environment and end-users relevant information (e.g., end-user’s pref-

erences) [100]. Context-aware information is essential for web service selection, e.g., the

physical distance between an end-user and web service could be viewed as a context re-

lated factor for the service response time [36]. Moreover, a context could be derived from

the parameters correlation that exists between the input parameter and out parameter of

the invoked web services in the service composition [91]. The parameter correlation can

be extracted from the service composition history that was used for selecting reliable web

service in the service composition.The following quality factors are associated with the

context-aware service composition.

• Geographical location : Due to different geographical location of web services

and end-users, the same web service provides the different response time for end-

users they have varied physical distance from the web service location [36].

• QoS Context : User’s preferences and the service operating environment are com-

bined together to model end-user QoS context for composing specific context-driven

service composition [63].

32

2.3.1.5 Uncertainty-Aware Service Composition

Previous approaches are intended to form the composite service based on the prior knowl-

edge of QoS attributes. Besides, they ignore the fact that the QoS values are uncertain

in the dynamic environment (e.g., cloud environment) where no prior knowledge of the

QoS attributes are available [13]. Uncertainty-aware service composition is designed to

deal with QoS uncertainty in the service operating environment. In the SaaS cloud en-

vironment, QoS uncertainty could be the consequences of changing workload, service

failure or error-prone operating environment etc. [17, 86, 90]. Moreover, this approach

uses probabilistic and skyline techniques to deal with an uncertainty in a dynamic ser-

vice composition environment [83]. The following factors cause uncertainty issues in the

service composition.

• QoS Uncertainty : The QoS uncertainty is a common problem in a dynamic envi-

ronment [6, 101] due to unpredictable and changing request workload from the users,

e.g., users may frequently join or leave the service pool in the cloud environment.

• Uncertain Operating Environment : The uncertainty of physical or technical

failure in an operating environment may lead the severe issues related to service com-

position, e.g., service down or degrade the service quality (e.g., performance) [17].

These issues need to mitigate promptly, otherwise, they can lower the service repu-

tation in the cloud market.

2.3.1.6 Economic-Driven Service Composition

An economic-driven approach applies economic aspects for building a composite applica-

tion. An economic aspects may be related to either individual component service selection

or the entire service composition [10]. Moreover, the aim of an economic-driven service

selection is to maximise the utility of the entire service composition (e.g., maximise ser-

vice revenue) [10]. The following service quality factors are involved in the selection of an

economic-driven service composition.

33

Table 2.6: Classification of Service Composition Approaches

Approach Service Quality Factors Representative Examples

QoS-Aware
QoS Dependency or Correlation,
Internal Complimentry,
Optimal QoS

[2, 4, 11, 15, 28, 32, 38, 42, 47],
[48, 68, 69, 76, 80, 81],
[85, 87, 98]

SLA-Aware SLA Type, SLA Violation, SLA Prevention [33, 67, 70, 73, 79, 82]

Constraints-Aware
End-to-End QoS constraints,
Local/Global, Constraints,
Process Constraints

[14, 30, 35, 41, 64, 66],
[72, 74, 99]

Context-Aware
Geographical Location,
QoS-Context

[36, 63, 65, 71, 88, 91]

Uncertainty-Aware
QoS Uncertainty, Uncertain
Operating Environment

[13, 17, 77, 83, 86, 89, 90, 102]

Econmic-Driven Long-Term Utility, Sub-Optimal Utility [10, 78, 84]

• Long-term utility : The selection of individual web service is considered not only

the QoS constraints but also long-term economic-driven perspective [78]. For ex-

ample, predictive utility could be estimated from the utility history of web services.

Also, this prior knowledge of predictive utility helps to select an economic-driven

service that maximises the long-term utility of entire service composition.

• Sub-optimal utility : Sub-optimal utility is the consequences of the running

composite service that may be under-utilised or over-utilised due to environmental

conditions. Both cases negatively affect the service utility (e.g., reducing service

revenue).

Table 2.6 summarises the service composition approaches and the relevant service

quality factors that we studied above. However, most of the above approaches are further

extending to deal with the dynamic adaptation of composition and reconfiguration/re-

composition of composite service in the error-prone operating environment or constraints

violations [17, 103]. As we discussed, web service failure is a common problem in the

error-prone operating environment. Therefore, the current composite service needs to

reconfigure by replacing the faulty services with the newly selected web services using

these approaches. In this direction, the End-to-End QoS constraint-aware composite ser-

vice reconfiguration and adaption approaches were presented by [14, 41, 72, 104]. Further,

QoS-aware approach has gained more attention in this direction, the researcher viewed the

34

service reconfiguration in a different way such as QoS-aware service reconfiguration [16, 68]

and QoS-aware-adaptation of service composition [42, 98, 105] and also applied it in the

multi-tenant SaaS cloud environment [3, 4]. We will provide more discussions on these

approaches in the RQ 1.2.

Answering RQ1.1: From the above discussions, we are in the position to state that

the Service composition is an active research area in the Service-Oriented Computing

(SOC) community. The results obtained from the classification framework suggests

that the SOC community has a keen interest in exploring QoS and constraints-aware

service compositions.

2.3.2 RQ 1.2: Discussions on the techniques/Methods taken by

service composition approaches

This section describes the techniques/methods or actions taken by service composition

approaches introduced in the Section 2.3.1.

− QoS-aware service composition : In the literature, researchers addressed the

QoS-aware service composition from different viewpoints, e.g., QoS correlation, service-

dependent QoS, internal complimentary and optimal QoS along with the varying strate-

gies of optimisation. Our discussion include the most influenced research works in the

QoS-aware approach. Zeng et al. [2] introduced AgFlow middleware platform for QoS-

aware web service composition. They presented two different strategies for QoS-aware

web service selection (i) local optimisation of web service selection using Simple Additive

Weighting (SAW) technique and the global planning of web service selection using Inte-

ger Programming (IP) approach. In the local optimisation approach, a Multiple Criteria

Decision Making (MCDM) is applied to select a web service for each given task in the

composite web service; (ii) whereas, the global optimisation approach chooses an optimal

execution plan from all possible paths based on the IP. Further, AgFlow middleware pro-

35

vided the service quality model that helps to evaluate the overall quality of composite web

service. Alrifai et al. [69] proposed a heuristic methodology that combines the global opti-

misation with local selection technique. They used Mixed Integer Programming (MIP) to

get the best decomposition of the global QoS constraints into native constraints and then

the local selection is applied to find an optimal web service that satisfies these local con-

straints. Further, Alrifai et al. [28] presented a skyline technique for selecting QoS-aware

web services in the composition. In the skyline process, they first used MIP to prune all

non-skyline service from each service classes that improve the skyline search. Further, the

skyline services are selected by comparing all local skyline services in the skyline service

set that excludes those services that are dominated by other services. Berbner et al. [48]

presented a heuristic H1 RELAX IP that applies a backtracking algorithm on the result

obtained from the Integer Programming. H1 RELAX IP used the Integer Programming to

find the web services that satisfy the local constraints and then a backtracking algorithm

is applied to the collected web services and repeatedly search the set of web services that

meet the global constraints. Chen et al. [87] modelled QoS-aware service composition as a

multi-objective optimisation problem and proposed E-Dominance Multi Objective Evolu-

tionary Algorithm (EDMOEA) for optimising the service composition. The algorithm is

used to find the pareto optimal services, and it also facilitates the users to select the best

service with the tradeoff of QoS risk and performance. Chen et al. [38] modelled QoS-

dependencies in multi-objective service composition. They adopted a pruning algorithm

for eliminating infeasible candidate services from the search space. A Vector Ordinal op-

timisation techniques based service composition algorithm is developed for finding pareto

optimal set of the candidate service composition plan. Recently, Liang et al. [32] in-

troduced the concept of internal complimentary in the QoS-aware web service selection.

Internal complimentary allows multiple candidate services selection within the same ser-

vice class to form a new composite candidate service in the service composition. They

first transformed the problem into a Multi-choice Multi-dimensional Knapsack Problem

(MMKP) and then performed an optimisation process to find the optimal service compo-

36

Table 2.7: Representative examples for QoS-aware approach

Source Method QoS Parameter Optimisation

Zeng et al. [2]
Simple Additive Weigh,
Integer Programming

Execution Price, Reputation
Execution Duration, Availability
, Sucessful Execution Rate

Local and
Global

Alrifai et al. [69]
Mixed Integer
Programming

Reponse Time, Availability,
Price, Reputation

Global

Alrifai et al. [28] Skyline Algorithm
Response Time, Availability,
Price, Reputation

Global

Berbner et al. [48] Integer Programming
Response Time, Availability,
Throughput, Scalability,
Reputation

Global

Chen et al. [87]
Multi-Objective Evolu-
tionary Algorithm

Cost, Execution Time, Latency,
Reliability, Availability

Global

Chen et al. [38]
Vector Ordinal
optimisation Technique

Response Time, Availability,
Cost, Reliability, Throughput,
Reputation

Global

Liang et al. [32]
multi-choice multi-
dimensional knapsack

Response Time,Throughput ,
Cost, Reliability,

Global

Huang et al. [47]
multi-criteria decision
making, Integer
Programming

Availability, Response Time,
Reliability, cost

Global

Ding et al. [85] Genetic Algorithms
Price, Execution Time,
compensating time, success possibilit

Global

Li et al. [98]
Integer Programming,
Iterative Algorithm

Response Time,Throughput ,
Cost,

Local

Canfora et al. [15] Genetic Algorithms
Response Time, Availability,
Cost, Reliability

Global

Aschoff et al. [42] EWMA Response Time, Cost None

Wu et al. [76]
Tree-Based
Search

Execution Time,
Reliability

None

He et al. [4]
Integer Programming,
Skyline, Greedy Algo

Cost, Response Time ,
Availability, Throughput

Global

sition. Huang et al. [47] presented an optimal QoS based web service composition. They

adopted multi-criteria decision making with the weighted sum model that enables the

service consumer to assess service quality numerically. Further, they modelled the QoS-

driven optimisation using Integer Programming for selecting an optimal service. Ding et

al. [85] considered transactional property in the QoS-aware service selection. They argued

that the service execution time might be affected by the transactional properties, and the

existing method deals with either local optimal or global optimal composite service under

fixed transactional workflow. To deal with these issues, they employed a genetic algorithm

for optimising the service composition based on the defined transaction rules.

Li et al. [98] presented an expand region algorithm that reduces the reconfiguration

37

cost by identifies the limited reconfiguration region of faulty service and then the service

reconfiguration algorithm replaces all subprocess services which are involved in the recon-

figuration region. Canfora et al. [15] presented a framework for binding and re-binding

the composite service. They proposed an algorithm that re-estimates the new QoS and

triggers the service re-binding whenever any QoS deviations are detected. Further, they

adopted Genetic algorithms for optimising the service composition. Aschoff et al. [42]

presented a ProAdapt framework for the proactive adaptation of service composition due

to changes in composite service. They used the Exponential Weighted Moving Average

(EWMA) that models the response time of service operation, which would then trigger

recomposition when likely degradation of response time is detected. He et al. [4] proposed

MSSOtimizser (Multi-tenant SaaS Optimizer) that provides effective and efficient service

selection for a multi-tenant SaaS cloud. They considered the SaaS provider’s optimisation

goals, e.g., least resource cost, better performance and maximised revenues etc. Further,

they adopted a hybrid methodology that combines the skyline, integer programming, and

greedy algorithm together to optimise an optimal service composition plans for all the

users. Wu et al. [76] introduced a tree-based heuristic approach for web service composi-

tion in the SaaS cloud. They presented a tree-based algorithm that builds the tree of all

possible combinations of composition solution and then performed the filtering to remove

all unlikely and illegal composition paths. After that, they applied a best-first search

algorithm to evaluate and rank the optimal service composition. Table 2.7 summarises

the algorithms and their metrics for the QoS-aware service composition approach.

− Constraints-aware service composition : Web services in the real world may

not be universally applicable, and there might be some process restrictions (or constraints)

imposed by the service provider [35]. For example, order delivery web service may have

constraints to deliver items in the specified region in the country or world. Such type of

process constraints presented by Wang et al. [35] in their constraint-aware service com-

position approach. They adopted preprocessing methods for filtering all the web service

that can do the same task in the SIDE service set and then used a graph search-based

38

Table 2.8: Representative examples for constraint-aware approach

Source Methods Constraints Optimisation

Wang et al. [35]
Graph Search-Based
Algorithm

Service uses restriction None

Lin et al. [14] Iterative Algorithm End-to-End QoS Local

Laleh et al. [30]
Graph Plan-Based
Approach

External Constraints
(e.g., new restictions)

None

Yu et al. [66]
MMKP, Graph-Based
Search Approach

End-to-End QoS
Local and
Global

Tang et al. [74]
Hybrid Genetic
Algorithm

Optimal Constraints Global

Yu et al.[64]
MMKP, Multi-Constraint
Optimal Path

End-to-End QoS
Local and
Global

Zeng et al.[106] Linear Programming Global Constraints Global

algorithm that selects an appropriate web service from the SIDE service set and optimise

the constrains-aware service composition. Lin et al. [14] described a multisteps algo-

rithmic approach; in which an expand region algorithm is proposed that identifies the

reconfiguration region of faulty services including some neighbouring services for main-

taining end-to-end QoS constraints and then the service process reconfiguration algorithm

replaces all subprocess services which are involved in the reconfiguration region. Laleh

et al. [30] presented a constraint adaptation-aware service composition that supports

runtime-adaptation of new constraints in the composite service execution. They adopted

a graph-plan-based approach for optimising the constraint-aware service composition. Yu

et al. [66] introduced a broker-based architecture that facilitates the service selection in-

tended to maximise an application-specific utility function to meets the end-to-end QoS

constraints. They defined the problem into two steps. Firstly, they transformed the

problem into a combinatorial optimisation problem as Multi-dimension Multichoice 0-1

Knapsack Problem (MMKP). Secondly, the graph model is adopted to define the prob-

lem as a Multi Constraint Optimal Path (MCOP) problem. Based on these methods, an

efficient heuristic algorithm is proposed for optimising the end-to-end constraint-aware

service selection. Tang et al. [74] proposed a hybrid genetic algorithm for optimal con-

straints -aware service selection. In the hybrid strategy, they used a local optimiser with

39

an aim to improves QoS values and eliminates the constraints violation for optimising

the service composition plan. However, many approaches were discussed in the literature

they imposed QoS-constraints or end-to-end constraint either at the design-time service

selection or run-time composite service reconfiguration [64, 106]. Table 2.8 summarises

the algorithms and constraints types used in the constraints-aware approaches.

− SLA-aware service composition : Wu et al. [82] introduced a broker-based

strategy for SLA-aware service composition. In this approach, they implemented a ser-

vice broker agent that works as an intermediator between the service providers and users.

The service broker agent facilitates on-demand service strategies and provides a guarantee

with the reliability of QoS data which is specified in the SLA. Further, they presented two

algorithms for implementing a service broker agent. Depth-First Search (DFS) algorithm

traverses the entire search space and find the service instance which satisfies the QoS

requirements. A greedy algorithm is proposed that combines the Genetic Algorithm for

optimising the service composition. In the SaaS cloud, a composite application would

inevitably operate under dynamic changes on the workload that affects the composite

application performance or leads to SLA violation [6]. For handling such SLA violation

proactively, Leitner et al. [70] used machine learning regression model for predicting the

SLA violation in the composite service execution. Further, Leitner et al. [79] extended

data-driven approach for automated prediction of SLA violation in the service composi-

tion. Also, they presented a PREvent framework that dynamically monitors and prevents

the SLA violation in the composite service execution [73]. Wada et al. [67] presented

an optimisation framework named E3 for solving SLA-aware cloud service composition

problem. E3 - MOGA (Multi-Objective Genetic Algorithm) finds the optimal solutions

which are equally distributed in a objective space and select any one of them based on

the end-user SLA requirements. Moreover, E3 MOGA supports three different categories

of users, namely silver, gold and platinum for generating optimal service composition

plans. Xiong [33] developed a framework for SLA-aware service composition that sup-

ports SLA negotiation and QoS constraints-driven service provisioning according to SLA

40

Table 2.9: Representative examples for SLA-aware approach

Source Method
SLA
Parameters

Runtime-SLA
Support

Optimisation

Wu et al. [82]
Greedy Algorithm,
Genetic Algorithms

Response Time,
Availability,
Reputation,
Reliability

Not
Supported

Global

Leitner et al. [70]
Machine Learning
Regression Technique

Response Time
Pridiction of
SLA violation

None

Leitner et al. [79]
ANN-based regression
, ARIMA

Response Time
Prediction of
SLA violation

None

Leitner et al [73] Regression Technique Response Time

Monitoring,
Prediction,
Prevention of
SLA violation

None

Wada et al. [67]
Multi-Objective Evolu-
tionary Algorithm

Throughput, Cost,
Latency

Not
Supported

Global

Xiong [33]
Capacity Planning
Approach

Response Time, Cost
Availability,

SLA violation,
SLA Negotiation

Global

requirements. Further, they described the SLA violation and penalty calculation model

for the service composition and applied a capacity planning approach for optimising the

service composition. Table 2.9 summarises the methods and SLA parameters used in the

SLA-aware service composition.

−Context-aware service composition : This approach is derived from the context-

awareness that could be generated by the users requirements, service providers or the

service environment. Lin et al. [36] presented a service selection approach based on the

context-aware factors of QoS attributes. They developed a QoS context for domain-

specific QoS attributes, e.g., translation quality for machine translation service. And then,

they argued that the aggregation of domain-specific QoS attributes withing other services

QoS attribute could not be possible at the service composition level. They proposed a

QoS prediction based algorithm for selecting the component services in the composition

that meets the user’s requirements. Zhang et al. [91] argued that the context could be de-

rived from the parameter correlations that exist between the input parameter and the out

parameter of the invoked web services in the service composition. The parameter correla-

tion can be extracted from the service composition history, and based on this correlation

41

Table 2.10: Representative examples for context-aware approach

Source Method Context Parameters

Lin et al. [36]
Algorithm Based on
Prediction Technique
(average of past values)

Domain Specific QoS Atributes

Zhang et al. [91]
PersonalRank and
SimRank Algorithms

Parameter Correlations

Keidl et al. [63] Programmable Framework
Location Context and Consumer
Context

Xu et al. [88] Matrix Factorization
User Geographical and Service
Information

Maamar et al. [65] Software Agents
Details of Service Operating
Environment

Kapitsaki[71] Model-Driven Development Context-Aware Development

information; they build the context network of all services. They adopted the Personal-

Rank and SimRank++ algorithms that construct the context network for mapping the

similarity of any two web service for the service composition. Keidl et al. [63] introduced

a context-aware framework for creating context-aware adaptable composite service. The

proposed framework supports various contexts of service composition, e.g., location con-

text (such as consumer’s current location; address, GPS coordinates, country, timezone

etc.) and consumer context (such as name and e-mail address etc.). Similarly, Xu et

al. [88] presented a context-aware QoS prediction technique based on the user context

information and the service context information. They adopted the Matrix Factoriza-

tion (MF) method for developing two novel prediction models named User-context-aware

MF model and Service-context-aware model. They studied the function that maps the

relationship between the geographical distance and the similarity values and then based

on the optimal mapping value it selects the best web service from the candidate web

service set. Maamar et al. [65] provided an agent and context-based approach for web

service composition. For simplicity, they used a software agent that works for the users

and context denotes the relevant information extracted from the situation or an operating

environment. Further, they presented three software agents, namely composite-service-

agent, master-service-agent, and service-agent; these agents coordinate to the context

42

component (which has the service operating information) for selecting the web services in

the composition. Table 2.10 summarises the techniques and context information used in

context-aware service composition.

− Uncertainty-aware service composition : This approach is designed to deal

with the QoS uncertainty in the service operating environment (e.g., unpredictable ser-

vice failure or dynamic changing workload etc.). Mostafa et al. [13] proposed two meta-

heuristic approaches for multi-objective optimisation of service composition under un-

certainty where no prior QoS information is available. They adopted a reinforcement

learning algorithm that deals with the uncertainty characteristics in the dynamic envi-

ronment for solving multi-objective QoS problems. In the first approach, they presented

single policy multiple multi-objective service compositions, and the second approach deals

with the multi-policy multi-objective service composition. These approaches adopt a self-

organisation mechanism that exploits the problem structure to derive the weights of dif-

ferent QoS objectives and finds a set of Pareto optimal solutions that satisfy the multiple

QoS attributes in an uncertain environment. Niu et al. [90] adopted a multi-objective

evolutionary algorithm for finding an optimal QoS of web service composition under un-

certainty (UQ-WSC). They first modelled the UQ-WSC with matrix and interval number.

Further, they provided a novel encoding representation of UQ-WSC using interval number

based multi-objective optimisation problem (IMOP). And then, they applied MOEA/D

on this encoding for optimising the optimal service composition plan. Wang et al. [86] em-

ployed a Graphplan based approach that deals with the service execution uncertainty for

optimising the service composition. They explained that the uncertainty could be related

to the service execution, and they presented an extended Graphplan which represents the

services with uncertain effect. New rules are applied to identify the mutual exclusion,

and then the Graphplan method produces the branch structure of the composite solution.

Benouaret et al. [77] employed the skyline approach for selecting services under uncertain

QoS environment. They modelled QoS attributes using possibility distribution and based

on that they compute the dominating factor of web services over each other. Further,

43

Table 2.11: Representative examples for uncertain-aware approach

Source Method Uncertainty Parameters Optimisation
Mostafa et al. [13] Reinforcement Learning Uncertain QoS Global

Niu et al. [90]
Multi-Objective
Evolutionary Algorithm

Uncertain QoS Global

Wang et al. [86] Graphplan
Uncertain Execution
Effect

Local

Benouaret et al. [77]
Probabilistic Top-K
Technique

Uncertain QoS
Fluctuations

None

Wen et al. [83] Skyline Uncertain QoS Global

they introduced the post-dominant skyline and nec-dominant skyline methods based on

the dominance relationship. After that, they presented an efficient algorithm based on

the post-dominant and nec-dominant skyline method that deals with QoS uncertainty in

skyline service selection. Wen et al. [83] adopted a probabilistic technique for modelling

uncertain QoS-aware service composition. They introduced an uncertain QoS model that

examines the probability and dominating association between web services and a novel

aR-tree data structure for storing and retrieving the data of an uncertain QoS model.

After that, they applied a probabilistic top-k framework for determining the dominating

ability of web services and then they employed heuristic rules for selecting the best web

service for the composition. Table 2.11 summarises the techniques and uncertainty factors

used in uncertainty-aware service composition.

− Economic-Driven service composition : This approach includes not only the

economic aspects but also users and service providers requirements. Alzaghoul et al. [10]

applied a real-option approach for managing technical debt in the cloud-based service

selection. They identified technical debt of substitution decisions driven by the need to

scale up of service capacity. Further, they employed the Binomial Real Options (BRO)

approach to staging the selection decision in order to quantify the debt when the substi-

tuted web service starts to pay off and clear out the technical debt. Alzaghoul et al. [84]

extended service substitution decision under uncertainty. The service substitution prob-

lem is formulated using the BRO approach. Further, they adopted a Design Structure

Matrix (DSM) and time and cost-aware propagation matrix to estimate the value of the

44

Table 2.12: Representative examples for economic-driven approach

Source Method Economic Aspects QoS Parameters
Alzaghoul and Bahsoon [10] Binomial Option Predicted Utility Scalability

Alzaghoul and Bahsoon [84]
Binomial Option,
Design Structure
Matrix

Predicted Utility Scalability

Ye et al. [78] Bayesian Network
Long-Term Economic
Model

Throughput, Cost,
Response Time

Table 2.13: Representative examples for adaptive or reconfiguration of composition

Approaches Parameters Sources
QoS-Aware Approach QoS Violation, Service Failure [2, 98, 42, 15, 68]

Constraint-Aware Approach
End to End Constraitns
Violation, External Constraints
Service Failure

[14, 41, 30, 72]

postponed decisions. Ye et al. [78] employed a Discrete Bayesian Network to design an

economic-driven model for the user and service provider in the cloud. Further, they ap-

plied Influence-Diagram (ID) for selecting the long-term based cloud service composition.

Most of the approaches have used the design-time economic-driven web service selection

for the service composition. Table 2.12 summarises the techniques and economic aspects

used in economic-driven service composition.

From the above discussion, we summarise that the QoS-aware approach and constraint-

aware approach had gained a lot of attention in the SOC research community other

than existing approaches. Table 2.13 provides an overview of both approaches that fur-

ther applied for dynamic adaptation of composition or service reconfiguration under the

failure-prone environment or constraints violations. However, QoS-aware approach is the

only approach that was employed in the multi-tenant service composition in the SaaS

cloud [4, 11, 76]. From Table 2.12, we observed that the research community has a lack of

interest in an economic-driven service composition. The proliferation of an Internet-based

modern software delivery systems (e.g., SaaS cloud) in the cloud market provides huge

market opportunities and service options to service providers and service consumers. It

is obvious that the SaaS provider wants to generate more revenue (or maximise SaaS op-

timisation goals) from the offered web services in the Cloud market. In this sense, there

45

is a need to develop some economic-driven service composition techniques in the dynamic

SaaS cloud environment. We will discuss more on economic-driven aspects in RQ 1.3.

Answering RQ 1.2: We provided extensive discussions on the service composition

techniques/methods and classified the service quality factors involved in the service

composition. Further, based on the results discussions, we observed that an economic-

driven approach has significantly fewer studies and needs to investigate at large scale.

