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Abstract

In recent years our ability to produce information has been growing steadily, driven
by an ever increasing computing power, communication rates, hardware and software
sensors diffusion. is data is often available in the form of continuous streams and
the ability to gather and analyze it to extract insights and detect patterns is a valu-
able opportunity for many businesses and scientific applications. e topic of Data
Stream Processing (DaSP) is a recent and highly active research area dealing with the
processing of this streaming data.

e development of DaSP applications poses several challenges, from efficient
algorithms for the computation to programming and runtime systems to support their
execution. In this thesis two main problems will be tackled:

• need for high performance: high throughput and low latency are critical re-
quirements for DaSP problems. Applications necessitate taking advantage of
parallel hardware and distributed systems, such as multi/manycores or cluster
of multicores, in an effective way;

• dynamicity: due to their long running nature (24hr/7d), DaSP applications are
affected by highly variable arrival rates and changes in their workload charac-
teristics. Adaptivity is a fundamental feature in this context: applications must
be able to autonomously scale the used resources to accommodate dynamic
requirements and workload while maintaining the desired Quality of Service
(QoS) in a cost-effective manner.

In the current approaches to the development of DaSP applications are still miss-
ing efficient exploitation of intra-operator parallelism as well as adaptations strategies
with well known properties of stability, QoS assurance and cost awareness. ese are
the gaps that this research work tries to fill, resorting to well know approaches such as
Structured Parallel Programming and Control eoretic models. e dissertation runs
along these two directions.
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e first part deals with intra-operator parallelism. A DaSP application can be
naturally expressed as a set of operators (i.e. intermediate computations) that co-
operate to reach a common goal. If QoS requirements are not met by the current
implementation, bottleneck operators must be internally parallelized. We will study
recurrent computations in window based stateful operators and propose patterns for
their parallel implementation. Windowed operators are the most representative class
of stateful data stream operators. Here computations are applied on the most recent
received data. Windows are dynamic data structures: they evolve over time in terms of
content and, possibly, size. erefore, with respect to traditional patterns, the DaSP
domain requires proper specializations and enhanced features concerning data dis-
tribution and management policies for different windowing methods. A structured
approach to the problem will reduce the effort and complexity of parallel program-
ming. In addition, it simplifies the reasoning about the performance properties of a
parallel solution (e.g. throughput and latency). e proposed patterns exhibit dif-
ferent properties in terms of applicability and profitability that will be discussed and
experimentally evaluated.

e second part of the thesis is devoted to the proposal and study of predictive
strategies and reconfiguration mechanisms for autonomic DaSP operators. Reconfig-
uration activities can be implemented in a transparent way to the application pro-
grammer thanks to the exploitation of parallel paradigms with well known structures.
Furthermore, adaptation strategies may take advantage of the QoS predictability of
the used parallel solution. Autonomous operators will be driven by means of a Model
Predictive Control approach, with the intent of giving QoS assurances in terms of
throughput or latency in a resource-aware manner. An experimental section will
show the effectiveness of the proposed approach in terms of execution costs reduc-
tion as well as the stability degree of a system reconfiguration. e experiments will
target shared and distributed memory architectures.
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1 Introduction

Nowadays we are living an Information revolution. e amount of data generated
by automatic sources such as sensors, infrastructures and stock markets or by human
interactions via social media is constantly growing. e numbers of this data deluge
are impressive: every day 2.5 exabytes of data are created, so much that 90% of the
data in the world today has been created in the last two years alone1. Furthermore,
these numbers are expected to constantly grow driven by an ever increasing adoption
of sensors, towards tens of billions of internet connect devices by 2020.2

is live data is usually dispatched as a continuous flow of information: the pos-
sibility to gather and analyze it to extract insights and detect patterns has become a
valuable opportunity for many businesses and scientific applications. Such applica-
tions arise from different contexts and in many cases there are stringent performance
requirements. Systems for high frequency trading, healthcare, network security and
disaster managements are typical examples: a massive flow of data must be processed
on the fly to detect anomalies and take immediate actions. Having a late response is
useless and in some cases also harmful.

Classical store-then-process (or batch) frameworks are not sufficient for this time
sensitive applications. ey are designed for a world in which data has a beginning
and an end. is has led to the emergence of the Data Stream Processing (DaSP)
paradigm, a new way to deal and work with streaming data. Its main peculiarities are
the following [Babcock et al., 2002; Andrade et al., 2014]:

• differently than traditional applications, data is seen as transient continuous
streams rather than being modeled as traditional permanent, “in memory” data
structures;

1http://www-01.ibm.com/software/data/bigdata/what-is-big-data.html
2http://www.ibmbigdatahub.com/blog/foresight-2020-future-filled-50-billion-

connected-devices

1

http://www-01.ibm.com/software/data/bigdata/what-is-big-data.html
http://www.ibmbigdatahub.com/blog/foresight-2020-future-filled-50-billion-connected-devices
http://www.ibmbigdatahub.com/blog/foresight-2020-future-filled-50-billion-connected-devices
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• systems in charge of analyzing these flows of information have no control on
how the data elements arrive to be processed;

• due to the unbounded input and the stringent requirements in terms of perfor-
mance, processing must be performed “on the fly” or, in any case, by using a
limited amount of memory. Resorting to techniques for approximate process-
ing or window model may be necessary.

DaSP falls under the umbrella of the so called Big Data processing. Big Data is
generally characterized by the 3Vs properties [Laney, 2001]: variety, volume and ve-
locity. Variety refers to the nature and structure of the information. Volume refers to
the magnitude of data produced while velocity refers to the frequency of data genera-
tion as well as the dynamic aspects of the data. While classical batch applications and
systems cover the variety and volume issues, DaSP focus on the velocity and variety
aspects of the “Big Data Challenge”.

1.1 e requirements
DaSP applications pose several challenges that regard different contexts of Computer
Science, from efficient algorithms for on-the-fly computations to programming en-
vironment and runtime system to support their deployment and execution [Stone-
braker et al., 2005; Andrade et al., 2014]. We will discuss some of these challenges in
particular the ones that regard the supports for expressing and executing these kind
of applications.

Need of high performance Stream processing computations must keep up with
data ingest rates, while providing high quality analytical results as quickly as possible.
us, high throughput and low latency are critical requirements for DaSP applica-
tions that necessitate taking advantage of parallel hardware and distributed systems
such as multi/manycores or cluster of multicores. e desired performance behavior
of the application is usually expressed by means of Quality of Service (QoS) require-
ments, i.e. requirements on quantitative metrics describing the performance level
achieved by the application. Typical concerns could be “the mean response time of
the application must be less or equal than a given threshold” or “ the application must
be able to support a given throughput”.

Handle dynamicity DaSP applications are affected by highly variable arrival rates
and exhibit abrupt changes in their workload characteristics, due to their long-running
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nature (24h/7d) and dynamic execution scenario. Adaptivity (sometimes referred as
elasticity) is a fundamental feature in this context: applications must be able to au-
tonomously scale up/down the used resources to accommodate dynamic requirements
and workload while maintaining the desired QoS in a cost-effective manner. is
must be done in an automatic and transparent way to end-users and possibly also to
application programmers.

Providing availability Systems have to ensure that the applications are up and
available and the integrity of the data maintained at all times, despite failures. ere
is a need for tolerance to failures in application components or data sources, as well
as failures in the processing hardware and middleware infrastructure. For these rea-
sons, applications must be designed with fault tolerance and resilience requirements
in mind.

ese are all well known challenges in theHPC community, which deserve special
attention in this context due to the continuous nature of the problem. Over the
recent years many Data Stream Processing systems have been proposed and a lot of
research has been done in both the academia and the industry, highlighting that this
topic, besides being a fascinating and challenging research one, can be of strategic
importance for many businesses. Still, these problems are not completely tackled in
DaSP community. e aim of this thesis is to study and propose new solutions for
the parallelism and adaptivity problems. ey will be studied hand in hand, resorting
to the twenty years experience of our HPC group here in Pisa. Fault tolerance issues
are not addressed in this dissertation but they could constitute a natural extension of
this work.

In the following we discuss various motivating scenarios that highlight the prin-
cipal characteristics of DaSP applications. en we introduce our vision and ap-
proaches to the aforementioned challenges.

1.2 Motivating examples
Examples of real applications that convey the characteristics previously described arise
in various contexts. In the following we detail three of them, but a plethora of similar
situations can be found also in the automotive context, healthcare or the Internet of
ings. As the “sea change”, we can only imagine what kind of applications could
arise in the next few years. But one thing is sure: Data Stream Processing is here to
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stay and here will be no value on all this huge amount of real time data, till applications
will not be able to ingest and analyze it in a fast, adaptive and reliable way.

1.2.1 Financial applications

In the last 20 years financial markets have been revolutionized by the algorithmic and
high frequency trading. is results in a transition from physical exchanges to elec-
tronic platforms, where automated applications monitor markets and manage the
trading process at high frequency. Information about quotations, trades and transac-
tions occurring on different exchanges are disseminated in a continuous basis by real
time data distributions services such as the Options Price Reporting Authority (OPRA)
[OPRA] or Bloomberg B-Pipe [Bloomberg]. Financial applications require to analyze
these market data feeds in order to identify trends and spot opportunities. Typical
computations range from simple filtering and aggregation (e.g. bargain index com-
putation [Andrade et al., 2009]) to complex computation or correlations between
different streams. Just to mention, recognition of chart patterns within stock price is
a common method which is used to predict the future development of stock prices
[Investopedia]. If the last received quotes of a given stock (e.g. “the last 1000”) ex-
hibit a well defined behavior, automatic trading actions can be taken to anticipate
competitors ones.

Financial applications are emblematic situations in which latency is one of the pri-
mary design considerations [Brook, 2015]. A trader with significant latency will be
making trading decisions based on information that is stale. On the other hand, guar-
anteeing a few millisecond of processing time could constitute a significant advantage
over competitors. On the other hand, in the last years data rates are constantly grow-
ing, fueled by the growth of algorithmic and electronic trading. Recent analysis show
that currently (beginning of 2016) a single produced stream that conveys informa-
tion about different stock symbols may reach a peak message rate of 400,000 messages
per 100-milliseconds, with an increasing trend 3. However the average rates are well
below that figure, often of one order of magnitude, highlighting a very dynamic envi-
ronment in which bursts are due to external events (e.g. news, public mood, political
decisions) and may regard only part of quoted stocks. High performance solutions
are unavoidable to process this ever increasing feeds rate and adaptivity is a desirable
future to quickly handle their natural volatility in a cost-effective manner.

3http://www.opradata.com/specs/opra_bandwidth_100ms_jan2016_update.pdf

http://www.opradata.com/specs/opra_bandwidth_100ms_jan2016_update.pdf
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1.2.2 Network applications
Managing a large data communications network requires constant network monitor-
ing. Analysis objectives can be disparate. For example network administrators could
be interested in traffic monitoring performed on the traffic summaries produced by
network apparatus. Common computation regards the analysis of the load of a sys-
tem (e.g. which share of bandwidth is used by different applications, which part
of the network uses a certain amount of bandwidth), of characteristics of the flow
(like distribution of life time and size), of characteristics of sessions and many more,
[Plagemann et al., 2004].

Beyond infrastructure management, cyber security is another hot topic strictly
related to traffic monitoring. Combat security threats could avoid productivity and
economic losses as well as data theft. Recently Network Intrusion Detection Systems
have been introduced to face this problem. ey monitor and analyze traffic in real-
time in order to identify possible attacks, generating alerts as fast as possible in order
to allow taking appropriate countermeasures [Scarfone and Mell, 2007]. Usually
their detection algorithms involve complex stream processing and analysis of multi-
ple traffic flows that must keep up with the line speed [Yu et al., 2006; Zhao et al.,
2015]. Similar systems have to deal with streaming data from multiple sources with
aggregated rates approaching several to tens of gigabyte per second for a reasonably
large corporate network, especially during working hours. Clearly, there are require-
ments on performance and scalability, with desired detection latencies have to be in
the order of milliseconds: slowly reacting can lead to considerable damage in both
economic and security terms.

1.2.3 Social media analysis
Social media have become ubiquitous and important for social networking and con-
tent sharing. Among them, Twitter, a microblogging service, has become a very
popular tool for expressing opinions, broadcasting news or simply communicate with
friends. It has played a prominent role in socio-political events, such as the Arab
Spring or the Occupy Wall Street movement, or in quickly reporting natural disas-
ters.

Twitter’s popularity as an information source has led to the development of appli-
cations and researches in various domains. In particular, data mining techniques can
be applied for expanding researchers’ capability of understanding new phenomena
[Gundencha and Liu, 2012]. One popular kind of reasoning conducted on Twitter
regards the identification of real-world events from the tweets stream. Convention-
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ally, event detection has been conducted on static document collections, where all
the documents in the collection are somehow related to a number of undiscovered
events. Recent works on Twitter have started to process data as a stream, as it is pro-
duced. Many of them are focused on identifying events of a particular type, such as
breaking news [Sankaranarayanan et al., 2009] or earthquakes and typhoons [Sakaki
et al., 2010]. Especially in the case of disasters caused by natural hazards, crisis re-
sponders may want lower latency in order to better respond to a developing situation.
Other works try to address the problem of identifying any type of event (and its
related tweets) without a priori knowledge of the topic. Here the techniques are var-
ious, ranging from on-line clustering methods to statistical techniques [Weiler et al.,
2016]. Typically, these analyses focus their attention on the last received data, more
important for the end-users.

Another interesting area of research regards the interaction between Twitter dis-
cussions and stock markets. Many traders, investors, financial analysts and news
agencies post tweets about the stock market in Twitter. As a result, there can be thou-
sands of tweets each day related to certain stocks. In general, the number of tweets
concerning a stock varies over days, and sometimes exhibits a significant spike, indi-
cating a sudden increase of interests in the stock. Strategies for stock options trading
could use the mood expressed in these tweets to drive their trading action [Bollen
et al., 2011].

ese interesting applications have to face the intrinsic characteristics of Twitter
data feed. Currently, Twitter has more than 320 million active users publish over 500
million of tweets every day, with an average of 5,700 tweets per second. is rate
may vary substantially in short periods of time, for example in reaction to a particular
social event, increasing the rate of tweets on a particular topic of several orders of
magnitude.4 Since relevant topics or events rapidly change, systems must adapt their
behavior to the amount of incoming data in order to provide prompt results.

1.3 High performance DaSP applications
Without loss of generality, we can express Data Stream Processing applications by
means of a computation graph (sometimes referred as data flow graph, see Figure 1.1)
[Andrade et al., 2014; Cugola and Margara, 2012c]. is has in input a certain set of
continuous data streams and outputs are possibly returned as others continuous flows
of data: they represent, respectively, the input and output streams of the application.

4https://blog.twitter.com/2013/new-tweets-per-second-record-and-how
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Internal nodes express operators, i.e. intermediate computations, at least one, in which
the application can be decomposed.

OP1

OP2

OP3 OP4

OP5

DaSP application

input 
stream(s)

output 
stream(s)

Figure 1.1: Example of computation graph

Generally, an operator consumes input data and applies transformations on them
according to its internal processing logic. Operators can be stateless or stateful. State-
less operators process each input data item independently. On the other hand, state-
ful operators keep an internal state while processing input stream. Output results
depend on the value of the internal state which is continuously updated each time
a new item is received. Since continuous data streams may be infinite, there is the
problem of maintaining only a portion of the incoming information. In many ap-
plications, recent information is usually more relevant than the old one. erefore, a
very common solution is to maintain only the most recent data, in temporarywindow
buffer and perform the computation over it.

Various Stream Processing frameworks facilitates the work of developers of map-
ping their application into a computation graph, by providing mechanisms to in-
stantiate operator, streams and so on. Usually set of reusable operators that can be
found in many applications is provided to programmers to increase the productiv-
ity [Andrade et al., 2014]. Just to mention some of them, consider many relational
operators such as filters, join, sort, but also aggregates (sum, count, max), windowed
operators or edge adapters that provide conversion from external sources data format
into a format that can be used by an application (and vice versa). In addition, most
recent frameworks support customizable operators implemented in general-purpose
programming language (e.g. [Apache Storm], [Apache Flink]). e abstract com-
putation is then executed on a set of computational resources. e runtime system
provides all the mechanisms to map the computation into a set of communicating
threads or processes, deploy and maintain them on the available resources.
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1.3.1 Parallelism opportunities in DaSP applications

DaSP applications should be able to efficiently exploit parallel hardware in order to
meet requirements of high throughput (i.e. applications must be able to cope with
high volume of incoming data) and low latency (i.e. results must be computed in a
short period of time). Since graph operators are independent of each other, a first
parallelism opportunity is given by inter-operator parallelism, when different opera-
tors run concurrently on different processing elements. If inter-operator parallelism
is not enough the computation graph has to be restructured. We have to understand
which sequential operator is a bottleneck and parallelize it. e final result has to be
a computation graph, functionally equivalent to the initial one, in which some nodes
are transformed through an internal parallelization.

With the exception of rare cases, hand made parallelization is not a viable so-
lution. Besides being an impediment to software productivity and reduced time to
development, such low level approaches prevent code and performance portability.
As well known in the HPC community, to avoid these problems we have to resort
to a high level approach to parallel programming [Darlington et al., 1995; Skillicorn
and Talia, 1998; Cole, 2004]. e programming environment has to offer the high
level parallel constructs directly to programmers that can use them to compose their
parallel application. is simplifies programming by raising the level of abstraction:
the programmer concentrate on computational aspects, having only an abstract high-
level view of the parallel program, while all the most critical implementation choices
are left to the programming tool and runtime support. Moreover this will render the
program architecture independent, providing reasonable expectation about its per-
formances when executed on different hardware.

As will be described in Chapter 2, most of the existing frameworks provide con-
structs to express intra-operator parallelism in very simple forms but this regards only
stateless operator or simple cases of stateful operators. Although recurrent, these two
situations are far from exhaustively cover all the possible solutions, leaving to the
programmer the burden of implementing its own parallel schema when they are not
sufficient. For example, the processing logic of a windowed operator is not so easily
parallelizable. Its internal state creates dependencies between the processing of indi-
vidual tuples as each tuple might alter the operator’s state. A legitimate parallelization
must be safe, in the sense that is must preserve the sequential semantic. For this rea-
sons, we can state that a complete methodology for intra-operator parallelism, that
cover the majority of the cases, is still lacking.

We advocate that a Structured Parallel Programming (SPP) approach [Bacci et al.,
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1995; Vanneschi, 2002; Aldinucci et al., 2003; Cole, 2004; Vanneschi, 2014] could be
beneficial for the DaSP context. e main idea behind structured parallel program-
ming is to let the programmer define an application by means of parallel patterns (also
called paradigms). Parallel patterns are schemas of parallel computations that recur
in the realization of many real-life algorithms and applications for which parametric
implementations of communications and computation patterns are clearly identified.
With parallel paradigms the programmer just selects the proper pattern and describes
the sequential code. e rest of the code is produced by the programming environ-
ment and its runtime system. Once it is detected that an operator is a hotspot, a
proper parallelization should be found by searching in a limited and feasible set of al-
ternative solutions. A significant property of this approach is the existence of proper
Performance Models able to predict and quantify the Quality of Service (QoS) offered
by the parallel computation in several execution and environmental conditions. ese
characteristics are the basic building blocks to ensure performance portability on the
various architectures. Furthermore, besides being a methodology to reduce the ef-
fort and complexity of parallel programming, SPP simplifies the reasoning about the
properties of a parallel solution in terms of throughput, latency and memory occu-
pancy. Exactly what is needed by intra-operator parallelism.

Structured parallel programming is probably the most interesting class of high-
level parallel models. It has a long story in the HPC community and our research
group. For the aforementioned reasons, we believe that parallel patterns could con-
stitute a good solution also for intra-operator parallelism in DaSP application.

1.3.2 e road to autonomous adaptivity

e use of parallel paradigms, with well known computation/communication schema
and relative cost models, makes it possible to define adaptive applications in which
reconfiguration activities are completely transparent to the application programmer
and adaptation strategies may benefit from the presence of well defined performance
models.

To perform run-time adaptation of the application, it is necessary to apply a re-
configuration, i.e. a change in the current operator behavior. Reconfigurations can
regard increase/decrease in the number of executors, their mapping onto physical re-
sources, changes in the CPU frequency, and so on. is involve intrusive actions
on the computation, such as rearrangements of the state partitions and changes in
the communication channels to reflect a new parallelism degree. On the very same
line of the previous discussion, currently programmers are directly involved in defin-
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ing and implementing the reconfiguration activities, relying, when possible, to some
basic mechanisms provided by frameworks and sometimes stopping the application
execution to implement the reconfigurations (see Chapter 2). Clearly this led to
the explosion of problem complexity and to performance problems. Again, we can
leverage the presence of well known parallelism patterns in defining reconfiguration
mechanisms that are reusable and with well known effects. is could allow us put
them directly in the runtime support of the high level programming model, hiding
these aspects from the programmers’ viewpoint

In every case the decision to execute a reconfiguration, changing the current ap-
plication configuration, is taken by the control logic exploiting a proper adaptation
strategy. Given the operating scenario, we can detail some desiderata that an adapta-
tion strategy should have:

• it must ensure execution properties such as the stability of a system configura-
tion and the optimality of the adaptation process;

• most of the existing approaches are throughput oriented. Assuring a certain
average latency is a crucial factor inDaSP applications and therefore this critical
metric deserves special attention;

• by exploiting performance models of structured parallel programs we can eval-
uate the key-parameters that mainly influence the behavior of our applications
and adopt a predictive approach rather than a reactive one;

• it should be cost-effective, i.e. avoid wasting of resources. is does not mean
that minimize the number of resources used is always the best solution. An
interesting opportunity regards the possibility to act on the used resources to
reduce the overall energy consumption and cut down the operating costs. is
could involve, for example, the adjustment of the operating CPU frequency
through architectural mechanisms. Energy reduction and QoS satisfaction are
orthogonal aspects with respect to the adaptivity problem. eir synergic study
deserves special attention and represents a quite innovative topic in DaSP pro-
cessing.

Currently it is essentially missing in the DaSP community a methodological ap-
proach to adaptation strategies that cover these topics. e solutions proposed in
this dissertation will rely on the a control based approach, the Model Predictive Con-
trol (MPC) [Camacho and Bordons Alba, 2007]. MPC-based adaptation strategies
use a system model to predict the system behavior over a future time horizon while
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choosing the reconfigurations to execute. It constitutes a powerful strategy able to
achieve good optimality and stability in uncertain environments that has been already
successfully applied by our research group in structured parallel applications.

1.4 Contributions of the thesis
In the current approach to the development of DaSP applications are still missing
efficient exploitation of intra-operator parallelism, as well as adaptations strategies
and reconfiguration mechanisms with well known properties of stability, QoS assur-
ance and cost awareness. In our opinion, a Structured Parallel approach in DaSP has
the effect of killing two birds with one stone. From one side we ease programmer
life by providing a set of reusable patterns to facilitate the parallel implementation of
DaSP operators. From the other, we can exploit the deep knowledge of the patterns
to provide transparent reconfiguration mechanisms and adaptation strategies with
well known behaviors. With these objectives in mind we can summarize the research
contributions of the thesis. e fundamental contributions are the following:

• identification of recurrent computations and proposal of parallelization pat-
terns for intra-operator parallelism. We will focus on stateful windowed oper-
ators, but some considerations are valid also for generic stateful operators. e
proposed patterns are suitable to be integrated also in existing DaSP or SPP
frameworks;

• study and proposal of predictive strategies for autonomic DaSP operators. Our
approach will be based on theModel Predictive Control, with the intent of giving
QoS assurances in term of throughput or latency in a cost effective manner.
e combination of latency models and predictive strategies is still unexplored,
especially in this application context.

Other minor contributions are the following ones:

• implementation of the proposed parallel patterns over shared memory archi-
tecture;

• study and implementation of efficient mechanisms for dynamic reconfigura-
tions for a partitioned DaSP stateful operator, targeting shared and distributed
architectures;
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• a first partial contribution to energy-aware adaptive strategies for DaSP appli-
cations. A basic power cost model is introduced to evaluate different applica-
tion configurations. is, coupled with the exploitation of the Dynamic Voltage
and Frequency Scaling (DVFS) mechanism typical of modern multicore CPUs,
allow us to enhance the proposed predictive strategies with the possibility of
reducing the power consumption while assuring a given QoS imposed by the
user.

All these aspects will be accompanied with thorough experimental phases on a shared
memory architecture in order to asses the validity of the proposed solutions. Experi-
ments on predictive strategies and reconfiguration mechanisms target also distributed
memory machines. In our opinion a similar execution scenario represents an inter-
esting and common use case in data stream processing and deserves special attention
especially for what concerns the autonomic management of these applications.

1.5 Outline of the thesis

Apart from the introduction and background chapters, the thesis is essentially orga-
nized in two main parts. e first part (that spans over Chapters 3 and 4) tackles
the problem of inter-operator parallelism exploitation. After this, the second part
(Chapters 5, 6 and 7) is devoted to the proposal and study of predictive strategies
and reconfiguration mechanisms for parallel and autonomic DaSP operators. More
in details, the outline of the thesis is the following:

• Chapter 2 acts as background in the DaSP context and discusses how paral-
lelism and adaptivity is exploited in the related literature and existing frame-
works. Firstly we analyze the principal characteristics of a DaSP application, in
terms of structure, operators and internal state. Afterwards, we review various
DaSP frameworks, examining how parallelism is exploited in similar systems
and in the literature. Finally we will discuss how adaptivity is approached in
similar applications;

• Chapter 3 briefly reviews the basic concepts on the Structured Parallel Pro-
gramming approach. We motivate the use of high level approach to ease the
development of parallel applications. A well known set of basic paradigms is
briefly surveyed together with an analysis of existing frameworks that exploit
this idea. Finally we discuss why classical parallel paradigms are not always
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sufficient for an efficient exploitation of intra-operator parallelism in DaSP
applications;

• in Chapter 4 the first contributions of the thesis are given. e focus is on par-
allel patterns for windowed operators, which represent the most notable class
of stateful operators in DaSP applications. Starting from the analysis of recur-
rent computations, four different patterns are presented. ey differ in terms of
applicability, impacts on performance and drawbacks: these characteristics are
experimentally evaluated over a multicore-based shared memory architecture;

• Chapter 5 provides some insights on the concepts of Autonomic Computing
and its application to adaptive parallel computations. Reconfiguration mecha-
nisms and adaptation strategies are presented. en, we review different types
of adaptation strategies based on reactive and predictive approach. Finally we
introduce the Model Predictive Control, as a method for devising predictive
strategies with good properties in terms of accuracy, stability and resource con-
sumption;

• Chapter 6 tackles the problem of enhancing DaSP operators with an auto-
nomic behavior in order to meet performance requirements while reducing the
operating costs. e focus is on one of the patterns proposed in Chapter 4
due to its generality and diffusion. Solutions here presented are in any case
applicable, without many difficulties, also to the other discussed parallelization
schema. MPC-based strategies that tackle, among the other, latency require-
ments and power efficiency are presented and detailed. en we focus on re-
configuration mechanisms to implements changes in the parallel structure of
an operator without impairing its working characteristics;

• Chapter 7 presents a thorough experimental analysis of the previously presented
mechanisms and strategies over a realistic High Frequency Trading application.
e experiments are performed on shared and distributed memory architec-
tures in order to asses the effectiveness of the proposed solutions;

• finally Chapter 8 presents the conclusions of the thesis and depicts possible
future works.

How to read this thesis

ere are various ways of reading the contents of this thesis (depicted in Figure 1.2).
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is dissertation is conceptually divided into two main
parts: one devoted to intra-operator parallelism ex-
ploitation and the other related to the adaptive man-
agement of DaSP applications. Clearly, the contents
are organized in a natural sequence for which it is pos-
sible to read this thesis straight through from start to
finish following the chapters ordering (solid line in fig-
ure). However, although there is usually some connec-
tion to the preceding chapter, the readers should feel
free to focus only on one of these two main subjects.
erefore, apart from Chapter 1, 2 and 8 that con-
stitute common background and conclusions, reading
Chapters 3 and 4 will give insights on the approach
pursued in exploiting parallelism in DaSP operators
(dashed line in figure). On the other hand, the reader
interested in the adaptive management of similar ap-
plications could pass from Chapter 2 directly to the
heart of the problem addressed in Chapters 5, 6 and 7
(dashed-dot line).

3

4

2

5

1

6

7

8

Figure 1.2: Thesis reading
paths

1.6 Current publications of the author

e work of this thesis is mainly based on three recent publications of the author:

I. Tiziano De Matteis, Gabriele Mencagli. Parallel Patterns for Window-based
Stateful Operators on Data Streams: an Algorithmic Skeleton Approach. In
International Journal of Parallel Programming, 2016. pp. 1–20.

II. Tiziano De Matteis, Gabriele Mencagli. Keep Calm and React with Fore-
sight: Strategies for Low-Latency and Energy-Efficient Elastic Data Stream
Processing. In Proceedings of the 21st ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming (PPoPP), 2016. pp. 13:1–13:12.

III. Tiziano De Matteis, Gabriele Mencagli. Proactive elasticity and energy aware-
ness in data stream processing. In Journal of Systems and Software, 2016. In
press.



1.6 Current publications of the author 15

e following represent partially related publications that the author worked dur-
ing the Ph.D.research:

1. Tiziano De Matteis, Salvatore Di Girolamo, Gabriele Mencagli. Continuous
skyline queries on multicore architectures. In Concurrency and Computation:
Practice and Experience, 2016. pp. 3503-3522.

2. MarcoDanelutto, TizianoDeMatteis, GabrieleMencagli, MassimoTorquati.
ParallelizingHigh-FrequencyTradingApplications by usingC++11Attributes.
In Proceedings of the first IEEE International Workshop on Reengineering for Par-
allelism in Heterogeneous Parallel Platforms, 2015. pp. 140-147.

3. Tiziano De Matteis, Salvatore Di Girolamo, Gabriele Mencagli. A Multicore
Parallelization of Continuous Skyline Queries on Data Streams. In Proceedings
of the 2015 International Conference on Parallel Processing (Euro-Par), 2015. pp.
402–413.

4. Tiziano De Matteis. Autonomic Parallel Data Stream Processing. In High
Performance Computing Simulation (HPCS), 2014 International Conference on,
2014. pp. 995-998.

5. Daniele Buono, Tiziano De Matteis, Gabriele Mencagli. A High-roughput
and Low-Latency Parallelization of Window-based Stream Joins on Multi-
cores. In 12th IEEE International Symposium on Parallel and Distributed Pro-
cessing with Applications., 2014. pp. 117-126.

6. Daniele Buono, Marco Danelutto, Tiziano De Matteis, Gabriele Mencagli,
Massimo Torquati. A Lightweight Run-Time Support for Fast Dense Linear
Algebra on Multi-Core. In Proceedings of 12th IASTED International Confer-
ence on Parallel and Distributed Computing and Networks, 2014.

7. Daniele Buono, Tiziano De Matteis, Gabriele Mencagli, Marco Vanneschi.
OptimizingMessage-Passing onMulticoreArchitecturesUsingHardwareMulti-
threading. In Parallel, Distributed and Network-Based Processing (PDP), 2014
22nd Euromicro International Conference on., 2014. pp. 262-270.

8. Tiziano De Matteis, Fabio Luporini, Gabriele Mencagli, Marco Vanneschi.
Evaluation ofArchitectural Supports for Fine-Grained SynchronizationMech-
anisms. In Proceedings of the 11th IASTED International Conference on Parallel
and Distributed Computing and Networks, 2013.





2 Background on Data
Stream Processing

is chapter introduces the basic concepts in Data Stream Processing applications
and existing frameworks. e first part focuses on the principal characteristics of
a DaSP application: we will introduce the concepts of stream, tuples and the main
properties of stream processing operators, including the presence of internal state and
the concept of windowing. In the second part we will review various DaSP frame-
works, focusing on the programming environment, in terms of functionality, opera-
tors and features that they offer to programmers. We will discuss how parallelism is
exploited in similar systems and in the literature, also analyzing the approaches for an
autonomous management of these applications. is will clearly describes the feature
and limitations of existing framework as well as of research approaches in the field, a
clear starting point for this thesis work.

2.1 Characteristics of a DaSP application

A DaSP application is driven by data flowing from external (remote) sources in a
continuous and, theoretically, infinite way. e business logic of the application must
process the data on the fly, as soon as it arrives in order to provide timely responses
to users.