We also summarised the current attention of these approaches in the SOC community.

2.3.3 RQ 1.3: Discussion and Future Outlook for Research

The results obtained from the SLR are shown that the field of service composition has

gained a lot of attention in the past decades. The results provided some key observations

that could help to guide future research. Notably, this SLR identified many research gaps

in the field of service composition that are potentially related to SaaS-based service com-

position and the run-time service reconfiguration decisions. In this context, we aim to

address the third sub-research question. RQ 1.3 : What are the future directions in an

economic-driven service composition research, in particular SaaS cloud? This question

provides the state-of-the-art discussions and gives useful insight into how we can benefit

from the existing service composition approaches to draw the motivation on the key re-

quirements and discussing the pitfalls when applying these service composition approaches

in the SaaS cloud.

2.3.3.1 Benefiting existing approaches to develop an economic-drive service

composition framework in the SaaS Cloud

From the SLR results, we observed that service composition approaches had been studied

based on the service quality factors needed by either service consumer or service providers.

Further, most of the approaches are designed to optimise the service composition plan

46

for the single end-user system [4]. However, these types of approaches have the limita-

tions and would not be efficient for emerging computing paradigms such as SaaS cloud.

Further, instead of serving a single user, the SaaS cloud is capable of processing diverse3

requirements submitted by multiple end-users. But, the majority of approaches have the

limitations to support such diverse requirements, and could not fit for utilizing the full ca-

pacity of the SaaS characteristics. However, a little work has done [4] that focused on the

multi-tenant service selection with similar functional needs. In this context, a new multi-

tenant service composition approach that can deal with such a complex requirements in

the SaaS cloud is necessary.

Further, based on the discussion in the Section 2.3.2., we observed that the majority

of approaches [30, 69, 82, 87] are intended to satisfy the end-users requirements with-

out accounting economic aspects (e.g., service utilization that increase service revenue)

in their service selection process. Only few research works [10, 78] have considered eco-

nomic aspects but, at design time service selection. In particular, these approaches have

not used the economic aspects (e.g., cost-benefits trade-off) in the dynamic SaaS cloud

environment. Also, these approaches have not explored the predictive techniques (e.g.,

forecasting) perspective for the long-term based service selection decision that deter-

mines whether the service selection decision reduces the service debt and satisfies the

QoS constraints in a dynamic environment or not.

Tha adaptive composition and reconfiguration of services have been studied under the

failure-prone environment (e.g., service failure), changing response time and constraints

violation [14, 42]. They only consider to replace the faulty component services [14] (in-

cluding neighbour services in the faulty service set) by selecting high capacity component

services that satisfy the QoS constraints at the moment, but without considering the

service utilisation that could be a prominent source of incurring the service debt under

changing workload in the dynamic environment, e.g., SaaS cloud. These component ser-

vices selection decisions may be the potential source of accumulating the service debt

3Diverse requirements refer to different function and QoS requirements.

47

under changing workload, which is very undesirable in the SaaS cloud. We will discuss

these issues in the next section.

2.3.3.2 Finding essential ingredients for developing an economic-driven ser-

vice composition approach in the SaaS cloud using Technical Debt

The modern software delivery system, such as SaaS cloud is a challenge for existing

service composition approaches. In particular, the dynamic nature of SaaS cloud tends to

lead the uncertainty in an operating environment, and the composite application running

under such operating environment always has some risks such as performance, scalability,

delayed latency and SLA violations etc. On the other side, the SaaS provider has its own

optimisation goals [4](e.g., minimum operating cost and maximum service revenue, better

application performance, and minimum SLA violations etc.) for delivering web services

in the SaaS cloud market. However, SaaS cloud provides economic-driven solutions to

end-users by achieving true multi-tenancy at the composite application level, where each

component service has the ability to serve several users simultaneously [4]. In this regard,

we aim to identify the required ingredients for developing an economic-driven service

composition framework in the SaaS cloud.

Based on the results of this SLR (Tables 2.7 - 2.11), most of these approaches are

designed to build service composition that satisfies an end-user requirements. Moreover,

there is a lack of adoption of these approaches in the SaaS cloud [4, 11, 76]. However,

in the context of SaaS cloud, these approaches are not efficient due to optimising QoS

for a single-user system [4]. Suppose, we apply these approaches in the SaaS cloud,

where multiple users have different types of SLA (e.g., silver, gold, or platinum) [5, 67]

that exhibits different functional and QoS requirements for the same service, e.g., CRM

service. These approaches optimise service composition plan for each user one by one. As

a result, they take more time to process all users requests in the SaaS cloud, and they

reduce the SaaS efficiency (e.g., productivity) as well as service reputation. Within this

context, we propose a novel evolutionary algorithmic approach that supports multi-tenant

48

service composition. (This limitation is addressed in Chapter 3).

Further, the existing methods (from Table 2.13) triggered the adaptive composition or

service reconfiguration based on the predicted SLA violation, QoS constraints violation

and the component service failure etc. They do not consider an economic-driven perspec-

tive in the process of service reconfiguration in a dynamic environment. In particular,

composite application in the SaaS cloud would inevitably operate under unpredictable

and dynamic changes of requests workload generated by the users and its consequences

could be the degradation of composite application performance, reducing composite ser-

vice revenue and the frequent violations of SLA and QoS constraints. All these issues

bring a challenging task: when to (re)compose the component services such that the ser-

vice revenue over time is maximized? It is obvious that there is an engineering cost of

reconfiguring the composite service in the SaaS cloud and such frequent adaptation would

not be desirable due to incurring an extra cost for the service provider. In this scenario,

there is a need to reduce unnecessary adaptations by making an economic driven decision

on whether to recompose the service or not. Moreover, in this direction, the existing

methods [14, 15, 30, 41, 42, 98] ignored the fact that service over-utilisation4 may not

necessarily be a bad result. A penalty could be paid against the SLA violation if it can

be the source that stimulates largely increased utility in the long term and also avoid the

unnecessary service reconfiguration (and save the extra adatpatation cost).

However, we argue that the technical debt could be associated with an inappropriate

engineering decision or poorly justified runtime decision for recomposing the composite

service that carries short-term benefits (e.g., satisfying SLA requirements) but not geared

for long-term benefits or future value creation in the composition. For example, the

utilisation of component services participating in the composite service execution may

be sub-optimal due to significant up and drop in the requests workload generated by

the users in the SaaS cloud environment. The sub-optimal service composition leads

the debt in a way to provides higher capacity service than the service demand by the

4over-utilization may be acceptable in short time, as long as the workload is only a ‘spike’ and the
loss can be paid off by long term benefits.

49

users. Consequently, the operating cost may outweigh the service revenue. On the other

hand, over-utilisation of service, capacity leads the SLA violations and the penalty cost

against the response time violation of the service request can be count as interest over

the technical debt. For addressing these runtime decision issues, we leverage the technical

debt metaphor that supports an economic-driven decision for service recomposition in the

SaaS cloud is presented in Chapter 4.

From an economic-driven perspective (Table 2.12), it is clear that most of the methods

(Tables 2.7 - 2.11) have not used an economic driven based long-term service selection

for meeting constraints requirements in a dynamic environment. Furthermore, existing

service composition approaches are often rely on over-optimistic assumptions, such that

both (or one) local and global constraints are hard [14, 64, 66, 107] and can always be

satisfied. For example, SaaS providers imposed some hard constraints for the web ser-

vice delivery in the cloud market, and they would be interested in getting at least 85%

utilisation (e.g., local constraint) from each component web service and the entire com-

position should be utilised at least 90%. But these constraints can always not be possible

to satisfy in dynamic changing workload generated by users in SaaS. Moreover, there may

be no such component service that meets the constraints and consequently leading the

hardness in composing the service plan. In this context, we advocate the development of

a technical debt-aware two-level constraints reasoning framework for the long-term based

economic-driven service selection. This issue is addressed in Chapter 5.

Answering RQ 1.3: We provided discussions and recommendations of the future

research, specifically for an economic-driven service composition in the SaaS Cloud.

In particular, we leveraged the existing service composition methods for identifying

the necessary ingredients towards developing technical debt-aware economic-driven

framework for service composition in the SaaS cloud.

50

2.4 Related Reviews

This section provides the discussions on the related surveys and SLR studies in the field

of web service composition.

Regarding the concept of service composition, Dustdar et al. [94] discussed the need

for service composition and presented an overview of the existing service composition

approaches such as static and dynamic service composition. Similarly, Moghaddam et

al. [108] presented a comparative review study on the web service composition and dis-

cussed different service selection and composition approaches such as optimisation based

approach (e.g., local and global optimisation), Negotiation-based approach (e.g., SLA

negotiation) and hybrid approach. Some studies are conducted based on the specific ser-

vice quality factors and techniques (e.g., computational intelligence and AI planning).

Jatoth et al. [92] conducted a systematic literature review with the focus on computa-

tional intelligence methods for QoS-aware web service composition. They presented a

classical taxonomy of computational intelligence methods, such as heuristic and meta-

heuristics methods as well as non-heuristic techniques and then leads the discussions on

each technique extensively for the perspective of QoS-aware service composition. Other

QoS-aware surveys provided the general discussions on the techniques and service se-

lection strategies [93, 95]. Truong et al. [97] presented a study on the context-aware

web service composition system. They provided an extensive discussions on the context-

aware information representation and the techniques for web service composition such

as context reasoning techniques, security and privacy techniques, and context-adaptation

techniques etc. Among them, fewer studies discussed the automated service composition

approaches based on AI planning techniques (e.g., PDDL) [109, 110]. Wang et al. [111]

surveyed service composition, specifically on the bio-inspired algorithms such as evolu-

tionary algorithms, particle swarm optimisation, and ant colony algorithm etc. Jula et

al. [96] performed the SLR on the cloud computing service composition with a partic-

ular focus on the adoption of service composition in the cloud computing environment.

51

They provided discussions on the categorisation of service composition techniques such as

combinatorial algorithms, structure, classic and graph-based algorithms, and frameworks.

These studies have provided extensive discussions on the concept of service composition,

methods or techniques for implementing service composition but have not categorised

the service composition approaches based on the service quality factors and not included

economic-driven perspective discussions.

To the best of our knowledge, this systematic literature review bridge this gap by

providing a classification framework of existing service composition approaches based on

the service quality factors including an implementation technique and the discussions on

an economic-driven perspective for web service composition in a dynamic environment,

e.g., SaaS cloud.

2.5 Review Threats

This systemic literature review methodology left behind some restrictions that were

needed to be explained further. Apparently, it was well developed and followed the guide-

line provided by [58, 59, 60, 62].

• For SLR validity, we viewed two main threats (i) selection bias and (ii) data ex-

traction. The bias selection might appear in articles selection process. A research

protocol was designed and performed to resolve the selection bias data with ref-

erence to the significant studies (Section 2.2.1). We used the protocol to mitigate

these threats by conducting an array of activities: preliminary background, research

questions, search process, selection criteria, search execution, quality assessment and

data extraction. We did our best efforts to develop this protocol, but we acknowl-

edge that selection criteria (inclusion and exclusion) may be missing some significant

research contributions that could help us for guiding the future research.

• This protocol is reviewed and revised independently by other members in the re-

search group. In particular, they examined that the designed search query can cover

52

the research questions and the objective of this SLR. They provided constructive

feedback for mitigating the bias formulation in the protocol, particularly choosing

the search keywords. However, web service is the common term over Internet-based

computing that might be lead a risk of bias selection or missing the relevant re-

search articles in the field of study. To mitigate these issues, we decided to add

more specific data in the search keywords. Although, we did our best to include

all relevant terms, still, we can’t confirm the completeness in terms of retrieving all

relevant data for the research questions.

• We applied the data extraction procedure defined in Section 2.2.5 that helps to en-

hance the consistency of data extraction. Moreover, the quality assessment criteria

is used to ensure the quality of findings.

• We conduced the manual and automated search on the meta-data, which includes

the keywords, title and paper abstract. However, we acknowledge that research

articles might be used the service composition implicitly (e.g., service-based system)

without mentioning it into the title or the keywords. Moreover, there may be a risk

in the automated search that could not retrieve the relevant research articles from

the digital bibliographic library due to search engine quality. However, we selected

the most significant bibliographical sources for performing this SLR. To mitigate the

above problems, we conducted the manual and automated search on the well-known

venues (e.g., conferences and journals) recognised by the research community in the

field of study.

2.6 Summary

In this chapter, we conducted a systematic literature review on service composition. In

particular, we described the state-of-the-art service composition under the umbrella of

well-defined taxonomy that systematically categorised the current service composition

approaches based on their service quality factors. Further, we provided extensive dis-

53

cussions on the underlying techniques and algorithms taken by these approaches. The

results obtained from this SLR shown that the existing service composition approaches

have less adoption of economic-driven perspectives and its application in the SaaS cloud.

We discussed the need for economic-driven aspects when composing the application in the

SaaS cloud. Further, based on the SLR findings, we discussed the current research issues

and identifying the research gap that guides the future research in an economic-driven

service composition in the SaaS cloud.

54

CHAPTER 3

MULTI-TENANT SERVICE COMPOSITION IN
SAAS CLOUD USING EVOLUTIONARY

OPTIMISATION

In Chapter 2, we presented a systematic literature review on service composition that

boosted our understanding of the field. Further, it allows us to identify the research gap

(problem), particularly, the limited support of economic-driven perspective in the existing

service composition approaches in the SaaS cloud. In this chapter, we present an evolu-

tionary optimisation based approach to model multi-tenants service composition problem,

thereby, addressing thesis Research Question 2. We modelled this problem as a multi-

objective optimisation problem and employed one of the most popular Multi-Objective

Evolutionary Algorithm (MOEA) named MOEA/D-STM (Stable Matching-based Selection in

Multi-Objective Evolutionary Algorithm based on Decomposition) [26]. In particular, we

present new encoding representation and fitness function that model the service selection

and composition as an evolutionary search. We incorporate our approach in MOEA/D-STM

and develop an evolutionary optimisation based service composition engine. Further,

MOEA/D-STM based service composition engine supports different types of users requests

and optimise the service composition plan for each category of users in a multi-tenant

SaaS cloud. We have also incorporated this encoding representation in NSGA-II [27] for

performing the comparative study. The experiment results show that the MOEA/D-STM

outperforms NSGA-II in terms of quality of solutions and computation time.

55

3.1 Introduction

In the SaaS cloud environment, tenants may have a varied dimension of QoS and functional

requirements for similar services (e.g., Sale CRM) [5]. In order to satisfy the tenants’ SLA

requirements, application engineer chooses the suitable web services from the service pool

in the SaaS cloud and then optimises the service composition plans for each category

of the tenant. However, in the SaaS cloud environment, several functionally equivalent

services are available with different QoS values. The selection of candidate services from

the SaaS cloud that satisfy the QoS constraints (e.g., throughput, response time, and

availability etc.) in the composition is viewed as an NP-hard multi-objective optimisation

problem [112, 113] which takes a significant amount of time and cost to find the optimal

service composition plans from the huge search space. This can be particularly challenging

in the real-time deployment scenarios, that characterised by scale, the large number of

multi-tenants, functionalities and varying QoS.

Furthermore, with an increasing interest of Service-Oriented Computing (SOC) com-

munity in the non-functional requirements-driven service composition [114, 115, 116],

many research studies were published on the QoS, SLA or constraints-aware web service

composition problems for a single-user system [3, 4, 117, 118, 119, 120]. However, these

approaches have the limitations and would not be efficient for the emerging computing

paradigms such as SaaS cloud. Further, instead of serving a single user, the SaaS cloud

is capable of processing diverse requirements submitted by multiple tenants. But, the

majority of these approaches have the limitations to support such diverse requirements.

For example, these services compositions approaches tend to support the execution plans

that search for service provisions of equivalent functionalities but with varying QoS and

cost constraints to meet the tenants’ QoS requirements or respond to QoS changes dy-

namically. However, these approaches tend to ignore the fact that the multi-tenant service

composition needs to provide variant service execution plans, each offering a customized

plan for a given tenant with its functionalities, QoS and cost constraints.

56

To address the mentioned limitations, we propose a multi-tenant service composition

approach using evolutionary optimisation. In a nutshell, the key contributions of this

chapter are summarised as follows:

• We contribute a novel diverse requirements-driven multi-tenant service composition

approach in the SaaS cloud using evolutionary optimisation.

• We present a novel encoding representation and fitness evaluation strategy that

explicitly considers the multi-tenant and QoS requirements in the SaaS cloud.

• We propose a service composition engine accelerated by an evolutionary algorithm

named MOEA/D-STM [26]. The service composition engine is capable of handling

diverse requirements of multiple tenants and optimise the service composition plan

for each tenant in the SaaS cloud.

• We evaluate the service composition engine, specifically MOEA/D-STM performance

on a real-world web service QoS dataset named WSDream [19, 38]. The results show

that, in contrast to NSGA-II [27], the MOEA/D-STM achieves better performance and

the solution quality for optimising service composition plans.

3.2 Motivating Scenario

We take Sales CRM (Customer Relationship Management) service as our motivating sce-

nario that illustrates the challenges of multi-objective optimisation of multi-tenant service

composition in the SaaS cloud [5]. Let us consider different types of tenants1 requests for

the Sales CRM service, which is available in different service packages. For example, Sales-

force [5] provides Sales CRM service in different packages namely professional, enterprise,

and unlimited. These service packages are differentiated based on the number of func-

tionalities in the service. In multi-tenant SaaS cloud, tenants can request for a different

sales CRM service package based on their SLA requirements. The SaaS cloud facilitates

1Tenants refer the end-users in the SaaS cloud

57

Figure 3.1: Motivation Example

the Sales CRM service to multiple tenants according to their SLA requirements. Suppose,

several tenants submit their requests to the SaaS cloud; in response to the requests, SaaS

cloud returns the Sales CRM service package as per tenant’s specific SLA requirements.

However, tenants may have the multi-dimensional QoS and functional requirements, one

tenant may request for the high throughput despite the cost of professional service while

another tenant is interested in getting enterprise service with lower response time and

cost. In these scenarios, each tenant has diverse requirements, a service execution plan

needs to be created for the tenant of each category by selecting suitable web service from

the service pool.

Figure 3.1 depicts two different application instances (application workflow) of Sales

CRM service namely professional and enterprise. These application workflows contain

a different number of tasks (abstract services). In the SaaS cloud environment, several

58

functionally equivalent services are available with the different QoS (such as throughput

and response time) values for attaining each task in the application workflow. There-

fore, the selection of suitable candidate services from the SaaS cloud is a combinatorial

optimisation problem [2] and become highly challenging when application engineer needs

the dynamic optimisation of composing/re-composing the service execution plan for each

category of user in the SaaS cloud.

3.3 Problem Formulation

According to the requirements discussed in Section 3.2, in this section, we formulate

service composition problem and gives basic definitions of service composition in the

multi-tenant SaaS cloud environment.

• Definition 1 : Application Workflow indicates the set of abstract services A =

{a1, a2, a3, ...an} which are usually connected using sequential or parallel connectors.

In such workflow, n indicates the total number of abstract services.

• Definition 2 : A set of candidate concrete services for each of abstract service in

the workflow CS = {(cs11, cs12, ...cs1m), (cs21, cs22, ...cs2m), ...(csn1, csn2, ...csnm)};

where m is the total number of candidate concrete services for an abstract service.

• Definition 3 : A Service composition is represented by an application workflow

A = {a1, a2, a3, ...an}. One concrete service from the set of candidate concrete

service (CS) is selected to finish an abstract service in the application workflow

A = {cs1m, cs2m, ...csnm}.

• Definition 4 : In multi-tenant service composition, suppose there are p application

workflowsAp that consist n abstract services represented byApn = {A1n, A2n, ...Apn}.

• Definition 5 : (QoS attributes) Suppose there are l QoS attributes in a service

composition, Qr, r = (Q1, Q2, ..Ql) and Qr attribute indicates the rth non-functional

property of the composite service.

59

3.4 QoS Computing Model for Service Composition

QoS attributes are the non-functional properties of a web service and these QoS need

to consider for differentiating the service composition plan during the service selection

process. Usually, multiple QoS attributes are considered in the service composition. In

particular, we consider three QoS attributes for the service composition namely through-

put, response time, and cost.

• Throughput : Throughput of a SaaS application is defined as the number of

requests the application is able to process per second.

• Response Time : Response time of a SaaS application is defined as the time

required to send a request and receive the response from the server.

• Cost : The execution cost of a SaaS application is the fee that a tenant need to

pay for invoking operations.

The aggregate value of each QoS attribute involved in the process of service composi-

tion is computed based on the QoS aggregation functions in Table 3.1 [87, 121, 122].

Table 3.1: QoS aggregation functions for sequence and parallel patterns

QoS Attributes Sequence Parallel

Cost (C) Σt
i=1C(si) Σt

i=1C(si)
Throughput (T) minti=1T (si) minti=1 T (si)
Response Time (RT) Σt

i=1RT (si) maxti=1RT (si)

where cost function (Σt
i=1C(si)) calculates the total cost of invoked web services (si)

in the composition. Throughput function (minti=1T (si)) calculates the overall throughput

of the composite application by choosing the web service which has minimum throughput

among the invoked web services (si) in the composition. Both functions do not con-

sider the connectors (sequence and parallel) impacts in the computation, specifically, how

the web services are connected in the composition. Whereas, Response Time function

(RT (si)) treats both connectors differently (i) the function (Σt
i=1RT (si)) combines the

60

response time of all web services (si) connected using a sequential connector (ii) the func-

tion (maxti=1RT (si)) choose the web service which has maximum response time among

the invoked web services (si) in the parallel connector.

Further, these QoS attributes can be exhibited in positive and negative criteria [2].

Service composition process should optimise the higher value for the positive QoS attribute

(e.g., throughput, availability and reliability) and lower the values for the negative QoS

criteria (response time, latency and cost etc.) [123]. Moreover, these QoS attributes have

numerical values at the different scale of units. For example, response time is expressed

in the milliseconds while reliability is expressed in the percentage. The opposite direction

and the different scale units create the inconsistency for estimating the QoS of a composite

service. To give the equal preference of all QoS attributes for computing the utility of a

composite service, we calculate the normalized value of each QoS attributes in the range

of (0,1). Equation 3.1 is used to normalize the negative QoS attributes and positive QoS

attributes are normalized using Equation 3.2 [2, 123].

N(Q−) =

Qmax

r −P
Qmax

r −Qmin
r

ifQmax
r 6= Qmin

r

1 ifQmax
r = Qmin

r

(3.1)

N(Q+) =

P−Qmax

r

Qmax
r −Qmin

r
ifQmax

r 6= Qmin
r

1 ifQmax
r = Qmin

r

(3.2)

Where Qmax
r and Qmin

r indicate the maximum and minimum values of the rth QoS

attribute of all candidate services involved in service composition and P is the current

attribute value of a candidate service.

61

3.5 Modelling of Service Composition using Evolu-

tionary Optimisation

In Sections 3.1 and 3.2, we discussed the multi-tenant service composition problem in

the SaaS cloud. And then, the problem is formulated in Section 3.3 as an optimisation

problem. This problem brings two challenging tasks (i) How to optimise different ser-

vice composition plans for the multiple tenants (ii) How to achieve the QoS of service

composition plans that satisfy each tenants’ requirements in SaaS cloud. Multi-Objective

Evolutionary Algorithms (MOEA) are capable of dealing with these optimisation prob-

lems. Also, MOEA has been widely used by Service-Oriented Computing (SOC) com-

munity [112]. In this research, we adopt MOEA/D-STM (Stable Matching-based Selection

in Multi-Objective Evolutionary Algorithm based on Decomposition) [26]. We provide a

novel encoding representation which is discussed in the subsequent section.

3.5.1 Encoding representation

The important aspects of an evolutionary algorithms are its chromosomes and their rep-

resentation because a chromosome capture all the relevant information required for a

solution to the problem being considered [124]. A chromosome is represented by a vector

of an genes, where n is the total number of abstract service in the service composition

(application workflow). The formulation of a chromosome represents the composite ser-

vice solution; in which a gene encodes the concrete service for each abstract service in the

service composition that could be a possible candidate solution, as shown in Figure 3.2.

Moreover, Figure 3.3 shows the solution representation encoded by the chromosome. The

value of each gene represents which concrete service (its index value) has been selected

for the corresponding abstract service such as abstract service a1 selects the concrete ser-

vice CS1 16, abstract service a2 selects the concrete service CS2 12 and abstract service a3

selects the concrete service CS3 21 and so on.

62

Figure 3.2: Chromosome encoding

Figure 3.3: Solution representation in chromosome encoding

Further, we use two types of application workflows (e.g., professional and enterprise)

in our multi-tenant service composition model that are represented by a chromosome,

as shown in Figure 3.4. In particular, we design the chromosome in such a way that it

dynamically splits itself into two parts (e.g., sub-chromosome) during the optimisation

process. The first part processes the four genes (e.g., a1 to a4) of the chromosome for

optimising professional service composition plan and the second part processes all genes of

the chromosome for optimising an enterprise service composition plan. We incorporated

this novel chromosome encoding into MOEA/D-STM and the current status of MOEA/D-STM is

to support an independent execution of two application workflows and optimise them in

each generation independently by applying genetic or problem-specific operators such as

selection, crossover, mutation, and reproduction.

3.5.2 Optimisation process in MOEA/D-STM

The MOEA/D-STM is one of the most popular Evolutionary Algorithm (EA) for solving opti-

misation problems based on the principle of decomposing a Multi-Objective Optimisation

Problem (MOP) into a set of scalar optimisation subproblems [26, 125]. MOEA/D-STM has

63

Figure 3.4: Chromosome encoding for the professional and enterprise application workflow

several advantages over other EA in terms of objective scalability, computational efficiency

and better performance on combinatorial optimisation problems [26, 126].