An application is usually modeled as a direct graph, whose vertices are operators
and arcs are streams. e input stream conveys a sequence of individual data items,
consumed and analyzed by the application, that represent occurred events or, more
in general, interesting information. In the following, the term tuple will be used as a
synonym of input data: a tuple is the fundamental, or atomic, data item embedded in
a data stream and processed by the application. It is composed by a set of named and
typed attributes (or fields). Each instance of an attribute is associated with a value. In
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these terms, we can view to a data stream as a potentially infinite sequence of tuples
sharing a common schema.

In many cases, a physical input stream conveys tuples belonging to multiple logical
substreams multiplexed together. e correspondence between tuples and substreams
is usually made by considering a key attribute of the tuple. For example, in trades
and quotes sent from financial markets, a key can be the stock symbol to which this
information refers; in networkingmanagement, a stream can be partitioned according
IP addresses. Given this multiplexed streams, various applications need to perform a
computation on each substream independently. Back to previous examples, it could
be required to perform pattern recognition in an independent way for each stock in
the financial market or analyze data by IP source/destination. For the rest of this
dissertation we will refer to the aforementioned case as keyed stream. In contrast in
an unkeyed stream we do not have the distinction in logical substreams (i.e. we have
only one key).

Generally, an operator consumes the input tuples and applies a function (a trans-
formation) on them according to its internal processing logic. As a result, the operator
might emit new tuples as new stream, possibly with a different schema. e number
of output tuples produced per tuples consumes is called selectivity of the operator.

2.1.1 Operator state
Operators can be classified in various ways. According to [Andrade et al., 2014], we
will categorize them with respect to state management into three groups:

• a stateless operator works on a tuple-by-tuple basis without maintaining data
structures created as a result of the computation on earlier data. Selection, fil-
tering and projection are all examples of stateless operators: the processing of
each tuple is independent from that of the previous ones;

• in contrast, a stateful operatormaintains and updates a set of internal data struc-
tures while processing input data. e result of the internal processing logic is
affected by the current value of the internal state. Examples are sorting, join,
cartesian product;

• finally, a partitioned stateful (or keyed) operator is an important special case of
stateful operator. In the case of keyed stream, the operator applies the same
computation on each substream in an independent way. erefore the data
structures supporting the internal state are separated into independent parti-
tions according to the relative substream.



2.1 Characteristics of a DaSP application 19

Stateful and partitioned stateful operators are the most interesting cases of opera-
tors, given the obvious difficulties that can be encountered in devising their parallel
implementations.

2.1.2 State type and windowing mechanisms
In a stateful operator, maintain the entire stream history is unfeasible due to the
unbounded nature of the input streams. ere are two solutions for this problem:

• the state can be implemented by succinct data structures such as synopses, sketches,
histograms and wavelets [Aggarwal and Yu, 2007] used to maintain aggregate
summary metrics. In this case, individual tuples are not stored;

• in various applications, tuples need to be maintained as a whole in internal
state. Fortunately, in many applications the significance of each tuple is time-
decaying and it is more important to focus the attention on recent data. A
solution consists in implementing the state as a window buffer in which only
the most recent tuples are kept.

Windows are the predominant abstraction used to implement the internal state
of DaSP operators and many frameworks provide some form of windowed operator.
ere are many ways of characterizing the semantics of a window. We will classify
windows according to two criteria:

a) in terms of the properties of the tuples that can be held in the buffer (sometimes
referred as eviction policy);

b) based on how the windows move over new elements (triggering policy).

According to the first criteria, various types of policies can be defined. e most used
two are count based or time based windows. In the former case the window has a fixed
size specified in terms of number of tuplesN : at any time, the window will containN
consecutive stream elements, for example “the last 1000 received tuples”. In contrast, a
time-based window contains all the elements received in a given time interval T , e.g.
“the elements received in the last 30 seconds”. ismeans that the window size is not fixed
since the number of maintained tuples can change over time. Time based windows
impose that the data stream elements have a timestamp attribute, assigned by the
data source or explicitly at their arrival at the applications borders. Less common
are delta-based window [Andrade et al., 2014], specified using a delta threshold value
and a tuple attribute referred to as the delta attribute. e threshold value specifies
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how far the oldest and the newest tuples in window can deviate from each other. For
example using a timestamp attribute of the tuple, we can define a delta based window
that “contains all the tuples having a timestamp within one minute one from the other”.

e second classification criterion regards how the window moves. We can have
tumbling and sliding windows. When a tumbling window is full, its content is ready
to be processed. After the window processing is complete, all the tuples in windows
are evicted (Figure 2.1). In this way, consecutive activations of the operator’s logic
will work on completely different tuples.

1 12 123 4

Figure 2.1: The evolution of a count-based tumbling window with size equal to 3. Numbers
represent the order of arrival of the different tuples. In bold red it is signaled the situation in
which the window content is ready to be processed by operator’s logic. After the calculation the
window content is discarded.

On the other hand, a sliding window continuously maintains the most recent
tuples. When the window is full, only the oldest tuples are evicted to make up room
to the new one. A sliding factor δ, expresses when the window’s content get processed
by operator’s algorithm, e.g. after the arrival of δ tuples (Figure 2.2). Depending on

1 12 123 4 3 2 4 35

Figure 2.2: The evolution of a count-based sliding window with size equal to 3 and sliding factor
2. In bold red are depicted windows valid for the computation. In this case only the oldest tuples
are evicted.

how it is implemented, in time-based sliding windows the operator’s logic may be
invoked independently from a tuple arrival, just because tuples expire as time passes.

All the four combinations of the previous characteristics are meaningful, although
count based and time based sliding window are the most used. We will use them for
the rest of this dissertation.

2.2 Data Stream Processing systems
Traditionally, custom coding has been used to solve Data Stream Processing prob-
lems. is approach has obvious drawbacks, mainly due to its inflexibility, high
cost of development and maintenance, slow response time to new feature requests.
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Starting from the early 2000s, several traditional software technologies, such as main
memory DBMSs and rule engines, have been repurposed and remarketed to address
this application space. e technologies and proposal in these fields, have paved the
way to modern and general DaSP systems.

In the following we revisit this history, going from the so called Data Stream
Management Systems (DSMS) and Complex Event Processing (CEP) systems to cur-
rent Stream Processing Engines (SPE). We will focus on the programming environ-
ment, which comprises all the high level functionalities offered to programmer to
compose its applications, and on the runtime, i.e. the infrastructure that provides the
mechanisms and support for running a DaSP application. As we will see, a number
of systems has been developed in the last years (see Figure 2.3) in both the academia,
open source and industry communities, highlighting that this topic, besides being a
fascinating and challenging research one, can be of strategic importance for data and
communication intensive applications.
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Figure 2.3: Evolution in time of the various DaSP systems, categorized according their type and
reference community. A fading bar on the right of the timeline means that the framework is still
maintained.
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2.2.1 Data Stream Management Systems
TraditionalDatabaseManagement Systems (DBMS) are built around a persistent stor-
age where all the relevant data is kept and whose updates are relatively infrequent.
ey are neither designed for rapid and continuous loading of individual data nor
for fast queries response. To overcome these limitations, the database community
developed a new class of systems oriented toward processing large streams of data in
a timely way: Data Stream Management System (DSMS). DSMSs differ from tra-
ditional DBMSs for the fact that they are specialized in dealing with transient data
that is continuously updated. In particular they are able to execute continuous queries
which run continuously and provide updated answers as new data arrives: users do
not have to explicitly ask for updated information; rather the system actively notifies
it according to installed queries. DSMSs offer to programmers an SQL-like declar-
ative language to define continuous queries.

Several DSMS software infrastructures have been proposed over the first years
of 2000s. Examples of these frameworks are TelegraphCQ [Chandrasekaran et al.,
2003], STREAM [Arasu et al., 2003] and StreamCloud [Gulisano et al., 2012]. Some
of them have been developed for a particular target domain such asGigascope (AT&T
Labs) [Cranor et al., 2003], specifically designed for network traffic analysis. Among
these proposals, the most important ones are surely Aurora and Borealis. Aurora
[Abadi et al., 2003] was jointly developed by Brandeis University, Brown Univer-
sity and MIT. Its programming model was built on a visual programming language
named SQuAl (Stream Query Language). SQuAl operators are inherited by rela-
tional algebra and can be single-tuple operators and windowed operators. Aurora
has a complete runtime system that included a scheduler, a QoS monitor and a load
shedder. e project has been extended to investigate distributed processing with
Medusa [Stonebraker et al., 2003]. Communications between processors take place
using a distributed data transport layer with dynamic bindings between operators and
flows. Borealis [Abadi et al., 2005] inherited the functionality of these two projects
and added features such as dynamic deployment and adaptation of the application.
While their development was blocked years ago, Aurora and Borealis systems pro-
posedmultiple ground-breaking ideas that have been included inmodern commercial
DaSP systems.

2.2.2 Complex Event Processing systems
Many information systems are event driven [Etzion and Niblett, 2010]. Incoming
data items are seen as notifications of events happening in the external world, which
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have to be filtered and combined to understand what is happening. A Complex Event
Processing (CEP) system may be useful in implementing such applications: it has in
input a certain number of streams of primitive events that are analyzed for detecting
particular patterns that represent complex events whose occurrence has to be notified
to the interested parties. ese systems are essentially pattern matching engines that
validate the incoming events with respect to a set of ruleswritten in a proper language.

Several CEP systems have been proposed and various are still available and in
production, from academia (e.g. Sase [Wu et al., 2006], T-Rex [Cugola and Margara,
2012a]), industries (e.g. Oracle CEP [Oracle, 2016], Tibco Streambase CEP [Tibco,
2016]) and open-source community (e.g. Esper [EsperTech, 2016]). All of them
focus heavily on rule-based detection tasks, expressed in term of complex patterns,
and offer windowed operator in order to allow the programmer to specify constraints
in terms of time or number of events for the validity of a match. However, they are
limited by the language, that do not allow to modify incoming data, and by a poor
support for handling unstructured data or complex computations beyond rule-based
logic.

2.2.3 Stream Processing Engines
DSMSs or CEP engines provide succinct and simple solutions to many streaming
problems, but complex application logics are more naturally expressed using the op-
erational flow of an imperative language rather than a declarative one. For this reason,
over the years more generalist frameworks, often referred as Stream Processing Engine
(SPE), have been proposed to allow programmers more flexibility in defining the ap-
plications. Operators can be composed in an arbitrary way and can encapsulate user
defined code. At the same time they provide a complete runtime system for the de-
ployment and maintenance of applications, typically in commodity clusters. Now we
will review some of them which constitute the state of the art in the field.

Yahoo! S4

S4, proposed by Yahoo! [Neumeyer et al., 2010], was one of the first SPE. Applica-
tions are written in terms of small execution units called Processing Elements, using
Java. Processing elements are meant to be generic, reusable and configurable in order
to be employed in different applications. e runtime automatically handles commu-
nications, scheduling and distribution across all the nodes. After the initial release of
2010, S4 became an Apache Incubator project in 2011. e community announced
the project retirement in 2014.
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Apache Storm

Storm [Apache Storm, 2016] was originally developed at Backtype, a company ac-
quired by Twitter in 2011. Twitter open-sourced Storm in 2012, which is now part
of the Apache Software Foundation. In Storm, the computation graph is defined by
means of a topology, detailed in Java, Scala or Python. Two primitive components can
be used to express it: spout, i.e. a source of stream, and bolt, i.e. the operator that en-
capsulate the business logic. Multiple spouts and bolts can be packaged in a topology
to construct an application. Bolts are essentially empty containers: Storm provides
the basic mechanisms to connect and manage them but there are no predefined op-
erators and their implementation is completely left to programmers. It is language
agnostic in the sense that processing logic can be implemented in any language (even
though Java is the natural choice).

Due to its popularity, various libraries have been designed on top of Storm. Tri-
dent is a library incorporated into the Storm framework that provides micro-batching
and high level constructs like groupBy, aggregate, join, etc. Apache Samoa [Apache
Samoa, 2016] contains programming abstractions for distributed streaming machine
learning algorithms than can be compiled into Apache Storm topologies. Window-
ing support was recently added to Apache Storm (in the last release of the framework,
v1.0). Bolts can use tumbling/sliding time/count based window. In this way, bolt’s
business logic is triggered as the window advances according to its definition.

Apache Spark and Spark Streaming

Spark was initially started at UC Berkeley AMPLab in 2009 and open sourced in
2010. In 2013, the project was donated to the Apache Software Foundation and in
February 2014, Spark became an Apache Top-Level Project [Apache Spark, 2016].
Spark is a general engine for large-scale data processing and provides a streaming
library, Spark Streaming [Apache, 2016] that leverage Spark’s core in order to allow
the definition and execution of Data Stream Processing applications.

While S4 and Storm are based on a record-at-a-time processing model (tuples are
processed as they arrive) the approach used in Spark Streaming is different [Zaharia
et al., 2012]. e framework performs micro-batching and run each streaming com-
putation as a series of deterministic batch computations on small time intervals. e
span of time intervals has to be defined by the programmer and can be as low as half
a second, therefore this framework is not well suited for applications that necessi-
tate of latencies below this value. Spark Streaming programs can be written in Scala,
Java or Python. In contrast to Storm, various stream operators are already defined
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and ready to use such as map, reduce and join. ere are also basic operators that
work on windows and multi-keyed input streams. In particular the reduceByWindow
and reduceByKeyAndWindow are respectively for unkeyed and keyed streams and apply
a programmer-defined function to the elements in window. e main limitation is
that functions can only be associative. Due to how windows are implemented, in
Spark Streaming a programmer can use only time-based sliding window.

IBM Infosphere Streams

IBM Infosphere Streams (IIS) [IBM, 2016; Ballard et al., 2012] is a commercial
and proprietary system of IBM. It traces its roots to the IBM System S middleware
which was developed between 2003 and 2009 at IBM Research. In IIS applications
are written in an ad-hoc language (SPL) that is used to describe operators and their
stream connections. SPL offers a set of generic built in stream processing operator
(e.g. Aggregate, Join, Sort) and the ability to extend this set with user defined op-
erators written in C++ or Java. Windows are associated and defined on the inputs of
operators. e language requires the definition of the window characteristics that are
relative to the type of the window (count, time and delta based), the eviction policy
and the trigger policy allowing the possibility to mimic various window policies.

Apache Flink

Flink [Apache Flink, 2016] has its origin in the Stratosphere project [Alexandrov
et al., 2014], a big data framework result of an EU funded research project. In De-
cember 2014, Flink was accepted as an Apache top-level project. Flink provides the
possibility to define batch applications that runs over its streaming systems. is is
in contrast to Spark Streaming, which exploits a batch processing system to run also
streaming applications.

Like Spark Streaming and IIS, Flink provides various predefined operators such
as Map, Filter, Reduce. It has an extensive support for windowed operators that can be
defined over keyed and unkeyed data stream. ere are the classical tumbling/sliding
and count/time based windows, but it is possible to define other type of windows by
defining their eviction and trigger policies (also delta-based)

Interestingly, Flink employs different concepts of time while defining time-based
windows. In particular it distinguishes between:

• processing time is the time measured by a machine that processes an input data.
Processing time is measured simply by the clock of the machines that run the
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stream processing application;

• event time is the time that each event happened in the real world, usually en-
coded by a timestamp attached to the data record associated to it. When using
event time, out-of-order data can be properly handled. For example, a tuple
with a lower timestamp may arrive after an event with a higher timestamp, but
transformations will handle these events correctly.

Flink bundles libraries for domain-specific use cases such as machine learning and
graph analysis.

Other systems

e ones mentioned above are just notable examples of Stream Processing Engines.
ere are many other projects in the academic and open source communities, as well
as in businesses. Each one has its own particular feature, but they all share a common
ground: provide to programmer a way to define and execute data processing appli-
cations that work over unbounded data. In academia, new systems are approaching
clouds execution ofDaSP applications, such as SEEP [Castro Fernandez et al., 2013],
Timestream [Qian et al., 2013] and Chronostream [Wu and Tan, 2015]. Authors in
[Urbani et al., 2014] propose AJIRA, a middleware for both batch and stream pro-
cessing. It is released as a library and in contrast to other distributed systems, like
Storm, Spark Streaming or Flink, it does not require a dedicate cluster and external
programs to be used.

Among businesses, practically every big IT company has its own SPE, publicly
available or not. Linkedin has Samza, that now has become an Apache project
[Apache Samza, 2016], Twitter has developed Heron to substitute Storm [Kulka-
rni et al., 2015], Ebay open sourced Pulsar [Murthy et al., 2015]. In this plethora
of systems, it seems interesting the recent work of Google that proposes its Dataflow
model [Akidau et al., 2015]. As the name suggests, it is not really a stream processing
system but rather a model that tries to unify batch and streaming computations. It
supports different type of windows considering, like Flink, also the event time and
not only processing time. e Dataflow processing model has been implemented on
top ofMillWheel for streaming, which is the streaming-native processing system used
by google [Akidau et al., 2013].
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2.3 Parallelism exploitation in DaSP systems
DaSP applications must take advantage of parallel systems in order to meet their typ-
ical performance requirements. In this thesis we will deal mainly with intra-operator
parallelism adopting a structured approach. In the following we will detail and re-
view how this type of parallelism is currently exploited in DaSP systems. Most of
the existing frameworks express intra-operator parallelism in very simple forms. For
stateless ones the most common solution consists in replicating the operator a certain
number of times according to a parallelism degree, assigning input tuples to the repli-
cas in a load balanced fashion. For partitioned stateful operators the parallel solution
consists in using replicas each one working on a subset of the keys, while for unkeyed
case there are few proposals. Also in the literature, approaches to this problem are
not distant from this spectrum of solutions.

2.3.1 Parallelism in DaSP systems

Most recent systems provide some basic exploitation of parallelism in DaSP applica-
tion in a (quasi-)transparent way to programmers. is is usually done by executing
in parallel some of the high level constructs released to programmers.

In Storm, bolts can be replicated according to the parallelism degree specified
by the programmer (parallelism hint in their terminology). Different parallelizations
can be expressed by specifying how tuples are partitioned among multiple replicas of
an operator (the so called grouping). Shuffling results in a round robin distribution,
which is feasible for stateless operator. On the other hand a field grouping distribution
is feasible for keyed operators: it assures that tuples with the same key are always sent
to the same replica. Custom grouping can be used by the programmer to define other
patterns. If operator’s replicas have to interact each other, the cooperation has to be
fully specified by the programmer.

In Spark Streaming, each operator is translated into a set of tasks, with proper
precedencies and dependencies, that are executed on the available resources as soon
as possible. is is in line with the limitation imposed to users: functions applicable
to window must be associative. Also in this case the parallelism degree can be set by
the programmer.

In IBM Infosphere Streams, programmers can use user-defined parallelism. It is
an annotation, posed at the beginning of an operator, which specifies the number of
operator’s replica (in their terminology channels) that have to be created. Develop-
ers can replicate any part of an application any number of times to perform parallel
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processing, and subdivides (using a splitter) the streaming records using either round-
robin or hash-based algorithms for keyed streams. e amount of parallelism can be
specified at compile time. Developers can also force parallel channels to run on dif-
ferent hosts to improve application performance.

In Flink operations on streams are split into individual tasks which are assigned
to task slots and executed on the available resources as soon as possible. Window
on keyed stream are evaluated in parallel (at most one task per key). In contrast,
windowed operator on unkeyed stream are evaluated at a single task and therefore
executed sequentially.

2.3.2 Literature approaches

A considerable part of the research work on the subject, regards the parallelization
of particular computations. In the field of continuous queries parallelization various
works focus on the parallelization of a particular relational operator. Just to mention
some examples, this has been done for parallelizing join evaluation [Gedik et al., 2007;
Teubner and Mueller, 2011; Buono et al., 2014a] and skyline queries [Lu et al., 2013;
De Matteis et al., 2015] over windows. In Streamcloud [Gulisano et al., 2012] the
approach is a little bit more general: programmer expresses continuous queries that
are automatically parallelized for shared-nothing execution environment. Stream-
cloud support inta-operator parallelism also for stateful operator (e.g. windowed).
However given the limited nature of the operator (e.g. aggregates, join, cartesian
product) ad hoc solutions are proposed. Operators are replicated and tuples distri-
bution and collection are carefully executed taking into account the semantics of the
downstream operator.

In complex event processing, recent works concentrate on parallelizing single
rules. In [Hirzel, 2012], the author proposes an extension to IBM SPL language
to accommodate parallel execution of rules over keyed streams. As usual, pattern
evaluation on events with different keys can be run in parallel. Others approaches try
to parallelize rule evaluation for unkeyed streams. In [Cugola and Margara, 2012b]
it is proposed an evaluation algorithm parallelized on GPU for windowed match; in
[Balkesen et al., 2013a] the parallelization targets commodity multicore.

Concerningmore general approaches, parallelization of stateful operators inDaSP
systems is addressed in [Wu et al., 2012]. A distributed shared state mechanism is
proposed to facilitate parallelization. By default, tuples are routed to the various op-
erator replicas in a round-robin fashion. erefore, since multiple replicas can be
executed simultaneously, the access to the shared state may have to be synchronized
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(protected by locks). A theoretical model is provided to determine the right level of
parallelism as well. Apart from the explicit use of synchronization on shared state
that may result in poor performances, this approach does not efficiently handle the
case of partitioned stateful parallelism. In [Schneider et al., 2015], authors tackle
the same problem but focusing on generic stateless or keyed stateful operator with
dynamic selectivity. e solution resembles the ones proposed in Storm and IIS, but
in this case it is taken into account also the ordering of produced results. ese two
approaches can be used in parallelizing generic state and windows, but the execution
over the single window is still performed in sequential.

One of the few approaches that treat the problem of parallelizing the computa-
tion of aggregate computation on the single window is [Balkesen and Tatbul, 2011].
Author resort to the concept of panes introduced in [Li et al., 2005]: each window is
divided into non overlapping contiguous partitions called panes. Sub-aggregate can
be computed in parallel over panes whose results can then be combined into the final
aggregate. is clearly requires particular properties on the function to be computed
over the window.

2.4 Adaptivity techniques

Given the long running nature of DaSP applications, there is the need to properly ad-
dress situations of dynamic arrival rates and workloads, in order to respect the Quality
of Service contracted by the users or at least minimize its violations.

In the early days, DaSP systems managed this dynamic situation either by stat-
ically over-provisioning resources or by means of load shedding [Tatbul et al., 2003;
Babcock et al., 2004]. e first solution is clearly non cost effective, since a-priori
provisioning of resources for handling unpredictably loads can lead to under utilized
resources. On the other hand, load shedding implies that in the presence of an in-
creased input rate the system will start discarding part of the data stream to cope with
the incoming rate. In many practical cases such as financial applications, health mon-
itoring and network intrusion detection systems, losing data is unacceptable since it
can produce a wrong or unwanted effect.

Existing DaSP systems, still fall short in handling this problem. Delegating the
scaling decisions to users (like in the case of Storm) or to applications (as in [Qian
et al., 2013]) is not a wise decisions, since it will requires a human intervention or
a deep knowledge of the parallel computation to the application programmer. For
these reasons, the ability to automatically and adaptively change the resources usage
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in order to respect the Quality of Service requirements, is a must for this kind of
systems.

In the current literature various works are trying to tackle this problem. In the
following we will try do differentiate them on the basis of when the system reacts to
a change in the execution environment, which properties about the Quality of Ser-
vice are guaranteed and how resources consumption is taken into account. For the
first aspect, the majority of those works propose a reactive strategy: the system tries
to continuously match the amounts of demanded resources to react to a modifica-
tion in workload or arrival rate. Clearly this could happen only when these events
are already occurring, typically resulting in QoS violations. In [Gulisano et al., 2012;
Castro Fernandez et al., 2013; Heinze et al., 2014a] authors use threshold based rules
on the CPU-Utilization, adding or removing computational resources according to
its value. Other works try to collect a more complete set of performance metrics
to drive their strategy. In [Lohrmann et al., 2015] measurements on operator’s la-
tency, mean and standard deviation of service time and interarrival time are used to
reactively enforce QoS constraints. e strategy of [Gedik et al., 2014] has been de-
veloped on top of IBM IIS. It takes into account the congestion index (a measure of
blocking time at the splitter) and the throughput in scaling up and down the num-
ber of operator’s replica. Moreover, by remembering the past performances achieved
at different operating points they avoid taking continuous reconfigurations. In the
DaSP context, this approach is currently the only one that explicitly tries to target
the assure properties of the adaptation strategies such as stability (i.e. avoid contin-
uous reconfiguration) and accuracy (i.e. minimize QoS violations). With respect to
reactive policies, a different approach is the one of proactive strategies: they try to an-
ticipate a future situation, usually by means of predictions on interesting metrics, and
proactively reconfigure the system to avoid resource shortages. e work in [Kumb-
hare et al., 2014] is one of the few that try to apply a predictive approach in SPEs. It
leverages the knowledge of future resource and workload behavior to plan resources
allocation. Authors in [Balkesen et al., 2013b] tried to forecast the exact event arrival
rate and assumes a fixed per-tuple processing cost (a condition that does not always
hold) when determining the optimum parallelization degree.

Concerning the QoS guaranteed, in many of the cited cases ([Gulisano et al.,
2012; Castro Fernandez et al., 2013; Heinze et al., 2014b; Gedik et al., 2014; Kumb-
hare et al., 2014]) strategies are best effort. ey are designed to assure the ability of
the application to cope with the incoming rate. As indicated in the introduction, we
would like to have guarantee also on the experienced latency. More formally, we are
interested in guarantee properties on the average response time, intended as the time
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elapsed from the reception of a tuple that triggers the operator internal processing
logic and the production of the corresponding output. e approach of [Mayer et al.,
2015] is interesting but it does not give real guarantees. e authors propose meth-
ods to dynamically adapt the parallelization degree to limit the length of the input
queue to the operator by using Queuing eory. is gives bounds on the length
of the queue but not on the experienced latency. Moreover they assume that input
rate and processing time distributions are exponential or deterministic, assumptions
that can not hold in general cases. In [Heinze et al., 2014b], authors study how to
minimize latency spike during operator movements due to scaling decision, but this
don’t enforce constraints on the average latency. In [Das et al., 2014] a control algo-
rithm is used for dynamically adapting the batch size in batched stream processing
system such as Spark Streaming, in order to minimize, but not guarantee, end to
end application latency. Moreover, latency in this kind of system is in the order of
hundreds of milliseconds, intolerable for various time sensitive applications. To the
best of our knowledge, the strategy proposed in [Lohrmann et al., 2015] is the only
one designed to minimize the violations of user defined latency constraints. ey
resort to performance model based on Queuing eory for estimating the expected
response time of an operator.

Finally, for what concern resource usage, independently from the execution ar-
chitecture (multi-core, distributed systems, clouds) all the works that regard adap-
tivity in DaSP systems model the resource consumption by taking into account the
number of processing units used. is is clearly an important parameter but, in our
opinion, energy awareness for this kind of applications should be also taken into ac-
count. Energy minimization of parallel applications is an emerging challenge for
modern computing systems and in this context it is of vital importance, given that
DaSP applications are in execution on 24hr/7d basis. e idea of adapting a parallel
program by playing on the number of replicas and CPUs operating frequencies (Dy-
namic Voltage and Frequency Scaling, DVFS) to minimize energy consumption while
maintaining some performance level is not new but it is still unapplied in the context
of DaSP applications. Works such as [Li and Martinez, 2006; Cochran et al., 2011]
propose models and methods for determining the optimal combination of parallelism
degree and DVFS settings at runtime for parallel workloads in multi-core processors,
optimizing energy efficiency given a performance target (or vice versa). In [Shafik
et al., 2015] it is proposed an energy minimization approach that considers similar
objectives taking into account workload predictions for properly performance an-
notated OpenMP program. In [Holmbacka et al., 2014] authors focus on parallel
dataflow applications with the intent of minimizing the power while providing suf-
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ficient performance above a given QoS limit. ey find the optimal configuration of
clock frequency and number of active cores, but parallelism degree is fixed for the
entire program execution: this will render difficult to handle dynamic workloads. In
contrast, in [Danelutto et al., 2015] authors use an energy aware approach for the
elastic scaling of stateless operators. On the DaSP side, the only work that takes into
account energy consumption is [Sun et al., 2015]. It treats the problem of schedul-
ing performance annotated DaSP applications with energy and latency awareness in
mind, but not proposes elastic scaling strategies.

2.5 Summary
It should be clear to the reader that current approaches to intra-operator parallelism
and adaptivity, although various, are far from being exhaustive. It is still missing a
complete coverage of intra-operator parallelism schema, especially considering win-
dow based operators which represent a very common type of computation. In our
opinion, a programmer has to have the possibility to deal with keyed and unkeyed
streams in parallel, possibly exploiting parallelism also in the single window compu-
tation. is is not possible with existing approaches that allow to implement certain
computations (i.e. stateless or partitioned stateful operators) without efficiently ex-
ploit parallelism over single windows. Similarly, from an autonomic point of view,
there is the need of adaptation strategies and mechanisms with well known properties
of stability, latency assurance and cost awareness in order to deal with very dynamic
execution scenarios. ese are the gaps that this research thesis tries to fill, resort-
ing to well know approaches such as Structured Parallel Programming and Control
eoretic models.



3 Structured Parallel
Programming

In this chapter we will briefly review the basic concepts on Structured Parallel Pro-
gramming that will be helpful for the rest of the dissertation. e first part introduces
the general ideas of the structured programmingmethodology andmotivates the need
for such kind of programming. e next section presents a well known set of basic
paradigms, discussing their properties and utilization. In the last part a brief review
of parallel programming frameworks that exploit the idea of a structured approach is
provided. Finally, we will discuss the applicability of classical parallel paradigms to
the exploitation of intra-operator parallelism in DaSP applications.

3.1 A structured approach to parallel programming

Parallel programming has become mainstream over the last years, due to the expo-
nential growth in computation, communication and storage capabilities. Historically,
parallel programmers resort to hand made parallelization and low level libraries that,
giving a complete control over the parallel application, allowed them to manually op-
timize the code and exploit at best the architecture. Besides being an impediment to
software productivity and reduced time to development, such low level approaches
prevent code and performance portability. As usual, code portability represents the
ability to compile and execute the same code on different architectures. On the other
hand, performance portability represents the ability to efficiently exploit different un-
derlying parallel architecture without rewriting the application. is is an important
feature that parallel programs should exhibit, especially in the world of today dom-
inated by multicore CPUs with different organizations, heterogeneous systems and
clouds: individuals and industries cannot afford the cost of re-writing and re-tuning
an application for every architecture.

33
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As typical in computer science, the answer is to abstract the problem and work at
higher level. High level approaches to express parallel programs have the advantage of
make the programming effort less costly and less time-consuming. ey hide the ac-
tual complexity of the underlying hardware, providing the programming productivity
and performance portability required to ensure the economic sustainability of the pro-
gramming efforts [Darlington et al., 1995; Skillicorn and Talia, 1998; Cole, 2004].
e programming environment has to offer the high level constructs directly to pro-
grammers that can use them to compose their parallel applications. e programmer
concentrates on the computational aspects, having only an abstract high-level view of
the parallel program, while all the most critical implementation choices are left to the
programming tool and runtime support. Exploiting different runtimes for different
execution architectures, will render the program architecture independent, providing
reasonable expectation about its performances when executed on different hardware.

Low-level mechanisms (such as Posix threads [Butenhof, 1997]), programming
libraries (like MPI [Gropp et al., 1996]) or extensions (such as OpenMP [Dagum
and Menon, 1998]), express some characteristics of high level parallel programming
and ease the programmer’s life. However, she should still know how to orchestrate
a parallel schema and in some cases sequential code reorganization is required to
introduce proper annotations. For these reasons, the Structured Parallel Programming
(SPP) approach has been proposed as an effective and attractive approach to high
level parallel programming [Bacci et al., 1995; Vanneschi, 2002; Aldinucci et al.,
2003; Cole, 2004; Vanneschi, 2014].

e main idea behind structured parallel programming is to let the programmer
define an application by means of parallel paradigms (also called patterns). Parallel
paradigms are schema of parallel computations that recur in the realization of many
real-life algorithms and applications for which parametric implementations of com-
munications and computation patterns are clearly identified. eQoS predictability of
these parallel schemes can be used to evaluate their profitability, the best application
configuration and to provide adaptivity support.