In optimisation process, the service composition problem is model as a minimisation

problem. In which, all QoS objectives values should be minimised during the evolutionary

optimisation process. In particular, as part of an optimisation process, MOEA/D-STM main-

tains the population of the individuals that represent a candidate Service Composition

(SC) solution. It uses Tchebycheff approach for decomposing MOP into N subproblems

and each subproblem has one solution in the current population [26]. Each subproblem is

characterized by a uniform spread N weight vectors (λ). The Tchebycheff approach finds

the closest feasible solution SC to an ideal point (commonly known as reference point)

by measuring the distance between feasible solution SC and ideal point as defined follows

Dλ(cs, q) = min
1≤i≤m

{λi|qi(cs)− q∗i } (3.3)

Where qi and λi are the QoS value and weight of the ith dimension of nth feasible

solution SC (sub-problem) respectively. For the ith dimension, qi indicates the good

solution value from the set of all neighbour possible solutions of the nth subproblem.

Algorithm 1 describes the process of optimising N subproblems and corresponding

individuals in the set of population. We compute the Euclidean Distance between two

weight vectors (sub-problems) and then form a group B(i) of T closest weight vectors.

At each generation, randomly select two solutions (parent) from the B(i) or the current

64

Algorithm 1: Optimisation Process in MOEA/D-STM

1 Initialize the population µ← {x1, x2, .., xN} , a set of weight vectors
λ← {λ1, λ2, .., λN}, the ideal and nadir objective vectors z∗, znad.
/* Compute neighbour group B of T closest weight vector */

2 for i← 1 to N do
3 B(i)← {i1, i2, .., iT}, whereλi1, λi2, .., λiT are the T closest weight vector to λi
4 end
5 while Stopping criterion is not satisfied do
6 p← ∅
7 for i← 1 to N do

/* Random selection of solution set between B(i) and µ */

8 if (rnd < neighbourSelectionProbability) then
9 S ← B(i)

10 else
11 S ← µ
12 end

/* Randomly select two solution from S */

13 xa, xb ← parentSelection(S)
/* Reproduction operations */

14 y ← crossoverOperation(xa, xb)
15 y′ ← mutationOperation(y)
16 evaluate the fitness function value of y'
17 p← y′

18 update the current z∗ and znad objective vectors

19 end
20 e← µ ∪ p
21 µ← STM(e, λ, z∗, znad)

22 end
23 return µ

population. The crossover operation is applied on the selected parents with the crossover

probability of 0.9 for producing a new offspring, the new offspring genes are mutated

with the probability of mutation rate 1/n using polynomial mutation operator, where n

indicates the number of genes in the individuals. Using Tchebycheff approach, we evaluate

the fitness of new offspring against an individual in B(i) or the current population. If a

new offspring indicates an improved solution quality then replace it with the unfeasible

solution in the current population. After generating the new offspring population, STM

maintains the diversity in search space by allocating most preferable parent solution to

each subproblem in the current population. This reproduction process is repeated with

65

Figure 3.5: MOEA/D-STM based service composition engine

all genetic and STM operations until reaching the number of generations defined in the

algorithm.

3.6 MOEA/D-STM Based Service Composition Engine

This section presents the Service Composition Engine (SCE) accelerated by an evolution-

ary algorithm named MOEA/D-STM . Figure 3.5 illustrates the overview of SCE. As can

be seen, there are two levels of components, namely QoS dataset and service plan opti-

mizer. The QoS dataset component stores the real-world web service QoS data (WSDream

dataset [19, 38]) and classify the web service QoS values according to their functional prop-

erties. The service plan optimizer component is implemented using MOEA/D-STM and then

a novel chromosome encoding presented in Section 3.5.1 is incorporated into MOEA/D-STM.

Based on the feeding chromosome information, MOEA/D-STM interacts with the QoS dataset

component and retrieves the relevant web services QoS values for performing optimisation

process discussed in Section 3.5.2. Further, the service plan optimizer produced the set

of optimal service composition plans, as shown in Figure 3.5. Currently, SCE supports to

optimize the two different service composition plans for the application workflows named

professional and enterprise. However, SCE is flexible in adding a varied number of services

in the optimisation process to generate scalable service composition plans for satisfying

the requirements of a new application workflow.

66

3.7 Evaluation

To evaluate the service composition engine, specifically, MOEA/D-STM algorithm perfor-

mance, we design experiments to assess the performance (e.g., computational time and

solution quality) of MOEA/D-STM by mean of comparing it with one of the most popular

evolutionary algorithm (e.g., NSGA-II [27]). Specifically, our experiments aim to answer

the following research questions.

• RQ 3.1 : What is the computational time of the MOEA/D-STM comparing with the

state-of-art NSGA-II?

• RQ 3.2 : Whether MOEA/D-STM can achieve better solution quality than the state-

of-art NSGA-II?

3.7.1 Experimental Setup and Results

For experimental purpose, we have used a Sales CRM system as our testing environment,

which is formed as a service composition and also helps setting up the experimental pa-

rameters. Suppose, given Sales CRM service has two different application workflows which

are connected using sequential and parallel connectors. Table 3.2 shows that the total

number of abstract services are 4 in a professional workflow with one parallel connector,

whereas an enterprise workflow contains 7 abstract services with two parallel connectors.

We have used a diverse range of candidate concrete services (20 to 50) for attaining each

abstract service in the workflow. Moreover, we used WSDream dataset, which records the

QoS values of response time and throughput of 5825 real-world web services collected from

73 different countries [19, 38]. We picked 350 web services with valid response time and

throughput values, which are randomly associated with the candidate concrete services.

Further, we randomly partitioned these web services into 7 service categories correspond-

ing to 7 different abstract services in the application workflows. We randomly generate the

cost as an additional attribute added with each concrete candidate service. We conduct a

67

Table 3.2: Workflow Configuration (Note: AS-Abstract Service, CS-Concrete Service)

Composition
Workflow

Number
of AS

Max. Number
of CS per AS

Sequential
Connector

Parallel
Connectors

AS per
Parallel Group

Professional 4 20 2 1 2
Enterprise 7 50 4 2 4

Table 3.3: Parameters for the algorithms

Parameter Name Values and Operators
Population Size 100
Crossover Operator SBXCrossover with crossover probability 0.9
Mutation Operator Polynomial mutation with mutation probability 1/n

Parent Selection
NSGA-II: Binary Tournament Selection
MOEA/D-STM: Random Selection

Max. Generation 1000 - Professional and 3000 - Enterprise
Neighborhood Size 20
Neighborhood Selection 0.9 Probability
Max. replaced solutions 2
Function Type Tchebycheff (TCH)

comparative study on the MOEA/D-STM to NSGA-II based on the computational time and

solution quality estimated by quality indicators. We have used the JMetal framework for

implementing our approach in MOEA [127]. Moreover, JMetal framework provides the

support of automatic calculation of quality indicators (e.g., HV, GD, Spread, etc.), thanks

to JMetal community [128]. We used the same parameter setting for both algorithms, as

shown in Table 3.3.

All experiments are conducted on the same machine with Intel Core i7 2.60 Ghz.

Processor, 8GB RAM and Windows 10 x64.

3.7.2 Comparative Approach

To answer all the research questions, we examine the performance of MOEA/D-STM against

the following evolutionary algorithm

• NSGA-II : We have used NSGA-II [27] as the underlying evolutionary algorithm

for our comparative study because it is one of the most popular algorithm in the

search-based software engineering community [129]. Further, we modelled the ser-

68

vice composition approach in NSGA-II with the similar workflow setting used in the

MOEA/D-STM.

3.7.2.1 Metrics

We leverage the following metrics to assess the results:

• Computational Time : For the fair assessment of our evaluation study, all exper-

iments were executed 30 times independently and the average measure is used for

the evaluation study.

• Quality Indicators : Quality Indicator is used to assess the quality of a set of

Pareto optimal solutions [130]. Particularly, it is an effective method that maps

the Pareto solution set to a real number that indicates many aspects of the solution

quality [131, 132]. In this study, we adopted two most widely used quality indicators

namely Hypervolume (HV) and Generational Distance (GD).

• QoS Attribute Values : We selected the best value of throughput, response

time and cost objectives from the solution set for 30 independent runs and average

measure are used for the evaluation study.

3.7.3 RQ 3.1: Computational time-based comparisons

To answer the research question (RQ 3.1), we conducted two sets of experiments on THE

different workflows, namely professional and enterprise. Both experiments show the

variation of execution time under the diverse range of candidate concrete services in the

search space and the varied number of abstract services in the workflow.

Execution Time vs. Number of Concrete Services −We analyse the variations

in execution time based on the number of candidate concrete services per abstract service

in each composition workflow. We deployed 20, and 50 candidate concrete service for each

abstract service in the professional and enterprise workflows respectively. In partic-

ular, Figure 3.6: (a) and (b) show that the execution time is increased over the number

69

(a) Professional - Running time on both
algorithms (Comparisons between MOEA/D-
STM and NSGA-II statistically significant (p
< .05))

(b) Enterprise - Running time on both algo-
rithms (Comparisons between MOEA/D-STM
and NSGA-II statistically significant (p < .05))

Figure 3.6: Execution time yields MOEA/D-STM and NSGA-II

of candidate concrete service grows in the search space. However, both algorithms exe-

cution times are increased with respect to concrete service increment in the search space.

Overall, MOEA/D-STM takes lower execution time than NSGA-II for both professional

and enterprise workflows. We have a statistically sound conclusion, from the Kruskal

Wallis test at the significant level of 5%, the P-value is less than 0.05 which strongly sug-

gests that there is a significant difference in the mean of running time for both algorithms.

Answering RQ1: the running overhead imposed by both algorithms indicate that

the MOEA/D-STM outperforms NSGA-II .

3.7.4 RQ 3.2: Assessment of Solutions Quality

To asses the solution quality obtained from 30 independent runs of MOEA/D-STM and

NSGA-II, we choose two widely used performance indicators, namely Hypervolume (HV)

and GD [133, 134]. These indicators are used to evaluate the convergence and diversity of

Pareto solution set [132].

• Quality Indicators : HV calculates the volume of the dominated portion of the

objective space [134]. GD determines the convergence by computing the average

70

Table 3.4: Mean value of HV and GD for professional and enterprise workflow

Composition
Workflow

MOEA/D-STM NSGA-II
HV GD HV GD

Professional 2.07 E-03 2.88 E-01 1.26 E-03 3.27 E-01
Enterprise 1.06 E-04 2.69 E-01 3.21 E-05 2.60 E-01

Table 3.5: QoS achieved by algorithms on professional and enterprise workflow

Evolutionary
Algorithm

Professional Enterprise
TH RT C TH RT C

MOEA/D-STM 41.32 0.12 9.44 76.82 0.100 18.42
NSGA-II 37.98 0.28 13.22 67.36 0.103 19.75

distance of the obtained solutions points from the Pareto Front (PF) [134, 135].

Figure 3.7 and Figure 3.8 show the standard statistic boxplot about the HV and

GD values obtained from the 30 independent runs of MOEA/D-STM and NSGA-II

for the composition workflow professional and enterprise, respectively. Fur-

ther, Table 3.4 shows the mean of HV and GD, which are obtained from the 30

repeated runs. The higher mean value of HV and the lower mean value of GD are

desirable, and they also show that the algorithm finds a good approximation to the

PF [131, 132]. The results of professional in Figure 3.7 and Table1 3.4 show

that the MOEA/D-STM achieved better values of HV and GD than NSGA-II. More-

over, enterprise workflow results in Figure 3.8 shows that MOEA/D-STM yielded a

better value of HV than NSGA-II but slightly degrade the value of GD. Overall,

MOEA/D-STM achieved better results over NSGA-II. We have a statistically sound

conclusion, from the Kruskal Wallis test at the significant level of 5%, the P-value

is less than 0.05 which strongly suggests that there is the difference in mean of HV

and GD; between the MOEA/D-STM and NSGA-II.

• QoS Attributes Values : We obtained the best value of throughput, response

time and cost objectives from the Pareto optimal solution set of candidate service

composition for the 30 independent repeated runs and mean value of each objective

is used in the evaluation study. Table 3.5 shows that the MOEA/D-STM retrieved

71

(a) Professional - HV on both algorithms
(Comparisons between MOEA/D-STM and
NSGA-II statistically significant (p < .05))

(b) Professional - GD on both algorithms
(Comparisons between MOEA/D-STM and
NSGA-II statistically significant (p < .05))

Figure 3.7: HV and GD yields MOEA/D-STM and NSGA-II on the application workflow

(a) Enterprise - HV on both algorithms
(Comparisons between MOEA/D-STM and
NSGA-II statistically significant (p < .05))

(b) Enterprise - GD on both algorithms
(Comparisons between MOEA/D-STM and
NSGA-II statistically significant (p < .05))

Figure 3.8: HV and GD yields MOEA/D-STM and NSGA-II on the enterprise workflow

better throughput and response time on the lower cost than NSGA-II for both the

workflow: professional and enterprise.

Answering RQ 3.2: Both the quality indicators and objective values of QOS at-

tributes indicate that the set of Pareto optimal solution obtained from the MOEA/D-STM

has better solution quality than the NSGA-II .

72

3.8 Summary

Existing approaches for services composition tend to be limited when addressing multi-

tenant service composition in the SaaS cloud. This is due to the fact that they are not

fundamentally designed for the dynamic provision of variant execution plans, each offering

a customized plan for a given tenant with its functionality, QoS and cost requirements.

Additionally, these approaches can fail to scale with the number of tenants, their varying

functionalities, QoS and cost, rendering them unfit for real-time dynamic composition

and recomposition scenarios. To address this problem, we proposed multi-tenant service

composition engine goes beyond the state-of-art to envision scenarios, where variants of

functionalities can be supported. We model service composition as an evolutionary opti-

misation problem with a novel encoding representation. For evaluating the effectiveness

of our approaches, we conducted several experiments, and our results shown that the

MOEA/D-STM outperforms NSGA-II in terms of performance and quality of solutions.

73

CHAPTER 4

TECHNICAL DEBT-AWARE ADAPTIVE
DECISIONS FOR SERVICE RECOMPOSITION IN

SAAS CLOUD

Chapter 3 produced the service composition engine accelerated by an evolutionary algo-

rithm. In this chapter, we take advantage of the service composition engine through inte-

grating into our framework. In particular, We target the problem of service recomposition

in the SaaS dynamics − specifically in the given changing workload from the tenants; thus,

it is not uncommon for a service composition running in the multi-tenant SaaS cloud to

encounter the problem of under-utilization and over-utilization on the component services.

Both cases are undesirable and it is therefore nature to mitigate them by recomposing the

services to a newly optimized composition plan once they have been detected. However,

this ignores the fact that under-/over-utilization can be merely caused by temporary effects,

and thus the advantages may be short-term, which hinders the long-term benefits that could

have been created by the original composition plan, while generating unnecessary overhead

and disturbance via recomposition. In this chapter, we propose DebtCom, a framework

that determines whether to trigger recomposition based on the technical debt metaphor and

time-series prediction of workload. In particular, we propose a service debt model, which

has been explicitly designed for the context of service composition, to quantify the debt.

Our core idea is that the recomposition can be unnecessary if the under-/over-utilization

only cause temporarily negative effects, and the current composition plan, although carries

74

debt, can generate greater benefit in the long-term. We evaluate DebtCom on a large scale

service system with up to 10 abstract services, each of which has 100 component services,

under real-world dataset and workload traces.

4.1 Introduction

A composite service in the multi-tenant SaaS cloud would inevitably operate under dy-

namic changes on the workload from the tenants, and thus it is not uncommon for the

composition to encounter the problem of under-utilization and over-utilization on the

component services [6]. However, the workload of composite service can be changed

rapidly during execution, causing dynamic behaviour of the composite service. On the

one hand, an increasing workload can rise over-utilization for the component services

within a composite service, which in turns, would negatively affect the Quality of Service

(QoS) and violate the Service Level Agreement (SLA) [136]. On the other hand, the

decreasing workload may lead to under-utilization of the capacity of component services,

reducing the revenue that has been achieved as the infrastructural resources also impose

a monetary cost. All those bring a challenging task: when to (re)compose the component

services such that the service utility over time is maximized?

While the problem of service recomposition (or reconfiguration) has been widely stud-

ied [14, 16, 104, 137, 138, 139], existing research studies have ignored a perhaps obvious,

but complicated fact: a short-term degradation of the utility may not necessarily be a bad

results; in fact, it can be the source that stimulates largely increased utility in the long

term. For example, under-utilization could be desirable temporarily in order to prepared

for a largely increased workload for the long-term. Similarly, over-utilization may be ac-

ceptable in short time, as long as the workload is only a ‘spike’ and the loss can be paid

off by the long term benefits. Simply ignoring such fact is non-trivial, because despite

triggering recomposition immediately upon over-/under-utilization my have short-term

advantages, it can easily create instability and hinder the possibility of achieving higher

75

benefits for the composite services in the long-term.

To address the mentioned challenges and limitations, we contribution to an economic-

driven approach, namely DebtCom, for triggering dynamic service recomposition leveraging

the principle of technical debt [140]. In this chapter, we propose:

• We introduce technical debt as a novel metric for dynamic service recomposition.

Further, we identify some critical situations or the sources in the service operating

environment that significantly contributes the technical debt.

• We tailor a time-series forecasting method, namely ARFIMA model, into the debt

model for predictably learning future debt.

• We propose a service debt model that explicitly maps the concept of technical debt

in the context of service composition. Such a model is capable of quantifying both

good and bad debt.

• The proposed service debt model, enhanced by the time-series prediction, allows us

to build a utility model based on which an algorithm is proposed to equip DebtCom

with the ability to decide whether to trigger recompoistion, considering long-term

benefits. In particular, the trade-off between short-term advantages and long-term

benefits can be controlled by a single value k.

4.2 Preliminaries

4.2.1 Technical Debt

Technical debt is a widely recognized metaphor in software development [8, 9, 54, 141].

Its core idea is to describe the extra cost incurred by actions that compromises long-

term benefits of the developed software, e.g., maintainability, in order to gain short-term

advantages (e.g. timely software release).

76

The technical debt metaphor was initially introduced by Cunningham [7] in the context

of agile software development, where the definition is described as:

“Shipping first-time code is like going into debt. A little debt speeds development so

long as it is paid back promptly with a rewrite. The danger occurs when the debt is not

repaid. Every minute spent on not quite right code counts as interest on that debt.”

In this regards, technical debt is often used as an economic-driven decision approach for

communicating technical trade-off between short-term advantages and long-term benefits

in the software projects [140, 142, 143].

Intuitively, technical debt makes an analogy with financial debt as described in eco-

nomics [144, 145]. Often, financial debt is employed to refer to the initial loan and the

interest that accumulated over time. In this regards, technical debt leverages the similar

concept of principal and interest; for example, the situation in which development team

decides to take shortcuts (e.g., by skipping some technical tasks in software development)

for getting benefits in terms of releasing timely software product [146]. In this case, tech-

nical debt denotes the cost of the fact that some tasks are skipped and interest that may

incur due to the extra cost of maintaining the software. Despite the similarities on the

concepts, technical debt metaphor is not treated in the same way as the financial debt,

because the interest associated with technical debt may or may not be paid off [52, 144].

However, the intuitive nature of technical debt allows the software engineers to reason

about the trade-off between the related short-term advantages and long-tern benefits,

aiming to make informed decisions based on when (or whether) the technical debt can be

paid off [147, 148].

4.2.2 Motivating Scenario

As shown in Figure 4.1 the SaaS provider leases the IaaS providers infrastructure and de-

ploy several functionally equivalent web services into different computing capacities(e.g.,

container) at IaaS platform. According to an overall workflow of abstract services, the

component services are selected and composed together, each of which matches the func-

77

tional requirement of an abstract service, to form a service composition. The component

services for an abstract service implement similar functionalities in the SaaS cloud but

offer diverse levels of Quality of Services (QoS). The goal is to improve the QoS of the

composite service, since there is a SLA that specific penalty for any violation. At the

same time, low operation cost of the service composition is also desirable.

Figure 4.1: An example scenario

Given the changing workloads from tenants in this context, under-/over-utilization on

each of the component services are likely to occur. In particular, under-utilization would

spend less cost on the component services but could negatively affect the overall service

revenue. In contrast, over-utilization could be good sometime for complying SLA, but

it would incur unnecessary cost. Simply trigger recomposition as soon as over-/under-

utilization is detected that may provide short-term advantages to resolve the situation to

some extends, but it could also hinder the long-term benefits that could have been created

by the original composition plan, creating extra operation cost, and more importantly,

generating instability. In contrast, doing nothing may suffer the risk that the situation

78

would not change at all. The essential point is that, regardless to the negative effects and

accumulated costs, both cases could be accepted as long as the cost can be paid off by

benefit in the long-term. However, the fundamental difficulty is how to quantify such cost

and benefit, especially taking into account the trade-off between short-/long-term effects.

In this regards, the technical debt metaphor naturally supports intuitive understand-

ing and quantification on the trade-off between short-term advantages and long-term

benefits for the service recomposition. In particular, the over-/under-utilization caused

by the current composition plan can be viewed as debt, which may be temporarily and

intentionally accepted as long as they can be cleared and start to create added values by

a reasonable point in the long-term. However, the fundamental challenges are to identify

what type of technical debt the service composition has (e.g. good or bad)?; how much

debt has been incurred? and when it will be paid off for improving overall utility?; and

finally to answer the question of when to trigger recomposition? These questions motivate

the need of DebtCom, a technical debt-aware framework for recomposing services, which

we propose in this chapter.

4.3 Technical Debt at Service Composition Level

In service composition, there are many situations when a composite service requires re-

composition due to SLA violations, service failure, insufficient service revenue than oper-

ating cost (business objective), or QoS fluctuations, etc. [14, 16]. In this regard, we argue

that the technical debt could be associated with an inappropriate engineering decision or

poorly justified run-time decision of service recomposition that carries short-term advan-

tages in terms of improving instant service utility but not geared for long-term benefits or

future value creation in the composition. A little debt is not always bad if it can help the

developers to speed the development process [56]. We look this argument as a valid point

in service recomposition for creating values and avoiding unnecessary recomposition. This

is of high significance as recomposition comes with an operation cost, especially in the

79

Figure 4.2: Intentional debt for exploring future values in the composition

SaaS cloud where the underlying resources are leased. Notably, technical debt could be

incurred intentionally in service composition when we decide to defer the recomposition

decision at time t1 and take into account the possibility of generating future values in

the current service composition plan, as shown in Figure 4.2. Moreover, it may be pos-

sible to intentionally incurred the technical debt, which is accumulated over time, for a

period (e.g., t1, ..., tn), because at each point in time (e.g., t1, t2, t3, ..., tn), the debt may

be increased or decreased due to dynamic changes in the requests workload generated by

users in the SaaS cloud. We may accept such time-varying debt in a way to consider

the future demand for scaling-up the service capacity that transforms the accumulated

debt into future value. As a result, technical debt-aware decision saves unnecessary ser-

vice recomposition cost and improve the composite service utility in the SaaS execution

environment.

On the other hand, unintentional technical debt may be the consequences of the inap-

propriate or poorly justified runtime service recomposition decisions that produce weak

composite service; which fails to process an incoming requests workload in a dynamic

environment. Consequently, weak composite service violates the end-user SLA and the

cost of penalty against each request violation could be count as interest over the incurred

80

Figure 4.3: Technical Debt over Service Recomposition

technical debt. In this case, unintentional technical debt indicates the cost of efforts re-

quired to maintain end-user SLA by recomposing a new service composition plan to get

better service utility value in changing request workload or to reduce the debt in the

current service composition as shown in Figure 4.3. However, it is a rear condition when

all participating component services (web services) in the service composition are meeting

the full utilization of their capacity. Therefore, technical debt always exists during ser-

vice composition. Our objectives are to reduce the technical debt and avoid unnecessary

recomposition towards improving composite service utility.

4.3.1 Technical Debt Indicators

Technical Debt Indicators (TDI) consist information about what type of technical debt

(good or bad debts) is, why and when was incurred, how much debt was estimated, when

it will be pay off in the future [147]. We identified following key TD indicators in service

composition [6].

1. SLA Violation : SLA violation constitutes the unintentional technical debt in

service composition. When a composite service does not satisfy the predefined

81

response time mentioned in end-users SLA, then a penalty cost against each request

violation would be counted as interest over the incurred technical debt.

2. Runtime decisions : An inappropriate or poorly justified runtime decisions for

service recomposition may lead the technical debt in a way to select unsuitable

component services for composing a new composite service which can not support

the scalability requirements in changing requests workload.

3. Service utility : Service utility constitutes the technical debt when a composite

service is sub-optimal from the utility point of view. For example, a sub-optimal

composite service can incur an intentional debt by getting service scalability benefits

in the future

4.3.2 Technical Debt Classification

A decision making needs to know the nature of accumulated debt in terms of good or bad

debts [140][6]. We describe the good and bad debts from the composite service perspective

and identifying their consequences.

1. Good Debt: A good technical debt in service composition is viewed as time-

sensitive moving target that needs to monitor for transforming the accumulated

debt into future value creation [6]. For example, Figure 4.4 shows that a composite

service is underutilized in a way to deliver more than the required demand of the

users at time t1 and intentionally accumulates the debt for a time period (e.g., t1 to

tn). We may accept such debt in a way to consider the future demand for scaling-up

the service capacity that transforms the accumulated debt into future values.