In our research group, the SPP approach has been successfully applied in various
parallel environments, from clusters [Danelutto, 2001] to shared memory architec-
ture [Aldinucci et al., 2014a], from grid [Aldinucci et al., 2006a] to cloud and perva-
sive environments [Bertolli et al., 2010]. e development of data mining [Coppola
and Vanneschi, 2002], signal processing [Buono et al., 2014b] and computational
biology [Aldinucci et al., 2014b] applications has benefit of parallel paradigms.
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3.2 Parallel paradigms
Without loss of generality, we express a parallel (distributed) application by means
of a computation graph. Nodes represent modules (or operators) i.e. intermediate
computations in which the application can be decomposed. ey, communicate by
means of internal data streams of data, on which the computations are applied. If the
performance requirements are not met, modules that act as bottlenecks have to be in-
ternal parallelized according to some parallelism paradigm. ey exhibit the following
features [Cole, 1988; Pelagatti, 1993; Bacci et al., 1995; Vanneschi, 2014]:

• they restrict the parallel computation structure to certain predefined patterns;

• they have a precise semantics;

• they are characterized by a specific cost model;

• they can be composed with each other to form complex computations.

is approach frees the programmer from detailed concerns of the mapping be-
tween parallel computation schemes and their implementation on the target parallel
architecture.

Cost models allow evaluating the performance metrics as functions of other pa-
rameters that are typical of the application (e.g. calculation time, data size) and of
the architecture (e.g. processor performance, memory access time,...). Important
performance measures to consider are:

Definition 3.2.1 (roughput). e throughput is the average number of stream ele-
ments which can be completed in a time unit. It is the inverse of the service time, that is the
average time interval between the beginnings of the executions on two consecutive stream
elements;

Definition 3.2.2 (Computation Latency). e computation latency is the average time
needed to execute the computation on the single input element

Definition 3.2.3 (Response time). e response time is the time elapsed from the recep-
tion of an input element and the production of the corresponding output. It is given by the
computation latency plus the time that the element waits to be processed.

Parallel paradigms can have different impact on these metrics, captured by their
respective cost models. eQoS predictability of these parallel schemes has been stud-
ied by exploiting formal analysis, rendering the performance modeling of this class
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of computations usable also by automatic tools as compilers (e.g. to statically de-
cide the best application configuration on a given architecture) and from run-time
supports (e.g. for proving efficient fault tolerance [Bertolli, 2008] or dynamic recon-
figuration mechanisms [Vanneschi and Veraldi, 2007; Aldinucci et al., 2008]). QoS
predictability of a parallel computation is a fundamental feature also for devising op-
timal adaptation strategies.

In the following we will review a set of well know parallel patterns, highlighting
their major characteristics and performance impacts.

3.2.1 A basic set of parallel patterns

Historically, two broad categories of parallel patterns have been recognized:

• stream parallel (or task parallel) paradigms: as the name suggest, these patterns
work on streams of homogeneous elements. Parallelism is obtained by simply
processing multiple elements concurrently. ey do not speed up the compu-
tation of a single element but the computation of the stream: this means that
they do not improve the computation latency. On the contrary, they improve
the throughput;

• data parallel paradigms: in this case the single computation (possibly also rel-
ative to a stream element) is parallelized. Usually this requires to partitioning
the data structure and, by reflection, partitioning the computation. Paradigms
that fall in this category are able to improve the computation latency.

A parallel paradigm describes the structure of the interactions of a parametric set
of entities. We can recognize different types of involved entities, from executors to
interface from/to input/output streams. In the following we will refer to units that are
in charge of performing the computation on the received data as workers (or simply
executors). Data distribution towards workers can be performed by an emitter, which
receives data from input stream(s). Finally a collector receives the computed results
from workers and transmits the final results onto the output streams of the parallel
module.

Pipeline

e pipeline paradigm is a very simple solution to some parallelization problems. It
assumes that the computation is expressed as a sequential composition of functions
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over the input elements, i.e.:

F(x) = Fn(Fn−1(. . . (F1(x)) . . . ))

In this case a possible parallelization is a linear graph of n executors, also called
pipeline stages, each one corresponding to a specific function (see Figure 3.1). A
similar solution can be adopted to increase the throughput. e service time is given
by the more computational intensive stage. e latency may be increased due to the
communications overhead between stages.

S1 S2 Sn

F1 F2 Fn

Figure 3.1: Pipeline parallel paradigm

Task-Farm

e task-farm (or simply farm) paradigm corresponds to the replication of a pure
function (i.e. stateless) among a set of identical workers. Assuming that we want to
apply the same function F to each input element. e emitter provides to send every
input element to a worker, according to a certain scheduling policy able to balance the
workers load (see Figure 3.2). If the calculation time of the function has low variance,
a round robin solution could be sufficient. e worker receives the input elements and
applies on each of them the function F . e results are sent toward the collector that
is in charge of collect and transmit them onto the output stream. Being a stream
parallel pattern, this solution is able to increase the throughput of the computation,
but the computation latency of the single element is the same (the computation is
still performed in sequential by the worker).

Data parallel

e data-parallel paradigm consists in the partitioning (or replication) of the input
data and replication of the function. In this way distinct but functionally equivalent
workers are able to apply the same operation to a distinct data partition in parallel.
e emitter provides the distributions of the various partitions (scatter). Collection
of the worker results is achieved by the collector exploiting a gather operation, to
receive partial results and build the final one.
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Figure 3.2: Task-Farm parallel paradigm

e simplest data parallel schema is the so called map (sketched in Figure 3.3),
in which workers are fully independent. Each of them operates on its own local data
only, without any communication during the execution.

W1

W4

E C
W3

= F (     )

W2

scatter gather

Figure 3.3: Map paradigm, exemplified with 4 Workers

More complex, yet powerful, computations are characterized by cooperatingwork-
ers: in order to apply a function, a worker may require to access data contained in
other worker partitions, because data dependencies are imposed by the computation
semantics. In this case we speak about stencil-based computations, where a stencil
is a data dependence pattern implemented by information exchanging between dif-
ferent workers. Data parallel paradigms are able to reduce the computation latency
for a single input element. When applied to a stream, they can also improve the
throughput of the computation given the reduction in the mean service time.
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Reduce

e reduce pattern is a data parallel paradigm, applicable every time we have a com-
putation of the form:

y = x1 ⊕ x2 ⊕ . . .⊕ xn

where the result is a single value obtained by applying an associative function ⊕ to
all the elements of an input data structure. e input data can be partitioned in
n workers, each one performing a “local” reduce on their partition, followed by a
“global” reduce.

3.2.2 Patterns composition

Parallel paradigms can be composed to form complex structures. Stream-parallel
and data parallel approaches can be composable in stream-based computations, for
example a pipeline in which one, or more, stages are implemented as a map. A lot
of algorithm can be defined a composition of map and reduce: at first a function is
applied to all the elements in a data structure and then the results are merged using a
reduction function. Recently, this idea has been applied also in the Google MapRe-
duce [Dean and Ghemawat, 2008] programming environment. It and its popular
open source implementation (Hadoop [Apache Hadoop, 2016]) saw an enormous
success in the last years in the field of batch processing, demonstrating how a high
level approach (combined with proper and efficient run time) could be beneficial.

3.3 Structured Parallel Programming frameworks

A high level parallel framework should provide to programmers a set of reusable
patterns that allow an easy parallelization of most algorithms. In this sense, the most
used approach to SPP is based on the concept of algorithmic skeletons. Algorithmic
skeletons were firstly introduced by Cole with his Ph.D. esis [Cole, 1988]. He
defined a skeletal programming framework as follow:

e new system presents the user with a selection of independent “algorithmic
skeleton”, each of which describes the structure of a particular style of algorithm,
in the way in which higher order functions represent general computational
frameworks in the context of functional programming languages. e user
must describe a solution to a problem as an instance of the appropriate skeleton.
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Each skeleton corresponds to a single parallel pattern. e programmer has to
specify only its business logic: orchestration and synchronization of the parallel ac-
tivities are implicitly defined by the skeleton itself and implemented by the runtime
of the framework. Cole proposed four skeletons (Fixed Degree Divide & Conquer,
Iterative Combination, Cluster andTask Queue), obtained both by the isolation of par-
ticular algorithm and by an analysis of patterns that could perform well on the initial
target architecture (a transputer). is first proposal, has its own limitations: there
was no mention to the fact that skeletons could be composed or nested, therefore
limiting the expressiveness of the approach. Moreover in a skeletal framework the
programmer has no other way (but instantiating skeletons) to structure her parallel
computation. However this work attracts the attention of the research community,
and a lot of groups focused on finding the general yet effective patterns that could be
promoted to skeleton. is led to the proposal and implementations of various frame-
works [González-Vélez and Leyton, 2010] that here we briefly review. Among the
others, our research group history in structured parallel programming is quite long,
starting with the P 3L skeleton language in 1992, ASSIST in the early 00s’ and ar-
riving Fastflow, highlighting a strong background in the field.

P 3L (Universitá di Pisa) was a coordination language that provided pipeline, task
farm, map, reduce and data-parallel with stencil patterns [Bacci et al., 1995]. A com-
piler is provided for the language. It uses implementation templates: each one imple-
ments a skeleton on a specific architecture and provides a parametric process graph
with a performance model. e performance model can then be used to decide pro-
gram transformations which can lead to performance optimizations. SKELib [Dane-
lutto and M., 2000] inherited the stream based skeleton from P 3L but differs from it
because a coordination language is no longer used, but instead skeletons are provided
as a library in C.

Lithium [Aldinucci et al., 2003] and its successor Muskel [Danelutto and Dazzi,
2006] were developed at Università di Pisa. Both provide nestable skeletons, such as
pipe, map, and farm to the programmer as Java libraries.

Among the most recent skeleton framework we should cite Skandium [Leyton
and Piquer, 2010]. It implements seq, pipe, farm, map, farm, divide & conquer and
fork skeletons, not introducing new patterns with respect to previous works. It is
implemented in Java and target multicores. It takes advantage of shared-memory
to simplify parallel programming. e Muesli skeleton library [Ciechanowicz et al.,
2009] was developed by the University of Münster. Skeletons are provided as a C++
template library. It offers stream parallel skeletons (e.g. Pipeline, Farm,...) and data



3.3 Structured Parallel Programming frameworks 41

parallel skeletons available as functions of a distributed data structure (e.g. array or
matrix). Muesli supports multicore programming with OpenMP; cluster support is
offered via MPI.

Finally, two currentlymaintained projects are Skepu [Enmyren andKessler, 2010]
and Fastflow [Aldinucci et al., 2014a], both of them released as C++ libraries. Skepu
is developed at Linköping University. It provides six data-parallel (map, reduce, scan,
mapreduce, maparray, mapoverlap) and one task-parallel (farm). Each offered skele-
tons has multiple implementation targeting multicore and multi-GPU systems both
with CUDA and OpenCL.

Fastflow is developed at Universitá di Pisa and target multicore as well as GPU.
It has a three tier structure:

1. a set of basic mechanisms, that comprises efficient lock-free and wait-free com-
munication channels, processes and threads containers;

2. a set of core patterns: at this level there are two patterns (farm and pipeline)
implemented using the basic mechanisms;

3. high level patterns: built on top of the core patterns, they are clearly charac-
terized in a specific usage context and are targeted to the parallelization of se-
quential (legacy) code. Examples are parallel for, map, stencil-reduce, macro data
flow.

e programmer can exploit Fastflow features by using any of the mentioned levels.
Skeletons can be nested. e framework is in active development at the moment of
writing this thesis.

A different approach compared to the one of skeletal frameworks, is the one pur-
sued by ASSIST (A Software development System based upon Integrated Skeleton
Technology) [Vanneschi, 2002] developed at Universitá di Pisa. In ASSIST there
has been the attempt to overcome some of the limitations imposed by the skeleton
model. e major concerns are related to the fact that, even if they are very powerful,
parallel patterns cannot efficiently capture every parallel application. For example,
stencils with dynamic dependencies are not always exploitable in existing skeleton
frameworks. In the same way we need a larger degree of flexibility in expressing par-
allel and distributed program structures: we cannot force the programmer to write
applications respecting the few well studied patterns. Also Cole [2004] recognizes
this lack of expressiveness stating that “It is unrealistic to assume that skeletons can pro-
vide all the parallelism we need. We must construct our systems to allow the integration of
skeletal and ad-hoc parallelism in a well defined way”.
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ASSIST provided a structured coordination language to express parallel programs
as an arbitrary graph of software modules connected by streams. ese allow inter-
module parallelism exploitation, by pipelining operators, and complex behavior and
loops among the modules. However, parallelism is also available inside the nodes,
because each module represents a parallel pattern. Lastly, a module is not forced to
be implemented as a parallel pattern: the programmer may provide its specific, hand-
made implementation of a parallel module (parmod). is effectively solves the cases
in which a parallel paradigm cannot be applied. ASSIST is not currently maintained.

3.3.1 Is this sufficient for Data Stream Processing?

At this point, a natural question arises: “are these parallel patterns sufficient to deal
also with intra-operator parallelism in DaSP applications?” e answer is “not com-
pletely”. Clearly for stateless operators the aforementioned patterns (e.g. stream
parallel ones) are still valid and easily applicable. In contrast, when it is necessary to
parallelize a stateful operator, things become a little bit more complicated. In DaSP
stateful operators the results of the computation are obtained by processing a set of
the input elements that belong to one or more input streams. In particular windows,
define a continuous segmenting of the input data streams: at any instant, they define
the set of input elements that must be considered in order to produce the results.
Classical stream paradigms assume that the operations are independently applied to
distinct elements of a stream. On the other hand, also data parallel paradigm fall
short: they work on the single element assuming that it has a finite size.

Recently some research efforts have been directed towards adapting Hadoop (and
therefore the Map Reduce pattern) as real time stream processing engine. In [Condie
et al., 2010], MapReduce Online (HOP) is introduced to support continuous query.
Results from mapper nodes are sent directly to reducers as soon as they are produced.
However reduce functions (e.g. aggregate computation) can be applied at predeter-
minedmilestone resulting in very low throughput even for small windows [Brito et al.,
2011]. Authors in [Brito et al., 2011] propose StreamMapReduce, whose implemen-
tation maintains a backward compatibility with MapReduce API. Despite this fact,
the MapReduce abstraction is here completely upset. Stateless operators are imple-
mented in mapper node, while stateful ones are implemented as reducers, allowing
the use of tumbling or sliding windows. M3 [Aly et al., 2012] tries to avoid the over-
head due to the HDFS (the distributed file system used for data distribution) which
introduces significant delays that make it inapplicable for streaming application, in-
troducing main-memory-only data-path between mappers and reducers. ey never
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terminate, allowing to have only one MapReduce job per query operator that is con-
tinuously running. In this case, no performance evaluation is given. In general all
these solutions seem a try to fit a square peg in a round hole, breaking the paradigm’s
abstraction and leading to unacceptable performances.

In our opinion, the DaSP domain requires proper specializations and enhanced
features in terms of data distribution and management policies and windowing meth-
ods that can not always be found in traditional patterns. To exploit intra-operator
parallelism, windows must be distributed or partitioned among workers. Such dis-
tributions can be critical, since windows are data structures with particular features.
ey are dynamic in the sense that their content (in terms of buffered tuples) changes
over time according to their triggering and eviction policy. Furthermore, in the case of
the time-based semantics, the cardinality of the window in terms of elements changes
over time, based on the current stream arrival rate. is means that, after the window
of a stream has been distributed among a set of workers, expired elements must be
deleted and the new arrived ones inserted. For these reasons two problems arise:

• how to keep up-to-date the window for each input stream. Particularly im-
portant are the distribution policy of new arrived elements and the expiration
policy. We have to understand which entity of the parallel computation is in
charge of checking the expiration of past received elements and which is in
charge of their removal from the window;

• how to keep the window partitions balanced, in order to maintain a similar
workload among workers.

In our opinion, also accounting these problematic, parallelization issues in DaSP
computation can be still dealt with SPP in order to reduce the effort and complexity of
parallel programming and simplify the reasoning about the properties of a the parallel
solutions in terms of throughput, latency and memory occupancy. is will require
to revisit existing patterns and to propose new ones.

3.4 Summary
In this chapter we have provided an overview of structured parallel programming.
Various classical patterns have been reviewed highlighting that they cannot com-
pletely cover the computation class typical of DaSP.



44 CHAPTER 3 Structured Parallel Programming

Proper parallel patterns should be devised to allow the exploitation of intra op-
erator parallelism to cover a reasonable large set of recurrent computations. In our
opinion SPP is still a cornestone also for this kind of problems. It eases the pro-
gramming effort giving, as it will be clearer in the next chapters, the possibility to
implement adaptation strategies with performance guarantees and reconfiguration
mechanisms transparent to the programmer.



4 Parallel patterns for
windowed operators

e goal of this chapter is to study recurrent computations in window based stateful
DaSP operators and propose patterns for their parallel implementation. We describe
the features of parallel patterns in relation to their internal organization as well as
their applicability and profitability. Patterns will be presented by abstracting the tar-
get architecture, i.e. they can be instantiated both on shared-memory machines and
on distributed-memory architectures provided that proper runtime supports are used.
We discuss how the proposed solutions can be implemented or emulated in existing
DaSP and skeletal frameworks. Finally the results of experimental evaluations per-
formed on a multicore architecture are reported.

e set of proposed patterns will help the programmer providing a set of reusable
solutions and simplifies the reasoning about the properties of a parallel implementa-
tion in terms of throughput, latency andmemory occupancy. In addition, a structured
approach to the parallelism exploitation in DaSP computations will be the basis also
for what concern the autonomous management of such applications, as we will see in
Chapter 6.

e contents of this chapter have been mainly published in [I].

4.1 Preliminaries
When a DaSP application is not able to meet the performance requirements imposed
by users (e.g. sustain a given input rate or maintain a certain response time), it has
to be restructured. Operators that act as bottlenecks must be internally parallelized.
Stateful operators maintain and update a set of internal data structures while pro-
cessing input data. is creates dependencies between the processing of individual

45
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tuples. Parallelizing a stateful operator requires particular attention in preserving its
sequential semantics.

In our opinion, parallelization issues can be resolved in an elegant way by means
of structured parallel patterns that provide a reusable and easy to use solution to re-
current problems. We will mainly focus on windowed operator. Windows are the
predominant state abstraction used to implement the internal state of an operator.
Window semantic is specified by eviction and triggering policies (see 2.1.2). In the
following we will refer to a general case, highlighting meaningful differences when
necessary. erefore a window is defined by:

• a window size |W|, expressed in time units (seconds, minutes, ...) for time based
windows or in number of tuples for count based windows;

• a sliding factor δ that expresses how the window moves. Analogously to the
window size, the sliding factor can be expressed in time units or in number of
tuples. If δ = |W| we have a tumbling window, if δ < |W| we have a sliding
window.

It is important to observe that consecutive windowsmay have overlapping regions,
i.e. the same tuple may belong to multiple consecutive windows. is situation is true
for sliding windows, that, at a given time instant contains, also tuples not belonging
to the preceding windows.

For the sake of generality, we will assume that the computation over the window
content is performed at triggering time, e.g. when a window slide. is assumption
holds for any type of computation. However there could be cases in which the com-
putation can be performed incrementally, as each tuple arrives into window. Typ-
ically this requires that the computation must have certain characteristics, such as
distributive or algebraic aggregates [Tangwongsan et al., 2015]. Complex statistics
and processing like interpolation, regression or sorting may need the entire window.

In the following we assume a generic window-based stateful operator working on
a single input physical stream and producing one output stream. e treatment can
be easily generalized. With more than one input stream the usual semantics is the
non-deterministic one, i.e. the operator receives input items from any streams. With
more than one output stream the results can be transmitted to one/a subset/all of them
according to a given predicate on the results’ attributes. On the other hand, we will
explicitly deal with keyed operators, in which the physical input stream conveys tuples
belonging to multiple logical substreams multiplexed together. e correspondence
between tuples and substreams is usually made by considering a key attribute of the
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tuple, e.g. the stock symbol in a stream of quotes coming from a financial market.
We refer to the set of all possible keys as K.

Finally the last assumption regards tuple ordering. We assume that tuples arrive
in order, e.g. by timestamp or sequence number, and that they are processed in the
same order of arrival by the sequential operator. e parallel operator may be subject
to ordering requirements: downstream operators may need to receive the resulting
tuples in an order logically corresponding to the original one. at is the parallel
operator must produce results in the same order of the sequential implementation:
if, due to tuples arrival, the computation of window i is triggered before window
j, the result of window i must be sent outward before the one of window j. To
implement this, the parallel operator may rely on additional tuple attributes, such
as internal sequence numbers, that are added by the operator itself. In presence of
logical substreams we can have a weakest ordering, a partial one, if it is required that
results are produced in order on substream basis only.

4.2 Parallel patterns categorization
In the context of window based operators, task parallelism assumes a special charac-
terization. e internal state consists in a subsequence of the input tuples received so
far. In contrast to classical parallel paradigms, a task is no more a single input ele-
ment: it is a segment of the input stream corresponding to all the tuples belonging
to the same window.

Given this new definition of task, the basic performance measurements that we
introduced in Chapter 3 should be revised:

Definition 4.2.1 (roughput and service time). e throughput is now the average
number of windows that the operator is able to process in a time unit. It is the inverse of the
service time, that is the average time interval between the beginnings of the executions of
two consecutive windows;

Definition 4.2.2 (Latency). e latency is the average time needed to execute the compu-
tation on the single task, i.e. a window.

Definition 4.2.3 (Response time). e response time is the time elapsed from the recep-
tion of the last tuple triggering a window computation and the production of the correspon-
dent output.

In order to define quantitatively “how good” a parallel solution is, we introduce
the concept of scalability:
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Definition 4.2.4 (Scalability). e scalability provides a measure of the relative speed of
the n-parallel computation with respect to the same computation with parallelism equal to
1. It is defined as the ratio between the throughput achieved with n workers and the one
obtained with only one.

Patterns for windowed operators can be categorized in:

• window parallel paradigms: these patterns are capable of executing in paral-
lel at the same time instant computations over multiple windows. erefore
they will not improve the computation latency over the single windows but the
throughput of the whole operator;

• in data parallel paradigms the single window computation is parallelized. is
will require to partition the window among a set of identical executors. Like
traditional data parallel, patterns in this category are able to improve the com-
putation latency.

As usual, all the relevant characteristics of a pattern (e.g. impact on throughput,
latency, memory utilization) will be derived from its definition and structure

Due to the dynamic nature of the windows, in term of tuples contained and their
cardinality, the distribution phase is particular important. Two orthogonal aspects
will be considered:

• the granularity at which input elements are distributed by the emitter function-
ality to a set of workers, e.g. the unit of distribution can be a single tuple, a
group of tuples or entire windows;

• the assignment policy, i.e. how consecutive windows are assigned to parallel
workers of the pattern.

Distribution strategies lead to several possible optimizations of the same pattern
or, in some cases, to the identification of new patterns. e distribution may also
influence memory occupancy and the way in which the window management is per-
formed. About this point, we identify patterns with agnostic or active workers. In
the case of agnostic workers all the processing/storing actions needed to build and to
update the windows are performed by the distribution logic. Workers are agnostic of
the window management and data distribution, i.e. they are just in charge of apply-
ing the computation to the received data. In contrast, with active workers the window
management is partially or entirely delegated to the workers. ey receive elemen-
tary stream items or data window segments from the emitter and are in charge of



4.3 Window Farming 49

managing the window boundaries by adding/removing the expired tuples. In other
words, workers are active on sliding windows management too, thus their code is very
similar to (coincides with) the sequential version. Emitter and collector act mainly as
intelligent interfaces with respect to the workers.

All these characteristics can contribute in deriving variations of the proposed pat-
terns. Each pattern will be presented in a section by itself, highlighting its applica-
bility, limitations and impact. Patterns are intended to be applicable to time/count
based window: for the sake of simplicity they will be exemplified on count based
ones.

4.3 Window Farming

is first pattern exploits a simple intuition. Let’s say that each window triggering
implies the application of a functionF on its content. Each window can be processed
independently, that is the result of the computation on a window does not depend
on the results of the previous windows. is is clearly true also considering windows
that belong to different logical streams. erefore, a simple solution is to adapt the
classic task farm pattern to this domain, as sketched in Figure 4.1.

In this first variant we can assume an employment of agnosticworkers. e emitter
is in charge of buffering tuples coming from the stream and builds and updates the
canonical copy of the windows, one for each logical substreams. In the figure we
show an example with two keys X and Y . Tuples and windows are marked with
unique identifiers. Once a window has been completely buffered, it is transmitted to
a worker. e assignment must be aimed at balancing the workload. In the case that
the function F has a low variance processing time we can use a simple round-robin
policy. Otherwise an on-demand assignment can be a better solution: each worker
signals to the emitter the availability to accept a new task. In the figure we adopt a
round-robin strategy: windows ωx

i and ωy
i are assigned to worker j s.t. j = (i + 1)

mod n where n is the number of workers.
Multiple windows of the same or of different substreams are executed in parallel

by different agnostic workers. Workers receive a bulk of data (i.e. the tuples that
are part of a window), apply the function F and discard the data. e emitter is re-
sponsible for receiving new tuples, inserts them into the related window and removes
expired ones according to the window semantic. e collector functionality receives
the results and may be responsible for reordering them. If a round robin distribution
strategy is used, this will simply require to collect results from the workers in the same
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Figure 4.1: Window Farming with two workers. It has in input two logical substreamsX and Y ,
whose elements are identified with squares and circles respectively. In the example |W| = 3
and δ = 1. ωx

i represents the i-th window of substream X . F(ωi) represents the result of the
processing function over a window.

order in which windows are scheduled to them. Otherwise collector should rely on
the windows sequence numbers.

Different variants of this pattern can be obtained by adopting a different distribu-
tion and active workers. As a first optimization, instead of buffering entire windows
and then transmit them, the distribution can be performed with a finer granularity.
Single tuples (or small groups of consecutive tuples) can be transmitted by the emit-
ter to the workers as they arrive from the input stream without buffering the whole
window, i.e. on-the-fly. Each tuple is routed to one or more workers depending on
the values of the window size and sliding parameters and the assignment policy of
windows to workers. Figure 4.2 shows an example with three workers, window size
|W| = 3 and slide δ = 2. Windows are assigned to the three workers in a round-
robin fashion. Each tuple can be transmitted to one or more workers, depending to
which worker(s) the corresponding windows are assigned to. For example the tuple
x4 is part only of window ωx

2 which is assigned to the second worker. Tuple x5 be-
longs instead to windows ωx

2 and ωx
3 and thus is multicasted to the second and third

worker.
e emitter, for each received tuple t, is now in charge of determining the win-

dows on which the tuple belongs. e tuple is transmitted to worker j if t belongs
to window ωi and ωi is assigned to worker j. Workers are now active in the manage-
ment of the windows. ey must be aware of the window semantic and assignment
policy to manage the computation triggering and tuples expiration. In fact, if a round
robin strategy is used by the emitter, then worker can handle incoming tuple like it is
working on a window with size |W| and slide nδ where n is the number of workers.
After the computation the first nδ tuples of the window can be safely discarded since
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Figure 4.2: Window Farming with fine grained distribution. In the example |W| = 3 and δ = 2.
Collector is omitted.

they are no more needed. is clearly holds also for time based windows, taking into
account the tuple’s timestamp. If a different strategy is used then it must be the emit-
ter that communicates explicitly to the worker, to which the window is assigned, that
the evaluation of F can be triggered.

is optimization reduces the buffering space in the emitter and its service time.
e latter is important if the distribution of a window as a whole makes the emitter
a bottleneck. In addition, fine grained distributions can be useful to reduce the la-
tency and improve throughput if F is incrementally computable: the workers start
the computation as new tuples arrive without needing to have the whole window.
On the other hand, it is important to observe that tuples are replicated to distinct
workers due to the fact that consecutive windows overlap. Here the term replicated
assumes a different meaning according to the execution architecture: on multicore
tuples replication can be avoided by sharing data, i.e. by passing memory pointers to
the input tuples. In a distributed one the replication is real: if the same tuple must
be sent to two different workers, two copies of it must be created.

A further optimization consists in assigning batches to workers. A batch is a set
of B ≥ 1 consecutive windows of the same substream [Balkesen and Tatbul, 2011].
A tuple present in more than one window in the same batch is transmitted just one
time to the corresponding worker. e key idea behind this strategy is to reduce the
need for tuples replication to multiple partitions by reducing the overlap across those
partitions.

Figure 4.3 shows an example with three workers and batches of two windows
assigned in a round-robin fashion. Each tuple is multicasted to twoworkers instead of
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three as in the case of standard assignment of single windows. Batching can increase
latency and the buffering space in the emitter. is can be still mitigated by using
fine-grained distributions.
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Figure 4.3: Window farming with batching distribution. In the example |W| = 4, δ = 2 and
|B| = 2. Collector is omitted.

In conclusion, we can summarize the characteristics of this pattern as follows:

Applicability e pattern can be applied to any window based stateful operator, also
keyed ones. No particular property is required for the function F .

Profitability Being a window parallel pattern, Window Farming is able to optimize
the throughput. Load balancing can be easily obtained through proper assign-
ment policies of windows to workers.

Issues In the agnostic workers version, the emitter may become a bottleneck. e
same tuple can be replicated in several workers by potentially increasing the
overall memory consumption. e pattern does not optimize latency.

Variations Using active workers, we can adopt a fine grained distribution (on-the-
fly) to reduce the buffering space in the emitter and improve its service time.
If F is incrementally computable this can reduce also the latency. Batch-based
assignments can be used to reduce data replication.

4.4 Key Partitioning
Key Partitioning is a variant of Window Farming, characterized by a constrained
assignment policy. e idea is to split the set of keys K into n partitions, where n
is the number of workers. e emitter assigns windows to the workers based on the
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value of the key: tuples with the same key are always routed to and handled by the
same worker.

If windows are distributed as a whole, workers are agnostic of the window man-
agement. With fine grained distribution (see Figure 4.4), workers become active and
manage the window boundaries. Results with the same key arrive to the collector
ordered, i.e. partial ordering is automatically guaranteed.
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Figure 4.4: Key Partitioning with fine grained distribution. Substream X is routed to the first
worker, substream Y to the second one.

is variant deserves to be considered a pattern per se due to its wide diffusion in
the literature [Gedik, 2014] and modern SPEs [Apache Storm, 2016; Ballard et al.,
2012]. Moreover, it can be used also when the state is a generic data structure rather
than a window, e.g. synopses. In this case key partitioning is the only solution to
preserve consistency of data structures, since all the tuples with the same key are
assigned to the same worker.

e pattern expresses a limited parallelism: only windows belonging to different
substreams can be executed in parallel, while the windows of the same substream are
processed serially. Due to the fixed routing, load balancing becomes a problem when
computation time is different per key or when there is skew in the distribution of the
keys. In the latter case, if pmax is the highest frequency of key, the parallel pattern
can scale up to 1/pmax, assuming computation time equal for all the keys. is is
due to the fact that at least one key is assigned to each worker. Only with a uniform
distribution of keys, the maximum scalability is equal to the number of distinct key
|K|.

e main characteristics of the pattern are:

Applicability e pattern can be applied to any keyed stateful operator. No partic-
ular property is required for the function F .
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Profitability It is able to optimize the throughput. No data replication is necessary.
Partial ordering is naturally guaranteed.

Issues Load balancing can be difficult or even impossible if the key distribution is
very skewed. is is particular challenging in a dynamic context, as we will see
in Chapter 6. e pattern does not optimize latency.

Variations Like in Window Farming, distributions with finer granularity reduce the
buffering space in the emitter and improve its service time. is can reduce the
latency if F is incrementally computable.

4.5 Pane Farming

e pane-based approach has been proposed for the centralized processing of slid-
ing window aggregates in [Li et al., 2005]. e idea was to reduce the space and
computation cost of sliding window aggregates by sub-aggregating and sharing com-
putation. It has been already applied in [Balkesen and Tatbul, 2011] in a parallel
context. It can be generalized to define a pattern with interesting properties in terms
of throughput, latency and memory.

Each window is divided into non-overlapping contiguous partitions called panes
of size σp = gcd(|W|, δ). Each window ω is composed of r disjoint panes ω =

{P1, . . . ,Pr} with r = |W|/σp.
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Figure 4.5: Sliding window composed by 4 different panes. Each pane is present in 4 consecutive
windows.
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is pattern can be applied if the internal processing function F can be decom-
posed into two functions G and H such that:

F(ω) = H(G(P1), . . . ,G(Pr))

i.e. G is applied to each pane and H is computed by combining the pane results.
erefore computations over consecutive windows can partially re-use pane results.
Examples of computations that can be modeled in this way are holistic aggregates
(e.g. median, mode, quantile), bounded aggregates (e.g. count and sum), differential
aggregates (e.g. average) and many others [Li et al., 2005; Balkesen and Tatbul,
2011]. e idea of the pattern is sketched in Figure 4.6, exemplified in an unkeyed
scenario. Like in Window Farming, a round robin or an on-demand policy can be
used to assign panes to the workers. Panes are tumbling subwindows distributed to
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Figure 4.6: Pane Farming with unkeyed stream. Window has size |W| = 6 and slide δ = 2.
Therefore each pane is composed by σp = 2 elements.

a set of agnostic workers applying the function G on each received pane. Denoting
the Window Farming as W-Farm(F , |W|, δ), Pane Farming can be derived applying
it as W-Farm(G, σp, σp). e collector is in charge of applying the function H over
a sliding window of pane results, having size r and slide δp = δ/σp. If necessary,
this stage can be further parallelized using Window Farming. In that case the whole
pattern can be seen as a two-staged pipeline where each stage is parallelized using
Window Farming, defined as:

Pipe(W-Farm(G, σp, σp),W-Farm(H, r, δp))

is solution is depicted in Figure 4.7. e first stage has been parallelized with three
workers while the second with two. Collector of the first stage and emitter of the first
one are collapsed in the same entity.

Pane farming can also be used for keyed operators. Panes of different substreams
are dispatched by the emitter to the workers of the first stage, while the corresponding
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Figure 4.7: Pane Farming with collector parallelized using the Window Farming approach. The
collector of the first stage and the emitter of the second one have been merged in a single C|E
functionality.

windows are calculated in the second one. In this situation the evaluation of H can
be parallelized using also the Key Partitioning schema.

Pane Farming belongs to the window parallel paradigms, since more than one
window is executed in parallel in the workers. erefore it improves throughput.
e interesting property is that it is able to reduce also the latency by sharing over-
lapping pane results between consecutive windows. Being TG and TH respectively the
processing time of the function G and H, we can define the computation latency of
the sequential version as:

Lseq = rTG + TH

In contrast the one of the pane based approach is:

Lpane = TG + TH

due to the fact that panes are processed in parallel. When the last tuple of the win-
dow arrives, only the last panes remain to be processed (plus the aggregation function
H). erefore, assuming that the function G has a low variance processing time, the
latency reduction factor Lseq/Lpane approaches r as TH → 0.

Further pattern variations can regard the interaction between the two stages. e
functionality C|E merges the pane results coming from the workers of the first stage
and assigns windows of pane results to the worker of the second stage. is can be
critical for latency and throughput. Shuffling can be used to remove this potential
bottleneck: rather than merging the pane results and then distribute windows of
them, workers of the first stage can multicast their pane results directly to the workers
of the second stage (see Figure 4.8a). is clearly requires that workers of the first
stage are aware of the assignment policy of windows of pane results.
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Figure 4.8: Variations of the Pane Farming pattern

Alternatively, the two stages can be merged by organizing the worker on a ring
topology as suggested in [Balkesen and Tatbul, 2011] (see Figure 4.8b). Workers ap-
ply the function G on the received panes and the functionH on their pane results and
on the ones received by the previous workers on the ring. As explained in [Balkesen
and Tatbul, 2011], there is always a way to assign panes to the workers such that a
pane result can be transmitted at most to the next worker on the ring.

e properties of the Pane Farming pattern are:

Applicability e pattern can be applied on sliding window (also for keyed streams)
provided that the functionF can be expressed asF(ω) = H(G(P1), . . . ,G(Pr)).

Profitability ere is no data replication in the first stage because panes are disjoint.
In the second stage, replication can be reduced applying batching (see Window
Farming). e pattern improves throughput and latency. Load balancing can
be easily achieved through proper assignment policies of panes to workers.

Issues e pattern is not useful if the sliding factor δ is equal to one tuple.

Variations ecomputation of functionH can be parallelized using aWindowFarm-
ing approach (or Key Partitioning for the keyed scenario). Shuffling can be
adopted to remove the C|E functionality, if it is a bottleneck. is came at the
cost of additional communication cost in the workers of the first stage. e
ring variant makes it possible to merge the two stages into a unique structure
if communications between workers can be expressed.
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4.6 Window Partitioning
Window Partitioning is the natural adaptation of the map-reduce paradigm to the
case of data streams. Assuming that the computation can be expressed as a map over
the window elements, the current window can be partitioned among n workers re-
sponsible for computing the internal processing function F on their partitions. A
reduce phase may be necessary to aggregate/combine the final result of the window.
is is a data parallel solution, since exactly one window at a time is in execution. We
can have agnostic or active workers. In the former case, the emitter is responsible
of buffering the whole window and scatters it to the various workers. Each worker
receives a bunch of data, applies the function F and discards the data. More conve-
niently, the emitter can distribute single tuples to workers. In this case they are fully
active in the window management, since they are responsible for adding new tuples
to their partitions and removing expired ones according to the window size and slide
parameters (for both count and time based cases).

Figure 4.9 exemplifies the pattern. Tuples are distributed in a round-robin fashion
to two workers. is is possible if the internal processing function can be performed
by the workers in parallel on non-contiguous partitions of the same window. If this is
not the case, other distributions preserving the contiguity of data must be used. In a
keyed scenario, the workers maintain a window partition per logical substream.

. . .
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Figure 4.9: Window Partitioning with two workers and one key. In the example |W| = 8 and
δ = 4

Once the last tuple of the slide has been received, it is transmitted to one worker
and a special meta-tuple is multicasted to all the workers in order to start in parallel
the map function on the partitions. If required by the computation, the workers
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execute the local reduce on their partitions and communicate the local reduce results
to collector as depicted in figure. e collector is in charge of computing the global
reduce result and send it in output. Depending on the computation semantics, the
reduce phase ⊕r can be performed in two different ways:

• asynchronously with respect to the computation of the workers. In this case the
result of the global reduce is not needed by the workers. An example is the
computation of algebraic aggregates, e.g. “finding the number of tuples in the
last 1000 tuples such that the price attribute is greater than a given threshold”.
In this case F is the count function (applied over the workers’ partitions) and
⊕r is the sum function (to compute the global value);

• synchronously with respect to the computation of the workers, which need ex-
plicitly to receive the global reduce result from the collector (dashed arrows
in Figure4.9). A similar interaction could be required by the computation se-
mantics. For example a second map-reduce phase must be executed over the
window, like in the case “finding the tuples in the last 1000 tuples such that
the price attribute is higher than the average price in the window”.

It is worth noting that the computations that can be parallelized through pane farm-
ing are a subset of the ones on which window partitioning can be applied. is pattern
is able to improve throughput and optimize latency. e latency reduction is propor-
tional to the partition size, which depends on the number of workers. is is an
important difference with Pane Farming that gives a latency reduction independent
from the parallelism degree (it depends on the number of panes per window).
e properties of the Window Partitioning pattern are:

Applicability e pattern can be applied when the computation is expressed as a
map followed by an optional reduce phase. e repetitive application of maps
and reduces can be captured as well. It is applicable also to keyed streams.

Profitability e pattern improves throughput and optimizes latency, in a propor-
tional way with respect to the number of used workers. Tuples are partitioned
without data replication.

Issues Load balancing can be difficult to achieve if the internal processing function
has a high variance processing time depending on the data values.

Variations Distribution can be performed on-the-fly by using active workers, reduc-
ing the buffering space in the emitter and its service time. is can be profitable
to further reduce latency if the function F is incrementally computable.
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4.7 Nesting of patterns
An interesting property of parallel paradigms is that they can be composed with each
other to form complex computations. We have already encountered an interesting
case of composition in Pane Farming: the whole pattern can be defined as the com-
position of two Window Farming patterns applied for the parallelization of G and H
functions, respectively.

Nesting can be considered as a potential solution to balance pros and cons of
the different patterns. We detail here two interesting nestings that apply a Window
Partitioning schema to internally parallelize the workers of a window parallel pattern.
Others schemes are clearly possible.

Window Farming & Window Partitioning We can combine this two patterns re-
sulting in Window Farming withmacroworkers internally implemented accord-
ing to the Window Partitioning pattern. is approach can be useful to sus-
tain the actual speed of the input stream with lower latency than using Window
Farming alone. WindowPartitioning avoid data replication insidemacrowork-
ers. Batching can be used at the outermost level to reduce data replication
also between macroworkers. e distribution, at both levels, can be performed
on-the-fly. e whole solution benefits from the easier load balancing at the
outermost level.

Key Partitioning & Window Partitioning In a similar way of the previous case, we
can have a Key Partitioning with macroworkers implemented using Window-
Partitioning. Clearly, this solution can be applied in a keyed scenario only. It
increases throughput and lowers latency. In contrast to the previous nesting,
this results in optimal memory occupancy, since there is no tuple replication
at any level. On the other hand, load balancing can be hard as it is critical for
both the parallel patterns.

4.8 Exporting the patterns
It is interesting to understand if the proposed patterns are exploitable in existing
frameworks or if they can be implemented on these systems. In this section we will
elaborate on this topic, trying to highlight how to incorporate the proposed solu-
tions in available high level parallel frameworks and which kind of actions would be
required.
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Existing Stream Processing Engines allow the programmer to express only a sub-
set of these patterns, usually without some of the possible optimizations and variants.

In Storm [Apache Storm, 2016] there are not pre-defined built-in stream oper-
ators: the programmer has to define the operator logic from scratch. e proposed
patterns could be implemented on top of existing mechanisms and offered to pro-
grammer as a library for Storm. e concepts of grouping can be used to specify how
input tuples are distributed among multiple replicas of an operator. For keyed state-
ful operator field grouping is a naturally choice: it assures that tuples with the same
key are always sent to the same replica. Compared with our work this is similar to
Key Partitioning, in which bolts are essentially active workers. e other parallel pat-
terns introduced could be implemented by using active workers and custom grouping
policies implementing user-defined distributions.

IBM InfoSphere [Ballard et al., 2012] provides a rich set of built-in operators
and the possibility to implement user-defined operators. Windowing is primitive in
IIS. is, combined with the hash based distributions offered by the framework, is
more or less or Key Partitioning. However, there is no support for customizable tuple
routing. is, combined with the closed source approach, render impossible to mimic
the other patterns.

In Spark Streaming [Apache, 2016] programmers can rely on a support to time
based window. e count/reduceByWindow operators are similar to the Window Par-
titioning pattern, while count/reduceByKeyAndWindow recalls the nesting of Key and
Window Partitioning. is results in only a partial coverage of the various compu-
tations possibilities that we introduced in this chapter, since the reduce operators
clearly require that the function to be applied has certain characteristics. Moreover,
in Spark windows have a particular semantics: they can be only time based and they
are essentially micro-batch of contiguous data. Only when the batch is complete,
the computation can start. is resembles more or less the agnostic workers struc-
ture, in which the emitter schedules window partitions. No optimizations such as
finer grained distributions are possible. Introducing this concepts and functionalities
requires intervention at the runtime support level.

Finally, Flink [Apache Flink, 2016] has a complete support to window but lacks
in parallelism exploitation for window based operators: window on keyed stream are
evaluated in parallel, one task per key. is is more or less equivalent to the Key Par-
titioning approach. For unkeyed stream, computations are not performed in parallel.
A possible integration of pattern requires interventions on its runtime system and
their promotion to the APIs level.
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With respect to SPEs, skeletal frameworks could represent an alternative solution
amenable of being integrated with patterns for window based stateful operators. e
proposed patterns have to be provided as skeletons, but this can be done in a natural
way from the discussion done in this chapter. Skeletons require to be specialized by
the programmers by indicating the function and window parameters.

A first step towards the integration of the proposed pattern in the Fastflow frame-
work has been done in the experimental phase. We leveraged the hierarchical struc-
ture of Fastflow and patterns have been implemented and tested using the basicmech-
anisms (non blocking queues) offered by Fastflow. A full integration in the Fastflow
environment could regard their promotion in top level patterns. In frameworks in
which exploiting low level mechanism is not possible or it is not so easy to define
additional skeletons, internal implementation modifications are required.

Table 4.1 summarizes the relations discussed so far between the proposed patterns
and the considered frameworks.

Framework
Window
Farming

Key
Partitioning

Pane
Farming

Window
Partitioning

Apache Storm s 4 s s

IBM Infosphere 8 4 8 8

Spark Streaming t 4/t t 4/t

Apache Flink t 4 t t

Fastflow s s s s

Table 4.1: Different patterns and their relations with the discussed frameworks. A pattern can be
already provided by the framework (4), it can be implementable on top of the framework (s)
or via modification to the framework runtime (t). Finally, it could be not exploitable at all (8).

4.9 Experiments

In this section we will describe the evaluation of the proposed patterns on a shared
memory machine. e objective of this experimental evaluation is to asses the perfor-
mance of the proposed patterns for window based stateful DaSP operators. First of
all, we want to show that these patterns could ease the application development but
this does not occur at the expense of performances. Secondly, we want to empirically
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evaluate the different impacts on performance metrics (i.e. throughput and latency)
that the different patterns are able to achieve.

A prototypal version of the the patterns has been implemented on top of Fastflow,
a C++ based skeleton frameworks (see Section 3.3 for a brief introduction). Fastflow
has a three tiers organization: high-level patterns, core patterns and building blocks. In
this phase we operate at the building blocks level. Parallel entities (emitter, workers
and collectors) are implemented as threads that cooperate through non-blocking and
lock-less queues exchanging pointers to shared memory areas. reads are pinned on
distinct cores of a multicore architecture. More implementation details are available
in Section 4.9.1.

e target architecture is a dual CPU Intel Xeon E5-2650, Sandy-Bridge based
architectures, composed of 16 hyperthreaded cores operating at 2GHz. Each core has
a private L1 (32KB) and L2 (256KB) cache. Each CPU is equipped with a shared L3
cache of 20MB. e machine has 32 GB of RAM. It runs a Linux based operating
system. e used compiler is gcc (version 4.8.1), programs are compiled with the
-O3 compiler flag. e used Fastflow version is the 2.0.5.

In the following experiments, the computation is interfaced with a Generator,
which is in charge of generating the incoming data, and a Consumer thread, which is
in charge of receiving the results (see Figure 4.10). ey are both executed in the same
machine, pinned on different cores and communicate with the application through
TCP/IP sockets. Unless otherwise specified, we will not exploit the hyper threading
facility presents the processor. us, 12 is the maximum number of workers that we
can use in our testing.

W1

Wn

E CGenerator Consumer

Operator

Figure 4.10: Computation schema

4.9.1 Implementation details
In the following, we detail the internal implementations of the discussed paralleliza-
tion schemas for window based operators. e patterns have been implemented for
keyed streams using an on-the-fly distribution. When required, the assignment of the
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windows to the workers is done using a round robin policy. Possible data replication
issues, implied by the pattern used, must be considered only a logical possibility since
we target shared memory architecture. As mentioned, the proposed implementations
rely on the building block mechanisms of Fastflow. Alternative implementations
could be easily realized also exploiting classical threads and generic shared queues
among the various entities, possibly at the expense of some performance degrada-
tion. We recall that |W| and δ indicates respectively the size and the slide of the used
windows, while n refers to the number of workers.

Concerning the used data structures, we have introduced an abstract class Window
that defines a set of virtualmethods common to all the various window types discussed
so far. e class is defined by means of two generic data types: a tuple_t type, that
represents the type of the window elements, and a result_t that is the type of the
result produced after that the window computation is executed. Among the various
methods we should mention:

• the insert(t) method that inserts a tuple (passed as argument by const refer-
ence) into the window buffer;

• the expire() method that evicts all the expired tuples;

• the isComputable() method that returns a boolean value indicating if the win-
dow content is ready to be computed;

• the compute() method, that triggers the computation over the window content
and returns the corresponding result.

Starting from this, we have defined an inherited CBWindow class that defines the
behavior of a generic count based window. Its constructor takes as parameter the
window size and slide. e window buffer is implemented as a circular buffer, pre-
allocated at creation time. e compute method encapsulates the business logic of
the computation (see the different benchmark used) and returns the result of the
computation.

In general, once δ tuples have been received, the window content is ready to be
computed (i.e. the method isComputable() returns true). Expired tuples (i.e. no
more needed for the computation) are evicted after the computation. An exception
to this modus operandi regards the windows used for the Window Partitioning pat-
tern: in this case the computation can be started when the meta-tuple (sent by the
emitter; see Section 4.6) is inserted into the window. To support this case we have
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defined an additional class CBPWindow, whose isComputable() method is defined ac-
cordingly.

e emitter, workers and collector entities are connected through Single Producer/
/Single Consumer queues. In the following we will briefly detail their logic according
to the implemented pattern. e emitter, is in charge of receiving the input tuples,
assigning to them a sequence number (independent for the various keys) and dis-
tributing them (by passing a pointer) to a subset of workers according to the pattern
semantics:

• for the Window Farming this requires to determine the windows to which the
tuple belongs. is could be easily done by leveraging on the tuple’s sequence
number: the tuple is transmitted to the various workers according to the defined
window characteristics. For the Pane Farming approach, the emitter has a
quite similar behavior: in this case it has to determine the pane to which a
tuple belongs (taking into account that panes are tumbling subwindows; see
Section 4.5);

• in the Key Partitioning pattern, keys are partitioned among the available work-
ers. Tuples with the same key are always routed to the same worker. e
emitter maintains the association between keys and workers in a routing table
explicitly stored;

• in the Window Partitioning pattern, tuples are distributed in a round-robin
fashion to the workers. Once that the last tuple of the slide has been received,
a special meta-tuple (for that particular key) is sent to all the workers in order
to start the computation.

Independently from the implemented pattern, workers behave in a similar way: they
receive a tuple from the emitter, insert it into the proper window (according to the
key attribute) and if the window content is ready to be processed they invoke the com-
pute() method and send the produced result to the collector. What changes, from
one pattern to the other, is the type or definition of window used. Window Farm-
ing, Key Partitioning and Pane Farming use the CBWindow class, with different sizes
or slides. In Window Farming, due to the round robin assignment policy of windows
to workers, the slide of the window is defined as the maximum between nδ and |W|
(see Section 4.3). In Key Partitioning, workers use windows whose size and slide are
the ones defined by the user. In the Pane Farming case, the workers use a tumbling
count based windows over which they apply the function G: in this case the pane



66 CHAPTER 4 Parallel patterns for windowed operators

size (σp) is used as both window size and slide. On the other hand, for the Window
Partitioning pattern workers use the CBPWindow, whose computation is triggered by
the arrival of the meta-tuple.

Finally, for the collector we distinguish two kinds of logic:

• for Window Farming and Key Partitioning, it receives the results produced by
the workers and forward them to the output stream. In the former case, to
preserve ordering the results are collected from workers in the same order used
to schedule windows;

• for Pane Farming and Window Partitioning, the collector receives the partial
results and produces the final result by applying an additional computation. In
the former case the collector is in charge of applying the function H over a
sliding window of pane results, having size r = |W|/σp and slide δp = δ/σp.
erefore it can use again a CBWindow of the proper size and slide. In the latter
case the collector applies the reduce functions over the partial results produced
by the workers.

4.9.2 e synthetic benchmark
e benchmark computes a suite of statistical aggregates used for algorithmic trad-
ing, with |K| = 1000 stock symbols and count-based windows. Experiments were
performed with different window and slide sizes. In the following we indicate as
reference window the one having |W| = 1000 and δ = 200.

Each tuple is a quote from the market, containing information such the symbol
ID, the price and volume for ask and selling activities. It is stored in a record of 64
bytes. To use Pane Farming and Window Partitioning, the synthesized computation
F is composed by a function G and H. According to the presented descriptions,
in the case of Window Farming and Key Partitioning patterns, the functions are
both executed by the workers. For Pane Farming and Window Partitioning patterns,
workers execute the function G while collector computes function H (it acts as reduce
for the Window Partitioning pattern). For the reference architecture and windows
we have that the computation times are equal to TG =∼ 1500µsec (per subwindow
of 200 elements) and TH =∼ 20µsec. is result in a global computation time of
TF =∼ 7700µsec. e computation times are slightly equal for all the keys.

We want to compare the different patterns in various scenario (window size and
slide) and different parallelism degrees, i.e. number of workers. In the following, we
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will identify the different configurations in terms of window size and slide indicating
these values as ⟨|W|, δ⟩. Each test ran for 180 seconds. For each parallelism degree we
determine the highest input rate (throughput) sustainable by the parallelized operator.
To detect it, we repeat the experiments several times with growing input rates. e
generator checks the TCP buffer of the socket towards the operator: if it is full for
enough time, it means that the current operator configuration is a bottleneck. It stops
the computation and the last sustained rate is recorded.

Input data is produced by the generator by randomly choose the attribute values
of the tuples. eir generation rate is deterministic and it is given by the currently
tested rate. Keys probability of appearance follows a given probability distribution
passed to the generator. In order to study also the load balancing characteristics of
the various patterns, we create three different scenarios according to different key
probability distributions. In Figure 4.11 we report for each key the related probability
of generation. Keys are ordered by rank, i.e. from the most frequent to the less
frequent. Logarithmic scales are used to ease the readability. In the first scenario
(Figure 4.11a) they keys probabilities are uniformly distributed with p = 10−3 In the
second one (4.11b) we use a skewed distribution with pmax = 0.03. e last case is
a very skewed distribution with pmax = 0.16 (4.11c). In the following we will use
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Figure 4.11: Keys probability distributions

the WF, KP, PF and WP abbreviations to refer to Window Farming, Key Partitioning,
Pane Farming and Window Partitioning patterns respectively. We will firstly show
the results obtained by the single patterns by changing the window size, slide size and
distributions. In the subsequent section we will compare them.

Patterns evaluation

For each parallelism degree n, we denote with λnmax the maximum arrival rate that the
parallel computation is able to sustain without being a bottleneck. If the workload is
perfectly balanced among workers, the ideal service time TS of the parallel operator
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(Definition 4.2.1) with n workers is equal to:

TS = TF/n (4.1)

for the WF and KP cases. For PF and WP, provided that the computation of H has a low
cost and collector is not a bottleneck, we have:

TS = TG/n (4.2)

A parallel operator is not a bottleneck if it is able to sustain the current stream rate,
i.e.

TS ≤ TA (4.3)

In this case TA refers to the inter-arrival time of triggering tuples (of any key).
e term triggering tuple denotes a tuple that triggers operator’s internal processing
logic. In this case, due to the use of sliding window, it is a tuple that lets the window
slide and therefore activates the computation. erefore, being λ the incoming input
rate we have that TA = δ/λ. Since we know the calculation time and the slide we can
easily derive the maximum sustainable rate by replacing in Equation 4.3 and derive
the maximum sustainable rate as:

λnmax ≤


nδ/TF , for WF and KP.

nσp/TG, for PF.
nδ/TG, for WP.

(4.4)

Figure 4.12a shows the behavior of WF while varying the window size (solid lines)
and the slide size (dashed lines) with respect the reference window. In WF the win-
dow computation is triggered at every slide and regards the whole window con-
tent. e computation time is proportional to the number of elements contained
in the window. For this reason the maximum sustainable rate decrease/increase with
larger/smaller window sizes (TF scales proportionally). In contrast, when we in-
crease/decrease the slide of the window, the inter-arrival time of the triggering tuple
will increase/decrease accordingly. is impacts the maximum sustainable rate as
indicated in Equation 4.4, resulting in higher or lower values.

It is worth noting that although the computation with windows ⟨2000, 200⟩ and
⟨1000, 100⟩ should have led to the same sustained rate, we have that the latter config-
uration is able to achieve a slightly higher value with the increasing of the parallelism
degree (∼ 10% with 12 workers). is is probably due to a higher memory hierarchy
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Figure 4.12: Results for the Window Farming pattern

utilization in the ⟨2000, 200⟩ configuration. In Figure 4.12b are reported the sus-
tained rates for the reference window and different key distributions. As expected,
the values are similar thanks to the good load balancing achievable by the WF pattern.

In Figure 4.13, are reported the results for the KP case. ey are qualitatively
similar to the ones of the WF case. Figure 4.13b highlights the load balancing issues of
this pattern. As mentioned in Section 4.4, the scalability of the pattern is limited by
the probability of appearance of themost present key. In the very skewed scenario this
is equal pmax = 0.16, therefore the scalability is limited to 6.25 and the sustainable
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input rate stop to increase for n > 6.
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(a) Maximum sustainable rate per parallelism degree for the Key Partitioning pattern. The results
for the configurations ⟨2000, 200⟩ and ⟨1000, 100⟩ are superposed.
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(b) Maximum sustainable rate for Key Partitioning and the reference window with different key
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Figure 4.13: Results for the Key Partitioning pattern

Figures 4.14 and 4.15 show the results for the PF and WP patterns respectively.
We do not report the comparison using different keys probability distributions since
their values are pretty much identical among the various possibilities. Interestingly,
in the PF solution variations of the window or the slide size have little impacts: the
obtained maximum sustainable rates are almost identical in all the considered cases.
is is inline with Equation 4.4 provided that, like in the performed experiments, the
computation ofH has a low cost. In this case, the calculation time is essentially TG . It
and the triggering tuple frequency depend on the pane size (the window slide in these
cases). Varying only the size of the window has no effect on these two parameters.
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Figure 4.14: Maximum sustainable rate per parallelism degree for the Pane Farming pattern.

On the other hand, changing the window slide change the calculation time and these
changes are compensated by a modification of the inter-arrival time. Increasing the
window slide will led to a greater pane size and therefore a greater TG . However this
will also decrease the inter-arrival time of the triggering tuples.

 0

100K

200K

300K

400K

500K

600K

700K

800K

1 2 3 4 5 6 7 8 9 10 11 12M
ax

 s
ui

st
an

ab
le

 in
pu

t r
at

e 
(t

up
le

s/
se

c)

Parallelism degree (number of workers)

Max sustainable rate - Window Partitioning

|W|=1000, δ=200
|W|=2000,  δ=200
|W|=600,  δ=200

|W|=1000, δ=500
|W|=1000, δ=100

Figure 4.15: Maximum sustainable rate per parallelism degree for the Window Partitioning pat-
tern. The results for the configurations ⟨2000, 200⟩ and ⟨1000, 100⟩ are superposed.

Patterns comparison

In this section we provide a comparison of the various patterns, summarizing the
results previously reported for the case of the reference window ⟨1000, 200⟩ and the
various keys probability distributions. For the sake of completeness, we report also
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the results with two worker threads per core (n = 24) which is the best hyperthreaded
configuration found in our experimental settings.
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Figure 4.16: Maximum sustainable throughput for Window Farming (WF), Pane Farming (PF), Key
Partitioning (KP) and Window Partitioning (WP) with different keys probability distributions.

In the first two scenarios (Figure 4.16a and 4.16b) KP reaches a slightly higher rate
than WF and WP due to better reuse of window data in cache (each worker is responsible
for a set of key and related windows). As already pointed out, in the very skewed
distribution (Figure 4.16c) the maximum rate sustained by KP stops to increase with
more than 6 workers, while WF and WP easily handle the unbalanced distribution. In
all the cases the best results are achieved with PF: throughput is 5 times higher than
the other patterns. e reason is that PF is able to share the pane results in common
between consecutive windows of the same key.

In Table 4.2 are reported the best scalability results. In this case the scalability
with nworkers is computed over the maximum sustained rate as the ratio λnmax/λ

1
max.
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Pattern Uniform Skewed Very Skewed

WF 12:11.85, 24:14.93 12:10.25, 24:12.95 12:10.37, 24:12.94
KP 12:12.02, 24:15.12 12:11.53, 24:14.46 12:6.08, 24:6.07
PF 12:11.77, 24:14.91 12:11.53, 24:14.76 12:11.61, 24:14.58
WP 12:11.83, 24:13.87 12:11.24, 24:13.24 12:11.61, 24:13.67

Table 4.2: Scalability with 12 and 24 workers. Syntax ParDegree:Scal.

Latency

In order to study the latency impact of the various patterns, we compared them in
an execution scenario in which all of them are able to carry out the computation
without being a bottleneck. We use the reference window, with an input rate of 200K
tuples/sec and key distribution uniform. To not being bottleneck we use 10 workers
for WF, KP and WP and two workers with PF. e latency is reported in Figure 4.17: in
the graph it is plotted using two logarithmic scales: the one on the left is used for
PF and WP, the scale on the right for WF and KP. As expected WF and KP have similar
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Figure 4.17: Latency measured, for second of execution, with the various patterns. The scale on
the left refers to the values obtained with PF and WP, the scale on the right is used for WF and KP.

latencies because each window is processed sequentially. PF has a latency 5 times
lower than WF and KP. As discussed in Section 4.5 the latency reduction factor given
by the Pane Farming approach is roughly equal to the number of panes per window
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(5 in this case) if TH ∼ 0 as in this benchmark. In contrast WP produces a latency
reduction proportional to the parallelism degree (and hence partition size). With 10
workers the latency is 27.53% lower than PF.

4.9.3 Time-based skyline queries

To conclude the experimental section we study a real-world continuous query com-
puting the skyline set on the tuple received in the last |W| time units. e window
slides (and therefore the computation is triggered) every time that a tuple arrives, re-
sulting in a tuple-by-tuple time based window. We assume an unkeyed input stream.
Skyline queries are preference queries frequently used in multi-criteria decision mak-
ing to retrieve interesting points from large datasets. Recently, skyline queries have
been computed over continuous data streams according to sliding window models.
A skyline query returns the points that are not dominated by any other point. More
formally, the single input x represents a d-dimensional point x = {x1, x2, . . . , xd}.
Given two points x and y, we say that x dominates y if and only if ∀i ∈ [1, d] xi ≤ yi
and ∃j | xj < yj . A point belongs to the skyline set if there not exists any dominator
in the current window composed by the points received in the last |W| time units.

On static dataset, the computation can be described as a map-reduce, in which
a local skyline is computed for each partition of the dataset and the final skyline is
calculated from the local ones (it exploits the skyline associativity). us in the data
stream processing context, the natural pattern for this computation is the Window
Partitioning: each worker receives a partition of the window and performs the local
computation. Collector, receives the partial results (i.e. the skyline set of each worker
partition) and computes the final results (the global skyline). It is important to note
that the skyline algorithm performs an intensive pruning phase [Tao and Papadias,
2006]: tuples in the current window can be safely removed before their expiring time
if they are dominated by a younger tuple in the window. In fact, these points will never
be able to be added to the skyline, since they expire before their younger dominator.
Pruning is fundamental to reduce the computational burden and memory occupancy.
However it can produce sever load unbalance because the partition sizes can change
very quickly at run time, even if the distribution evenly assigns new tuples to the
workers.

Figure 4.18a shows the maximum suistanable input rate with the three point dis-
tributions studied in [Tao and Papadias, 2006]: correlated, anticorrelated and
independent. Each distribution (represented in Figure 4.18b) is characterized by a
different pruning probability. In the correlated case a small set of points dominate
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the others and the pruning phase is very intensive. e anticorrelated case in on the
opposite, with a large number of points that are part of the skyline set. e third one
is an intermediate case with points uniformly distributed in the space.

We use a window of 60 seconds for the correlated case and 10 seconds for the
anticorrelated and independent cases. Each new tuple is assigned to the worker with
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Figure 4.18: Skyline query: distribution of points and maximum sustainable input rate per paral-
lelism degree with the Window Partitioning pattern. |W| = 60 seconds for the correlated case
and |W| = 10 seconds for anticorrelated and independent distributions.

the smallest partition to try to balance the workload. Even if it works on a greater
windows, the correlated case is the one with the highest sustained rate: the partitions
are smaller (due to an intensive pruning) and therefore the computation has a finer
grain. Load balancing is the most critical issue: with 12 workers scalability is 8.1,
10.7 and 11.6 in the correlated, independent and anticorrelated cases. With higher
pruning probability is harder to keep the partitions evenly sized, highlighting the
need of proper load balancing techniques.

4.10 Summary
In this chapter we presented four different patterns for windowed based computa-
tions. e proposed patterns exhibit differences in their applicability, impacts on the
performance and limitations that are briefly summarized in Table 4.3.

e patterns have been implemented in a shared memory architecture using the
Fastflow framework. e benchmark experimentally demonstrate the different fea-
tures of the parallel patterns. When applicable PF is preferable for throughput opti-
mization, while WP is the one giving the best latency outcome. KP has the ability to



76 CHAPTER 4 Parallel patterns for windowed operators

Name Type Stream Type Optimizes Notes

Window
Farming

Window
Parallelism

Unkeyed/Keyed roughput Applicable to any function F .
Possible data replication.

Key
Partitioning

Window
Parallelism

Keyed roughput
Applicable to any function F and any
type of state. Load balancing can be
problematic. No data replication.