2. Bad Debt: A bad debt in service composition may lead the situation of continuous

under-utilization of composite service and will not be able to pay off the accumulated

debt in the future as shown in Figure 4.5 [6]. As consequences, such accumulated

82

Figure 4.4: Example of Good Debt

debt negatively impacts the service utility that needs to manage by taking proactive

decisions.

4.4 Time-Series Prediction of Service Workload

Proactive decision making is not uncommon, especially in the software development con-

text where the concept of technical debt was originally created [7]. Often, the fact of

whether a debt can be paid off depends on the present and future cost of the debt [147].

This is also an equivalent and important concept in our research, and therefore we seek to

predict the future workload of the component services, which in turn, enabling proactive

decision making for debt-aware recomposition.

In DebtCom, we use Autoregressive Fractionally Integrated Moving Average model

(ARFIMA) [21], a widely used time-series model that guarantee the prediction accuracy

when a time-series contains long memory pattern, to predict the workload of each com-

ponent service.

83

Figure 4.5: Example of Bad Debt

The workload prediction is required to capture an instant fraction of time (e.g., sec-

onds), in which a request is either processed successfully or failed (SLA violation). There-

fore, a time-series data (e.g., requests workload data) should handle such time patterns

and the length of time-series interval can be adjustable to better fit the estimation. Ac-

cordingly, we prepared the data at each time point to contain a number of observed

requests at each time interval (e.g., second) and feed this time-series data as an input to

the ARFIMA for predicting the future requests workload at every timestep. The general

expression of ARFIMA (p, d, q) for the process Xt is written as:

Φ(B)(1−B)dXt = Θ(B)εt (4.1)

where (1− B)d is the fractional differencing operator and the fractional number d is the

memory parameter, such that d ∈ (−0.5, 0.5). Φ(B) = 1−φ1B−φ2B
2− ...−φpBp is the

autoregressive polynomial of order p and Φ(B) = 1+θ1B+θ2B
2 + ...+θqB

q is the moving

84

average polynomial of order q in the lag operator B. The operator B is the backward

shift operator; BXt = Xt−1 and εt represent the white noise process.

The prediction process in DebtCom is written ARFIMA (p, d, q) process, in which we

estimate the value of memory parameter d using fdGPH() function from the R fracdiff

package [149]. Specifically, the value of memory parameter d must be between -0.5 and

0.5 that confirms the long memory patterns in time-series [150, 151]. The value of p is

the autoregressive order that indicates the number of differenced lags appearing in the

forecasting equation, and q is the moving average order that shows the number of lagged

forecast error in the prediction equation. The values of p and q are identified based on the

autocorrelation function and partial autocorrelation function, respectively, as supported

by the fdGPH() function. After parameter estimation, we fit the ARFIMA model and

evaluate the prediction accuracy using Root Mean Squared Error (RMSE) and Mean

Absolute Error (MAE) [152].

4.5 Service Debt Model

To quantify the debt at the service composition level in the SaaS cloud, we adopt the

notions of principal and interest [144, 147] from technical debt metaphor into a contextu-

alized model for the analysis. In Section 4.3, we extensively discuss the technical debt in

the context of service composition. Now we are in the position to present a formal model

namely service debt which connects these notions such that they are made readily

available to our problem.

Service debt: The service debt is a transformation of the technical debt concept,

particularly for the context of service composition in the SaaS cloud. Similar to the

technical debt, it quantifies the debt incurred for a certain period of time. In particular,

it has two major components:

• Recomposition principal: This is the one-off cost of the processes that related

to recompose a new set of component services.

85

• Accumulated interest: This is the cost of over-/under-utilization caused by work-

load changes, QoS fluctuation and inappropriate composition plan. The actual cost

can be related to the penalty of SLA violation or the rented resources have not been

fully utilized.

4.5.1 Recomposition Principal

In the context of service composition, we use principal to denote the invested cost of

recomposing the entire composite service for improving service utility. The principal can

be derived from the resources usages, such as the CPU time or the efforts spent by software

engineer for the decision making of the service composition. Specifically, we compute the

principal for recomposing a service using Equation 4.2:

Principal = E × Ccpu (4.2)

Suppose that the recomposition process requires 2 seconds (denoted as E) and the

execution cost of CPU is $ 0.0025 per second (denoted as Ccpu), then it takes a principal

as 2 × 0.0025 = $ 0.005. The time for recomposing the services can be easily known by

averaging the time for previous rounds of recomposition.

4.5.2 Accumulated Interest

An interest can be accumulated over time on the component service which may be under-

utilized or over-utilized. In such context, the interests may be accumulated over time on

the yth component service for the xth abstract service (denoted as CSxy). For such a

component service, the interests accumulated from the last recomposition time m to n

can be derived from the actual service capacity (i.e., service throughput denoted as T)

and the workload at time t (i.e., Wt), which may be the actual workload or predicted one

86

from Equation 4.1, as shown below:

Int(CSxy)m,n =

∑n

t=m((T −Wt)× C) if Wt ≤ T∑n
t=m((

Wt

T
−RSLA)× P) otherwise

(4.3)

Clearly, the interests are different depending on two different scenarios of utilizing the

capacity of a component service:

• (a) Service under-utilization: When the component service is under-utilized, i.e., the

workload is smaller than or equals to the capacity of component service (Wt ≤ T),

interest can be calculated as the accumulated cost of unused service capacity. For

example, on a component service, suppose that the execution cost of processing

each request is $0.00015 (denoted as C), and a component service has the capacity

to process 55 requests per second while the workload on this component service is

48 requests per second. Assuming that the accumulated interests till now is $1.02,

then this component service will carry the interest as $1.02 + (55-48) × 0.0015=

$1.0305.

• (b) Service over-utilization: When the component service is over-utilized, i.e., the

workload is greater than the capacity of component service (Wt > T), the SLA

requirement on the response time (denoted as RSLA) would often be violated [153],

and thus a penalty rate (denoted as P) would be used to compute the extra cost to

be paid. Suppose again, for a component service, that the accumulated interests till

now is $1.02, and that a given SLA contains the requirement of 2 seconds response

time and the penalty rate of response time violation is $ 0.0025 per second. Now,

assuming that the average service response time, derived from the workload and its

capacity, is 3.5 seconds, then the interest would be $1.02 + (3.5-2.0) × 0.0025 =

$1.0237.

Finally, from the last recomposition time m to time n, the accumulated service debt

(denoted as Dm,n) of a decision of recomposing the services can be identified and estimated

87

according to the principal and accumulated interests, as shown in Equation 4.4:

Dm,n = Principal +
h∑
x=1

Int(CSxy)m,n (4.4)

where h is the total number of abstract services and CSxy is the selected component

service (e.g., suppose that it is the yth component service) for the xth abstract service

4.6 Debt-Aware Recomposition

Deriving from the model of service debt, together with the time-series prediction, we devel-

oped a technical debt-aware decision approach to recompose services as part of DebtCom.

In this approach, the service debt model is used to quantify the debt and utility for the

period since the last recomposition. The quantified results would be used to compare with

the quantification of future debt and utility, supported by the time-series prediction, and

thereby taking into account the long term utility. The outcome is then used to trigger

the optimisation of recomposition plan if there is needed.

4.6.1 Utility Model

To this end, quantifying the utility of service composition is important. To begin with,

the revenue and the operation cost, which are fundamental parts in the utility of service

composition, can be computed as follows:

R(CSxy) = Wt × Ctenants (4.5)

C(CSxy) = Wt × C (4.6)

88

whereby Wt indicates the requests workload at time t, Ctenants is the charge to the tenants

per request, which directly contribute to the revenue generated by the composite service.

C is again the cost per request to the SaaS provider for using a component service and

its infrastructure.

The utility at the nth timesteps, denoted as Un, can be calculated as:

Un =
h∑
x=1

R(CSxy)−
h∑
x=1

C(CSxy)−Dm,n (4.7)

where x is again the total number of abstract services. In particular, such an equation can

measure the actual utility of the service composition at time n, including the service debt

accumulated from time m to n. Further, with the support of the time-series prediction,

the utility can be used to quantify the future timesteps.

4.6.2 Good and Bad Debt

Our debt-aware trigger leverages on the notions of good and bad debt to drive the recom-

position. According to our definition about the good and bad debts in Section 4.3.2, the

debt depends on the service utility and service debt over a period of time. In particu-

lar, the current service debt from the period between the last recomposition point (time

m) and n, denoted as Dm,n, is good or bad with respect to a future time n + k can be

determined as follows:

Dm,n =

Dbad if Un > Un+k and Dm,n < Dn,n+k

Dgood otherwise

(4.8)

whereby Un and Dm,n is the utility for time n and service debt from the last point of

recomposition m to time n, receptively. Similarly, Un+k and Dn,n+k are respectively

the estimated utility at time n + k and service debt between time n and time n + k.

When Un < Un+k and Dm,n > Dn,n+k, the implication is that the estimated utility and

89

accumulated service debt between n and n+k would become better, therefore the current

service debt should be accepted. This is because the service debts would be paid off by

time n + k, leading to an anticipated improvement on the overall utility. Otherwise, the

service debt would not be paid off at time n + k, in which case another recomposition

process should be triggered to seek alternative breakthrough.

4.6.3 Trigger and Decision Making of Recomposition

Deriving from the service debt model and time-series prediction, the basic idea of the debt-

aware trigger in DebtCom is that if the current debt (at time n) is ‘good’ with respect to

a future point in time, denoted as n + k, then no recomposition is needed. Otherwise,

a recomposition should be trigger at the furthest future point from time n to n + k by

which the current debt is considered as ‘good’, as this is the longest period of time before

the current debt becomes bad.

The algorithmic procedure of the Debt-Aware Recomposition Trigger and decision

making process have been shown in Algorithm 2, which runs on the next timestep after

each recomposition triggered. As can be seen, we calculate the utility since the last

recomposition point till now as the current utility, denoted as Un; the service debt for

the same period is denoted as Dm,n (line 4-5). Likewise, by leveraging the time-series

prediction up to the future timestep n + k, the utility at time j (n < j ≤ k) and service

debt up to that timestamp can be estimated, denoted as Uj and Dn,j, respectively (line

7-8). From the current time n to a future timestep n + k, comparing the above utilities

and service debt values allow us to verify the need of recomposition based on the future

opportunity on value creation at each point in time in the future, as shown at line 9. In

particular, if the accumulated debt Dm,n is recorded as ‘good’ with respect to a future

timestep n+ k, then no further action is required (line 18-20) and the loop breaks.

Otherwise, the Dm,n would be recorded as ‘bad’ with respect to n + k (line 10-12),

in which case the loops continue backwards till time n+ 1, and the recomposition would

be triggered at the furthest timestep based on which the Dm,n is considered as ‘good’

90

Algorithm 2: Debt-Aware Recomposition Trigger

1 Input: Wc,Wj, Pc, S

/* Wc:Current workload, Wj:Predicted workload at time j, Pc:current

composition plans, S:Set of possible composition plans */

2 Output: Pj
/* Pj:Optimized composition plan for time j */

3 Initialization: Un ← 0, Dm,n ← 0, Uj ← 0, Dn,j ← 0, Dgood ← 0, Dbad ← 0

/* Un and Dm,n are the current utility and debt from last point of

recomposition time m to current time n; Uj and Dn,j are the

predicted utility at j and debt from time n to j, where

n < j ≤ n+ k; Dgood and Dbad are the counter of good and bad debt,

respectively */

4 Dm,n ← calculateDebt(Pc, Wc)

/* using equation (4.2), (4.3) and (4.4) */

5 Un ← calculateUtility(Pc, Wc, Dm,n)

/* using equation (4.5), (4.6) and (4.7) */

6 for j ← n+ k to n+ 1 do

7 Dn,j ← calculateDebt(Pc, Wj)

8 Uj ← calculateUtility(Pc, Wj, Dn,j)

9 if (Un > Uj and Dm,n < Dn,j) then

/* using equation (4.8) */

10 if j == n+ k then

11 Dbad + +;

12 end

13 if j == n+ 1 then

14 S ′demand ←
Wj

j − n
15 Pj ← optimize(S, S’demand)

16 end

17 else

18 if j == n+ k then

/* No recomposition needed */

19 Dgood + +;

20 else

21 S ′demand ←
Wj

j − n
22 Pj ← optimize(S, S’demand)

23 end

24 break;

25 end

26 end

27 return Pj

91

(line 20-23). If all the timesteps between n and n + k would make Dm,n ‘bad’, then the

recomposition happens at the next timestep n+ 1 (line 13-16).

Here, the actual recomposition process is based on the search-based evolutionary op-

timisation, as derived from our previous work [23]. It is worth noting that, the k value

controls the preference between short-term advantages and long-term benefit. A larger k

implies stronger preference towards long-term benefit, in which case it is likely that less

number of recompositions is required but could intentionally accept more bad debt. On

the other hand, smaller k favors short term advantages by taking relatively immediate

recomposition, which could hinder the benefits in long-term and generate too much op-

eration cost. Indeed, it is possible that the benefit of DebtCom can be related to k, and

therefore in Section 4.8.8, we experimentally examine the sensitivity of DebtCom to k in

terms of both the utility and running time.

4.7 Architecture of DebtCom

This section presents the architecture of DebtCom for debt-aware service composition in

SaaS cloud. This architecture is designed into three hierarchical levels: runtime manage-

ment level, Service execution level, and Back-end process and data repositories level as

shown in Figure 4.6. Briefly, in the following, we discuss the general interaction between

the components of these levels.

4.7.1 Runtime Management Level

In the SaaS cloud, the end-users can be distinguished based on what type of SLA they have

retained, which is often handled by the Service Broker. At this level, the services offered by

SaaS provider have been designed into a abstract business workflow. Moreover, abstract

business workflow represents the interaction of services in the composition structure. At

runtime, Service Broker invokes the business process workflow component based on the

request type. The Adaptation Manager is the core component where our debt-aware

92

Figure 4.6: The architecture of DebtCom

trigger is implemented. In particular, it is responsible for carrying out runtime adaptation

action (e.g., service recomposition) while determining the need of a new composite service

plan in order to meet the end-users requirements. As shown in Figure 4.6, Adaptation

Manager comprises three sub-components: Adaptive Controller, SLA Monitor and TD

Monitor. Here, the SLA Monitor observes the runtime behaviour of service composition

and proactively captures dynamic changes (e.g., workload or arrival/departure of users

in service pool) in the execution environment that may contribute to SLA violation.

Similarly, the TD Monitor examines the running service composition from a debt point

of view by using the service debt model discussed in Section 4.5. In particular, the TD

Monitor continuously observes the accrued debt and service utility carried by a currently

executed service composition plan. Furthermore, it interacts with the Request Predictor

from the lowest level, supported by time-series prediction, for monitoring the predicted

workload over the composite service, based on which the proactive estimation of the future

service debt and utility becomes possible.

93

Finally, the Adaptive Controller takes the information from the SLA Monitor and TD

Monitor, after which it determine whether to trigger the recomposition based on the the

approach discussed in Section 4.6.

4.7.2 Service Execution Level

When a recomposition is indeed required, this level enables runtime decision making

for optimizing the composition plan and invokes component services in the service com-

position. The BPEL Engine is a software platform (e.g., WSO2 BPS) that executes

the business process [154, 155], which represents the composite service produced by the

Service Execution Planner as requested by the Service Broker. The Service Execution

Planner also dynamically binds the end-users’ request to the endpoint that exposes the

service operation. The service endpoints are identified and selected from the Concrete

Web Service pool based on the service composition plan generated by the Composition

Engine.

In DebtCom, we design the Composition Engine based on our prior work [23], which

is an evolutionary algorithm based optimisation approach. It is worth noting that the

Composition Engine is triggered only when the Adaptation Manager from the above level

requires a new composition plan.

4.7.3 Back-end Process and Data Repository Level

Here, as discussed in Section 4.4, the Request Predictor examines the past patterns of

requests workload (Requests Log) generated by the system and predicts the requests work-

load over the executed composite service. The QoS values of each component service are

stored in the Web Service QoS Data repository (e.g., WS- Dream QoS dataset [19]).

94

Table 4.1: Parameters of the experiments

Parameters Numerical Value
Ccpu: Recomposition cost (e.g., engineering
efforts plus CPU execution cost)

0.0025 ($)

C: Per request execution cost 0.0015 ($)
Ctenants: Per request tenant’s cost 0.0025 ($)
P : Penalty per request 200% of its cost
RSLA: Response time (SLA) 1 seconds

4.8 Experimental Evaluation

In the experiments, our goal is to assess the effectiveness of DebtCom in contrast to the

baseline and state-of-the-art approaches for service composition in SaaS cloud. Further,

we seek to understand whether the individual components of DebtCom, i.e., the time-

series prediction and the debt-aware trigger, can indeed create benefit. Specifically, our

experiments aim to answer the following research questions.

• RQ 4.1: How accurate does DebtCom predict the workload?

• RQ 4.2: Whether DebtCom can outperform the traditional baseline approach?

• RQ 4.3: In contrast to the state-of-the-art, whether the time-series prediction and

the debt-aware trigger in DebtCom can create benefit individually?

• RQ 4.4: What is the running overhead of DebtCom?

• RQ 4.5: What is the sensitivity of DebtCom to the k value?

4.8.1 Experimental Setup

For experimental purpose, we developed an e-commerce system, which is formed as a ser-

vice composition where there are 10 abstract services connected by sequential connectors.

In particular, to emulate an environment of SaaS cloud, we deployed 100 web services over

10 Docker containers and each web service exhibits the differentQoS which is associated

95

with real-world WSDream dataset [19]. The relevant setups of the subject service systems

have been shown in Table 4.1, which are the results of several runs of trial-and-error and

tend to be the most reasonable settings as we observed in our experiment runs.

To emulate realistic workload for each component service, we extract the FIFA98

World Cup website trace [20] for the length of 6 hours, which forms the workload dataset.

We pre-processed the first 4 hours workload trace as the samples for training the prediction

model, while the remaining 2 hours workload data, which equals to 7200 seconds, is used

for testing the accuracy. In DebtCom, we feed the training data into the ARFIMA, which

is implemented using the arfima package in R [21]. In all experiments, the k, which

determines how many future timesteps to be predicted, is set to 5. This means that

DebtCom predicts the service debt associated with 5 timestep ahead and take it into

account when deciding whether to trigger recomposition. Notably, the k value of 5 is the

most ideal trade-off between short-term advantages and long-term benefits, achieving the

best utility as discussed within the the sensitivity analysis of DebtCom in Section 4.8.8.

Note that we use a sampling interval of 1 second in our experiments.

All experiments were carried out on a machine with Intel Core i7 2.60 GHz. CPU,

8GB RAM and Windows 10.

4.8.2 Comparative Approaches

According to the literature, we compare DebtCom with three different approaches for

service composition in the SaaS cloud. They are specified as follows.

• Baseline: We implemented a traditional service recomposition approach from the

literature as the baseline [14]. In the approach, a neighborhood region of compo-

nent services is predefined for each abstract services. The recomposition occurs

whenever the violation of SLA has been detected, after which an exhaustive search

is conducted to find the best composition plans based on different neighborhood

regions, which forms a relatively small search space.

96

• Passive: Another state-of-the-art method that triggers the recomposition based

upon the detection of SLA violation [104]. In this work, to achieve a fair comparison,

we have applied the evolutionary optimisation approach to search the composition

plans, which are equivalent to DebtCom.

• Proactive: This is the state-of-the-art method that triggers recomposition when

the workload is predicted to cause SLA violation [89]. However, the debt model

is not explicitly captured during the triggering process. Again, we use the same

ARFIMA for workload prediction as DebtCom. Further, similar to Passive, the

acutal optimisation mechanism is also the same.

4.8.3 Metrics

The evaluations of DebtCom have made use of the following metrics:

• Accuracy: By using Root Mean Squared Error (RMSE) and Mean Absolute Error

(MAE), we assess the accuracy of the ARFIMA in DebtCom for predicting workload

of component services.

• Utility: For all approaches, we plot the utility of service composition over all

timesteps, using Equation 4.7. We show both the individual value (i.e., for each

timestep) and accumulated result throughout the time series.

• Service Debt: We examine the service debt incurred for all timesteps by using

Equation 4.4. Again, we plot both the value for each timestep and accumulated

result throughout the time series.

• Operation Cost: We assess the resulted cost for all timesteps, using Equation 4.6.

Simlar to the others, we plot both the value for each timestep and accumulated

result throughout the time series.

• Running Overhead: We evaluate the running overhead of the approaches in terms

of the required running time.

97

Table 4.2: Accuracy of time-series prediction for workload

MAE RMSE Theil Coefficient
Request Workload 4.0190 5.0817 0.7532

Figure 4.7: Predicted and actual workload on the component services

4.8.4 RQ 4.1: Accuracy on Workload Prediction

To answer RQ 4.1, we plot the mean accuracy when DebtCom predicts the workload for

all component services using different metrics, as shown in Table 4.2. Considering that

the general workload varies between around 35 and 60 requests per second, the MAE and

RMSE are in fact relatively low and thus the accuracy is acceptable. In addition, we also

report on the Theil’s coefficient, which indicates a good prediction if it lies between 0

and 1; or the prediction is deemed as poor otherwise [156]. As can be seen, the resulted

Theil’s coefficient is in between 0 and 1, and thereby suggesting a sufficient accuracy.

As a more detailed example, Figure 4.7 illustrates the workload trace for a selected

component service. As we can see, although there are some deviations between the pre-

dicted and the actual workload, the prediction has been able to capture the general pattern

of trace, e.g., the spikes between 4000 and 5000 second points. We therefore conclude that:

Answering RQ 4.1: The workload prediction of ARFIMA in DebtCom is sufficiently

accurate, as the deviation is small and the pattern of trace can be generally captured.

98

Table 4.3: Identified good and bad debt

Debt Type DebtCom Baseline Debt Impacts

Total Good Debts 1417 1132
Improving overall
service utility

Total Bad Debts 983 1268
Degrades overall
service utility

4.8.5 RQ 4.2: Results of DebtCom against Baseline

To investigate RQ 4.2, we compare DebtCom with the Baseline approach as discussed

in Section 4.8.2. In particular, we assess their utility, service debt and operation cost for

recomposing the services under the testing period of the workload.

Figure 4.8 shows the accumulated utility, service debt and operation cost of both ap-

proaches. As we can see, in contrast to Baseline, DebtCom performs significantly better

on reducing the accumulated debt while keeping less accumulated operation cost. This

has in turn, leading to considerably better result on the accumulated utility. Notably, the

improvement of DebtCom on the utility and debt can be achieved with even less operation

cost. To conduct a more detailed review, in Figure 4.9, Figure 4.10 and Figure 4.11, we

illustrate the service debt, operation cost and utility measured at each timestep. It is clear

to see that DebtCom outperforms Baseline on every timestep in terms of the operation

cost. As for the service debt and overall utility, DebtCom is only slightly better before

the point of 4000 second, because of the fact that the workload fluctuation till that point

is relatively light. However, following the spike between 4000 and 5000 second points,

the superiority of DebtCom becomes much more obvious, as the service debt and utility

are both significantly improved for the long term. All the above evidence the ability of

DebtCom to handle sudden changes, especially for making decision of wether to recompse

that takes the long term benefits into account.

In Table 4.3, we compare the number of good/bad service debt achieved by DebtCom

and Baseline. To achieve a fair comparison for Baseline, we assess its debt only on the

99

(a) Accumulated debt

(b) Accumulated operation cost

(c) Accumulated utility

Figure 4.8: Accumulated debt, accumulated operation cost and accumulated utility
achieved by DebtCom and Baseline over all timesteps

100

(a) Service Debt using DebtCom (b) Service Debt using Baseline

Figure 4.9: Service debt using DebtCom and Baseline over all timesteps

(a) Operating Cost using DebtCom (b) Operating Cost using Baseline

Figure 4.10: Service operating cost using DebtCom and Baseline over all timesteps

(a) Service Utility using DebtCom (b) Service Utility using Baseline

Figure 4.11: Service Utility yields DebtCom and Baseline over all timesteps

101

timesteps that DebtCom has checked whether the current debt is good or bad, and thereby

the total number of debt to be compared is equivalent. As can been seen, Baseline pro-

duce more bad debt than the good ones, i.e., 1132 against 1268; while DebtCom achieves

1417 good debt, which is around 44% more than the 983 bad debt. This is a significant

improvement, as higher number of good debt implies that DebtCom requires less number

of recomposition, as each composition plan is more sustainable, thanks to the awareness

of debt enabled by our service debt model. To conclude, we can summarize that:

Answering RQ 4.2: DebtCom performs significantly better than Baseline on the

utility, service debt and operation cost. The benefits cover not only the accumulated

results, but also the outcome of each individual timestep. Noteworthily, the benefit of

DebtCom can be produced with less cost/number of recomposition, as each composition

plan is more sustainable.

4.8.6 RQ 4.3: Effectiveness of Workload Prediction and Debt-

Aware Trigger in DebtCom against Passive and Proactive

To assess the effectiveness of workload prediction and debt-aware trigger, which are the

core components in DebtCom, we compare the results between Passive and Proactive, as

well as those between Proactive and DebtCom. From Figure 4.12, we see that Proactive

achieves better utility with less service debt than that of Passive. This indicates that

the workload prediction is indeed beneficial to the service composition. It is also obvious

that DebtCom outperforms Proactive on both metrics, which proves that the debt-aware

trigger, supported by the service debt model and workload prediction, create greater

benefit in the long term.