Pane
Farming

Window
Parallelism

Unkeyed/Keyed roughput
Latency

Applicable when δ > 1 and F can be
expressed as a composition of functions
G and H.

Windows
Partitioning

Data
Parallelism

Unkeyed/Keyed roughput
Latency

Applicable when F can be expressed
as map and reduce. No data replication.

Table 4.3: Characteristics of the proposed parallel patterns.

handle generic state (not only window) at the expense of a more difficult load bal-
ancing. It and WF do not require particular properties to be hold by the computation.
In general these pattern represent a set of reusable solutions that cover many recur-
rent computations in window based DaSP operators. erefore, in our opinion, the
possibility to integrate them in existing DaSP or Skeletal frameworks should deserve
special consideration from the community.



5 Adaptive parallel
computations

is chapter reviews the basic idea behind Autonomic Computing, with a particu-
lar focus on adaptive parallel computations. e first part provides an overview on
general concepts and related literature on the autonomic management in comput-
ing systems. en we focus on parallel computations and how to enhance them with
autonomic features, with the intent of guarantee Quality of Service requirements im-
posed by users. Reconfiguration mechanisms and reactive and predictive strategies
will be presented and discussed. Finally we introduce adaptation strategies based on
the Model Predictive Control approach that will constitute the methodology used for
devising autonomic DaSP operators.

5.1 Autonomic Computing Systems
Modern applications experience continuous changes in their life cycle, due to dy-
namic execution scenarios, failures, variations in resources availability. ese prob-
lems have to be faced by applications in a transparent way to final users. In the last
years the study of these issues has laid the groundwork for a new model of computing
called Autonomic Computing [Kephart and Chess, 2003].

An Autonomic Computing System (ACS) makes decision on its own using high
level policies in order to achieve a set of goals. It constantly checks, monitors and
optimizes its status and automatically adapts itself to the changing conditions. e
goals to achieve can regard different properties of the system. As portrayed by IBM
we can recognize at least four of them [IBM, 2005]:

• self-configuring: the system is able to automatically configure its components
under dynamic and changing execution platforms;

77
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• self-optimizing: the system monitors its behavior and controls the resources to
ensure the optimal functioning with respect to the defined requirements, e.g.
performance ones;

• self-healing: this property regards the ability to discover, diagnose and recover
from fault;

• self-protecting: it is the ability of the system to anticipate, detect, identify and
protect against threats and intrusions.

In general, anACS can be seen as composed by interactive collections of autonomic
elements [Kephart and Chess, 2003]. Autonomic elements will manage their internal
behavior and their relationships with other autonomic elements in accordance with
policies that users or programmers have established. Autonomic elements are com-
posed by a managed element, a software or hardware element of the system, and an
autonomic controller (or manager), an independent entity able to affect the element
operational conditions in order to achieve the defined goals. Managed element and
controller interact by exchanging information to enforce the various self-* proper-
ties. is interaction can involve different phases, continuously executed by the two
parties:

1. monitoring: the current status of the element is monitored by collecting mea-
surements that are of significance to the self-X property of the system. is in-
formation can be acquired by different providers: sensors can be used to obtain
environmental information, profiling services can measure execution parame-
ters such as performance (e.g. calculation time) and resource utilization levels
(e.g. memory occupancy);

2. analyze: the retrieved information are analyzed. e current status of the sys-
tem is checked against the imposed goals;

3. plan: if needed, i.e. goals are not met, a reconfiguration strategy is planned
according to the adaptation policy, with the goal of re-conveying the application
in a legal status;

4. execute: the decided reconfiguration actions are applied to the controlled ele-
ment.

ese four phases and their periodical execution identify a closed-loop interaction
scheme (MAPE loop) between the managed element and its controller, which is a
general and well-known structure for adaptive systems (see Figure 5.1).
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MANAGED ELEMENT

Monitoring Execute

Analyze Plan

AUTONOMIC CONTROLLER

AUTONOMIC ELEMENT

Figure 5.1: Control loop scheme of an Autonomic Element

Autonomic computing has attracted the interest of various research groups that
focus on its applicability in grid [Rahman et al., 2011] and cloud [Singh and Chana,
2015] environments. In our research group it has been successfully applied to struc-
tured parallel applications. In ASSIST [Vanneschi and Veraldi, 2007; Aldinucci
et al., 2006b] it was introduced the concept of autonomous parallel module that
we will recall in the next section. In [Aldinucci et al., 2008], behavioural skeletons
are introduced to obtain adaptivity for distributed high-performance computations.
ey were initially implemented within the reference implementation of the GCM,
the CoreGRID Grid Component Model (result of the CoreGrid european project).
Finally, in [Gabriele, 2012; Mencagli and Vanneschi, 2014] a novel control based
approach to adaptation strategy has been devised. In the following we will review the
key concepts behind these works and discuss why they will be a starting point for our
adaptive and parallel DaSP operators.

5.2 Adaptive parallel programs
In an ACS different control-loops can be implemented to assure the different self-*
properties. We are interested in parallel application having the autonomic ability
to self-optimize their behavior. Our major concerns are about performances and re-
sources consumption: the parallel operator must be able to monitor itself and recon-
figure (e.g. increase the parallelism degree) when QoS requirements are not met. We
refer to this ability as adaptivity (or elasticity).

In our vision, the parallel application (defined by the computation graph) rep-
resents the autonomic computing system. e autonomic element is the adaptive
parallel operator (see Figure 5.2) composed by two parts:

• the operating part: this part is responsible for implementing the business logic
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of the operator. It is a parallel computation expressed according to a certain
structured parallelism scheme (e.g. task-farm, data-parallel, pane farming ...);

• the control part: this part represents the controller, an autonomous entity able
to observe the operating part execution and respond to different cases of dy-
namicity.

OP1

OP2

OP3

OP4
Monitoring 

data

W1

Wn

E C

Operating Part

Control Part

Monitoring
data

Reconf.
commands

Figure 5.2: Computation graph and internal structure of an adaptive parallel operator

Between these two parts, interactions occur in the closed loop along two direc-
tions: (i) the managed operator observes its behavior by measuring non-functional
metrics (e.g. the actual level of performance parameters) that are sent as monitoring
data to the controller; (ii) based on the evaluation of a specific strategy, a set of actions
are taken to influence the element behavior. Reconfiguration commands are issued
by the controller. ese trigger the execution of dynamic reconfiguration activities.

is highlights two important aspects of the adaptive operator: the presence of
specific adaptation mechanisms able to modify the system behavior, and a strategy to
select control actions as and when necessary. In the rest of this thesis we will focus
on the definition, formalization and control of the single adaptive parallel operator.

5.3 Dynamic reconfigurations
Considering an autonomic operator, the computation (i.e. the operating part) can
be executed according to different alternative configurations. A configuration consists
in a specific selection of features such as the current parallelism degree, the current
distribution policy of input elements to the workers, other architecture dependent
parameters, such as mapping over available cores, CPU frequency and so on. A recon-
figuration, driven by an adaptation strategy, involves changes in the current operator
configuration.



5.4 Dynamic reconfigurations 81

Dynamic reconfigurations are intrusive actions on the computation (e.g. reassign
state partitions over a set of workers) that may induce performance degradation and
semantic inconsistencies if not properly implemented. To prevent the occurrence of
these problems, reconfigurations must be executed according to specific optimized
protocols in order to minimize the reconfiguration cost.

In structured parallel computations, the structure and organization of different
entities (emitter, workers and collector) and their communication schema are well-
defined. erefore the exploitation of such methodology renders feasible the devel-
opment of optimized reconfiguration mechanisms that can be encapsulated in the
runtime supports system of the programming environment. Such mechanisms can
be exploited to implement the reconfiguration activities decided by the control part
without any programmer’s intervention like in [Aldinucci et al., 2006b; Vanneschi
and Veraldi, 2007]. In addition this removes the burden of correctness issues about
reconfiguration from developers, enforcing an environment where users do not need
to care about reconfiguration semantics at all.

We will focus on non-functional reconfigurations. ey are adaptation processes
involving the run time modification of some implementation aspects of a parallel
operator:

• structural changes in the current parallelism degree, e.g. increase the number
of workers to obtain a better performance;

• the runtime support can modify the mapping over the available resources;

• the runtime can also affect the operating behavior of the computing resources,
by changing, for example, the CPU frequency for a better trade off perfor-
mance/power consumption;

• data distribution changes: the way in which data is partitioned/distributed over
workers can be changed. In the case of stateful computation this could involve
also data redistribution among the processing entities.

e common aspects of the previous reconfigurations are that they do not modify
the sequential algorithm performed by the parallel module, neither the parallelism
scheme. Which kind of reconfiguration is legit and meaningful and how it should
be efficiently implemented clearly depends on the particular parallelism paradigm
exploited.
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5.4 Adaptation strategies
Although reconfiguration mechanisms are an important part of autonomic systems,
decision-making strategies are essential to achieve the system goals. Resources as-
signed to each component must be automatically adjusted to the changing environ-
mental conditions. To accomplish the execution goals with the desired Quality of
Service, decision-making strategies should be in charge of selecting the best recon-
figurations.

Various approaches could be used in deriving control strategies. We will briefly
review the reactive approaches and the predictive ones. A systematic comparison of
different methodologies to develop adaptation strategies has been made in [Maggio
et al., 2012]. For the following discussion we will adopt a time-driven controller. In
time driven controllers, the adaptation strategy evaluation is performed periodically,
at equally spaced time instant. We call the time interval between two subsequent
decision points control step.

Strategies can be qualitatively and quantitatively compared using specific metrics
of the adaptation process like the number of QoS violations achieved, number of used
resources, frequency of reconfigurations. In the following we will take as reference
the well-known SASO properties [Hellerstein et al., 2004; Gedik et al., 2014]:

• Stability: the strategy should not oscillate the configuration used, i.e. produce
too frequent modifications of the actual configuration;

• Accuracy: the configuration chosen at each step should satisfy the QoS objec-
tives, i.e. it should be able to minimize the number of QoS violations;

• Settling time: the strategy should be able to find a stable configuration quickly;

• Overshoot: the strategy should avoid overestimating the configuration needed
to meet the QoS requirements under the actual workload level.

We are interested in finding the strategy achieving optimal (or a good trade off be-
tween) accuracy with few reconfigurations, short settling times and small overshoot.

5.4.1 Reactive approaches
In reactive strategies the control part decides the set of reconfigurations evaluating
the current monitored data at each control step, reacting to the monitored events not
matching the expected application behavior. Corrective decisions are chosen hoping
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that decisions that have been taking at the current time will be effective also for future
execution conditions.

A possible solution for expressing reactive strategies consists in providing a map-
ping between execution events and corresponding reconfigurations as a finite set of
imperative policy rules. Action policies [Kephart and Walsh, 2004] are a well known-
paradigm to express this kind of strategies. ey dictate the actions that should be
taken whenever the system is in a given current state. Typically they are expressed as:

if (condition) then (action)

the condition is checked (periodically in a time-driven controller) to ensure that the
system is in a given state. If this condition holds, the corresponding action is enforced.
As an example, a simple action policy could be the following one:

if (response_time > threshold) then (increase parallelism degree by one)

It is worth noting that the state of the system that will be reached by taking the given
action is not specified explicitly. erefore the policy programmer has to known the
desired effect of the selected policy. Action policies are designed for computational
performance and simplicity at the potential cost of accuracy. In fact, such solutions
generally cannot be proven to converge to the optimum or desired value. Action
policies have been applied in [Liu and Parashar, 2006] for distributed emergency
management systems. In [Aldinucci et al., 2008] were used to drive reconfigurations
of Behavioural Skeletons, in which skeleton cost models are used to drive the recon-
figuration decisions in a clever way with respect to using a heuristic solution. e ap-
proach is characterized by mechanisms for controlling also multiple non-functional
concerns of a parallel computation (e.g. it is possible to simultaneously control dif-
ferent parameters like performance and security objectives). In this case the solution
proposed in [Aldinucci et al., 2009] provides multiple autonomic managers for a sin-
gle component, each one controlling a specific non-functional concern by using a set
of policy rules. Different policies can lead to conflicting decisions: authors propose
a distributed consensus-based solution to deal with these situations.

Although they are a very simple and flexible solutions, policy rules are not easy
to be tuned: rules calibration may be hard and requires time. e use of this kind of
strategies makes more difficult to prove the convergence to optimal solutions and to
reach advanced properties such as the stability of control decisions and their optimal-
ity. Furthermore, when different rules make contrasting decisions, conflict resolution
strategies must be taken into account to avoid letting the system oscillates between
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different states. Another consideration is that in reactive strategies decisions are taken
when a particular event is already occurring (e.g. the response time is above a thresh-
old), typically resulting in a high number of QoS violations. It is worth recalling that
in the DaSP context the majority of current approaches to the adaptive management
of the application fall in this category (see Section 2.4).

5.4.2 A predictive and model driven approach

In contrast to reactive approaches, predictive strategies try to take in advance the cor-
rective actions. e controller tries to estimate the future, thinking ahead of correc-
tive actions such that certain undesired conditions can be prevented. As explained in
[Maggio et al., 2012], standard and advanced control-based strategies may overcome
the limit of reactive heuristic approaches in providing stability and optimality in the
adaptation process. e applicability of such approaches to real world applications
is constrained to a way to obtain future predictions of interesting monitored metrics
and to the presence of a system model, in order to compare and evaluate alternative
configurations from a QoS perspective.

Among this controllers family, Model Predictive Control (MPC) [Camacho and
Bordons Alba, 2007] is a powerful strategy able to achieve good optimality and sta-
bility in uncertain environments. MPC is a design principle for controllers originally
developed more than 40 years ago and widely adopted in the process industries.

First works to control computing systems using MPC have been described in
[Abdelwahed et al., 2004] for controlling a server farm by dynamically varying the
number of active nodes and in [Kusic and Kandasamy, 2006] to adapt the number
of physical machines allocated to web servers. Authors in [Kusic et al., 2008] have
used it to maximize the benefits of the resource provider by reducing energy usage
and SLA outrage. On Clouds, these concepts have been studied for the dynamic
allocation of virtual machines in [Yuan et al., 2011].

Although these past researches have some common points with the approach that
we will use, they are heavily tailored to the target physical platform without exploiting
any knowledge about the controlled computations. Instead, the idea that we pursue
is to apply MPC to parallel DaSP applications by leveraging on the knowledge of the
application structure. In our research group MPC has been already applied for self-
optimizing structured parallel computations [Gabriele, 2012; Mencagli et al., 2013;
Mencagli and Vanneschi, 2014], however considering only stateless paradigm (e.g.
farm, map) and providing guarantees only on the sustainable throughput. Now we
will bring the similar approach also in DaSP stateful operators with additional control
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objectives in mind. In the next section the basic concepts of this technique will be
introduced.

5.4.3 Model Predictive Control

e application of the MPC consists in different phases (sketched in Figure 5.3) that
start from the observation of the managed element and arrive to a reconfiguration
decision. In the following we describe their major characteristics, exemplifying them
on the case of a generic parallel stream computation. It is worth recall that in a time-
driven approach the controller evaluates the strategy at the beginning of the control
step, in parallel with the system execution.
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Figure 5.3: Internal structure of a MPC controller

Disturbance forecaster

e controller observes the system through the measurement d(τ − 1) of exogenous
uncontrollable events affecting the system, the so called disturbances. e measure-
ments are collected periodically, once per control step. at is at the beginning of
control step τ the disturbances of the previous step are available to the controller.
In stream processing applications, the arrival rate and the processing time per input
tuple can be modeled as disturbances. For the dynamic use of cost models, future
disturbance estimation is a crucial point. erefore the controller predicts their fu-
ture values through statistical forecasting tools that exploit the history of past samples
(e.g. time-series analysis [Herbst et al., 2013]). At this point a future time horizon,
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called prediction horizon, of h consecutive control steps is considered. A forecasting
model has a general structure defined as follows:

d̃(τ) = ψ
(
{d(τ − i)}i=1,...,p, ν1, ν2, . . .

)
where d is a disturbance variable and d̃(τ) is the predicted value for the control step
τ . e model uses the last p measurements while ν1, ν2, . . . are parameters usually
obtained by training the model using a representative sample of data. Multi-step
ahead forecasting models return a sequence of the next h ≥ 1 future values. In
some cases, an acceptable estimation of the future value of a disturbance variable is
represented by the last instantaneous monitored value, i.e. d̃(τ) = d(τ − 1).

System model

e nature of the MPC approach is model driven: an operating part model is used to
compare alternative configurations and to evaluate them under the same disturbance
scenario. e model captures the relationship between QoS variables (e.g. service
rate, latency, energy consumption) and the current configuration expressed as a set of
decision variables. In particular a model Φ put in relationship the following variables:

• QoS variables (denoted by q(τ)) represent information that characterize the
quality of the execution in control step τ . ey could regard, for example, the
service rate, the computation latency and power consumption;

• decision variables (denoted by u(τ)) that identify the operating part configu-
ration (e.g. number of workers, CPU frequency) in control step τ ;

• the disturbances variables whose future evaluation is predicted by the fore-
caster.

In general, the model structure can be described by the following discrete-time
equation:

q̃(τ) = Φ
(
u(τ), d̃(τ)

)
(5.1)

indicating that the future value of QoS variables at step τ depends on the particular
operator configuration and expected disturbances variables.

Deriving system models can be a non trivial task, but the use of structured parallel
paradigms can play a fundamental role. Each parallelism pattern is composed of a
limited set of functionalities (collectors, distributors, workers) with a precise behavior
and well known interactions. As already mentioned, the knowledge of these inter-
actions schema is of great help in defining analytical or approximated cost models of
interesting QoS metrics.
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Optimizer

e MPC controller solves an optimization problem to obtain the optimal reconfigu-
ration trajectory Uh(τ) = (u(τ), u(τ+1), . . . , u(τ+h−1)) over a prediction horizon
of h ≥ 1 steps. Formally, the optimization problem can be expressed as follows:

min
Uh(τ)

J =
h−1∑
i=0

L
(
q̃(τ + i), u(τ + i)

)
(5.2)

Subject to:

q̃(τ + i) = Φ
(
u(τ + i), d̃(τ + i)

)
, i = 0, . . . , h− 1

u(τ + i) ∈ U , i = 0, . . . , h− 1

e optimization is constrained by the system model which uses a trajectory of dis-
turbance forecasts D̃h(τ) = (d̃(τ), d̃(τ+1), . . . , d̃(τ+h−1)). Furthermore, decision
variables must belong to the admissible set U (e.g. all the feasible combinations of
parallelism degrees and CPU frequencies). e function L is a step-wise cost that
models the different control objectives, for example maintain the QoS levels on cer-
tain metrics while minimizing the used resources.

At this point a possible solution could be to apply this reconfiguration plan step
by step and calculate a new optima control trajectory only at the end of prediction
horizon. In practical scenarios this is not an effective approach: the uncertainty of
disturbance estimations (which increases going deeper in the prediction horizon) and
the potential imprecision of QoS models, suggest a more iterative approach. Only
the first control decision of the optimal trajectory will be applied. When this control
step ends, the entire procedure is repeated at the next control step exploiting new
measurements from the system. e effect is to move the prediction horizon towards
in the future following the so called receding or rolling horizon (see Figure 5.4).

e positive aspect of MPC is its intrinsic ability to incorporate this feedback
mechanism [Camacho and Bordons Alba, 2007].e problem of a similar approach
is related to its computational complexity. When the set of the decision variables
is limited to a finite set of values, the optimization phase requires to explore the
combinatorial set of all the feasible combinations of the decision variables. is,
together with the fact that the optimization problem must be solved at each sampling
interval, render the optimization phase is a crucial point of the whole approach even
with relative short horizons (h = 1, 2, 3). To be implementable, MPC requires to
complete the optimization process within the temporal constraints dictated by the
control step of the system. erefore, computational efficiency is a critical issue and
will be carefully taken into account in Chapter 6.
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Figure 5.4: Example of the receding horizon principle with a prediction horizon length of two
control steps. At the beginning of each step the strategy is re-evaluated

5.5 Summary
In this chapter we introduced the basic concepts of adaptive parallel computations.
e MPC approach has been presented and it will constitute the starting point for
the developing of adaptive DaSP operators having properties of high accuracy and
stability and low overshoot. In the next chapter we will apply the approach to the
developing of DaSP operators and we will evaluate its effectiveness.

e use of well defined parallel paradigms to exploit parallelism in computation
will allow to encapsulate reconfiguration mechanisms and adaptation strategies di-
rectly into the runtime support level of the programming environment. In this way
programmer is only requested to properly use high-level constructs or annotations to
express structured parallel variants and identify desired QoS aspects to be attention
of the adaptation strategy.



6 Strategies and mechanisms
for adaptive DaSP operators

One of the characterizing aspects of Data Stream Processing applications is their long
running nature (24hr/7d). eir workload and input rate may exhibit wide variations
that need to be sustained in order to provide the QoS required by the users without
interruptions. Adaptivity is a fundamental capability that these applications should
exhibit: they must be able to autonomously scale up or down the used resources to
accommodate dynamic requirements and workload by maintaining the desired QoS
in a cost effective manner.

In Chapter 4 we have introduced various patterns to deal with the parallelization
problems of common DaSP computations. e natural prosecution of that work is
to enhance those solutions with autonomic capabilities. In this chapter we will tackle
the problem of devising mechanisms and adaptation strategies that take into account
performance guarantees (in terms of throughput and latency) and resources consump-
tion of the parallel solution. We will use a predictive and control theoretic approach.
is, together with the exploitation of well known parallelization schema, will allow
to provide adaptive DaSP operators that are able to meet the performance require-
ments by reducing the operating costs. Everything concerning the adaptive behavior
could be encapsulated inside the runtime support of a high-level programming en-
vironment, in such a way as to completely hide these aspects from the programmer’s
viewpoint and, clearly, to final users.

In this chapter we will study these aspects for the Key Partitioning (KP) solution
(presented in Section 4.4). We concentrate on this pattern for a variety of reasons:

• Key Partitioning is a generalist pattern: provided that it is used over a keyed
stream, it does not require neither particular properties on the computation
that must be applied nor on the type of internal state used. For this reasons
in this chapter we will not make explicit reference to the case of a windowed

89
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operator, but rather we will take into account a generic keyed stateful operator
(among which, we know, windowed ones are a notable example);

• it is a well known and diffused parallelization schema in the literature and exist-
ing SPEs. erefore solutions and strategies here proposed could be amenable
to find a rapid application also in these frameworks;

• mechanisms and strategies that will be developed are suitable also for the other
parallel patterns introduced in Chapter 4. Mechanisms will deal with common
reconfiguration activities such as changes in the parallelism degree and internal
state movements and therefore can be at least partially reused. Strategies will
rely on the Model Predictive Control and can be easily adapted also to the other
patterns.

e chapter is organized as follows. In the first part we will describe the dy-
namicity challenges that a partitioned stateful operator parallelized with a KP pattern
should face. e pursued control objectives, in terms of QoS assurances and resources
usage minimization, will be detailed. Subsequently we will detail adaptation strate-
gies that leverage the Model Predictive Control to fulfill these objectives. erefore
we have to derive cost models for the interesting objectives taking into account the
structure of the exploited pattern. While in Chapter 4 we described the impact on
performance parameters of the various parallel patterns in an intuitive way, now we
need formal and parametric models to quantitatively measure these impacts. Finally
we will focus on reconfiguration mechanisms: we abstract from the target architec-
ture in order to provide general description of useful and re-usable reconfiguration
actions. In the next chapter a detailed experimental section will follow, evaluating
the proposed solutions on shared and distributed memory architectures.

e contents of this chapter and related experiments have been partially published in
[II,III].

6.1 A dynamic world
Real-world stream processing applications are characterized by highly variable exe-
cution scenarios. For a keyed DaSP operator we can recognize three different dy-
namicity factors that may affect its working behavior:

(D1) variability of the stream pressure: input streams are generated by outside sources
that can be highly variables (e.g. sensors, financial tickers and social networks



6.1 A dynamic world 91

data). e input rate can exhibit large up/down fluctuations and/or burstly
characteristics;

(D2) variability of the key distribution: the frequency distribution of the keys can be
time-varying making load balancing impossible to be achieved statically;

(D3) variable processing time per tuple: processing time per tuple can be different
across the keys and may change significantly during the execution. In some
cases like time-based sliding window it can be dependent from the arrival rate.

Operators should be able to tolerate these variability issues in order to keep the
operator QoS optimized according to some user’s criteria. e simple solution of
configuring a system to sustain the peak-load is not effective. In many case the “peak”
is unknown, therefore the only solution is to use all (or a considerable part of ) the
available resources. is is usually too expensive. Moreover it can be ineffective if
the operator is not able to balance the workload during the execution, e.g. if the key
frequencies exhibit wide variations at runtime.

For these reasons elastic strategies and related mechanisms are mandatory in this
kind of applications. ey must change operators’ configurations in a non intrusive
way to face all the mentioned dynamicity challenges.

In Key Partitioning (KP) a partitioned stateful operator is parallelized by using a
set of workers each one is responsible for a state partition (refer to Section 4.4). e
emitter guarantees that all the tuples with the same partitioning key are routed to
the same worker. In this way tuples within the same group are processed in the same
order of appearance in the input stream. To do so, the emitter uses a routing function
m : K → [1, n], where n is the current number of workers and K is the set of keys.

Scaling strategies must be able to change the parallelism degree n (the current
number of workers) and the distribution function m. In this thesis we will take into
account also energy consumption reduction in modern CPUs with Dynamic Voltage
and Frequency Scaling (DVFS) capabilities. erefore the operating CPU frequency
f could be another interesting decision variable.

In the following section we will detail control strategies to enhance the KP pattern
with autonomic features in order to:

• guarantee a certain QoS level required by users. Most of the existing strategies
in DaSP are throughput oriented (see Section 2.4), but we want to provide as-
surances also on the experienced latency. Achieving and guarantee low latency
is a crucial factor in many DaSP domains (e.g. financial trading, surveillance
systems) as late results are practically worthless;
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• minimize the resources consumption. We will not focus only on a simplistic
approach “use the minimum number of processing elements”. In our opinion
it is interesting to tackle the problem also from an energy awareness point of
view. Reducing energy consumption is a big challenge in today’s society and in
DaSP applications deserves special attention due to their long running nature.

In the reminder of this chapter we will rely on the following assumptions:

• our target architectures will be a multicore CPUs (single node) or a cluster of
multicore machines. e various entities of a parallel operator (i.e. emitter,
workers and so on) will be in execution on distinct cores of the machine(s);

• homogeneity: the workers are executed on the homogeneous cores of a (set of )
multicore machine(s). For multicore CPUs this implies that all the cores run
at the same frequency. In the case of execution over a cluster we are assum-
ing that all the machines involved have the same hardware and computational
characteristics.

6.2 Adaptation strategies

Following the description given in Section 5.2, the Key Partitioning schema is now
enhanced with a controller in charge of taking the reconfiguration decisions (see Fig-
ure 6.1).

REPLICA 1

REPLICA n

input 
stream

output 
stream

X Y.
.
.

m(⌘(·)) = 1

SPLITTERE MERGER

W1
State of the 

worker

Wn
State of the 

worker

C

CONTROLLER

Figure 6.1: Adaptive KP operator. In the figure m is the routing function used by the emitter; η
represent the key attribute of a tuple. Solid lines represent data flows. Dashed ones represent
monitoring and reconfiguration messages.
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e controller observes operator’s execution and periodically acquires measure-
ment data (past values of disturbances) from the computation functionalities. Ta-
ble 6.1 summarizes the set of basic measurements gathered by the controller from
the emitter and the workers. ese metrics are relative to a control step (omitted to
simplify the notation), i.e. at the beginning of control step τ the updated measure-
ments related to the last step τ − 1 are available.

Symbol Description

TA, σA Mean and standard deviation of the inter-arrival time per triggering tuple (of
any key). e arrival rate is λ = T−1

A . ese measurements are collected by
the emitter.

{pk}k∈K Frequency distribution of the keys. ey are measured by the emitter.
{tk}k∈K Arrays of computation times of the keys during the last control step. Each tk

is an array of values for key k, collected by the worker owning the key k during
the last step.

Table 6.1: Basic monitored disturbance metrics collected by the emitter and the worker func-
tionalities and gathered at the beginning of each control step by the controller.

In the following discussion we will use symbols marked with a tilde on top to
denoted forecasted values of disturbances or of derived metrics. Unmarked symbols
refer to measured metrics.

Like in Section 4.9, the term triggering tuple denotes a tuple that triggers opera-
tor’s internal processing logic. For stateless or stateful operators that are activated by
each incoming data a triggering tuple is any input tuple. For window based stateful
operators is any tuple that triggers a new window activation (according to the window
triggering policy, see Section 2.1.2). Non triggering tuples are simply inserted into
the corresponding window and it is reasonable to assume that they have a negligible
computation cost.

e workers monitor the computation time per triggering tuple {tk}k∈K. To re-
duce the amount of measurements, it could be the case that each worker performs a
sampling of the reported times.

6.2.1 Derived metrics
Starting from the reported basic disturbances, the controller can derive other addi-
tional metrics (reported in Table 6.2).
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Symbol Description

Tk Mean computation time per triggering tuple with key k.
T i
W Mean computation time per triggering tuple (of any key) processed by worker

i.
T Mean computation time per triggering tuple (of any key) processed by any

worker.
T i
A Mean inter-arrival time (of any key) to worker i.
T id
S , σS Mean and standard deviation of the ideal service time of the operator.
ρi Utilization factor of worker i.
ρ Utilization factor of the operator.
WQ Operator’s mean waiting time per triggering tuple (of any key).
ca, cs Coefficients of variation for operator’s inter-arrival and ideal service time.

Table 6.2: Metrics derived by the controller from the basic ones.

From the arrays of measurement tk, for each k ∈ K the controller derives the average
processing time per key that we denote with Tk. e mean computation time per
triggering tuple of any key of the i-th worker is calculated as follows:

T̃ i
W (τ) =

1∑
k|mτ (k)=i

p̃k(τ)

∑
k|mτ (k)=i

p̃k(τ)T̃k(τ) (6.1)

It is essentially the weighted mean of the computation times of the keys assigned to
worker i. In the definition of this quantity we used the values of the key frequencies
pk and computation time Tk for the next step. Since their current values cannot be
measured until the next control step, they need to be forecasted by using predictive
filters. In some cases it could be reasonable to use the last measured values as the next
predicted ones, e.g. p̃k(τ) = pk(τ − 1).

More generally, the mean computation time per triggering tuple of the entire
operator (for any key and any worker) can be defined as:

T̃ (τ) =
∑
k∈K

p̃k(τ)T̃k(τ) (6.2)

e mean inter-arrival time of triggering tuples to worker i is given by:

T̃ i
A(τ) =

T̃A(τ)∑
k|mτ (k)=i p̃k(τ)

(6.3)
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is follows from the observation that a worker i receives only a fraction of the input
tuples transmitted by the emitter functionality, i.e. the ones whose key attribute value
is assigned to that worker by the routing function. In the above formula the inter-
arrival time value for the current step T̃A(τ) should be predicted using forecasting
tools in order to track the future workload.
e utilization factor of worker i is derived as follows:

ρ̃i(τ) =
T̃ i
W (τ)

T̃ i
A(τ)

(6.4)

If it is greater or equal than one, the worker is a bottleneck. If no worker is a bottle-
neck, the emitter is able to route tuples to the workers without blocking on average.
Otherwise, if at least one worker is a bottleneck, its input queue grows up to reaching
its maximum capacity. At this point the backpressure throttles the emitter which
is periodically blocked from sending new tuples to the worker. erefore this is a
situation that should be avoided on the long term.

6.2.2 Performance and energy models

e MPC relies on operator models to evaluate different operator configurations
(Section 5.4.3). For the moment being we assume that the operator configuration
for a given step τ is uniquely identified by the number of workers, the routing func-
tion used by the emitter and the operating CPU frequency (Table 6.3). e models
return the predicted values of QoS variables. As pointed out, we are interested in the
throughput sustained by the operator, its latency (or more formally the response time)
and the power consumption. Table 6.4 reports the QoS variables which are the output
of the models.

Symbol Description

n(τ) Number of workers used during step τ .
mτ :K → [1, n(τ)] Routing function used by the emitter during control step τ .
f(τ) e operating CPU frequency (GHz) used by the operator during

control step τ .

Table 6.3: Decision variables selected by the controller
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Symbol Description

TS(τ) Effective service time of the operator during step τ . It is the inverse of the
throughput.

RQ(τ) Expected response time (latency) of the operator during step τ .
P(τ) Power consumed by the operator during step τ (in Watts).

Table 6.4: QoS variables output of the models.

roughput model

We define the ideal service rate of the operator as the average number of triggering
tuples that the operator is able to serve per time unit provided that there are always
new tuples to ingest. We are interested in the inverse quantity, i.e. the ideal service
time T id

S . To derive it we have to account for the slowest worker, i.e. the one with
the highest utilization factor:

T̃ id
S (τ) = T̃ b

W (τ) ·
∑

k|mτ (k)=b

p̃k(τ) (6.5)

such that: b ∈ argmax
i∈[1,...,n(τ)]

ρ̃i(τ)

e effective service time is given by the maximum between the ideal one and the
inter-arrival time:

T̃S(τ) = max
{
T̃A(τ), T̃

id
S (τ)

}
(6.6)

is essentially shows that to optimize the throughput it is not necessary to balance
the workload between the workers, but it is sufficient that all the workers have uti-
lization factor less than one. Under the assumption that the load is evenly distributed
among the n(τ)workers, the ideal service time formula of Equation 6.5 can be further
simplified as:

T̃ id
S (τ) =

∑
k∈K p̃k(τ)T̃k(τ)

n(τ)
=
T̃ (τ)

n(τ)
(6.7)

Equation 6.7 requires that, given the current frequency distribution, there exists a
routing functionmτ that allows the workload to be (quasi) evenly balanced among the
workers. As stated in recent literature [Gedik et al., 2014], this assumption practically
holds in many real-world applications, where skewed distributions are common but
a well balanced distribution function can usually be found. is will clearly require
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to properly balance the workload among the n workers by changing the distribution
function when necessary.

Latency model

A very important QoS metric is the latency experienced by the users. More formally
we are interested in the response time, i.e. the time elapsed from the reception of a
tuple that triggers the operator internal processing logic and the production of the
corresponding output.

Analogously to [Lohrmann et al., 2015] we use a Queueing eory approach to
derive a formal cost model for this important metric. e mean response time of the
operator during a control step τ can be modeled as the sum of two quantities:

RQ(τ) = WQ(τ) + T (τ) (6.8)

where WQ is the mean waiting time that a triggering tuple spends from its arrival to
the system to when the operator starts the execution related to it.

To find the mean waiting time per triggering tuple, our idea is to model the op-
erator as a G/G/1 queueing system, i.e. a single server system with inter-arrival
time and service times having general statistical distributions. An approximation of
the mean waiting time for this system is given by the Kingman’s formula [Kingman,
1962]:

W̃K
Q (τ) ≈

(
ρ̃(τ)

1− ρ̃(τ)

)(
c̃2a(τ) + c̃2s(τ)

2

)
T̃ id
S (τ) (6.9)

where the input parameters are the following:

• the utilization factor of the operator during step τ , defined as ρ̃(τ) = T̃ id
S (τ)/T̃A(τ);

• the coefficient of variation of the inter-arrival time ca = σA/TA;

• the coefficient of variation of the ideal service time cs = σS/T
id
S .

Equation 6.9 can be used for stable queues only, i.e. such that ρ̃(τ) < 1. is condi-
tion is used in most of the Queueing eory results, and implies that this model can
be used for evaluating the response time for configurations in which the operator is
not a bottleneck. e ideal service time can be determined according to Equation. 6.5
or Equation. 6.7 if the load is balanced among the workers.

We choose this model for its generality, since it does not need strict assump-
tions on the type of the arrival and service stochastic processes. Simpler formulas
of the waiting time for other queueing systems like M/M/1, M/D/1 and M/G/1
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exist and can be used in our strategies by assuming that the transmission rate of the
stream source can be modeled as a Poisson process. However, in real situations arrival
and service distributions are usually unknown and such strong assumptions usually
do not hold. e case of Equation 6.9 is more general but also more challenging
because several information (e.g. coefficients of variation) must be efficiently moni-
tored by the runtime to apply it. We will use Equation 6.9 by making the following
simplifications:

• we model the whole operator as a single queueing system with service time
equal to the one of the operator with nworkers (Equation 6.5 or Equation 6.7);

• although the mean inter-arrival time for the next step T̃A(τ) is forecasted using
statistical filters, the estimated coefficient of variation is kept equal to the last
measured one, i.e. c̃a(τ) = ca(τ − 1);

• the coefficient of variation of the ideal service time is equal to c̃s(τ) = cs(τ−1).
So doing, we suppose that cs is unaffected by changes in the parallelism degree.

Kingman’s model provides good accuracy especially for systems with utilization
factor near to one (close to saturation) [Kingman, 1962; Gross et al., 2008], which is
a good property since our goal is to avoid wasting resources. We will use this model
to compare the latency of different operator configurations. To increase its precision
we use a feedback mechanism in order to fit Kingman’s approximation to the last
measurements gathered by the controller. is mechanism is defined as follows:

W̃Q(τ) = e(τ) · W̃K
Q (τ) =

WQ(τ − 1)

W̃K
Q (τ − 1)

· W̃K
Q (τ) (6.10)

e parameter e is a corrective factor defined as the ratio between the measured mean
waiting time during the past step τ − 1 collected by the emitter functionality and the
last prediction obtained by Kingman’s formula. e idea is to adjust the next predic-
tion according to the past error. A similar mechanism has been already applied with
good results to the problem of estimating the response time of a chain of operators
in [Lohrmann et al., 2015].

Power consumption model

Power efficient computing systems have drawn the attention in the last years, due to
both environmental and economical reasons. e energy is defined as the power con-
sumed on a given time interval. Owing the infinite nature of DaSP computations,



6.2 Adaptation strategies 99

the minimization of the instant power (power capping) is the main solution to reduce
energy consumption and cutting down operating costs. erefore a desired control
objective could be to find the operator configuration that minimizes the power con-
sumption on the execution architecture. We will focus on the power consumption of
the CPU, since it is in charge of the greatest percentage of power consumption when
the system is under load [Feng et al., 2005]. In general, there are various factors that
contribute to the CPU power consumption. We can recognize at least two of them,
the static and the dynamic power parts [Kim et al., 2003]:

P̃(τ) ≈ P̃static(τ) + P̃dynamic(τ)

e static power part represents the power consumed from leakage mechanisms in the
transistors. It depends from the number of active transistors and other technology
dependent features. e dynamic part is essentially due the activity of the logic gates
of the CPU and it is originated when the processor is active in executing computa-
tions. In this thesis we will use a basic power model, in which we do not consider
the static power dissipation of the CPU. e reasons of this choice are twofold. First
of all, for the moment being we are not interested in knowing the exact amount of
energy consumed, but only a proportional estimation such that we can compare dif-
ferent operator’s configurations and choose the most power efficient one that satisfies
the QoS required. Secondly, the static power depends also on technological char-
acteristics inherent to the CPU used, while the dynamic power is proportional to
factors that we may actually control (e.g. number of active cores and frequency; see
Equation 6.11). Clearly we recognize that a more precise power model could allow
better results in terms of power-saving, but we left its evaluation for future works.
Given this assumption, we model the power dissipation of the CPU as its dynamic
part. is follows the underlying formula [Intel, 2004; Miyoshi et al., 2002]:

P̃(τ) ∼ Ceff · n(τ) · f(τ) · V2 (6.11)

where the power during step τ is proportional to the used number of cores (that is
equal to the number of workers in our case), the CPU frequency and the square of
the supply voltage V , which in turn depends on the frequency of the processor. In the
model Ceff represents the effective capacitance [Chandrakasan and Brodersen, 1995],
a technological constant that depends on the hardware characteristics of the CPU.

From Equation 6.11 we deduce that the power consumption of the CPU can be
reduced by reducing its frequency and voltage, by shutting down unused resources or
reducing the number of cores used by the application. Modern CPUs have different
frequency operating points (the so called P-States). e voltage required for stable
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operation is determined by the frequency at which the circuit is clocked, and can
be reduced if the frequency is also reduced. erefore by lowering the operating
frequency, the supply voltage will be lowered too, thus allowing a reduction of both
components of Equation 6.11. Furthermore, the second component of the equation
decreases more than linearly with respect to the frequency, since a relationship exists
between these two quantities. is mechanism of frequency throttling is commonly
known as Dynamic Voltage and Frequency Scaling (DVFS).

e rationale that we will adopt to bind the used frequency, power consumption
and computation time is the following one: halving the frequency we will double the
computation time (this is true for CPU bound computations [Miyoshi et al., 2002]),
but on the other hand we will use less than half the power (thanks to the more than
linear relation between frequency and voltage). Using Equation 6.11 we are able
to estimate the power consumed by different operator configurations, expressed by
all the feasible combinations of the number of used cores and the employed CPU
frequency, and select the most power efficient one that meets the targeted QoS level.
It is important to note that we are switching the CPU frequency for the whole system.
In modern processors, it is possible to do this at a finer granularity, for example for
each CPU socket (like in the architecture used in our experiments) or even for each
different core in some cases. We do not consider explicitly this possibility: on the one
hand this could allow to save more power, but on the other hand it is in contrast with
our core homogeneity assumption (see Section 6.1). In particular this will complicate
our performance models, optimization problem and load balancing heuristics (the
latter aspect will be discussed in Section 6.4.3).

Finally, it is worth noting that by monitoring the system utilization factor ρ(τ)
only, we are not able to achieve this goal. If we have a given utilization factor to
guarantee (derived for example from Equation 6.9) several configurations can achieve
the same or similar utilization factor, e.g. by using 5 workers with a frequency of
2GHz or 10 workers at 1 GHz.

6.3 Optimization phase

In Chapter 5 we have seen that at each step an MPC based controller resolves an op-
timization problem. e nature of our optimization problem is combinatorial, with
the decision variables taking their values from discrete and finite sets. A simplifica-
tion in the resolution of this problem consists in taking out the routing function m
from the decision variables (Table 6.3). e idea is to assume that at each control
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step the controller is always able to find a routing function that allows the workload
to be (quasi) evenly balanced among the workers. In this way the controller can use
Equation 6.7 to estimate operator’s ideal service time instead of the more general
Equation 6.5. is assumption is realistic in all the scenarios in which the skewness
factor (ratio between the most frequent and the least frequent key) can be acceptably
bounded to some relatively small constant. is conditions holds in many real-world
applications and most of the recent research works assume this conditions to be true
[Gedik et al., 2014; Gedik, 2014; Nasir et al., 2015]. erefore the MPC controller
is designed as in Figure 6.2 with a rebalancer component in charge of computing a
new routing function that balances the workload among the workers. is compo-
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Figure 6.2: Internal logic structure of the MPC controller with the rebalancer component for
generating the routing function

nent is executed at the beginning of each control steps, after that a new operator
configuration has been chosen, for two reasons:

• if the MPC controller changes the number of workers, the rebalancer computes
a new routing function to map the keys onto the new set of workers;

• even if the number of workers does not change, the rebalancer computes a new
routing function if the difference in terms of load between the most loaded
worker and the least loaded one is over a threshold. is allows the MPC
controller to use Equation 6.7 to accurately estimate operator’s ideal service
time.
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We will see in Section 6.4 different rebalancing policies. From this follow that the
decision variables of the models are now the number of workers and the CPU fre-
quency. ey are represented by the a vector u(τ) = [n(τ), f(τ)]T .

6.3.1 e optimization problem
e MPC controller solves at each step the optimization problem defined in Equa-
tion 5.2:

min
Uh(τ)

J =
h−1∑
i=0

L
(
q̃(τ + i), u(τ + i)

)
ecost function is the sum of the step-wise costsL over a horizon of h ≥ 1 future

steps. A general form of the step-wise cost can be expressed as follows [Abdelwahed
et al., 2009], with i = 0, . . . , h− 1:

L(q̃, u, i) = Qcost

(
q̃(τ + i)

)
+ QoS cost

+Rcost

(
u(τ + i)

)
+ Resource cost

+ Sw
cost

(
∆u(τ + i)

)
Switching cost (6.12)

e cost comprises three terms. eQoS cost represents the user degree of satisfaction
with the actual QoS (i.e. throughput and latency). e resource cost models a penalty
proportional to the amount of resources/power consumed. e two terms counter-
balance each other: while a higher usage of resources guarantees better performance
in general (hence a lower QoS cost), this also results in a higher resource cost.

e switching cost is a function of the vector ∆u(τ) = u(τ)− u(τ − 1). It mod-
els the penalty incurred in changing the actual configuration and it will be used by
our strategies to achieve a proper compromise between SASO properties (see Sec-
tion 5.4). e role of the switching cost is also more subtle: it binds control decisions
between consecutive steps. Consequently, the optimal reconfiguration trajectory can-
not be determined by minimizing L at each step, but the controller needs to explore
the space of all the possible reconfiguration trajectories Uh(τ).

Various MPC-based strategies can be designed by using different formulations of
the three cost terms. We now introduce different variants of them.

QoS cost

With the intent of guarantee two differentQoS requirements, we distinguish between
two QoS cost definitions:
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• throughput-based cost: the goal is to make the operator able to sustain the in-
put rate. A possible way of modeling this requirement is to use the following
formulation:

Qcost

(
q̃(τ + i)

)
= α T̃S(τ + i) (6.13)

at is a linear cost proportional to the effective service time, where α > 0

is a unitary price per time instant. To minimize the QoS cost the controller
chooses one of the configurations with minimum service time i.e. equal to the
predicted inter-arrival time according to Equation 6.6. It is worth noting that
the QoS cost for all the configurations that lead to an ideal service time lower
than the arrival time is the same;

• latency-based cost: in latency-sensitive applications the response time needs to
be bounded to some user defined thresholds. Exceeding those requirements
may lead to a loss of revenue or to wrong results depending on the type of system
controlled. We model this QoS requirement with a cost function defined as
follows:

Qcost

(
q̃(τ + i)

)
= α exp

(
R̃Q(τ + i)

δ

)
(6.14)

where α > 0 is a positive cost factor. e cost lies in the interval (α, eα] for
latency values within the interval (0, δ], where δ > 0 is a maximum threshold
for the response time. e idea is that such kind of cost heavily penalizes con-
figurations with a response time greater than the threshold as the cost increases
exponentially.

Resource cost

e resource cost is defined as a cost proportional to the number of used workers or
to the overall power consumed, which in turn depends both on the number of used
cores and the CPU frequency. In the two cases we use the following cost definitions:

Rcost

(
u(τ + i)

)
= β n(τ + i) per-core cost (6.15)
= β P̃(τ + i) power cost (6.16)

where β > 0 is a unitary price per unit of resources used (per-core cost) or per watt
(power cost).



104 CHAPTER 6 Strategies and mechanisms for adaptive DaSP operators

Switching cost

We use the following switching cost definition in the MPC optimization problem:

Sw
cost

(
∆u(τ + i)

)
= γ

(
∥∆u(τ + i)∥2

)2
(6.17)

where γ > 0 is a unitary price factor. e cost includes the euclidean norm of the
difference vector between the decision vectors used at two consecutive control steps.
Quadratic switching cost functions are common in the control theory literature [Ca-
macho and Bordons Alba, 2007], as they penalize frequent reconfigurations by avoid-
ing the controller oscillating the configuration used. With the euclidean norm both
dimensions (i.e. number of workers and operating CPU frequency) are considered
equally significant. Our first intent is to show that a similar switching cost definition
has two important effects:

• it incentives the controller to change the configuration as less as possible;

• owing to the quadratic non-linearity, it favors small modifications of the actual
configuration.

Both the aspects will be discussed in Chapter 7 and play a crucial role in designing
control strategies able to reach desirable SASO trade-offs. Other switching cost could
be easily defined, for example to give more weight to (and therefore avoid) changes
in the number of workers with respect to changes in the CPU frequency. ey will
not be discussed in the experimental chapter and left to future investigations.

6.3.2 Search space reduction
e MPC optimization phase might need to explore the combinatorial set of all the
feasible combinations of the decision variables. Being N the maximum number of
available workers and F the set of feasible CPU frequencies, the number of explored
configurations is O((N × |F|)h). us we have exponential increase in worst-case
complexity with an increasing number of reconfiguration options and longer predic-
tion horizons. e computational overhead of the controller could become a major
concern, as the strategy needs to occupy a small (negligible) fraction of the control
step interval. erefore, methods to reduce the computational overhead are manda-
tory for real-time execution.

e optimization is essentially a search problem over a tree structure called evolu-
tion tree [Mencagli and Vanneschi, 2014], whose height corresponds to the horizon
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length h and the arity to the total number of configuration options Ω = N × |F|,
as shown in Figure 6.3. An approach to reduce the explored search space consists in
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Figure 6.3: Evolution tree (h = 2) and B&B procedure to reduce the search space of the MPC
optimization process.

Branch & Bound methods (B&B). We will use the following procedure [Mencagli
and Vanneschi, 2014]:

• we assign to each explored node i of the tree a variable Ci which represents the
cost spent to reach that node from the root. e cost of the root is zero;

• for each node we have Ω possible branches. e subtree rooted at node i is
explored if and only if Ci < Copt, where Copt is the minimum cost of all the
root-to-leaf paths currently explored during the search process. If i is a leaf, we
further set Copt = Ci.

is procedure can be applied if the cost function J is monotonically increasing with the
step of the horizon. According to Equation 6.12, L > 0 for each step, thus the cost
function J satisfies this property.

e procedure does not affect the final choice, which is the same of the exhaustive
search. However, the space reduction depends on the size of the pruned subtrees and
we have no guarantee of its efficacy in general.
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In conclusion, B&B techniques can mitigate the problem but not solve it at all.
For very large configuration spaces the controller overhead could be unacceptable
even using B&B. Possible solutions can be evolutional algorithms, AI methods or
special heuristics [Abdelwahed et al., 2009]. e employment of such techniques
will be evaluated in the future.

6.4 Reconfiguration mechanisms

e evaluation of the adaptation strategies results in a (possible) new configuration
of the operator, in terms of number of workers, CPU frequency and routing function
(computed by the rebalancer). Reconfiguration mechanisms enforce the new deter-
mined configuration. Various mechanisms are necessary and in the rest of this section
we will describe them trying to abstract from the target architecture. In Chapter 7
we will further details their implementations depending if they are in execution on a
shared memory architecture or on a distributed environment.

In every case we assumed that the execution platform is composed by one (or
more) multicore CPUs. erefore emitter, collector and the worker are executed
by threads running on the cores of the underlying architecture. e controller is
executed by a dedicated control thread. is choice is in line with other approaches
proposed in the recent literature. In [Gedik et al., 2014] the proposed elastic support
consists in a control algorithm performed by a centralized entity (at the emitter in
this case). In our implementation we prefer to keep separated the strategy evaluation
by the routing functionality in order to avoid the emitter being slowed. A similar
solution has been adopted in [Lohrmann et al., 2015]. Solutions with distributed
interconnected controllers [Scattolini, 2009] will be studied in the future.

reads cooperate by exchanging messages along queues that interconnect them
and are implemented accordingly to the architecture. In the same machine they are
implemented using shared lock-free buffers offered by Fastflow. In a shared nothing
environment we resort to traditional sockets (further details in Chapter 7). Apart
from the tuples coming from the input stream and the produced results, emitter,
workers and collector send measurements to the controller while the controller will
send reconfiguration messages. Now we will describe in an architecture-agnostic way
the basic reconfiguration mechanisms needed to support the dynamic adaptation of
a DaSP operator parallelized using the KP pattern.



6.4 Reconfiguration mechanisms 107

6.4.1 Increase/Decrease the number of workers
If it is required to increase the number of workers, we must create a set of new threads
for the additional workers and the related queues used to interconnect them with the
emitter, collector and the controller itself must be created. e controller sends special
control messages to the emitter and the collector in order to notify them of the new
configuration. e controller also computes a new routing function which is notified
to the emitter functionality. en, the emitter starts the migration protocol described
in the next section.
Symmetric actions are taken in the case of a removal of a subset of the workers.

6.4.2 State migration
Critical for the correctness of the computation is the state migration actions needed
at each change in the number of workers. Each time the rebalancer computes a new
routing function, some of the data structures must be migrated. is requires to
move data from the worker that was handling a given key k, to the worker that is
now responsible of that key.

We are interested in low-latency streaming applications for which the statemigra-
tion protocol must be very optimized. We identify four fundamental properties of a
reconfiguration protocol, which represent general design principles for a low-latency
reconfiguration protocol for adaptive operators

(R1) gracefulness: during the migration the emitter and the workers should avoid
discarding input tuples, processing tuples with the same key out-of-order, and
should prevent the generation of duplicated results (i.e. preserve exactly-once
semantic);

(R2) fluidness: the emitter should never wait for the migration completion before
starting to distribute new incoming tuples to the workers again;

(R3) non-intrusiveness: the migration should involve only the workers exchanging
parts of their state. e workers not involved in the migration should be able
to process the input tuples without interferences;

(R4) fluentness: the workers involved in the migration should not be blocked until
the migration is complete. While a worker involved in the migration is waiting
to acquire the state of an incoming key, it should be able to process all the input
tuples with other keys for which the state is ready to be used.
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We firstly provide a brief summary of the most recent solutions to this problem
according to the mentioned properties. en, we will show our approach.

Qualitative comparison

Table 6.5 shows a summary of some of the most recent elastic supports presented in
the literature. e approach in [Gedik et al., 2014] does reconfigurations without
generating duplicate results and processes all the input tuples without altering their
arrival order, i.e. property (R1). However, the migration activity executes coarse-
grained synchronization barriers among the emitter and all the workers. erefore,
this support is neither able to achieve (R2), i.e. the emitter is blocked waiting for the
migration completion, nor properties (R3) and (R4) because all the workers are al-
ways blocked during the whole reconfiguration. Analogous is the case of the approach
described in [Heinze et al., 2014a], where their operator movement mechanism has
the same drawbacks.

Work R1 R2 R3 R4 Platform

[Gedik et al., 2014] Yes No No No Clusters
[Heinze et al., 2014a] Yes No No No Clusters
[Wu and Tan, 2015] No Yes Yes Yes Clusters/Clouds
[Castro Fernandez et al., 2013] No No Yes Yes Clusters/Clouds
[Gulisano et al., 2012] No Yes Yes Yes Clusters/Clouds
[Shah et al., 2003] Yes No Yes Yes Clusters
Our Yes Yes Yes Yes Multicore/Clusters

Table 6.5: Recent existing migration protocols compared with our solution.

Improvements have been developed in Chronostream [Wu and Tan, 2015] by
providing a state migration protocol for latency-sensitive applications. e migration
is less intrusive, as it involves only a subset of the workers that need to exchange state
partitions (R3). Furthermore, workers that wait for an incoming state acquisition
can still process tuples for which the state is available and consistent (R4), and the
emitter is not required to block until the migration has finished (R2). However, the
mechanism introduces further complexity because the workers can generate duplicate
results for the same tuple (R1) that must be properly filtered by the merger. Similar
is the approach described in [Castro Fernandez et al., 2013], in which the emitter
(or the upstream operator) is additionally involved in the re-generation of the input
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tuples (of the migrated keys only) not processed during the reconfiguration ((R2) is
not achieved). ose tuples will be processed in order to keep the state partition up-
to-date. is re-generation action by the emitter is much more intrusive (it needs
proper checkpointing techniques) than the transmission of our asynchronous control
messages that do not block the input flow.

Two solutions are proposed in Streamcloud [Gulisano et al., 2012]. In the first
one no state is transferred among workers, but new tuples corresponding to moving
keys are multicasted to both the workers (the old and new ones) for a certain time
interval until the window slides enough and can be processed by the new worker
only. is approach can be used only for state partitions maintained as sliding win-
dows and introduces a long reconfiguration delay, proportional to the window length,
which is unacceptable for our online strategy (MPC needs that each reconfiguration
completes within one control step). e second solution is based on state transfer
among workers without blocking them and the emitter during the migration ((R2),
(R3) and (R4)). Although conceptually similar to our approach, this runtime needs
sophisticated interactions between the emitter and the workers involved in the migra-
tion. All the tuples of a moved key received within the time interval of the migration
activity, must be forwarded to both the workers that properly execute or discard them.
erefore, property (R1) is not satisfied.

Finally, the technique described in [Shah et al., 2003] is the most similar to our
approach. Besides the achievement of properties (R3) and (R4) common to many
other solutions, this approach gives a central role to the emitter, which is in charge
of buffering all the tuples of the moved keys in a buffer. Such tuples will be delivered
to the workers as soon as the migration is complete but quiesces the routing of new
fresh input tuples (not involved in the migration) to the other workers in the mean-
while. erefore, although no duplicated tuple/result is generated in this solution
(R1), property (R2) is not met.

In the next section we will describe our reconfiguration protocol able to achieve
all the identified properties. Our approach never blocks the workers and the emitter
entities, it does not generate duplicate results, and all the tuples are transmitted just
one time to the corresponding worker that executes the computation on a given tuple
exactly one time. As we will see, this approach is particularly effective in reducing
latency spikes during the migration.
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Fluent protocol

Our fluent migration achieves the four properties identified before and it is com-
pletely lockless. After a reconfiguration decision the controller transmits a reconfig-
uration message to the emitter containing a new routing function mτ . e emitter
receives data non-deterministically from the input stream (new tuples) and from the
controller (reconfiguration messages), the latter with higher priority. Once received
a reconfiguration message, the emitter recognizes the keys that must be migrated and
transmits to the involved workers a sequence of migration messages:

• move_out(k) is sent to the workerwi that held the data structures corresponding
to the tuples with key k ∈ K before the reconfiguration but will not hold them
after the reconfiguration, i.e. mτ−1(k) = i ∧mτ (k) ̸= i;

• move_in(k) is sent to the worker wj that will hold the data structures associ-
ated with key k after the reconfiguration (and did not own them before), i.e.
mτ−1(k) ̸= j ∧mτ (k) = j.

All the keys k ∈ K s.t. mτ−1(k) = i ∧mτ (k) = i are not involved in the migration
and will be processed by the corresponding workers without interferences. It should
be noted that such migration messages introduce a small delay in the transmission
of new incoming tuples by the emitter. However, they are asynchronous notifications
to a subset of the workers, and in any case the emitter does not need to wait the
completion of the state migration activities in the worker (R2).

e emitter routes input tuples using the new routing functionmτ . Let us suppose
that, as a result of a reconfiguration chosen by the controller 1 , a key k ∈ K must
be migrated from worker wi to wj as depicted in Figure 6.4. At the reception of a
move_out(k) message 2 , the worker wi knows that it will not receive tuples with
key k anymore. In fact, the worker receives the move_out(k) message from the same
queue e-wi used for retrieving tuples distributed by the emitter (managed in a FIFO
fashion). erefore,wi can safely save the state of that key (denoted by sk) to a backing
store (see Figure 6.4) used to collect the migrated state and to synchronize the pairs
of workers involved in the migration.

e worker wj , which receives the move_in(k) message 3 , may receive new in-
coming tuples for that key before the state is acquired. Only when the worker wi has
properly saved the state sk to the repository 4 , it can be acquired by wj 5 . We
devise two possible behaviors:
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Figure 6.4: Example of state migration between worker wi and worker wj for key k.

• as soon as the worker wj receives the first tuple with key k, it blocks until
the state sk is available in the backing store and can be safely acquired. is
behavior does not provide property (R4);

• wj is not blocked but accepts new tuples. All the tuples with key k are enqueued
in a temporary pending buffer until the state sk is available. e availability of
sk in the backing store is periodically checked at each reception of a new tuple.
In the meantime all the tuples with a different key can be processed. When the
state becomes available, it is acquired by the worker and all the pending tuples
of key k in the buffer are rolled out and processed in the same order in which
they were sent by the emitter.

In both the cases the state migration for each moving key is performed in parallel
by the workers without global barriers (R3) and without duplicates or out-of-order
results (R1). e second solution does not stall the computation of input tuples with
keys not involved in the migration (R4). Furthermore, pending buffers are main-
tained in the worker involved in the migration and not at the emitter level as in [Shah
et al., 2003], therefore the emitter is able to route tuples to the workers without in-
terruptions (R2). When the protocol is complete the workers and the emitter notify
the controller of the end of the reconfiguration.
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e backing store can be implemented in different ways accordingly to the ex-
ecution architecture, possibly relying on external services. A possible alternative to
the use of a backing store could require communications between workers. In our
working scenario, this necessitates worker-to-worker channels and the cost of their
management could sensibly increase with the increasing of used resources. We have
therefore chosen to avoid a similar implementative choice.

6.4.3 Heuristics for load balancing
As highlighted in 4.4, the KP parallel pattern may suffer of load unbalancing, a prob-
lem that must be addressed especially in dynamic execution scenarios. In addition, to
use Equation 6.7 it is required that at each control step the rebalancer is able to find
a routing function that balance the load assigned to the workers.

e problem of finding the optimal routing function in terms of load balancing
is a NP-hard problem equivalent to the minimum makespan [Vazirani, 2001]. Ap-
proximate solutions must be used, like the one in [Vazirani, 2001, Chapt. 10], see
Algorithm1. In the following we will refer to this heuristic as Balanced, since it pro-
vide an almost optimal routing function.
Let wtk(τ) be the “weight” of the key k ∈ K defined as:

wtk(τ) = p̃k(τ)× T̃k(τ)

e keys are ordered by their relative weight. Starting from the key with the highest
weight, each key is assigned to the worker with the actual least amount of load. We
denote by Li(τ) =

∑
k|mτ (k)=iwtk(τ) the load of the i-th worker.

Algorithm 1 Computing the routing table.
Input: list of keys and their weight, number of workers N .
Output: a new routing table.
1: function RoutingTable(list of keys, N )
2: Order list of keys by weight
3: for i = 1 to N do
4: Li = 0

5: for each k ∈ K in the list do
6: Assign k to worker j s.t. Lj(τ) = minN

i=1 Li(τ)
7: Update load of worker j, i.e. Lj(τ) = Lj + wtk(τ)

return computed routing table

In the algorithm the function is represented by a live lookup table of entries
⟨key, worker_id⟩. e Balanced solution computes ex-novo a new routing table,
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not considering the current one and the number of moved keys. An alternative solu-
tion could be the one proposed in [Shah et al., 2003] (that we will call Flux) which
tries to equalize the load of each of the workers as mush as possible while minimizing
key movements. Starting from the most loaded worker (the donor) they pair it with
the least utilized one (the receiver). en keys are exchanged between them if the
difference between their loads is higher than an imbalance threshold. e algorithm
walks down the list of keys assigned to the donor, ordered by weight in descending
order, and exchange the first one that will reduce the utilization between the donor
and receiver. e workers load is recomputed accordingly to the weight of exchanged
keys . e procedure is re-iterated until the imbalance between donor and receiver is
over the threshold. Low thresholds will result in quasi balanced load distribution.

e impact of these two different solutions will be evaluated in Chapter 7. In
general they are fast and easy to understand solutions, but requires to store explic-
itly all the possible entries. Alternatively, a hash function can be used. Typically,
uniform hash functions can be designed in order to keep the load of the workers as
similar as possible. However, they do not work well if the number of workers changes
at runtime. More advanced solutions, such as the one used in [Gedik et al., 2014] are
based on consistent hashing [Karger et al., 1997], a technique to design hash functions
able to balance the load with minimal number of migrated keys. Consistent hash-
ing schemes have been extended in [Gedik, 2014] in order to balance the memory
required. ese alternative solutions will be considered in the future.

6.5 Summary
In this chapter we have introduced strategies and mechanisms for adaptive DaSP op-
erators. Even if the focus is on the KP pattern, it should be noticed that the proposed
solutions can be easily adapted to the other presented patterns. In addition, this pat-
tern is the only one that manages generic state and not only windows. In the next
chapter we will complete this description evaluating the effectiveness of the proposed
approach on a realistic application targeting shared and distributed architectures.





7 Adaptation strategies and
mechanisms evaluations

In this chapter we evaluate the reconfiguration mechanisms and control strategies
developed in Chapter 6 on a DaSP operator operating in the High Frequency Trading
(HFT) domain. HFT applications are good candidates for the evaluation, since they
have usually stringent QoS requirements in terms of throughput and latency bounds
as well as a very dynamic execution scenario.

e chapter is organized as follows. In the first section we will describe the appli-
cation used to evaluate our solutions. en the first part of the discussion will focus
on the evaluation over a shared memory (multicore CPU) architecture. e recon-
figuration mechanisms will be specialized for these environmentss and their impacts
on performance carefully evaluated. en we provide a comprehensive analysis of
the proposed strategies and a comparison with similar approaches. e MPC-based
strategies will be evaluated accordingly to the SASO properties described in Section
5.4. To recall, they are Stability (P1), Accuracy (P2), Settling time (P3) and Overshoot
(P4). en the second part of the chapter is the extension of the proposed approach
to shared-noting machines (a cluster of multicore machine). e experiments per-
formed are similar to the ones of the shared memory platform. e intent is to show
the effectiveness of the mechanisms and MPC based strategies also in this execution
scenario.