When observing the result for each timestep, as shown in Figure 4.13, Figure 4.14 and

Figure 4.15, similar conclusion can be drawn. In particular, the ability of prediction in

Proactive makes it robust to the spike after 4000 second point, but the fact that it only

102

(a) Accumulated utility (b) Accumulated debt

Figure 4.12: Accumulated utility and accumulated debt achieved by Passive, Proactive
and DebtCom over all timesteps

(a) Service Debt (b) Utility

Figure 4.13: Service utility and debt achieved by Passive over all timesteps

(a) Service Debt (b) Utility

Figure 4.14: Service utility and debt achieved by Proactive over all timesteps

aims for short time benefit has caused a few suddenly increased debt (sudden drop on

the utility). In contrast, DebtCom does not suffer such issue, thanks to the service debt

model. As a result, we conclude that:

103

(a) Service Debt (b) Utility

Figure 4.15: Service utility and debt achieved by DebtCom over all timesteps

Answering RQ 4.3: Both the workload prediction and debt-aware trigger in DebtCom

are effective in reducing the service debt, leading to better utility of service composition

in SaaS cloud in contrast to other approaches.

4.8.7 RQ 4.4: Running Overhead of DebtCom

To understand RQ 4.4, we evaluate the running overhead of the decision making process

in DebtCom, including both the reasoing process of service debt and the optimisation

process that find the acutal composition plan. We proceed such by comparing DebtCom

with Baseline. To this end, we run both approaches for 30 times and report on the

running time required.

As shown in Figure 4.16, we see that DebtCom clearly runs faster than Baseline. Al-

though the margin differs in the scale of milliseconds, it is worth noting that the need of

recomposition can be rapid in service composition at SaaS cloud, which implies a matter

of 10ms faster can be seen as a considerable improvement. For RQ 4.4, our answer is that:

Answering RQ 4.4: DebtCom runs considerably faster than Baseline when recom-

posing services in SaaS cloud.

104

Figure 4.16: Running time on both approaches (Comparisons between DebtCom and
Baseline statistically significant (p <.05) using Kruskal Wallis test)

4.8.8 RQ 4.5: Sensitivity of DebtCom to k Value

To answer RQ 4.5, we compare the utility and running time of DebtCom under five

different k values that represent different preference between short-term advantages and

long-term benefits. In particular, we repeat 120 runs for assessing running time and 7200

timesteps for the utility. The boxplots of the results are shown in Figure 4.17. As can

been seen, DebtCom can be indeed sensitive to the k value, in which k = 5 tends to be

the optimal setting, but neither the utility nor the running time exhibit clear monotonic

trace. The results also suggest that both too small and too large k could be harmful, as

they failed to gain long-term benefits and accept too much bad debt, respectively.

Clearly, although the case of k = 5 is better than the others on both metrics, their

margins tend to be relatively small. Therefore, to confirm the statistical significance on

the sensitivity of DebtCom to k value, we perform Kruskal Wallis test and calculate the

η2 as the effect size, which can be interpreted following the guidance by Tomczak and

Tomczak [157]. The results reveal that the sensitivity of DebtCom to k value is statistically

significant on both utility and running time, with p < .05 and non-trivial effect size. In

conclusion, the answer for RQ 4.5 is that:

105

(a) Utility (p <.001; η2=.013 (small)) (b) Running time (p <.001; η2=.294 (large))

Figure 4.17: Sensitivity of DebtCom to k values in terms of utility and running time.

Answering RQ 4.5: DebtCom is indeed sensitive to the k value in terms of both

utility and running time, with statistical significance and non-trivial effect size. In

particular, both sets of sensitivity exhibits non-monotonic traces, which implies po-

tentially complex trade-off between short-term advantages and long-term benefits.

4.9 Threats to Validity

Threats to construct validity is used to determine whether the adopted metrics can un-

doubtedly reflect what we aim to measure. In this paper, we set up our experiments with

a broad range of metrics for evaluating different aspects of DebtCom, including accuracy,

utility (e.g., generated revenue), operation cost, service debt, and running overhead.

Threats to internal validity can be mainly related to the value of the parameters for

the DebtCom. Particularly, the setup has been designed in a way that it produces good

trade-off between the quality of services composition and the recomposition overhead.

Further, threats to internal validity could be related to the randomness of the results

obtained from different runs. Indeed, the actual optimisation of recomposition plan is

106

achieved by using our prior work [23], which relies on stochastic algorithm. To mitigate

such, we repeat all the experiments across different timesteps and runs. We have also

assess the sensitivity of DebtCom to the k value, which determines the preference between

short-/long-term benefits, based on statistical analysis and effect sizes.

Threats to external validity can be associated with the testing environment and the

dataset that are used in this experiment. To improve generalization of the experimental

evaluation, we developed a real-world ecommerce system as a testing environment, with

up to 10 abstract service, each of which has possible 100 component services and 10

dockers. Further, DebtCom has been evaluated on the real-world WSDream dataset [19]

and FIFA98 workload trace [20] .

4.10 Summary

In this chapter, we propose a technical debt aware framework, namely DetbCom, for

service recomposition in SaaS Cloud. In particular, we transform the notion of technical

debt metaphor to form a new model called service debt, which fits explicitly within the

context of service composition. Such a service debt model, together with time-series

prediction using ARFIMA, forms a utility model based on which an algorithm is designed

to make decision about when to trigger recomposition. Experiments have been conducted

under a large scale service system based on real-world dataset and workload trace. The

results confirm the superiority of DetbCom over the state-of-the-art, such that better

overall utility can be obtained with less number of recomposition required, which implies

that each composition plan becomes more sustainable.

107

CHAPTER 5

SELF-ADAPTING SERVICE COMPOSITION
WITH DEBT-AWARE TWO LEVELS

CONSTRAINTS REASONING

In this chapter, we present the technical debt-aware two-level constraints reasoning ap-

proach for the long-term based component service selection in the self-adapting service

composition in the SaaS cloud − the rapidly changing workload of composite applica-

tion can easily cause under-/over-utilisation on the component services, which can con-

sequently violates the SaaS provider constraints such as latency and service utilisation.

Self-adaptive services composition rectifies this problem, but poses several challenges: (i)

the effectiveness of adaptation can deteriorate due to over-optimistic assumptions on the

latency and utilisation constraints, at both local and global levels; and (ii) the benefits

brought by component service selection is often short term and is not often designed for

long-term economic-driven benefits,− a natural prerequisite for sustaining the system. To

tackle these issues, we propose a two levels constraint reasoning framework for sustainable

self-adaptive services composition, called DATESSO. In particular, DATESSO consists of

a refined formulation that differentiates the ‘strictness’ for latency/utilisation constraints

in two levels. To strive for long-term benefits, DATESSO leverages the concept of tech-

nical debt and time series prediction to model the utility contribution of the component

services in the composition. The approach embeds a debt-aware two level constraint rea-

soning algorithm in DATESSO to improve the efficiency, effectiveness and sustainability

108

of self-adaptive service composition. We evaluate DATESSO on an e-commerce system

with a real-world WS-DREAM dataset and comparing it with other state-of-the-art ap-

proaches. The results demonstrate the superiority of DATESSO over the others on the

utilisation, latency and running time whilst likely to be more sustainable.

5.1 Introduction

Service composition allows the software to be built by seamlessly composing readily avail-

able service components, each of which offers a different guarantee on Quality-of-Services

(QoS), where latency can be of paramount importance [2]. Dynamically composing ser-

vices is an enabling property for service-based systems (e.g., composite application) sup-

ported by Cloud, Edge, and Internet-of-Things environments. However, a known difficulty

in service-based systems is the presence of rapidly changing workload, leading to under-

/over-utilisation on the services components [6]. At the same time, leading difficulties

to satisfy the constraints imposed by SaaS provider under such dynamic changing work-

load. For example, the increasing workload can enhance the over-utilisation of a services

component within a composite service, which in turns, would negatively affect the la-

tency and violate the Service Level Agreement (SLA) [6, 158]. On the other hand, the

decreasing workload may lead to under-utilisation of the capacity of component services

that violates the service utilisation constraints. To address those issues, self-adaptation

on service composition is promising, but the adaptation needs to be effective in terms

of long-term based economic-driven component service selection in the composition while

being efficient and render benefits over time (i.e., sustainable).

When reasoning about self-adaptation for service composition, there are often two

levels of latency/utilisation constraints: the local constraint that relates to the individual

constituent services and the global one for the entire service composition. Both of them

are critical, as they can affect what the alternative composition plans to be searched

during the adaptation [107]. However, existing work on service composition often rely on

109

over-optimistic assumptions, such that both local and global constraints are hard and can

always be satisfied [30, 35, 107, 159, 160]. This can negatively influence the adaptation

quality and efficiency, rendering lengthy reasoning process, especially when the given

constraints are unrealistic/inappropriate.

To address the above challenges, we propose a framework that leverages Debt-Aware

Two lEvels conStraint reasoning for Self-adapt-ing service cOmposition (hence called

DATESSO). We show that DATESSO can achieve better utilisation/latency in the long term

while being faster than state-of-the-art approaches, providing more sustainable self-adaptive

service-based systems. In a nutshell, the major contributions of this chapter are summa-

rized as follows:

• Instead of formalizing the constraints at both local and global levels as hard ones,

we refine the global constraints as the soft ones. This has enabled us to tailor the

reasoning process in self-adaptation and mitigate over-optimism.

• We propose temporal debt-aware utility, a new concept that extends from the tech-

nical debt metaphor, to model the long-term benefit of component services selection

that constitute to a composition plan.

• Drawing on the above, we design an efficient two level constraint reasoning algorithm

in DATESSO that is debt-aware, and utilizes the different strictness of the two level

constraints to reduce the search space.

• We evaluate DATESSO on a e-commerce system whose component services are de-

rived from the real-world WS-DREAM dataset [19] and under the FIFA98 workload

trace [20]. The results show that, in contrast to state-of-the-art approache [14],

DATESSO achieves better utilisation and latency while having smaller overhead, lead-

ing to more sustainable self-adaptation in service composition.

110

5.2 Preliminaries

5.2.1 Self-Adaptation in Service Composition

A service composition is a special software form that consists of a particular workflow

of connected abstract services, denoted as {a1, a2, ..., ax} [46]. Each of these abstract

services can be realized by using a readily available component service selected from the

Internet. Typically, there could be multiple component services to be selected, and the yth

component service for the xth abstract service is denoted as cxy. Therefore the possible

component services for the xth abstract service form a set, denoted as {cx1, cx2, ...}, each

of which has different generic latency guarantee on its capacity. For example, cxy has a

capacity to process 50 requests in 0.5 seconds.

In such a context, a SLA may be legally negotiated to ensure the performance of a

service composition by contract. The most notable elements in the SLA are the constraints

on the utilization of service capacity and the achieved latency level per request, which

we will elaborate in the next section. As the workload changes, at runtime, the goal of

self-adaptation for service composition is to find the composition plan, {c11, c23, ..., cxy},

that improves utilization and latency so that they satisfy all the constraints for as long

as possible.

5.2.2 Constraints in Service Composition

In service composition, constraints denote the stakeholders’ expectation of the latency

guarantee. Most commonly, a SLA can define these constraints by specifying the bound

of the latency and utilization [160, 161]. For example, a service’s latency should not

exceed 10s or the utilisation is at least 85% (or translated into 0.85). Typically, there are

two levels of constraints:

• Global constraint: The global constraint specifies the minimum expectation of

latency/utilisation for the entire service composition. It is often the most common

111

Global Constraints -
Utilization: 0.85
Latency per request:
0.75s

Local Constraints -
Utilization: 0.8
Latency per request:
0.18s

Violating local constraints of Payment by Credit Card when
it has a workload of 35: latency per request = 0.1925s

Capacity of the selected
component service

Figure 5.1: A running example of issues in service composition (L and T mean that the
selected component service of an abstract service can process all T requests in L seconds)

requirement in a service-based systems [14, 159].

• Local constraint: The local constraints are specified for the latency/utilisation on

each abstract service1. This is important, as each abstract services can be realized

by the component service from different parties; any violation of the local constraint

would in fact cause severe failure in the composition, leading to an outage [159, 160].

It is worth noting that, satisfying all local constraints does not necessarily mean that

the global constraint can be satisfied, since each of the constraints is documented sepa-

rately [35]

5.2.3 Running Example

In this section, we present a simple example of service composition to explain the problems.

As shown in Figure 5.1, there is a service composition in the form of sequentially connected

abstract service, each of which has been realized by a particular component service. In

this case, each selected component service has its own overall capacity, e.g., the selected

component service for Search Item abstract service can process all 50 requests in 0.19

seconds.

As mentioned, each abstract service, along with the entire service composition, are

legally documented with separated constraints on the utilization and latency per request,

1For latency, this constraint would be applied for each request.

112

as specified in the SLA [162]. Suppose that in this scenario, the local constraint of

utilization and latency of each request for the abstract service Payment by Credit

Card could be 0.8 and 0.18 seconds, respectively. Meanwhile, the global constraint

of utilization and latency of each request for the service composition is 0.85 and 0.75

seconds, respectively. Given the changing workload, it is likely that either (or both) levels

of constraint may be violated, which requires self-adaptation to replace the component

services. However, there are two issues with this:

1. In this context, the different constraints are negotiated independently to each others.

While it is relatively easy to find the alternative component service that satisfy

the local constraints, searching for the composition plan that satisfies the global

constraints is difficult, or we may not know whether one exists. As a result, existing

approaches that treats both levels of constraints as hard constraints suffers the issue

of being over-optimistic: they may struggle to find a satisfactory composition plan,

especially under a scenario where such a plan barely exists. Further, this would

completely eliminate the composition plan that may cause temporary violation of

the global constraint(s), but can create much larger long-term benefits.

2. When self-adaptation is required, a possible component service and the entire com-

position plan may provide short-term immediate benefit in relieving constraint vi-

olation, but it is difficult to know whether such a benefit can be sustainable. In

contrast, it is possible to temporally accept a composition plan that may still vi-

olate the global constraint(s), but will generate larger benefit in the long term.

Therefore, self-adapting service composition without having any guarantee on the

long term can lead to frequent adaptations with merely short-term benefits, which

generate unnecessary overhead.

The DATESSO proposed in this work was designed to explicitly address these two issues in

self-adapting service composition.

113

5.3 DATESSO Overview

Figure 5.2 illustrates the overview of DATESSO. As can bee seen, there are three key stages,

namely Formalization, Modeling and Reasoning, each of which is specified as follows:

Two Levels
Formalizer

Temporal
Debt-Aware
Utility Model

Workload
Predictor

Reasoner

Services
Repository

Constraints Reasoning

Modeling

Formalization

1

2

2

2 3

3

3

4

1

Figure 5.2: The general processes in DATESSO

1. Formalization: This is the very first stage in DATESSO and it relies on the Two

Levels Formalizer component. Generally, it has two tasks at step 1: (i) formulating

and recording the global/local level constraints as documented in the SLA; (ii)

monitoring the service composition and informing the Modeling stage, along with

any information of the constraints, when any violations are detected. More details

are discussed in Section 5.4. Note that here, we trigger adaptation only based

on local constraint violations, as we formalize the global ones as soft constraints.

However, the global constraint is implicitly considered in the Reasoning stage.

114

2. Modeling: Once the local constraint violation has been detected, at step 2, the

Workload Predictor keeps track of the historical workload on each abstract service,

and provides a time-series model to be embedded with the constraint information,

which together form the temporal debt-aware utility model. A detailed discussion

will be presented in Section 5.5

3. Reasoning: At the final stage, the utility model that is debt-aware, the two level

constraints and the Service Repository with all possible component services would

be exploited by the Reasoner at step 3. Specifically, we design a debt-aware two

levels constraint reasoning algorithm that (i) enables more efficient processing by

reducing the original search space based on the constraint information, and (ii)

produces a composition plan that is likely to have the highest long-term benefit,

without explicitly using global constraints as caps or thresholds. Such a composition

plan would then be sent for execution (step 4). The algorithm will be illustrated in

greater details at Section 5.6.

5.4 Two Levels Constraints with different strictness

As mentioned, we consider both local and global constraints for latency/utilisation in the

Formalization stage of DATESSO. Instead of assuming hard constraint for both of them,

we treat the global constraint as a soft one, which helps to mitigate the problem of being

over-optimistic. The formal model and strictness of the two level constraints are discussed

in the following subsections.

For each level, constraint can be related to both utilisation and latency values. The

utilisation is a direct measurement of under-utilised situation, whilst the latency value

reflects the problem of over-utilisation, as a too high utilisation usually means the com-

ponent service is over-stressed, which results in latency degradation.

115

5.4.1 Hard Local Constraints

As discussed in Section 5.2, the local constraint is usually hard [69, 159], which should

not be violated. This is because at the service level, any violation of the constraint

would in fact cause severe failure in the workflow execution. For example, a violation of

latency/utilisation caused by a workload that exceeds the capacity would simply bring

the individual service down, which cause outage of the entire service composition.

Locally, for each component service cxy that has a capacity to process Tcxy requests

in Lcxy seconds, we model the normalized constraint (CLcxy) on the normalized actual

latency of each request (Lcxy) to be satisfied as below, both of which are within [0, 1]2:

Lcxy =
Lcxy ×Wt,cxy

Tcxy
≤ CLcxy (5.1)

where Wt,cxy is the workload for the corresponding abstract service (hence for cxy too) at

timestep t. Likewise, the local constraint (CU cxy) on utilisation (Ucxy) to be satisfied can

be formulated as3:

Ucxy =
Lcxy ×Wt,cxy

CLcxy × Tcxy
≥ CU cxy (5.2)

Since the local constraints are hard, we say a component service as feasible if, and only

if, both utilization and latency constraints are satisfied. Otherwise it is termed infeasible.

5.4.2 Soft Global Constraints

Unlike existing work that model global constraint as hard threshold, we model its soft

version that can tolerate certain violation, with an aim to mitigate the issue of over-

optimism. Indeed, the way of aggregating the local latency toward the global value

for the entire service composition depends on the connectors, which may be sequential,

2Normalization can be achieved by using the lower and upper bounds of possible latency values.
3Utilization naturally sits within [0, 1], as any requests that go beyond the capacity would be discarded.

116

parallel or recursive etc. However, as shown in [163, 164], sequential connector is the

most fundamental type and all other connectors can be converted into a sequential one.

Therefore in this work, we focus on sequential connector in our models.

Similar to its local counterpart, for all selected component services in the entire service

composition, the satisfaction on normalized global constraint (CLglobal ∈ [0, 1]) and the

normalized actual latency of each request (Lglobal ∈ [0, 1]) can be calculated by aggregat-

ing the locally achieved latency. Specifically, when all the connectors are sequential or

they have been converted into sequential ones, the satisfaction of global latency can be

formulated as4:

Lglobal =
∑
x

∑
y

Lcxy � CLglobal (5.3)

Likewise, the global constraint (CU global) on utilisation (Uglobal) to be satisfied can be

formulated as:

Uglobal =
1

N
×
∑
x

∑
y

Ucxy � CU global (5.4)

whereby N denotes the total number of abstract services. As mentioned, there is no

guarantee that satisfying the local parts at component level can lead to global satisfaction.

However, it is easy to see that a violation of a global constraint is contributed by some

(or all) of the component services selected, even though their local constraints may have

been satisfied.

5.5 Temporal Debt-Aware Utility Model

In the Modeling stage of DATESSO, we propose temporal debt-aware utility model, a no-

tion derived from technical debt metaphor [7], that quantifies the long-term benefit of

4We use � to reflect the ‘soft’ nature of global constraints.

117

component services selection that support a composition plan. To this end, we adopt the

notion of principal and interest [8, 52, 144] to analyze the debt values related to a single

component service selection that is feasible. Built on the concept of two level constraints

and their different strictness, a debt can quantify each feasible component service’s local

contribution to the overall debt at the global level over a period of time.

5.5.1 Modeling Temporal Debt Value

5.5.1.1 Principal

The principal, denoted as Pcxy , is the one-off cost of the processes on adapting a component

services cxy. It can be calculated as:

Pcxy = Ocxy × Ccom (5.5)

Suppose that the searching suitable component service for adding in service com-

position requires an overhead of 5 seconds (denoted as Ocxy) and the execution cost of

computing resource is $ 0.005 per second (denoted as Ccom), then it takes a principal as 5

× 0.005 = $ 0.025. Note that Pcxy here is a normalized value in the range of [0, 1], based

on the lower/upper bounds of the possible execution cost and composition time. The Ocxy

can be easily known by analyzing the time for previous rounds of composition.

5.5.1.2 Accumulated interest

For searching and selecting feasible component service, we calculate the interests which

can be accumulated due to continuous constraint violations. Since the local constraints are

hard, there will be no interest incurred directly at this level. However, because we model

the global constraints as the soft ones, any violation of a global constraint is contributed by

the component services at the local level, even if the local constraint has been satisfied.

In particular, according to Equation 5.3 and 5.4, over a period of time, any possible

118

violation of a global constraint would be contributed by all component services that have

local utilization/latency worse than the global constraint, which causes potential interest.

With this in mind, the accumulated interests of a component service cxy between timestep

n and m can be modeled as:

In,m,cxy = αn,m,cxy + βn,m,cxy (5.6)

and

αn,m,cxy =
m∑
t=n

(CU global − Ucxy), ∀t •≡ CU global ≥ Ucxy (5.7)

βn,m,cxy =
m∑
t=n

(Lcxy − CLglobal), ∀t
•≡ Lcxy ≥ CLglobal (5.8)

whereby
•≡ represents ‘such that’. Hence, αn,m,cxy and βn,m,cxy consider only those timesteps

between n and m, at which contribution to the possible violation of a global constraint

exists. In particular, these equations guarantee that αn,m,cxy ≥ 0 and βn,m,cxy ≥ 0.

It is easy to know that in general, if αn,m,cxy = 0 and βn,m,cxy = 0, which means cxy does

not contribute to any possible global violation at all, then the overall accumulated interest

for cxy over a period of time is 0. Otherwise, the interest, incurred by the contribution

to the possible violation of either global utilization or latency constraint (or both), would

be part of the debt. For example, when CU global = 0.9 and CLglobal = 0.7, at a particular

timestep t, a feasible component service has utilization and latency of Uc23 = 0.7 and

Lc23 = 0.85, respectively. In this case, for any possible violation of the global utilization

and latency constraint at this timestep, c23 would contribute a total of It,t,c23 = 0.9−0.7+

0.85− 0.7 = 0.35 interest (and thus part of the debt) to cause the violations. The overall

interest over a range of timesteps would be the sum of the interest incurred by the above

119

case under each timestep.

5.5.1.3 Connecting debt and utility

Finally, we calculate the debt for a feasible component service between timestep n and m

as:

Dn,m,cxy = Pcxy + In,m,cxy (5.9)

Since both Pcxy and In,m,cxy are normalized or naturally sit between [0, 1], the numeric

stability can be improved. Drawing on the above, we then be able to obtain a debt-aware

utility score (Sn,m,cxy) for cxy between n and m, defined as:

Sn,m,cxy =
m∑
t=n

Ucxy −
m∑
t=n

Lcxy −Dn,m,cxy (5.10)

A larger Sn,m,cxy implies that the component service cxy is more likely to contribute to

the satisfaction of global constraints in the long term. Here, it is clear that we will accept

certain debt, as long as it can be paid back by achieving better overall utility across

the timesteps considered. In this way, during the reasoning process, DATESSO is able

to quantify the long-term benefit of selecting feasible component service over a range of

timesteps, based on which enabling better informed reasoning.

5.5.2 Time-Series Workload Prediction

Predicatively analyzing debt is not uncommon for managing technical debt in software

development [7]. Often, the fact of whether a debt can be paid off depends on the present

and future values of the debt [146, 165]. This is also an equivalent and important concept

in our research, and therefore we seek to predict the future workload of the component

services, which in turn, enabling us to select long-term based economic-driven component

120

service in the self-adaptation process.

In DATESSO, we use Autoregressive Fractionally Integrated Moving Average model

(ARFIMA) [166], a widely used time-series model, to predict the workload of each abstract

service. It is chosen over its counterparts (e.g., ARMA) because it handles a time-series

with long memory pattern well.

Accordingly, for each abstract service that is realized by a component service, we pre-

pared the data at each time point to contain a number of observed requests, which would

be used by the ARFIMA to predict the likely requests workload for a future timestep.

The general expression of ARFIMA (p, d, q) for the process Xt is written as:

Φ(B)(1−B)dXt = Θ(B)εt (5.11)

where (1− B)d is the fractional differencing operator and the fractional number d is the

memory parameter, such that d ∈ (−0.5, 0.5). The operator B is the backward shift

operator. For this, we have Φ(B) = 1 − φ1B − φ2B
2 − ... − φpBp is the autoregressive

polynomial of order p and Φ(B) = 1 + θ1B + θ2B
2 + ... + θqB

q is the moving average

polynomial of order q. BXt = Xt−1 and εt represent the white noise process.

5.6 Debt-Aware Two Levels Constraint Reasoning

Drawing on our formalization of soft/hard constraints at two levels, along with the pro-

posed temporal debt-aware utility model, we design a simple yet efficient reasoning algo-

rithm for self-adapting service composition in the Reasoning stage. In a nutshell, once

violation on local constraints is detected, the algorithm has two main functions that are

run in order:

1. Identification: In this function, we firstly identify which are the component ser-

vices that violate the local constraints, as this was what triggered the adaptation.

121

Then, the identified infeasible component services would need to be replaced, as

they also contribute to the likely violation of the global constraint(s).

2. Search: Once we identify the set of abstract services whose component service needs

a replacement, this function works on each individual abstract service. The aim is

to search for the best feasible component service for each identified abstract service,

such that it satisfies the local constraint5 while having the best long-term debt-

aware utility, over all timesteps up to the future timestep m (Equation 5.10). As a

result, the newly selected component services would less likely to cause local/global

constraint violation in the future.

Each of the key steps are discussed in details as follows.

5.6.1 Identifying Infeasible Component Services

As mentioned, since the constraint at local level is hard, the Identification function is

designed to filter all the service components that are ‘working fine’. In fact, this steps is

an effective way to reduce the search space, as only the problematic component services

that violates the hard constraints are considered. These infeasible component services

can actually contribute to the global constraint violation, if any.

The corresponding algorithmic procedure has been illustrated in Algorithm 3. As can

be seen, the returned result is a set, denoted as Sinf , that contains every abstract service

(i.e., ax) whose component service becomes infeasible at the current timestep n.

5.6.2 Searching for the Best Long-term Debt-Aware Utility

The special design in the Search function is that, instead of having to examine ev-

ery combination of the service composition globally, we only search for the component

5Given that the local constraint is specified at the local level, there will be at least one readily available
component service to satisfy such constraint at a particular timestep, or otherwise the constraint may be
too strong and needs to be relaxed.

122

Algorithm 3: Identification

1 Input:
S: Set of selected component services and their abstract services at current timestep n

2 Output:
Sinf← ∅: Set of abstract services whose component service needs a replacement

3 for ∀cxy ∈ S do
4 if (Lcxy > CLcxy or Ucxy < CU cxy) then
5 Sinf← ax
6 end

7 end
8 return Sinf

service with the highest long-term debt-aware utility for each identified abstract service

independently.

This is because, according to Equation 5.10, the problem of searching the highest long-

term debt-aware utility (between timestep n and m) for the entire service composition

can be defined as follow:

argmax
Z∑
x=1

Sn,m,cxy (5.12)

whereby Z is the total number of abstract services whose component service need a re-

placement. Clearly, this is a typical linear programming problem, in which achieving

the best utility of the service composition is equal to finding the optimal value of each

Sn,m,cxy . From Equation 5.10, we know that the best Sn,m,cxy is solely equivalent to the

highest debt-aware utility from all the feasible component services of the xth abstract

service. In other words, the highest Sn,m,cxy can be searched on each abstract service

locally, in order to have the highest utility for the service composition globally. With this

consideration, our reasoning algorithm decomposes the problem and reduces the search

complexity from O(Y X) (when all combinations need to be searched at the global level)

down to O(Y ×X), where X is the number of problematic abstract service, each with Y

feasible component services6.

6Y may differ for different abstract services, but in this example we assume that same as our aim is
merely to intuitively illustrate the reduction of complexity.

123

Algorithm 4: Search

1 Input: Rx: The set of possible component services for the xth abstract service

2 Sinf : Set of abstract services whose component service needs a replacement

3 Output: Soptimal: Service composition plan with the optimal long-term

debt-aware utility between current timestep n and the future timestep m

4 for ∀ax ∈ Sinf do

/* Mx denotes the ordered list of vectors of the feasible

component services for the xth abstract service at every

timestep from n to a future timestep m */

/* Sx,t denotes the vector of the feasible component services for

the xth abstract service at timestep t */

5 Mx = {Sx,n,Sx,n+1, ...,Sx,m}
6 for ∀cxy ∈ Rx do

7 for t← n+ 1 to m do

8 if (Lcxy ≤ CLcxy and Ucxy ≥ CU cxy) then

9 Sx,t ← cxy
10 end

11 end

12 end

13 M ←Mx

14 end

15 for ∀Mx ∈M do

/* According to Mx, the function getLargestFeasibleStep returns

the largest timestep mx from n such that there is at least

one component service that satisfies the local constraint on

every timestep between n and mx */

16 mx = getLargestFeasibleStep(Mx)

17 if mx < m then

18 m = mx

19 end

20 end

21 for ∀Mx ∈M do

/* According to Mx and the new m, function getFeasibleServices

returns the component services that satisfy the global

constraint on every timestep between n and m */

22 Sx = getFeasibleServices(Mx,m)

/* Function searchUtility returns the component service with the

highest Sn,m,cxy for ax */

23 Soptimal ← searchUtility(Sx,n,m)

24 end

25 return Soptimal

124

The corresponding algorithmic procedure has been illustrated in Algorithm 4. Specifi-

cally, suppose that the Sinf has been found by Algorithm 1, and that the current timestep

is n and we are interested in the debt up to a given timestep m in the future, there are

three important steps:

1. From line 4 to 14, for each problematic abstract service ax, we firstly construct an

ordered list of vectors denoted as Mx. Each vector in Mx has a size of m − n and

it contains all the feasible component service for ax under every particular timestep

between n and m.

2. From line 15 to 20, for each Mx, we find the largest timestep mx since n such that

there is at least one feasible component service that satisfies the global constraint

on every timestep between n and mx. Next, we use the smallest mx across all Mx

to serve as the new m. This process ensures that all problematic abstract services

would have at least one component service which can be treated as feasible on all

timesteps considered. Here, since there is at least one feasible component service

for a particular timestep, the worst case would be m = n+ 1.

3. From line 21 to 24, for each ax, we find the set of feasible component services

(Sx) that satisfy the local constraints on every timestep between n and m. The

SearchUtility function searches locally on the set Sx, and returns the one with

the highest Sn,m,cxy as part of the composition plan. Note that, SearchUtility can

be realized by any search algorithm, e.g., exhaustive search or stochastic search like

Genetic Algorithm. Since in this work the Sx has been reduced to a computationally

tractable size, we simply apply an exhaustive search.

As the global constraints are soft, the reasoning algorithm has never explicitly used

them to act as caps or thresholds for the search (like what we did for the hard local con-

straints), but the global constraints, along with their potential violations contributed by

the component services, are implicitly embedded in the debt-aware utility model. In this

way, we aim to mitigate the problem of being over-optimism on the global constraint, while

125

at the same time, promoting larger chance to satisfy the global constraint in the long term.

5.7 Evaluation

To evaluate DATESSO, we design experiments to assess the performance of our technique

on self-adapting service composition by means of comparing it with the state-of-the-art

approaches. In particular, we aim to answer the following research questions (RQs):

• RQ 5.1: Can DATESSO achieve better global utilisation and latency than the state-

of-the-art approaches? If so, which parts contribute to the improvement?

• RQ 5.2: Is DATESSO more sustainable than the state-of-the-art approaches?

• RQ 5.3: What is the running overhead of the reasoning process in DATESSO com-

paring with the others?

5.7.1 Experimental Setup

For experimental purpose, we developed an e-commerce system, which is formed as a ser-

vice composition where there are 10 abstract services connected by sequential connectors.

In particular, to emulate an environment of SaaS cloud, we deployed 100 web services

over 10 Docker containers. All the values of latency and throughput capacity for the

component services are randomly chosen from the WS-DREAM dataset [19].

To emulate realistic workload for each abstract service that is realized by a component

service, we extracted the FIFA98 trace [20] for the length of 6 hours, which forms the

workload dataset. Such a workload trace is used on all the different workflows of service

composition. We pre-processed the first four hours of workload trace as the samples for

training the time-series prediction model, while the remaining two hours of workload data,

which equals to 7200 seconds, is used for testing the accuracy. In DATESSO, we feed the

126

Table 5.1: Parameters of the experiments

Parameter Value

CLcxy : local latency constraint per request 0.09s
CLglobal: global latency constraint per request 1s
CU cxy : local utilization constraint 0.8
CU global: global utilization constraint 0.9
Ccom: cost of computing resource $0.0025
m: future timestep m from current timestep n n+ 5

training data into the ARFIMA, which is implemented using the arfima package [167]

and the fdGPH function in R [149]. The values of p, d and q are also identified therein.

Table 5.1 shows the parameter settings of the SLA used in the experiments, includ-

ing the executing resource of selecting a component service (Ccom), the local and global

constraint for latency (CLcxy and CLglobal) and utilization (CU cxy and CU global). For

simplicity of exposition, we have set the same local constraint for all abstract services.

All the settings above have been tailored to be reasonable throughout the experiments.

All experiments were carried out on a machine with Intel Core i7 2.60 GHz. CPU,

8GB RAM and Windows 10.

5.7.2 Comparative Approaches

To answer all the RQs, we examine the performance of DATESSO against the following

approaches:

— Two Level Hard Constraints Approach (TLHCA): This is similar to DATESSO,

which differs only on the way about how the strictness of the two levels constraints

is formulated. TLHCA assumes that both local and global constraints are hard, and

thereby in the reasoning algorithm (Algorithm 4), when the final composition plan

violates the global constraint (for every timestep between n and the newly defined

m) then we examine whether all abstract services have been considered in this

run. If not, we then return the algorithm with consideration that all the abstract

services are subject to replacement; if all abstract services has been considered but

127

the global constraint(s) is still violated, we would have no choice but to trigger

the adaptation. Here, the adaptation is triggered based on both local and global

constraint violations. This approach follows the existing work [159] that makes the

same formulation, and by this mean, we aim to examine the usefulness of formulating

the global constraints as the soft ones.

— Debt-Oblivious Approach (DOA): This is a similar copy of DATESSO but with-

out the temporal debt-aware utility model. Instead, DOA assumes the predicted

utility of the aggregated latency and utilization, i.e., Equation 10 without the debt,

which is then used in the reasoning algorithm to find the composition plan for

self-adaptation. DOA helps us to examine the effectiveness of incorporating debt

information for achieving long-term benefit in self-adaptation.

— Region-Based Composition (RBC) This is an implementation of a state-of-

the-art approach, proposed by Lin et al. [14], that relies on regions, where for each

abstract services, the component service is selected according to its region. Each

of these regions are clustered based on the historical utilization and latency of the

component services. Here, the adaptation is triggered based on global constraint

violations only. RBC is chosen as it is one of the most widely known representative

approaches for dynamic service composition.

5.7.3 Metrics

We leverage the following metrics to assess the results:

— Global utilisation: This is the value calculated by Equation 5.4 for each timestep.

— Global latency: This is the value calculated by Equation 5.3 for each timestep.

— Accumulated debt: Since the interests are accumulated, so does the debt. A

lower debt means that component services, which are less likely to contribute to

global constraint violation in the long term, are preferred. Therefore, we measure

128

the accumulated debt of the service composition from the beginning to the timestep

t using:

D1,t =
∑
x

∑
y

D1,t,cxy (5.13)

— Sustainability score: We measure sustainability as follows:

Scoren,m =
1

V
× (

Sn,m − Smin,n,m
Smax,n,m − Smin,n,m

+ 1) (5.14)

whereby Sn,m =
∑Z

x=1 Sn,m,cxy ; n = 1 and m = 7200; Z is the total number

of abstract services; V is the total number of local and global constraint viola-

tions. Smin,n,m and Smax,n,m are the lower and upper value among all approaches.

Scoren,m ∈ [0, 1] and a higher value means that the adaptations would generate

more benefits in general when mitigating each constraint violation.

— Running time: This is the required running time for the reasoning process to

produce a composition plan.

Whenever overall results are reported, we use the pairwise version of the Kruskal

Wallis test (p < .05) [168] and η2 value [169] to measure statistical significance and effect

size, respectively.

5.7.4 RQ 5.1: Performance of DATESSO

Figure 5.3 and 5.4 respectively illustrate the global utilisation and latency for all ap-

proaches and timesteps. As can be seen, the comparison between DATESSO and any other

three are statistically significant with large effect size. In particular, when comparing

with RBC, DATESSO achieves much better utilization and latency overall, while at the same

time, it has smaller variance than RBC.

To better understand which of our contributions in DATESSO enable such improve-

ment, we firstly compare it with TLHCA and DOA. As shown in the boxplots, we see that

129

Figure 5.3: Global utilization yield by all approaches over 7200 timesteps (Comparisons
between DATESSO and others are statistically significant (p < .05) and with large effect
size)

Figure 5.4: Global latency yield by all approaches over 7200 timesteps (Comparisons
between DATESSO and others are statistically significant (p < .05) and with large effect
size)

130

DATESSO achieves much better utilization and smaller variance. For latency, DATESSO is

slightly more deviated, but provides overall better result. This has proved that, in general,

the formalization of two levels constraints with different strictness can help to improve

self-adaptation performance. Next, we compare DATESSO with DOA, for which we see that

again, DATESSO achieves generally better and more stable results on utilisation and la-

tency. This evidences that the predicted debt model can provide more benefit than simply

having a predicted model based solely on utilization and latency.

Remarkably, DATESSO achieves full satisfaction for the global constraint on latency and

satisfy that of utilization for majority of the cases, which are generally superior to the

other three. Therefore, for RQ 5.1, we conclude that:

Answering RQ 5.1: DATESSO is more effective than the state-of-the-arts in terms of

the utilization and latency, with better satisfactions. Both the design of formalizing

global constraints as the soft ones and the temporal debt-aware utility model have

contributed to the improvement.

5.7.5 RQ 5.2: Sustainability of DATESSO

We now assess the sustainability of adaptation achieved by using the accumulated debt

and sustainability score. Figure 5.5 shows the accumulated debt, in which we see that

all approaches have accumulated debt over time. However, clearly, DATESSO results in

significantly less debt than the other three approaches, suggesting that DATESSO favours

component services that is less likely to contribute to global constraint violation in the

long term.

Table 5.2 shows the sustainability scores for all approaches. As can been seen, de-

spite that DATESSOand DOA have similar total number of constant violations, DATESSO has

achieved the best Scoren,m value among others. This implies that the adaptations in

DATESSO would create the greatest benefit in mitigating per violation. All the above con-

131

Figure 5.5: Debt yield by all approaches over 7200 timesteps (Comparisons between
DATESSO and others are statistically significant (p < .05) and with large effect size)

Table 5.2: Sustainability scores

Approach
∑Z

x=1 Sn,m,cxy V Scoren,m

DATESSO 417.10 113 .0177
RBC −3146.66 187 .0053
DOA −910.61 102 .0160

TLHCA −1478.67 133 .0110

clude that:

Answering RQ 5.2: DATESSO is more sustainable than the other three, as it has

less accumulated debt and with the highest sustainability score. This means that

DATESSO favors more reliable component services in the long term, and that it offers

greater benefit when dealing with each violation overall.

132

Figure 5.6: Running time on all approaches (Comparisons between DATESSO and others
are statistically significant (p < .05) and with large effect size, except for DOA)

5.7.6 RQ 5.3: Running Time of DATESSO

Figure 5.6 illustrates the running time for all approaches. We can clearly see that RBC is

the slowest due to the region based algorithm. TLHCA is the 2nd slowest because of the

frequent need of replacing all component services. Since DATESSO and DOA differ only on

whether having the debt calculation, they have similar running overhead (p > .05) but

are significantly faster than the others. This is because only the problematic abstract

services, along with those component services that satisfy all considered timesteps, are in-

volved in the actual search, which reduces the search space. However, as we have shown,

DATESSO offers much better performance and sustainability than DOA. In summary, we

have:

Answering RQ 5.3: DATESSO and DOA both have similar running time, but they are

faster than the other two.

133

5.8 Threats to Validity

Threats to construct validity can be related to the metric and evaluation methods used. To

mitigate such, we use a broad range of metrics for evaluating different aspects of DATESSO,

including utilization, latency and sustainability etc. To examine the effectiveness of each

contribution, we have compared DATESSO with specifically designed approaches, i.e., TLHCA

and DOA, in addition to a direct implementation of existing work (RBC). Further, we plot

all the data points in a trace, and applied statistical test and effect size interpretation

when it is difficult to show all the data points.

Threats to internal validity can be mainly related to the value of the parameters for

DATESSO. Particularly, the setup has been designed in a way that it produces good trade-

off between the quality and overhead. They have been shown to be reasonable following

preliminary runs in our experiments. The future timestep m is also specifically tailored

and the used value tends to be sufficient. However, it is worth noting that the actual

future timesteps to use is updated dynamically depending on whether there is a feasible

component service that satisfies all considered timesteps.

Threats to external validity can be associated with the environment and the dataset

that are used in the experiment. To improve generalization, we use e-commerce system,

whose data is randomly sampled from the real-world WS-Dream dataset [19], along with

the FIFA98 workload trace [20].

5.9 Summary

In this chapter, we propose a debt-aware two level constraint reasoning approach, dubbed

DATESSO, for self-adapting service composition. DATESSO formalizes the global constraints

as the soft ones while leaving only the local ones as hard constraints. Such formaliza-

tion is then used to built a temporal debt-aware utility model, supported by time-series

prediction. The utility model, together with the different strictness of the two level con-

134

straints, enables us to design a simple yet efficient and effective reasoning algorithm in

DATESSO. Experimental results demonstrate that DATESSO is more effective that state-of-

the-art in terms of utilisation, latency and running time, while being about to make each

self-adaptation more sustainable.

135

CHAPTER 6

CONCLUSIONS, REFLECTIONS, AND FUTURE
DIRECTIONS

In this chapter, we revisit the research questions that were discussed in Chapter 1. We

systematically review how our contributions have been addressed these research questions.

Further, we review our contributions using different qualitative aspects, e.g., practical

deployment and computational overhead and SaaS dynamics.

6.1 How the research questions have been addressed

6.1.1 Research Question 1

RQ1 : Reviewing state-of-the-art service composition approach and identifying the re-

search gaps in the area of economic-driven service composition in the SaaS cloud −What

is the state-of-the-art service composition approaches with a particular inter-

est in economic aspects? and what are the pending research challenges in an

economic-driven service composition in the SaaS cloud?

We conduct a systematic literature review that provides a deeper understanding of

the state-of-the-art service composition approach. We found that service composition has

been studied and mentioned under different terms such as (i) QoS-aware; (ii) constraints-

aware; (iii) SLA-aware; (iv) context-aware; (v) uncertainty-aware; (vi) economic-driven.

In addition, we identified the service quality factors involved in these approaches and its

136

implementation techniques. Hence, we consolidated these efforts and provided a classi-

fication framework that categories these approaches based on the requirements imposed

by end-users, service provider or the operating environment. From the SLR results, we

examined that the current service composition approaches have the less adoption of an

economic aspect and quite less number of research works studied in the SaaS cloud.

However, based on the SLR findings, we identified the pending challenges for exploring

cutting-edge research in the multi-tenant SaaS cloud as follows (i) The lack of support to

process diverse requirements(e.g., different functional and QoS requirements for the same

service) submitted by multiple tenants in the SaaS cloud (ii) The lack of an economic-

driven decision support at run-time for service recomposition under dynamic changing

workload in the SaaS cloud; (iii) The lack of considering the different strictness of the

local and global constraints for an economic-driven based long-term service selection.

6.1.2 Research Question 2

RQ2 : Realising diverse functional and QoS requirements from the tenants in the SaaS

cloud − how can we leverage an evolutionary algorithm to support dynamic

optimisation of multi-tenant service compositions in the SaaS Cloud?

In Chapter 3, we developed a service composition engine accelerated by an evolutionary

algorithm. We first modelled the multi-tenant service composition approach as a multi-

objective optimisation problem with a novel encoding representation and fitness func-

tion [23]. We employed the Multi-objective Evolutionary Algorithm named MOEA/D-

STM that uses our encoding representation for optimising the service composition. In

particular, we design the chromosome in such a way that it dynamically splits itself into

two parts (e.g., sub-chromosome) during the optimisation process. The current status

of MOEA/D-STM is to support an independent execution of these chromosomes in the

optimisation process and then optimise the service composition plans for two different cat-

egories of tenants; they requesting the same application with varied functional and QoS

requirements. Further, we develop a service composition engine accelerated by MOEA/D-

137

STM algorithm. However, the service composition engine is extensible in terms of flexible

services (e.g., varied number of services in the application workflow) for optimising new

service composition plan.

6.1.3 Research Question 3

RQ3 : Realising an economic-driven service recomposition decisions in the changing

workload from the tenants in the SaaS cloud − how can we leverage the technical

debt metaphor to support an economic-driven decisions for dynamic service

recomposition in the SaaS Cloud? and how can the use of predictive analytics

of workload improves the decision making and evaluates the service debt?

We extended the scope of technical debt metaphor in the context of service composition

for making an economic-driven decisions for service recomposition in the dynamic SaaS

environment [6, 24]. We presented the service debt definition, which is a transformation

of the technical debt concept. Further, we posited that the technical debt could be the

consequences of taking imperfect or poorly justified runtime decisions for dynamic service

recomposition. These run-time decisions have produced two different types of debts in

service composition, namely good debt and bad debt. The former implies that a good

debt will be paid off by the time k in the future. Specifically, this can be reflected by

the fact that, by time k, the debt has been made smaller or the overall service utility has

been improved. The latter opposed to the good debt, bad debt is the service debt that

will not be paid off by the time k in the future. That is, by time k, there is no sign of

improvement on either the service debt and the overall service utility.

We presented a service debt model that used the time series forecasting method for

quantifying the future service debt in the composite application execution. Further, we

implemented a debt-aware trigger for recomposing the service; in which the service debt

model and time series prediction serve as an integrated driver. This economic-driven ap-

proach supports controllable trade-off between short-term advantages and long-term ben-

efits. Overall, we combined all components and developed a holistic debt-aware framework

138

for recomposing service in the SaaS cloud, namely DebtCom. The proposed DebtCom

framework is tested on different timestamps, and the DebtCom is extensible in terms of

flexible services in the composition and adjustable timestamps. Further, to the best of our

knowledge, the current state of DebtCom framework is based on the integrated guideline

in the algorithm; further, which is guided by the service debt and parameters values.

6.1.4 Research Question 4

RQ4 : Realising the strictness of soft and hard constraints on the different level of service

composition − how can a debt-aware two-levels constraints reasoning of a service

selection create the long-term values in the self-adaptive service composition

in the SaaS cloud?

In Chapter 5, we used a time-sensitive application case study that motivates the need

for considering different strictness at the local and global level of service composition.

From Chapter 4 results, we realised that the debt is a time-sensitive moving target that

encouraged us to reformulate these constraints. As a result, we presented two-level con-

straints with different strictness, namely local constraints as hard and global constraints

as soft [22]. In this scenario, the debt may be acceptably incurred at global constraints if

all local constraints are satisfied in the service composition.

Further, we developed a DATESSO framework that comprises of three components

at different levels in the service composition. (i) The formalizer component monitored

the service composition environment. It triggered the service adaptation when any con-

straints violation is detected and reported all faulty component services (infeasible compo-

nent services) to the next stage component (modelling component). (ii) In the modelling

component, we developed a service debt model that uses the two-level constraints infor-

mation and the time series forecasting method for predicting workload on the component

service in the composition. (iii) Reasoner is the core component in the DATESSO frame-

work that uses all the information provided by formalizer and modelling components.

Reasoner component exploited debt-aware two-level constraints reasoning for searching

139

a long-term based feasible candidate service that maximises the constraints satisfaction

and the service utility over n timesteps in the service composition.

6.2 Reflections on the Research

This section aims to reflect on the presented approach and its evaluation by mean of

design concern of simulation environment, computational overhead and scalability.

6.2.1 Simulation Environment

In this thesis, we made our best efforts to implement an e-commerce system as an illus-

trative example of a simulation environment; in which our service composition approach

could be examined. However, we appreciate that our evaluation is in a controlled environ-

ment instead of a real SaaS cloud environment, and it enables us to conduct repeatable

free of cost experiments. We have used sequential connector in the composition for mod-

elling the simulation environment. Therefore, further research is needed for evaluating

our approach under different connectors (e.g., parallel) in the real setting of SaaS cloud

environment.

Apart from that we developed a more realistic experiment using real-world WSDream

dataset [19] and real workload trace (FIFA 1998 world cup trace) [20]. In particular, to

emulate the SaaS cloud environment, we deployed all web services in the Docker contain-

ers they were created with the different capacities of resources (e.g., CPU and RAM).

Moreover, the collected 6 hours workload trace represents a controllable amount of ser-

vice demand in the simulation environment, but in the real SaaS cloud environment, such

workload may have a diverse pattern over time. Although, we attempted to deliver our

best for developing the simulation environment. But we appreciate that further research

will be required to evaluate the effectiveness of our approach in the real setting of SaaS

cloud environment.

140

6.2.2 Computational Overhead

The experiments may have carried some hidden computational overhead that may be

generated from the docker container; in which all web services are running. Moreover, in

the context of service composition, the computational overhead of our proposed approach

comes from the following sources.

• Runtime estimation of service debt.

• Searching and optimising the set of web services from the service repository.

• Monitoring service composition environment.

The service debt estimation process consumes an extra computational time when com-

pared to another state-of-the-art approach. The approach presented in Chapter 4, the

computational overhead is directly linked to the predicted debt-aware decisions for service

recomposition. Further, we have used different timesteps which affects the computation

time for estimating service recomposition decisions. After triggering the service recom-

position decision, the optimisation engine consumes the computational time for searching

the entire service repository and optimising the new service composition plan by selecting

suitable candidate web services from the service repository. However, the computational

time mainly depends on the size of the service repository (e.g., the number of candi-

date services in the repository), which is presented in Chapter 3. Further, our approach

presented in the Chapter 5, an extra computational time is directly linked to the mon-

itoring of the composite service execution environment and estimating the service debt

incurred by constraints violations. In nutshell, this process requires computational time

for calculating the service debt and the values of the defined constraints over the service

composition.