7.1 e application

e evaluation of the proposed control strategies is performed on a kernel of a data
stream processing application operating in the High Frequency Trading (HFT) do-
main. HFT computations ingest huge volume of data at a great velocity and process
the market feeds with stringent QoS requirements to discover fresh trading oppor-
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tunities. In this section we present a kernel of an application inspired by the work
in [Andrade et al., 2011]. e kernel is sketched in Figure 7.1.

Source Consumer
.
.
.

C

visualization

HFT

E
W

W

CONTROLLER

Figure 7.1: Kernel of a high-frequency trading application used to discover trading opportunities
in real-time.

e source operator represents a stock market that generates a stream of financial
quotes, i.e. buy and sell proposals (bid and ask) represented by a record of attributes
like the proposed price, volume and the stock symbol (64 bytes in total). e HFT
operator processes bids and asks grouped by the stock symbol. A count-based window
of size |W| and slide δ is maintained for each group. e operator applies a prediction
model aimed at estimating the future volume and price for the quotes of each symbol
using the historical data. After receiving δ new tuples of the same stock symbol, the
computation goes over the tuples buffered in the actual window and processes them.
e processing logic consists of two main phases:

• aggregation: the quotes with a timestamp within the same resolution interval (1
ms) are transformed into a single tuple by averaging the values of the attributes
of the original quotes;

• regression: the quotes (one per resolution interval) are used as input of the
Levenberg-Marquardt regression algorithm that produces a polynomial fitting
the aggregated quotes. For the regression algorithmwe use the implementation
offered by the C++ library lmfit [Wuttke, 2015].

e results are transmitted to a consumer operator that produces a graphical represen-
tation in the form of candlestick charts.

e parameters |W| and δ can be tuned to provide different levels of accuracy and
will be changed accordingly to the considered execution architecture. e values used
in the experiments are typical examples. We recall from Section 6.1 the common dy-
namicity factors that these kinds of computations should face: we have variability in
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the arrival rate (D1), variability in the keys frequency distribution (D2) and variabil-
ity in the processing time per key (D3). is application presents all these variability
issues. e source generates inputs with a variable arrival rate and frequency distri-
bution of stock symbols (D1 and D2). Although the windows are count-based, the
aggregation phase changes the number of quotes to use for the regression. erefore,
also the computation cost per window is variable (D3).

7.2 Experiments on shared memory architecture

For the evaluation of the mechanisms and control strategies on shared memory ar-
chitecture, the implementation uses the Fastflow framework basic mechanisms 1. As
already indicated in Section 6.4 the various entities (emitter, workers, collector, con-
troller and source) are implemented as separated threads that, in this case, exchange
messages through lock-free shared queues of the Fastflow framework.

e emitter of the HFT operator is interfaced with the source by means of a
TCP/IP socket. e source process is executed on the same machine. e consumer
functionality is executed by the collector thread and it is in charge of saving the com-
putation results (in a human readable format) into a file.

e target architecture is the same one of Section 4.9. e CPUs support DVFS
with a frequency ranging from 1.2 GHz to 2 GHz in steps of 0.1 GHz (that results
in 9 possible frequency configurations). In addition, the processor can exploit the
TurboBoost feature. is architectural mechanism, presents in modern Intel CPU,
dynamically overclocks the CPU frequency when higher performance is required.
e amount of increased clock rate depends from theCPU current status (e.g. current
dissipated power and temperature) and the number of active cores. is makes very
difficult to estimate its effects on both performance and power dissipation. For these
reasons, in the experiments this feature has been turned off.

Each thread of the implementation has been pinned on a distinct physical core
and hyperthreading CPU facility is not exploited. us the maximum number of
workers is 12. e used compiler is gcc (version 4.8.1), programs compiled with the
-O3 compiler flag. e used Fastflow version is the 2.0.5.

1Parts of the experiments here reported are contained in the article presented at the ACM Sigplan
PPoPP 2016 conference [II] that has passed the Artifact Evaluation. e paper does not contain
the throughput based strategy and other minor experiments and it threats only the case of shared
memory architecture. e code used for the experiments and the related documentation are available
at: https://github.com/tizianodem/elastic-hft

https://github.com/tizianodem/elastic-hft
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For the evaluation on the target architecture, the operator uses count based win-
dows of size |W| = 1000 tuples and slide δ = 25 tuples. is means that on average
we have a triggering tuple each 25 incoming tuples. e source uses two different
datasets: we will refer to a synthetic workload and a real data-set scenario. In the lat-
ter the quotes and their timestamps are the ones of a trading day of the NASDAQ
market (daily TaQ of 30 Oct 20142) with 2, 836 traded stock symbols. e peak rate
observed is near to 60, 000 quotes per second, with an average rate well below this
figure. Recent estimates for market data rates [Andrade et al., 2011] are near to 1

million of transactions per seconds (especially if we consider options data and not
stock quotes). To model this future scenario, we accelerate 100 times the original
timestamps to reproduce throttled input rates.
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Figure 7.2: Arrival rate: synthetic (random walk) and a real throttled (100×) data-set of a NAS-
DAQ trading day.

2e used dataset is freely available at the website: http://www.nyxdata.com.
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In the synthetic workload (Figure 7.2a) the arrival rate follows a random walk
model. e key frequency distribution is fixed and equal to a random time-instant
of the real NASDAQ data-set. e skew factor, i.e. the ratio between the most
probable key and the less probable one, is equal to 9.5 × 104. In this scenario we
take into account the variabilities (D1) and (D3) only. Figure 7.2b shows the real
workload. In this case also the key frequency distribution changes over the execution
(D2). e execution of the synthetic workload consists in 180 seconds while the one
of the real data-set of 235 seconds, equal to about 6 hours and half in the original
non-throttled data-set.

7.2.1 Reconfiguration mechanisms over a shared memory architecture

Being executed on a shared memory architecture, the messages exchanged by the var-
ious entities (e.g. data inside the operator, monitoring messages sent to controller,
reconfiguration messages from the controller, ...) are memory pointers to shared data
in order to avoid the overhead of extra copies. e reconfiguration mechanisms de-
scribed in Section 6.4 are implemented taking into account this execution scenario.

Changes in the number of workers: when a new configuration implies the creation of
workers, the controller is in charge of instantiating the set of threads for the additional
workers and the Fastflow queues to interconnect them with the emitter, collector and
controller itself. e controller sends special control messages to the emitter and the
collector in order to notify them of the new workers and to pass a reference to the
queues needed to interconnect with them. If some workers have to be removed, the
controller notifies the number of workers to eliminate to the emitter. e emitter,
after that the state migration messages are sent, notifies the termination to the in-
terested workers. e controller is in charge of joining the respective terminating
threads.

State migration: in this case the backing stores consists in a shared memory area in
which workers exchange memory references to the data structures exchanged (win-
dows in this case). is avoids the copy overhead and the point-to-point synchro-
nizations between workers and controller, required to notify the end of the reconfig-
uration. Pending buffer, in which tuples are accumulated if the correspondent state
is not available, are implemented as standard C++ vectors (std:vector<tuple_t>).
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Frequency scaling and energy measurements: modifications of the CPU frequency are
performed using the C++ MAMMUT library3 (MAchine Micro Management UTilities)
targeting off-the-shelf multi-core CPUs. e API allows the controller to change
the operating frequency by writing on the sysfs files. e controller uses the library
also to collect energy statistics. On Intel Sandy-Bridge CPUs this is performed by
reading the Running Average Power Limit (RAPL) energy sensors [Hähnel et al.,
2012]. On the same way, voltage values are read through model-specific registers
(MSR). e library requires administrative privileges to be used. It should be noticed
that a change in the operating frequency does not affect the structure of the parallel
implementation and can be performed by the controller transparently to the operator
execution.

7.2.2 Mechanisms evaluations
In this first set of experiments we analyze different aspects of the proposed mecha-
nisms in order to prove their effectiveness and low performance impacts. Each aspect
is studied by means of ad hoc experimentations and it is presented in a separated sec-
tion.

Overhead of the elastic support

e first aspect that deserves attention is the performance impairment due to the use
of the elastic support i.e. the presence of the controller and monitoring activities by
the emitter, workers and collector.

We measure the maximum input rate that the HFT operator sustains with the
highest CPU frequency. e input tuples are generated with a constant rate while
the 2, 836 keys are uniformly distributed. Figure 7.3 compares the elastic implemen-
tation, with the controller functionality and all the monitoring activities performed
with a sampling of 1 second, and the implementation without the elastic support.

In this setting no reconfiguration is taken by the controller. We observe a modest
overhead bounded by 3 − 4% on average. e speedup with 12 workers is 12.91
and 12.56 for the unelastic and the elastic case. e slight hyper scalability is due to
the increasing temporal locality of window data structures in the private cache of the
cores by using more workers. is first experiment demonstrates that the monitoring
activity and the asynchronous interaction with the controller have a negligible effect
on the computation performance.

3e Mammut library is open source and freely available at https://github.com/
DanieleDeSensi/Mammut.

https://github.com/DanieleDeSensi/Mammut.
https://github.com/DanieleDeSensi/Mammut.
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Figure 7.3: Maximum sustainable input rate: comparison between the elastic and the unelastic
implementations.

Analysis of migration protocols

is experiment is devoted to comparing different migration protocols according to
the properties detailed in 6.4. In the analysis we consider two protocols:

• our fluent protocol satisfying all the properties (R1), (R2), (R3) and (R4);

• a blocked protocol which satisfies properties (R1), (R2) and (R3) but not (R4).
Accordingly, all the workers involved in the reconfiguration are blocked un-
til the reconfiguration is completed. In that case no tuples are stored in the
pending buffers.

Other more intrusive protocols that block the emitter [Gedik et al., 2014] or all the
workers produce worse results in terms of latency peaks and are not considered in
this experiment. We analyze a scenario in which the operator is not a bottleneck and
the workload is perfectly balanced until timestamp 30. en, we force the input rate
to abruptly change from 300K tuples/sec to 400K tuples/sec. e strategy detects
the new rate and triggers a reconfiguration at timestamp 31 by changing the number
of workers from 6 to 8 with the same CPU frequency. Figure 7.4a reports average
latency measured using a monitoring interval of 250 ms (1/4 of the control step equal
to one second). As depicted, during the transient phase (from timestamp 30 to 35) we
observe some latency peaks. In the fluent protocol the operator is still able to process
tuples not belonging to the moving keys, however additional tasks are performed such
as the enqueuing of some tuples in the pending buffers, and the unrolling of them
when the corresponding state becomes available. In contrast, the blocked protocol
blocks the involved workers as soon as the first tuple of any migrated key is received.
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is second solution is the worst one, producing higher latency peaks. Furthermore,
the fluent protocol is able to reach the steady state earlier.
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Figure 7.4: Impact of the migration protocol: latency and number of results of the HFT operator
in the time instants before, during and after a reconfiguration. Results are mediated over multiple
runs.

Figure 7.4b reports the output results produced. During phase one the fluent
protocol is able to produce more results. e reason is that it never blocks the work-
ers involved in the migration, which are able to process tuples not belonging to the
migrated keys. In contrast, the second protocol blocks the involved workers until the
migration is complete. During this blocking phase, several tuples (of any key) accu-
mulate in the input socket between the source operator and the HFT. ese tuples
are rolled out and processed after the migration; this happens during phase two in
which the blocked protocol apparently produces more results. However, these results
are in part the ones already computed by the fluent protocol and thus have a higher
latency as confirmed in Figure 7.4a.
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Impact of the migration overheads

e third set of experiments studies the impact of the migration cost. Although
on multicores we can avoid transferring the whole state by-value, we have all the
synchronization issues needed to preserve correctness and result ordering. We study:
i) the Balanced policy shown in Algorithm 1, where a new routing function balancing
at best the workload is used at each reconfiguration; ii) the Flux policy discussed
in [Shah et al., 2003] and in Section 6.4 for minimizing the number of migrated keys
by keeping the imbalance under a threshold (we use 10%).

e testing scenario is the same one of the previous evaluation, with a change
in the input rate at timestamp 30 that triggers a change in the number of workers
at timestamp 31. From timestamp 31 to 36 we are in a transient phase where the
keys are moved among the workers, tuples enqueued in the operator’s input buffer
are processed and we reach the new steady-state behavior.

Figure 7.5a shows the average latency measured using a monitoring interval of
250 ms (1/4 of the control step). ree phases can be identified:

• a first phase in which the rate changes and the controller detects it at the next
control step. During this phase both the policies produce the same latency
results. e latency grows as the rate increases and the operator becomes a
bottleneck;

• a second phase in which the controller triggers the reconfiguration and some keys
are migrated (2, 460 and 68 in the Balanced and the Flux policies). e Flux
policy produces lower latency because fewer keys are migrated and the pending
buffers are mostly empty. It usually takes a hundred of milliseconds to migrate
the state in the Balanced case, while it requires tens of milliseconds with the
Flux policy;

• in the third phase (after timestamp 33) the workers process the tuples that were
waiting. Due to a better load balancing, the Balanced policy approaches the
steady state faster than Flux. During this phase the measured latency with the
Flux policy is about the double of the latency with the Balanced policy.

Figure. 7.5b shows the number of results produced (one per triggering tuple).
e subplot shows a zoom of the central part of figure. e Flux policy outperforms
the Balanced one only during the transient migration phase, while the Balanced one
approaches the steady state faster owing to better service time.

In conclusion, there is no apparently winner. e slight advantage of the Flux
policy is only noticeable during the migration phase, which takes a small fraction of
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Figure 7.5: Impact of the rebalancer strategies: latency and number of results of the HFT operator
in the time instants before, during and after a reconfiguration.

the reconfiguration time. Furthermore, the steady-state behavior after timestamp 36

shows a slight advantage (1÷2%) of the Balanced policy (see subplots in Figures 7.5a
and 7.5b). We can conclude that on multicores the Balanced policy should be pre-
ferred in latency-sensitive applications since the latency peaks during the migration
are not so high and the new steady state can be reached faster.

Controller complexity reduction

e MPC controller explores a potentially huge number of states which grow expo-
nentially with the horizon length. is can rapidly make the computational burden
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excessive for real-time adaptation. Table 7.1 shows the theoretical number of states
that the control strategy should explore with an exhaustive research and the ones ex-
plored with the B&B solution described in Section 6.3.2. We recall that we are taking
into account as decision variables the number of possible workers and the CPU fre-
quency steps (respectively 12 and 9 in the target architecture).

States Explored % Time

h = 1 108 108 100 45.77 usec
h = 2 11,664 2,537 21.75 608 usec
h = 3 1,259,712 72,055 5.72 17 msec

Table 7.1: Explored states with respect to the total number.

e execution of the MPC procedure should cover a small fraction of the control
step. According to the results of the table, the B&B solution is capable of reducing
the number of explored states in our experiments. e reduction is of several orders
of magnitudes and makes it possible to complete the resolution of the optimization
problem in few milliseconds even with the longest horizon (h = 3) that we use in
these experiments.

If needed, other solutions and heuristics can be studied in the future for cases
with more reconfiguration options (e.g. evolutionary algorithms).

7.2.3 Adaptation strategies evaluation
At this point, we can study different MPC-based strategies according to the formu-
lations of the optimization problem presented in Section 6.3.1. Table 7.2 shows the
different choices and the name used to refer them in the experiments. Each strat-
egy is evaluated without switching cost (that is γ = 0; they will be referred as NoSw
strategies) or with the switching cost term and different lengths h ≥ 1 of the pre-
diction horizon (Sw strategies). Horizons longer than one step are meaningful only
with the switching cost enabled. erefore, h = 1 is implicit in any NoSw strategy.
When we use as resource cost the per node cost (i.e. we try to minimize the number
of used cores), the CPU frequency is always set at its maximum. e cost parameters
α, β and γ require careful tuning in order to properly normalize the various cost com-
ponents (i.e. QoS, Resource and Switching costs) and give them the desired weights.
We studied the best settings of these parameters in our workload scenarios. e re-
source cost and the switching cost parameters are β = 0.5 and γ = 0.4 for all the
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QoS cost Resource cost Name alpha

throughput-based
(Equation 6.13)

per node
(Equation 6.15)

Th-Node rw: 200
real: 200

throughput-based
(Equation 6.13)

power cost
(Equation 6.16)

Th-Power rw: 200
real: 300

latency-based
(Equation 6.14)

per node
(Equation 6.15)

Lat-Node rw: 2
real: 3

latency-based
(Equation 6.14)

power cost
(Equation 6.16)

Lat-Power rw: 2
real: 4

Table 7.2: MPC-based strategies studied in the experiments. In all the cases we have β = 0.5
and γ = 0.4.

strategies, while we need a different value for the first parameter α to tune properly
the weight of the QoS cost. In all the strategies we have chosen to give more priority
to the QoS cost and lower priority to the resource cost and to the switching cost term.
We model in this way an important case in which the controller tries to reduce the
QoS violations by using minimal resources. e α values used in the experiments are
shown in the table.

e derivation process of these cost parameters could be possibly automated by
maintaining the same rationale. In general, the parameters values can be calculated as
the ratios between a real weight (a dimensionless priority) and a scale factor. e scale
factors are used to map the values in the same numerical interval/order of magnitude.
To set the value of the scale factors we require knowing the range of the cost extremes
(maximum and minimum values) that have been estimated as follow:

• for the resource/power cost, we know the maximum number of cores that can
be used on a given architecture and the maximum power per control step (using
the maximum frequency with all the cores active);

• for the switching cost it is easy to find the maximum “variation” between two
configurations;

• more complex is the case of the QoS cost, which needs to determine some
bounds of the QoS variables of the problem (e.g., the operator response time).
ese bounds could be asked to an experienced programmer or could be reason-
ably estimated by running preliminary experiments and monitoring the QoS
results.
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At this point the real weights can be chosen in order to reflect a dimensionless relative
priority between the cost terms, without being aware of their order of magnitude.

In all the presented experiments, unless otherwise specified, the control step is
of 1 second. In the experiments all the MPC-based strategies perform statistical
predictions of measured disturbances. We assume that:

• the arrival rate will be predicted according to a Holt Winters filter [Fried and
George, 2014] able to give h-step ahead forecasts by taking into account trends
and cyclic non stationarities in the underlying time-series;

• the frequencies and the computation times per key will be estimated using the
last measured values, i.e. p̃k(τ + i) = pk(τ − 1) and C̃k(τ + i) = Ck(τ − 1) for
any k ∈ K and every step i = 0, 1, . . . , h− 1.

In addition we will also assume that: i) the rebalancer functionality adopts the Bal-
anced policy, ii) we adopt the fluent migration protocol. All the experiments have
been repeated 25 times by collecting the average measurements. e variance is very
small: in some cases we will show the error bars to further prove the reliability of our
results.

Reconfigurations and effect of the switching cost

In this section we analyze the effect of the switching cost. We show the results of the
Lat-Node strategy with the randomwalk and the real data-set workload. Qualitatively
similar results are achieved with the other strategies of Table 7.2. Figure 7.6 shows
the number of workers used by the HFT operator. e reconfiguration sequence
follows the workload variability. In this setting the strategy changes only the number
of workers (the CPU frequency is fixed to 2 Ghz). Phases with higher arrival rate
correspond to greater number of used workers and vice-versa.

e combined effect of the switching cost and the horizon length is evident from
the figure. e dashed green line corresponds to the reconfiguration sequences with-
out switching cost (γ = 0). At each step, the MPC controller selects the number
of workers that optimizes the trade-off between performance and resource cost. e
orange solid line corresponds to the strategy with the switching cost which acts as a
stabilizer of the sequence by smoothing reconfigurations. In other words, it is a brake
that slows the acquisition/release of workers.

By increasing the foresight of the controller the reconfigurations with the switch-
ing cost better approximate the sequence obtained without the switching cost. e
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Figure 7.6: Number of used workers per control step (1 sec). Lat-Node strategy without and with
the switching cost and prediction horizons h = 1, 2.

reason is that our multiple-step ahead forecasts are able to capture future increas-
ing/decreasing trends in the arrival rate. During increasing trends, longer horizons
allow the controller to anticipate the acquisition of new workers. e opposite char-
acterizes decreasing trend phases. erefore, by increasing the horizon length the
effect of the stabilizer is less intensive and a faster adaptation to the workload vari-
ability can be observed in general.

Figure 7.7 summarizes the total number of reconfigurations performed by the dif-
ferent MPC strategies. More reconfigurations are performed in the real workload,
due to a higher variability of the arrival rate from the stock market. Furthermore,
more reconfigurations are performedwith the strategies Th-Power and Lat-Powerwith
respect to their counterparts Th-Node and Lat-Node. In fact, with the power-aware
strategies the space of possible reconfiguration options is larger, owing to the pos-
sibility to change the CPU frequency in addition to the number of workers. In the
number of reconfigurations we count any change in the number of workers and/or in
the CPU frequency. We do not consider the changes (only) in the routing function
taken by the rebalancer component.

Figure 7.8 shows the types of reconfigurations performed. e Th-Power strategy
performs more changes in the number of workers instead of changes in the frequency.
e opposite holds for the Lat-Power strategy. Reconfigurations that change both
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Figure 7.7: Number of reconfigurations per strategy: random walk and real workload.

the aspects are a small fraction of the total amount. In summary, we can derive the
following result:

Result 1. e switching cost allows the strategy to reach better stability (P1), i.e. to
reduce the number and frequency of reconfigurations. is effect is partially miti-
gated by increasing the horizon length.

QoS violations

e strategies have important effects in the accuracy (P2) achieved by the elastic sup-
port. A QoS violation is a deviation from the expected behavior defined as follows:

• for throughput-based strategies we measure the ratio between the number of
results produced per control step Nout and the number of received triggering
tuples Nin. We detect a QoS violation if the ratio computed over the horizon
length is lower than a specified threshold θ. In the experiments we use a thresh-
old θ = 0.95: this implies that for each control step the operator must be able
to handle at least the 95% of the incoming tuples, i.e. it is not a bottleneck;
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Figure 7.8: Types of reconfigurations: random walk and real workload.

• for latency-based strategies we detect a QoS violation each time the average
latency measured during a control step is higher than a threshold δ. is value
clearly depends on the workload and execution platform characteristics. Our
intent is to show the effect of the switching cost on the accuracy achieved by
the various strategies. erefore if the threshold is too low, this will result in
too many QoS violations since the performance constraints are excessive for the
underlying hardware. If it is too high, the application is able to sustain the peak
rate with few workers and the difference between different strategy configura-
tions becomes minimal. erefore, finding a good threshold is fundamental to
increase the quality of the results and to make the previously described qual-
itative behavior more evident. Heuristically, we found that a good threshold
must be able to produce few violations, e.g. < 10, with the most performing
Lat-Node strategy (that as we will see is the one with Sw h=1) and the random
walk workload.

Figure. 7.9 shows theQoS violations measured in the randomwalk workload with
the Th-Power strategy. In the figure we detect a QoS violation each time the green line
crosses the red region in the plots (we use a threshold θ = 0.95). e strategy without
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Figure 7.9: Number of throughput violations: strategy Th-Power (NoSw h = 1 and Sw h = 1, 2)
and random walk.

switching cost chooses at each step the minimal configuration such that the operator
is not a bottleneck. If the arrival rate predictions are underestimated, the operator
may become likely a bottleneck during some control steps and the ratio Nout/Nin

assumes values lower than the threshold. Typically, the controller reacts by changing
the configuration in the future steps. e effect is that the input tuples enqueued
during the time periods in which the operator was bottleneck are consumed in the
next control steps and the ratio Nout/Nin exhibits peaks greater than 1. is is the
reason for the zig-zag pattern of the green line in the figure. e best accuracy is
obtained by the strategy with switching cost and horizon h = 1. is is an expected
result, as this strategy overshoots the configuration to use (P4). is is evident in
Figure 7.6c, where the reconfiguration sequence with switching cost is on top the
one without it. By overshooting the configuration, the strategy is more capable of
dealing with potential underestimations of the workload, by producing fewer QoS
violations. By increasing the horizon length the accuracy worsens (26 violations with
h = 2). erefore, a proper length of the horizon allows to reach a trade-off between
overshoot and accuracy.

Figures 7.10a, 7.10b and 7.10c show the latency violations achieved with Lat-
Power in the random walk scenario. e threshold is set to 1.5ms and it is represented
by a red line in the plots. e figure reports the average latency without switching
cost and with switching cost (h = 1, 2). Each experiment has been run 25 times. We
measure the 95% confidence intervals (orange intervals in the figure) which are very
small, demonstrating the small variance of the obtained results. e results confirm
the same behavior seen before. Without switching cost we have more violations, with
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Figure 7.10: Latency violations. Strategy Lat-Power with random walk workload (a, b, c) and
real data-set (d, e, f).

the latency sometimes slightly higher than the threshold. We obtain fewer violations
by using the switching cost and the minimum horizon. Longer horizons provide
intermediate results. Figures 7.10d, 7.10e and 7.10f show the results with the real-
data set in which, due to the high variability of the input rate, we use a threshold of
7 ms and more violations are observed.

Figure 7.11 shows a summary of the QoS violations. In conclusion we can state
the following property:

Result 2. e switching cost allows the MPC strategy to reach better accuracy (P2).
is positive effect is partially offset by increasing the horizon length.



7.2 Experiments on shared memory architecture 133

 0

 20

 40

 60

 80

 100

Random Walk Real

N
o.

 v
io

la
tio

ns
.

Th-Node strategy.

NoSw.
Sw (h=1).

Sw (h=2).
Sw (h=3).

 0

 30

 60

 90

 120

 150

Random Walk Real

N
o.

 v
io

la
tio

ns
.

Th-Power strategy.

NoSw.
Sw (h=1).

Sw (h=2).
Sw (h=3).

 0

 10

 20

 30

 40

 50

Random Walk Real

N
o.

 v
io

la
tio

ns
.

Lat-Node strategy.

NoSw.
Sw (h=1).

Sw (h=2).
Sw (h=3).

 0

 12

 24

 36

 48

 60

Random Walk Real

N
o.

 v
io

la
tio

ns
.

Lat-Power strategy.

NoSw.
Sw (h=1).

Sw (h=2).
Sw (h=3).

Figure 7.11: Number of QoS violations per strategy: random walk and real workload.

Resource and power consumption

We study the resource consumption achieved by our strategies. For the *-Node ones
we measure the average number of workers used. For the *-Power strategies we con-
sider the average power consumption in watts.

e two chips of our multicore always use the same frequency. Figure 7.12 shows
the watts consumed by the strategies without switching cost4. Each plot compares
the strategies in which the controller only changes the number of workers fixing the
CPU frequency to 2 Ghz (Th-Node and Lat-Node) with the corresponding strategy
with frequency scaling (Th-Power and Lat-Power). Figures 7.12a and 7.12b show the
results in the random walk scenario. e watts measured with the power-efficient
strategies always stay below the consumption without frequency scaling. is results
in an average power saving of 14 ÷ 15 watts (28%) and 11 watts (18.3%) for the
Th-Power and Lat-Power strategies respectively.

A similar behavior can be observed in Figures 7.12c and 7.12d for the real data-set
where we have more variability due to more reconfigurations. In summary, the Th-

4We measure the core energy counter. e overall socket consumption has additional 25 ÷ 30
watts per step.
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Figure 7.12: Power consumption (watts) of the non-switching cost strategies: random walk and
real data-set workload.

Power saves 13÷ 14 watts per second on average compared with Th-Node, while Lat-
Power saves 10÷ 11 watts with respect to Lat-Node. is results on an average power
savings of 18.2% and 16.5% respectively. ese reductions are significant especially
owing to the long-running nature of DaSP computations. Very similar results are
obtained considering strategies with the switching cost and different horizon lengths.

Figure 7.13 shows the global results. e strategy with switching cost and h =

1 consumes more resources/power. is is expected, since as discussed above this
strategy tends to use more resources and to release them slower. e effect is that
in some time periods this strategy overshoots the configuration, i.e. it uses more
resources/a higher frequency than necessary. erefore, we have:
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Result 3. e switching cost causes overshoot (P4). is can be mitigated by using
longer horizon lengths.
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Figure 7.13: Resources/power consumed per strategy: random walk and real workload.

Reconfiguration amplitude

When the workload suddenly changes an effective strategy should be able to reach
rapidly the new configuration that meets the QoS requirements. If the strategy takes
small reconfigurations (e.g. few workers are added/removed each time), this neg-
atively impacts the settling time property. Figure 7.14 shows for each strategy the
reconfiguration amplitude measured over the entire execution. It consists in the aver-
age euclidean distance between the vector u(τ) and the vector u(τ − 1) for each τ .
e frequency values (from 1.2Ghz to 2Ghz with steps of 0.1) have been normalized
using the rule (f(τ)− 1.2) ∗ 10 + 1, thus obtaining the integers from 1 to 9.

As shown in Figure 7.14, the strategy with switching cost and h = 1 performs
smaller reconfigurations. e highest amplitude is achieved by the strategy without
the switching cost that follows rapidly the workload variation.
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Result 4. e switching cost reduces the average reconfiguration amplitude. Better
settling time (P3) can be achieved by using longer prediction horizons.
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Figure 7.14: Settling time per strategy: random walk and real workload.

7.2.4 Comparison with peak-load overprovisioning
In this section we compare the best results achieved by our strategies against a static
configuration in which the HFT operator is configured to sustain the peak load.
In this scenario state migrations are eventually performed at each step to maintain
the workload balanced among workers. However, the number of workers and the
CPU frequency are statically set to the maximum value throughout the execution.
e results are depicted in Figures 7.15 for both throughput and latency oriented
strategies.

e peak-load configuration allows to achieve the minimum number of QoS vio-
lations both in the synthetic and the real workload traces. Just considering the Lat-*
strategies, with the real workload we have 7 and 18 more violations achieved by Lat-
Node and Lat-Power respectively. However, this static configuration has the highest
power consumption. e relative power savings for the synthetic and real workload
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Figure 7.15: QoS violations and power consumption: comparison with the static peak-load
overprovisioning strategy.

are respectively of 14% and 12% with Lat-Node (simply thanks to the reduction in
number of used workers) and 29% and 25% with Lat-Power.

7.2.5 Comparison with similar approaches
Finally, we show a comparison with other reactive scaling strategies, considering
throughput and latency oriented ones.

For what concern throughput based strategies, we have implemented a reactive
policy based on event-condition-action rules widely adopted in Autonomic Comput-
ing (see Section 5.4.1). e strategy increases/decreases the number of workers if
operator’s utilization factor is over/under a maximum/minimum threshold (θmax and
θmin). We refer to this strategy as Th-Rule.

In addition, we have implemented the control algorithm described in [Gedik
et al., 2014] developed for the IBM IIS/SPL framework (SPL-strategy in the fol-
lowing), which is the only one addressing the SASO properties in the DaSP domain.
at strategy measures a congestion index, i.e. the fraction of time the emitter is
blocked in sending new tuples to the workers. A congestion is detected if the con-
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gestion index is over a threshold. e strategy is throughput oriented and monitors
the number of input tuples served by the operator in the last adaptation period (our
control step). It changes the number of workers based on the congestion index and the
recent history of the past actions. If an action taken in the recent past did not improve
throughput, the control algorithm avoids executing it again. To adapt to fluctuating
workload (as our real data-set), the authors introduce specific mechanisms to forget
the recent history if the congestion index or the throughput change significantly. e
algorithm uses a sensitivity parameter to determine what a significant change means.

Table 7.3 shows a summary of the results for the real data-set scenario (we omit
the random walk one for brevity). Since both the rule-based strategy and the heuris-
tic one target throughput optimization without frequency scaling, we compare them
with our Th-Node strategy. For our strategy we use a horizon of 2 steps which gives
the best trade-off between SASO properties. For the comparison we change the con-
trol step length (adaptation period) to 4 seconds because the SPL-strategy approach
performs very poorly with too frequent steps. is is a shortcoming of this approach,
which is unable to track the workload with a fine-grained sampling. e best values
for the congestion threshold and sensitivity parameter are 0.1 and 0.9 in our scenario.
In these experiments, the number of violations has been measured on a “second ba-
sis”, rather than considering the control step. For the interested reader this is useful
to compare these results with the previously reported ones.