In general, the critical source of consuming computational overhead is the size of

search space exposed by the service repository. We appreciate the further extension of

our approach but it requires the rigorous analysis of computational overhead to reduce

141

the side effects (e.g., latency for the debt-aware decision) and to maximise the service

utility and performance.

6.2.3 Dealing with SaaS Dynamics

In the context of self-adaptive software systems, dynamics denotes the changing conditions

of the operating environment in which the software is running [170]. Our simulation

environment emulates the SaaS cloud environment; in which the main dynamics is related

to the uncertainty of tenants; they generate unpredictable request workload for consuming

web services in the SaaS cloud. The selection of an appropriate requests workload is always

a non-trivial decision for conducting a fair evaluation of an experiment [171].

We made our best efforts to use a more realistic workload in the experiment. There-

fore, we decided to use the real-world workload trace (FIFA 1998 world cup trace) [20].

Our proposed framework is flexible in terms of using other requests workload, and we

appreciate the further testing of our approach under diverse workload in the real setting

of SaaS cloud environment.

6.3 Future Directions

In this section, we discuss the potential future directions derived from the presented

research work in this thesis and other state-of-art research direction in the cloud computing

environment from the technical debt perspective.

6.3.1 Exploring technical debt-aware supports for service com-

position in the SaaS cloud

In this thesis, we demonstrated the effectiveness of the technical debt-aware approach

for creating long-term values in the service composition in SaaS cloud. In particular,

we adopted the time series forecasting method for estimating the predictive service debt,

which geared an economic-drive decision for generating values in the composition. Since

142

the underlying decision technique is equipped on the proactive method, and the debt es-

timation may have a hidden impact on optimising the present values in the system [147].

In this context, future research is needed to learn the past behaviour of debt for making

better economic-driven decision to optimise the present value in the composition with

different underlying techniques such as reinforcement learning or classical machine learn-

ing algorithms. Further, we studied run-time perspective of technical debt for the service

quality attributes such as throughput, response time and service utility. However, more

QoS attributes and uncertainties are associated with the service composition in SaaS

cloud. Consequently, another future research direction is to explore the new methods for

evaluating the technical debt on these attributes for creating an economic driven service

composition in the SaaS cloud.

6.3.2 Dealing uncertainties in the SaaS cloud environment

In this thesis, we demonstrated the feasibility of our technical debt-aware service compo-

sition approach under uncertain and the dynamic SaaS cloud environment. Our technical

debt-aware approach handled only service scalability and workload uncertainties; resulted

from the unpredictable and dynamic changing workload on the composite service. How-

ever, the SaaS cloud environment tends to lead more uncertainties such as delayed latency,

service availability, fault-tolerance, performance and failure-prone environment [12, 172].

And, most of the existing service composition approaches have dealt with design-time QoS

uncertainty [13, 77, 83, 101]. We appreciate that further research will require to consider

these uncertainties for developing new economic-driven service composition in the SaaS

cloud environment.

143

6.3.3 A technical debt perspective for the selection and optimi-

sation of cloud services/resources

This thesis shows the constructive application of technical debt metaphor in the area of

service composition in the SaaS cloud. Gomez et al. [173, 174] explored the concept of

technical debt for elasticity management in the cloud computing environment. In this

thesis, we argued that the technical debt could be related to any situation contributing

to sub-optimal execution environment such as under/over utilisation of services. This

argument is valid for cloud resources and service instances. For example, the execution

of Virtual Machines (VM) in the cloud data centre may encounter the problem of sub-

optimal utilisation of allocated VM resources, and it requires run-time decision for VM

migration. This particular situation could be the potential source of incurring technical

debt in the cloud data centre. Based on this thesis’s research finding, we believe that

the technical debt metaphor could be a potential technique for providing economic-driven

decision-making for migrating and optimising the VM resources in the cloud data centre.

We appreciate the future direction in this area, specifically investigating the potential

sources of technical debt in the cloud data centre and developing Artificial Intelligence

(AI) inspired new methods for handling and managing technical debt towards optimising

cloud data centre.

Another potential future direction would be the technical debt-aware cloud instance

selection in the multi-cloud environment. In the cloud data centre, it is a rear condition

when a running cloud service instance uses its full capacity, and its consequences could

be the sub-optimal utilisation of instance resources. In this context, how to take critical

decisions on whether to use the current cloud service instance or select the new cloud

service instance that maximises the service revenue over time or contributes optimal

utilisation of cloud resources. We appreciate that the researchers can take advantage of

technical debt metaphor and combine it with AI and Machine Learning (ML) algorithms

to develop an economic-driven enabled predictive decision-making framework for cloud

144

instance selection in the multi-cloud environment.

6.4 Conclusion Remarks

This thesis makes a novel contribution to the field of service composition by presenting

an economic-drive service composition approach based on the principle of technical debt

framework. The results of our experimental evaluation present many useful insight on

the effectiveness of our debt aware-approach to provide an economic-driven long-term

decision for the specified problems in this thesis. In particular, the result of our debt-

aware approach indicates that (i) It prepares long-term based value creation decisions in

the service composition; (ii) It mitigates the imperfect run-time decisions that degrade

the service utilisation; (iii) It supports long-term based economic-driven service selection

decision for improving service utilisation.

We hope that adopting a technical debt framework will motivate further research

in this direction. Our results will inspire future research in an economic-driven service

composition for the SaaS cloud environment. Moreover, we also provided an extensive

discussion on the potential future directions such as (i) revisiting an economic-driven ser-

vice composition approach in the SaaS cloud and investigating the impact of hidden debt

accumulated in the past. The research is needed to know the past behaviour of incurred

debt using ML algorithms to optimise the present composition value; (ii) Usually, the

running resources (e.g., VM or service instances) in the cloud data centre exhibit the sub-

optimal utilisation of their capacities. Its consequences would be the accumulation of debt

in the cloud data centre. However, the research is needed to combine the technical debt

metaphor and AI & ML algorithms for developing an economic-driven predictive method.

Such a method would make an informed decision on whether to use the current cloud

resources or select new cloud resources for creating long-term benefits (e.g., maximum

resource utilisation over time) in the cloud data centre.

145

BIBLIOGRAPHY

[1] Gartner Inc. Gartner forecasts worldwide public cloud revenue to grow 17% in
2020. November, 2019 [online]. Available from: https://www.gartner.com/

en/newsroom/press-releases/2019-11-13-gartner-forecasts-worldwide-

public-cloud-revenue-to-grow-17-percent-in-2020[Last accessed 26th
January 2020].

[2] Liangzhao Zeng, Boualem Benatallah, Anne HH Ngu, Marlon Dumas, Jayant
Kalagnanam, and Henry Chang. Qos-aware middleware for web services compo-
sition. IEEE Transactions on software engineering, 30(5):311–327, 2004.

[3] Yanchun Wang, Qiang He, and Yun Yang. Qos-aware service recommendation for
multi-tenant saas on the cloud. In 2015 IEEE International Conference on Services
Computing, pages 178–185. IEEE, 2015.

[4] Qiang He, Jun Han, Yun Yang, John Grundy, and Hai Jin. Qos-driven service
selection for multi-tenant saas. In 2012 IEEE Fifth International Conference on
Cloud Computing, pages 566–573. IEEE, 2012.

[5] Salesforce. Explore the CRM software features that can help you grow sales faster
[online]. Available from: https://www.salesforce.com/products/sales-cloud/
features/[Last accessed 25th March 2019].

[6] Satish Kumar, Rami Bahsoon, Tao Chen, and Rajkumar Buyya. Identifying and
estimating technical debt for service composition in saas cloud. In 2019 IEEE
International Conference on Web Services (ICWS), pages 121–125. IEEE, 2019.

[7] Ward Cunningham. The wycash portfolio management system. ACM SIGPLAN
OOPS Messenger, 4(2):29–30, 1992.

[8] Edith Tom, AybüKe Aurum, and Richard Vidgen. An exploration of technical debt.
Journal of Systems and Software, 86(6):1498–1516, 2013.

146

https://www.gartner.com/en/newsroom/press-releases/2019-11-13-gartner-forecasts-worldwide-public-cloud-revenue-to-grow-17-percent-in-2020
https://www.gartner.com/en/newsroom/press-releases/2019-11-13-gartner-forecasts-worldwide-public-cloud-revenue-to-grow-17-percent-in-2020
https://www.gartner.com/en/newsroom/press-releases/2019-11-13-gartner-forecasts-worldwide-public-cloud-revenue-to-grow-17-percent-in-2020
https://www.salesforce.com/products/sales-cloud/features/
https://www.salesforce.com/products/sales-cloud/features/

[9] Zengyang Li, Paris Avgeriou, and Peng Liang. A systematic mapping study on
technical debt and its management. Journal of Systems and Software, 101:193–220,
2015.

[10] Esra Alzaghoul and Rami Bahsoon. Cloudmtd: Using real options to manage tech-
nical debt in cloud-based service selection. In 2013 4th International Workshop on
Managing Technical Debt (MTD), pages 55–62. IEEE, 2013.

[11] Yanchun Wang, Qiang He, Xuyun Zhang, Dayong Ye, and Yun Yang. Efficient
qos-aware service recommendation for multi-tenant service-based systems in cloud.
IEEE Transactions on Services Computing, 2017.

[12] Yaser Yadekar, Essam Shehab, and Jörn Mehnen. Taxonomy and uncertainties
of cloud manufacturing. International Journal of Agile Systems and Management,
9(1):48–66, 2016.

[13] Ahmed Mostafa and Minjie Zhang. Multi-objective service composition in uncertain
environments. IEEE Transactions on Services Computing, 2015.

[14] Kwei-Jay Lin, Jing Zhang, Yanlong Zhai, and Bin Xu. The design and implementa-
tion of service process reconfiguration with end-to-end qos constraints in soa. Service
Oriented Computing and Applications, 4(3):157–168, 2010.

[15] Gerardo Canfora, Massimiliano Di Penta, Raffaele Esposito, and Maria Luisa Vil-
lani. A framework for qos-aware binding and re-binding of composite web services.
Journal of Systems and Software, 81(10):1754–1769, 2008.

[16] Ying Li, Yuanlei Lu, Yuyu Yin, Shuiguang Deng, and Jianwei Yin. Towards qos-
based dynamic reconfiguration of soa-based applications. In 2010 IEEE Asia-Pacific
Services Computing Conference, pages 107–114. IEEE, 2010.

[17] San-Yih Hwang, Ee-Peng Lim, Chien-Hsiang Lee, and Cheng-Hung Chen. Dynamic
web service selection for reliable web service composition. IEEE Transactions on
services computing, 1(2):104–116, 2008.

[18] Ken Peffers, Tuure Tuunanen, Marcus A Rothenberger, and Samir Chatterjee. A
design science research methodology for information systems research. Journal of
management information systems, 24(3):45–77, 2007.

147

[19] Zibin Zheng, Yilei Zhang, and Michael R Lyu. Investigating qos of real-world web
services. IEEE transactions on services computing, 7(1):32–39, 2012.

[20] Martin Arlitt and Tai Jin. A workload characterization study of the 1998 world cup
web site. IEEE network, 14(3):30–37, 2000.

[21] Jurgen A Doornik and Marius Ooms. A package for estimating, forecasting and
simulating arfima models: Arfima package 1.0 for ox, 1999 [online]. Available
from: http://fmwww.bc.edu/ec-p/software/ox/Ox.arfima.v2.1.pdf[Last ac-
cessed 12th January 2019].

[22] Satish Kumar, Tao Chen, Rami Bahsoon, and Rajkumar Buyya. Datesso: Self-
adapting servicecomposition with debt-aware two levels constraints reasoning. In
ACM/IEEE 15th International Symposium on Software Engineering for Adaptive-
and Self-Managing Systems. IEEE, 2020.

[23] Satish Kumar, Rami Bahsoon, Tao Chen, Ke Li, and Rajkumar Buyya. Multi-
tenant cloud service composition using evolutionary optimization. In 2018 IEEE
24th International Conference on Parallel and Distributed Systems (ICPADS), pages
972–979. IEEE, 2018.

[24] Satish Kumar, Tao Chen, Rami Bahsoon, and Rajkumar Buyya. Debtcom: Tech-
nical debt-aware service recomposition in saas cloud. IEEE transactions on Service
Computing (under review), 2020.

[25] Satish Kumar, Rami Bahsoon, Tao Chen, and Rajkumar Buyya. A systematic
review and taxonomy on service composition based on service quality factors (in
preparation for submission). 2020.

[26] Ke Li, Qingfu Zhang, Sam Kwong, Miqing Li, and Ran Wang. Stable matching-
based selection in evolutionary multiobjective optimization. IEEE Transactions on
Evolutionary Computation, 18(6):909–923, 2013.

[27] Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and TAMT Meyarivan. A fast and
elitist multiobjective genetic algorithm: Nsga-ii. IEEE transactions on evolutionary
computation, 6(2):182–197, 2002.

[28] Mohammad Alrifai, Dimitrios Skoutas, and Thomas Risse. Selecting skyline services
for qos-based web service composition. In Proceedings of the 19th international
conference on World wide web, pages 11–20, 2010.

148

http://fmwww.bc.edu/ec-p/software/ox/Ox.arfima.v2.1.pdf

[29] Alexandre Sawczuk da Silva, Hui Ma, and Mengjie Zhang. A graph-based particle
swarm optimisation approach to qos-aware web service composition and selection.
In 2014 IEEE Congress on Evolutionary Computation (CEC), pages 3127–3134.
IEEE, 2014.

[30] Touraj Laleh, Joey Paquet, Serguei Mokhov, and Yuhong Yan. Constraint adapta-
tion in web service composition. In 2017 IEEE International Conference on Services
Computing (SCC), pages 156–163. IEEE, 2017.

[31] Ahmed Moustafa and Minjie Zhang. Multi-objective service composition using re-
inforcement learning. In International Conference on Service-Oriented Computing,
pages 298–312. Springer, 2013.

[32] X Liang, K Qin, K Tang, and K Tan. Qos-aware web service composition with
internal complementarity. IEEE Transactions on Services Computing, 12(2):1–14,
2019.

[33] Kaiqi Xiong and Harry Perros. Sla-based service composition in enterprise comput-
ing. In 2008 16th Interntional Workshop on Quality of Service, pages 30–39. IEEE,
2008.

[34] Dandan Wang, Hao Ding, Yang Yang, Zhenqiang Mi, Li Liu, and Zenggang Xiong.
Qos and sla aware web service composition in cloud environment. TIIS, 10(12):5231–
5248, 2016.

[35] PengWei Wang, ZhiJun Ding, ChangJun Jiang, and MengChu Zhou. Constraint-
aware approach to web service composition. IEEE Transactions on Systems, Man,
and Cybernetics: Systems, 44(6):770–784, 2013.

[36] Donghui Lin, Chunqi Shi, and Toru Ishida. Dynamic service selection based on
context-aware qos. In 2012 IEEE Ninth International Conference on Services Com-
puting, pages 641–648. IEEE, 2012.

[37] Aiqiang Gao, Dongqing Yang, Shiwei Tang, and Ming Zhang. Web service compo-
sition using integer programming-based models. In IEEE International Conference
on e-Business Engineering (ICEBE’05), pages 603–606. IEEE, 2005.

[38] Ying Chen, Jiwei Huang, Chuang Lin, and Xuemin Shen. Multi-objective service
composition with qos dependencies. IEEE Transactions on Cloud Computing, 2016.

149

[39] Hamed Rezaie, Naser NematBaksh, and Farhad Mardukhi. A multi-objective par-
ticle swarm optimization for web service composition. In International Conference
on Networked Digital Technologies, pages 112–122. Springer, 2010.

[40] Wei Zhang, Carl K Chang, Taiming Feng, and Hsin-yi Jiang. Qos-based dynamic
web service composition with ant colony optimization. In 2010 IEEE 34th Annual
Computer Software and Applications Conference, pages 493–502. IEEE, 2010.

[41] Yanlong Zhai, Jing Zhang, and Kwei-Jay Lin. Soa middleware support for service
process reconfiguration with end-to-end qos constraints. In 2009 IEEE International
Conference on Web Services, pages 815–822. IEEE, 2009.

[42] Rafael Aschoff and Andrea Zisman. Qos-driven proactive adaptation of service
composition. In International Conference on Service-Oriented Computing, pages
421–435. Springer, 2011.

[43] Karl Gottschalk, Stephen Graham, Heather Kreger, and James Snell. Introduction
to web services architecture. IBM systems Journal, 41(2):170–177, 2002.

[44] Biplav Srivastava and Jana Koehler. Web service composition-current solutions and
open problems. In ICAPS 2003 workshop on Planning for Web Services, volume 35,
pages 28–35, 2003.

[45] Dieter Fensel and Christoph Bussler. The web service modeling framework wsmf.
Electronic Commerce Research and Applications, 1(2):113–137, 2002.

[46] Danilo Ardagna and Barbara Pernici. Adaptive service composition in flexible pro-
cesses. IEEE Transactions on software engineering, 33(6):369–384, 2007.

[47] Angus FM Huang, Ci-Wei Lan, and Stephen JH Yang. An optimal qos-based web
service selection scheme. Information Sciences, 179(19):3309–3322, 2009.

[48] Rainer Berbner, Michael Spahn, Nicolas Repp, Oliver Heckmann, and Ralf Stein-
metz. Heuristics for qos-aware web service composition. In 2006 IEEE International
Conference on Web Services (ICWS’06), pages 72–82. IEEE, 2006.

[49] Peter Mell and Tim Grance. The NIST definition of cloud computing, 2011
[online]. Available from: http://faculty.winthrop.edu/domanm/csci411/

Handouts/NIST.pdf[Last accessed 12th December 2019].

150

http://faculty.winthrop.edu/domanm/csci411/Handouts/NIST.pdf
http://faculty.winthrop.edu/domanm/csci411/Handouts/NIST.pdf

[50] Tharam Dillon, Chen Wu, and Elizabeth Chang. Cloud computing: issues and
challenges. In 2010 24th IEEE international conference on advanced information
networking and applications, pages 27–33. Ieee, 2010.

[51] Philippe Kruchten, Robert L Nord, and Ipek Ozkaya. Technical debt: From
metaphor to theory and practice. IEEE software, 29(6):18–21, 2012.

[52] Nicolli SR Alves, Thiago S Mendes, Manoel G de Mendonça, Rodrigo O Sṕınola,
Forrest Shull, and Carolyn Seaman. Identification and management of technical
debt: A systematic mapping study. Information and Software Technology, 70:100–
121, 2016.

[53] Aniket Potdar and Emad Shihab. An exploratory study on self-admitted techni-
cal debt. In 2014 IEEE International Conference on Software Maintenance and
Evolution, pages 91–100. IEEE, 2014.

[54] Paris Avgeriou, Philippe Kruchten, Ipek Ozkaya, and Carolyn Seaman. Manag-
ing technical debt in software engineering (dagstuhl seminar 16162). In Dagstuhl
Reports, volume 6. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2016.

[55] Yuepu Guo, Carolyn Seaman, Rebeka Gomes, Antonio Cavalcanti, Graziela Tonin,
Fabio QB Da Silva, Andre LM Santos, and Clauirton Siebra. Tracking technical
debt—an exploratory case study. In 2011 27th IEEE international conference on
software maintenance (ICSM), pages 528–531. IEEE, 2011.

[56] Radu Marinescu. Assessing technical debt by identifying design flaws in software
systems. IBM Journal of Research and Development, 56(5):9–1, 2012.

[57] Steve McConnell. Managing technical debt. Construx Software Builders, Inc,
pages 1–14, 2008, [online], Available from: http://2013.icse-conferences.org/
documents/publicity/MTD-WS-McConnell-slides.pdf[Last accessed 15th July
2017].

[58] Barbara Kitchenham, O Pearl Brereton, David Budgen, Mark Turner, John Bai-
ley, and Stephen Linkman. Systematic literature reviews in software engineering–a
systematic literature review. Information and software technology, 51(1):7–15, 2009.

[59] Staffs Keele et al. Guidelines for performing systematic literature reviews in software
engineering. Technical report, Technical report, Ver. 2.3 EBSE Technical Report.
EBSE, 2007.

151

http://2013.icse-conferences.org/documents/publicity/MTD-WS-McConnell-slides.pdf
http://2013.icse-conferences.org/documents/publicity/MTD-WS-McConnell-slides.pdf

[60] He Zhang, Muhammad Ali Babar, and Paolo Tell. Identifying relevant studies in
software engineering. Information and Software Technology, 53(6):625–637, 2011.

[61] Pearl Brereton, Barbara A Kitchenham, David Budgen, Mark Turner, and Mo-
hamed Khalil. Lessons from applying the systematic literature review process within
the software engineering domain. Journal of systems and software, 80(4):571–583,
2007.

[62] Hongyu Pei Breivold, Ivica Crnkovic, and Magnus Larsson. A systematic review
of software architecture evolution research. Information and Software Technology,
54(1):16–40, 2012.

[63] Markus Keidl and Alfons Kemper. Towards context-aware adaptable web services.
In Proceedings of the 13th international World Wide Web conference on Alternate
track papers & posters, pages 55–65, 2004.

[64] Tao Yu and Kwei-Jay Lin. Service selection algorithms for web services with end-to-
end qos constraints. Information systems and e-business management, 3(2):103–126,
2005.

[65] Zakaria Maamar, Soraya Kouadri Mostefaoui, and Hamdi Yahyaoui. Toward an
agent-based and context-oriented approach for web services composition. IEEE
transactions on knowledge and data engineering, 17(5):686–697, 2005.

[66] Tao Yu, Yue Zhang, and Kwei-Jay Lin. Efficient algorithms for web services selection
with end-to-end qos constraints. ACM Transactions on the Web (TWEB), 1(1):6–es,
2007.

[67] Hiroshi Wada, Paskorn Champrasert, Junichi Suzuki, and Katsuya Oba. Multiob-
jective optimization of sla-aware service composition. In 2008 IEEE Congress on
Services-Part I, pages 368–375. IEEE, 2008.

[68] Riadh Ben Halima, Khalil Drira, and Mohamed Jmaiel. A qos-oriented reconfig-
urable middleware for self-healing web services. In 2008 IEEE International Con-
ference on Web Services, pages 104–111. IEEE, 2008.

[69] Mohammad Alrifai and Thomas Risse. Combining global optimization with local
selection for efficient qos-aware service composition. In Proceedings of the 18th
international conference on World wide web, pages 881–890, 2009.

152

[70] Philipp Leitner, Branimir Wetzstein, Florian Rosenberg, Anton Michlmayr,
Schahram Dustdar, and Frank Leymann. Runtime prediction of service level agree-
ment violations for composite services. In Service-oriented computing. ICSOC/Ser-
viceWave 2009 workshops, pages 176–186. Springer, 2009.

[71] Georgia M Kapitsaki, Dimitrios A Kateros, George N Prezerakos, and Iakovos S
Venieris. Model-driven development of composite context-aware web applications.
Information and Software technology, 51(8):1244–1260, 2009.

[72] Kwei-Jay Lin, Jing Zhang, and Yanlong Zhai. An efficient approach for service
process reconfiguration in soa with end-to-end qos constraints. In 2009 IEEE Con-
ference on Commerce and Enterprise Computing, pages 146–153. IEEE, 2009.

[73] Philipp Leitner, Anton Michlmayr, Florian Rosenberg, and Schahram Dustdar.
Monitoring, prediction and prevention of sla violations in composite services. In
2010 IEEE International Conference on Web Services, pages 369–376. IEEE, 2010.

[74] Maolin Tang and Lifeng Ai. A hybrid genetic algorithm for the optimal constrained
web service selection problem in web service composition. In IEEE Congress on
Evolutionary Computation, pages 1–8. IEEE, 2010.

[75] Chia-Feng Lin, Ruey-Kai Sheu, Yue-Shan Chang, and Shyan-Ming Yuan. A relax-
able service selection algorithm for qos-based web service composition. Information
and Software Technology, 53(12):1370–1381, 2011.

[76] Ching-Seh Wu and Ibrahim Khoury. Tree-based search algorithm for web ser-
vice composition in saas. In 2012 Ninth International Conference on Information
Technology-New Generations, pages 132–138. IEEE, 2012.

[77] Karim Benouaret, Djamal Benslimane, and Allel Hadjali. Selecting skyline web ser-
vices from uncertain qos. In 2012 IEEE Ninth International Conference on Services
Computing, pages 523–530. IEEE, 2012.

[78] Zhen Ye, Athman Bouguettaya, and Xiaofang Zhou. Qos-aware cloud service com-
position based on economic models. In International Conference on Service-Oriented
Computing, pages 111–126. Springer, 2012.

[79] Philipp Leitner, Johannes Ferner, Waldemar Hummer, and Schahram Dustdar.
Data-driven and automated prediction of service level agreement violations in ser-
vice compositions. Distributed and Parallel Databases, 31(3):447–470, 2013.

153

[80] Yuzhang Feng, Rajaraman Kanagasabai, et al. Dynamic service composition with
service-dependent qos attributes. In 2013 IEEE 20th International Conference on
Web Services, pages 10–17. IEEE, 2013.

[81] Shuiguang Deng, Hongyue Wu, Daning Hu, and J Leon Zhao. Service selection
for composition with qos correlations. IEEE Transactions on Services Computing,
9(2):291–303, 2014.

[82] Quanwang Wu, Qingsheng Zhu, Xing Jian, and Fuyuki Ishikawa. Broker-based sla-
aware composite service provisioning. Journal of Systems and Software, 96:194–201,
2014.

[83] Shiting Wen, Chaogang Tang, Qing Li, Dickson KW Chiu, An Liu, and Xianglan
Han. Probabilistic top-k dominating services composition with uncertain qos. Ser-
vice Oriented Computing and Applications, 8(1):91–103, 2014.

[84] Esra Alzaghoul and Rami Bahsoon. Evaluating technical debt in cloud-based ar-
chitectures using real options. In 2014 23rd Australian Software Engineering Con-
ference, pages 1–10. IEEE, 2014.

[85] ZhiJun Ding, JunJun Liu, YouQing Sun, ChangJun Jiang, and MengChu Zhou. A
transaction and qos-aware service selection approach based on genetic algorithm.
IEEE Transactions on Systems, Man, and Cybernetics: Systems, 45(7):1035–1046,
2015.

[86] PengWei Wang, ZhiJun Ding, ChangJun Jiang, MengChu Zhou, and YuWei Zheng.
Automatic web service composition based on uncertainty execution effects. IEEE
Transactions on Services Computing, 9(4):551–565, 2015.

[87] Fuzan Chen, Runliang Dou, Minqiang Li, and Harris Wu. A flexible qos-aware web
service composition method by multi-objective optimization in cloud manufacturing.
Computers & Industrial Engineering, 99:423–431, 2016.

[88] Yueshen Xu, Jianwei Yin, Shuiguang Deng, Neal N Xiong, and Jianbin Huang.
Context-aware qos prediction for web service recommendation and selection. Expert
Systems with Applications, 53:75–86, 2016.

[89] Xiaoning Sun, Jiangchuan Chen, Yunni Xia, Qiang He, Yuandou Wang, Xin Luo,
Rongqing Zhang, Wuhong Han, and Quanwang Wu. A fluctuation-aware approach
for predictive web service composition. In 2018 IEEE International Conference on
Services Computing (SCC), pages 121–128. IEEE, 2018.

154

[90] Sen Niu, Guobing Zou, Yanglan Gan, Yang Xiang, and Bofeng Zhang. Towards the
optimality of qos-aware web service composition with uncertainty. International
Journal of Web and Grid Services, 15(1):1–28, 2019.

[91] Feng Zhang, Qingtian Zeng, Hua Duan, and Cong Liu. Composition context-based
web services similarity measure. IEEE Access, 7:65195–65206, 2019.

[92] Chandrashekar Jatoth, GR Gangadharan, and Rajkumar Buyya. Computational
intelligence based qos-aware web service composition: a systematic literature review.
IEEE Transactions on Services Computing, 10(3):475–492, 2015.

[93] Anja Strunk. Qos-aware service composition: A survey. In 2010 Eighth IEEE
European Conference on Web Services, pages 67–74. IEEE, 2010.

[94] Schahram Dustdar and Wolfgang Schreiner. A survey on web services composition.
International journal of web and grid services, 1(1):1–30, 2005.

[95] Umar Galadima Shehu, Gregory Epiphaniou, and Ghazanfar Ali Safdar. A survey of
qos-aware web service composition techniques. International Journal of Computer
Applications, 2014.

[96] Amin Jula, Elankovan Sundararajan, and Zalinda Othman. Cloud computing ser-
vice composition: A systematic literature review. Expert systems with applications,
41(8):3809–3824, 2014.

[97] Hong-Linh Truong and Schahram Dustdar. A survey on context-aware web service
systems. International Journal of Web Information Systems, 2009.

[98] Jing Li, Dianfu Ma, Xiupei Mei, Hailong Sun, and Zibin Zheng. Adaptive qos-aware
service process reconfiguration. In 2011 IEEE International Conference on Services
Computing, pages 282–289. IEEE, 2011.

[99] Ahlem Ben Hassine, Shigeo Matsubara, and Toru Ishida. A constraint-based ap-
proach to horizontal web service composition. In International semantic Web con-
ference, pages 130–143. Springer, 2006.

[100] Steve Cuddy, Michael Katchabaw, and Hanan Lutfiyya. Context-aware service se-
lection based on dynamic and static service attributes. In WiMob’2005), IEEE In-
ternational Conference on Wireless And Mobile Computing, Networking And Com-
munications, 2005., volume 4, pages 13–20. IEEE, 2005.

155

[101] Sen Niu, Guobing Zou, Yanglan Gan, Yang Xiang, and Bofeng Zhang. Towards
uncertain qos-aware service composition via multi-objective optimization. In 2017
IEEE International Conference on Web Services (ICWS), pages 894–897. IEEE,
2017.

[102] Germán H Alférez and Vicente Pelechano. Facing uncertainty in web service com-
positions. In 2013 IEEE 20th International Conference on Web Services, pages
219–226. IEEE, 2013.

[103] Arun Mukhija and Martin Glinz. Runtime adaptation of applications through dy-
namic recomposition of components. In International Conference on Architecture
of Computing Systems, pages 124–138. Springer, 2005.

[104] Fouzia Boudries, Samia Sadouki, and Abdelkamel Tari. A bio-inspired algorithm for
dynamic reconfiguration with end-to-end constraints in web services composition.
Service Oriented Computing and Applications, 13(3):251–260, 2019.

[105] Valeria Cardellini, Emiliano Casalicchio, Vincenzo Grassi, Stefano Iannucci,
Francesco Lo Presti, and Raffaela Mirandola. Moses: A framework for qos driven
runtime adaptation of service-oriented systems. IEEE Transactions on Software
Engineering, 38(5):1138–1159, 2011.

[106] Liangzhao Zeng, Boualem Benatallah, Marlon Dumas, Jayant Kalagnanam, and
Quan Z Sheng. Quality driven web services composition. In Proceedings of the 12th
international conference on World Wide Web, pages 411–421, 2003.

[107] Florian Rosenberg, Predrag Celikovic, Anton Michlmayr, Philipp Leitner, and
Schahram Dustdar. An end-to-end approach for qos-aware service composition.
In 2009 IEEE International Enterprise Distributed Object Computing Conference,
pages 151–160. IEEE, 2009.

[108] Mahboobeh Moghaddam and Joseph G Davis. Service selection in web service
composition: A comparative review of existing approaches. In Web Services Foun-
dations, pages 321–346. Springer, 2014.

[109] Jinghai Rao and Xiaomeng Su. A survey of automated web service composition
methods. In International Workshop on Semantic Web Services and Web Process
Composition, pages 43–54. Springer, 2004.

156

[110] Yang Syu, Shang-Pin Ma, Jong-Yih Kuo, and Yong-Yi FanJiang. A survey on
automated service composition methods and related techniques. In 2012 IEEE
Ninth International Conference on Services Computing, pages 290–297. IEEE, 2012.

[111] Lijuan Wang, Jun Shen, and Jianming Yong. A survey on bio-inspired algorithms
for web service composition. In Proceedings of the 2012 IEEE 16th International
Conference on Computer Supported Cooperative Work in Design (CSCWD), pages
569–574. IEEE, 2012.

[112] Marcel Cremene, Mihai Suciu, Denis Pallez, and Dumitru Dumitrescu. Compara-
tive analysis of multi-objective evolutionary algorithms for qos-aware web service
composition. Applied Soft Computing, 39:124–139, 2016.

[113] Vivek Nallur and Rami Bahsoon. A decentralized self-adaptation mechanism for
service-based applications in the cloud. IEEE Transactions on Software Engineering,
39(5):591–612, 2012.

[114] Mike P Papazoglou and Dimitrios Georgakopoulos. Introduction: Service-oriented
computing. Communications of the ACM, 46(10):24–28, 2003.

[115] Amina Bekkouche, Sidi Mohammed Benslimane, Marianne Huchard, Chouki Tiber-
macine, Fethallah Hadjila, and Mohammed Merzoug. Qos-aware optimal and auto-
mated semantic web service composition with user’s constraints. Service Oriented
Computing and Applications, 11(2):183–201, 2017.

[116] Fadl Dahan, Khalil El Hindi, and Ahmed Ghoneim. Enhanced artificial bee colony
algorithm for qos-aware web service selection problem. Computing, 99(5):507–517,
2017.

[117] Xinchao Zhao, Zichao Wen, and Xingmei Li. Qos-aware web service selection with
negative selection algorithm. Knowledge and Information Systems, 40(2):349–373,
2014.

[118] Tongguang Zhang. Qos-aware web service selection based on particle swarm opti-
mization. Journal of Networks, 9(3):565, 2014.

[119] Dmytro Pukhkaiev, Tetiana Kot, Larysa Globa, and Alexander Schill. A novel
sla-aware approach for web service composition. In Eurocon 2013, pages 327–334.
IEEE, 2013.

157

[120] Marco Aiello, Elie El Khoury, Alexander Lazovik, and Patrick Ratelband. Optimal
qos-aware web service composition. In 2009 IEEE Conference on Commerce and
Enterprise Computing, pages 491–494. IEEE, 2009.

[121] Aurora Ramı́rez, José Antonio Parejo, José Raúl Romero, Sergio Segura, and An-
tonio Ruiz-Cortés. Evolutionary composition of qos-aware web services: a many-
objective perspective. Expert Systems with Applications, 72:357–370, 2017.

[122] A Erdinc Yilmaz and Pinar Karagoz. Improved genetic algorithm based approach
for qos aware web service composition. In 2014 IEEE International Conference on
Web Services, pages 463–470. IEEE, 2014.

[123] Chandrashekar Jatoth, GR Gangadharan, Ugo Fiore, and Rajkumar Buyya. Qos-
aware big service composition using mapreduce based evolutionary algorithm with
guided mutation. Future Generation Computer Systems, 86:1008–1018, 2018.

[124] Joc Cing Tay and Djoko Wibowo. An effective chromosome representation for
evolving flexible job shop schedules. In Genetic and Evolutionary Computation
Conference, pages 210–221. Springer, 2004.

[125] Qingfu Zhang and Hui Li. Moea/d: A multiobjective evolutionary algorithm based
on decomposition. IEEE Transactions on evolutionary computation, 11(6):712–731,
2007.

[126] Hui Li and Qingfu Zhang. Multiobjective optimization problems with complicated
pareto sets, moea/d and nsga-ii. IEEE transactions on evolutionary computation,
13(2):284–302, 2008.

[127] Juan J Durillo and Antonio J Nebro. jmetal: A java framework for multi-objective
optimization. Advances in Engineering Software, 42(10):760–771, 2011.

[128] Antonio J Nebro, Juan J Durillo, and Matthieu Vergne. Redesigning the jmetal
multi-objective optimization framework. In Proceedings of the companion publica-
tion of the 2015 annual conference on genetic and evolutionary computation, pages
1093–1100, 2015.

[129] Tao Chen, Miqing Li, and Xin Yao. On the effects of seeding strategies: A case for
search-based multi-objective service composition. In Proceedings of the Genetic and
Evolutionary Computation Conference, pages 1419–1426, 2018.

158

[130] Juan J Durillo, Antonio J Nebro, and Enrique Alba. The jmetal framework for multi-
objective optimization: Design and architecture. In IEEE congress on evolutionary
computation, pages 1–8. IEEE, 2010.

[131] Tao Chen, Miqing Li, and Xin Yao. How to evaluate solutions in pareto-based
search-based software engineering? a critical review and methodological guidance.
arXiv preprint arXiv:2002.09040, 2020.

[132] Miqing Li and Xin Yao. Quality evaluation of solution sets in multiobjective opti-
misation: A survey. ACM Computing Surveys (CSUR), 52(2):1–38, 2019.

[133] Shuai Wang, Shaukat Ali, Tao Yue, Yan Li, and Marius Liaaen. A practical guide
to select quality indicators for assessing pareto-based search algorithms in search-
based software engineering. In Proceedings of the 38th International Conference on
Software Engineering, pages 631–642, 2016.

[134] Mengyuan Wu, Ke Li, Sam Kwong, Yu Zhou, and Qingfu Zhang. Matching-based
selection with incomplete lists for decomposition multiobjective optimization. IEEE
Transactions on Evolutionary Computation, 21(4):554–568, 2017.

[135] Miha Ravber, Marjan Mernik, and Matej Črepinšek. The impact of quality indica-
tors on the rating of multi-objective evolutionary algorithms. Applied Soft Comput-
ing, 55:265–275, 2017.

[136] Tao Chen and Rami Bahsoon. Self-adaptive and online qos modeling for cloud-based
software services. IEEE Transactions on Software Engineering, 43(5):453–475, 2016.

[137] Jinhwan Lee, Jing Zhang, Zhengqiu Huang, and Kwei-Jay Lin. Context-based repu-
tation management for service composition and reconfiguration. In 2012 IEEE 14th
International Conference on Commerce and Enterprise Computing, pages 57–61.
IEEE, 2012.

[138] Yuhong Yan, Pascal Poizat, and Ludeng Zhao. Repair vs. recomposition for broken
service compositions. In International Conference on Service-Oriented Computing,
pages 152–166. Springer, 2010.

[139] Gerardo Canfora, Massimiliano Di Penta, Raffaele Esposito, and Maria Luisa Vil-
lani. Qos-aware replanning of composite web services. In IEEE International Con-
ference on Web Services (ICWS’05), pages 121–129. IEEE, 2005.

159

[140] Carolyn Seaman, Yuepu Guo, Nico Zazworka, Forrest Shull, Clemente Izurieta,
Yuanfang Cai, and Antonio Vetrò. Using technical debt data in decision making:
Potential decision approaches. In 2012 Third International Workshop on Managing
Technical Debt (MTD), pages 45–48. IEEE, 2012.

[141] Nanette Brown, Yuanfang Cai, Yuepu Guo, Rick Kazman, Miryung Kim, Philippe
Kruchten, Erin Lim, Alan MacCormack, Robert Nord, Ipek Ozkaya, et al. Managing
technical debt in software-reliant systems. In Proceedings of the FSE/SDP workshop
on Future of software engineering research, pages 47–52, 2010.

[142] Yuepu Guo and Carolyn Seaman. A portfolio approach to technical debt man-
agement. In Proceedings of the 2nd Workshop on Managing Technical Debt, pages
31–34, 2011.

[143] Terese Besker, Antonio Martini, and Jan Bosch. Managing architectural technical
debt: A unified model and systematic literature review. Journal of Systems and
Software, 135:1–16, 2018.

[144] Areti Ampatzoglou, Apostolos Ampatzoglou, Alexander Chatzigeorgiou, and Paris
Avgeriou. The financial aspect of managing technical debt: A systematic literature
review. Information and Software Technology, 64:52–73, 2015.

[145] Areti Ampatzoglou, Apostolos Ampatzoglou, Paris Avgeriou, and Alexander
Chatzigeorgiou. A financial approach for managing interest in technical debt. In In-
ternational Symposium on Business Modeling and Software Design, pages 117–133.
Springer, 2015.

[146] Will Snipes, Brian Robinson, Yuepu Guo, and Carolyn Seaman. Defining the de-
cision factors for managing defects: a technical debt perspective. In 2012 Third
International Workshop on Managing Technical Debt (MTD), pages 54–60. IEEE,
2012.

[147] Yuepu Guo, Rodrigo Oliveira Sṕınola, and Carolyn Seaman. Exploring the costs
of technical debt management–a case study. Empirical Software Engineering,
21(1):159–182, 2016.

[148] Nico Zazworka, Rodrigo O Sṕınola, Antonio Vetro’, Forrest Shull, and Carolyn
Seaman. A case study on effectively identifying technical debt. In Proceedings
of the 17th International Conference on Evaluation and Assessment in Software
Engineering, pages 42–47, 2013.

160

[149] Martin Maechler. Package ‘fracdiff’, 2020 [online]. Available from: http://rsync.
udc.es/CRAN/web/packages/fracdiff/fracdiff.pdf[Last accessed 20th March
2020].

[150] John Geweke and Susan Porter-Hudak. The estimation and application of long
memory time series models. Journal of time series analysis, 4(4):221–238, 1983.

[151] Peter M Robinson. Long memory time series, 2018 [online]. Available from: https:
//personal.lse.ac.uk/robinso1/long-memory-time-series.pdf[Last accessed
17th December 2018].

[152] Ratnadip Adhikari and Ramesh K Agrawal. An introductory study on time series
modeling and forecasting, 2013. arXiv preprint arXiv:1302.6613, [online], Available
from: https://arxiv.org/abs/1302.6613[Last accessed 24th May 2017].

[153] Tao Chen, Rami Bahsoon, Shuo Wang, and Xin Yao. To adapt or not to adapt?
technical debt and learning driven self-adaptation for managing runtime perfor-
mance. In Proceedings of the 2018 ACM/SPEC International Conference on Per-
formance Engineering, pages 48–55, 2018.

[154] Milinda Pathirage, Srinath Perera, Indika Kumara, and Sanjiva Weerawarana. A
multi-tenant architecture for business process executions. In 2011 IEEE Interna-
tional Conference on Web Services, pages 121–128. IEEE, 2011.

[155] Krasimir Baylov, Dessislava Petrova-Antonova, and Aleksandar Dimov. Web ser-
vice qos specification in bpel descriptions. In Proceedings of the 15th International
Conference on Computer Systems and Technologies, pages 264–271, 2014.

[156] Friedhelm Bliemel. Theil’s forecast accuracy coefficient: A clarification. Journal of
Marketing Research, 10(4):444–446, 1973.

[157] Maciej Tomczak and Ewa Tomczak. The need to report effect size estimates revis-
ited. an overview of some recommended measures of effect size, 2014, [online]. Avail-
able from: http://tss.awf.poznan.pl/files/3_Trends_Vol21_2014__no1_20.

pdf[Last accessed 30th August 2019].

[158] Franco Raimondi, James Skene, and Wolfgang Emmerich. Efficient online monitor-
ing of web-service slas. In Proceedings of the 16th ACM SIGSOFT International
Symposium on Foundations of software engineering, pages 170–180, 2008.

161

http://rsync.udc.es/CRAN/web/packages/fracdiff/fracdiff.pdf
http://rsync.udc.es/CRAN/web/packages/fracdiff/fracdiff.pdf
https://personal.lse.ac.uk/robinso1/long-memory-time-series.pdf
https://personal.lse.ac.uk/robinso1/long-memory-time-series.pdf
https://arxiv.org/abs/1302.6613
http://tss.awf.poznan.pl/files/3_Trends_Vol21_2014__no1_20.pdf
http://tss.awf.poznan.pl/files/3_Trends_Vol21_2014__no1_20.pdf

[159] Danilo Ardagna and Barbara Pernici. Global and local qos constraints guaran-
tee in web service selection. In IEEE International Conference on Web Services
(ICWS’05). IEEE, 2005.

[160] Martine De Cock, Sam Chung, and Omar Hafeez. Selection of web services with
imprecise qos constraints. In IEEE/WIC/ACM International Conference on Web
Intelligence (WI’07), pages 535–541. IEEE, 2007.

[161] Allan H Vermeulen and Jeffrey P Bezos. Method and system for dynamic pricing
of web services utilization, June 22 2010. US Patent 7,743,001.

[162] Farhana Zulkernine, Patrick Martin, Chris Craddock, and Kirk Wilson. A policy-
based middleware for web services sla negotiation. In 2009 IEEE International
Conference on Web Services, pages 1043–1050. IEEE, 2009.

[163] Tao Yu, Yue Zhang, and Kwei-Jay Lin. Efficient algorithms for web services selection
with end-to-end qos constraints. ACM Transactions on the Web (TWEB), 1(1):6,
2007.

[164] Mohammad Alrifai, Thomas Risse, and Wolfgang Nejdl. A hybrid approach for ef-
ficient web service composition with end-to-end qos constraints. ACM Transactions
on the Web (TWEB), 6(2):7:1–7:31, 2012.

[165] Frank Buschmann. To pay or not to pay technical debt. IEEE Software, 28(6):29–31,
2011.

[166] Jin Xiu and Yao Jin. Empirical study of arfima model based on fractional dif-
ferencing. Physica A: Statistical Mechanics and its Applications, 377(1):138–154,
2007.

[167] Justin Q Veenstra and AI McLeod. Package arfima, 2015, [online].
Available from: https://mran.microsoft.com/snapshot/2017-12-11/web/

packages/arfima/arfima.pdf[Last accessed 27th July 2017].

[168] William H Kruskal and W Allen Wallis. Use of ranks in one-criterion variance
analysis. Journal of the American statistical Association, 47(260):583–621, 1952.

[169] Jacob Cohen. Statistical power analysis for the behavioral sciences. Academic press,
2013.

162

https://mran.microsoft.com/snapshot/2017-12-11/web/packages/arfima/arfima.pdf
https://mran.microsoft.com/snapshot/2017-12-11/web/packages/arfima/arfima.pdf

[170] Didac Gil De La Iglesia and Danny Weyns. Mape-k formal templates to rigorously
design behaviors for self-adaptive systems. ACM Transactions on Autonomous and
Adaptive Systems (TAAS), 10(3):1–31, 2015.

[171] Rami Bahsoon Tao Chen and Xin Yao. A survey and taxonomy of self-aware and
self-adaptive cloud autoscaling systems. ACM Computing Surveys, 51(3), 2018.

[172] Tiago Oliveira, Ricardo Martins, Saonee Sarker, Manoj Thomas, and Aleš Popovič.
Understanding saas adoption: The moderating impact of the environment context.
International Journal of Information Management, 49:1–12, 2019.

[173] Carlos Mera-Gómez, Rami Bahsoon, Rajkumar Buyya, and Escuela Superior
Politécnica. Elasticity debt: a debt-aware approach to reason about elasticity de-
cisions in the cloud. In Proceedings of the 9th International Conference on Utility
and Cloud Computing, pages 79–88, 2016.

[174] Carlos Mera-Gómez, Francisco Ramı́rez, Rami Bahsoon, and Rajkumar Buyya. A
debt-aware learning approach for resource adaptations in cloud elasticity manage-
ment. In International Conference on Service-Oriented Computing, pages 367–382.
Springer, 2017.

163

	Introduction
	Overview
	Problem Statement
	Research Questions
	Research Methodology
	Thesis Contributions
	Publications
	Thesis Roadmap

	A Systematic Literature Review on Service Composition
	Introduction
	Preliminaries and Basic Concepts

	Systematic Literature Review Process
	Review Protocol
	Search Process
	Selection of Inclusion and Exclusion Criteria
	Search Execution
	Quality Assessment and Data Extraction
	Overview of the Included Studies

	Data Extraction Results Discussion
	 RQ 1.1: A Classification Framework for Service Composition
	RQ 1.2: Discussions on the techniques/Methods taken by service composition approaches
	RQ 1.3: Discussion and Future Outlook for Research

	Related Reviews
	Review Threats
	Summary

	Multi-Tenant Service Composition in SaaS Cloud using Evolutionary Optimisation
	Introduction
	Motivating Scenario
	Problem Formulation
	QoS Computing Model for Service Composition
	Modelling of Service Composition using Evolutionary Optimisation
	Encoding representation
	Optimisation process in MOEA/D-STM

	MOEA/D-STM Based Service Composition Engine
	Evaluation
	Experimental Setup and Results
	Comparative Approach
	RQ 3.1: Computational time-based comparisons
	RQ 3.2: Assessment of Solutions Quality

	Summary

	Technical Debt-Aware Adaptive Decisions for Service Recomposition in SaaS Cloud
	Introduction
	Preliminaries
	Technical Debt
	Motivating Scenario

	Technical Debt at Service Composition Level
	Technical Debt Indicators
	Technical Debt Classification

	Time-Series Prediction of Service Workload
	Service Debt Model
	Recomposition Principal
	Accumulated Interest

	Debt-Aware Recomposition
	Utility Model
	Good and Bad Debt
	Trigger and Decision Making of Recomposition

	Architecture of DebtCom
	Runtime Management Level
	Service Execution Level
	Back-end Process and Data Repository Level

	Experimental Evaluation
	Experimental Setup
	Comparative Approaches
	Metrics
	RQ 4.1: Accuracy on Workload Prediction
	RQ 4.2: Results of DebtCom against Baseline
	RQ 4.3: Effectiveness of Workload Prediction and Debt-Aware Trigger in DebtCom against Passive and Proactive
	RQ 4.4: Running Overhead of DebtCom
	RQ 4.5: Sensitivity of DebtCom to k Value

	Threats to Validity
	Summary

	Self-Adapting Service Composition with Debt-Aware Two Levels Constraints Reasoning
	Introduction
	Preliminaries
	Self-Adaptation in Service Composition
	Constraints in Service Composition
	Running Example

	DATESSO Overview
	Two Levels Constraints with different strictness
	Hard Local Constraints
	Soft Global Constraints

	Temporal Debt-Aware Utility Model
	Modeling Temporal Debt Value
	Time-Series Workload Prediction

	Debt-Aware Two Levels Constraint Reasoning
	Identifying Infeasible Component Services
	Searching for the Best Long-term Debt-Aware Utility

	Evaluation
	Experimental Setup
	Comparative Approaches
	Metrics
	RQ 5.1: Performance of DATESSO
	RQ 5.2: Sustainability of DATESSO
	RQ 5.3: Running Time of DATESSO

	Threats to Validity
	Summary

	Conclusions, Reflections, and Future Directions
	How the research questions have been addressed
	Research Question 1
	Research Question 2
	Research Question 3
	Research Question 4

	Reflections on the Research
	Simulation Environment
	Computational Overhead
	Dealing with SaaS Dynamics

	Future Directions
	Exploring technical debt-aware supports for service composition in the SaaS cloud
	Dealing uncertainties in the SaaS cloud environment
	A technical debt perspective for the selection and optimisation of cloud services/resources

	Conclusion Remarks

	Bibliography