No. reconf. QoS viol. Ampl. No. workers

-Rule* 39.17 62 1.07 4.63
-Rule** 29 59 1.06 4.53
SPL-strategy 40.18 58 1 4.63
-Node (4s) 11 56 1 4.51
-Node (2s) 24.77 54 1.04 4.50

Table 7.3: Comparison with similar throughput-oriented existing works . * θmax = 0.9 and
θmin = 0.8. ** θmax = 0.95 and θmax = 0.8.

Table 7.4 shows a summary of the results for the real dataset scenario considering
latency oriented strategies. e rule based policy (Lat-Rule), changes the number
of workers if the relative difference between the measured latency and the required
one is over/under a maximum/minimum threshold (ξmax and ξmin). For the sake of
completeness, we report also the latency violations obtained with the SPL strategy.
In all the aforementioned cases, our approach is the winner. Fewer reconfigurations
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No. reconf. QoS viol. Ampl. No. workers

Lat-Rule 47.42 76 1 6.89
Lat-Node (4s) 11.0 30 1.2 9.97
SPL-strategy 40.18 230 1 4.63

Table 7.4: Comparison: average values with 25 tests per strategy. For the Lat-Rule strategy we
have ξmax = 1.2 and ξmin = 0.8.

are performed (stability) with slightly fewer violations (accuracy). Furthermore, our
approach uses a smaller number of workers on average (overshoot) with a comparable
amplitude (settling time). is is a confirmation of the effectiveness of our predictive
model-based approach.

7.3 Experiments on Distributed Memory
In this section we describe a proof of concept implementation of the HFT operator
parallelization, reconfiguration mechanisms and strategies for a distributed mem-
ory architecture. e current implementation works with basic mechanisms (i.e.
TCP/IP socket) and external services/libraries (i.e. Memcached, Google Protocol
Buffer) whose use will be detailed in the ensuing discussion. e goal is to evaluate
the effectiveness of the proposed solutions also in this execution scenario. Further
refinements of the implementation or its porting in existing distributed and parallel
frameworks is left as future work since do not directly impact with our objectives.

Given a homogeneous cluster i.e. composed by similar machines, we distinguish
between two types of cluster nodes, over which we run the distributed operator (see
Figure 7.16):

• amaster node, which is responsible of executing the emitter, collector, controller
and other services (i.e. the data source and services for the management of the
remote repository);

• a set of executor nodes, which are the machines in charge of actually executing
the workers of the operator.

We decided to use this distinction for easiness of implementation and for experi-
mental purposes, to clearly separate the machines that are in charge of executing the
business logic of the operator (i.e. the workers) from the one that runs the other
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Figure 7.16: Schema of the HFT distributed operator.

functionality (i.e. emitter, collector, controller and backing stores). In a production
deployment, we could use an appropriately downscaled node (not available in our
execution environment) to execute the master’s entities and backing stores.

As depicted in Figure 7.16, each executor node run a sort of replica of the HFT
parallelized operator of Section 7.2. Apart from the workers, in each execution nodes
are present additional entities that essentially act as interfaces with the master node:

• for each executor node we have an executor’s emitter (EE in figure) and an ex-
ecutor’s collector (EC). ey are connected with the global emitter and collec-
tor and are respectively in charge of dispatching input tuples to the destination
workers and gather the produced results and send them to the collector;

• an additional entity (called supervisor), is in charge of collecting all the mea-
surements performed by the workers in a single monitoring message and send
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it toward the controller at the beginning of each control step. On the other
side, it will be also responsible for the creation/deletion of the workers inside
the node.

ese three entities are always in execution over the execution node: they are in a
sleeping state if no worker is currently running on the node, but they are ready to
create them when required. anks to their presence we are able to avoid too many
connections between workers and emitter and collector (and the related cost of open-
ing, handling and closing them). Communication channels from/to the master node
to/from an executor node are implemented on TCP/IP socket. Communications
that occur internally to each node are implemented using Fastflow shared queues.

As pointed out in Section 6.4, for the moment being, the controller is imple-
mented as a centralized entity that is in charge of observing the whole operator exe-
cution and takes the adaptation decisions accordingly to the used strategy. Even if this
is not the case, we recognize that a centralized controller could become a bottleneck
and constitute a problem. A solution with decentralized or hierarchical controllers
will be studied in the future. In figure is reported also the presence of Local (to each
node) and Remote (shared between nodes) backing stores: their functionality will be
detailed in Section 7.3.1.

e execution environment 5 is composed of 4 identical nodes interconnected
through an Infiniband networks working at 40Gb/s. Each node is a dual CPU Intel
Xeon E5-2699, for a total of 36 physical cores running at 2.30GHz (Hyperread-
ing is turned off). Each core has a private L1 (32KB) and L2 (256KB) cache. Each
CPU is equipped with a shared L3 cache of 45MB. Every machine has 192 GB of
RAM. It runs a Linux based operating system. e used compiler is gcc (version
4.8.1), programs are compiled with the -O3 compiler flag. For the additional ser-
vices/libraries, we have used: Fastflow (version 2.0.5), Memcached (version 1.4.25),
Libmemcached (version 1.0.18) and Google Protocol Buffer (version proto2).

For this experimental evaluation we do not take into account the power cost of
the used reconfiguration. e reason is simply due to the fact that we do not have
administrative privileges on the running machines in order to take the power con-
sumption measurements and change the running CPU frequency. In any case, we
already provided a detailed and accurate experimental discussion on the subject in
Section 7.2 and it is reasonable to assume that similar results and conclusions hold
also in this case.

5We would like to thank Centro di Calcolo Scientifico - INFN Pisa (Director: Dott. Alberto
Ciampa) for their willingness and kindness in let us use these machines.
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All the entities in Figure 7.16 are always implemented as threads in execution over
the cores of the different nodes. Given this configuration, we use a node as master and
three nodes as executors. Due to the presence of the executor’s emitter, collector and
supervisor, for each node we have a maximum of 33 allowable workers. erefore,
the total maximum number of workers is equal to 99. e source, responsible for
generating the input data, is in execution on the master node.

ese machines are in general more powerful with respect to one used in Sec-
tion 7.2 (also considering the single core). erefore the workload is heavier in order
to better exploit and saturate all the available resources. e operator uses count
based windows of size |W| = 2000 tuples and slide δ = 10 tuples. With respect to
the previous configuration (|W| = 2000, δ = 25) this clearly result in coarser grain
and more frequent windows activation.

Also in this case we have a synthetic and a real data-set, shown in Figures 7.17a
and 7.17b respectively. In the latter the quotes and their timestamps are the ones of
a trading day of various stock markets (i.e. NASDAQ, NYSE, ...). is is a superset
of dataset used in the shared memory evaluations. In this case we have 8, 163 traded
stocks and the most frequent one constitute the 0.81% of the whole generated quotes.
e dataset is accelerated 50 times to reproduce throttled input rates.

In the synthetic workload (Figure 7.2a) the arrival rate follows a random walk
model. e key frequency distribution is fixed and equal to a random time-instant of
the real data-set. e skew factor, i.e. the ratio between the most probable key and
the less probable one, is equal to 21.6×104. e execution of the synthetic workload
consists in 240 seconds while the one of the real data-set of 477 seconds, equal to
about 6 hours and half in the original non-throttled data-set.

7.3.1 Reconfigurationmechanisms for a distributedmemory architecture
e reconfiguration mechanisms presented in Section 6.4 have to be specialized for
this execution platform. In this case we have messages that are internally exchanged
between the entities of the various nodes, but also remote messages exchanged be-
tween nodes. We can recognize essentially two types of remote messages:

• monitoring messages: contain all the monitoring data gathered by the nodes
supervisors. ey are sent to the controller, one message per executor node at
each control step;

• reconfiguration messages: sent by the controller to supervisors in order to im-
plement a reconfiguration.
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Figure 7.17: Arrival rate: synthetic (random walk) and a real throttled (50×) data-set.

In the current implementation all the data/messages remotely exchanged between
data are serialized using the Google Protocol Buffer (protobuf) library [Google,
2016] and flow along the TCP/IP socket connections established between nodes.

At the program launch, on each executor nodes the emitter, collector and super-
visors threads are created and respectively connected (through a socket) to the main
emitter, collector and controller. ey remain in a quiescence status, until it is re-
quired to create at least a worker on the node. Workers are carefully packaged in the
executor nodes: only when there is no room for an additional worker in an executor
(i.e. we used all the available cores) we start using the next executor. In this way,
the number of used nodes is minimized. As usually, a routing table is used by the
emitter to send the tuples to the right executor node. e emitter can easily derive
the correspondence between the worker_id (Section 6.4.3) and the node in which it
is in execution. It will be the executor’s emitter that will further internally route the
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tuple to the right worker.

Changes in the number of workers: once the controller decides a change in the num-
ber of workers, it notifies the decision to the emitter (with a new updated routing
table) and to the supervisor of the involved nodes (more than one if workers have
to be created/deleted on multiple nodes). In case of an increment in the number of
workers, the supervisor of the executor node in which the workers must be created
is in charge of instantiating the respective threads and queues for interconnection
with the executor’s emitter, collector and itself. Similarly, when a worker has to be
removed, is the supervisor of the node in which it is in execution that handles its
termination.

State migration: once the controller devises a new routing table, some data struc-
tures must be migrated in order to preserve the correctness of the computation. In the
case of execution over a shared nothing cluster, we need a remote backing store in or-
der to implement such data movements accordingly to the Fluent protocol described
in Section 6.4.2. e repository can be implemented in various ways: for example
by back-end databases or using socket-based or MPI-based implementations [Gedik
et al., 2014]. We decided to implement it as a distributed shared memory area, in which
workers can exchange data (windows in this case) and synchronize. Such repository
has been implemented using theMemcached service [Fitzpatrick, 2004]. Memcached
is essentially an in-memory key-value store: objects (i.e. data) are stored and retrieved
by referring them by mean of a unique key. It is used widely in the data-center en-
vironment for caching results of database calls and in large organizations (such as
Facebook, Wikipedia, Flickr) as back-end for fast replies to objects look-up. To im-
plements the repository and the required interactions with the nodes, we need to
distinguish between:

• the memcached server (memcached): is an active entity that is in charge of main-
taining the repository. It will receive requests for saving an object with a given
key, retrieving data by passing the key or deleting a key and its related data;

• a client that interacts with the server in order to require all the aforementioned
operations. In the current implementation we use libmemcached [Data Differ-
ential, 2016], which is a C++ client library for memcached servers.

In our case, we have a single memcached server that is in execution on the master
node. It is itself a parallel program, composed of 8 threads in charge of handling the
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requests arriving from the various clients. For the HFT operator the object saved
in the repository will be the windows migrating from a worker to another. e key
used will simply be the stock symbol to which the window refers. e memcached
server does not understand data: it simply accepts arrays of byte. erefore windows
(and all their content) are serialized using protobuf. Workers in executor nodes will
use the libmemcached client to save windows to and import them from the memcached
server.

As an optimization, we decided to use two levels of backing repository (see Fig-
ure 7.16):

• a local repository for each executor node is used for state migration among
the workers in execution on the same node. In this case we can use a shared
memory area (like in Section 7.2.1) avoiding the cost of serializing and copying
the whole window;

• the remote repository based on memcached for data exchanges between nodes.

To handle this situation the only change in the Fluent protocol regards the type of
messages sent by the emitter to the workers: we can have local movement messages
(move_out/move_in) and remote movements (rmove_out/rmove_in) that are handled
by workers accordingly. e emitter knows the topology and the deployment of the
application over the different nodes and can easily distinguish between these two
cases. If the state movement regards workers allocated on the same node it will send
local movement messages, otherwise it will use the remote ones.

7.3.2 Mechanisms evaluation
For this analysis we do not take into account aspects such as the overhead of the
elastic support or the analysis of different migration protocols, that have been already
exhaustively studied for the shared memory architecture. On the other hand, the
main difference with respect to the shared memory implementation is the presence
of the remote repository. erefore it is interesting to evaluate its impact on the state
migration costs.

On the same line to what done in Section 7.2.2, we study the Balanced and the
Flux heuristics. For the latter we use two imbalance thresholds of 5% and 10% for the
derivation of the routing table. We refer to these two situations as Flux-5 and Flux-
10 respectively. We recall from Section 6.4.3 that the imbalance threshold represents
an upper limit to the relative difference in the load between the most used worker
and less used one. In the testing scenario, the operator is not a bottleneck and the
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workload is balanced until timestamp 30. en we force the input rate to change
from 400K tuples/sec to 700K tuples/sec. At timestamp 31 the number of workers
is changed from 30 to 60. In this way we pass from using only one executor node
to use two nodes, involving in the migration also the remote repository. Results are
reported on Figure 7.18.
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Figure 7.18: Impact of the rebalancer strategies for the distributed memory execution scenario:
latency and number of results of the HFT operator in the time instants before, during and after a
reconfiguration. Three different heuristics are evaluated: a Balanced one and two based on the
Flux strategy, with an imbalance factor of 5% (Flux-5) and 10% (Flux-10).

Figure 7.18a shows the average latency measured each 250 ms. We can still iden-
tify three different phases:
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• a first phase in which the rate changes and latency grows as the operator becomes
a bottleneck. All the heuristics produce the same latency results;

• a second phase starts at timestamp 31: the controller triggers the reconfigura-
tion, workers are created and keys aremigrated. In this scenario we have that on
average the Balanced strategy moves 8, 061 keys (2, 690 of which are moved us-
ing the remote repository), Flux-5 moves 431 keys (389 remotely) and Flux-10
moves 418 keys (376 remotely). Clearly the fewer keys are moved (in particu-
lar remotely) the faster is the operator to complete the reconfiguration and the
lower are the latency peaks in this phase. In fact, we have that the Balanced
policy produces higher latency because more keys are migrated. en we have
Flux-5 and finally Flux-10 with the lowest latency peaks;

• in the third phase, workers process tuples have been accumulated in the pending
buffers. Due to a better load balancing, Flux-5 approaches the steady state
faster with respect Flux-10. Although it had the highest latency peak, even
the Balanced strategy is able to approach the steady state in similar time to
Flux-10 but later than Flux-5. During the steady state phase, as we can expect,
the Balanced strategy has a slightly lower latency compared to the other two
heuristics.

Figure 7.18b shows the number of results produced. e subplot shows a zoom of
the central part of the figure. Immediately after timestamp 31 we have that the Bal-
anced strategy produces fewer results with respect to others. is is due to the higher
number of keys that must be migrated. Once the state migration is completed, it
outperforms the other strategies: the higher number of produced results is due to a
higher number of tuples enqueued in the various pending buffers during the migra-
tion phase.

Concluding we can state that the final considerations are reasonable different with
respect to the case of the shared memory architecture. A small advantage of the
Balanced strategy over the Flux ones is only noticeable in the steady state phase.
In contrast, it produces the highest latency peaks and longest time needed to reach
the steady state. is is due to the fact that it moves almost all the keys involved.
erefore, we can conclude that, on distributed memory architectures, a Flux policy
with a low imbalance threshold is the just compromise between latency peaks and
time to reach the steady state phase.
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7.3.3 Adaptation strategies evaluation
Like in 7.2.3, we evaluate different MPC-based strategies. In the following we will
assume that the rebalancer functionality adopts the Flux-5 policy, due to its advan-
tages over the Balanced one. Since the imbalance threshold is very low, we still use
the performance models that assume a balanced load: the discrepancy is very limited
(5% among the most and less loaded workers) and does not justify the use of more
complex cost model (like the ones introduced in Section 6.2.2).

For what concern the throughput based strategy, we have experimentally noticed
that a formulation that uses as QoS cost the Equation 6.13 does not work well for
this execution scenario. e strategy is able to resolve bottleneck situations slowly
and requires long time to finish the transient phase after a configuration and reach
a steady state. In our opinion, the reason is mainly due to the fact that we are in a
much more complex execution scenario with respect to the case of a single isolated
multicore machine: here the computation spans over multiple nodes, we have remote
exchanges of data through an interconnection network with several mechanisms (e.g.
socket and network buffers) whose behavior can impact on the transient phase if the
right decision is not taken very rapidly. Moreover, such formulation returns the same
QoS cost for all the configurations that result in an operator’s utilization factor ρ ≤ 1.
at is, even if we increase the cost parameter α we are not able to take decision faster
or in a more “performance-oriented” way.

For these reasons we decided to take into account a formulation of the throughput
QoS cost slightly different and that recalls the one used for the latency strategy. It is
defined as:

Qcost

(
q̃(τ + i)

)
= α exp

(
ρ̃(τ + i)

)
(7.1)

where ρ̃ is the utilization factor of the operator, defined as ρ̃(τ) = T̃ id
S (τ)/T̃A(τ).

e cost lies in the interval (α, αe] for utilization factor in the interval (0, 1]. In this
way, given two configurations u and u′, if ρ̃u < ρ̃u′ we have that the QoS cost of the
former will be slightly minor of the cost of the latter. On the other hand the cost
heavily penalizes configurations with an expected utilization factor greater than one.

Table 7.5 shows the different tested strategies and the name used to refer to them.
Again we evaluate the strategies without and with the switching cost. e QoS costs
used for the Lat-Node strategy remains exactly the same of the shared memory ar-
chitecture. As resource cost we use only the per-node cost since we do not have the
administrative privileges to exploit the DVFS facility of the used CPUs. Clearly we
have to adjust the cost parameters α, β and γ to the new execution scenarios (both
machines and workloads) as well as the used latency thresholds. e resource cost
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QoS cost Resource cost Name alpha

throughput-based
(Equation 7.1)

per node
(Equation 6.15)

Th-Node rw: 1
real: 2

latency-based
(Equation 6.14)

per node
(Equation 6.15)

Lat-Node rw: 4
real: 6

Table 7.5: MPC-based strategies studied in the experiments. In all the cases we have β = 0.5.
γ = 0.2 for Th-Node and γ = 0.4 for Lat-Node.

is β = 0.5 for both the strategies and workload, while the switching cost is set at
γ = 0.2 for the Th-Node strategy and γ = 0.4 for the Lat-Node one. In all the pre-
sented experiments the control step is of 3 seconds: we have seen experimentally that
for this application such time interval always guarantees the completion of the recon-
figuration phase (e.g. state movements). For what concern the statistical predictions
of disturbances, the same assumptions of the shared memory case hold also in this
case: we predict the arrival rate using a Holt Winters filter, while frequencies and
computation times per key will be estimated using the last measured values. All the
experiments have been repeated 20 times by collecting the average measurements.

Evaluation of the SASO properties

For the sake of conciseness, the evaluation of the SASO properties achieved by our
MPC-based strategies is shown in a more compact way with respect to the shared
memory case. Figure 7.19 shows the results obtained. Each of the radar plots displays
the averaged values of themeasuredmetrics for the different strategies and workloads.
For completeness the numeric results are reported also in Table 7.6.

All the metrics are measured in a similar way of the ones reported in Section 7.2.3.
For what concern the accuracy we count the violations as the number of control steps
in which the results obtained violate the QoS requirements. For Th-Node we look at
the ratio between the number of results produced Nout and the number of received
triggering tuplesNin, while for the Lat-Node strategy we consider the average latency
measured over the control step. In these experiments, the control step has length
equal to 3 seconds. e thresholds used for the Th-Node is θ = 0.95; for Lat-Node
we used a threshold of 5 ms and 25 ms respectively for the random walk and real
workloads.

In general, the results are qualitatively the same of the ones experienced for the
shared memory architectures. In particular, the switching cost:
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Figure 7.19: Radar plots for the SASO properties. Each plot shows using different radii the
number of reconfigurations, violations, used cores and average reconfiguration amplitude for a
different strategy and workload. For each spoke, it is indicated (in brackets) the minimum and
maximum values that correspond respectively to the center and external edge of the plot. Results
for different configuration of the switching cost are displayed in different colors and dashed lines.

• allows the strategy to reach a better stability (Result 1) and reduces the number
of violations (Result 2);

• on the other hand, it overshoots the configuration (uses more resources, Re-
sult 3) and results in smaller reconfiguration amplitude (Result 4).

Like in the shared memory architecture, these effects are more pronounced with h =

1 and can be partially mitigated by increasing the horizon length. However in this
case, as the interested reader can see from the results reported in Table 7.6, there
are situations in which the effects of the switching cost and prediction horizon are
not so evident like in the shared memory evaluations. For example consider the case
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of the number of reconfigurations in the Lat-Node strategy with real workload: with
switching cost and h = 1 we reach the lower number of reconfigurations, but this
number is almost identically for all the other configurations (i.e. NoSw, Sw h=2 and
Sw h=3). is could be due to a variety of reasons. Among the others, it should
be considered the inaccuracy of predictions in this very dynamic scenario: as can be
noticed in Figure 7.17b, the real workload is very noisy and irregular, making it very
difficult for the used filter to obtain long term precise forecasts especially considering
that the control step is of 3 seconds.

Strategy Workload Sw. Cost Reconf. Violat. Cores Amplit.

NoSw 46.5 1 49.36 1.52
Sw h=1 6.67 1 49.82 1
Sw h=2 16 1 49.51 1

Th-Node Rand. Walk

Sw h=3 21.58 1 49.44 1.01

NoSw 56.53 7 54 2.26
Sw h=1 16.79 4 56.65 1.38
Sw h=2 40.53 4 55.29 1.29

Lat-Node Rand. Walk

Sw h=3 47.73 4 54.65 1.26

NoSw 139 39 38.91 4.32
Sw h=1 69.92 40 39.97 1.35
Sw h=2 102.58 39 39.63 1.49

Th-Node Real

Sw h=3 118 39 39.46 1.67

NoSw 139.33 52 53.25 11.88
Sw h=1 102.09 21 62.37 2
Sw h=2 140.93 22 60.98 1.93

Lat-Node Real

Sw h=3 143.27 29 60 2.64

Table 7.6: Results for MPC-based strategies studied in the experiments.

7.3.4 Comparison with other approaches

To conclude this experimental section, we show a comparison of the results ob-
tained with two reactive strategies and a peak load configuration that uses all the
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available resources. Both the reactive strategies are based on policy rules and are
the same used for the shared memory case. e first one (to which we refer as Th-
Rule), increases/decreases the number of workers if the operator’s utilization factor is
over/under a maximum/minimum threshold (θmax and θmin). e second one takes
into account the difference between the measured average latency and the required
threshold, changing the number of workers if it is over/under a maximum/minimum
threshold (ξmax and ξmin).

e results for the real workload are shown in Table 7.7, in which we consider
throughput oriented strategies, and in Table 7.8, for latency based ones. In both cases
we report the Peak Load configuration counting the QoS violations accordingly. In
this configuration the state migrations are eventually performed at each step to main-
tain the workload quasi-balanced among the workers. For the MPC-Based strategies
the results obtained with h = 2 are reported. Control steps have length equal to 3
seconds.

No. reconf. QoS viol. Ampl. No. workers

-Rule 134.83 45 2 36.84
Peak Load - 35 - 99
-Node 102.58 39 1.49 39.63

Table 7.7: Comparison with throughput oriented strategy and peak load configuration. For Th-
Rule we have θmax = 0.9 and θmin = 0.8.

No. reconf. QoS viol. Ampl. No. workers

Lat-Rule 147.2 43 3.09 46.36
Peak Load - 19 - 99
Lat-Node 140.93 22 1.93 60.98

Table 7.8: Comparison with latency oriented strategy and peak load configuration. For the Lat-
Rule strategy we have ξmin = 0.8 and ξmax = 1.1.

ese comparisons show the effectiveness of our approach also in the case of a
sharedmemory architecture. We have that fewer reconfigurations are performed with
fewer violations with respect the rule based strategies. Compared with the peak load
strategy, we obtain a slightly higher number of violations but using less resources.
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7.4 Summary
In this chapter we evaluated our strategies in a high-frequency trading application in
both shared and distributed memory context. In general the proposed solutions are
able to minimize QoS violations, in terms of throughput or average latency, mini-
mizing at the same time the resource used, in terms of used cores or consumed power.
We compared the proposed MPC-based strategies in terms of the SASO properties,
i.e. Stability, Accuracy, Settling time and Overshoot. e use of the switching cost
and prediction horizons play an important role in achieving a good trade off in these
properties. is effect is clearly visible in the shared memory case. e idea is graph-
ically illustrated in Table 7.9. e best results correspond to three stars, whereas the
worst ones are denoted by a single star. Two stars represent intermediate results (a
good trade-off ).

Strategy Stability Accuracy Settling Time Overshoot

NoSw ⋆ ⋆ ⋆⋆⋆ ⋆⋆⋆
Sw h=1 ⋆⋆⋆ ⋆⋆⋆ ⋆ ⋆
Sw h=2 ⋆⋆ ⋆⋆ ⋆⋆ ⋆⋆

Table 7.9: Qualitative analysis: ⋆⋆⋆ denotes the best results, ⋆ the worst ones.

As experimentally evaluated, the configuration without switching cost is the worst
in terms of stability (many reconfigurations are needed), the settling time is the best,
the accuracy is the worst (many QoS violations) and, finally, the overshoot is the best,
i.e. with this strategy configuration we always use the minimum number of work-
ers or the minimum power to meet the QoS requirements. e configuration with
switching cost and minimal horizon is the best in terms of stability (few reconfigura-
tions) with low settling time (small reconfigurations on average). is configuration
has a high overshoot, therefore the accuracy is high because we usually oversize the
number of workers/CPU frequency. Finally, the strategy configuration with switch-
ing cost and a sufficiently long horizon reaches a good trade-off between the four
SASO properties.

In the case of distributedmemory architecture, these results are still visible. How-
ever there are situations in which the effect of the switching cost is not so prominent.
is can be due to a variety of reasons: for example the fact that we are in a much
more complex execution architecture with respect to the shared memory case or the
difficulties in obtaining precise forecasting for the real workload. Further investiga-
tion of these issues is left as future works, due to the deep performance debugging
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that is required to understand and resolve these minor problems. In a similar way,
it is left to future works the possibility to incorporate performance cost models that
take into account the presence of imbalance in the workload assigned to the various
workers. In our opinion, this possibility is really meaningful when this imbalance has
a certain relevance (e.g. 10 ÷ 20% or higher). It should be however noticed that,
unless this situation is explicitly imposed by using a heuristic with such imbalance
degree, this could happen only in situations in which:

• we have few keys with respect to the number of available workers;

• or we have a highly unbalanced keys frequency distribution.

We recall from Chapter 4 that in similar cases the KP pattern is not the best solution
to adopt, due to its well known load balancing problem. erefore, in analogous
situations, other parallel patterns should be used to parallelize the operator.

Finally, even if the proposed solutions have been tested on an HFT application,
they are clearly beneficial also in all the applications in which QoS requirements and
resources consumption are major concerns. Other examples could be healthcare di-
agnostic systems that process sensor data in real time to anticipate urgent medical
interventions, network security systems that prevent intrusions, transportation mon-
itoring systems in which sensor data is analyzed to detect anomalous behaviors and
prevent catastrophic scenarios. In these application contexts performance guarantees
are fundamental and a proactive strategy enabling adaptive processing is of great im-
portance to meet the performance requirements with high probability by reducing
the operating costs.



8 Conclusions

Data Stream Processing is one of the IT trending topics today. It follows the in-
terest created by the so called “Big Data” in the scientific communities as well as in
businesses. is thesis gives some insights on the fascinating challenges that DaSP
applications pose and suggests some initials solutions to the problems of parallelism
exploitation and autonomic behavior. Due to stringent QoS requirements and very
dynamic execution scenarios, these applications must:

• be able to efficiently exploit intra-operator parallelism to obtain the desired
performance;

• be able to adapt to dynamic workloads and changing conditions by automati-
cally adjusting the used resources, possibly in a cost effective manner.

is thesis runs along these two directions that, in our opinion, are not completely
and exhaustively covered by existing frameworks and literature. e leitmotif of the
dissertation has been the exploitation of a structured approach to solve the problem of
achieving intra-operator parallelism. is simplifies the programming by raising the
level of abstraction presented to application programmer: when facing the problem
of parallelizing a DaSP operator the programmer can instantiate a pattern available
among a set of re-usable parallel solutions, taking into account the problem character-
istics. For these patterns ready-to-use parametric implementations can be provided
by high level programming tools. In this way the programmer has to specify only the
functional details of the operator (e.g. type and characteristics of the used window
and the function to compute) while all the implementation details are hidden and
completely encapsulated in the used programming tool and runtime support. Fur-
thermore, the knowledge of the communication/computation pattern implied by the
use of well know parallelization schemes, allows the development of reconfiguration
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mechanisms that can be provided directly by the runtime support and of adaptation
strategies that may benefit from the presence of performance models to achieve the
desired QoS requirements.

We started from the study of recurrent computations that arise in window based
stateful operators, which are the most representative class of stateful data stream oper-
ators. In Chapter 4 we proposed parallel exploitation patterns: a set of four different
re-usable parallelism schemes are identified, each one targeting particular computa-
tions and exhibiting its own peculiarities in terms of applicability, impact on perfor-
mance and issues. Due to the vast range of computations that they can cover, the
possibility to integrate them in existing DaSP or Skeletal parallel framework should
deserve special consideration from these communities.

e problem of the autonomic behavior of a DaSP operator has been addressed
in the second part of the thesis, taking into account one of the previously studied pat-
terns. e deep knowledge of its parallelization schema allows us to define optimized
reconfiguration mechanisms with low performance impacts. A set of predictive scal-
ing strategies has been devised. ey are based on the Model Predictive Control
approach and present important aspects that are missing or not covered by existing
frameworks/literature:

• they maintain desired QoS levels in terms of throughput or average latency;

• they deal with resource/power consumption issues;

• they are predictive and try to anticipate corrective actions by using forecasting
tools.

e proposed approach has been evaluated in both shared and distributed memory
architectures. Interestingly enough, we were able to obtain qualitatively similar be-
haviors in both cases, highlighting the effectiveness of our solutions. e application
of MPC as well as the devising of strategies that take into account latency constraints
and energy consumptions are quite new subjects for the DaSP community. e appli-
cation of the studied methods can be clearly extended to the other proposed patterns.

e methods and solutions presented in this thesis are just first steps towards
the resolution of problems related to the high performance exploitation and adaptive
management of DaSP applications. Serial research directions can be traced starting
from the current work: some of these aim at completing the picture partially drawn
up to here. Others go beyond and look towards other interesting and related issues.
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From a parallelism point of view, windows are not the only state representation
in DaSP applications. Another representative class of DaSP computations are sketch
based ones ([Aggarwal and Yu, 2007]), in which operators maintain a summary of
the stream in order to compute the results. Parallel pattern solutions can be beneficial
also in the parallelization of those cases. Another interesting feature is the ability
to handle stream imperfections, such as delayed or out-of-order data [Stonebraker
et al., 2005]. Tuples may exhibit this characteristic due to the fact that data sources
produces data in a disordered way or simply because data arrives frommultiple sources
multiplexed together. Due to the existence of late arrivals, it is difficult to determine
when a window has received all tuples falling into the window scope. is clearly
has an impact on how parallelism can be exploited in operators that should deal with
similar problems. Typical solutions resort in using punctuations, i.e. special tuples that
indicate particular properties of the input data (e.g. “from now on you will receive
tuple with timestamps higher than 10am”). is kind of problem is partially treated
in existing literature (like in [Ji et al., 2015]) and framework ([Apache Flink, 2016]),
typically without taking into account parallelism.

For what concern adaptivity, it is meaningful to extend the proposed mechanisms
and scaling strategies to the other proposed patterns (not only Key Partitioning), pro-
vided that these solution can be effectively encapsulated in production frameworks,
and to enhance the power consumption model. More scientifically appealing could
be the study of other issues related with the autonomic behavior. Just to mention two
possibilities:

• concerning the single operator, the space of all admissible configurations that
must be explored by the controller grows exponentially with the configuration
options and horizon length. In the thesis we partially address the problem of
complexity reduction using B&B techniques. However, a similar solution re-
quires that the cost function is monotonically increasing with the prediction
steps over the horizon. Possible alternative solutions could be found in greedy
search algorithms, to obtain sub-optimal solutions, or in evolutionary algorithms.
Moreover, in a distributed environment hierarchical controllers could be ben-
eficial to solve the computational problems as well as scalability and reliability
issues;

• in this thesis we focus on the management of the single operators. Operators
are the building blocks of more complex DaSP applications, organized in com-
putation graph. Integrating MPC strategies also in a complete graph context is
an interesting future work direction. In this case, the decisions taken by an op-



erator controller may influence the behavior of other parts of the computation.
For example a bottleneck operator slows down the execution of its preceding
operators due to backpressure phenomena. erefore, control operators need
to coordinate to find agreements in the scaling decisions. Similar problems
have been already investigated in the research group (e.g. in [Mencagli, 2015])
and already proposed solution can find applicability also in this case.
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